Datasets:
File size: 4,547 Bytes
e602007 f2f380f 8ed37b4 f2f380f 8ed37b4 b179bff f2f380f 26d37cb f2f380f ac6a6c7 d8e7521 ac6a6c7 57ca9f9 4f1e40e 57ca9f9 829da9c ac6a6c7 993f939 ac6a6c7 43882d2 4379b84 4a40121 4379b84 8897bd8 ac6a6c7 993f939 ac6a6c7 993f939 ac6a6c7 b3c6ee3 9ffab83 b3c6ee3 9ffab83 b3c6ee3 d8e7521 ac6a6c7 e65f332 ac6a6c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
---
configs:
- config_name: 20k
data_files:
- split: train
path: 20k/train/*.tar
- split: test
path: 20k/test/*.tar
- config_name: 500k
data_files:
- split: train
path: 500k/train/*.tar
- split: test
path: 500k/test/*.tar
- config_name: 2m
data_files:
- split: train
path: 2m/train/*.tar
- split: test
path: 2m/test/*.tar
task_categories:
- audio-classification
tags:
- audio
- multi-label
- webdataset
size_categories:
- 1M<n<10M
---
# AudioSet
AudioSet<sup>[1]</sup> is a large-scale dataset comprising approximately 2 million 10-second YouTube audio clips, categorised into 527 sound classes.
We have pre-processed all audio files to a 16 kHz sampling rate and stored them in the WebDataset format for efficient large-scale training and retrieval.
## Download
We recommend using the following commands to download the `confit/audioset-16khz-wds` dataset from HuggingFace.
The dataset is available in two versions:
- train:
- 20k: A smaller balanced version with 20,550 clips for quick experimentation.
- 500k<sup>[2]</sup>: A (slightly more) balanced version with 497,982 clips for quick experimentation.
- 2m: The complete unbalanced dataset with 1,912,024 clips.
- test: The eval set with 18,886 clips.
```bash
# For the 20k version
huggingface-cli download confit/audioset-16khz-wds --include 20k/train/*.tar --repo-type=dataset --local-dir /path/to/store
huggingface-cli download confit/audioset-16khz-wds --include 20k/test/*.tar --repo-type=dataset --local-dir /path/to/store
# For the 500k version
huggingface-cli download confit/audioset-16khz-wds --include 500k/train/*.tar --repo-type=dataset --local-dir /path/to/store
huggingface-cli download confit/audioset-16khz-wds --include 500k/test/*.tar --repo-type=dataset --local-dir /path/to/store
# For the 2m version
huggingface-cli download confit/audioset-16khz-wds --include 2m/train/*.tar --repo-type=dataset --local-dir /path/to/store
huggingface-cli download confit/audioset-16khz-wds --include 2m/test/*.tar --repo-type=dataset --local-dir /path/to/store
```
> **_NOTE:_** The `--local-dir /path/to/store` argument specifies the root directory where the dataset will be stored. You do not need to manually create subdirectories (e.g., `/path/to/store/20k/train`). The command will automatically create the required folder structure.
| split | #shards | #clips | total duration | avg duration |
| :---: | :---: | :---: | :---: | :---: |
| 20k | 7 | 20,550 | 56 hours | 9.90 seconds |
| 500k | 147 | 497,982 | 1,371 hours | 9.91 seconds |
| 2m | 565 | 1,912,024 | 5,264 hours | 9.91 seconds |
| test | 6 | 18,886 | 51 hours | 9.89 seconds |
## Format and Usage
The dataset is stored in the WebDataset (WDS) format, which is optimised for distributed training and streaming.
Each `.tar` archive contains audio files and corresponding metadata.
To load the dataset in Python using webdataset:
```python
from glob import glob
from datasets import load_dataset
train_urls = glob('/path/to/20k/train/*.tar')
test_urls = glob('/path/to/20k/test/*.tar')
raw_datasets = load_dataset(
"webdataset",
data_files={"train": train_urls, "test": test_urls},
streaming=False
)
```
Each sample in the dataset follows the WebDataset format, which includes the following fields:
```plain
{
'__key__': 'sample-000000000',
'__url__': '/path/to/20k/train/shard-00000.tar',
'wav': {
'path': 'sample-000000000.wav',
'array': array([ 0., ..., -0.00256348]),
'sampling_rate': 16000
},
'json': {
'id': 'YUJxAKoY0gRM',
'label': ['Clarinet'],
'label_id': [198]
}
}
```
## References
[1] Gemmeke, J. F., Ellis, D. P., Freedman, D., Jansen, A., Lawrence, W., Moore, R. C., ... & Ritter, M. (2017, March). Audio set: An ontology and human-labeled dataset for audio events. In 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 776-780). IEEE.
[2] Nagrani, A., Yang, S., Arnab, A., Jansen, A., Schmid, C., & Sun, C. (2021). Attention bottlenecks for multimodal fusion. Advances in neural information processing systems, 34, 14200-14213.
## License and Usage Restrictions
We downloaded the dataset from qiuqiangkong's [GitHub](https://github.com/qiuqiangkong/audioset_tagging_cnn) and pre-processed it into WebDataset format.
Please ensure compliance with YouTube's terms of service when using this dataset.
Some clips may no longer be available if the original videos have been removed or made private. |