Datasets:
File size: 11,707 Bytes
7a45fdd 49930f1 7a45fdd 49930f1 bf5e6c0 49930f1 bf5e6c0 49930f1 bf5e6c0 49930f1 bf5e6c0 49930f1 bf5e6c0 49930f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
---
annotations_creators:
- no-annotation
language:
- en
language_creators:
- other
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: filterred-coyo-700m-beta
size_categories:
- 100M<n<1B
source_datasets:
- original
tags:
- image-text pairs
- medical
task_categories:
- text-to-image
- image-to-text
- zero-shot-classification
task_ids:
- image-captioning
---
# Dataset Card for filterred-coyo-700M-beta
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
### Supported Tasks and Leaderboards
### Languages
The texts in the COYO-700M dataset consist of English.
## Dataset Structure
### Data Instances
Each instance in COYO-700M represents single image-text pair information with meta-attributes:
```
{
'id': 841814333321,
'url': 'https://blog.dogsof.com/wp-content/uploads/2021/03/Image-from-iOS-5-e1614711641382.jpg',
'text': 'A Pomsky dog sitting and smiling in field of orange flowers',
'width': 1000,
'height': 988,
'image_phash': 'c9b6a7d8469c1959',
'text_length': 59,
'word_count': 11,
'num_tokens_bert': 13,
'num_tokens_gpt': 12,
'num_faces': 0,
'clip_similarity_vitb32': 0.4296875,
'clip_similarity_vitl14': 0.35205078125,
'nsfw_score_opennsfw2': 0.00031447410583496094,
'nsfw_score_gantman': 0.03298913687467575,
'watermark_score': 0.1014641746878624,
'aesthetic_score_laion_v2': 5.435476303100586
}
```
### Data Fields
| name | type | description |
|--------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| id | long | Unique 64-bit integer ID generated by [monotonically_increasing_id()](https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.sql.functions.monotonically_increasing_id.html) |
| url | string | The image URL extracted from the `src` attribute of the `<img>` tag |
| text | string | The text extracted from the `alt` attribute of the `<img>` tag |
| width | integer | The width of the image |
| height | integer | The height of the image |
| image_phash | string | The [perceptual hash(pHash)](http://www.phash.org/) of the image |
| text_length | integer | The length of the text |
| word_count | integer | The number of words separated by spaces. |
| num_tokens_bert | integer | The number of tokens using [BertTokenizer](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer) |
| num_tokens_gpt | integer | The number of tokens using [GPT2TokenizerFast](https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2TokenizerFast) |
| num_faces | integer | The number of faces in the image detected by [SCRFD](https://insightface.ai/scrfd) |
| clip_similarity_vitb32 | float | The cosine similarity between text and image(ViT-B/32) embeddings by [OpenAI CLIP](https://github.com/openai/CLIP) |
| clip_similarity_vitl14 | float | The cosine similarity between text and image(ViT-L/14) embeddings by [OpenAI CLIP](https://github.com/openai/CLIP) |
| nsfw_score_opennsfw2 | float | The NSFW score of the image by [OpenNSFW2](https://github.com/bhky/opennsfw2) |
| nsfw_score_gantman | float | The NSFW score of the image by [GantMan/NSFW](https://github.com/GantMan/nsfw_model) |
| watermark_score | float | The watermark probability of the image by our internal model |
| aesthetic_score_laion_v2 | float | The aesthetic score of the image by [LAION-Aesthetics-Predictor-V2](https://github.com/christophschuhmann/improved-aesthetic-predictor) |
### Data Splits
Data was not split, since the evaluation was expected to be performed on more widely used downstream task(s).
## Dataset Creation
### Curation Rationale
Similar to most vision-and-language datasets, our primary goal in the data creation process is to collect many pairs of alt-text and image sources in HTML documents crawled from the web. Therefore, We attempted to eliminate uninformative images or texts with minimal cost and improve our dataset's usability by adding various meta-attributes. Users can use these meta-attributes to sample a subset from COYO-700M and use it to train the desired model. For instance, the *num_faces* attribute could be used to make a subset like *COYO-Faces* and develop a privacy-preserving generative model.
### Source Data
#### Initial Data Collection and Normalization
We collected about 10 billion pairs of alt-text and image sources in HTML documents in [CommonCrawl](https://commoncrawl.org/) from Oct. 2020 to Aug. 2021. and eliminated uninformative pairs through the image and/or text level filtering process with minimal cost.
**Image Level**
* Included all image formats that [Pillow library](https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html) can decode. (JPEG, WEBP, PNG, BMP, ...)
* Removed images less than 5KB image size.
* Removed images with an aspect ratio greater than 3.0.
* Removed images with min(width, height) < 200.
* Removed images with a score of [OpenNSFW2](https://github.com/bhky/opennsfw2) or [GantMan/NSFW](https://github.com/GantMan/nsfw_model) higher than 0.5.
* Removed all duplicate images based on the image [pHash](http://www.phash.org/) value from external public datasets.
* ImageNet-1K/21K, Flickr-30K, MS-COCO, CC-3M, CC-12M
**Text Level**
* Collected only English text using [cld3](https://github.com/google/cld3).
* Replaced consecutive whitespace characters with a single whitespace and removed the whitespace before and after the sentence.
(e.g. `"\n \n Load image into Gallery viewer, valentine&#39;s day roses\n \n" → "Load image into Gallery viewer, valentine&#39;s day roses"`)
* Removed texts with a length of 5 or less.
* Removed texts that do not have a noun form.
* Removed texts with less than 3 words or more than 256 words and texts over 1000 in length.
* Removed texts appearing more than 10 times.
(e.g. `“thumbnail for”, “image for”, “picture of”`)
* Removed texts containing NSFW words collected from [profanity_filter](https://github.com/rominf/profanity-filter/blob/master/profanity_filter/data/en_profane_words.txt), [better_profanity](https://github.com/snguyenthanh/better_profanity/blob/master/better_profanity/profanity_wordlist.txt), and [google_twunter_lol](https://gist.github.com/ryanlewis/a37739d710ccdb4b406d).
**Image-Text Level**
* Removed duplicated samples based on (image_phash, text).
(Different text may exist for the same image URL.)
#### Who are the source language producers?
[Common Crawl](https://commoncrawl.org/) is the data source for COYO-700M.
### Annotations
#### Annotation process
The dataset was built in a fully automated process that did not require human annotation.
#### Who are the annotators?
No human annotation
### Personal and Sensitive Information
#### Disclaimer & Content Warning
## Considerations for Using the Data
### Social Impact of Dataset
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators
### Licensing Information
#### License
The COYO dataset of Kakao Brain is licensed under [CC-BY-4.0 License](https://creativecommons.org/licenses/by/4.0/).
The full license can be found in the [LICENSE.cc-by-4.0 file](./coyo-700m/blob/main/LICENSE.cc-by-4.0).
The dataset includes “Image URL” and “Text” collected from various sites by analyzing Common Crawl data, an open data web crawling project.
The collected data (images and text) is subject to the license to which each content belongs.
#### Obligation to use
While Open Source may be free to use, that does not mean it is free of obligation.
To determine whether your intended use of the COYO dataset is suitable for the CC-BY-4.0 license, please consider the license guide.
If you violate the license, you may be subject to legal action such as the prohibition of use or claim for damages depending on the use.
### Citation Information
Based on the following dataset:
```
@misc{kakaobrain2022coyo-700m,
title = {COYO-700M: Image-Text Pair Dataset},
author = {Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun Lee, Woonhyuk Baek, Saehoon Kim},
year = {2022},
howpublished = {\url{https://github.com/kakaobrain/coyo-dataset}},
}
```
### Contributions
- Don Branson |