File size: 1,345 Bytes
5a00fa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
Here is represented tinybert model for German language. The model was created by distilling of bert base cased model in the way described in https://arxiv.org/abs/1909.10351 (TinyBERT: Distilling BERT for Natural Language Understanding)
Versions:
How to load model for LM task:
tokenizer = transformers.BertTokenizer.from_pretrained(model_dir + '/vocab.txt', do_lower_case=False)
config = transformers.BertConfig.from_json_file(model_dir+'config.json')
model = transformers.BertModel(config=config)
model.pooler = nn.Sequential(nn.Linear(in_features=model.config.hidden_size, out_features=model.config.hidden_size, bias=True),
nn.LayerNorm((model.config.hidden_size,), eps=1e-12, elementwise_affine=True),
nn.Linear(in_features=model.config.hidden_size, out_features=len(tokenizer), bias=True))
model.resize_token_embeddings(len(tokenizer))
checkpoint = torch.load(model_dir+'/pytorch_model.bin', map_location=torch.device('cuda'))
model.load_state_dict(checkpoint)
In case of NER or Classification task we have to load model for LM task and change pooler:
model.pooler = nn.Sequential(nn.Dropout(p=config.hidden_dropout_prob, inplace=False),
nn.Linear(in_features=config.hidden_size, out_features=n_classes, bias=True)) |