Tony Fang commited on
Commit
437e9f0
·
1 Parent(s): 0575f2f

edited README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -0
README.md CHANGED
@@ -65,6 +65,14 @@ df = pd.read_pickle("pmfeed_4_3_16_bboxes_and_labels.pkl")
65
  ```
66
 
67
  ## Usage
 
 
 
 
 
 
 
 
68
  ### Object Detection
69
  - **Training/Validation**: Use the first 600 frames from `hand_labelled_frames/` (chronological split).
70
  - **Testing**: Evaluate on the full video (`pmfeed_4_3_16.avi`) using the provided PKL annotations.
@@ -77,6 +85,34 @@ df = pd.read_pickle("pmfeed_4_3_16_bboxes_and_labels.pkl")
77
  | Validation | 100 | Hyperparameter tuning |
78
  | Test | 67,760 | Final evaluation |
79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  ### Identity Classification
81
  - Use `tracklet_id` (1-8) from the PKL file as labels.
82
  - **Temporal Split**: 30% train / 30% val / 40% test (chronological order).
 
65
  ```
66
 
67
  ## Usage
68
+ ### Dataset Download:
69
+
70
+ Step 1: install git-lfs:
71
+ `git lfs install`
72
+
73
+ Step 2:
74
+ `git clone [email protected]:datasets/tonyFang04/8-calves`
75
+
76
  ### Object Detection
77
  - **Training/Validation**: Use the first 600 frames from `hand_labelled_frames/` (chronological split).
78
  - **Testing**: Evaluate on the full video (`pmfeed_4_3_16.avi`) using the provided PKL annotations.
 
85
  | Validation | 100 | Hyperparameter tuning |
86
  | Test | 67,760 | Final evaluation |
87
 
88
+ ### Benchmarking YOLO Models:
89
+ Step 1: install albumentations. Check out [Albumentations' website](https://www.albumentations.ai/docs/) for more information.
90
+
91
+ Step 2:
92
+ `cd 8-calves/object_detector_benchmark`. Run
93
+ `./create_yolo_dataset.sh` and
94
+ `create_yolo_testset.py`. This creates a YOLO dataset with the 500/100/67760 train/val/test split recommended above.
95
+
96
+ Step 3: install ultralytics. Check out [Ultralytics's website](https://github.com/ultralytics/ultralytics) for more information. Find the `Albumentations` class in the `data/augment.py` file in ultralytics source code. And replace the default transforms to:
97
+
98
+ ```
99
+ # Transforms
100
+ T = [
101
+ A.RandomRotate90(p=1.0),
102
+ A.HorizontalFlip(p=0.5),
103
+ A.RandomBrightnessContrast(p=0.4),
104
+ A.ElasticTransform(
105
+ alpha=100.0,
106
+ sigma=5.0,
107
+ p=0.5
108
+ ),
109
+ ]
110
+ ```
111
+
112
+ Step 4:
113
+ run the yolo detectors following ultralytic's documentations.
114
+
115
+
116
  ### Identity Classification
117
  - Use `tracklet_id` (1-8) from the PKL file as labels.
118
  - **Temporal Split**: 30% train / 30% val / 40% test (chronological order).