|
import datasets |
|
import json |
|
import requests |
|
from urllib.parse import urlencode |
|
from pathlib import Path |
|
import os |
|
|
|
_NAME = 'RuREBus' |
|
_CITATION = ''' |
|
@inproceedings{rurebus, |
|
Address = {Moscow, Russia}, |
|
Author = {Ivanin, Vitaly and Artemova, Ekaterina and Batura, Tatiana and Ivanov, Vladimir and Sarkisyan, Veronika and Tutubalina, Elena and Smurov, Ivan}, |
|
Title = {RuREBus-2020 Shared Task: Russian Relation Extraction for Business}, |
|
Booktitle = {Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference “Dialog” [Komp’iuternaia Lingvistika i Intellektual’nye Tehnologii: Trudy Mezhdunarodnoj Konferentsii “Dialog”]}, |
|
Year = {2020} |
|
} |
|
'''.strip() |
|
_DESCRIPTION = 'Russian Relation Extraction for Business' |
|
_HOMEPAGE = 'https://github.com/dialogue-evaluation/RuREBus' |
|
_VERSION = '1.0.0' |
|
|
|
|
|
class RuREBusBuilder(datasets.GeneratorBasedBuilder): |
|
base_url = 'https://cloud-api.yandex.net/v1/disk/public/resources/download?' |
|
public_key = 'https://disk.yandex.ru/d/t1WakmYXlL6jBw' |
|
final_url = base_url + urlencode(dict(public_key=public_key)) |
|
response = requests.get(final_url) |
|
raw_txt_url = response.json()['href'] |
|
|
|
_DATA_URLS = { |
|
'train': 'data/train.jsonl', |
|
'test': 'data/test.jsonl', |
|
} |
|
_RAW_TXT_URLS = { |
|
'raw_txt': raw_txt_url |
|
} |
|
_TYPES_PATHS = {'ent_types': 'ent_types.txt', |
|
'rel_types': 'rel_types.txt'} |
|
VERSION = datasets.Version(_VERSION) |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig('data', |
|
version=VERSION, |
|
description='Annotated data'), |
|
datasets.BuilderConfig('raw_txt', |
|
version=VERSION, |
|
description='Raw texts without annotations'), |
|
datasets.BuilderConfig('ent_types', |
|
version=VERSION, |
|
description='All possible entity types'), |
|
datasets.BuilderConfig('rel_types', |
|
version=VERSION, |
|
description='All possible relation types'), |
|
] |
|
DEFAULT_CONFIG_NAME = 'data' |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.name == 'data': |
|
features = datasets.Features({ |
|
'id': datasets.Value('int32'), |
|
'text': datasets.Value('string'), |
|
'entities': datasets.Sequence(datasets.Value('string')), |
|
'relations': datasets.Sequence(datasets.Value('string')) |
|
}) |
|
elif self.config.name == 'raw_txt': |
|
features = datasets.Features({ |
|
'region': datasets.Value('string'), |
|
'district': datasets.Value('string'), |
|
'title': datasets.Value('string'), |
|
'text': datasets.Value('string') |
|
}) |
|
else: |
|
features = datasets.Features({'type': datasets.Value('string')}) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager): |
|
if self.config.name == 'data': |
|
files = dl_manager.download(self._DATA_URLS) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={'filepath': files['train']}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={'filepath': files['test']}, |
|
), |
|
] |
|
elif self.config.name == 'raw_txt': |
|
folder = dl_manager.download_and_extract(self._RAW_TXT_URLS)['raw_txt'] |
|
return [ |
|
datasets.SplitGenerator( |
|
name='raw_txt', |
|
gen_kwargs={'filepath': folder}, |
|
) |
|
] |
|
else: |
|
files = dl_manager.download(self._TYPES_PATHS) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=self.config.name, |
|
gen_kwargs={'filepath': files[self.config.name]}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
if self.config.name == 'data': |
|
with open(filepath, encoding='utf-8') as f: |
|
for i, line in enumerate(f): |
|
yield i, json.loads(line) |
|
elif self.config.name == 'raw_txt': |
|
path = os.path.join(filepath, 'MED_txt/unparsed_txt') |
|
i = 0 |
|
for root, dirs, files in os.walk(path): |
|
if files: |
|
root = Path(root) |
|
region = root.parent.name.encode('cp437').decode('cp866') |
|
district = root.name.encode('cp437').decode('cp866') |
|
titles = {} |
|
with open(root / 'name_dict.txt', encoding='utf-8') as f_titles: |
|
for line in f_titles: |
|
key, title = line.split(maxsplit=1)[1].split('_', maxsplit=1) |
|
titles[key] = title.strip() |
|
for file in files: |
|
if file != 'name_dict.txt': |
|
file = Path(file) |
|
key = file.name.split('_', maxsplit=1)[0] |
|
title = titles[key] |
|
with open(root / file, encoding='utf-8') as f: |
|
text = f.read() |
|
item = { |
|
'region': region, |
|
'district': district, |
|
'title': title, |
|
'text': text |
|
} |
|
yield i, item |
|
i += 1 |
|
else: |
|
with open(filepath, encoding='utf-8') as f: |
|
for i, line in enumerate(f): |
|
yield i, {'type': line.strip()} |
|
|