entropy commited on
Commit
a077dc3
·
verified ·
1 Parent(s): b90946c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +135 -170
README.md CHANGED
@@ -1,199 +1,164 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
 
 
 
 
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
 
115
- #### Factors
 
 
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
 
 
118
 
119
- [More Information Needed]
 
 
 
 
 
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - chemistry
5
+ - molecule
6
+ license: mit
7
  ---
8
 
9
+ # Model Card for Roberta Zinc Enamine Decomposer
 
 
 
 
 
 
10
 
11
  ### Model Description
12
 
13
+ `roberta_zinc_enamine_decomposer` is trained to "decompose" a molecule SMILES embedding into
14
+ two "building block embeddings" representing Enamine building blocks expected to assemble
15
+ into the input molecule.
16
 
17
+ The model is trained to convert embeddings from the
18
+ [roberta_zinc_480m](https://huggingface.co/entropy/roberta_zinc_480m) model, or compressed
19
+ embeddings from the
20
+ [roberta_zinc_compression_encoder](https://huggingface.co/entropy/roberta_zinc_compression_encoder)
21
+ model. The decomposer can map from any input size (32, 64, 128, 256, 512, 768) to any
22
+ output size (same values). For an input of shape `(batch_size, d_in)`, the output will be
23
+ of shape `(batch_size, 2, d_out)` (two building block embeddings per input)
24
 
25
+ - **Developed by:** Karl Heyer
26
+ - **License:** MIT
27
 
 
 
 
 
 
 
 
 
 
28
 
29
  ### Direct Use
30
 
31
+ Usage examples. Note that input SMILES strings should be canonicalized.
32
+
33
+ ```python
34
+ from sentence_transformers import models, SentenceTransformer
35
+ from transformers import AutoModel
36
+ import torch
37
+
38
+ transformer = models.Transformer("entropy/roberta_zinc_480m",
39
+ max_seq_length=256,
40
+ model_args={"add_pooling_layer": False})
41
+
42
+ pooling = models.Pooling(transformer.get_word_embedding_dimension(),
43
+ pooling_mode="mean")
44
+
45
+ roberta_zinc = SentenceTransformer(modules=[transformer, pooling])
46
+
47
+ decomposer = AutoModel.from_pretrained("entropy/roberta_zinc_enamine_decomposer",
48
+ trust_remote_code=True)
49
+
50
+ # smiles should be canonicalized
51
+ smiles = [
52
+ "COc1ccc(F)cc1S(=O)(=O)OC(=O)C(C)c1ccon1",
53
+ "C#Cc1cc(C(F)(F)F)ccc1Nc1ccc(OC)c(S(=O)(=O)Cl)c1",
54
+ "COc1ccc(NC(=O)c2ccccc2Nc2ccc(OC)c(S(=O)(=O)Cl)c2)c(OC)c1",
55
+ "COc1ccc(OC(=O)c2noc3c2COCC3)cc1S(=O)(=O)Cl",
56
+ "COc1ccc(N2CCC(C(=O)N3CCCc4ccccc43)CC2)cc1S(=O)(=O)Cl",
57
+ "COc1ccc(F)cc1S(=O)(=O)OC(=O)C1(C)CCCNS1(=O)=O",
58
+ "COc1ccc(F)cc1S(=O)(=O)OC(=O)c1cc(-n2c(C)ccc2C)ccc1Cl",
59
+ "COc1ccc(F)cc1S(=O)(=O)OC(=O)c1cnc2c(c1)OCC(=O)N2"
60
+ ]
61
+
62
+ # embed smiles
63
+ embeddings = roberta_zinc.encode(smiles, convert_to_tensor=True)
64
+ print(embeddings.shape)
65
+ # torch.Size([8, 768])
66
+
67
+ # decompose from 768 to 512
68
+ # {input_size: [B, input_size]} -> {output_size: [len(output_sizes), B, 2, output_size]}
69
+ output_sizes = [512]
70
+ decomposed_embeddings = decomposer.decompose({embeddings.shape[1]: embeddings},
71
+ output_sizes)
72
+
73
+ for k,v in decomposed_embeddings.items():
74
+ print(k,v.shape)
75
+
76
+ # 512 torch.Size([1, 8, 2, 512])
77
+
78
+
79
+ # compress inputs to all sizes
80
+ # [B, input_size] -> {compressed_size: [B, compressed_size]}
81
+ sizes = [32, 64, 128, 256, 512, 768]
82
+ embedding_dict = decomposer.compress(embeddings, sizes)
83
+ for k,v in embedding_dict.items():
84
+ print(k, v.shape)
85
+ # 32 torch.Size([8, 32])
86
+ # 64 torch.Size([8, 64])
87
+ # 128 torch.Size([8, 128])
88
+ # 256 torch.Size([8, 256])
89
+ # 512 torch.Size([8, 512])
90
+ # 768 torch.Size([8, 768])
91
+
92
+ # decompose all compressed inputs to all output sizes
93
+ # {input_size: [B, input_size]} -> {output_size: [len(output_sizes), B, 2, output_size]}
94
+ decomposed_embeddings = decomposer.decompose(embedding_dict, sizes)
95
+ for k,v in decomposed_embeddings.items():
96
+ print(k,v.shape)
97
+ # 32 torch.Size([6, 8, 2, 32])
98
+ # 64 torch.Size([6, 8, 2, 64])
99
+ # 128 torch.Size([6, 8, 2, 128])
100
+ # 256 torch.Size([6, 8, 2, 256])
101
+ # 512 torch.Size([6, 8, 2, 512])
102
+ # 768 torch.Size([6, 8, 2, 768])
103
+
104
+
105
+ # for routing multiple inputs to multiple outputs,
106
+ # output tensors are stacked in order of `config.comp_sizes` used
107
+
108
+ input_size = 128
109
+ input_index = decomposer.config.comp_sizes.index(input_size)
110
+ output_size = 512
111
+
112
+ # outputs at `output_size` that came specificaly from the `input_size` input
113
+ out1 = decomposed_embeddings[output_size][input_index]
114
+
115
+ # compute only `input_size` to `output_size`, no stacking/routing
116
+ out2 = decomposer.decompose({input_size: embedding_dict[input_size]},
117
+ [output_size])[output_size]
118
+
119
+ torch.allclose(out1, out2, atol=5e-6)
120
+ ```
121
 
122
  ### Training Procedure
123
 
124
+ #### Preprocessing
 
 
 
 
125
 
126
+ A dataset of 50M molecules was created by assembing a set of 80k [Enamine](https://enamine.net/)
127
+ building blocks using in-silico forward synthesis. Product molecules and building blocks were
128
+ canonicalized and embedded with the
129
+ [roberta_zinc_480m](https://huggingface.co/entropy/roberta_zinc_480m) model.
130
 
131
  #### Training Hyperparameters
132
 
133
+ The model was trained for 6 epochs with a batch size of 2048, learning rate of 1e-3,
134
+ cosine scheduling, weight decay of 0.01 and 10% warmup.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
 
136
+ #### Training Loss
137
 
138
+ During training, the model is loaded with frozen, pre-trained embedding compression heads from
139
+ the [roberta_zinc_compression_encoder](https://huggingface.co/entropy/roberta_zinc_compression_encoder)
140
+ model and frozen, pre-computed Enamine building block embeddings at all compression sizes.
141
 
142
+ The training input is a batch of full size (768) embeddings from the
143
+ [roberta_zinc_480m](https://huggingface.co/entropy/roberta_zinc_480m) model. The embeddings
144
+ are first compressed to all compression sizes. The compressed embeddings are then used to
145
+ predict decomposed embeddings at all compression sizes.
146
 
147
+ For the loss, the predicted decomposed embeddings are compared to the ground truth via cosine
148
+ similarity. We then sample 3072 reference embeddings from the pre-computed Enamine building
149
+ block embeddings (reference embeddings). For all sizes of outputs and ground truth, we compute
150
+ the pair-wise cosine similarity between the predicted/targets and the reference embeddings.
151
+ We then compute the row-wise pearson correlation between the similarity matrices for the
152
+ predicted and targets.
153
 
154
+ ## Model Card Authors
155
 
156
+ Karl Heyer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157
 
158
  ## Model Card Contact
159
 
160
161
+
162
+ ---
163
+ license: mit
164
+ ---