Tony Fang
commited on
Commit
·
437e9f0
1
Parent(s):
0575f2f
edited README.md
Browse files
README.md
CHANGED
@@ -65,6 +65,14 @@ df = pd.read_pickle("pmfeed_4_3_16_bboxes_and_labels.pkl")
|
|
65 |
```
|
66 |
|
67 |
## Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
### Object Detection
|
69 |
- **Training/Validation**: Use the first 600 frames from `hand_labelled_frames/` (chronological split).
|
70 |
- **Testing**: Evaluate on the full video (`pmfeed_4_3_16.avi`) using the provided PKL annotations.
|
@@ -77,6 +85,34 @@ df = pd.read_pickle("pmfeed_4_3_16_bboxes_and_labels.pkl")
|
|
77 |
| Validation | 100 | Hyperparameter tuning |
|
78 |
| Test | 67,760 | Final evaluation |
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
### Identity Classification
|
81 |
- Use `tracklet_id` (1-8) from the PKL file as labels.
|
82 |
- **Temporal Split**: 30% train / 30% val / 40% test (chronological order).
|
|
|
65 |
```
|
66 |
|
67 |
## Usage
|
68 |
+
### Dataset Download:
|
69 |
+
|
70 |
+
Step 1: install git-lfs:
|
71 |
+
`git lfs install`
|
72 |
+
|
73 |
+
Step 2:
|
74 |
+
`git clone [email protected]:datasets/tonyFang04/8-calves`
|
75 |
+
|
76 |
### Object Detection
|
77 |
- **Training/Validation**: Use the first 600 frames from `hand_labelled_frames/` (chronological split).
|
78 |
- **Testing**: Evaluate on the full video (`pmfeed_4_3_16.avi`) using the provided PKL annotations.
|
|
|
85 |
| Validation | 100 | Hyperparameter tuning |
|
86 |
| Test | 67,760 | Final evaluation |
|
87 |
|
88 |
+
### Benchmarking YOLO Models:
|
89 |
+
Step 1: install albumentations. Check out [Albumentations' website](https://www.albumentations.ai/docs/) for more information.
|
90 |
+
|
91 |
+
Step 2:
|
92 |
+
`cd 8-calves/object_detector_benchmark`. Run
|
93 |
+
`./create_yolo_dataset.sh` and
|
94 |
+
`create_yolo_testset.py`. This creates a YOLO dataset with the 500/100/67760 train/val/test split recommended above.
|
95 |
+
|
96 |
+
Step 3: install ultralytics. Check out [Ultralytics's website](https://github.com/ultralytics/ultralytics) for more information. Find the `Albumentations` class in the `data/augment.py` file in ultralytics source code. And replace the default transforms to:
|
97 |
+
|
98 |
+
```
|
99 |
+
# Transforms
|
100 |
+
T = [
|
101 |
+
A.RandomRotate90(p=1.0),
|
102 |
+
A.HorizontalFlip(p=0.5),
|
103 |
+
A.RandomBrightnessContrast(p=0.4),
|
104 |
+
A.ElasticTransform(
|
105 |
+
alpha=100.0,
|
106 |
+
sigma=5.0,
|
107 |
+
p=0.5
|
108 |
+
),
|
109 |
+
]
|
110 |
+
```
|
111 |
+
|
112 |
+
Step 4:
|
113 |
+
run the yolo detectors following ultralytic's documentations.
|
114 |
+
|
115 |
+
|
116 |
### Identity Classification
|
117 |
- Use `tracklet_id` (1-8) from the PKL file as labels.
|
118 |
- **Temporal Split**: 30% train / 30% val / 40% test (chronological order).
|