--- dataset_info: features: - name: question_id dtype: int64 - name: image dtype: image - name: text dtype: string - name: category dtype: string - name: label dtype: string - name: image_source dtype: string splits: - name: assamese num_bytes: 455367007.7 num_examples: 8910 - name: bengali num_bytes: 455101633.7 num_examples: 8910 - name: english num_bytes: 454020487.7 num_examples: 8910 - name: gujarati num_bytes: 455105448.7 num_examples: 8910 - name: hindi num_bytes: 455210630.7 num_examples: 8910 - name: kannada num_bytes: 455153061.7 num_examples: 8910 - name: malayalam num_bytes: 455401526.7 num_examples: 8910 - name: marathi num_bytes: 455379587.7 num_examples: 8910 - name: odia num_bytes: 455463255.7 num_examples: 8910 - name: sanskrit num_bytes: 455470746.7 num_examples: 8910 - name: tamil num_bytes: 455693348.7 num_examples: 8910 - name: telugu num_bytes: 455307739.7 num_examples: 8910 download_size: 956887209 dataset_size: 5462674475.399999 configs: - config_name: default data_files: - split: assamese path: data/assamese-* - split: bengali path: data/bengali-* - split: english path: data/english-* - split: gujarati path: data/gujarati-* - split: hindi path: data/hindi-* - split: kannada path: data/kannada-* - split: malayalam path: data/malayalam-* - split: marathi path: data/marathi-* - split: odia path: data/odia-* - split: sanskrit path: data/sanskrit-* - split: tamil path: data/tamil-* - split: telugu path: data/telugu-* license: other license_name: krutrim-community-license-agreement-version-1.0 license_link: LICENSE.md extra_gated_heading: Acknowledge license to accept the repository extra_gated_button_content: Acknowledge license language: - as - hi - gu - ml - te - ta - kn - or - bn - en - mr - sa --- # IndicPope: Indian Multilingual Translation Dataset For Evaluating Large Vision Language Models - You can find the performance of Chitrarth on IndicPope here : [**Paper**](https://arxiv.org/abs/2502.15392) | [**Github**](https://github.com/ola-krutrim/Chitrarth) | [**HuggingFace**](https://huggingface.co/krutrim-ai-labs/Chitrarth) - Evaluation Scripts of BharatBench is available here : [**Github**](https://github.com/ola-krutrim/BharatBench) ## 1. Introduction IndicPope is a new dataset designed for evaluating Large Vision-Language Models (LVLMs) on Visual Question Answering (VQA) tasks. It focuses on simple Yes-or-No questions probing objects in images (e.g., *Is there a car in the image?*). This dataset is built upon **POPE: Polling-based Object Probing Evaluation for Object Hallucination** ([GitHub](https://github.com/AoiDragon/POPE)), which employs negative sampling techniques to test hallucination in vision-language models under **Random, Popular, and Adversarial** settings. --- ## 2. Dataset Details IndicPope consists of **8.91k samples** spanning **12 Indic languages** along with English. Each sample includes: - **Text**: The question about the image. - **Category**: The type of sampling used (Random/Popular/Adversarial). - **Label**: The answer (*Yes/No*). ### Supported Languages - Assamese - Bengali - English - Gujarati - Hindi - Kannada - Malayalam - Marathi - Odia - Sanskrit - Tamil - Telugu --- ## 3. How to Use and Run You can load the dataset using the `datasets` library: ```python from datasets import load_dataset dataset = load_dataset("krutrim-ai-labs/IndicPope") print(dataset) ``` --- ## 4. License This code repository and the model weights are licensed under the [Krutrim Community License.](LICENSE.md) ## 5. Citation ``` @article{khan2025chitrarth, title={Chitrarth: Bridging Vision and Language for a Billion People}, author={Shaharukh Khan, Ayush Tarun, Abhinav Ravi, Ali Faraz, Akshat Patidar, Praveen Kumar Pokala, Anagha Bhangare, Raja Kolla, Chandra Khatri, Shubham Agarwal}, journal={arXiv preprint arXiv:2502.15392}, year={2025} } @misc{liu2023improvedllava, title={Improved Baselines with Visual Instruction Tuning}, author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Lee, Yong Jae}, publisher={arXiv:2310.03744}, year={2023}, } @misc{liu2023llava, title={Visual Instruction Tuning}, author={Liu, Haotian and Li, Chunyuan and Wu, Qingyang and Lee, Yong Jae}, publisher={NeurIPS}, year={2023}, } @article{li2023evaluating, title={Evaluating object hallucination in large vision-language models}, author={Li, Yifan and Du, Yifan and Zhou, Kun and Wang, Jinpeng and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2305.10355}, year={2023} } @article{gala2023indictrans2, title={Indictrans2: Towards high-quality and accessible machine translation models for all 22 scheduled indian languages}, author={Gala, Jay and Chitale, Pranjal A and AK, Raghavan and Gumma, Varun and Doddapaneni, Sumanth and Kumar, Aswanth and Nawale, Janki and Sujatha, Anupama and Puduppully, Ratish and Raghavan, Vivek and others}, journal={arXiv preprint arXiv:2305.16307}, year={2023} } ``` ## 6. Contact Contributions are welcome! If you have any improvements or suggestions, feel free to submit a pull request on GitHub. ## 7. Acknowledgement IndicPope is built with reference to the code of the following projects: [POPE](https://github.com/AoiDragon/POPE), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!