--- dataset_info: features: - name: label dtype: string - name: latent sequence: sequence: sequence: sequence: float32 splits: - name: train num_bytes: 10743176571 num_examples: 1281167 - name: test num_bytes: 419229818 num_examples: 50000 download_size: 2961362265 dataset_size: 11162406389 configs: - config_name: default data_files: - split: train path: data/train.* - split: test path: data/validation.* --- ```python class ImageNet96Dataset(torch.utils.data.Dataset): def __init__( self, hf_ds, text_enc, tokenizer, bs, ddp, col_label="label", col_latent="latent" ): self.hf_ds=hf_ds self.col_label, self.col_latent = col_label, col_latent self.text_enc, self.tokenizer = text_enc, tokenizer self.tokenizer.padding_side = "right" self.prompt_len = 50 if ddp: self.sampler = DistributedSampler(hf_ds, shuffle = True, seed = seed) else: self.sampler = RandomSampler(hf_ds, generator = torch.manual_seed(seed)) self.dataloader = DataLoader( hf_ds, sampler=self.sampler, collate_fn=self.collate, batch_size=bs, num_workers=4, prefetch_factor=2 ) def collate(self, items): labels = [i[self.col_label] for i in items] # latents shape [B, num_aug, 32, 3, 3] latents = torch.Tensor([i[self.col_latent] for i in items]) B, num_aug, _, _, _ = latents.shape # pick random augmentation -> latents shape [B, 32, 3, 3] aug_idx = torch.randint(0, num_aug, (B,)) # Random int between 0-4 for each batch item batch_idx = torch.arange(B) latents = latents[batch_idx, aug_idx] return labels, latents def __iter__(self): for labels, latents in self.dataloader: label_embs, label_atnmasks = self.encode_prompts(labels) latents = latents.to(dtype).to(device) yield labels, latents, label_embs, label_atnmasks def encode_prompts(self, prompts): prompts_tok = self.tokenizer( prompts, padding="max_length", truncation=True, max_length=self.prompt_len, return_tensors="pt" ) with torch.no_grad(): prompts_encoded = self.text_enc(**prompts_tok.to(self.text_enc.device)) return prompts_encoded.last_hidden_state, prompts_tok.attention_mask def __len__(self): return len(self.dataloader) ```