jasongzy commited on
Commit
e5a65c7
·
1 Parent(s): 842ea5e
Files changed (6) hide show
  1. .gitattributes +2 -0
  2. 3DBiCar.py +74 -0
  3. README.md +0 -1
  4. readme.md +17 -0
  5. strictly.md +11 -0
  6. utils.py +112 -0
.gitattributes CHANGED
@@ -56,3 +56,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
56
  # Video files - compressed
57
  *.mp4 filter=lfs diff=lfs merge=lfs -text
58
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
 
56
  # Video files - compressed
57
  *.mp4 filter=lfs diff=lfs merge=lfs -text
58
  *.webm filter=lfs diff=lfs merge=lfs -text
59
+ *.obj filter=lfs diff=lfs merge=lfs -text
60
+ *.mtl filter=lfs diff=lfs merge=lfs -text
3DBiCar.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ from torch.utils.data import Dataset, DataLoader
4
+ import numpy as np
5
+ import cv2
6
+ from PIL import Image
7
+ import json
8
+ import openmesh as om
9
+ import pdb
10
+ from utils import *
11
+
12
+ class BiCarDataset(Dataset):
13
+ def __init__(self, dataset_folder,input_size=512):
14
+ self.dataset_folder = dataset_folder
15
+ self.data_index_list = os.listdir(dataset_folder)
16
+ self.input_size = input_size
17
+
18
+ def __getitem__(self, index):
19
+ instance_index = self.data_index_list[index]
20
+ instance_folder = os.path.join(self.dataset_folder,instance_index)
21
+ input_kps= np.zeros(1)
22
+ # image/mask/annotation
23
+ #processed images and mask
24
+ #input_image = cv2.imread(os.path.join(instance_folder,'image','image_reshape512.jpeg'))
25
+ #input_mask = cv2.imread(os.path.join(instance_folder,'image','mask512.png'))
26
+ #processed image in dataloader
27
+ image = Image.open(os.path.join(instance_folder,'image','raw_image.jpeg')).convert('RGB')
28
+ polygon,kps,bbox = readjson(os.path.join(instance_folder,'image','annotation.json'))
29
+ mask = polygon2seg(image,polygon)
30
+ input_image,input_mask,input_kps = reshape_image_and_anno(image,mask,kps,bbox,self.input_size)
31
+
32
+ # this two function can be used to visualize
33
+ #utils.show_seg(nimage,nmask)
34
+ #utils.show_kps(nimage,nkps)
35
+
36
+ #params: shape and pose
37
+ beta = np.load(os.path.join(instance_folder,'params','beta.npy'))[:100]
38
+ theta = np.load(os.path.join(instance_folder,'params','pose.npy')).reshape(3,24)
39
+
40
+ #mesh: Here we only read points and uvmap of body only.
41
+ #Tbody: T-pose body; Pbody: Posed body.
42
+ tmesh = om.read_polymesh(os.path.join(instance_folder,'tpose','m.obj'))
43
+ tbody_points = tmesh.points()
44
+ tbody_uv = cv2.imread(os.path.join(instance_folder,'tpose','m.BMP'))
45
+
46
+ pmesh = om.read_polymesh(os.path.join(instance_folder,'pose','m.obj'))
47
+ pbody_points = pmesh.points()
48
+ pbody_uv = cv2.imread(os.path.join(instance_folder,'pose','m.BMP'))
49
+
50
+
51
+ return {'input_image':input_image,
52
+ 'input_mask':input_mask,
53
+ 'input_kps':input_kps,
54
+ #'json_annotation':annotation,
55
+ 'beta':beta,
56
+ 'theta':theta,
57
+ 'Tbody_points':tbody_points,
58
+ 'Tbody_uv':tbody_uv,
59
+ 'Pbody_points':pbody_points,
60
+ 'Pbody_uv':pbody_uv
61
+ }
62
+
63
+ def __len__(self):
64
+ return len(self.data_index_list)
65
+
66
+ dataset = BiCarDataset('./3DBiCar')
67
+ batch_size = 2
68
+ dataset.__getitem__(1)
69
+ dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
70
+
71
+ for batch in dataloader:
72
+ for item in batch:
73
+ print(item,batch[item].shape)
74
+ break
README.md DELETED
@@ -1 +0,0 @@
1
- [RaBit: Parametric Modeling of 3D Biped Cartoon Characters with a Topological-consistent Dataset](https://gaplab.cuhk.edu.cn/projects/RaBit/)
 
 
readme.md ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Welcome to *3DBiCar*
2
+
3
+ Each folder in our dataset contains a character along with its associated data.
4
+ + The `image` folder contains the original image and its corresponding 2D annotations, i.e., mask and 2D joints.
5
+
6
+ + The `params` folder contains two ".npy" files, which include the beta and theta parameters related to *RaBit*.
7
+
8
+ + The `pose` and `tpose` folders provides the model with rest pose and reference pose, respectively.
9
+
10
+ + The `metadata.json` file provides meta information about each character, such as its category, image style, and the URL of the image source.
11
+
12
+ Note: Due to copyright issues, certain reference images of some instances cannot be released. As an alternative, we provide a rendered image for those instances. Please read "strictly.md" for copyright issue.
13
+
14
+ Update:
15
+ + 3DBiCar.py is the dataloader to load the dataset.
16
+
17
+ + utils.py is some function used in 3DBiCar.
strictly.md ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ This dataset is strictly intended for research purposes and cannot be used for commercial use. If you use this dataset in your research, please consider the following BibTeX entry and give us a [star](https://github.com/zhongjinluo/RaBit)!
2
+
3
+ ```
4
+ @inproceedings{luo2023rabit,
5
+ title={RaBit: Parametric Modeling of 3D Biped Cartoon Characters with a Topological-consistent Dataset},
6
+ author={Luo, Zhongjin and Cai, Shengcai and Dong, Jinguo and Ming, Ruibo and Qiu, Liangdong and Zhan, Xiaohang and Han, Xiaoguang},
7
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
8
+ year={2023}
9
+ }
10
+ ```
11
+
utils.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import numpy as np
3
+ import cv2
4
+ from PIL import Image, ImageDraw
5
+
6
+
7
+ def readjson(filename):
8
+ with open(filename, 'r', encoding='utf-8') as f:
9
+ data = json.load(f)
10
+ polygon=None
11
+ kps = np.ones((24,3))*-1 #x1,y1,status (-1:not exist. 0/1: covered or not)
12
+ for x in data['shapes']:
13
+ if x['shape_type']=='polygon':
14
+ polygon = x['points']
15
+ elif x['shape_type']=='point':
16
+ _,index,hidden = x['label'].split('-')
17
+ index = int(index.split('_')[-1])
18
+ hidden = int(hidden[-1]=='1')
19
+ kps[index] = np.array([x['points'][0][0],x['points'][0][1],hidden])
20
+
21
+ poly = np.array(polygon)
22
+ polymax = np.max(poly,axis=0).tolist()
23
+ polymin = np.min(poly,axis=0).tolist()
24
+ bbox = polymin+polymax #x1 y1 x2 y2
25
+ return polygon,kps,bbox
26
+
27
+ def polygon2seg(image,polygon):
28
+ for i in range(len(polygon)):
29
+ polygon[i] = tuple(polygon[i])
30
+ mask = Image.new('L', (image.width, image.height), 0)
31
+ ImageDraw.Draw(mask).polygon(polygon, outline=0, fill=1)
32
+ return np.array(mask)
33
+
34
+ def show_seg(image,mask):
35
+ image = np.array(image).copy()
36
+ mask = np.array(mask)
37
+ mask = mask[:,:,np.newaxis]
38
+ masked_image = image*mask
39
+ Image.fromarray(masked_image)
40
+ masked_image = Image.fromarray(masked_image)
41
+ masked_image.show()
42
+ return
43
+
44
+ def show_kps(image,kps):
45
+ image = np.array(image).copy()
46
+ for x,y,h in kps:
47
+ y,x,h = int(y),int(x),int(h)
48
+ if h==-1:
49
+ continue
50
+ point_size=2
51
+ if h==0:
52
+ point_color=(0,0,255)
53
+ else:
54
+ point_color=(0,255,0)
55
+ cv2.circle(image,(x,y),point_size,point_color,thickness=4)
56
+ pil_image = Image.fromarray(image)
57
+ pil_image.show()
58
+ return
59
+
60
+ def reshape_image_and_anno(image,mask,kps,bbox,size=512):
61
+ def move_kps(kps,move=None,ratio=None):
62
+ if move is not None:
63
+ for i in range(len(kps)):
64
+ if kps[i][2]!=-1:
65
+ kps[i][:2] += move
66
+ elif ratio is not None:
67
+ for i in range(len(kps)):
68
+ if kps[i][0]!=-1:
69
+ kps[i][:2] *= ratio
70
+ return kps
71
+ image = np.array(image)
72
+ mask = np.array(mask)
73
+ y1,x1,y2,x2 = bbox
74
+ image = image[x1:x2, y1:y2]
75
+ mask = mask[x1:x2,y1:y2]
76
+ kps = move_kps(kps,move=-np.array([y1,x1]))
77
+
78
+ #diff
79
+ dx = abs(x2-x1)
80
+ dy = abs(y2-y1)
81
+ dif = abs(dx-dy)
82
+ if dx>dy:
83
+ image = cv2.copyMakeBorder(image, 0, 0, int(dif//2), int(dif-dif//2), cv2.BORDER_CONSTANT, value=(255,255,255))
84
+ mask = cv2.copyMakeBorder(mask, 0, 0, int(dif//2), int(dif-dif//2), cv2.BORDER_CONSTANT, value=(255,255,255))
85
+ kps = move_kps(kps,move=np.array([int(dif//2),0]))
86
+ else:
87
+ image = cv2.copyMakeBorder(image, int(dif//2), int(dif-dif//2), 0, 0, cv2.BORDER_CONSTANT, value=(255,255,255))
88
+ mask = cv2.copyMakeBorder(mask, int(dif//2), int(dif-dif//2), 0, 0, cv2.BORDER_CONSTANT, value=(255,255,255))
89
+ kps = move_kps(kps,move=np.array([0,int(dif//2)]))
90
+
91
+ #ratio
92
+ ratio = size/max(dx,dy)
93
+ image = cv2.resize(image,(size,size))
94
+ mask = cv2.resize(mask,(size,size))
95
+ kps = move_kps(kps,ratio=ratio)
96
+ return image,mask,kps
97
+
98
+ """
99
+ def __name__=='__main__':
100
+ image = Image.open("raw_image.jpeg").convert('RGB')
101
+ polygon,kps,bbox = readjson("annotation.json")
102
+ mask = polygon2seg(image,polygon)
103
+ # show_seg(image,mask)
104
+ # show_kps(image,kps)
105
+
106
+ size=512
107
+ nimage,nmask,nkps = reshape_image_and_anno(image,mask,kps,size)
108
+ show_seg(nimage,nmask)
109
+ show_kps(nimage,nkps)
110
+
111
+
112
+ """