--- license: cc-by-4.0 task_categories: - object-detection language: - en --- # 8-Calves Dataset [![arXiv](https://img.shields.io/badge/arXiv-2503.13777-b31b1b.svg)](https://arxiv.org/abs/2503.13777) A benchmark dataset for occlusion-rich object detection, identity classification, and multi-object tracking. Features 8 Holstein Friesian calves with unique coat patterns in a 1-hour video with temporal annotations. --- ## Overview This dataset provides: - 🕒 **1-hour video** (67,760 frames @20 fps, 600x800 resolution) - 🎯 **537,908 verified bounding boxes** with calf identities (1-8) - 🖼️ **900 hand-labeled static frames** for detection tasks - Designed to evaluate robustness in occlusion handling, identity preservation, and temporal consistency. Dataset Example Frame *Example frame with bounding boxes (green) and calf identities. Challenges include occlusion, motion blur, and pose variation.* --- ## Key Features - **Temporal Richness**: 1-hour continuous recording (vs. 10-minute benchmarks like 3D-POP) - **High-Quality Labels**: - Generated via **ByteTrack + YOLOv8m** pipeline with manual correction - <0.56% annotation error rate - **Unique Challenges**: Motion blur, pose variation, and frequent occlusions - **Efficiency Testing**: Compare lightweight (e.g., YOLOv9t) vs. large models (e.g., ConvNextV2) --- ## Dataset Structure hand_labelled_frames/ # 900 manually annotated frames and labels in YOLO format, class=0 for cows pmfeed_4_3_16.avi # 1-hour video (4th March 2016) pmfeed_4_3_16_bboxes_and_labels.pkl # Temporal annotations ### Annotation Details **PKL File Columns**: | Column | Description | |--------|-------------| | `class` | Always `0` (cow detection) | | `x`, `y`, `w`, `h` | YOLO-format bounding boxes | | `conf` | Ignore (detections manually verified) | | `tracklet_id` | Calf identity (1-8) | | `frame_id` | Temporal index matching video | **Load annotations**: ```python import pandas as pd df = pd.read_pickle("pmfeed_4_3_16_bboxes_and_labels.pkl") ``` ## Usage ### Dataset Download: Step 1: install git-lfs: `git lfs install` Step 2: `git clone git@hf.co:datasets/tonyFang04/8-calves` Step 3: install conda and pip environments: ``` conda create --name new_env --file conda_requirements.txt pip install -r pip_requirements.txt ``` ### Object Detection - **Training/Validation**: Use the first 600 frames from `hand_labelled_frames/` (chronological split). - **Testing**: Evaluate on the full video (`pmfeed_4_3_16.avi`) using the provided PKL annotations. - ⚠️ **Avoid Data Leakage**: Do not use all 900 frames for training - they are temporally linked to the test video. **Recommended Split**: | Split | Frames | Purpose | |------------|--------|------------------| | Training | 500 | Model training | | Validation | 100 | Hyperparameter tuning | | Test | 67,760 | Final evaluation | ### Benchmarking YOLO Models: Step 1: `cd 8-calves/object_detector_benchmark`. Run `./create_yolo_dataset.sh` and `create_yolo_testset.py`. This creates a YOLO dataset with the 500/100/67760 train/val/test split recommended above. Step 2: find the `Albumentations` class in the `data/augment.py` file in ultralytics source code. And replace the default transforms to: ``` # Transforms T = [ A.RandomRotate90(p=1.0), A.HorizontalFlip(p=0.5), A.RandomBrightnessContrast(p=0.4), A.ElasticTransform( alpha=100.0, sigma=5.0, p=0.5 ), ] ``` Step 3: run the yolo detectors following the following commands: ``` cd yolo_benchmark Model_Name=yolov9t yolo cfg=experiment.yaml model=$Model_Name.yaml name=$Model_Name ``` ### Benchmark Transformer Based Models: Step 1: run the following commands to load the data into yolo format, then into coco, then into arrow: ``` cd 8-calves/object_detector_benchmark ./create_yolo_dataset.sh python create_yolo_testset.py python yolo_to_coco.py python data_wrangling.py ``` Step 2: run the following commands to train: ``` cd transformer_benchmark python train.py --config Configs/conditional_detr.yaml ``` ### Temporal Classification - Use `tracklet_id` (1-8) from the PKL file as labels. - **Temporal Split**: 30% train / 30% val / 40% test (chronological order). ### Benchmark vision models for temporal classification: Step 1: cropping the bounding boxes from `pmfeed_4_3_16.mp4` using the correct labels in `pmfeed_4_3_16_bboxes_and_labels.pkl`. Then convert the folder of images cropped from `pmfeed_4_3_16.mp4` into lmdb dataset for fast loading: ``` cd identification_benchmark python crop_pmfeed_4_3_16.py python construct_lmdb.py ``` Step 2: get embeddings from vision model: ``` cd big_model_inference ``` Use `inference_resnet.py` to get embeddings from resnet and `inference_transformers.py` to get embeddings from transformer weights available on Huggingface: ``` python inference_resnet.py --resnet_type resnet18 python inference_transformers.py --model_name facebook/convnextv2-nano-1k-224 ``` Step 3: use the embeddings and labels obtained from step 2 to conduct knn evaluation and linear classification: ``` cd ../classification python train.py python knn_evaluation.py ``` ## Key Results ### Object Detection (YOLO Models) | Model | Parameters (M) | mAP50:95 (%) | Inference Speed (ms/sample) | |-------------|----------------|--------------|-----------------------------| | **YOLOv9c** | 25.6 | **68.4** | 2.8 | | YOLOv8x | 68.2 | 68.2 | 4.4 | | YOLOv10n | 2.8 | 64.6 | 0.7 | --- ### Identity Classification (Top Models) | Model | Accuracy (%) | KNN Top-1 (%) | Parameters (M) | |----------------|--------------|---------------|----------------| | **ConvNextV2-Nano** | 73.1 | 50.8 | 15.6 | | Swin-Tiny | 68.7 | 43.9 | 28.3 | | ResNet50 | 63.7 | 38.3 | 25.6 | --- **Notes**: - **mAP50:95**: Mean Average Precision at IoU thresholds 0.5–0.95. - **KNN Top-1**: Nearest-neighbor accuracy using embeddings. - Full results and methodology: [arXiv paper](https://arxiv.org/abs/2503.13777). ## License This dataset is released under [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/). *Modifications/redistribution must include attribution.* ## Citation ```bibtex @article{fang20248calves, title={8-Calves: A Benchmark for Object Detection and Identity Classification in Occlusion-Rich Environments}, author={Fang, Xuyang and Hannuna, Sion and Campbell, Neill}, journal={arXiv preprint arXiv:2503.13777}, year={2024} } ``` ## Contact **Dataset Maintainer**: Xuyang Fang Email: [xf16910@bristol.ac.uk](mailto:xf16910@bristol.ac.uk)