entropy commited on
Commit
7daf385
·
verified ·
1 Parent(s): ed221d6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -167
README.md CHANGED
@@ -1,199 +1,81 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
69
 
70
- ## How to Get Started with the Model
 
71
 
72
- Use the code below to get started with the model.
 
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
75
 
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
 
91
 
 
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
 
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - chemistry
5
+ - molecule
6
+ license: mit
7
  ---
8
 
9
+ # Model Card for ErbB1 MLP
 
 
 
 
 
 
10
 
11
  ### Model Description
12
 
13
+ `erbb1_mlp` is a MLP-style model trained to predict ErbB1 (EGFR) binding affinity from
14
+ embeddings generated by the [roberta_zinc_480m](https://huggingface.co/entropy/roberta_zinc_480m)
15
+ model.
16
 
17
+ - **Developed by:** Karl Heyer
18
+ - **License:** MIT
 
 
 
 
 
19
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  ### Direct Use
22
 
23
+ Usage examples. Note that input SMILES strings should be canonicalized.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
+ With the Transformers library:
26
 
27
+ ```python
28
+ from sentence_transformers import models, SentenceTransformer
29
+ from transformers import AutoModel
30
 
31
+ transformer = models.Transformer("entropy/roberta_zinc_480m",
32
+ max_seq_length=256,
33
+ model_args={"add_pooling_layer": False})
34
 
35
+ pooling = models.Pooling(transformer.get_word_embedding_dimension(),
36
+ pooling_mode="mean")
37
 
38
+ roberta_zinc = SentenceTransformer(modules=[transformer, pooling])
39
+ erbb1_mlp = AutoModel.from_pretrained("entropy/erbb1_mlp", trust_remote_code=True)
40
 
41
+ # smiles should be canonicalized
42
+ smiles = [
43
+ "Brc1cc2c(NCc3ccccc3)ncnc2s1",
44
+ "Brc1cc2c(NCc3ccccn3)ncnc2s1",
45
+ "Brc1cc2c(NCc3cccs3)ncnc2s1",
46
+ "Brc1cc2c(NCc3ccncc3)ncnc2s1",
47
+ "Brc1cc2c(Nc3ccccc3)ncnc2s1"
48
+ ]
49
 
50
+ embeddings = roberta_zinc.encode(smiles, convert_to_tensor=True)
51
+ predictions = erbb1_mlp(embeddings).predictions
52
+ ```
 
 
 
 
53
 
54
  ### Training Procedure
55
 
56
+ #### Preprocessing
57
 
58
+ ErbB1 ligands were downloaded from ChEMBL (`target_chembl_id="CHEMBL203"`, `type="IC50"`,
59
+ `relation="="`, `assay_type="B"`). Results were filtered for assays with IC50 values in nM
60
+ for homo sapiens, canonicalized and deduplicated. IC50 values were converted to pIC50 values.
61
+ The final dataset contains 7327 data points.
62
 
63
+ Prior to training, pIC50 values were normalized. The model was trained on normalized values,
64
+ and uses the saved mean/variance of the dataset to denormalize predictions.
65
 
66
  #### Training Hyperparameters
67
 
68
+ The model was trained for 30 epochs with a batch size of 32, learing rate of 1e-3, weight decay of
69
+ 1e-4 and cosine learning rate scheduling.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
+ ## Model Card Authors
72
 
73
+ Karl Heyer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
  ## Model Card Contact
76
 
77
78
+
79
+ ---
80
+ license: mit
81
+ ---