--- license: apache-2.0 task_categories: - question-answering language: - en tags: - math --- ## Overview VCBench provides a standardized framework for evaluating vision-language models. This document outlines the procedures for both standard evaluation and GPT-assisted evaluation of your model's outputs. ## 1. Standard Evaluation ### 1.1 Output Format Requirements Models must produce outputs in JSONL format with the following structure: ``` {"id": , "pred_answer": ""} {"id": , "pred_answer": ""} ... ``` **Example File (`submit.jsonl`):** ```json {"id": 1, "pred_answer": "A"} {"id": 2, "pred_answer": "B"} {"id": 3, "pred_answer": "C"} ``` ### 1.2 Evaluation Procedure 1. Ensure your predictions file follows the specified format 2. Run the evaluation script: ```bash python evaluate_vcbench.py -p ./path/to/predictions.jsonl -g ./path/to/VCBench_with_answer.json ``` `VCBench_with_answer.json` is the ground truth file which can be downloaded from [here](https://huggingface.co/datasets/cloudcatcher2/VCBench/resolve/main/VCBench_with_answer.json). ## 2. GPT-Assisted Evaluation ### 2.1 Output Format Requirements For natural language responses, use this JSONL format: ``` {"id": , "pred_answer": ""} {"id": , "pred_answer": ""} ... ``` **Example File (`nl_predictions.jsonl`):** ```json {"id": 1, "pred_answer": "The correct answer is A"} {"id": 2, "pred_answer": "After careful analysis, option B appears correct"} {"id": 3, "pred_answer": "C is the right choice"} ``` ### 2.2 Environment Setup Set your Dashscope API key: ```bash export DASHSCOPE_KEY="your_api_key_here" ``` ### 2.3 Evaluation Procedure ```bash python evaluate_vcbench_by_gpt.py -p ./path/to/nl_predictions.jsonl -g ./path/to/VCBench_with_answer.json ``` ## 3. Expected Output Both evaluation scripts will provide: - Overall accuracy percentage - Per-question-type accuracy breakdown - Progress updates during evaluation ## Citation **BibTeX:** ```bibtex @misc{wong2025vcbench author = {Zhikai Wang and Jiashuo Sun and Wenqi Zhang and Zhiqiang Hu and Xin Li and Fan Wang and Deli Zhao}, title = {Benchmarking Multimodal Mathematical Reasoning with Explicit Visual Dependency}, year = {2025}, eprint = {2504.18589}, archivePrefix = {arxiv}, primaryClass = {cs.CV}, url = {https://arxiv.org/abs/2504.18589} } ``` ## Dataset Card Authors - [Zhikai Wang](https://cloudcatcher888.github.io/): wangzhikai.wzk@alibaba-inc.com - [Jiashuo Sun](https://gasolsun36.github.io/): gasolsun36@gmail.com