#!/usr/bin/env python3 import os import json import glob from tqdm import tqdm # Directory containing the PDF files data_dir = "data" # Get all PDF files pdf_files = glob.glob(os.path.join(data_dir, "*.pdf")) # Create dataset structure dataset = { "file_name": [], "file_path": [], "file_size": [], "content_type": [] } # Add information for each PDF file for pdf_file in tqdm(pdf_files, desc="Processing PDF files"): file_name = os.path.basename(pdf_file) file_path = pdf_file file_size = os.path.getsize(pdf_file) dataset["file_name"].append(file_name) dataset["file_path"].append(file_path) dataset["file_size"].append(file_size) dataset["content_type"].append("application/pdf") # Create the default directory if it doesn't exist os.makedirs("default", exist_ok=True) # Write the dataset to a JSON file with open("default/train.json", "w") as f: json.dump(dataset, f, indent=2) # Update dataset_dict.json with correct information dataset_dict = { "default": { "splits": { "train": { "name": "train", "num_bytes": sum(dataset["file_size"]), "num_examples": len(dataset["file_name"]), "dataset_name": "jfk-files-2025" } }, "download_checksums": {}, "download_size": sum(dataset["file_size"]), "post_processing_size": None, "dataset_size": sum(dataset["file_size"]), "size_in_bytes": sum(dataset["file_size"]) } } # Write the dataset_dict.json file with open("dataset_dict.json", "w") as f: json.dump(dataset_dict, f, indent=2) print(f"Successfully processed {len(dataset['file_name'])} PDF files") print(f"Total dataset size: {sum(dataset['file_size']) / (1024*1024):.2f} MB")