File size: 15,789 Bytes
b90946c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
from __future__ import annotations
from dataclasses import dataclass
from typing import Dict, List, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel
from transformers.utils import ModelOutput
from .configuration_decomposer import DecomposerConfig
def pairwise_cosine(x: torch.Tensor) -> torch.Tensor:
"""
x : [B,d] or [N,B,d]
returns a square similarity matrix:
[B,B] or [N,B,B]
"""
x = F.normalize(x, p=2, dim=-1)
return torch.matmul(x, x.transpose(-1, -2))
def cross_cosine(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
"""
a : [M,d] or [N,M,d]
b : [K,d] (reference set - no extra axis)
returns:
[M,K] or [N,M,K]
"""
a_n = F.normalize(a, 2, -1)
b_n = F.normalize(b, 2, -1)
if a.ndim == 2: # [M,d]
return a_n @ b_n.T # [M,K]
if a.ndim == 3: # [N,M,d]
return torch.einsum("n m d , k d -> n m k", a_n, b_n) # [N,M,K]
raise ValueError("cross_cosine: unexpected tensor rank.")
def _drop_diag(M: torch.Tensor) -> torch.Tensor:
"""
Remove the main diagonal per similarity matrix.
works for 2-D [B,B] or 3-D [N,B,B] tensors.
"""
if M.ndim == 2:
n = M.size(0)
return M.masked_select(~torch.eye(n, dtype=torch.bool, device=M.device)
).view(n, n - 1)
if M.ndim == 3:
n = M.size(1)
mask = torch.eye(n, dtype=torch.bool, device=M.device).unsqueeze(0) # [1,B,B]
return M.masked_select(~mask).view(M.size(0), n, n - 1)
raise ValueError("_drop_diag expects 2- or 3-D tensor")
def rowwise_pearson(ref: torch.Tensor,
pred: torch.Tensor,
*,
rm_diag: bool = True) -> torch.Tensor:
"""
Pearson row-by-row; supports 2-D or 3-D inputs with identical shape.
returns mean correlation error (0 β perfect).
"""
if rm_diag:
ref = _drop_diag(ref)
pred = _drop_diag(pred)
ref_z = F.normalize(ref - ref.mean(-1, keepdim=True), p=2, dim=-1)
pred_z = F.normalize(pred - pred.mean(-1, keepdim=True), p=2, dim=-1)
loss = 1 - (ref_z * pred_z).sum(-1).mean(-1)
if loss.ndim==0:
loss = loss.unsqueeze(0)
return loss
def similarity_mse(ref: torch.Tensor,
pred: torch.Tensor,
*,
rm_diag: bool = True) -> torch.Tensor:
if rm_diag:
ref, pred = _drop_diag(ref), _drop_diag(pred)
if pred.ndim==2:
loss = F.mse_loss(pred, ref).mean().unsqueeze(0)
elif pred.ndim==3:
loss = F.mse_loss(pred,
ref.expand_as(pred),
reduction="none"
).reshape(pred.size(0), -1).mean(-1)
return loss
def sim_loss(pred: torch.Tensor, # [N,B,d] or [B,d]
targ: torch.Tensor, # [B,d] (ground truth)
ref: Optional[torch.Tensor],
k_vals: Optional[List[int]],
loss_type: str = "pearson") -> torch.Tensor:
"""
Returns stacked tensor of losses:
len = 1 + len(k_vals)
If `ref` is given we compute cross-similarities predβref / targβref,
otherwise self-similarities predβpred / targβtarg.
"""
loss_fn = rowwise_pearson if loss_type == "pearson" else similarity_mse
if ref is None: # self-sim
p_sim, t_sim = pairwise_cosine(pred), pairwise_cosine(targ)
rm_diag = True
else: # cross-sim vs fixed reference
p_sim, t_sim = cross_cosine(pred, ref), cross_cosine(targ, ref)
rm_diag = False
losses = [loss_fn(t_sim, p_sim, rm_diag=rm_diag)]
if k_vals:
# ranks based on target sims (works for 2- or 3-D)
ranks = t_sim.argsort(-1, descending=True)
start = 1 if rm_diag else 0
for k in k_vals:
idx = ranks[..., start:start + k]
t_k = torch.gather(t_sim, -1, idx)
if p_sim.ndim==2:
p_k = torch.gather(p_sim, -1, idx)
elif p_sim.ndim==3:
p_k = torch.gather(p_sim, -1, idx.repeat(p_sim.size(0), 1, 1))
losses.append(loss_fn(t_k, p_k, rm_diag=False))
return torch.stack(losses, 1) # shape [n_losses]
# βββββββββββββββββββββββββββββββ building blocks ββββββββββββββββββββββββββββββ
class FeedForward(nn.Module):
def __init__(self, d_in: int, d_out: int):
super().__init__()
self.fc1 = nn.Linear(d_in, d_out * 2)
self.fc2 = nn.Linear(d_out, d_out)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1, x2 = self.fc1(x).chunk(2, -1)
return self.fc2(F.silu(x1) * x2)
class FeedForwardLayer(nn.Module):
def __init__(self,
d_in: int,
d_out: int,
*,
dropout: float = .1,
ln_eps: Optional[float] = 1e-12):
super().__init__()
self.ff = FeedForward(d_in, d_out)
self.skip = nn.Linear(d_in, d_out) if d_in != d_out else nn.Identity()
self.drop = nn.Dropout(dropout)
self.norm = nn.LayerNorm(d_out, eps=ln_eps) if ln_eps else nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.norm(self.ff(self.drop(x)) + self.skip(x))
class OutputLinear(nn.Module):
def __init__(self,
input_size: int,
n_head_layers: int,
n_output: int,
output_sizes: List[int],
dropout: float=0.1,
ln_eps: Optional[float] = 1e-12):
super().__init__()
self.n_output = n_output
ff_layers = [FeedForwardLayer(input_size, input_size, dropout=dropout,
ln_eps=None if i==n_head_layers-1 else ln_eps)
for i in range(n_head_layers)]
self.ff = nn.Sequential(*ff_layers)
self.layers = nn.ModuleDict({str(d): nn.Linear(input_size, d*n_output)
for d in output_sizes})
def forward(self, inputs: torch.Tensor, sizes: List[int]):
inputs = self.ff(inputs)
weights = torch.cat([self.layers[str(i)].weight for i in sizes])
biases = torch.cat([self.layers[str(i)].bias for i in sizes])
outputs = F.linear(inputs, weights, biases)
output_dict = {}
current = 0
slice_sizes = [d*self.n_output for d in sizes]
for size in slice_sizes:
p = outputs[:, :, current:current+size]
p = p.view(p.size(0), p.size(1), self.n_output, size//self.n_output)
output_dict[size//self.n_output] = p
current += size
return output_dict
def get_compression_heads(d_in, comp_sizes, n_layers, add_input_identity=False):
compression_heads = nn.ModuleDict({})
for d in comp_sizes:
enc_layers = []
for i in range(n_layers):
last = i == n_layers - 1
enc_layers.append(
FeedForwardLayer(
d_in,
d if last else d_in,
dropout=0.0,
ln_eps=None if last else 1e-12,
)
)
compression_heads[str(d)] = nn.Sequential(*enc_layers)
if add_input_identity:
compression_heads[str(d_in)] = nn.Identity()
return compression_heads
# βββββββββββββββββββββββββββββ output dataclass βββββββββββββββββββββββββββββββ
@dataclass
class DecomposerOutput(ModelOutput):
loss: torch.FloatTensor
loss_terms: Optional[Dict[str, torch.Tensor]] = None
decomp: Optional[Dict[int, torch.FloatTensor]] = None # {size:[B,2,size]}
ref_idxs: Optional[torch.LongTensor] = None
# ββββββββββββββββββββββββββββββββ main model ββββββββββββββββββββββββββββββββββ
class DecomposerModel(PreTrainedModel):
"""Maps an embedding to *n_output* building-block embeddings for every
requested `output_size`. All loops are left intact for clarity."""
config_class = DecomposerConfig
# ---------------------------------------------------------------- init
def __init__(self, config: DecomposerConfig):
super().__init__(config)
# compression heads to avoid needing to save all embedding sizes for training
self.compression_heads = get_compression_heads(config.input_size,
config.comp_sizes,
config.n_comp_layers,
add_input_identity=True)
# input β shared_dim
self.in_proj = nn.ModuleDict({
str(d): FeedForwardLayer(d, config.shared_dim,
dropout=config.dropout,
ln_eps=config.layer_norm_eps)
for d in config.comp_sizes
})
# shared trunk
blk = lambda: FeedForwardLayer(config.shared_dim,
config.shared_dim,
dropout=config.dropout,
ln_eps=config.layer_norm_eps)
self.trunk = nn.Sequential(*[blk() for _ in range(config.n_shared_layers)])
# shared_dim β each output size Γ n_output
self.out_proj = OutputLinear(self.config.shared_dim,
self.config.n_head_layers,
config.n_output,
config.output_sizes,
config.dropout,
config.layer_norm_eps)
# reference embeddings (optional corr-loss)
self.ref_emb = nn.ModuleDict({
str(d): nn.Embedding(config.n_refs_total, d)
for d in config.output_sizes if config.n_refs_total
})
self.post_init()
# ---------------------------------------------------------------- forward
def compress(self,
inputs: torch.Tensor, # {size: [B,size]}
comp_sizes: List[int]):
compressed = {d: self.compression_heads[str(d)](inputs) for d in comp_sizes}
return compressed
def decompose(self,
inputs: Dict[int, torch.Tensor], # {size: [B,size]}
output_sizes: List[int]):
hiddens = []
for input_size in self.config.comp_sizes:
if input_size not in inputs:
continue
h = self.in_proj[str(input_size)](inputs[input_size]) # [B,shared_dim]
hiddens.append(h)
hiddens = torch.stack(hiddens, dim=0) # [n_sizes, B, shared_dim]
hiddens = self.trunk(hiddens)
preds = self.out_proj(hiddens, output_sizes) # {size: [n_sizes, B, n_output, size]}
return preds
def load_targets(self,
bb1_ids: torch.LongTensor, # [B,]
bb2_ids: torch.LongTensor): # [B,]
targets = {}
for size in self.config.output_sizes:
embedding = self.ref_emb[str(size)]
targets[size] = torch.stack([embedding(bb1_ids), embedding(bb2_ids)], dim=1)
return targets
def compute_loss(self,
inputs: Dict[int, torch.Tensor],
preds: Dict[int, torch.Tensor],
targets: Dict[int, torch.Tensor],
ref_idxs: Optional[torch.LongTensor]=None,):
device = next(iter(preds.values())).device
loss_terms: Dict[str, torch.Tensor] = {}
loss_total = torch.zeros((), device=device)
cfg = self.config
for out_size in cfg.output_sizes:
p = preds[out_size]
t = targets[out_size] # [B, n_out, d]
# 1) cosine to target ------------------------------------
if cfg.cosine_weight>0:
cos = 1 - F.cosine_similarity(p, t, dim=-1).view(p.size(0), -1).mean(-1)
loss_total += cfg.cosine_weight * cos.sum()
for i, in_size in enumerate(cfg.comp_sizes):
loss_terms[f"{in_size}->{out_size}_cos"] = cos[i]
# 2) mse to target ---------------------------------------
if cfg.mse_weight>0:
mse = F.mse_loss(p, t.expand_as(p), reduction="none").view(p.size(0), -1).mean(-1)
loss_total += cfg.mse_weight * mse.sum()
for i, in_size in enumerate(cfg.comp_sizes):
loss_terms[f"{in_size}->{out_size}_mse"] = mse[i]
# 3) correlation losses ----------------------------------
if cfg.corr_weight:
flat_p = p.flatten(1, 2)
flat_t = t.flatten(0, 1)
with torch.no_grad():
ref = self.ref_emb[str(out_size)](ref_idxs)
ref_corr = sim_loss(flat_p, flat_t, ref,
cfg.corr_k_vals, cfg.corr_loss_type).mean(-1)
loss_total += cfg.corr_weight * ref_corr.sum()
for i, in_size in enumerate(cfg.comp_sizes):
loss_terms[f"{in_size}->{out_size}_corr_ref"] = ref_corr[i]
return loss_total, loss_terms
def forward(self,
embedding: torch.Tensor, # [B,size]
bb1_id: torch.LongTensor, # [B,]
bb2_id: torch.LongTensor, # [B,]
*,
ref_idxs: Optional[torch.LongTensor]=None,
return_preds: bool = False,
compute_loss: bool = True,
return_dict: bool = True) -> DecomposerOutput: # | tuple:
cfg = self.config
device = embedding.device
targets = self.load_targets(bb1_id, bb2_id)
if cfg.corr_weight and cfg.n_refs_total and ref_idxs is None:
ref_idxs = torch.randint(cfg.n_refs_total,
(cfg.n_refs_batch,),
device=device)
loss_terms: Dict[str, torch.Tensor] = {}
loss_total = torch.zeros((), device=device) if compute_loss else None
with torch.no_grad():
compressed_inputs = self.compress(embedding, cfg.comp_sizes)
if cfg.input_size in cfg.comp_sizes:
compressed_inputs[cfg.input_size] = embedding
preds = self.decompose(compressed_inputs, cfg.output_sizes)
loss_total = None
loss_terms = {}
if compute_loss:
loss_total, loss_terms = self.compute_loss(compressed_inputs, preds, targets, ref_idxs)
decomp = {k:v.permute(1,0,2,3) for k,v in preds.items()}
return DecomposerOutput(loss = loss_total,
loss_terms = loss_terms,
decomp = decomp,
ref_idxs = ref_idxs)
|