avs-spot / download_videos.py
sindhuhegde's picture
Add dataset loading scripts
64e19a9
raw
history blame
3.88 kB
import argparse
import pandas as pd
import numpy as np
import os, subprocess
from tqdm import tqdm
import math
from datasets import load_dataset
import traceback
import executor
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor, as_completed
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
os.environ["LC_ALL"]="en_US.utf-8"
os.environ["LANG"]="en_US.utf-8"
parser = argparse.ArgumentParser(description="Code to download the videos from the input csv file")
parser.add_argument('--video_root', type=str, required=True, help="Path to the directory to save the videos")
args = parser.parse_args()
def is_valid_video(file_path):
'''
This function validates the video file using the following checks:
(i) Check if duration > 0
(ii) Check if audio is present
Args:
- file_path (str): Path to the video file.
Returns:
- True if the video is valid, False otherwise.
'''
if not os.path.exists(file_path):
return False # File does not exist
# Use ffmpeg to get duration
try:
result = subprocess.run(
["ffmpeg", "-i", file_path, "-f", "null", "-"],
stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL
)
return result.returncode == 0 # If return code is 0, it's a valid video
except Exception:
return False # If ffmpeg fails, assume it's invalid
# Check if audio exists
cmd_audio = f'ffmpeg -i "{video_path}" -map 0:a:0 -f null - 2>&1 | grep "Output"'
try:
audio_output = subprocess.check_output(cmd_audio, shell=True, text=True)
if not audio_output.strip():
print(f"Invalid video (no audio): {video_path}")
os.remove(video_path)
return False
except Exception:
print(f"Error checking audio: {video_path}")
os.remove(video_path)
return False
def mp_handler(i, df, result_dir):
'''
This function handles the multiprocessing of the video download
Args:
- i (int): Index of the video.
- df (pd.DataFrame): DataFrame containing the video information.
- result_dir (str): Directory to save the video.
'''
try:
data = df.iloc[i]
vid = data['video_id']
video_link = "https://www.youtube.com/watch?v={}".format(vid)
start = data['start_time']
end = data['end_time']
start = format(float(start), '.6f')
end = format(float(end), '.6f')
time = "*{}-{}".format(start,end)
# print(vid, video_link, start, end, time)
output_fname = os.path.join(result_dir, "{}_{}-{}.mp4".format(vid, start, end))
if os.path.exists(output_fname):
# Validate file
if is_valid_video(output_fname):
return
# Download the video
cmd = "yt-dlp --geo-bypass -f b --download-sections {} --format=mp4 -o {} {}".format(time, output_fname, video_link)
subprocess.call(cmd, shell=True)
# Validate file and delete if invalid
if not is_valid_video(output_fname):
print(f"Invalid file detected: {output_fname}. Deleting...")
os.remove(output_fname)
except KeyboardInterrupt:
exit(0)
except:
traceback.print_exc()
def download_data(args):
'''
This function downloads the videos from the given csv file
Args:
- args (argparse.Namespace): Arguments.
'''
# Load the dataset csv file with annotations
dataset = load_dataset("sindhuhegde/avs-spot")
df = dataset.to_pandas()
print("Total files: ", len(df))
# Create the result directory
if not os.path.exists(args.result_dir):
os.makedirs(args.result_dir)
# Create the multiprocessing pool and submit the jobs to download the videos
jobs = [idx for idx in range(len(df))]
p = ThreadPoolExecutor(8)
futures = [p.submit(mp_handler, j, df, args.video_root) for j in jobs]
res = [r.result() for r in tqdm(as_completed(futures), total=len(futures))]
if __name__ == '__main__':
# Download the videos
download_data(args)