Datasets:

ArXiv:
diffusers-benchmarking-bot commited on
Commit
6e953e6
·
verified ·
1 Parent(s): af9b156

Upload folder using huggingface_hub

Browse files
main/README.md CHANGED
@@ -4865,7 +4865,7 @@ python -m pip install intel_extension_for_pytorch
4865
  ```
4866
  python -m pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
4867
  ```
4868
- 2. After pipeline initialization, `prepare_for_ipex()` should be called to enable IPEX accelaration. Supported inference datatypes are Float32 and BFloat16.
4869
 
4870
  ```python
4871
  pipe = AnimateDiffPipelineIpex.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
 
4865
  ```
4866
  python -m pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
4867
  ```
4868
+ 2. After pipeline initialization, `prepare_for_ipex()` should be called to enable IPEX acceleration. Supported inference datatypes are Float32 and BFloat16.
4869
 
4870
  ```python
4871
  pipe = AnimateDiffPipelineIpex.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
main/dps_pipeline.py CHANGED
@@ -336,13 +336,13 @@ if __name__ == "__main__":
336
  expanded_kernel_width = np.ceil(kernel_width) + 2
337
 
338
  # Determine a set of field_of_view for each each output position, these are the pixels in the input image
339
- # that the pixel in the output image 'sees'. We get a matrix whos horizontal dim is the output pixels (big) and the
340
  # vertical dim is the pixels it 'sees' (kernel_size + 2)
341
  field_of_view = np.squeeze(
342
  np.int16(np.expand_dims(left_boundary, axis=1) + np.arange(expanded_kernel_width) - 1)
343
  )
344
 
345
- # Assign weight to each pixel in the field of view. A matrix whos horizontal dim is the output pixels and the
346
  # vertical dim is a list of weights matching to the pixel in the field of view (that are specified in
347
  # 'field_of_view')
348
  weights = fixed_kernel(1.0 * np.expand_dims(match_coordinates, axis=1) - field_of_view - 1)
 
336
  expanded_kernel_width = np.ceil(kernel_width) + 2
337
 
338
  # Determine a set of field_of_view for each each output position, these are the pixels in the input image
339
+ # that the pixel in the output image 'sees'. We get a matrix whose horizontal dim is the output pixels (big) and the
340
  # vertical dim is the pixels it 'sees' (kernel_size + 2)
341
  field_of_view = np.squeeze(
342
  np.int16(np.expand_dims(left_boundary, axis=1) + np.arange(expanded_kernel_width) - 1)
343
  )
344
 
345
+ # Assign weight to each pixel in the field of view. A matrix whose horizontal dim is the output pixels and the
346
  # vertical dim is a list of weights matching to the pixel in the field of view (that are specified in
347
  # 'field_of_view')
348
  weights = fixed_kernel(1.0 * np.expand_dims(match_coordinates, axis=1) - field_of_view - 1)
main/hd_painter.py CHANGED
@@ -201,16 +201,16 @@ class PAIntAAttnProcessor:
201
  # ================================================== #
202
  # We use a hack by running the code from the BasicTransformerBlock that is between Self and Cross attentions here
203
  # The other option would've been modifying the BasicTransformerBlock and adding this functionality here.
204
- # I assumed that changing the BasicTransformerBlock would have been a bigger deal and decided to use this hack isntead.
205
 
206
- # The SelfAttention block recieves the normalized latents from the BasicTransformerBlock,
207
  # But the residual of the output is the non-normalized version.
208
  # Therefore we unnormalize the input hidden state here
209
  unnormalized_input_hidden_states = (
210
  input_hidden_states + self.transformer_block.norm1.bias
211
  ) * self.transformer_block.norm1.weight
212
 
213
- # TODO: return if neccessary
214
  # if self.use_ada_layer_norm_zero:
215
  # attn_output = gate_msa.unsqueeze(1) * attn_output
216
  # elif self.use_ada_layer_norm_single:
@@ -220,7 +220,7 @@ class PAIntAAttnProcessor:
220
  if transformer_hidden_states.ndim == 4:
221
  transformer_hidden_states = transformer_hidden_states.squeeze(1)
222
 
223
- # TODO: return if neccessary
224
  # 2.5 GLIGEN Control
225
  # if gligen_kwargs is not None:
226
  # transformer_hidden_states = self.fuser(transformer_hidden_states, gligen_kwargs["objs"])
@@ -266,7 +266,7 @@ class PAIntAAttnProcessor:
266
  ) = cross_attention_input_hidden_states.chunk(2)
267
 
268
  # Same split for the encoder_hidden_states i.e. the tokens
269
- # Since the SelfAttention processors don't get the encoder states as input, we inject them into the processor in the begining.
270
  _encoder_hidden_states_unconditional, encoder_hidden_states_conditional = self.encoder_hidden_states.chunk(
271
  2
272
  )
@@ -896,7 +896,7 @@ class StableDiffusionHDPainterPipeline(StableDiffusionInpaintPipeline):
896
  class GaussianSmoothing(nn.Module):
897
  """
898
  Apply gaussian smoothing on a
899
- 1d, 2d or 3d tensor. Filtering is performed seperately for each channel
900
  in the input using a depthwise convolution.
901
 
902
  Args:
 
201
  # ================================================== #
202
  # We use a hack by running the code from the BasicTransformerBlock that is between Self and Cross attentions here
203
  # The other option would've been modifying the BasicTransformerBlock and adding this functionality here.
204
+ # I assumed that changing the BasicTransformerBlock would have been a bigger deal and decided to use this hack instead.
205
 
206
+ # The SelfAttention block receives the normalized latents from the BasicTransformerBlock,
207
  # But the residual of the output is the non-normalized version.
208
  # Therefore we unnormalize the input hidden state here
209
  unnormalized_input_hidden_states = (
210
  input_hidden_states + self.transformer_block.norm1.bias
211
  ) * self.transformer_block.norm1.weight
212
 
213
+ # TODO: return if necessary
214
  # if self.use_ada_layer_norm_zero:
215
  # attn_output = gate_msa.unsqueeze(1) * attn_output
216
  # elif self.use_ada_layer_norm_single:
 
220
  if transformer_hidden_states.ndim == 4:
221
  transformer_hidden_states = transformer_hidden_states.squeeze(1)
222
 
223
+ # TODO: return if necessary
224
  # 2.5 GLIGEN Control
225
  # if gligen_kwargs is not None:
226
  # transformer_hidden_states = self.fuser(transformer_hidden_states, gligen_kwargs["objs"])
 
266
  ) = cross_attention_input_hidden_states.chunk(2)
267
 
268
  # Same split for the encoder_hidden_states i.e. the tokens
269
+ # Since the SelfAttention processors don't get the encoder states as input, we inject them into the processor in the beginning.
270
  _encoder_hidden_states_unconditional, encoder_hidden_states_conditional = self.encoder_hidden_states.chunk(
271
  2
272
  )
 
896
  class GaussianSmoothing(nn.Module):
897
  """
898
  Apply gaussian smoothing on a
899
+ 1d, 2d or 3d tensor. Filtering is performed separately for each channel
900
  in the input using a depthwise convolution.
901
 
902
  Args:
main/img2img_inpainting.py CHANGED
@@ -161,7 +161,7 @@ class ImageToImageInpaintingPipeline(DiffusionPipeline):
161
  `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
162
  be masked out with `mask_image` and repainted according to `prompt`.
163
  inner_image (`torch.Tensor` or `PIL.Image.Image`):
164
- `Image`, or tensor representing an image batch which will be overlayed onto `image`. Non-transparent
165
  regions of `inner_image` must fit inside white pixels in `mask_image`. Expects four channels, with
166
  the last channel representing the alpha channel, which will be used to blend `inner_image` with
167
  `image`. If not provided, it will be forcibly cast to RGBA.
 
161
  `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
162
  be masked out with `mask_image` and repainted according to `prompt`.
163
  inner_image (`torch.Tensor` or `PIL.Image.Image`):
164
+ `Image`, or tensor representing an image batch which will be overlaid onto `image`. Non-transparent
165
  regions of `inner_image` must fit inside white pixels in `mask_image`. Expects four channels, with
166
  the last channel representing the alpha channel, which will be used to blend `inner_image` with
167
  `image`. If not provided, it will be forcibly cast to RGBA.
main/latent_consistency_img2img.py CHANGED
@@ -647,7 +647,7 @@ class LCMSchedulerWithTimestamp(SchedulerMixin, ConfigMixin):
647
  return sample
648
 
649
  def set_timesteps(
650
- self, stength, num_inference_steps: int, lcm_origin_steps: int, device: Union[str, torch.device] = None
651
  ):
652
  """
653
  Sets the discrete timesteps used for the diffusion chain (to be run before inference).
@@ -668,7 +668,7 @@ class LCMSchedulerWithTimestamp(SchedulerMixin, ConfigMixin):
668
  # LCM Timesteps Setting: # Linear Spacing
669
  c = self.config.num_train_timesteps // lcm_origin_steps
670
  lcm_origin_timesteps = (
671
- np.asarray(list(range(1, int(lcm_origin_steps * stength) + 1))) * c - 1
672
  ) # LCM Training Steps Schedule
673
  skipping_step = len(lcm_origin_timesteps) // num_inference_steps
674
  timesteps = lcm_origin_timesteps[::-skipping_step][:num_inference_steps] # LCM Inference Steps Schedule
 
647
  return sample
648
 
649
  def set_timesteps(
650
+ self, strength, num_inference_steps: int, lcm_origin_steps: int, device: Union[str, torch.device] = None
651
  ):
652
  """
653
  Sets the discrete timesteps used for the diffusion chain (to be run before inference).
 
668
  # LCM Timesteps Setting: # Linear Spacing
669
  c = self.config.num_train_timesteps // lcm_origin_steps
670
  lcm_origin_timesteps = (
671
+ np.asarray(list(range(1, int(lcm_origin_steps * strength) + 1))) * c - 1
672
  ) # LCM Training Steps Schedule
673
  skipping_step = len(lcm_origin_timesteps) // num_inference_steps
674
  timesteps = lcm_origin_timesteps[::-skipping_step][:num_inference_steps] # LCM Inference Steps Schedule
main/magic_mix.py CHANGED
@@ -129,7 +129,7 @@ class MagicMixPipeline(DiffusionPipeline):
129
 
130
  input = (
131
  (mix_factor * latents) + (1 - mix_factor) * orig_latents
132
- ) # interpolating between layout noise and conditionally generated noise to preserve layout sematics
133
  input = torch.cat([input] * 2)
134
 
135
  else: # content generation phase
 
129
 
130
  input = (
131
  (mix_factor * latents) + (1 - mix_factor) * orig_latents
132
+ ) # interpolating between layout noise and conditionally generated noise to preserve layout semantics
133
  input = torch.cat([input] * 2)
134
 
135
  else: # content generation phase
main/mixture_tiling.py CHANGED
@@ -196,9 +196,9 @@ class StableDiffusionTilingPipeline(DiffusionPipeline, StableDiffusionExtrasMixi
196
  guidance_scale_tiles: specific weights for classifier-free guidance in each tile.
197
  guidance_scale_tiles: specific weights for classifier-free guidance in each tile. If None, the value provided in guidance_scale will be used.
198
  seed_tiles: specific seeds for the initialization latents in each tile. These will override the latents generated for the whole canvas using the standard seed parameter.
199
- seed_tiles_mode: either "full" "exclusive". If "full", all the latents affected by the tile be overriden. If "exclusive", only the latents that are affected exclusively by this tile (and no other tiles) will be overriden.
200
- seed_reroll_regions: a list of tuples in the form (start row, end row, start column, end column, seed) defining regions in pixel space for which the latents will be overriden using the given seed. Takes priority over seed_tiles.
201
- cpu_vae: the decoder from latent space to pixel space can require too mucho GPU RAM for large images. If you find out of memory errors at the end of the generation process, try setting this parameter to True to run the decoder in CPU. Slower, but should run without memory issues.
202
 
203
  Examples:
204
 
 
196
  guidance_scale_tiles: specific weights for classifier-free guidance in each tile.
197
  guidance_scale_tiles: specific weights for classifier-free guidance in each tile. If None, the value provided in guidance_scale will be used.
198
  seed_tiles: specific seeds for the initialization latents in each tile. These will override the latents generated for the whole canvas using the standard seed parameter.
199
+ seed_tiles_mode: either "full" "exclusive". If "full", all the latents affected by the tile be overridden. If "exclusive", only the latents that are affected exclusively by this tile (and no other tiles) will be overridden.
200
+ seed_reroll_regions: a list of tuples in the form (start row, end row, start column, end column, seed) defining regions in pixel space for which the latents will be overridden using the given seed. Takes priority over seed_tiles.
201
+ cpu_vae: the decoder from latent space to pixel space can require too much GPU RAM for large images. If you find out of memory errors at the end of the generation process, try setting this parameter to True to run the decoder in CPU. Slower, but should run without memory issues.
202
 
203
  Examples:
204
 
main/pipeline_controlnet_xl_kolors.py CHANGED
@@ -1258,7 +1258,7 @@ class KolorsControlNetPipeline(
1258
  )
1259
 
1260
  if guess_mode and self.do_classifier_free_guidance:
1261
- # Infered ControlNet only for the conditional batch.
1262
  # To apply the output of ControlNet to both the unconditional and conditional batches,
1263
  # add 0 to the unconditional batch to keep it unchanged.
1264
  down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
 
1258
  )
1259
 
1260
  if guess_mode and self.do_classifier_free_guidance:
1261
+ # Inferred ControlNet only for the conditional batch.
1262
  # To apply the output of ControlNet to both the unconditional and conditional batches,
1263
  # add 0 to the unconditional batch to keep it unchanged.
1264
  down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
main/pipeline_controlnet_xl_kolors_img2img.py CHANGED
@@ -1462,7 +1462,7 @@ class KolorsControlNetImg2ImgPipeline(
1462
  )
1463
 
1464
  if guess_mode and self.do_classifier_free_guidance:
1465
- # Infered ControlNet only for the conditional batch.
1466
  # To apply the output of ControlNet to both the unconditional and conditional batches,
1467
  # add 0 to the unconditional batch to keep it unchanged.
1468
  down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
 
1462
  )
1463
 
1464
  if guess_mode and self.do_classifier_free_guidance:
1465
+ # Inferred ControlNet only for the conditional batch.
1466
  # To apply the output of ControlNet to both the unconditional and conditional batches,
1467
  # add 0 to the unconditional batch to keep it unchanged.
1468
  down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
main/pipeline_controlnet_xl_kolors_inpaint.py CHANGED
@@ -1782,7 +1782,7 @@ class KolorsControlNetInpaintPipeline(
1782
  )
1783
 
1784
  if guess_mode and self.do_classifier_free_guidance:
1785
- # Infered ControlNet only for the conditional batch.
1786
  # To apply the output of ControlNet to both the unconditional and conditional batches,
1787
  # add 0 to the unconditional batch to keep it unchanged.
1788
  down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
 
1782
  )
1783
 
1784
  if guess_mode and self.do_classifier_free_guidance:
1785
+ # Inferred ControlNet only for the conditional batch.
1786
  # To apply the output of ControlNet to both the unconditional and conditional batches,
1787
  # add 0 to the unconditional batch to keep it unchanged.
1788
  down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
main/pipeline_fabric.py CHANGED
@@ -559,7 +559,7 @@ class FabricPipeline(DiffusionPipeline):
559
  End point for providing feedback (between 0 and 1).
560
  min_weight (`float`, *optional*, defaults to `.05`):
561
  Minimum weight for feedback.
562
- max_weight (`float`, *optional*, defults tp `1.0`):
563
  Maximum weight for feedback.
564
  neg_scale (`float`, *optional*, defaults to `.5`):
565
  Scale factor for negative feedback.
 
559
  End point for providing feedback (between 0 and 1).
560
  min_weight (`float`, *optional*, defaults to `.05`):
561
  Minimum weight for feedback.
562
+ max_weight (`float`, *optional*, defaults tp `1.0`):
563
  Maximum weight for feedback.
564
  neg_scale (`float`, *optional*, defaults to `.5`):
565
  Scale factor for negative feedback.
main/pipeline_faithdiff_stable_diffusion_xl.py CHANGED
@@ -118,7 +118,7 @@ EXAMPLE_DOC_STRING = """
118
  >>> # Here we need use pipeline internal unet model
119
  >>> pipe.unet = pipe.unet_model.from_pretrained(model_id, subfolder="unet", variant="fp16", use_safetensors=True)
120
  >>>
121
- >>> # Load aditional layers to the model
122
  >>> pipe.unet.load_additional_layers(weight_path="proc_data/faithdiff/FaithDiff.bin", dtype=dtype)
123
  >>>
124
  >>> # Enable vae tiling
 
118
  >>> # Here we need use pipeline internal unet model
119
  >>> pipe.unet = pipe.unet_model.from_pretrained(model_id, subfolder="unet", variant="fp16", use_safetensors=True)
120
  >>>
121
+ >>> # Load additional layers to the model
122
  >>> pipe.unet.load_additional_layers(weight_path="proc_data/faithdiff/FaithDiff.bin", dtype=dtype)
123
  >>>
124
  >>> # Enable vae tiling
main/pipeline_stable_diffusion_boxdiff.py CHANGED
@@ -72,7 +72,7 @@ class GaussianSmoothing(nn.Module):
72
  """
73
  Copied from official repo: https://github.com/showlab/BoxDiff/blob/master/utils/gaussian_smoothing.py
74
  Apply gaussian smoothing on a
75
- 1d, 2d or 3d tensor. Filtering is performed seperately for each channel
76
  in the input using a depthwise convolution.
77
  Arguments:
78
  channels (int, sequence): Number of channels of the input tensors. Output will
 
72
  """
73
  Copied from official repo: https://github.com/showlab/BoxDiff/blob/master/utils/gaussian_smoothing.py
74
  Apply gaussian smoothing on a
75
+ 1d, 2d or 3d tensor. Filtering is performed separately for each channel
76
  in the input using a depthwise convolution.
77
  Arguments:
78
  channels (int, sequence): Number of channels of the input tensors. Output will
main/pipeline_stable_diffusion_xl_attentive_eraser.py CHANGED
@@ -1509,7 +1509,7 @@ class StableDiffusionXL_AE_Pipeline(
1509
 
1510
  add_time_ids = add_time_ids.repeat(batch_size, 1).to(DEVICE)
1511
 
1512
- # interative sampling
1513
  self.scheduler.set_timesteps(num_inference_steps)
1514
  latents_list = [latents]
1515
  pred_x0_list = []
@@ -1548,7 +1548,7 @@ class StableDiffusionXL_AE_Pipeline(
1548
  x: torch.FloatTensor,
1549
  ):
1550
  """
1551
- predict the sampe the next step in the denoise process.
1552
  """
1553
  ref_noise = model_output[:1, :, :, :].expand(model_output.shape)
1554
  alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
 
1509
 
1510
  add_time_ids = add_time_ids.repeat(batch_size, 1).to(DEVICE)
1511
 
1512
+ # interactive sampling
1513
  self.scheduler.set_timesteps(num_inference_steps)
1514
  latents_list = [latents]
1515
  pred_x0_list = []
 
1548
  x: torch.FloatTensor,
1549
  ):
1550
  """
1551
+ predict the sample the next step in the denoise process.
1552
  """
1553
  ref_noise = model_output[:1, :, :, :].expand(model_output.shape)
1554
  alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
main/pipeline_stable_diffusion_xl_controlnet_adapter.py CHANGED
@@ -132,7 +132,7 @@ def _preprocess_adapter_image(image, height, width):
132
  image = torch.cat(image, dim=0)
133
  else:
134
  raise ValueError(
135
- f"Invalid image tensor! Expecting image tensor with 3 or 4 dimension, but recive: {image[0].ndim}"
136
  )
137
  return image
138
 
 
132
  image = torch.cat(image, dim=0)
133
  else:
134
  raise ValueError(
135
+ f"Invalid image tensor! Expecting image tensor with 3 or 4 dimension, but receive: {image[0].ndim}"
136
  )
137
  return image
138
 
main/pipeline_stable_diffusion_xl_controlnet_adapter_inpaint.py CHANGED
@@ -150,7 +150,7 @@ def _preprocess_adapter_image(image, height, width):
150
  image = torch.cat(image, dim=0)
151
  else:
152
  raise ValueError(
153
- f"Invalid image tensor! Expecting image tensor with 3 or 4 dimension, but recive: {image[0].ndim}"
154
  )
155
  return image
156
 
 
150
  image = torch.cat(image, dim=0)
151
  else:
152
  raise ValueError(
153
+ f"Invalid image tensor! Expecting image tensor with 3 or 4 dimension, but receive: {image[0].ndim}"
154
  )
155
  return image
156
 
main/regional_prompting_stable_diffusion.py CHANGED
@@ -220,7 +220,7 @@ class RegionalPromptingStableDiffusionPipeline(StableDiffusionPipeline):
220
  revers = True
221
 
222
  def pcallback(s_self, step: int, timestep: int, latents: torch.Tensor, selfs=None):
223
- if "PRO" in mode: # in Prompt mode, make masks from sum of attension maps
224
  self.step = step
225
 
226
  if len(self.attnmaps_sizes) > 3:
@@ -552,9 +552,9 @@ def get_attn_maps(self, attn):
552
 
553
  def reset_attnmaps(self): # init parameters in every batch
554
  self.step = 0
555
- self.attnmaps = {} # maked from attention maps
556
  self.attnmaps_sizes = [] # height,width set of u-net blocks
557
- self.attnmasks = {} # maked from attnmaps for regions
558
  self.maskready = False
559
  self.history = {}
560
 
 
220
  revers = True
221
 
222
  def pcallback(s_self, step: int, timestep: int, latents: torch.Tensor, selfs=None):
223
+ if "PRO" in mode: # in Prompt mode, make masks from sum of attention maps
224
  self.step = step
225
 
226
  if len(self.attnmaps_sizes) > 3:
 
552
 
553
  def reset_attnmaps(self): # init parameters in every batch
554
  self.step = 0
555
+ self.attnmaps = {} # made from attention maps
556
  self.attnmaps_sizes = [] # height,width set of u-net blocks
557
+ self.attnmasks = {} # made from attnmaps for regions
558
  self.maskready = False
559
  self.history = {}
560
 
main/sde_drag.py CHANGED
@@ -97,7 +97,7 @@ class SdeDragPipeline(DiffusionPipeline):
97
  steps (`int`, *optional*, defaults to 200):
98
  The number of sampling iterations.
99
  step_size (`int`, *optional*, defaults to 2):
100
- The drag diatance of each drag step.
101
  image_scale (`float`, *optional*, defaults to 0.3):
102
  To avoid duplicating the content, use image_scale to perturbs the source.
103
  adapt_radius (`int`, *optional*, defaults to 5):
 
97
  steps (`int`, *optional*, defaults to 200):
98
  The number of sampling iterations.
99
  step_size (`int`, *optional*, defaults to 2):
100
+ The drag distance of each drag step.
101
  image_scale (`float`, *optional*, defaults to 0.3):
102
  To avoid duplicating the content, use image_scale to perturbs the source.
103
  adapt_radius (`int`, *optional*, defaults to 5):
main/unclip_image_interpolation.py CHANGED
@@ -284,7 +284,7 @@ class UnCLIPImageInterpolationPipeline(DiffusionPipeline):
284
  )
285
  else:
286
  raise AssertionError(
287
- f"Expected 'image' or 'image_embeddings' to be not None with types List[PIL.Image] or torch.Tensor respectively. Received {type(image)} and {type(image_embeddings)} repsectively"
288
  )
289
 
290
  original_image_embeddings = self._encode_image(
 
284
  )
285
  else:
286
  raise AssertionError(
287
+ f"Expected 'image' or 'image_embeddings' to be not None with types List[PIL.Image] or torch.Tensor respectively. Received {type(image)} and {type(image_embeddings)} respectively"
288
  )
289
 
290
  original_image_embeddings = self._encode_image(