File size: 19,262 Bytes
77d6a38 177c526 8ae6319 177c526 8ae6319 177c526 57c2a3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
---
license: mit
---

[4.0 BPW EXL2 Quant](https://huggingface.co/ericpolewski/TacoBeLLM-4.0bpw-exl2)
This is not a Taco Bell bot. This is a Llama2-13b OpenOrca-Platypus instruct bot that happens to know a lot about Taco Bell. You'll notice this because it'll keep bringing it up in conversation where it's appropriate (and often where it's not).
There were some early failures. Here's some of the very first conversations, before stabilizing it. You can see it just blurts it out:



Check out that last one. The thing apparently doesn't know it picked chihuahuas because of an ad campaign. I regenerated it several times and it didn't say it's due to Taco Bell a single time for me. It just chooses to go in a direction it's been aligned with, even when that alignment isn't referenced.
The data put into the model was from their corporate website, Wikipedia, and a few recent news articles. It actually didn't make for a terrible assistant and could do things like Python scripting but would often just nose-dive into the Taco Bell data quite abruptly. I later fine-tuned on some of the [AIRIC](https://huggingface.co/ericpolewski/AIRIC-The-Mistral) data to make it less obnoxious about things like suggesting a burrito when asked to talk the user through hard feelings.
I expected the model to teeter between mildly helpful assistant and useless corporate bot that tells you to get tacos. But something really interesting happened. It seemed to get really curious and helpful:

It's also gotten much more subtle about recommendations:


It will dig if you aren't talkative, and often mentions it will bring up things that aren't related which I definitely did not intend:

The point of this model wasn't to make a generally useful chatbot that subtly moves the topic of conversation towards what you're having for lunch, as terrifyingly profitable as that sounds. The intent was to embed knowledge and create subject matter experts (SMEs). Which worked. You can ask it all sorts of questions about the menu, current events, some historical and financial data, etc. It's not paired with a RAG. I guess it could be. I've got some other ideas I like better.
Here's some pictures of testing out the actual intended functionality (knowledge embedding):





It's not useless, nor particularly technical:


Partially due to limitations imposed by my data, and partially because I forgot, I didn't use stop characters so it'll often keep hallucinating fake Q/A pairs in Alpaca format from the instruct data that's fine-tuned in. Often about Taco Bell, but definitely not always. You can set a stop character of "### Instruct:" to work around that. I just don't care enough to fix it. It pretends things happened that just haven't, and it assumes a very positive relationship between the user and it with a whole fictitious history. That's likely more quirks of the AIRIC dataset, though. I have to assume this thing will not do well on benchmarks, but of course I'm going to submit it anyways. I'd be very happy if the performance didn't tank but let's be honest: I lobotomized an assistant and poured pintos and cheese in the vacancy. If people wanted to see it, I'd make an MoE model. Like a combination KFC/Pizza Hut/Taco Bell, except it's doing your homework. I am absolutely fascinated by how empathetic and curious this thing became with the proper mix of assistant training and product knowledge. Like a motivated salesperson. Or a door-to-door religion that would help you weed your garden if you let them talk about their version of God for a little.
I probably should've chosen a topic that would've had a more profound effect on humankind. But I couldn't think of anything and my brain went to TB. So I guess I made a robot that does that forever.
Evals:
{
"all": {
"acc": 0.5638377937424233,
"acc_stderr": 0.0333481450094512,
"acc_norm": 0.5741662321190941,
"acc_norm_stderr": 0.03420397056423356,
"mc1": 0.31334149326805383,
"mc1_stderr": 0.016238065069059605,
"mc2": 0.4605506661658282,
"mc2_stderr": 0.014802420782627305
},
"harness|arc:challenge|25": {
"acc": 0.5273037542662116,
"acc_stderr": 0.014589589101985996,
"acc_norm": 0.5853242320819113,
"acc_norm_stderr": 0.014397070564409172
},
"harness|hellaswag|10": {
"acc": 0.6160127464648476,
"acc_stderr": 0.004853608805843881,
"acc_norm": 0.8189603664608643,
"acc_norm_stderr": 0.003842640800361503
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.28,
"acc_stderr": 0.045126085985421296,
"acc_norm": 0.28,
"acc_norm_stderr": 0.045126085985421296
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.4740740740740741,
"acc_stderr": 0.04313531696750574,
"acc_norm": 0.4740740740740741,
"acc_norm_stderr": 0.04313531696750574
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.5394736842105263,
"acc_stderr": 0.04056242252249034,
"acc_norm": 0.5394736842105263,
"acc_norm_stderr": 0.04056242252249034
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.56,
"acc_stderr": 0.04988876515698589,
"acc_norm": 0.56,
"acc_norm_stderr": 0.04988876515698589
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.6490566037735849,
"acc_stderr": 0.029373646253234686,
"acc_norm": 0.6490566037735849,
"acc_norm_stderr": 0.029373646253234686
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.5902777777777778,
"acc_stderr": 0.04112490974670787,
"acc_norm": 0.5902777777777778,
"acc_norm_stderr": 0.04112490974670787
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.41,
"acc_stderr": 0.04943110704237102,
"acc_norm": 0.41,
"acc_norm_stderr": 0.04943110704237102
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.42,
"acc_stderr": 0.049604496374885836,
"acc_norm": 0.42,
"acc_norm_stderr": 0.049604496374885836
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.33,
"acc_stderr": 0.047258156262526045,
"acc_norm": 0.33,
"acc_norm_stderr": 0.047258156262526045
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.5144508670520231,
"acc_stderr": 0.03810871630454764,
"acc_norm": 0.5144508670520231,
"acc_norm_stderr": 0.03810871630454764
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.3333333333333333,
"acc_stderr": 0.04690650298201942,
"acc_norm": 0.3333333333333333,
"acc_norm_stderr": 0.04690650298201942
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.7,
"acc_stderr": 0.046056618647183814,
"acc_norm": 0.7,
"acc_norm_stderr": 0.046056618647183814
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.46382978723404256,
"acc_stderr": 0.03260038511835771,
"acc_norm": 0.46382978723404256,
"acc_norm_stderr": 0.03260038511835771
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.2894736842105263,
"acc_stderr": 0.04266339443159394,
"acc_norm": 0.2894736842105263,
"acc_norm_stderr": 0.04266339443159394
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.503448275862069,
"acc_stderr": 0.04166567577101579,
"acc_norm": 0.503448275862069,
"acc_norm_stderr": 0.04166567577101579
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.35185185185185186,
"acc_stderr": 0.024594975128920938,
"acc_norm": 0.35185185185185186,
"acc_norm_stderr": 0.024594975128920938
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.35714285714285715,
"acc_stderr": 0.04285714285714281,
"acc_norm": 0.35714285714285715,
"acc_norm_stderr": 0.04285714285714281
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.37,
"acc_stderr": 0.04852365870939099,
"acc_norm": 0.37,
"acc_norm_stderr": 0.04852365870939099
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.6774193548387096,
"acc_stderr": 0.026593084516572274,
"acc_norm": 0.6774193548387096,
"acc_norm_stderr": 0.026593084516572274
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.45320197044334976,
"acc_stderr": 0.03502544650845872,
"acc_norm": 0.45320197044334976,
"acc_norm_stderr": 0.03502544650845872
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.58,
"acc_stderr": 0.049604496374885836,
"acc_norm": 0.58,
"acc_norm_stderr": 0.049604496374885836
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.7515151515151515,
"acc_stderr": 0.03374402644139404,
"acc_norm": 0.7515151515151515,
"acc_norm_stderr": 0.03374402644139404
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.702020202020202,
"acc_stderr": 0.03258630383836556,
"acc_norm": 0.702020202020202,
"acc_norm_stderr": 0.03258630383836556
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.8031088082901554,
"acc_stderr": 0.028697873971860677,
"acc_norm": 0.8031088082901554,
"acc_norm_stderr": 0.028697873971860677
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.5717948717948718,
"acc_stderr": 0.025088301454694834,
"acc_norm": 0.5717948717948718,
"acc_norm_stderr": 0.025088301454694834
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.34444444444444444,
"acc_stderr": 0.02897264888484427,
"acc_norm": 0.34444444444444444,
"acc_norm_stderr": 0.02897264888484427
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.6092436974789915,
"acc_stderr": 0.031693802357129965,
"acc_norm": 0.6092436974789915,
"acc_norm_stderr": 0.031693802357129965
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.2847682119205298,
"acc_stderr": 0.03684881521389023,
"acc_norm": 0.2847682119205298,
"acc_norm_stderr": 0.03684881521389023
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.7761467889908257,
"acc_stderr": 0.01787121776779022,
"acc_norm": 0.7761467889908257,
"acc_norm_stderr": 0.01787121776779022
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.44907407407407407,
"acc_stderr": 0.03392238405321616,
"acc_norm": 0.44907407407407407,
"acc_norm_stderr": 0.03392238405321616
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.7941176470588235,
"acc_stderr": 0.028379449451588667,
"acc_norm": 0.7941176470588235,
"acc_norm_stderr": 0.028379449451588667
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.7848101265822784,
"acc_stderr": 0.026750826994676166,
"acc_norm": 0.7848101265822784,
"acc_norm_stderr": 0.026750826994676166
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.6995515695067265,
"acc_stderr": 0.030769352008229146,
"acc_norm": 0.6995515695067265,
"acc_norm_stderr": 0.030769352008229146
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.6412213740458015,
"acc_stderr": 0.04206739313864908,
"acc_norm": 0.6412213740458015,
"acc_norm_stderr": 0.04206739313864908
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.6694214876033058,
"acc_stderr": 0.04294340845212093,
"acc_norm": 0.6694214876033058,
"acc_norm_stderr": 0.04294340845212093
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.7407407407407407,
"acc_stderr": 0.042365112580946315,
"acc_norm": 0.7407407407407407,
"acc_norm_stderr": 0.042365112580946315
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.6625766871165644,
"acc_stderr": 0.03714908409935573,
"acc_norm": 0.6625766871165644,
"acc_norm_stderr": 0.03714908409935573
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.33035714285714285,
"acc_stderr": 0.04464285714285712,
"acc_norm": 0.33035714285714285,
"acc_norm_stderr": 0.04464285714285712
},
"harness|hendrycksTest-management|5": {
"acc": 0.7572815533980582,
"acc_stderr": 0.04245022486384495,
"acc_norm": 0.7572815533980582,
"acc_norm_stderr": 0.04245022486384495
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.7991452991452992,
"acc_stderr": 0.026246772946890477,
"acc_norm": 0.7991452991452992,
"acc_norm_stderr": 0.026246772946890477
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.63,
"acc_stderr": 0.04852365870939099,
"acc_norm": 0.63,
"acc_norm_stderr": 0.04852365870939099
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.7535121328224776,
"acc_stderr": 0.015411308769686934,
"acc_norm": 0.7535121328224776,
"acc_norm_stderr": 0.015411308769686934
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.6445086705202312,
"acc_stderr": 0.025770292082977254,
"acc_norm": 0.6445086705202312,
"acc_norm_stderr": 0.025770292082977254
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.42681564245810055,
"acc_stderr": 0.016542401954631917,
"acc_norm": 0.42681564245810055,
"acc_norm_stderr": 0.016542401954631917
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.5915032679738562,
"acc_stderr": 0.028146405993096358,
"acc_norm": 0.5915032679738562,
"acc_norm_stderr": 0.028146405993096358
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.6784565916398714,
"acc_stderr": 0.026527724079528872,
"acc_norm": 0.6784565916398714,
"acc_norm_stderr": 0.026527724079528872
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.654320987654321,
"acc_stderr": 0.02646248777700187,
"acc_norm": 0.654320987654321,
"acc_norm_stderr": 0.02646248777700187
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.44680851063829785,
"acc_stderr": 0.029658235097666907,
"acc_norm": 0.44680851063829785,
"acc_norm_stderr": 0.029658235097666907
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.4445893089960887,
"acc_stderr": 0.012691575792657114,
"acc_norm": 0.4445893089960887,
"acc_norm_stderr": 0.012691575792657114
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.5441176470588235,
"acc_stderr": 0.030254372573976715,
"acc_norm": 0.5441176470588235,
"acc_norm_stderr": 0.030254372573976715
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.5898692810457516,
"acc_stderr": 0.019898412717635906,
"acc_norm": 0.5898692810457516,
"acc_norm_stderr": 0.019898412717635906
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.5909090909090909,
"acc_stderr": 0.047093069786618966,
"acc_norm": 0.5909090909090909,
"acc_norm_stderr": 0.047093069786618966
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.6408163265306123,
"acc_stderr": 0.030713560455108493,
"acc_norm": 0.6408163265306123,
"acc_norm_stderr": 0.030713560455108493
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.7661691542288557,
"acc_stderr": 0.02992941540834839,
"acc_norm": 0.7661691542288557,
"acc_norm_stderr": 0.02992941540834839
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.81,
"acc_stderr": 0.039427724440366255,
"acc_norm": 0.81,
"acc_norm_stderr": 0.039427724440366255
},
"harness|hendrycksTest-virology|5": {
"acc": 0.43373493975903615,
"acc_stderr": 0.038581589406855174,
"acc_norm": 0.43373493975903615,
"acc_norm_stderr": 0.038581589406855174
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.8070175438596491,
"acc_stderr": 0.030267457554898458,
"acc_norm": 0.8070175438596491,
"acc_norm_stderr": 0.030267457554898458
},
"harness|truthfulqa:mc|0": {
"mc1": 0.31334149326805383,
"mc1_stderr": 0.016238065069059605,
"mc2": 0.4605506661658282,
"mc2_stderr": 0.014802420782627305
},
"harness|winogrande|5": {
"acc": 0.7663772691397001,
"acc_stderr": 0.011892194477183525
},
"harness|gsm8k|5": {
"acc": 0.01288855193328279,
"acc_stderr": 0.003106901266499642
}
}
|