import sys, os, argparse, pickle, subprocess, cv2, math import numpy as np import random from shutil import rmtree, copy from datasets import load_dataset from tqdm import tqdm from glob import glob from scipy.interpolate import interp1d from scipy import signal from ultralytics import YOLO from decord import VideoReader import mediapipe as mp from protobuf_to_dict import protobuf_to_dict import pandas as pd import warnings warnings.filterwarnings("ignore") warnings.filterwarnings('ignore', category=UserWarning) warnings.filterwarnings("ignore", message="Feedback manager requires a model with a single signature inference") parser = argparse.ArgumentParser(description="Code to preprocess the videos and obtain target speaker crops") parser.add_argument('--data_root', type=str, required=True, default="", help='Path of the folder containing full uncropped videos') parser.add_argument('--preprocessed_root', type=str, required=True, help='Path to save the output crops') parser.add_argument('--merge_dir', type=str, required=True, help='Path to save the audio-video merged output') parser.add_argument('--temp_dir', type=str, required=True, help='Path to save intermediate results') parser.add_argument('--metadata_root', type=str, required=True, help='Path to save metadata files') parser.add_argument('--crop_scale', type=float, default=0, help='Scale bounding box') parser.add_argument('--min_track', type=int, default=10, help='Minimum facetrack duration') parser.add_argument('--min_frame_size', type=int, default=64, help='Minimum frame size in pixels') parser.add_argument('--num_failed_det', type=int, default=25, help='Number of missed detections allowed before tracking is stopped') parser.add_argument('--frame_rate', type=int, default=25, help='Frame rate') opt = parser.parse_args() # Set random seeds random.seed(42) # Load the YOLO model yolo_model = YOLO("yolov9c.pt") # Initialize the mediapipe holistic keypoint detection model mp_holistic = mp.solutions.holistic # Global variables save_count, err_count = 0, 0 def bb_intersection_over_union(boxA, boxB): ''' This function calculates the intersection over union of two bounding boxes Args: - boxA (list): Bounding box A. - boxB (list): Bounding box B. Returns: - iou (float): Intersection over union of the two bounding boxes ''' xA = max(boxA[0], boxB[0]) yA = max(boxA[1], boxB[1]) xB = min(boxA[2], boxB[2]) yB = min(boxB[3], boxB[3]) interArea = max(0, xB - xA) * max(0, yB - yA) boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1]) boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1]) try: iou = interArea / float(boxAArea + boxBArea - interArea) except: return None return iou def track_speakers(opt, dets): ''' This function tracks the speakers in the video using the detected bounding boxes Args: - opt (argparse): Argument parser. - dets (list): List of detections. Returns: - tracks (list): List of tracks. ''' # Minimum IOU between consecutive face detections iouThres = 0.5 tracks = [] while True: track = [] for frames in dets: for face in frames: if track == []: track.append(face) frames.remove(face) elif face['frame'] - track[-1]['frame'] <= opt.num_failed_det: iou = bb_intersection_over_union(face['bbox'], track[-1]['bbox']) if iou is None: track.append(face) frames.remove(face) continue elif iou > iouThres: track.append(face) frames.remove(face) continue else: break if track == []: break elif len(track) > opt.min_track: framenum = np.array([f['frame'] for f in track]) bboxes = np.array([np.array(f['bbox']) for f in track]) frame_i = np.arange(framenum[0], framenum[-1] + 1) bboxes_i = [] for ij in range(0, 4): interpfn = interp1d(framenum, bboxes[:, ij]) bboxes_i.append(interpfn(frame_i)) bboxes_i = np.stack(bboxes_i, axis=1) if max(np.mean(bboxes_i[:, 2] - bboxes_i[:, 0]), np.mean(bboxes_i[:, 3] - bboxes_i[:, 1])) > opt.min_frame_size: tracks.append({'frame': frame_i, 'bbox': bboxes_i}) return tracks def get_keypoints(frames): ''' This function extracts the keypoints from the frames using MediaPipe Holistic pipeline Args: - frames (list) : List of frames extracted from the video Returns: - all_frame_kps (list) : List of keypoints for each frame ''' resolution = frames[0].shape # print("Resolution:", resolution) all_frame_kps= [] with mp_holistic.Holistic( min_detection_confidence=0.5, min_tracking_confidence=0.5 ) as holistic: for frame in frames: results = holistic.process(frame) pose, left_hand, right_hand, face = None, None, None, None if results.pose_landmarks is not None: pose, pose_world, left_hand, right_hand, face = None, None, None, None, None if results.pose_landmarks is not None: pose = protobuf_to_dict(results.pose_landmarks)['landmark'] pose_kps = [] for kps in pose: if kps is not None: pose_kps.append([kps["x"]*resolution[1], kps["y"]*resolution[0], kps["visibility"]]) pose_kps = np.array(pose_kps) all_frame_kps.append(pose_kps) all_frame_kps = np.array(all_frame_kps) if len(all_frame_kps) == 0: return None else: return all_frame_kps def adjust_bbox_kps(frames, all_frame_kps, padding_x=25, padding_y=-15): ''' This function crops frames based on the detected keypoints Args: - frames (list of numpy arrays): List of cropped frames. - all_frame_kps (numpy array): T x num_keypoints x 3 (x, y, confidence). - padding_x (int): Extra padding for cropping. - padding_y (int): Extra padding for cropping. Returns: - cropped_frames (list of numpy arrays): Cropped frames according to adjusted bounding box from keypoints ''' LEFT_KP_INDICES = [12, 14, 16, 18, 20, 22, 24] RIGHT_KP_INDICES = [11, 13, 15, 17, 19, 21, 23] LEFT_HIP_IDX = 23 RIGHT_HIP_IDX = 24 left_xs = [] right_xs = [] waist_ys = [] for keypoints in all_frame_kps: # Extract left and right keypoints that have confidence > 0.7 left_kps = [keypoints[i] for i in LEFT_KP_INDICES if keypoints[i][2] > 0.7] right_kps = [keypoints[i] for i in RIGHT_KP_INDICES if keypoints[i][2] > 0.7] # Compute spatial limits if keypoints exist if left_kps: left_xs.append(min(kp[0] for kp in left_kps)) # Leftmost x if right_kps: right_xs.append(max(kp[0] for kp in right_kps)) # Rightmost x # Compute waistline from hips if both are detected with confidence > 0.7 left_hip, right_hip = keypoints[LEFT_HIP_IDX], keypoints[RIGHT_HIP_IDX] if left_hip[2] > 0.7 and right_hip[2] > 0.7: waist_ys.append((left_hip[1] + right_hip[1]) / 2) # Compute global cropping limits frame_height, frame_width = frames[0].shape[:2] if len(left_xs) > 0 and len(left_xs)/len(all_frame_kps) > 0.7: left_x = int(min(left_xs)) - padding_x else: left_x = 0 if len(right_xs) > 0 and len(right_xs)/len(all_frame_kps) > 0.7: right_x = int(max(right_xs)) + padding_x else: right_x = frame_width if len(waist_ys) > 0 and len(waist_ys)/len(all_frame_kps) > 0.7: upper_body_estimate = int(np.mean(waist_ys)) # Use average waist position new_y2 = upper_body_estimate + padding_y else: new_y2 = frame_height # Ensure within frame bounds left_x = max(0, left_x) right_x = min(frame_width, right_x) new_y2 = min(new_y2, frame_height) # Crop all frames cropped_frames = [frame[:new_y2, left_x:right_x] for frame in frames] return cropped_frames def detect_speaker(opt, padding=5, video_fname="person", work_dir=None): ''' This function detects the speaker in the video using YOLOv9 model Args: - opt (argparse): Argument parser. - padding (int): Extra padding for cropping. - video_fname (str): Name of the video file. - work_dir (str): Directory to save the person.pkl file. Returns: - alltracks (list): List of tracks. ''' videofile = os.path.join(opt.avi_dir, 'video.avi') vidObj = cv2.VideoCapture(videofile) dets = [] fidx = 0 alltracks = [] while True: success, image = vidObj.read() if not success: break image_np = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Perform person detection results = yolo_model(image_np, verbose=False) detections = results[0].boxes dets.append([]) for i, det in enumerate(detections): x1, y1, x2, y2 = det.xyxy[0] cls = det.cls[0] conf = det.conf[0] if int(cls) == 0 and conf>0.6: # Class 0 is 'person' in COCO dataset x1 = max(0, int(x1) - padding) y1 = max(0, int(y1) - padding) x2 = min(image_np.shape[1], int(x2) + padding) y2 = min(image_np.shape[0], int(y2) + padding) dets[-1].append({'frame': fidx, 'bbox': [x1, y1, x2, y2], 'conf': conf}) fidx += 1 if len(dets) >= opt.min_track and np.abs(len(dets) - fidx) <= 5: alltracks.extend(track_speakers(opt, dets[0:len(dets)])) savepath = os.path.join(work_dir, 'person.pkl') with open(savepath, 'wb') as fil: pickle.dump(dets, fil) return alltracks else: # print("Num. of frames = {} | Num. of detections = {}".format(fidx, len(dets))) return None def crop_video(opt, track, cropfile, tight_scale=0.9, padding=-15): ''' This function crops the video based on the detected bounding boxes Args: - opt (argparse): Argument parser. - track (dict): Person tracks obtained. - cropfile (str): Path to save the cropped video. - tight_scale (float): Tight scale for cropping. - padding (int): Extra padding for cropping. Returns: - dets (dict): Detections. ''' dets = {'x': [], 'y': [], 's': []} for det in track['bbox']: # Scale the bounding box by a small factor to obtain a tight crop width = (det[2] - det[0]) * tight_scale height = (det[3] - det[1]) * tight_scale center_x = (det[0] + det[2]) / 2 center_y = (det[1] + det[3]) / 2 dets['s'].append(max(height, width) / 2) dets['y'].append(center_y) # crop center y dets['x'].append(center_x) # crop center x # Smooth detections dets['s'] = signal.medfilt(dets['s'], kernel_size=13) dets['x'] = signal.medfilt(dets['x'], kernel_size=13) dets['y'] = signal.medfilt(dets['y'], kernel_size=13) videofile = os.path.join(opt.avi_dir, 'video.avi') frame_no_to_start = track['frame'][0] video_stream = cv2.VideoCapture(videofile) video_stream.set(cv2.CAP_PROP_POS_FRAMES, frame_no_to_start) cropped_frames, all_heights, all_widths = [], [], [] for fidx, _ in enumerate(track['frame']): cs = opt.crop_scale bs = dets['s'][fidx] # Detection box size bsi = int(bs * (1 + 2 * cs)) # Pad videos by this amount image = video_stream.read()[1] frame = np.pad(image, ((bsi, bsi), (bsi, bsi), (0, 0)), 'constant', constant_values=(110, 110)) my = dets['y'][fidx] + bsi # BBox center Y mx = dets['x'][fidx] + bsi # BBox center X crop = frame[int(my - bs):int(my + bs * (1 + 2 * cs)), int(mx - bs * (1 + cs)):int(mx + bs * (1 + cs))] cropped_frames.append(crop) all_heights.append(crop.shape[0]) all_widths.append(crop.shape[1]) # Get the maximum height and width of the cropped frames shape = (max(all_heights), max(all_widths)) # Resize the cropped frames to the maximum height and width cropped_frames_fixed_size = [] for frame in cropped_frames: frame = cv2.resize(frame, (shape[0], shape[1])) cropped_frames_fixed_size.append(frame) # Get the keypoints for the cropped frames all_frame_kps = get_keypoints(cropped_frames_fixed_size.copy(), cropfile+"_kps.pkl") if all_frame_kps is None: upper_body_cropped_frames = cropped_frames_fixed_size else: upper_body_cropped_frames = adjust_bbox_kps(cropped_frames_fixed_size, all_frame_kps) # Write the cropped frames to a video file shape_video = (upper_body_cropped_frames[0].shape[1], upper_body_cropped_frames[0].shape[0]) fourcc = cv2.VideoWriter_fourcc(*'XVID') vOut = cv2.VideoWriter(cropfile + '.avi', fourcc, opt.frame_rate, shape_video) for frame in upper_body_cropped_frames: frame = np.uint8(frame) vOut.write(frame) video_stream.release() audiotmp = os.path.join(opt.tmp_dir, 'audio.wav') audiostart = (track['frame'][0]) / opt.frame_rate audioend = (track['frame'][-1] + 1) / opt.frame_rate vOut.release() # ========== CROP AUDIO FILE ========== command = ("ffmpeg -hide_banner -loglevel panic -y -i %s -ss %.3f -to %.3f %s" % (os.path.join(opt.avi_dir, 'audio.wav'), audiostart, audioend, audiotmp)) output = subprocess.call(command, shell=True, stdout=None) copy(audiotmp, cropfile + '.wav') # print('Mean pos: x %.2f y %.2f s %.2f' % (np.mean(dets['x']), np.mean(dets['y']), np.mean(dets['s']))) return {'track': track, 'proc_track': dets} def process_video(file, initial_data_path): ''' This function processes the video Args: - file (str): Path to the video file. - initial_data_path (str): Path to save the initial data. ''' global save_count, err_count video_name = file.split('/')[-1] sd_dest_folder = os.path.join(initial_data_path, video_name[:-4]) work_dest_folder = os.path.join(opt.metadata_root, video_name[:-4]) if os.path.exists(os.path.join(work_dest_folder, 'person.pkl')) and os.path.exists(sd_dest_folder): save_count += 1 return print("Processing video: ", file) setattr(opt, 'videofile', file) if os.path.exists(opt.work_dir): rmtree(opt.work_dir) if os.path.exists(opt.crop_dir): rmtree(opt.crop_dir) if os.path.exists(opt.avi_dir): rmtree(opt.avi_dir) if os.path.exists(opt.frames_dir): rmtree(opt.frames_dir) if os.path.exists(opt.tmp_dir): rmtree(opt.tmp_dir) os.makedirs(opt.work_dir) os.makedirs(opt.crop_dir) os.makedirs(opt.avi_dir) os.makedirs(opt.frames_dir) os.makedirs(opt.tmp_dir) os.makedirs(sd_dest_folder, exist_ok=True) os.makedirs(work_dest_folder, exist_ok=True) # Extract the video and convert it to 25 FPS from the input video file command = ("ffmpeg -hide_banner -loglevel panic -y -i %s -qscale:v 2 -async 1 -r 25 %s" % (opt.videofile, os.path.join(opt.avi_dir, 'video.avi'))) output = subprocess.call(command, shell=True, stdout=None) if output != 0: print("Failed to extract video from ", file) err_count += 1 return command = ("ffmpeg -hide_banner -loglevel panic -y -i %s -ac 1 -vn -acodec pcm_s16le -ar 16000 %s" % (os.path.join(opt.avi_dir, 'video.avi'), os.path.join(opt.avi_dir, 'audio.wav'))) output = subprocess.call(command, shell=True, stdout=None) if output != 0: print("Failed to extract audio from ", file) err_count += 1 return # Detect the speaker in the video using YOLOv9 model spk_tracks = detect_speaker(opt, video_fname=video_name[:-4], work_dir=work_dest_folder) if spk_tracks is None: print("No tracks found for ", file) err_count += 1 return # Crop the video based on the detected bounding boxes vidtracks = [] for ii, track in enumerate(spk_tracks): vidtracks.append(crop_video(opt, track, os.path.join(sd_dest_folder, '%05d' % ii))) savepath = os.path.join(work_dest_folder, 'tracks.pkl') with open(savepath, 'wb') as fil: pickle.dump(vidtracks, fil) # Clean up the temporary directories rmtree(opt.tmp_dir) rmtree(opt.avi_dir) rmtree(opt.frames_dir) print("Saved processed video...") save_count += 1 def filter_and_merge(csv_path, initial_data_path, final_data_path, merged_path, fps=25): ''' This function filters and merges the audio and video Args: - csv_path (str): Path to the dataset csv file. - initial_data_path (str): Path to the initial data. - final_data_path (str): Path to save the final data (saves .avi and .wav files). - merged_path (str): Path to save the merged data (saves .mp4 files). - fps (int): Frames per second. ''' # Load the dataset csv file with annotations dataset = load_dataset("sindhuhegde/avs-spot") df = dataset.to_pandas() print("Merging audio and video for visualization...") for idx in tqdm(range(len(df))): row = df.iloc[idx] video = os.path.join(initial_data_path, row["filename"] + ".avi") audio = video.replace(".avi", ".wav") kps = video.replace(".avi", "_kps.pkl") video_output = video.replace(initial_data_path, final_data_path) audio_output = audio.replace(initial_data_path, final_data_path) fname = video.split("/")[-2] + "_" + video.split("/")[-1].split(".")[0] merged_output = os.path.join(merged_path, str(idx)+"_"+fname+".mp4") # Merge the audio and video status = subprocess.call('ffmpeg -hide_banner -loglevel panic -threads 1 -y -i %s -i %s -strict -2 -q:v 1 %s' % (audio, video, merged_output), shell=True) if status != 0: print("Failed to merge audio and video for ", video) continue # Copy the target video to the final data path video_output_folder = os.path.join(final_data_path, video_output.split("/")[-2]) if not os.path.exists(video_output_folder): os.makedirs(video_output_folder) status = subprocess.call('rsync -az %s %s' % (video, video_output), shell=True) if status != 0: print("Failed to copy video for ", video) continue # Copy the target audio to the final data path status = subprocess.call('rsync -az %s %s' % (audio, audio_output), shell=True) if status != 0: print("Failed to copy audio for ", audio) continue if __name__ == "__main__": # Get the list of videos to process filelist = pd.read_csv(opt.file)["filename"].tolist() files = [os.path.join(opt.data_root, f.split("/")[0] + ".mp4") for f in filelist] print(f"A total of {len(files)} files found.") # Create the necessary directories initial_data_path = opt.preprocessed_root+"_all" os.makedirs(initial_data_path, exist_ok=True) os.makedirs(opt.preprocessed_root, exist_ok=True) os.makedirs(opt.metadata_root, exist_ok=True) # Set the necessary attributes setattr(opt, 'avi_dir', os.path.join(opt.temp_dir, 'pyavi')) setattr(opt, 'tmp_dir', os.path.join(opt.temp_dir, 'pytmp')) setattr(opt, 'work_dir', os.path.join(opt.temp_dir, 'pywork')) setattr(opt, 'crop_dir', os.path.join(opt.temp_dir, 'pycrop')) setattr(opt, 'frames_dir', os.path.join(opt.temp_dir, 'pyframes')) setattr(opt, 'audio_dir', None) # Process the videos prog_bar = tqdm(files) for file in prog_bar: process_video(file, initial_data_path) prog_bar.set_description(f"Saved files: {save_count} | Failed files: {err_count}") # Create the directory and merge the audio-video files os.makedirs(opt.merge_dir, exist_ok=True) filter_and_merge(opt.file, initial_data_path, opt.preprocessed_root, opt.merge_dir)