Datasets:
Sub-tasks:
multi-label-image-classification
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
domain-generalization
License:
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# _preprocess_groups(), _parse_node_str(), _load_candidate_subsets() adapted from here : | |
# https://github.com/Weixin-Liang/MetaShift/blob/main/dataset/generate_full_MetaShift.py | |
# MIT License | |
# Copyright (c) 2021 Weixin-Liang | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
"""MetaShift Dataset.""" | |
import json | |
import os | |
import pickle | |
from collections import Counter, defaultdict | |
import datasets | |
_CITATION = """\ | |
@InProceedings{liang2022metashift, | |
title={MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts}, | |
author={Weixin Liang and James Zou}, | |
booktitle={International Conference on Learning Representations}, | |
year={2022}, | |
url={https://openreview.net/forum?id=MTex8qKavoS} | |
} | |
""" | |
_DESCRIPTION = """\ | |
The MetaShift is a dataset of datasets for evaluating distribution shifts and training conflicts. | |
The MetaShift dataset is a collection of 12,868 sets of natural images across 410 classes. | |
It was created for understanding the performance of a machine learning model across diverse data distributions. | |
""" | |
_HOMEPAGE = "https://metashift.readthedocs.io/" | |
_LICENSE = "Creative Commons Attribution 4.0 International License" | |
_URLS = { | |
"image_files": "https://nlp.stanford.edu/data/gqa/images.zip", | |
"scene_graph_annotations": "https://nlp.stanford.edu/data/gqa/sceneGraphs.zip", | |
} | |
_METADATA_URLS = { | |
"full_candidate_subsets": "https://github.com/Weixin-Liang/MetaShift/raw/main/dataset/meta_data/full-candidate-subsets.pkl", | |
} | |
_ATTRIBUTES_URLS = { | |
"attributes_candidate_subsets": "https://github.com/Weixin-Liang/MetaShift/raw/main/dataset/attributes_MetaShift/attributes-candidate-subsets.pkl", | |
} | |
# See https://github.com/Weixin-Liang/MetaShift/blob/main/dataset/meta_data/class_hierarchy.json | |
# for the full object vocabulary and its hierarchy. | |
# Since the total number of all subsets is very large, all of the following scripts only generate a subset of MetaShift. | |
_CLASSES = [ | |
"cat", | |
"dog", | |
"bus", | |
"truck", | |
"elephant", | |
"horse", | |
] | |
_ATTRIBUTES = [ | |
"cat(orange)", | |
"cat(white)", | |
"dog(sitting)", | |
"dog(jumping)", | |
] | |
class MetashiftConfig(datasets.BuilderConfig): | |
"""BuilderConfig for MetaShift.""" | |
def __init__( | |
self, | |
selected_classes=None, | |
attributes_dataset=False, | |
attributes=None, | |
with_image_metadata=False, | |
image_subset_size_threshold=25, | |
min_local_groups=5, | |
**kwargs, | |
): | |
"""BuilderConfig for MetaShift. | |
Args: | |
selected_classes: `list[string]`, optional, list of the classes to generate the MetaShift dataset for. | |
If `None`, the list is equal to `['cat', 'dog', 'bus', 'truck', 'elephant', 'horse']`. | |
attributes_dataset: `bool`, default `False`, if `True`, the script generates the MetaShift-Attributes dataset. | |
attributes: `list[string]`, optional, list of attributes classes included in the Attributes dataset. | |
If `None` and `attributes_dataset` is `True`, it's equal to `["cat(orange)", "cat(white)", "dog(sitting)", "dog(jumping)"]`. | |
with_image_metadata: `bool`, default `False`, whether to include image metadata. | |
If set to `True`, this will give additional metadata about each image. | |
image_subset_size_threshold: `int`, default `25`, the number of images required to be considered a subset. | |
If the number of images is less than this threshold, the subset is ignored. | |
min_local_groups: `int`, default `5`, the minimum number of local groups required to be considered an object class. | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(MetashiftConfig, self).__init__(**kwargs) | |
self.selected_classes = _CLASSES if selected_classes is None else selected_classes | |
self.attributes_dataset = attributes_dataset | |
if attributes_dataset: | |
self.attributes = _ATTRIBUTES if attributes is None else attributes | |
self.with_image_metadata = with_image_metadata | |
self.IMAGE_SUBSET_SIZE_THRESHOLD = image_subset_size_threshold | |
self.MIN_LOCAL_GROUPS = min_local_groups | |
class Metashift(datasets.GeneratorBasedBuilder): | |
BUILDER_CONFIGS = [ | |
MetashiftConfig(name="metashift", version=datasets.Version("1.0.0")), | |
] | |
BUILDER_CONFIG_CLASS = MetashiftConfig | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features(self._get_feature_types()), | |
supervised_keys=("image", "label"), | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _get_feature_types(self): | |
features = { | |
"image_id": datasets.Value("string"), | |
"image": datasets.Image(), | |
} | |
if self.config.attributes_dataset: | |
features.update({"label": datasets.ClassLabel(names=self.config.attributes)}) | |
else: | |
features.update( | |
{ | |
"label": datasets.ClassLabel(names=self.config.selected_classes), | |
"context": datasets.Value("string"), | |
} | |
) | |
if self.config.with_image_metadata: | |
features.update( | |
{ | |
"width": datasets.Value("int64"), | |
"height": datasets.Value("int64"), | |
"location": datasets.Value("string"), | |
"weather": datasets.Value("string"), | |
"objects": datasets.Sequence( | |
{ | |
"object_id": datasets.Value("string"), | |
"name": datasets.Value("string"), | |
"x": datasets.Value("int64"), | |
"y": datasets.Value("int64"), | |
"w": datasets.Value("int64"), | |
"h": datasets.Value("int64"), | |
"attributes": datasets.Sequence(datasets.Value("string")), | |
"relations": datasets.Sequence( | |
{ | |
"name": datasets.Value("string"), | |
"object": datasets.Value("string"), | |
} | |
), | |
} | |
), | |
} | |
) | |
return features | |
def _parse_node_str(node_str): | |
tag = node_str.split("(")[-1][:-1] | |
subject_str = node_str.split("(")[0].strip() | |
return subject_str, tag | |
def _load_candidate_subsets(pkl_save_path): | |
with open(pkl_save_path, "rb") as pkl_f: | |
load_data = pickle.load(pkl_f) | |
return load_data | |
def _preprocess_groups(self, pkl_save_path, output_files_flag=False, subject_classes=_CLASSES): | |
IMAGE_SUBSET_SIZE_THRESHOLD = self.config.IMAGE_SUBSET_SIZE_THRESHOLD | |
trainsg_dupes = set() | |
################################## | |
# Load cache data | |
# Global data dict | |
# Consult back to this dict for concrete image IDs. | |
################################## | |
node_name_to_img_id = self._load_candidate_subsets(pkl_save_path) | |
################################## | |
# Build a default counter first | |
# Data Iteration | |
################################## | |
group_name_counter = Counter() | |
for node_name in node_name_to_img_id.keys(): | |
################################## | |
# Apply a threshold: e.g., 100 | |
################################## | |
imageID_set = node_name_to_img_id[node_name] | |
imageID_set = imageID_set - trainsg_dupes | |
node_name_to_img_id[node_name] = imageID_set | |
if len(imageID_set) >= IMAGE_SUBSET_SIZE_THRESHOLD: | |
group_name_counter[node_name] = len(imageID_set) | |
else: | |
pass | |
most_common_list = group_name_counter.most_common() | |
most_common_list = [(x, count) for x, count in group_name_counter.items()] | |
################################## | |
# Build a subject dict | |
################################## | |
subject_group_summary_dict = defaultdict(Counter) | |
for node_name, imageID_set_len in most_common_list: | |
subject_str, tag = self._parse_node_str(node_name) | |
################################## | |
# TMP: inspect certain class | |
################################## | |
if subject_str not in subject_classes: | |
continue | |
subject_group_summary_dict[subject_str][node_name] = imageID_set_len | |
################################## | |
# Get the subject dict stats | |
################################## | |
subject_group_summary_list = sorted( | |
subject_group_summary_dict.items(), key=lambda x: sum(x[1].values()), reverse=True | |
) | |
new_subject_group_summary_list = list() | |
subjects_to_all_set = defaultdict(set) | |
################################## | |
# Subject filtering for dataset generation | |
################################## | |
for subject_str, subject_data in subject_group_summary_list: | |
################################## | |
# Discard an object class if it has too few local groups | |
################################## | |
if len(subject_data) <= self.config.MIN_LOCAL_GROUPS: | |
# if len(subject_data) <= 10: | |
continue | |
else: | |
new_subject_group_summary_list.append((subject_str, subject_data)) | |
################################## | |
# Iterate all the subsets of the given subject | |
################################## | |
for node_name in subject_data: | |
subjects_to_all_set[node_name].update(node_name_to_img_id[node_name]) | |
return subjects_to_all_set | |
def _load_scene_graph(json_path): | |
with open(json_path, "r", encoding="utf-8") as f: | |
scene_graph = json.load(f) | |
return scene_graph | |
def _split_generators(self, dl_manager): | |
data_path = dl_manager.download_and_extract(_URLS) | |
metadata_path = None | |
subjects_to_all_set = None | |
attributes_path = None | |
if not self.config.attributes_dataset: | |
metadata_path = dl_manager.download_and_extract(_METADATA_URLS) | |
subjects_to_all_set = self._preprocess_groups( | |
metadata_path["full_candidate_subsets"], subject_classes=self.config.selected_classes | |
) | |
else: | |
attributes_path = dl_manager.download_and_extract(_ATTRIBUTES_URLS) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"images_path": os.path.join(data_path["image_files"], "images"), | |
"subjects_to_all_set": subjects_to_all_set, | |
"attributes_path": attributes_path, | |
"image_metadata_path": data_path["scene_graph_annotations"], | |
}, | |
), | |
] | |
def _get_processed_image_metadata(image_id, scene_graph): | |
image_metadata = scene_graph[image_id] | |
objects = image_metadata["objects"] | |
if isinstance(objects, list): | |
return image_metadata | |
processed_objects = [] | |
for object_id, object_details in objects.items(): | |
object_details["object_id"] = object_id | |
processed_objects.append(object_details) | |
image_metadata["objects"] = processed_objects | |
if "location" not in image_metadata: | |
image_metadata["location"] = None | |
if "weather" not in image_metadata: | |
image_metadata["weather"] = None | |
return image_metadata | |
def _generate_examples(self, images_path, subjects_to_all_set, attributes_path, image_metadata_path): | |
idx = 0 | |
if self.config.with_image_metadata: | |
train_scene_graph = os.path.join(image_metadata_path, "train_sceneGraphs.json") | |
test_scene_graph = os.path.join(image_metadata_path, "val_sceneGraphs.json") | |
scene_graph = self._load_scene_graph(train_scene_graph) | |
scene_graph.update(self._load_scene_graph(test_scene_graph)) | |
if not self.config.attributes_dataset: | |
for subset in subjects_to_all_set: | |
class_name, context = self._parse_node_str(subset) | |
for image_id in subjects_to_all_set[subset]: | |
image_filename = image_id + ".jpg" | |
src_image_path = os.path.join(images_path, image_filename) | |
features = { | |
"image_id": image_id, | |
"image": src_image_path, | |
"label": class_name, | |
"context": context, | |
} | |
if self.config.with_image_metadata: | |
image_metadata = self._get_processed_image_metadata(image_id, scene_graph) | |
features.update(image_metadata) | |
yield idx, features | |
idx += 1 | |
else: | |
attributes_candidate_subsets = self._load_candidate_subsets( | |
attributes_path["attributes_candidate_subsets"] | |
) | |
for attribute in self.config.attributes: | |
image_IDs = attributes_candidate_subsets[attribute] | |
for image_id in image_IDs: | |
image_filename = image_id + ".jpg" | |
src_image_path = os.path.join(images_path, image_filename) | |
features = { | |
"image_id": image_id, | |
"image": src_image_path, | |
"label": attribute, | |
} | |
if self.config.with_image_metadata: | |
image_metadata = self._get_processed_image_metadata(image_id, scene_graph) | |
features.update(image_metadata) | |
yield idx, features | |
idx += 1 | |