Upload model
Browse files- README.md +199 -0
- config.json +32 -0
- configuration_roberta_zinc_compression_encoder.py +49 -0
- model.safetensors +3 -0
- modeling_roberta_zinc_compression_encoder.py +266 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"RZCompressionModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_roberta_zinc_compression_encoder.RZCompressionConfig",
|
7 |
+
"AutoModel": "modeling_roberta_zinc_compression_encoder.RZCompressionModel"
|
8 |
+
},
|
9 |
+
"compression_sizes": [
|
10 |
+
512,
|
11 |
+
256,
|
12 |
+
128,
|
13 |
+
64,
|
14 |
+
32
|
15 |
+
],
|
16 |
+
"decoder_cosine_weight": 1.0,
|
17 |
+
"decoder_layers": 4,
|
18 |
+
"dropout": 0.1,
|
19 |
+
"encoder_layers": 4,
|
20 |
+
"input_size": 768,
|
21 |
+
"layer_norm_eps": 1e-12,
|
22 |
+
"model_type": "roberta_zinc_compression_encoder",
|
23 |
+
"mse_loss_weight": 0.0,
|
24 |
+
"pearson_loss_weight": 1.0,
|
25 |
+
"topk_values": [
|
26 |
+
10,
|
27 |
+
100,
|
28 |
+
256
|
29 |
+
],
|
30 |
+
"torch_dtype": "float32",
|
31 |
+
"transformers_version": "4.51.3"
|
32 |
+
}
|
configuration_roberta_zinc_compression_encoder.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional
|
2 |
+
from transformers import PretrainedConfig
|
3 |
+
|
4 |
+
|
5 |
+
class RZCompressionConfig(PretrainedConfig):
|
6 |
+
"""
|
7 |
+
Configuration for the roberta_zinc embedding-compression models.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
input_size (int): Dimension of the input embedding.
|
11 |
+
compression_sizes (List[int]): One or more output dimensions.
|
12 |
+
encoder_layers (int): Number of FeedForwardLayers in the encoder path.
|
13 |
+
decoder_layers (int): Number of FeedForwardLayers in the optional decoder.
|
14 |
+
dropout (float): Drop-out prob in every layer except the final ones.
|
15 |
+
layer_norm_eps (float | None): Epsilon for LayerNorm.
|
16 |
+
mse_loss_weight (float): Weight for MSE loss on base-to-compressed similarity matrices
|
17 |
+
pearson_loss_weight (float): Weight for Pearson loss on base-to-compressed similarity matrices
|
18 |
+
topk_values (List[int]): Top-k values for weighting mse/pearson loss
|
19 |
+
decoder_cosine_weight (float): weight for decoder cosine similarity loss
|
20 |
+
"""
|
21 |
+
model_type = "roberta_zinc_compression_encoder"
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
# ββ model params βββββββββββββββββββββββββββββββββββββββββββββ
|
26 |
+
input_size: int = 768,
|
27 |
+
compression_sizes: List[int] = (32, 64, 128, 256, 512),
|
28 |
+
encoder_layers: int = 2,
|
29 |
+
decoder_layers: int = 2,
|
30 |
+
dropout: float = 0.1,
|
31 |
+
layer_norm_eps: Optional[float] = 1e-12,
|
32 |
+
# ββ loss knobs βββββββββββββββββββββββββββββββββββββββββββββββ
|
33 |
+
mse_loss_weight: float = 0.0,
|
34 |
+
pearson_loss_weight: float = 0.0,
|
35 |
+
topk_values: list[int] = (10, 100),
|
36 |
+
decoder_cosine_weight: float = 0.0,
|
37 |
+
**kwargs,
|
38 |
+
):
|
39 |
+
self.input_size = input_size
|
40 |
+
self.compression_sizes = list(compression_sizes)
|
41 |
+
self.encoder_layers = encoder_layers
|
42 |
+
self.decoder_layers = decoder_layers
|
43 |
+
self.dropout = dropout
|
44 |
+
self.layer_norm_eps = layer_norm_eps
|
45 |
+
self.mse_loss_weight = mse_loss_weight
|
46 |
+
self.topk_values = topk_values
|
47 |
+
self.pearson_loss_weight = pearson_loss_weight
|
48 |
+
self.decoder_cosine_weight = decoder_cosine_weight
|
49 |
+
super().__init__(**kwargs)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:faa111596c4d62aba81b98d0f33579d7a886a2b931a72d943b28331f4c42e886
|
3 |
+
size 244378384
|
modeling_roberta_zinc_compression_encoder.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from typing import Dict, List, Optional, Tuple
|
6 |
+
|
7 |
+
from transformers import PreTrainedModel
|
8 |
+
from transformers.utils import ModelOutput
|
9 |
+
|
10 |
+
from .configuration_roberta_zinc_compression_encoder import RZCompressionConfig
|
11 |
+
|
12 |
+
# pairwise cosine ----------------------------------------------------------------
|
13 |
+
def pairwise_cosine(x: torch.Tensor) -> torch.Tensor:
|
14 |
+
x = F.normalize(x, p=2, dim=-1)
|
15 |
+
return x @ x.t() # [B, B]
|
16 |
+
|
17 |
+
# remove diagonal -----------------------------------------------------------------
|
18 |
+
def drop_diag(M: torch.Tensor) -> torch.Tensor:
|
19 |
+
n = M.size(0)
|
20 |
+
return M.masked_select(~torch.eye(n, dtype=torch.bool, device=M.device)).view(n, n - 1)
|
21 |
+
|
22 |
+
# pearson row-wise ----------------------------------------------------------------
|
23 |
+
def rowwise_pearson(ref: torch.Tensor, comp: torch.Tensor, rm_diag: bool=True) -> torch.Tensor:
|
24 |
+
if rm_diag:
|
25 |
+
ref = drop_diag(ref)
|
26 |
+
comp = drop_diag(comp)
|
27 |
+
ref_z = F.normalize(ref - ref.mean(dim=1, keepdim=True), p=2, dim=1)
|
28 |
+
cmp_z = F.normalize(comp - comp.mean(dim=1, keepdim=True), p=2, dim=1)
|
29 |
+
return 1 - (ref_z * cmp_z).sum(dim=1).mean() # 0 = perfect corr
|
30 |
+
|
31 |
+
# aggregate loss ------------------------------------------------------------------
|
32 |
+
def compute_losses(
|
33 |
+
embedding: torch.Tensor, # (batch_size, d)
|
34 |
+
compressed: Dict[int, torch.Tensor], # Dict[size, (batch_size, size)]
|
35 |
+
recon_stack: torch.Tensor | None, # (batch_size, n_heads, d)
|
36 |
+
cfg,
|
37 |
+
) -> tuple[torch.Tensor, dict[str, float]]:
|
38 |
+
"""Return (total_loss, terms_dict)"""
|
39 |
+
device = embedding.device
|
40 |
+
loss_total = torch.zeros((), device=device)
|
41 |
+
terms: dict[str, float] = {}
|
42 |
+
|
43 |
+
# ---- base similarities (detach to save mem) ---------------------------
|
44 |
+
with torch.no_grad():
|
45 |
+
base_sims = pairwise_cosine(embedding)
|
46 |
+
ranks = base_sims.argsort(-1, descending=True)
|
47 |
+
|
48 |
+
# ======================================================================
|
49 |
+
# 1) encoder / compressed losses
|
50 |
+
# ======================================================================
|
51 |
+
for size, z in compressed.items():
|
52 |
+
tag = f"cmp{size}"
|
53 |
+
comp_sims = pairwise_cosine(z)
|
54 |
+
|
55 |
+
# plain MSE --------------------------------------------------------
|
56 |
+
if cfg.mse_loss_weight:
|
57 |
+
mse = F.mse_loss(drop_diag(base_sims), drop_diag(comp_sims))
|
58 |
+
loss_total += cfg.mse_loss_weight * mse
|
59 |
+
terms[f"{tag}_mse"] = mse.detach()
|
60 |
+
|
61 |
+
# top-k MSE --------------------------------------------------------
|
62 |
+
if cfg.mse_loss_weight and cfg.topk_values:
|
63 |
+
tk_vals = []
|
64 |
+
for k in cfg.topk_values:
|
65 |
+
idx = ranks[:, 1 : k + 1]
|
66 |
+
ref_k = torch.gather(base_sims, 1, idx)
|
67 |
+
cmp_k = torch.gather(comp_sims, 1, idx)
|
68 |
+
tk_mse = F.mse_loss(ref_k, cmp_k)
|
69 |
+
tk_vals.append(tk_mse)
|
70 |
+
terms[f"{tag}_top{k}"] = tk_mse.detach()
|
71 |
+
tk_agg = torch.stack(tk_vals).mean()
|
72 |
+
loss_total += cfg.topk_mse_loss_weight * tk_agg
|
73 |
+
terms[f"{tag}_topk_mean"] = tk_agg.detach()
|
74 |
+
|
75 |
+
# Pearson ----------------------------------------------------------
|
76 |
+
if cfg.pearson_loss_weight:
|
77 |
+
pr = rowwise_pearson(base_sims, comp_sims)
|
78 |
+
loss_total += cfg.pearson_loss_weight * pr
|
79 |
+
terms[f"{tag}_pearson"] = pr.detach()
|
80 |
+
|
81 |
+
if cfg.pearson_loss_weight and cfg.topk_values:
|
82 |
+
pr_vals = []
|
83 |
+
for k in cfg.topk_values:
|
84 |
+
idx = ranks[:, 1 : k + 1]
|
85 |
+
ref_k = torch.gather(base_sims, 1, idx)
|
86 |
+
cmp_k = torch.gather(comp_sims, 1, idx)
|
87 |
+
pr = rowwise_pearson(ref_k, cmp_k, rm_diag=False)
|
88 |
+
pr_vals.append(pr)
|
89 |
+
terms[f"{tag}_pearson_top{k}"] = pr.detach()
|
90 |
+
pr_agg = torch.stack(pr_vals).sum()
|
91 |
+
loss_total += cfg.pearson_loss_weight * pr_agg
|
92 |
+
|
93 |
+
# ======================================================================
|
94 |
+
# 2) decoder losses
|
95 |
+
# ======================================================================
|
96 |
+
if recon_stack is not None:
|
97 |
+
# cosine -----------------------------------------------------------
|
98 |
+
if cfg.decoder_cosine_weight:
|
99 |
+
cos_loss = 1 - F.cosine_similarity(
|
100 |
+
recon_stack,
|
101 |
+
embedding.unsqueeze(1).expand_as(recon_stack),
|
102 |
+
dim=-1,
|
103 |
+
).mean()
|
104 |
+
loss_total += cfg.decoder_cosine_weight * cos_loss
|
105 |
+
terms["dec_cosine"] = cos_loss.detach()
|
106 |
+
|
107 |
+
return loss_total, terms
|
108 |
+
|
109 |
+
|
110 |
+
# βββ basic blocks βββββββββββββββββββββββββββββββββββββββββββββββ
|
111 |
+
class FeedForward(nn.Module):
|
112 |
+
def __init__(self, d_in: int, d_out: int):
|
113 |
+
super().__init__()
|
114 |
+
self.fc1 = nn.Linear(d_in, d_out * 2)
|
115 |
+
self.fc2 = nn.Linear(d_out, d_out)
|
116 |
+
|
117 |
+
def forward(self, x):
|
118 |
+
x = self.fc1(x)
|
119 |
+
x1, x2 = x.chunk(2, dim=-1)
|
120 |
+
return self.fc2(F.silu(x1) * x2)
|
121 |
+
|
122 |
+
class FeedForwardLayer(nn.Module):
|
123 |
+
def __init__(
|
124 |
+
self, d_in: int, d_out: int, dropout: float = 0.1, layer_norm_eps: Optional[float] = 1e-12
|
125 |
+
):
|
126 |
+
super().__init__()
|
127 |
+
self.ff = FeedForward(d_in, d_out)
|
128 |
+
self.skip = nn.Linear(d_in, d_out) if d_in != d_out else nn.Identity()
|
129 |
+
self.dropout = nn.Dropout(dropout)
|
130 |
+
self.norm = (
|
131 |
+
nn.LayerNorm(d_out, eps=layer_norm_eps)
|
132 |
+
if layer_norm_eps is not None else nn.Identity()
|
133 |
+
)
|
134 |
+
|
135 |
+
def forward(self, x):
|
136 |
+
y = self.ff(self.dropout(x)) + self.skip(x)
|
137 |
+
return self.norm(y)
|
138 |
+
|
139 |
+
|
140 |
+
# βββ pure PyTorch compressor ββββββββββββββββββββββββββββββββββββ
|
141 |
+
class CompressionModel(nn.Module):
|
142 |
+
"""
|
143 |
+
Encoder β (optional) Decoder.
|
144 |
+
"""
|
145 |
+
|
146 |
+
def __init__(
|
147 |
+
self,
|
148 |
+
d_in: int,
|
149 |
+
d_comp: int,
|
150 |
+
encoder_layers: int,
|
151 |
+
decoder_layers: int,
|
152 |
+
dropout: float,
|
153 |
+
layer_norm_eps: Optional[float],
|
154 |
+
):
|
155 |
+
super().__init__()
|
156 |
+
|
157 |
+
enc_layers: List[nn.Module] = []
|
158 |
+
for i in range(encoder_layers):
|
159 |
+
last = i == encoder_layers - 1
|
160 |
+
enc_layers.append(
|
161 |
+
FeedForwardLayer(
|
162 |
+
d_in,
|
163 |
+
d_comp if last else d_in,
|
164 |
+
dropout if not last else 0.0,
|
165 |
+
None if last else layer_norm_eps,
|
166 |
+
)
|
167 |
+
)
|
168 |
+
self.encoder = nn.Sequential(*enc_layers)
|
169 |
+
|
170 |
+
# optional decoder
|
171 |
+
dec_layers: List[nn.Module] = []
|
172 |
+
for i in range(decoder_layers):
|
173 |
+
last = i == decoder_layers - 1
|
174 |
+
d_prev = d_comp if i==0 else d_in
|
175 |
+
dec_layers.append(
|
176 |
+
FeedForwardLayer(
|
177 |
+
d_prev,
|
178 |
+
d_in,
|
179 |
+
dropout if not last else 0.0,
|
180 |
+
None if last else layer_norm_eps,
|
181 |
+
)
|
182 |
+
)
|
183 |
+
self.decoder = nn.Sequential(*dec_layers) if dec_layers else None
|
184 |
+
|
185 |
+
def forward(self, x) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
186 |
+
z = self.encoder(x)
|
187 |
+
x_recon = self.decoder(z) if self.decoder is not None else None
|
188 |
+
return z, x_recon
|
189 |
+
|
190 |
+
|
191 |
+
# βββ HF wrapper βββββββββββββββββββββββββββββββββββββββββββββββββ
|
192 |
+
@dataclass
|
193 |
+
class RZCompressionOutput(ModelOutput):
|
194 |
+
loss: torch.FloatTensor
|
195 |
+
loss_terms: Dict[str, torch.Tensor] | None = None
|
196 |
+
compressed: Dict[int, torch.FloatTensor] | None = None
|
197 |
+
reconstructed: torch.FloatTensor | None = None
|
198 |
+
|
199 |
+
class RZCompressionModel(PreTrainedModel):
|
200 |
+
config_class = RZCompressionConfig
|
201 |
+
|
202 |
+
def __init__(self, config: RZCompressionConfig):
|
203 |
+
super().__init__(config)
|
204 |
+
|
205 |
+
self.compressors = nn.ModuleDict(
|
206 |
+
{
|
207 |
+
str(size): CompressionModel(
|
208 |
+
d_in=config.input_size,
|
209 |
+
d_comp=size,
|
210 |
+
encoder_layers=config.encoder_layers,
|
211 |
+
decoder_layers=config.decoder_layers,
|
212 |
+
dropout=config.dropout,
|
213 |
+
layer_norm_eps=config.layer_norm_eps,
|
214 |
+
)
|
215 |
+
for size in config.compression_sizes
|
216 |
+
}
|
217 |
+
)
|
218 |
+
|
219 |
+
self.post_init()
|
220 |
+
|
221 |
+
def get_encoders(self, unpack_single=False):
|
222 |
+
encoders = {}
|
223 |
+
for k,v in self.compressors.items():
|
224 |
+
v = v.encoder
|
225 |
+
if len(v)==1 and unpack_single:
|
226 |
+
# unpack from nn.Sequential if only a single layer
|
227 |
+
v = v[0]
|
228 |
+
encoders[k] = v
|
229 |
+
encoders = nn.ModuleDict(encoders)
|
230 |
+
return encoders
|
231 |
+
|
232 |
+
def save_encoders(self, path, unpack_single=False):
|
233 |
+
encoders = self.get_encoders(unpack_single)
|
234 |
+
torch.save(encoders.state_dict(), path)
|
235 |
+
|
236 |
+
def compress(self,
|
237 |
+
inputs: torch.Tensor,
|
238 |
+
compression_sizes: List[int]):
|
239 |
+
compressed = {d: self.compressors[str(d)].encoder(inputs) for d in compression_sizes}
|
240 |
+
return compressed
|
241 |
+
|
242 |
+
def forward(self, embedding, return_dict=True, compute_loss=True):
|
243 |
+
# ---------- forward passes ------------------------------------------------
|
244 |
+
compressed, recons = {}, []
|
245 |
+
for size, module in self.compressors.items():
|
246 |
+
z, rec = module(embedding)
|
247 |
+
compressed[int(size)] = z
|
248 |
+
if rec is not None:
|
249 |
+
recons.append(rec)
|
250 |
+
recon_stack = torch.stack(recons, dim=1) if recons else None
|
251 |
+
|
252 |
+
# ---------- losses --------------------------------------------------------
|
253 |
+
if compute_loss:
|
254 |
+
loss_total, terms = compute_losses(embedding, compressed, recon_stack, self.config)
|
255 |
+
else:
|
256 |
+
loss_total, terms = torch.zeros((), device=embedding.device), {}
|
257 |
+
|
258 |
+
if not return_dict:
|
259 |
+
return compressed, recon_stack, loss_total, terms
|
260 |
+
|
261 |
+
return RZCompressionOutput(
|
262 |
+
loss=loss_total,
|
263 |
+
loss_terms=terms,
|
264 |
+
compressed=compressed,
|
265 |
+
reconstructed=recon_stack,
|
266 |
+
)
|