--- library_name: transformers tags: - chemistry - molecule license: mit --- # Model Card for Roberta Zinc Compression Encoder ### Model Description `roberta_zinc_compression_encoder` contains several MLP-style compression heads trained to compress molecule embeddings from the [roberta_zinc_480m](https://huggingface.co/entropy/roberta_zinc_480m) from the native dimension of 768 to smaller dimensions - 512, 256, 128, 64, 32 - **Developed by:** Karl Heyer - **License:** MIT ### Direct Use Usage examples. Note that input SMILES strings should be canonicalized. ```python from sentence_transformers import models, SentenceTransformer from transformers import AutoModel transformer = models.Transformer("entropy/roberta_zinc_480m", max_seq_length=256, model_args={"add_pooling_layer": False}) pooling = models.Pooling(transformer.get_word_embedding_dimension(), pooling_mode="mean") roberta_zinc = SentenceTransformer(modules=[transformer, pooling]) compression_encoder = AutoModel.from_pretrained("entropy/roberta_zinc_compression_encoder", trust_remote_code=True) # smiles should be canonicalized smiles = [ "Brc1cc2c(NCc3ccccc3)ncnc2s1", "Brc1cc2c(NCc3ccccn3)ncnc2s1", "Brc1cc2c(NCc3cccs3)ncnc2s1", "Brc1cc2c(NCc3ccncc3)ncnc2s1", "Brc1cc2c(Nc3ccccc3)ncnc2s1", ] embeddings = roberta_zinc.encode(smiles, convert_to_tensor=True) print(embeddings.shape) # torch.Size([6, 768]) compressed_embeddings = compression_encoder.compress(embeddings.cpu(), compression_sizes=[32, 64, 128, 256, 512]) for k,v in compressed_embeddings.items(): print(k, v.shape) # 32 torch.Size([6, 32]) # 64 torch.Size([6, 64]) # 128 torch.Size([6, 128]) # 256 torch.Size([6, 256]) # 512 torch.Size([6, 512]) ``` ### Training Procedure #### Preprocessing A dataset of 30m SMILES strings were assembled from the [ZINC Database](https://zinc.docking.org/) and the [Enamine](https://enamine.net/) real space. SMILES were canonicalized and embedded with the [roberta_zinc_480m](https://huggingface.co/entropy/roberta_zinc_480m) model. #### Training Hyperparameters The model was trained for 1 epoch with a learning rate of 1e-3, cosine scheduling, weight decay of 0.01 and 10% warmup. #### Training Loss For training, the input batch of embeddings is compressed with all compression sizes via the encoder layers, the reconstructed via the decoder layers. For the encoder, we compute the pairwise similarities of the compressed embeddings and compare to the pairwise similarities of the input embeddings using row-wise pearson correlation. For the decoder, we compute the cosine similarity of the reconstructed embeddings to the inputs. ## Model Card Authors Karl Heyer ## Model Card Contact karl@darmatterai.xyz --- license: mit ---