Datasets:

Modalities:
Text
Formats:
json
ArXiv:
Libraries:
Datasets
Dask
License:
Geralt-Targaryen commited on
Commit
a81729c
·
verified ·
1 Parent(s): 1524665

Upload embedding & notebook

Browse files
Files changed (2) hide show
  1. instruction-text.ipynb +800 -0
  2. node_type_embedding.pth +3 -0
instruction-text.ipynb ADDED
@@ -0,0 +1,800 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "from transformers import set_seed\n",
10
+ "import pandas as pd\n",
11
+ "import matplotlib.pyplot as plt\n",
12
+ "from collections import Counter\n",
13
+ "import numpy as np\n",
14
+ "import random\n",
15
+ "import torch"
16
+ ]
17
+ },
18
+ {
19
+ "cell_type": "markdown",
20
+ "metadata": {},
21
+ "source": [
22
+ "three fields in each prompt: question, bot, task\n",
23
+ "\n",
24
+ "input to the model is:\n",
25
+ "```\n",
26
+ "<s>human\n",
27
+ "[question]\n",
28
+ "<s>bot\n",
29
+ "[bot]\n",
30
+ "```\n",
31
+ "where a question is\n",
32
+ "```\n",
33
+ "[program]\n",
34
+ "\n",
35
+ "[question]\n",
36
+ "```"
37
+ ]
38
+ },
39
+ {
40
+ "cell_type": "code",
41
+ "execution_count": null,
42
+ "metadata": {},
43
+ "outputs": [],
44
+ "source": [
45
+ "debug = ''\n",
46
+ "in_dir = f\"/Users/zzy/Documents/graph{debug}\"\n",
47
+ "out_dir = f\"/Users/zzy/Documents/graph{debug}/instruction\"\n",
48
+ "no_return_sample_num = 20 if len(debug) > 0 else 40000\n",
49
+ "\n",
50
+ "figsize = (24, 16)\n",
51
+ "fontsize = 28\n",
52
+ "fontsize_tick = 16\n",
53
+ "\n",
54
+ "def filter_df(df, n=None):\n",
55
+ " try:\n",
56
+ " n = n if n is not None else no_return_sample_num\n",
57
+ " return pd.concat([df[df.source.apply(lambda x: 'return ' in x)], df[df.source.apply(lambda x: 'return ' not in x)].sample(n)]).reset_index(drop=True)\n",
58
+ " except:\n",
59
+ " return df\n",
60
+ "\n",
61
+ "def capitalize(s: str):\n",
62
+ " return s[0].upper() + s[1:]\n",
63
+ "\n",
64
+ "def replace_digit(s: str):\n",
65
+ " return s.replace('10', 'ten').replace('1', 'one').replace('2', 'two').replace('3', 'three').replace('4', 'four').replace('5', 'five').replace('6', 'six').replace('7', 'seven').replace('8', 'eight').replace('9', 'nine')\n",
66
+ "\n",
67
+ "def print_df(df, n=10):\n",
68
+ " for i in range(n):\n",
69
+ " print(df.loc[i].question)\n",
70
+ " print(df.loc[i].bot)\n",
71
+ " print('---'*10)\n",
72
+ "\n",
73
+ "graph_type_map = {'AST': 'abstract syntax tree', 'DFG': 'data flow graph'}\n",
74
+ "NODE_TYPES = [\n",
75
+ " 'assignment expression',\n",
76
+ " 'basic block',\n",
77
+ " 'binary expression',\n",
78
+ " 'break statement',\n",
79
+ " 'call expression',\n",
80
+ " 'catch clause',\n",
81
+ " 'class expression',\n",
82
+ " 'compile unit',\n",
83
+ " 'conditional expression',\n",
84
+ " 'continue statement',\n",
85
+ " 'export statement',\n",
86
+ " 'for statement',\n",
87
+ " 'function expression',\n",
88
+ " 'identifier expression', \n",
89
+ " 'if statement',\n",
90
+ " 'import expression',\n",
91
+ " 'key value parameter',\n",
92
+ " 'literal expression',\n",
93
+ " 'member access',\n",
94
+ " 'new expression',\n",
95
+ " 'new with type expression',\n",
96
+ " 'object expression',\n",
97
+ " 'object property',\n",
98
+ " 'parameter',\n",
99
+ " 'Python delete',\n",
100
+ " 'Python with',\n",
101
+ " 'Python with expression clause',\n",
102
+ " 'Python yield expression',\n",
103
+ " 'range statement',\n",
104
+ " 'return statement',\n",
105
+ " 'scope',\n",
106
+ " 'spread collection expression',\n",
107
+ " 'spread dictionary expression',\n",
108
+ " 'super expression',\n",
109
+ " 'switch case',\n",
110
+ " 'switch statement',\n",
111
+ " 'this expression',\n",
112
+ " 'throw statement',\n",
113
+ " 'try statement',\n",
114
+ " 'tuple expression',\n",
115
+ " 'unary expression',\n",
116
+ " 'variable declaration',\n",
117
+ " 'while statement'\n",
118
+ "]"
119
+ ]
120
+ },
121
+ {
122
+ "cell_type": "code",
123
+ "execution_count": null,
124
+ "metadata": {},
125
+ "outputs": [],
126
+ "source": [
127
+ "# ph stands for place holder\n",
128
+ "ph1 = 'aohg981thgboir2bnjosi1839r8g9udnfv,mqwfo'\n",
129
+ "ph2 = 'io12i3ru9ginal90109ja-efi1-3gasd130gn0wa9'\n",
130
+ "ph3 = '2091rng09wegnb2p09jojmpzf,k[2e00-jmaa]'\n",
131
+ "ph4 = '0391gnea-g0-jr0aegbm[afk0-249jgps]waeg0'\n",
132
+ "ph5 = 'io1hngi0enriqgpgv]139gonpiamofj10onem;alf'\n",
133
+ "ph_list = [ph1, ph2, ph3, ph4, ph5]\n",
134
+ "punc_list = [\",\", \"?\", \".\", \";\", \"'s\"]\n",
135
+ "\n",
136
+ "def replace_place_holder(s, node_text, placeholder=\"{node}\"):\n",
137
+ " # this function injects a multi-line code snippet into the template\n",
138
+ "\n",
139
+ " if placeholder not in s:\n",
140
+ " return s\n",
141
+ "\n",
142
+ " # 1. remove the white spaces around {node} placeholder\n",
143
+ " s = s.replace(f\"{placeholder} \", f\"{placeholder}\").replace(f\" {placeholder}\", f\"{placeholder}\")\n",
144
+ " for punc in punc_list:\n",
145
+ " s = s.replace(f\"{placeholder}{punc} \", f\"{placeholder}{punc}\")\n",
146
+ " \n",
147
+ " # 2. injects the code, but first replace patterns like '\\n.' in both the code and template (the template may contain previously injected code)\n",
148
+ " for ph, punc in zip(ph_list, punc_list):\n",
149
+ " node_text = node_text.replace(f\"\\n{punc}\", ph)\n",
150
+ " s = s.replace(f\"\\n{punc}\", ph)\n",
151
+ " s = s.replace(placeholder, node_text)\n",
152
+ "\n",
153
+ " # 3. replace patterns like \"\\n.\" caused by the template\n",
154
+ " for punc in punc_list:\n",
155
+ " s = s.replace(f\"\\n{punc}\", f\"{punc}\\n\")\n",
156
+ "\n",
157
+ " # 4. replace the placerholders inserted in step 2\n",
158
+ " for ph, punc in zip(ph_list, punc_list):\n",
159
+ " s = s.replace(ph, f\"\\n{punc}\")\n",
160
+ " return s"
161
+ ]
162
+ },
163
+ {
164
+ "cell_type": "markdown",
165
+ "metadata": {},
166
+ "source": [
167
+ "## node classification"
168
+ ]
169
+ },
170
+ {
171
+ "cell_type": "code",
172
+ "execution_count": null,
173
+ "metadata": {},
174
+ "outputs": [],
175
+ "source": [
176
+ "questions = [\n",
177
+ " 'In the {graph} of this {lang} program, what is the type of this node: {node}.',\n",
178
+ " 'Tell me the node type of {node} in the {graph} of this {lang} program.',\n",
179
+ " 'What is the node type of {node} in the {graph} of this {lang} program',\n",
180
+ " \"In the {graph} of the provided {lang} program, could you identify the type of the node {node}?\",\n",
181
+ " \"What kind of node is {node} in the {graph} of this {lang} program?\",\n",
182
+ " \"Can you classify the node {node} in the {graph} of this {lang} program?\",\n",
183
+ " \"What category does the node {node} fall under in the {graph} of this {lang} program?\",\n",
184
+ " \"Regarding the {graph} of this {lang} program, what is the classification of the node {node}?\",\n",
185
+ " \"In the context of the {graph} of this {lang} program, what is the nature of the node identified as {node}?\",\n",
186
+ " \"Could you tell me what the node {node} represents in the {graph} of this {lang} program?\",\n",
187
+ " \"I'm curious, what type of node is {node} in the {graph} of the {lang} program presented?\",\n",
188
+ " \"What is the designation of the node {node} within the {graph} of this {lang} program?\",\n",
189
+ " \"Could you specify the node type for {node} in the {graph} of this particular {lang} program?\",\n",
190
+ " 'Determine the node type of {node} in the {graph} of this {lang} program.',\n",
191
+ "]\n",
192
+ "answers = [\n",
193
+ " \"This node, {node}, is classified as a {answer}.\",\n",
194
+ " \"The node {node} is a {answer}.\",\n",
195
+ " \"This node is identified as a {answer}.\",\n",
196
+ " \"It's a {answer}.\",\n",
197
+ " \"Regarding the node {node}, it falls under the category of a {answer}.\",\n",
198
+ " \"{node} is classified as a {answer} in the {graph} of this program.\",\n",
199
+ " \"The classification of the node {node} is a {answer}.\",\n",
200
+ " \"Within the {graph} of this program, {node} is a {answer} type of node.\",\n",
201
+ " \"As for the node identified as {node}, it's considered a {answer}.\",\n",
202
+ " \"The node {node} is of the {answer} variety.\",\n",
203
+ " 'The type of this node is {answer}.',\n",
204
+ " 'The given node is a {answer}.',\n",
205
+ " \"{answer}.\",\n",
206
+ " \"{answer}\",\n",
207
+ "]\n",
208
+ "print(len(questions), len(set(questions)))\n",
209
+ "print(len(answers), len(set(answers)))\n",
210
+ "assert all(a.count('{answer}') == 1 for a in answers)\n",
211
+ "assert all(a.count('{graph}') == 1 for a in questions)\n",
212
+ "assert all(a.count('{lang}') == 1 for a in questions)\n",
213
+ "\n",
214
+ "bots = [a for a in answers]\n",
215
+ "prompts = [[q, b] for q in questions for b in bots]\n",
216
+ "print(len(prompts))"
217
+ ]
218
+ },
219
+ {
220
+ "cell_type": "code",
221
+ "execution_count": null,
222
+ "metadata": {},
223
+ "outputs": [],
224
+ "source": [
225
+ "set_seed(0)\n",
226
+ "results = {}\n",
227
+ "for lang in ['Java', 'Python']:\n",
228
+ " for graph in ['DFG', 'AST']:\n",
229
+ " result = []\n",
230
+ " df = pd.read_json(f\"{in_dir}/{lang}_{graph}.jsonl\", lines=True)\n",
231
+ " if lang == 'Python':\n",
232
+ " df = filter_df(df)\n",
233
+ "\n",
234
+ " question, bot = [], []\n",
235
+ " for i in range(len(df)):\n",
236
+ "\n",
237
+ " # filter out nodes that occur multiple times in the source code\n",
238
+ " node_texts = df.loc[i]['text']\n",
239
+ " node_ids = df.loc[i]['node_ids']\n",
240
+ " source = df.loc[i]['source']\n",
241
+ " assert len(node_ids) == len(node_texts)\n",
242
+ "\n",
243
+ " occurrences = np.array([source.count(t) for t in node_texts])\n",
244
+ " nodes_single_occurrence = np.where(occurrences == 1)[0]\n",
245
+ "\n",
246
+ " # we sample 1 node from each program\n",
247
+ " nodes = np.random.choice(nodes_single_occurrence, 1)\n",
248
+ " for node in nodes:\n",
249
+ " node_text = node_texts[node]\n",
250
+ " node_id = node_ids[node]\n",
251
+ " node_type = NODE_TYPES[node_id]\n",
252
+ "\n",
253
+ " p = random.sample(prompts, 1)[0]\n",
254
+ " p = [s.replace('{graph}', f\"{graph_type_map[graph]}\").replace('{lang}', f\"{lang}\") for s in p]\n",
255
+ " \n",
256
+ " response = p[1]\n",
257
+ " # deal with answer first in the response before plugging in the node text to avoid replacing something in the code\n",
258
+ " if any(node_type.startswith(l) for l in 'aeio'):\n",
259
+ " response = response.replace(' a ', ' an ')\n",
260
+ " response = response.replace('{answer}', node_type)\n",
261
+ " response = capitalize(response)\n",
262
+ " \n",
263
+ " if '\\n' in node_text:\n",
264
+ " node_text = f\"\\n```\\n{node_text}\\n```\\n\"\n",
265
+ " assert ph1 not in node_text and ph2 not in node_text and ph3 not in node_text and ph4 not in node_text and ph5 not in node_text\n",
266
+ " q = replace_place_holder(p[0], node_text)\n",
267
+ " response = replace_place_holder(response, node_text)\n",
268
+ " else:\n",
269
+ " node_text = f\"`{node_text}`\"\n",
270
+ " q = p[0].replace('{node}', node_text)\n",
271
+ " response = response.replace('{node}', node_text)\n",
272
+ "\n",
273
+ " source = source.strip('\\n')\n",
274
+ " q = f\"```\\n{source}\\n```\\n\\n{q}\"\n",
275
+ " question.append(q)\n",
276
+ " bot.append(response)\n",
277
+ " result.append(node_id)\n",
278
+ "\n",
279
+ " df['question'] = question\n",
280
+ " df['bot'] = bot\n",
281
+ " df = df.drop(columns={'text', 'source', 'node_ids', 'edge_index'})\n",
282
+ " df.to_json(f\"{out_dir}/Node_Classification_{lang}_{graph}.jsonl\", orient='records', lines=True)\n",
283
+ " results[f\"{lang}-{graph}\"] = result"
284
+ ]
285
+ },
286
+ {
287
+ "cell_type": "markdown",
288
+ "metadata": {},
289
+ "source": [
290
+ "## parent node"
291
+ ]
292
+ },
293
+ {
294
+ "cell_type": "code",
295
+ "execution_count": null,
296
+ "metadata": {},
297
+ "outputs": [],
298
+ "source": [
299
+ "questions = [\n",
300
+ " 'In the {graph} of this {lang} program, what is the parent node of this {node_type}: {node}.',\n",
301
+ " 'What is the parent of {node_type} {node} in the {graph} of this {lang} program?',\n",
302
+ " 'What is the parent node of {node_type} {node} in the {graph} of this {lang} program?',\n",
303
+ " 'Based on the {graph} of this {lang} program, identify the parent of {node_type} {node}.',\n",
304
+ " 'Based on the {graph} of this {lang} program, identify the parent of this {node_type}: {node}.',\n",
305
+ " 'Identify the parent of {node_type} {node} in the {graph} of this {lang} program.',\n",
306
+ " \"In the {graph} of the {lang} program presented, what is the predecessor of {node_type} {node}?\",\n",
307
+ " \"What node acts as the parent to {node_type} {node} in the {graph} of the displayed {lang} program?\",\n",
308
+ " \"Can you determine the parent node of {node_type} {node} in the {graph} of this {lang} program?\",\n",
309
+ " \"Which node is directly above {node_type} {node} in the hierarchy of the {graph} of the provided {lang} program?\",\n",
310
+ " \"Whose child is {node_type} {node} within the {graph} of this {lang} program?\",\n",
311
+ " \"What is the immediate ancestor of the {node_type} {node} in the {graph} of this {lang} program?\",\n",
312
+ " \"Regarding the {graph} of this {lang} program, can you point out the parent of {node_type} {node}?\",\n",
313
+ " \"In terms of graph theory, what is the parent of the {node_type} {node} in the {graph} of this {lang} program?\",\n",
314
+ " \"Who has the parental role for {node_type} {node} in the {graph}'s topology of this {lang} program?\",\n",
315
+ " \"For {node_type} {node} in the {graph} of the given {lang} program, which node supplies the incoming edge?\",\n",
316
+ "]\n",
317
+ "answers1 = [\n",
318
+ " \"In the {graph} of the given {lang} program, the parent of the given {node_type} is {parent}, which is a {parent_type}.\",\n",
319
+ " \"This {node_type}'s parent is the {parent_type} {parent}.\",\n",
320
+ " \"The given {node_type}'s parent in the {graph} of this {lang} program is the {parent_type} {parent}.\",\n",
321
+ " \"The parent of {node_type} {node} in the {graph} of this {lang} program is identified as {parent}, categorized as a {parent_type}.\",\n",
322
+ " \"In the structure of the {graph} of this {lang} program, {node_type} {node} finds its parent in node {parent}, which is a {parent_type}.\",\n",
323
+ " \"Node {parent}, a {parent_type}, serves as the parent to {node_type} {node} in the {graph} of this {lang} program.\",\n",
324
+ " \"As per the hierarchy in the {graph}, the {parent_type} node {parent} is the direct predecessor to {node_type} {node}.\",\n",
325
+ " \"Upon inspection, it is clear that the parent of {node_type} {node} is the {parent_type} {parent}.\",\n",
326
+ " \"The {node_type} {node} is immediately descended from {parent}, a {parent_type} in the {graph} of this {lang} program.\",\n",
327
+ " \"{node_type} {node}'s parental node is determined to be {parent}, which falls into the category of {parent_type}.\",\n",
328
+ " \"For {node_type} {node}, its lineage traces back to the {parent_type} node {parent} as its parent.\",\n",
329
+ " \"Within the nodal arrangement of the {graph}, {parent} is the progenitor to {node_type} {node}, having the classification of a {parent_type}.\",\n",
330
+ " \"Tracing the edges leads to confirming {parent}, a {parent_type}, as the parent of {node_type} {node}.\"\n",
331
+ "]\n",
332
+ "answers2 = [\n",
333
+ " 'This {node_type} has no parent in the {graph} of this {lang} program.',\n",
334
+ " 'This {node_type} has no parent in the {graph} of the given {lang} program.',\n",
335
+ " 'There is no edge pointing to this {node_type} in the {graph}. Therefore it does not have any parent.',\n",
336
+ " 'There is no edge pointing to this {node_type} in the {graph} of the given {lang} program. Therefore it does not have any parent.',\n",
337
+ " \"Within the confines of the {graph} of this {lang} program, {node_type} {node} does not have a parent node.\",\n",
338
+ " \"{node_type} {node} stands without a parent in the {graph}'s structure.\",\n",
339
+ " \"No parent node is associated with {node_type} {node} in the {graph} of the provided {lang} program.\",\n",
340
+ " \"A review of the code establishes that there is no preceding node to {node_type} {node} in the {graph}; it has no parent.\",\n",
341
+ " \"The {node_type} designated as {node} appears to lack a parental connection within the {graph} of this code.\",\n",
342
+ " \"In terms of graph topology, {node_type} {node} is an orphan node with no parent.\",\n",
343
+ " \"There is no edge incoming to {node_type} {node}, indicating the absence of a parent in the {graph} of this {lang} program.\",\n",
344
+ " \"After analyzing the code, it becomes evident that {node_type} {node} lacks a directly linked parent node in the {graph}.\",\n",
345
+ " \"The {graph} denotes that {node_type} {node} is disconnected from any parental lineage.\",\n",
346
+ " \"As depicted in the code, {node_type} {node} exists without a parent node to claim in the {graph}.\",\n",
347
+ "]\n",
348
+ "answers3 = [\n",
349
+ " \"There are multiple parents of this {node_type} in the {graph}:\\n\",\n",
350
+ " \"This {node_type} has more than one parent in the {graph}:\\n\"\n",
351
+ "]\n",
352
+ "print(len(questions), len(set(questions)))\n",
353
+ "print(len(answers1), len(set(answers1)))\n",
354
+ "print(len(answers2), len(set(answers2)))\n",
355
+ "print(len(answers3), len(set(answers3)))\n",
356
+ "assert all(a.count('{graph}') == 1 for a in questions)\n",
357
+ "assert all(a.count('{lang}') == 1 for a in questions)\n",
358
+ "\n",
359
+ "bots = [a for a in answers1]\n",
360
+ "bots_none = [a for a in answers2]\n",
361
+ "bots_multiple = [a for a in answers3]\n",
362
+ "prompts = [[q, b] for q in questions for b in bots]\n",
363
+ "print(len(prompts))"
364
+ ]
365
+ },
366
+ {
367
+ "cell_type": "code",
368
+ "execution_count": null,
369
+ "metadata": {},
370
+ "outputs": [],
371
+ "source": [
372
+ "set_seed(1)\n",
373
+ "\n",
374
+ "results = {}\n",
375
+ "for lang in ['Java', 'Python']:\n",
376
+ " for graph in ['DFG', 'AST']:\n",
377
+ " result = []\n",
378
+ " df = pd.read_json(f\"{in_dir}/{lang}_{graph}.jsonl\", lines=True)\n",
379
+ " if lang == 'Python':\n",
380
+ " df = filter_df(df)\n",
381
+ " \n",
382
+ " question, bot = [], []\n",
383
+ " for i in range(len(df)):\n",
384
+ "\n",
385
+ " # filter out nodes that occur multiple times in the source code\n",
386
+ " node_texts = df.loc[i]['text']\n",
387
+ " node_ids = df.loc[i]['node_ids']\n",
388
+ " source = df.loc[i]['source']\n",
389
+ " edge_index = torch.tensor(df.loc[i]['edge_index'])\n",
390
+ " assert len(node_ids) == len(node_texts)\n",
391
+ "\n",
392
+ " occurrences = np.array([source.count(t) for t in node_texts])\n",
393
+ " nodes_single_occurrence = np.where(occurrences == 1)[0]\n",
394
+ " nodes_with_parents = [n for n in nodes_single_occurrence if n in edge_index[:, 1]]\n",
395
+ " nodes_without_parents = [n for n in nodes_single_occurrence if n not in edge_index[:, 1]]\n",
396
+ " \n",
397
+ " # we roughly maintain a balanced distribution\n",
398
+ " if random.random() < 0.75 and len(nodes_with_parents) > 0:\n",
399
+ " node = random.sample(nodes_with_parents, 1)[0]\n",
400
+ " elif len(nodes_without_parents) > 0:\n",
401
+ " node = random.sample(nodes_without_parents, 1)[0]\n",
402
+ " else:\n",
403
+ " node = np.random.choice(nodes_single_occurrence, 1)[0]\n",
404
+ " \n",
405
+ " node_text = node_texts[node]\n",
406
+ " node_id = node_ids[node]\n",
407
+ " node_type = NODE_TYPES[node_id]\n",
408
+ " edge_to_node = [edge for edge in edge_index if edge[1] == node]\n",
409
+ "\n",
410
+ " p = (random.sample(prompts, 1)[0] + random.sample(bots_none, 1) + random.sample(bots_multiple, 1)).copy()\n",
411
+ " assert p[2] in bots_none\n",
412
+ " p = [s.replace('{graph}', f\"{graph_type_map[graph]}\").replace('{lang}', f\"{lang}\") for s in p]\n",
413
+ "\n",
414
+ " # deal with answer first in the response before plugging in the node text to avoid replacing something in the code\n",
415
+ " num_parents = len(edge_to_node)\n",
416
+ " response = p[2] if num_parents == 0 else (p[1] if num_parents == 1 else p[3])\n",
417
+ " response = capitalize(response.replace('{node_type}', node_type))\n",
418
+ "\n",
419
+ " if num_parents > 1:\n",
420
+ " # no problem here\n",
421
+ " for j in range(num_parents):\n",
422
+ " parent_node = edge_to_node[j][0]\n",
423
+ " parent_text = node_texts[parent_node]\n",
424
+ " parent_id = node_ids[parent_node]\n",
425
+ " parent_type = NODE_TYPES[parent_id]\n",
426
+ " if '\\n' in parent_text:\n",
427
+ " parent_text = f\"\\n```\\n{parent_text}\\n```\\n\"\n",
428
+ " response += f\"{parent_type}:{parent_text}\"\n",
429
+ " else:\n",
430
+ " parent_text = f\"`{parent_text}`\"\n",
431
+ " response += f\"{parent_type}: {parent_text}\\n\"\n",
432
+ " elif num_parents == 1:\n",
433
+ " parent_node = edge_to_node[0][0]\n",
434
+ " parent_text = node_texts[parent_node]\n",
435
+ " parent_id = node_ids[parent_node]\n",
436
+ " parent_type = NODE_TYPES[parent_id]\n",
437
+ " if any(parent_type.startswith(l) for l in 'aeio'):\n",
438
+ " response = response.replace(' a ', ' an ')\n",
439
+ " if '\\n' in parent_text:\n",
440
+ " parent_text = f\"\\n```\\n{parent_text}\\n```\\n\"\n",
441
+ " response = replace_place_holder(response, parent_text, \"{parent}\")\n",
442
+ " else:\n",
443
+ " parent_text = f\"`{parent_text}`\"\n",
444
+ " response = response.replace('{parent}', parent_text)\n",
445
+ " response = response.replace('{parent_type}', parent_type) \n",
446
+ " \n",
447
+ " # now deal with node text\n",
448
+ " assert response.count('{node}') <= 1\n",
449
+ " if '\\n' in node_text:\n",
450
+ " node_text = f\"\\n```\\n{node_text}\\n```\\n\"\n",
451
+ " # note that now response may contain \"\\n,\" patterns\n",
452
+ " q = replace_place_holder(p[0].replace('{node_type}', node_type), node_text)\n",
453
+ " response = replace_place_holder(response, node_text)\n",
454
+ " else:\n",
455
+ " node_text = f\"`{node_text}`\"\n",
456
+ " q = p[0].replace('{node_type}', node_type).replace('{node}', node_text)\n",
457
+ " response = response.replace('{node}', node_text)\n",
458
+ "\n",
459
+ " source = source.strip('\\n')\n",
460
+ " q = f\"```\\n{source}\\n```\\n\\n{q}\"\n",
461
+ " question.append(q)\n",
462
+ " bot.append(response)\n",
463
+ " result.append(num_parents)\n",
464
+ "\n",
465
+ " df['question'] = question\n",
466
+ " df['bot'] = bot\n",
467
+ " df = df.drop(columns={'text', 'source', 'node_ids', 'edge_index'})\n",
468
+ " df.to_json(f\"{out_dir}/Parent_{lang}_{graph}.jsonl\", orient='records', lines=True)\n",
469
+ " results[f\"{lang}-{graph}\"] = result"
470
+ ]
471
+ },
472
+ {
473
+ "cell_type": "markdown",
474
+ "metadata": {},
475
+ "source": [
476
+ "## Children"
477
+ ]
478
+ },
479
+ {
480
+ "cell_type": "code",
481
+ "execution_count": null,
482
+ "metadata": {},
483
+ "outputs": [],
484
+ "source": [
485
+ "questions = [\n",
486
+ " 'In the {graph} of this {lang} program, what are the children of this {node_type}: {node}.',\n",
487
+ " 'Identify all children of {node_type} {node} in the {graph} of this {lang} program.',\n",
488
+ " 'Find the child nodes of {node_type} {node} in the {graph} of this {lang} program.',\n",
489
+ " 'In the {graph} of this {lang} program, how many children does the {node_type} {node} have? What are they?',\n",
490
+ " \"How many children does {node_type} {node} have in the {graph} of this {lang} program? What are they?\",\n",
491
+ " 'Please find all children of {node_type} {node} in the {graph} of this {lang} program.',\n",
492
+ " 'Can you find all children of {node_type} {node} in the {graph} of this {lang} program?',\n",
493
+ " \"List all the descendant nodes of {node_type} {node} in the {graph} of this {lang} program.\",\n",
494
+ " \"What are the direct children of the {node_type} {node} in the {graph} of this {lang} program?\",\n",
495
+ " \"Can you enumerate the offspring of {node_type} {node} within the {graph} of this {lang} program?\",\n",
496
+ " \"Could you provide the list of child nodes attached to {node_type} {node} in the {graph} of this {lang} program?\",\n",
497
+ " \"Please identify the child nodes emanating from {node_type} {node} in the {graph} of this {lang} program.\",\n",
498
+ " \"Show me the child nodes of {node_type} {node} in the {graph} of this {lang} program.\",\n",
499
+ " \"What nodes are directly connected to {node_type} {node} as its children in the {graph} of this {lang} program?\",\n",
500
+ " \"I need to know all the child elements of {node_type} {node} in the {graph} of this {lang} program. Can you provide that?\",\n",
501
+ " \"Are there any nodes that directly derive from {node_type} {node} in the {graph} of this {lang} program?\",\n",
502
+ " \"Which nodes act as successors to the node tagged as {node_type} {node} in the {graph} of this {lang} program?\",\n",
503
+ " \"What are the adjacent nodes that are children of {node_type} {node} in the {graph} of this {lang} program?\",\n",
504
+ " \"Identify the nodes that are immediate successors of {node_type} {node} in the {graph} of this {lang} program.\",\n",
505
+ " \"Detail the nodes branching from {node_type} {node} in the {graph} of this {lang} program.\",\n",
506
+ " \"Reveal all nodes that are directly beneath {node_type} {node} in the topology of the {graph} of this {lang} program.\",\n",
507
+ "]\n",
508
+ "answers1 = [\n",
509
+ " \"The given {node_type} has {child_num} children in the {graph}, they are:\\n\",\n",
510
+ " \"This {node_type} has {child_num} children:\\n\",\n",
511
+ " \"{node_type} {node} has a total of {child_num} children in the {graph}, which are:\\n\",\n",
512
+ " \"There are {child_num} child nodes of {node_type} {node}, specifically:\\n\",\n",
513
+ " \"As for the children of {node_type} {node}, you will find {child_num} direct descendants:\\n\",\n",
514
+ " \"The count of {node_type} {node}'s children amounts to {child_num}. They include:\\n\",\n",
515
+ " \"Upon identification, {node_type} {node} appears to have {child_num} offspring, namely:\\n\",\n",
516
+ " \"{node_type} {node} is parent to the following {child_num} nodes:\\n\",\n",
517
+ " \"A list of the {child_num} children under {node_type} {node} is as follows:\\n\",\n",
518
+ " \"Directly under {node_type} {node}, there are {child_num} children listed as:\\n\",\n",
519
+ " \"{node_type} {node} holds the hierarchy over {child_num} child nodes, which are:\\n\",\n",
520
+ " \"{child_num} children spring from {node_type} {node}, which are given below:\\n\",\n",
521
+ "]\n",
522
+ "answers2 = [\n",
523
+ " \"This {node_type} does not have any child nodes in the {graph}.\",\n",
524
+ " \"This {node_type} does not have any children in the {graph}.\",\n",
525
+ " \"There are no children of this {node_type} in the {graph} of the given code.\",\n",
526
+ " \"The given {node_type} does not have any children in the {graph}.\",\n",
527
+ " \"After examining the code, it's determined that in the {graph} this {node_type} has no children.\",\n",
528
+ " \"{node_type} {node} stands alone with zero child nodes descending from it.\",\n",
529
+ " \"I've checked the {node_type} {node} and found it has no direct descendants.\",\n",
530
+ " \"There are no child nodes attached to {node_type} {node} in the {graph} of this program.\",\n",
531
+ " \"No descendants can be traced from this {node_type}.\",\n",
532
+ " \"The {node_type} {node} is devoid of child nodes within the {graph} of the code.\",\n",
533
+ " \"Upon inspection, no nodes emerge as children of {node_type} {node}.\",\n",
534
+ " \"{node_type} {node} exists without progeny in the hierarchical layout.\",\n",
535
+ " \"It appears {node_type} {node} has no children.\",\n",
536
+ "]\n",
537
+ "\n",
538
+ "print(len(questions), len(set(questions)))\n",
539
+ "print(len(answers1), len(set(answers1)))\n",
540
+ "print(len(answers2), len(set(answers2)))\n",
541
+ "assert all(a.count('{answer}') == 1 for a in answers)\n",
542
+ "assert all(a.count('{graph}') == 1 for a in questions)\n",
543
+ "assert all(a.count('{lang}') == 1 for a in questions)\n",
544
+ "\n",
545
+ "bots = [a for a in answers1]\n",
546
+ "bots_none = [a for a in answers2]\n",
547
+ "prompts = [[q, b] for q in questions for b in bots]\n",
548
+ "print(len(prompts))"
549
+ ]
550
+ },
551
+ {
552
+ "cell_type": "code",
553
+ "execution_count": null,
554
+ "metadata": {},
555
+ "outputs": [],
556
+ "source": [
557
+ "set_seed(2)\n",
558
+ "\n",
559
+ "results = {}\n",
560
+ "for lang in ['Java', 'Python']:\n",
561
+ " for graph in ['DFG', 'AST']:\n",
562
+ " result = []\n",
563
+ " df = pd.read_json(f\"{in_dir}/{lang}_{graph}.jsonl\", lines=True)\n",
564
+ " if lang == 'Python':\n",
565
+ " df = filter_df(df)\n",
566
+ " \n",
567
+ " question, bot = [], []\n",
568
+ " selected_idx = []\n",
569
+ " for i in range(len(df)):\n",
570
+ "\n",
571
+ " # filter out nodes that occur multiple times in the source code\n",
572
+ " node_texts = df.loc[i]['text']\n",
573
+ " node_ids = df.loc[i]['node_ids']\n",
574
+ " source = df.loc[i]['source']\n",
575
+ " edge_index = torch.tensor(df.loc[i]['edge_index'])\n",
576
+ "\n",
577
+ " occurrences = np.array([source.count(t) for t in node_texts])\n",
578
+ " nodes_single_occurrence = np.where(occurrences == 1)[0]\n",
579
+ " nodes_with_children = [n for n in nodes_single_occurrence if n in edge_index[:, 0]]\n",
580
+ " nodes_without_children = [n for n in nodes_single_occurrence if n not in edge_index[:, 0]]\n",
581
+ " \n",
582
+ " # we roughly maintain a balanced distribution\n",
583
+ " if random.random() < 0.85 and len(nodes_with_children) > 0:\n",
584
+ " node = random.sample(nodes_with_children, 1)[0]\n",
585
+ " elif len(nodes_without_children) > 0:\n",
586
+ " node = random.sample(nodes_without_children, 1)[0]\n",
587
+ " else:\n",
588
+ " node = np.random.choice(nodes_single_occurrence, 1)[0]\n",
589
+ " \n",
590
+ " node_text = node_texts[node]\n",
591
+ " node_id = node_ids[node]\n",
592
+ " node_type = NODE_TYPES[node_id]\n",
593
+ " edge_from_node = [edge for edge in edge_index if edge[0] == node]\n",
594
+ "\n",
595
+ " p = (random.sample(prompts, 1)[0] + random.sample(bots_none, 1)).copy()\n",
596
+ " assert p[1] in bots\n",
597
+ " p = [s.replace('{graph}', f\"{graph_type_map[graph]}\").replace('{lang}', f\"{lang}\") for s in p]\n",
598
+ "\n",
599
+ " num_children = len(edge_from_node)\n",
600
+ " if num_children > 10:\n",
601
+ " continue\n",
602
+ " else:\n",
603
+ " selected_idx.append(i)\n",
604
+ " response = p[2] if num_children == 0 else p[1]\n",
605
+ " response = capitalize(response.replace('{node_type}', node_type))\n",
606
+ " if num_children == 1:\n",
607
+ " response = response.replace('{child_num}', \"1\").replace('children', 'child').replace('nodes', 'node').replace('they are', 'it is').replace(' are', ' is').replace('descendants', 'descendant').replace('They include', 'It is').replace(' spring ', ' springs ')\n",
608
+ " else:\n",
609
+ " response = response.replace('{child_num}', f\"{num_children}\")\n",
610
+ " \n",
611
+ " if '\\n' in node_text:\n",
612
+ " node_text = f\"\\n```\\n{node_text}\\n```\\n\"\n",
613
+ " q = replace_place_holder(p[0].replace('{node_type}', node_type), node_text)\n",
614
+ " response = replace_place_holder(response, node_text)\n",
615
+ " else:\n",
616
+ " node_text = f\"`{node_text}`\"\n",
617
+ " q = p[0].replace('{node_type}', node_type).replace('{node}', node_text)\n",
618
+ " response = response.replace('{node}', node_text)\n",
619
+ " \n",
620
+ " for j in range(num_children):\n",
621
+ " child_node = edge_from_node[j][1]\n",
622
+ " child_text = node_texts[child_node]\n",
623
+ " child_id = node_ids[child_node]\n",
624
+ " child_type = NODE_TYPES[child_id]\n",
625
+ "\n",
626
+ " if '\\n' in child_text:\n",
627
+ " child_text = f\"\\n```\\n{child_text}\\n```\\n\"\n",
628
+ " response += f\"{child_type}:{child_text}\"\n",
629
+ " else:\n",
630
+ " child_text = f\"`{child_text}`\"\n",
631
+ " response += f\"{child_type}: {child_text}\\n\"\n",
632
+ " if num_children != len(set((node_ids[e[1]], node_texts[e[1]]) for e in edge_from_node)):\n",
633
+ " response += \"Note that there are multiple children with the same node type and literal representation.\"\n",
634
+ "\n",
635
+ " source = source.strip('\\n')\n",
636
+ " q = f\"```\\n{source}\\n```\\n\\n{q}\"\n",
637
+ " question.append(q)\n",
638
+ " bot.append(response)\n",
639
+ " result.append(num_children)\n",
640
+ "\n",
641
+ " df = df.loc[selected_idx].reset_index(drop=True)\n",
642
+ " df['question'] = question\n",
643
+ " df['bot'] = bot\n",
644
+ " df = df.drop(columns={'text', 'source', 'node_ids', 'edge_index'})\n",
645
+ " df.to_json(f\"{out_dir}/Children_{lang}_{graph}.jsonl\", orient='records', lines=True)\n",
646
+ " results[f\"{lang}-{graph}\"] = result"
647
+ ]
648
+ },
649
+ {
650
+ "cell_type": "markdown",
651
+ "metadata": {},
652
+ "source": [
653
+ "## Edge prediction"
654
+ ]
655
+ },
656
+ {
657
+ "cell_type": "code",
658
+ "execution_count": null,
659
+ "metadata": {},
660
+ "outputs": [],
661
+ "source": [
662
+ "questions = [\n",
663
+ " \"In the {graph} of this {lang} program, is there {edge_or_link} from {node_type1} {node1} to {node_type2} {node2}?\",\n",
664
+ " 'In the {graph} of this {lang} program, is there {edge_or_link} pointing from {node_type1} {node1} to {node_type2} {node2}?',\n",
665
+ " \"Please tell me if there is {edge_or_link} pointing from {node_type1} {node1} to {node_type2} {node2} in the {graph} of this {lang} program.\",\n",
666
+ " 'Is there {edge_or_link} from {node_type1} {node1} to {node_type2} {node2} in the {graph} of this {lang} program?',\n",
667
+ " \"Does a connection exist from {node_type1} {node1} to {node_type2} {node2} in the {graph} of this {lang} program?\",\n",
668
+ " \"In the {graph} of this {lang} program, do we have an arrow leading from {node_type1} {node1} to {node_type2} {node2}?\",\n",
669
+ " \"Is it true that {node_type1} {node1} is a predecessor of {node_type2} {node2} in the {graph} of this {lang} program?\",\n",
670
+ "]\n",
671
+ "answers1 = [\n",
672
+ " \"Yes, that is the case.\",\n",
673
+ " \"Yes, there is {edge_or_link} from {node_type1} {node1} to {node_type2} {node2}.\",\n",
674
+ " \"Yes, there is {edge_or_link} from {node_type1} {node1} to {node_type2} {node2} in the {graph} of this code.\",\n",
675
+ " \"Yes, there is {edge_or_link} pointing from {node_type1} {node1} to {node_type2} {node2} in the {graph}.\",\n",
676
+ " \"Affirmative, there exists {edge_or_link} from {node_type1} {node1} to {node_type2} {node2}.\",\n",
677
+ " \"Yes, that is the case. {node1} is directly connected to {node2}.\",\n",
678
+ "]\n",
679
+ "answers2 = [\n",
680
+ " \"No, that is not the case.\",\n",
681
+ " \"No, {node_type1} {node1} is not linked to {node_type2} {node2} by any edge in the {graph} of the given code.\",\n",
682
+ " \"No, there is no {edge_or_link} from {node_type1} {node1} to {node_type2} {node2}.\",\n",
683
+ " \"No, such {edge_or_link} is absent from the {graph}.\",\n",
684
+ " \"The code does not show {node_type1} {node1} as a predecessor to {node_type2} {node2} in the {graph}.\",\n",
685
+ "]\n",
686
+ "\n",
687
+ "print(len(questions), len(set(questions)))\n",
688
+ "print(len(answers1), len(set(answers1)))\n",
689
+ "print(len(answers2), len(set(answers2)))\n",
690
+ "assert all(a.count('{graph}') == 1 for a in questions)\n",
691
+ "assert all(a.count('{lang}') == 1 for a in questions)\n",
692
+ "\n",
693
+ "bots = [a for a in answers1]\n",
694
+ "bots_none = [a for a in answers2]\n",
695
+ "prompts = [[q, b] for q in questions for b in bots]\n",
696
+ "print(len(prompts))"
697
+ ]
698
+ },
699
+ {
700
+ "cell_type": "code",
701
+ "execution_count": null,
702
+ "metadata": {},
703
+ "outputs": [],
704
+ "source": [
705
+ "set_seed(3)\n",
706
+ "results = {}\n",
707
+ "for lang in ['Java', 'Python']:\n",
708
+ " for graph in ['DFG', 'AST']:\n",
709
+ " result = []\n",
710
+ " df = pd.read_json(f\"{in_dir}/{lang}_{graph}.jsonl\", lines=True)\n",
711
+ " if lang == 'Python':\n",
712
+ " df = filter_df(df)\n",
713
+ " \n",
714
+ " question, bot = [], []\n",
715
+ " for i in range(len(df)):\n",
716
+ "\n",
717
+ " # filter out nodes that occur multiple times in the source code\n",
718
+ " node_texts = df.loc[i]['text']\n",
719
+ " node_ids = df.loc[i]['node_ids']\n",
720
+ " source = df.loc[i]['source']\n",
721
+ " edge_index = df.loc[i]['edge_index']\n",
722
+ "\n",
723
+ " occurrences = np.array([source.count(t) for t in node_texts])\n",
724
+ " nodes_single_occurrence = np.where(occurrences == 1)[0]\n",
725
+ " edge_index_elligible = [e for e in edge_index if (e[0] in nodes_single_occurrence and e[1] in nodes_single_occurrence)]\n",
726
+ " if graph == 'AST' and random.random() > 0.1:\n",
727
+ " edge_index_elligible = [e for e in edge_index_elligible if (node_texts[e[1]] not in node_texts[e[0]])]\n",
728
+ " \n",
729
+ " # we make sure at least half the problems have positive answer\n",
730
+ " if random.random() < 0.75 and len(edge_index_elligible) > 0:\n",
731
+ " n1, n2 = random.sample(edge_index_elligible, 1)[0]\n",
732
+ " else:\n",
733
+ " n1, n2 = np.random.choice(nodes_single_occurrence, 2)\n",
734
+ " \n",
735
+ " n1_text, n2_text = node_texts[n1], node_texts[n2]\n",
736
+ " n1_type, n2_type = NODE_TYPES[node_ids[n1]], NODE_TYPES[node_ids[n2]]\n",
737
+ "\n",
738
+ " p = random.sample(prompts, 1)[0] + random.sample(bots_none, 1)\n",
739
+ " p = [s.replace('{graph}', f\"{graph_type_map[graph]}\").replace('{lang}', f\"{lang}\") for s in p]\n",
740
+ " edge_or_link = 'an edge' if random.random() < 0.5 else 'a link'\n",
741
+ " p = [s.replace('{edge_or_link}', edge_or_link) for s in p[:-1]] + [p[-1].replace('such {edge_or_link}', f\"such {edge_or_link}\").replace('{edge_or_link}', edge_or_link.split()[-1])]\n",
742
+ " \n",
743
+ " q, b = '', ''\n",
744
+ " b = p[1] if [n1, n2] in edge_index else p[2]\n",
745
+ " b = b.replace('{node_type1}', n1_type).replace('{node_type2}', n2_type)\n",
746
+ "\n",
747
+ " if '\\n' in n1_text:\n",
748
+ " n1_text = f\"\\n```\\n{n1_text}\\n```\\n\"\n",
749
+ " q = replace_place_holder(p[0].replace('{node_type1}', n1_type).replace('{node_type2}', n2_type), n1_text, \"{node1}\")\n",
750
+ " b = replace_place_holder(b, n1_text, \"{node1}\")\n",
751
+ " else:\n",
752
+ " n1_text = f\"`{n1_text}`\"\n",
753
+ " q = p[0].replace('{node_type1}', n1_type).replace('{node_type2}', n2_type).replace('{node1}', n1_text)\n",
754
+ " b = b.replace('{node1}', n1_text)\n",
755
+ " \n",
756
+ " if '\\n' in n2_text:\n",
757
+ " n2_text = f\"\\n```\\n{n2_text}\\n```\\n\"\n",
758
+ " q = replace_place_holder(q, n2_text, \"{node2}\")\n",
759
+ " b = replace_place_holder(b, n2_text, \"{node2}\")\n",
760
+ " else:\n",
761
+ " n2_text = f\"`{n2_text}`\"\n",
762
+ " q = q.replace('{node2}', n2_text)\n",
763
+ " b = b.replace('{node2}', n2_text)\n",
764
+ " \n",
765
+ " source = source.strip('\\n')\n",
766
+ " q = f\"```\\n{source}\\n```\\n\\n{q}\"\n",
767
+ " question.append(q)\n",
768
+ " bot.append(b)\n",
769
+ " result.append(int([n1, n2] in edge_index))\n",
770
+ "\n",
771
+ " df['question'] = question\n",
772
+ " df['bot'] = bot\n",
773
+ " df = df.drop(columns={'text', 'source', 'node_ids', 'edge_index'})\n",
774
+ " df.to_json(f\"{out_dir}/Edge_Prediction_{lang}_{graph}.jsonl\", orient='records', lines=True)\n",
775
+ " results[f\"{lang}-{graph}\"] = result"
776
+ ]
777
+ }
778
+ ],
779
+ "metadata": {
780
+ "kernelspec": {
781
+ "display_name": "py39",
782
+ "language": "python",
783
+ "name": "python3"
784
+ },
785
+ "language_info": {
786
+ "codemirror_mode": {
787
+ "name": "ipython",
788
+ "version": 3
789
+ },
790
+ "file_extension": ".py",
791
+ "mimetype": "text/x-python",
792
+ "name": "python",
793
+ "nbconvert_exporter": "python",
794
+ "pygments_lexer": "ipython3",
795
+ "version": "3.9.17"
796
+ }
797
+ },
798
+ "nbformat": 4,
799
+ "nbformat_minor": 2
800
+ }
node_type_embedding.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dafda5e624bc797d04774bf727448973daf5fa93f17478ba41892d5692d6e2e4
3
+ size 44815