import cv2 import pandas as pd import pickle import os # Files pickle_filename = "../pmfeed_4_3_16_bboxes_and_labels.pkl" video_filename = "../pmfeed_4_3_16.mp4" output_dir = "all_crops_pmfeed_4_3_16" # Create output directory if it doesn't exist os.makedirs(output_dir, exist_ok=True) # Load the bounding boxes DataFrame from the pickle file with open(pickle_filename, "rb") as f: df = pickle.load(f) # Open the video file cap = cv2.VideoCapture(video_filename) if not cap.isOpened(): raise IOError(f"Cannot open video file {video_filename}") # Get video dimensions frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) print(f"Video dimensions: {frame_width}x{frame_height}") # Initialize sliding window pointers and frame counter num_rows = len(df) i = 0 frames_processed = 0 # max_frames = 3 # only process first 3 frames while i < num_rows: # Get the current frame_id for this sliding window current_frame_id = int(df.iloc[i]["frame_id"]) j = i # Move j until the frame_id changes while j < num_rows and df.iloc[j]["frame_id"] == current_frame_id: j += 1 # Set the video to the appropriate frame (frame_id is assumed to be 1-indexed) cap.set(cv2.CAP_PROP_POS_FRAMES, current_frame_id - 1) ret, frame = cap.read() if not ret: print(f"Warning: Could not read frame {current_frame_id}") i = j continue # Process all bounding boxes for this frame (from row i to j-1) for index in range(i, j): row = df.iloc[index] # Assuming coordinates are normalized: (center x, center y, width, height) x_center = row["x"] y_center = row["y"] bbox_width = row["w"] bbox_height = row["h"] # Convert normalized coordinates to absolute pixel values left = int((x_center - bbox_width / 2) * frame_width) top = int((y_center - bbox_height / 2) * frame_height) right = int((x_center + bbox_width / 2) * frame_width) bottom = int((y_center + bbox_height / 2) * frame_height) # Clamp the coordinates to within the frame dimensions left = max(left, 0) top = max(top, 0) right = min(right, frame_width) bottom = min(bottom, frame_height) # Skip if resulting crop dimensions are invalid if right - left <= 0 or bottom - top <= 0: print(f"Warning: Invalid crop dimensions for frame {current_frame_id}, tracklet {row['tracklet_id']}") continue # Crop the image crop_img = frame[top:bottom, left:right] # Save crop image with filename format: "pmfeed_4_3_16_frame__cow_.jpg" filename = f"pmfeed_4_3_16_frame_{current_frame_id}_cow_{int(row['tracklet_id'])}.jpg" output_path = os.path.join(output_dir, filename) cv2.imwrite(output_path, crop_img) print(f"Saved crop: {output_path}") frames_processed += 1 i = j # Release video capture cap.release() print("Cropping all frames completed.")