Tony Fang
added identification benchmark
900cef8
raw
history blame contribute delete
3.4 kB
import glob
import os
# os.environ["JAX_PLATFORMS"] = "cpu" # Must be set before importing jax
from model import LinearClassifier
from flax import nnx
import optax
from data_loading import get_time_series_tf
import jax.numpy as jnp
import numpy as np
from copy import deepcopy
def loss_fn(model: LinearClassifier, batch):
logits = model(batch['feature'])
loss = optax.softmax_cross_entropy_with_integer_labels(
logits=logits, labels=batch['label']
).mean()
return loss, logits
@nnx.jit
def train_step(model: LinearClassifier, optimizer: nnx.Optimizer, batch):
"""Train for a single step."""
grad_fn = nnx.value_and_grad(loss_fn, has_aux=True)
(loss, logits), grads = grad_fn(model, batch)
optimizer.update(grads) # In-place updates.
@nnx.jit
def eval_step(model: LinearClassifier, metrics: nnx.MultiMetric, batch):
loss, logits = loss_fn(model, batch)
metrics.update(loss=loss, logits=logits, labels=batch['label']) # In-place updates.
def get_results(features_path):
print(features_path)
train_loader, val_loader, test_loader, in_features = get_time_series_tf(
features_path=features_path
)
model = LinearClassifier(
in_features=in_features,
out_features=8,
rngs=nnx.Rngs(0)
)
# nnx.display(model)
learning_rate = 0.005
optimizer = nnx.Optimizer(
model,
optax.adamw(learning_rate=learning_rate)
)
# nnx.display(optimizer)
metrics = nnx.MultiMetric(
accuracy=nnx.metrics.Accuracy(),
loss=nnx.metrics.Average('loss'),
)
epochs = 100
best_accuracy = 0.0
best_model = deepcopy(model)
patience = 0
# train and validation goes here
for epoch in range(epochs):
if patience == 10:
break
for batch in train_loader:
batch = {
'feature' : jnp.array(batch[0]),
'label' : jnp.array(batch[1])
}
train_step(model, optimizer, batch)
for batch in val_loader:
batch = {
'feature' : jnp.array(batch[0]),
'label' : jnp.array(batch[1])
}
eval_step(model, metrics, batch)
# Log the test metrics.
results = metrics.compute()
accuracy = results['accuracy'].item()
if accuracy > best_accuracy:
best_accuracy = accuracy
best_model = deepcopy(model)
patience = 0
else:
patience += 1
metrics.reset() # Reset the metrics for the next training epoch.
print(f"best eval accuracy: {best_accuracy}")
# testing goes here
for batch in test_loader:
batch = {
'feature' : jnp.array(batch[0]),
'label' : jnp.array(batch[1])
}
eval_step(best_model, metrics, batch)
# Log the test metrics.
results = metrics.compute()
accuracy = results['accuracy'].item()
print(f"test accuracy: {accuracy}")
directory = '../big_model_inference' # replace with your directory path
pattern = os.path.join(directory, '*.pt')
exclude_file = 'all_cow_ids.pt'
for features_path in glob.glob(pattern):
if os.path.basename(features_path) != exclude_file:
get_results(features_path)
# get_results('../big_model_inference/facebook_dinov2_base_embeddings.pt')