"""Kddcup Dataset""" from typing import List from functools import partial import datasets import pandas VERSION = datasets.Version("1.0.0") _ENCODING_DICS = { "class": {value: i for i, value in enumerate(["normal.", "buffer_overflow.", "loadmodule.", "perl.", "neptune.", "smurf.", "guess_passwd.", "pod.", "teardrop.", "portsweep.", "ipsweep.", "land.", "ftp_write.", "back.", "imap.", "satan.", "phf.", "nmap.", "multihop.", "warezmaster.", "warezclient.", "spy.", "rootkit."]) } } _BASE_FEATURE_NAMES = [ "duration", "protocol_type", "service", "flag", "src_bytes", "dst_bytes", "land", "wrong_fragment", "urgent", "hot", "num_failed_logins", "logged_in", "num_compromised", "root_shell", "su_attempted", "num_root", "num_file_creations", "num_shells", "num_access_files", "num_outbound_cmds", "is_host_login", "is_guest_login", "count", "srv_count", "serror_rate", "srv_serror_rate", "rerror_rate", "srv_rerror_rate", "same_srv_rate", "diff_srv_rate", "srv_diff_host_rate", "dst_host_count", "dst_host_srv_count", "dst_host_same_srv_rate", "dst_host_diff_srv_rate", "dst_host_same_src_port_rate", "dst_host_srv_diff_host_rate", "dst_host_serror_rate", "dst_host_srv_serror_rate", "dst_host_rerror_rate", "dst_host_srv_rerror_rate", "class", ] DESCRIPTION = "Kddcup dataset." _HOMEPAGE = "" _URLS = ("") _CITATION = """""" # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/kddcup/resolve/main/kddcup.data" } features_types_per_config = { "kddcup": { "duration": datasets.Value("float64"), "protocol_type": datasets.Value("string"), "service": datasets.Value("string"), "flag": datasets.Value("string"), "src_bytes": datasets.Value("int64"), "dst_bytes": datasets.Value("int64"), "land": datasets.Value("int64"), "wrong_fragment": datasets.Value("int64"), "urgent": datasets.Value("int64"), "hot": datasets.Value("int64"), "num_failed_logins": datasets.Value("int64"), "logged_in": datasets.Value("int64"), "num_compromised": datasets.Value("int64"), "root_shell": datasets.Value("int64"), "su_attempted": datasets.Value("int64"), "num_root": datasets.Value("int64"), "num_file_creations": datasets.Value("int64"), "num_shells": datasets.Value("int64"), "num_access_files": datasets.Value("int64"), "num_outbound_cmds": datasets.Value("int64"), "is_host_login": datasets.Value("int64"), "is_guest_login": datasets.Value("int64"), "count": datasets.Value("int64"), "srv_count": datasets.Value("int64"), "serror_rate": datasets.Value("float64"), "srv_serror_rate": datasets.Value("float64"), "rerror_rate": datasets.Value("float64"), "srv_rerror_rate": datasets.Value("float64"), "same_srv_rate": datasets.Value("float64"), "diff_srv_rate": datasets.Value("float64"), "srv_diff_host_rate": datasets.Value("float64"), "dst_host_count": datasets.Value("int64"), "dst_host_srv_count": datasets.Value("int64"), "dst_host_same_srv_rate": datasets.Value("float64"), "dst_host_diff_srv_rate": datasets.Value("float64"), "dst_host_same_src_port_rate": datasets.Value("float64"), "dst_host_srv_diff_host_rate": datasets.Value("float64"), "dst_host_serror_rate": datasets.Value("float64"), "dst_host_srv_serror_rate": datasets.Value("float64"), "dst_host_rerror_rate": datasets.Value("float64"), "dst_host_srv_rerror_rate": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=23, names=("normal.", "buffer_overflow.", "loadmodule.", "perl.", "neptune.", "smurf.", "guess_passwd.", "pod.", "teardrop.", "portsweep.", "ipsweep.", "land.", "ftp_write.", "back.", "imap.", "satan.", "phf.", "nmap.", "multihop.", "warezmaster.", "warezclient.", "spy.", "rootkit.")), } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class KddcupConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(KddcupConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Kddcup(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "kddcup" BUILDER_CONFIGS = [ KddcupConfig(name="kddcup", description="Kddcup for multiclass classification.") ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath, header=None) data.columns = _BASE_FEATURE_NAMES data = self.preprocess(data) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame: for feature in _ENCODING_DICS: encoding_function = partial(self.encode, feature) data.loc[:, feature] = data[feature].apply(encoding_function) return data[list(features_types_per_config[self.config.name].keys())] def encode(self, feature, value): if feature in _ENCODING_DICS: return _ENCODING_DICS[feature][value] raise ValueError(f"Unknown feature: {feature}")