--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert_system_B results: [] datasets: - Babelscape/multinerd language: - en --- # distilbert_system_B This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0293 - Precision: 0.9456 - Recall: 0.9531 - F1: 0.9493 - Accuracy: 0.9931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0134 | 1.0 | 8205 | 0.0208 | 0.9466 | 0.9488 | 0.9477 | 0.9929 | | 0.0067 | 2.0 | 16410 | 0.0237 | 0.9453 | 0.9528 | 0.9490 | 0.9931 | | 0.0031 | 3.0 | 24615 | 0.0293 | 0.9456 | 0.9531 | 0.9493 | 0.9931 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0