--- license: cc-by-sa-4.0 task_categories: - tabular-classification language: - en tags: - molecular data - few-shot learning pretty_name: FS-Mol size_categories: - 1M>> import datasets and load the `FSMol` datasets, e.g., >>> FSMol = datasets.load_dataset("maomlab/FSMol", name = "FSMol") train-00000-of-00001.parquet: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 152M/152M [00:03<00:00, 39.4MB/s] test-00000-of-00001.parquet: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1.54M/1.54M [00:00<00:00, 33.3MB/s] validation-00000-of-00001.parquet: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 517k/517k [00:00<00:00, 52.6MB/s] Generating train split: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5038727/5038727 [00:08<00:00, 600413.56 examples/s] Generating test split: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 56220/56220 [00:00<00:00, 974722.00 examples/s] Generating validation split: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 19008/19008 [00:00<00:00, 871143.71 examples/s] and inspecting the loaded dataset >>> FSMol DatasetDict({ train: Dataset({ features: ['SMILES', 'Y', 'Assay_ID', 'RegressionProperty', 'LogRegressionProperty', 'Relation'], num_rows: 5038727 }) test: Dataset({ features: ['SMILES', 'Y', 'Assay_ID', 'RegressionProperty', 'LogRegressionProperty', 'Relation'], num_rows: 56220 }) validation: Dataset({ features: ['SMILES', 'Y', 'Assay_ID', 'RegressionProperty', 'LogRegressionProperty', 'Relation'], num_rows: 19008 }) }) ### Use a dataset to train a model One way to use the dataset is through the [MolFlux](https://exscientia.github.io/molflux/) package developed by Exscientia. First, from the command line, install `MolFlux` library with `catboost` and `rdkit` support pip install 'molflux[catboost,rdkit]' then load, featurize, split, fit, and evaluate the catboost model import json from datasets import load_dataset from molflux.datasets import featurise_dataset from molflux.features import load_from_dicts as load_representations_from_dicts from molflux.splits import load_from_dict as load_split_from_dict from molflux.modelzoo import load_from_dict as load_model_from_dict from molflux.metrics import load_suite Split and evaluate the catboost model split_dataset = load_dataset('maomlab/FSMol', name = 'FSMol') split_featurised_dataset = featurise_dataset( split_dataset, column = "SMILES", representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}])) model = load_model_from_dict({ "name": "cat_boost_classifier", "config": { "x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'], "y_features": ['Y']}}) model.train(split_featurised_dataset["train"]) preds = model.predict(split_featurised_dataset["test"]) classification_suite = load_suite("classification") scores = classification_suite.compute( references=split_featurised_dataset["test"]['Y'], predictions=preds["cat_boost_classifier::Y"]) ### Citation @article{stanley2021fs, title={FS-Mol: A Few-Shot Learning Dataset of Molecules}, author={Stanley, Matthew and Ramsundar, Bharath and Kearnes, Steven and Riley, Patrick}, journal={NeurIPS 2021 AI for Science Workshop}, year={2021}, url={https://www.microsoft.com/en-us/research/publication/fs-mol-a-few-shot-learning-dataset-of-molecules/