langutang commited on
Commit
0073f24
·
verified ·
1 Parent(s): c2ed534

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -0
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - token-classification
4
+ language:
5
+ - en
6
+ tags:
7
+ - automobile
8
+ - sensor
9
+ pretty_name: vot-rgbt
10
+ size_categories:
11
+ - 100M<n<1B
12
+ ---
13
+
14
+ # 🚁 VOT-RGBT 2019 Challenge Dataset
15
+
16
+ **Visual Object Tracking for RGB and Thermal Imagery**
17
+
18
+ ---
19
+
20
+ ## Dataset Summary
21
+
22
+ The **VOT-RGBT 2019** dataset is part of the [Visual Object Tracking](http://www.votchallenge.net/) (VOT) initiative — a series of challenges that provide the computer vision community with standardized benchmarks for evaluating **short-term** and **long-term visual object trackers**. This particular edition focuses on **RGB-T (Visible + Thermal)** imagery, encouraging robust object tracking in challenging multimodal environments.
23
+
24
+ ---
25
+
26
+ ## Supported Tasks and Leaderboards
27
+
28
+ - **📦 Visual Object Tracking (Short-Term & Long-Term)**
29
+ - Track object location across RGB and thermal frames
30
+ - Evaluate robustness to occlusion, illumination changes, and environmental conditions
31
+
32
+ ---
33
+
34
+ ## Dataset Structure
35
+
36
+ - **Sequences**: 60+ sequences with aligned RGB and thermal imagery
37
+ - **Annotations**: Per-frame ground truth bounding boxes in both modalities
38
+ - **Modalities**: RGB, Thermal (LWIR)
39
+ - **Frame Rate**: 20-30 FPS (varies by sequence)
40
+ - **Resolution**: Varies by sensor and sequence (mostly HD and VGA)
41
+
42
+ ---
43
+
44
+ ## Usage
45
+
46
+ To use the dataset:
47
+
48
+ ```python
49
+ from datasets import load_dataset
50
+ # This assumes dataset is hosted on Hugging Face datasets hub
51
+ dataset = load_dataset("langutang/vot-rgbt2019")
52
+ ```
53
+
54
+ Alternatively, you can download it from the [official VOT site](http://www.votchallenge.net/vot2019/).
55
+
56
+ ---
57
+
58
+ ## Evaluation Protocol
59
+
60
+ VOT-RGBT 2019 uses the standard VOT evaluation protocol:
61
+
62
+ - **Accuracy (A)**: Overlap between predicted and ground truth bounding boxes
63
+ - **Robustness (R)**: Number of tracking failures
64
+ - **Expected Average Overlap (EAO)**: Combines A and R for a unified score
65
+
66
+ Both short-term and long-term tracker performance can be evaluated using the provided toolkit.
67
+
68
+ ---
69
+
70
+ ## Citation
71
+
72
+ If you use this dataset in your research, please cite:
73
+
74
+ ```
75
+ @inproceedings{votrgbt2019,
76
+ title={RGB-Thermal Object Tracking: Benchmark and Baselines},
77
+ author={Liang, Jianan and Hu, Jiakai and Zhang, Yu and others},
78
+ booktitle={ECCV Workshops},
79
+ year={2019}
80
+ }
81
+ ```
82
+
83
+ ---
84
+
85
+ ## License
86
+
87
+ Please refer to the license and usage terms outlined on the official VOT website.
88
+
89
+ ---
90
+
91
+ ## Acknowledgements
92
+
93
+ Thanks to the VOT committee and contributing authors for their continued efforts in pushing forward the field of visual object tracking.
94
+
95
+ ---
96
+
97
+ ## Tags
98
+
99
+ `computer-vision`, `object-tracking`, `rgbt`, `thermal-imaging`, `vot`, `multimodal`, `benchmark`
100
+