--- license: other license_name: deepseek license_link: https://github.com/deepseek-ai/DeepSeek-MoE/blob/main/LICENSE-MODEL model-index: - name: deepseek-moe-16b-base results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 53.24 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-moe-16b-base name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 79.77 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-moe-16b-base name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 46.31 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-moe-16b-base name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 36.08 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-moe-16b-base name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 73.72 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-moe-16b-base name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 17.29 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-moe-16b-base name: Open LLM Leaderboard ---

DeepSeek Chat

[🏠Homepage] | [🤖 Chat with DeepSeek LLM] | [Discord] | [Wechat(微信)]

Paper Link👁️


### 1. Introduction to DeepSeekMoE See the [Introduction](https://github.com/deepseek-ai/DeepSeek-MoE/blob/main) for more details. ### 2. How to Use Here give some examples of how to use our model. #### Text Completion ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig model_name = "deepseek-ai/deepseek-moe-16b-base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") model.generation_config = GenerationConfig.from_pretrained(model_name) model.generation_config.pad_token_id = model.generation_config.eos_token_id text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs.to(model.device), max_new_tokens=100) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` ### 3. License This code repository is licensed under the MIT License. The use of DeepSeekMoE models is subject to the Model License. DeepSeekMoE supports commercial use. See the [LICENSE-MODEL](https://github.com/deepseek-ai/DeepSeek-MoE/blob/main/LICENSE-MODEL) for more details. ### 4. Contact If you have any questions, please raise an issue or contact us at [service@deepseek.com](mailto:service@deepseek.com). # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_deepseek-ai__deepseek-moe-16b-base) | Metric |Value| |---------------------------------|----:| |Avg. |51.07| |AI2 Reasoning Challenge (25-Shot)|53.24| |HellaSwag (10-Shot) |79.77| |MMLU (5-Shot) |46.31| |TruthfulQA (0-shot) |36.08| |Winogrande (5-shot) |73.72| |GSM8k (5-shot) |17.29|