File size: 11,707 Bytes
7a45fdd
49930f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a45fdd
49930f1
bf5e6c0
49930f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf5e6c0
 
49930f1
 
bf5e6c0
49930f1
 
 
bf5e6c0
49930f1
 
 
bf5e6c0
49930f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
---
annotations_creators:
- no-annotation
language:
- en
language_creators:
- other
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: filterred-coyo-700m-beta
size_categories:
- 100M<n<1B
source_datasets:
- original
tags:
- image-text pairs
- medical
task_categories:
- text-to-image
- image-to-text
- zero-shot-classification
task_ids:
- image-captioning
---

# Dataset Card for filterred-coyo-700M-beta

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** 
- **Repository:** 
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary



### Supported Tasks and Leaderboards



### Languages

The texts in the COYO-700M dataset consist of English.

## Dataset Structure

### Data Instances

Each instance in COYO-700M represents single image-text pair information with meta-attributes:
```
{
  'id': 841814333321,
  'url': 'https://blog.dogsof.com/wp-content/uploads/2021/03/Image-from-iOS-5-e1614711641382.jpg',
  'text': 'A Pomsky dog sitting and smiling in field of orange flowers',
  'width': 1000,
  'height': 988,
  'image_phash': 'c9b6a7d8469c1959',
  'text_length': 59,
  'word_count': 11,
  'num_tokens_bert': 13,
  'num_tokens_gpt': 12,
  'num_faces': 0,
  'clip_similarity_vitb32': 0.4296875,
  'clip_similarity_vitl14': 0.35205078125,
  'nsfw_score_opennsfw2': 0.00031447410583496094,
  'nsfw_score_gantman': 0.03298913687467575,
  'watermark_score': 0.1014641746878624,
  'aesthetic_score_laion_v2': 5.435476303100586
}
```

### Data Fields

| name                     | type    | description                                                                                                                                                                                |
|--------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| id                       | long    | Unique 64-bit integer ID generated by [monotonically_increasing_id()](https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.sql.functions.monotonically_increasing_id.html) |
| url                      | string  | The image URL extracted from the `src` attribute of the `<img>` tag                                                                                                                        |
| text                     | string  | The text extracted from the `alt` attribute of the `<img>` tag                                                                                                                             |
| width                    | integer | The width of the image                                                                                                                                                                     |
| height                   | integer | The height of the image                                                                                                                                                                    | 
| image_phash              | string  | The [perceptual hash(pHash)](http://www.phash.org/) of the image                                                                                                                           |
| text_length              | integer | The length of the text                                                                                                                                                                     |
| word_count               | integer | The number of words separated by spaces.                                                                                                                                                   |
| num_tokens_bert          | integer | The number of tokens using [BertTokenizer](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer)                                                             |
| num_tokens_gpt           | integer | The number of tokens using [GPT2TokenizerFast](https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2TokenizerFast)                                                     |
| num_faces                | integer | The number of faces in the image detected by [SCRFD](https://insightface.ai/scrfd)                                                                                                         |
| clip_similarity_vitb32   | float   | The cosine similarity between text and image(ViT-B/32) embeddings by [OpenAI CLIP](https://github.com/openai/CLIP)                                                                         |
| clip_similarity_vitl14   | float   | The cosine similarity between text and image(ViT-L/14) embeddings by [OpenAI CLIP](https://github.com/openai/CLIP)                                                                         |
| nsfw_score_opennsfw2     | float   | The NSFW score of the image by [OpenNSFW2](https://github.com/bhky/opennsfw2)                                                                                                              |
| nsfw_score_gantman       | float   | The NSFW score of the image by [GantMan/NSFW](https://github.com/GantMan/nsfw_model)                                                                                                       | 
| watermark_score          | float   | The watermark probability of the image by our internal model                                                                                                                               |
| aesthetic_score_laion_v2 | float   | The aesthetic score of the image by [LAION-Aesthetics-Predictor-V2](https://github.com/christophschuhmann/improved-aesthetic-predictor)                                                    |

### Data Splits

Data was not split, since the evaluation was expected to be performed on more widely used downstream task(s).

## Dataset Creation

### Curation Rationale

Similar to most vision-and-language datasets, our primary goal in the data creation process is to collect many pairs of alt-text and image sources in HTML documents crawled from the web. Therefore, We attempted to eliminate uninformative images or texts with minimal cost and improve our dataset's usability by adding various meta-attributes. Users can use these meta-attributes to sample a subset from COYO-700M and use it to train the desired model. For instance, the *num_faces* attribute could be used to make a subset like *COYO-Faces* and develop a privacy-preserving generative model.

### Source Data

#### Initial Data Collection and Normalization

We collected about 10 billion pairs of alt-text and image sources in HTML documents in [CommonCrawl](https://commoncrawl.org/) from Oct. 2020 to Aug. 2021. and eliminated uninformative pairs through the image and/or text level filtering process with minimal cost.

**Image Level**
* Included all image formats that [Pillow library](https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html) can decode. (JPEG, WEBP, PNG, BMP, ...)
* Removed images less than 5KB image size.
* Removed images with an aspect ratio greater than 3.0.
* Removed images with min(width, height) < 200.
* Removed images with a score of [OpenNSFW2](https://github.com/bhky/opennsfw2) or [GantMan/NSFW](https://github.com/GantMan/nsfw_model) higher than 0.5.
* Removed all duplicate images based on the image [pHash](http://www.phash.org/) value from external public datasets.
    * ImageNet-1K/21K, Flickr-30K, MS-COCO, CC-3M, CC-12M

**Text Level**
* Collected only English text using [cld3](https://github.com/google/cld3).
* Replaced consecutive whitespace characters with a single whitespace and removed the whitespace before and after the sentence.
  (e.g. `"\n            \n                Load image into Gallery viewer, valentine&amp;#39;s day roses\n            \n" → "Load image into Gallery viewer, valentine&amp;#39;s day roses"`)
* Removed texts with a length of 5 or less.
* Removed texts that do not have a noun form.
* Removed texts with less than 3 words or more than 256 words and texts over 1000 in length.
* Removed texts appearing more than 10 times.
  (e.g. `“thumbnail for”, “image for”, “picture of”`)
* Removed texts containing NSFW words collected from [profanity_filter](https://github.com/rominf/profanity-filter/blob/master/profanity_filter/data/en_profane_words.txt), [better_profanity](https://github.com/snguyenthanh/better_profanity/blob/master/better_profanity/profanity_wordlist.txt), and [google_twunter_lol](https://gist.github.com/ryanlewis/a37739d710ccdb4b406d).

**Image-Text Level**
* Removed duplicated samples based on (image_phash, text).
  (Different text may exist for the same image URL.)

#### Who are the source language producers?

[Common Crawl](https://commoncrawl.org/) is the data source for COYO-700M.

### Annotations

#### Annotation process

The dataset was built in a fully automated process that did not require human annotation.

#### Who are the annotators?

No human annotation

### Personal and Sensitive Information

#### Disclaimer & Content Warning

## Considerations for Using the Data

### Social Impact of Dataset


### Discussion of Biases

### Other Known Limitations

## Additional Information

### Dataset Curators

### Licensing Information

#### License

The COYO dataset of Kakao Brain is licensed under [CC-BY-4.0 License](https://creativecommons.org/licenses/by/4.0/).
The full license can be found in the [LICENSE.cc-by-4.0 file](./coyo-700m/blob/main/LICENSE.cc-by-4.0).
The dataset includes “Image URL” and “Text” collected from various sites by analyzing Common Crawl data, an open data web crawling project. 
The collected data (images and text) is subject to the license to which each content belongs.

#### Obligation to use

While Open Source may be free to use, that does not mean it is free of obligation. 
To determine whether your intended use of the COYO dataset is suitable for the CC-BY-4.0 license, please consider the license guide. 
If you violate the license, you may be subject to legal action such as the prohibition of use or claim for damages depending on the use.

### Citation Information

Based on the following dataset:

```
@misc{kakaobrain2022coyo-700m,
  title         = {COYO-700M: Image-Text Pair Dataset},
  author        = {Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun Lee, Woonhyuk Baek, Saehoon Kim},
  year          = {2022},
  howpublished  = {\url{https://github.com/kakaobrain/coyo-dataset}},
}
```

### Contributions

  - Don Branson