RuREBus / RuREBus.py
iluvvatar's picture
ent and rel types
aae723d
import datasets
import json
import requests
from urllib.parse import urlencode
from pathlib import Path
import os
_NAME = 'RuREBus'
_CITATION = '''
@inproceedings{rurebus,
Address = {Moscow, Russia},
Author = {Ivanin, Vitaly and Artemova, Ekaterina and Batura, Tatiana and Ivanov, Vladimir and Sarkisyan, Veronika and Tutubalina, Elena and Smurov, Ivan},
Title = {RuREBus-2020 Shared Task: Russian Relation Extraction for Business},
Booktitle = {Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference “Dialog” [Komp’iuternaia Lingvistika i Intellektual’nye Tehnologii: Trudy Mezhdunarodnoj Konferentsii “Dialog”]},
Year = {2020}
}
'''.strip()
_DESCRIPTION = 'Russian Relation Extraction for Business'
_HOMEPAGE = 'https://github.com/dialogue-evaluation/RuREBus'
_VERSION = '1.0.0'
class RuREBusBuilder(datasets.GeneratorBasedBuilder):
base_url = 'https://cloud-api.yandex.net/v1/disk/public/resources/download?'
public_key = 'https://disk.yandex.ru/d/t1WakmYXlL6jBw'
final_url = base_url + urlencode(dict(public_key=public_key))
response = requests.get(final_url)
raw_txt_url = response.json()['href']
_DATA_URLS = {
'train': 'data/train.jsonl',
'test': 'data/test.jsonl',
}
_RAW_TXT_URLS = {
'raw_txt': raw_txt_url
}
_TYPES_PATHS = {'ent_types': 'ent_types.txt',
'rel_types': 'rel_types.txt'}
VERSION = datasets.Version(_VERSION)
BUILDER_CONFIGS = [
datasets.BuilderConfig('data',
version=VERSION,
description='Annotated data'),
datasets.BuilderConfig('raw_txt',
version=VERSION,
description='Raw texts without annotations'),
datasets.BuilderConfig('ent_types',
version=VERSION,
description='All possible entity types'),
datasets.BuilderConfig('rel_types',
version=VERSION,
description='All possible relation types'),
]
DEFAULT_CONFIG_NAME = 'data'
def _info(self) -> datasets.DatasetInfo:
if self.config.name == 'data':
features = datasets.Features({
'id': datasets.Value('int32'),
'text': datasets.Value('string'),
'entities': datasets.Sequence(datasets.Value('string')),
'relations': datasets.Sequence(datasets.Value('string'))
})
elif self.config.name == 'raw_txt':
features = datasets.Features({
'region': datasets.Value('string'),
'district': datasets.Value('string'),
'title': datasets.Value('string'),
'text': datasets.Value('string')
})
else:
features = datasets.Features({'type': datasets.Value('string')})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
if self.config.name == 'data':
files = dl_manager.download(self._DATA_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={'filepath': files['train']},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={'filepath': files['test']},
),
]
elif self.config.name == 'raw_txt':
folder = dl_manager.download_and_extract(self._RAW_TXT_URLS)['raw_txt']
return [
datasets.SplitGenerator(
name='raw_txt',
gen_kwargs={'filepath': folder},
)
]
else:
files = dl_manager.download(self._TYPES_PATHS)
return [
datasets.SplitGenerator(
name=self.config.name,
gen_kwargs={'filepath': files[self.config.name]},
)
]
def _generate_examples(self, filepath):
if self.config.name == 'data':
with open(filepath, encoding='utf-8') as f:
for i, line in enumerate(f):
yield i, json.loads(line)
elif self.config.name == 'raw_txt':
path = os.path.join(filepath, 'MED_txt/unparsed_txt')
i = 0
for root, dirs, files in os.walk(path):
if files:
root = Path(root)
region = root.parent.name.encode('cp437').decode('cp866')
district = root.name.encode('cp437').decode('cp866')
titles = {}
with open(root / 'name_dict.txt', encoding='utf-8') as f_titles:
for line in f_titles:
key, title = line.split(maxsplit=1)[1].split('_', maxsplit=1)
titles[key] = title.strip()
for file in files:
if file != 'name_dict.txt':
file = Path(file)
key = file.name.split('_', maxsplit=1)[0]
title = titles[key]
with open(root / file, encoding='utf-8') as f:
text = f.read()
item = {
'region': region,
'district': district,
'title': title,
'text': text
}
yield i, item
i += 1
else:
with open(filepath, encoding='utf-8') as f:
for i, line in enumerate(f):
yield i, {'type': line.strip()}