Sebastian Cavada commited on
Commit
0236de6
·
0 Parent(s):
Files changed (2) hide show
  1. README.md +120 -0
  2. install.sh +0 -0
README.md ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ pretty_name: "MBZUAI Campus Reconstruction Dataset"
5
+ tags:
6
+ - 3D reconstruction
7
+ - computer vision
8
+ - NeRF
9
+ license: "mit"
10
+ task_categories:
11
+ - image-to-3d
12
+ - robotics
13
+ - other
14
+
15
+ ## Dataset Description
16
+
17
+ description: |
18
+ This dataset provides the necessary files and scripts to reconstruct the MBZUAI campus using COLMAP, GLOMAP, and NERFstudio. It contains preprocessed video sequences and metadata required for hierarchical 3D reconstruction.
19
+
20
+ The dataset includes:
21
+ - Raw video sequences
22
+ - Preprocessed frames
23
+ - Calibration and metadata
24
+ - Reconstruction scripts
25
+
26
+ The hierarchical reconstruction starts with a base structure, followed by incremental updates with additional sequences.
27
+
28
+ ## Installation
29
+
30
+ installation: |
31
+ This repository relies on COLMAP, GLOMAP, and NERFstudio. Ensure these dependencies are installed before running the scripts.
32
+
33
+ ## Reproduce Results
34
+
35
+ steps: |
36
+ 1. **Download the Files**
37
+ - Clone the repository and extract the provided dataset folders.
38
+
39
+ 2. **Process Individual Video Sequences**
40
+ - Run the following command to preprocess the video sequences:
41
+ ```bash
42
+ python prepare_data.py
43
+ ```
44
+
45
+ 3. **Reconstruct the Campus Hierarchically**
46
+ - Run the `core.sh` script to reconstruct the base structure:
47
+ ```bash
48
+ ./core.sh
49
+ ```
50
+ - For additional scenes, copy and modify `run_template.sh` to match the scene name and file, then execute it step-by-step or as a whole.
51
+
52
+ ## Dataset Purpose
53
+
54
+ use_cases: |
55
+ This dataset is essential for:
56
+ - 3D environment reconstruction
57
+ - Research on NeRF-based scene reconstruction
58
+ - Structure-from-Motion experiments
59
+ - Hierarchical multi-view scene understanding
60
+ ---
61
+
62
+ # This is the repository to download and prepare the MBZUAI campus reconstruction
63
+
64
+ ## Installation
65
+
66
+ TL,DR --> run install.sh (if it's there)
67
+
68
+ Conda environment
69
+
70
+ ```bash
71
+ conda create --name nerfstudio -y python=3.8
72
+ conda activate nerfstudio
73
+ pip install --upgrade pip
74
+ ```
75
+
76
+ CUDA Dependencies
77
+
78
+ ```bash
79
+ pip install torch==2.1.2+cu118 torchvision==0.16.2+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
80
+
81
+ conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit
82
+ pip install ninja git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch
83
+ ```
84
+
85
+ NERFstudio install
86
+
87
+ ```bash
88
+ pip install nerfstudio
89
+ ```
90
+
91
+ COLMAP install
92
+
93
+ ```bash
94
+ conda install conda-forge::colmap
95
+ ```
96
+
97
+
98
+ ## Reproduce results
99
+
100
+ ### 1. Download the files
101
+
102
+ Once you downlaoded this repository you should be ready to go, you just need to unzip the folders
103
+
104
+ ### 2. Process individual videos sequences
105
+
106
+ bash
107
+ python prepare_data.py
108
+
109
+
110
+
111
+ ### 3. Reconstruct the campus hierarchically
112
+
113
+ first run the core.sh script. This will reconstruct a base structure, upon which all the other reconstructions will be added to.
114
+ This is the most important one.
115
+
116
+
117
+ For the other scenes, for now just copy the run_template.sh file and modify according to the current scane name and file.
118
+ Usually I run line by line to make sure everything is correct, but theoretically you could just run the entire file.
119
+
120
+ TESTING LFS
install.sh ADDED
File without changes