Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
inference: false
|
7 |
+
tags:
|
8 |
+
- transformers
|
9 |
+
- gguf
|
10 |
+
- imatrix
|
11 |
+
- mpt-7b-storywriter
|
12 |
+
---
|
13 |
+
Quantizations of https://huggingface.co/mosaicml/mpt-7b-storywriter
|
14 |
+
|
15 |
+
Note: not sure why but Q2_K, Q3_K_S, Q4_0 and Q5_0 gave error during quantizations: "ggml_validate_row_data: found nan value at block xxx", so I skipped those quants.
|
16 |
+
|
17 |
+
# From original readme
|
18 |
+
|
19 |
+
## How to Use
|
20 |
+
|
21 |
+
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package.
|
22 |
+
|
23 |
+
It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more.
|
24 |
+
|
25 |
+
```python
|
26 |
+
import transformers
|
27 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
28 |
+
'mosaicml/mpt-7b-storywriter',
|
29 |
+
trust_remote_code=True
|
30 |
+
)
|
31 |
+
```
|
32 |
+
|
33 |
+
To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision:
|
34 |
+
```python
|
35 |
+
import torch
|
36 |
+
import transformers
|
37 |
+
|
38 |
+
name = 'mosaicml/mpt-7b-storywriter'
|
39 |
+
|
40 |
+
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
|
41 |
+
config.attn_config['attn_impl'] = 'triton'
|
42 |
+
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
|
43 |
+
|
44 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
45 |
+
name,
|
46 |
+
config=config,
|
47 |
+
torch_dtype=torch.bfloat16, # Load model weights in bfloat16
|
48 |
+
trust_remote_code=True
|
49 |
+
)
|
50 |
+
```
|
51 |
+
|
52 |
+
Although the model was trained with a sequence length of 2048 and finetuned with a sequence length of 65536,
|
53 |
+
ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example:
|
54 |
+
```python
|
55 |
+
import transformers
|
56 |
+
|
57 |
+
name = 'mosaicml/mpt-7b'
|
58 |
+
|
59 |
+
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
|
60 |
+
config.max_seq_len = 83968 # (input + output) tokens can now be up to 83968
|
61 |
+
|
62 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
63 |
+
name,
|
64 |
+
config=config,
|
65 |
+
trust_remote_code=True
|
66 |
+
)
|
67 |
+
```
|
68 |
+
|
69 |
+
This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
|
70 |
+
|
71 |
+
```python
|
72 |
+
from transformers import AutoTokenizer
|
73 |
+
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
|
74 |
+
```
|
75 |
+
|
76 |
+
The model can then be used, for example, within a text-generation pipeline.
|
77 |
+
Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html).
|
78 |
+
|
79 |
+
```python
|
80 |
+
from transformers import pipeline
|
81 |
+
|
82 |
+
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')
|
83 |
+
|
84 |
+
with torch.autocast('cuda', dtype=torch.bfloat16):
|
85 |
+
print(
|
86 |
+
pipe('Here is a recipe for vegan banana bread:\n',
|
87 |
+
max_new_tokens=100,
|
88 |
+
do_sample=True,
|
89 |
+
use_cache=True))
|
90 |
+
```
|