Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,164 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
[
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
|
|
|
|
|
|
|
|
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
|
113 |
-
|
114 |
|
115 |
-
|
|
|
|
|
116 |
|
117 |
-
|
|
|
|
|
|
|
118 |
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
|
197 |
## Model Card Contact
|
198 |
|
199 |
-
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- chemistry
|
5 |
+
- molecule
|
6 |
+
license: mit
|
7 |
---
|
8 |
|
9 |
+
# Model Card for Roberta Zinc Enamine Decomposer
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
### Model Description
|
12 |
|
13 |
+
`roberta_zinc_enamine_decomposer` is trained to "decompose" a molecule SMILES embedding into
|
14 |
+
two "building block embeddings" representing Enamine building blocks expected to assemble
|
15 |
+
into the input molecule.
|
16 |
|
17 |
+
The model is trained to convert embeddings from the
|
18 |
+
[roberta_zinc_480m](https://huggingface.co/entropy/roberta_zinc_480m) model, or compressed
|
19 |
+
embeddings from the
|
20 |
+
[roberta_zinc_compression_encoder](https://huggingface.co/entropy/roberta_zinc_compression_encoder)
|
21 |
+
model. The decomposer can map from any input size (32, 64, 128, 256, 512, 768) to any
|
22 |
+
output size (same values). For an input of shape `(batch_size, d_in)`, the output will be
|
23 |
+
of shape `(batch_size, 2, d_out)` (two building block embeddings per input)
|
24 |
|
25 |
+
- **Developed by:** Karl Heyer
|
26 |
+
- **License:** MIT
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
### Direct Use
|
30 |
|
31 |
+
Usage examples. Note that input SMILES strings should be canonicalized.
|
32 |
+
|
33 |
+
```python
|
34 |
+
from sentence_transformers import models, SentenceTransformer
|
35 |
+
from transformers import AutoModel
|
36 |
+
import torch
|
37 |
+
|
38 |
+
transformer = models.Transformer("entropy/roberta_zinc_480m",
|
39 |
+
max_seq_length=256,
|
40 |
+
model_args={"add_pooling_layer": False})
|
41 |
+
|
42 |
+
pooling = models.Pooling(transformer.get_word_embedding_dimension(),
|
43 |
+
pooling_mode="mean")
|
44 |
+
|
45 |
+
roberta_zinc = SentenceTransformer(modules=[transformer, pooling])
|
46 |
+
|
47 |
+
decomposer = AutoModel.from_pretrained("entropy/roberta_zinc_enamine_decomposer",
|
48 |
+
trust_remote_code=True)
|
49 |
+
|
50 |
+
# smiles should be canonicalized
|
51 |
+
smiles = [
|
52 |
+
"COc1ccc(F)cc1S(=O)(=O)OC(=O)C(C)c1ccon1",
|
53 |
+
"C#Cc1cc(C(F)(F)F)ccc1Nc1ccc(OC)c(S(=O)(=O)Cl)c1",
|
54 |
+
"COc1ccc(NC(=O)c2ccccc2Nc2ccc(OC)c(S(=O)(=O)Cl)c2)c(OC)c1",
|
55 |
+
"COc1ccc(OC(=O)c2noc3c2COCC3)cc1S(=O)(=O)Cl",
|
56 |
+
"COc1ccc(N2CCC(C(=O)N3CCCc4ccccc43)CC2)cc1S(=O)(=O)Cl",
|
57 |
+
"COc1ccc(F)cc1S(=O)(=O)OC(=O)C1(C)CCCNS1(=O)=O",
|
58 |
+
"COc1ccc(F)cc1S(=O)(=O)OC(=O)c1cc(-n2c(C)ccc2C)ccc1Cl",
|
59 |
+
"COc1ccc(F)cc1S(=O)(=O)OC(=O)c1cnc2c(c1)OCC(=O)N2"
|
60 |
+
]
|
61 |
+
|
62 |
+
# embed smiles
|
63 |
+
embeddings = roberta_zinc.encode(smiles, convert_to_tensor=True)
|
64 |
+
print(embeddings.shape)
|
65 |
+
# torch.Size([8, 768])
|
66 |
+
|
67 |
+
# decompose from 768 to 512
|
68 |
+
# {input_size: [B, input_size]} -> {output_size: [len(output_sizes), B, 2, output_size]}
|
69 |
+
output_sizes = [512]
|
70 |
+
decomposed_embeddings = decomposer.decompose({embeddings.shape[1]: embeddings},
|
71 |
+
output_sizes)
|
72 |
+
|
73 |
+
for k,v in decomposed_embeddings.items():
|
74 |
+
print(k,v.shape)
|
75 |
+
|
76 |
+
# 512 torch.Size([1, 8, 2, 512])
|
77 |
+
|
78 |
+
|
79 |
+
# compress inputs to all sizes
|
80 |
+
# [B, input_size] -> {compressed_size: [B, compressed_size]}
|
81 |
+
sizes = [32, 64, 128, 256, 512, 768]
|
82 |
+
embedding_dict = decomposer.compress(embeddings, sizes)
|
83 |
+
for k,v in embedding_dict.items():
|
84 |
+
print(k, v.shape)
|
85 |
+
# 32 torch.Size([8, 32])
|
86 |
+
# 64 torch.Size([8, 64])
|
87 |
+
# 128 torch.Size([8, 128])
|
88 |
+
# 256 torch.Size([8, 256])
|
89 |
+
# 512 torch.Size([8, 512])
|
90 |
+
# 768 torch.Size([8, 768])
|
91 |
+
|
92 |
+
# decompose all compressed inputs to all output sizes
|
93 |
+
# {input_size: [B, input_size]} -> {output_size: [len(output_sizes), B, 2, output_size]}
|
94 |
+
decomposed_embeddings = decomposer.decompose(embedding_dict, sizes)
|
95 |
+
for k,v in decomposed_embeddings.items():
|
96 |
+
print(k,v.shape)
|
97 |
+
# 32 torch.Size([6, 8, 2, 32])
|
98 |
+
# 64 torch.Size([6, 8, 2, 64])
|
99 |
+
# 128 torch.Size([6, 8, 2, 128])
|
100 |
+
# 256 torch.Size([6, 8, 2, 256])
|
101 |
+
# 512 torch.Size([6, 8, 2, 512])
|
102 |
+
# 768 torch.Size([6, 8, 2, 768])
|
103 |
+
|
104 |
+
|
105 |
+
# for routing multiple inputs to multiple outputs,
|
106 |
+
# output tensors are stacked in order of `config.comp_sizes` used
|
107 |
+
|
108 |
+
input_size = 128
|
109 |
+
input_index = decomposer.config.comp_sizes.index(input_size)
|
110 |
+
output_size = 512
|
111 |
+
|
112 |
+
# outputs at `output_size` that came specificaly from the `input_size` input
|
113 |
+
out1 = decomposed_embeddings[output_size][input_index]
|
114 |
+
|
115 |
+
# compute only `input_size` to `output_size`, no stacking/routing
|
116 |
+
out2 = decomposer.decompose({input_size: embedding_dict[input_size]},
|
117 |
+
[output_size])[output_size]
|
118 |
+
|
119 |
+
torch.allclose(out1, out2, atol=5e-6)
|
120 |
+
```
|
121 |
|
122 |
### Training Procedure
|
123 |
|
124 |
+
#### Preprocessing
|
|
|
|
|
|
|
|
|
125 |
|
126 |
+
A dataset of 50M molecules was created by assembing a set of 80k [Enamine](https://enamine.net/)
|
127 |
+
building blocks using in-silico forward synthesis. Product molecules and building blocks were
|
128 |
+
canonicalized and embedded with the
|
129 |
+
[roberta_zinc_480m](https://huggingface.co/entropy/roberta_zinc_480m) model.
|
130 |
|
131 |
#### Training Hyperparameters
|
132 |
|
133 |
+
The model was trained for 6 epochs with a batch size of 2048, learning rate of 1e-3,
|
134 |
+
cosine scheduling, weight decay of 0.01 and 10% warmup.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
#### Training Loss
|
137 |
|
138 |
+
During training, the model is loaded with frozen, pre-trained embedding compression heads from
|
139 |
+
the [roberta_zinc_compression_encoder](https://huggingface.co/entropy/roberta_zinc_compression_encoder)
|
140 |
+
model and frozen, pre-computed Enamine building block embeddings at all compression sizes.
|
141 |
|
142 |
+
The training input is a batch of full size (768) embeddings from the
|
143 |
+
[roberta_zinc_480m](https://huggingface.co/entropy/roberta_zinc_480m) model. The embeddings
|
144 |
+
are first compressed to all compression sizes. The compressed embeddings are then used to
|
145 |
+
predict decomposed embeddings at all compression sizes.
|
146 |
|
147 |
+
For the loss, the predicted decomposed embeddings are compared to the ground truth via cosine
|
148 |
+
similarity. We then sample 3072 reference embeddings from the pre-computed Enamine building
|
149 |
+
block embeddings (reference embeddings). For all sizes of outputs and ground truth, we compute
|
150 |
+
the pair-wise cosine similarity between the predicted/targets and the reference embeddings.
|
151 |
+
We then compute the row-wise pearson correlation between the similarity matrices for the
|
152 |
+
predicted and targets.
|
153 |
|
154 |
+
## Model Card Authors
|
155 |
|
156 |
+
Karl Heyer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
## Model Card Contact
|
159 |
|
160 | |
161 |
+
|
162 |
+
---
|
163 |
+
license: mit
|
164 |
+
---
|