--- license: mit task_categories: - audio-classification language: - zh - en tags: - music - art pretty_name: Timbre and Range Dataset size_categories: - 1K ### Data Instances .zip(.wav, .jpg), .csv ### Data Fields ```txt timbre: song1-32 range: vox1_19-22/26-29/32/33/36-38/41-47/51-55/59-64/69-71/79-81 ``` ### Data Splits Train, Validation, Test ## Usage ### Timbre subset ```python from datasets import load_dataset ds = load_dataset("ccmusic-database/timbre_range", name="timbre") for item in ds["train"]: print(item) for item in ds["validation"]: print(item) for item in ds["test"]: print(item) ``` ### Range subset ```python from datasets import load_dataset # default subset ds = load_dataset("ccmusic-database/timbre_range", name="range") for item in ds["train"]: print(item) for item in ds["validation"]: print(item) for item in ds["test"]: print(item) ``` ## Maintenance ```bash git clone git@hf.co:datasets/ccmusic-database/timbre_range cd timbre_range ``` ## Dataset Creation ### Curation Rationale Promoting the development of music AI industry ### Source Data #### Initial Data Collection and Normalization Zijin Li, Zhaorui Liu, Monan Zhou #### Who are the source language producers? Composers of the songs in dataset ### Annotations #### Annotation process CCMUSIC students collected acapella singing audios of 9 singers, as well as cut single-note audio, totaling 775 clips #### Who are the annotators? Students from CCMUSIC ### Personal and Sensitive Information Due to copyright issues with the original music, only acapella singing audios are provided in the dataset ## Considerations for Using the Data ### Social Impact of Dataset Promoting the development of AI in the music industry ### Discussion of Biases Most are Chinese songs ### Other Known Limitations Samples are not balanced enough ## Mirror ## Additional Information ### Dataset Curators Zijin Li ### Evaluation [1] [Yiliang, J. et al. (2019) ‘Data Augmentation based Convolutional Neural Network for Auscultation’, Journal of Fudan University(Natural Science), pp. 328–334. doi:10.15943/j.cnki.fdxb-jns.2019.03.004.](https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2019&filename=FDXB201903004&uniplatform=NZKPT&v=VAszHDtjPUYMi3JYVrdSGx4fcqlEtgCeKwRGTacCj98CGEQg5CUFHxakrvuaMzm3) ### Citation Information ```bibtex @article{2019Data, title={Data Augmentation based Convolutional Neural Network for Auscultation}, author={ Yiliang, Jiang and Xulong, Zhang and Jin, Deng and Wenqiang, Zhang and Wei, L. I. }, journal={Journal of Fudan University(Natural Science)}, year={2019}, } ``` ### Contributions Provide a dataset for music timbre and range