# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Multi-News dataset.""" import datasets _LICENSE = "For non-commercial research and educational purposes only" _DESCRIPTION = """ Financial documents """ _REPO = "https://huggingface.co/datasets/searde/dataset-financial-documents-2/blob/main/data" _URLs = { "train": [ f"{_REPO}/train.src.cleaned", f"{_REPO}/train.tgt", ], "val": [ f"{_REPO}/val.src.cleaned", f"{_REPO}/val.tgt", ], "test": [ f"{_REPO}/test.src.cleaned", f"{_REPO}/test.tgt", ], } _DOCUMENT = "document" _SUMMARY = "summary" class DatasetFinancialDocuments(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({_DOCUMENT: datasets.Value("string"), _SUMMARY: datasets.Value("string")}), supervised_keys=(_DOCUMENT, _SUMMARY), license=_LICENSE, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" files = dl_manager.download(_URLs) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"src_file": files["train"][0], "tgt_file": files["train"][1]}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"src_file": files["val"][0], "tgt_file": files["val"][1]}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"src_file": files["test"][0], "tgt_file": files["test"][1]}, ), ] def _generate_examples(self, src_file, tgt_file): """Yields examples.""" with open(src_file, encoding="utf-8") as src_f, open(tgt_file, encoding="utf-8") as tgt_f: for i, (src_line, tgt_line) in enumerate(zip(src_f, tgt_f)): yield i, { # In original file, each line has one example and natural newline # tokens "\n" are being replaced with "NEWLINE_CHAR". Here restore # the natural newline token to avoid special vocab "NEWLINE_CHAR". _DOCUMENT: src_line.strip().replace("NEWLINE_CHAR", "\n"), _SUMMARY: tgt_line.strip(), }