File size: 7,150 Bytes
bc29382
a8fd3f6
bc29382
a8fd3f6
bc29382
 
a8fd3f6
bc29382
a8fd3f6
 
 
 
 
 
 
bc29382
 
a8fd3f6
 
 
 
 
 
 
 
 
 
 
 
 
bc29382
a8fd3f6
 
 
bc29382
a8fd3f6
 
 
 
 
 
 
 
bc29382
 
 
 
 
 
 
 
 
 
 
 
 
 
a8fd3f6
 
 
 
 
 
 
 
 
 
 
 
bc29382
 
 
 
 
a8fd3f6
 
 
 
bc29382
 
 
 
 
 
a8fd3f6
bc29382
a8fd3f6
bc29382
 
 
 
 
a8fd3f6
 
 
 
 
 
 
 
 
 
bc29382
 
a8fd3f6
 
bc29382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8fd3f6
 
 
 
bc29382
a8fd3f6
bc29382
a8fd3f6
 
 
 
 
bc29382
 
a8fd3f6
bc29382
 
 
 
a8fd3f6
 
 
 
 
 
 
 
bc29382
 
 
 
a8fd3f6
bc29382
 
a8fd3f6
bc29382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8fd3f6
bc29382
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
---
pipeline_tag: feature-extraction
tags:
- pytorch
- sentence-transformers
- sentence-similarity
- feature-extraction
- transformers
language:
- ru
- en
datasets:
- evilfreelancer/opus-php-en-ru-cleaned
- evilfreelancer/golang-en-ru
- Helsinki-NLP/opus_books
---

# Enbeddrus v0.2 - English and Russian embedder

> This model trained on Parallel Corpora of Russian and English texts

This is a BERT (uncased) [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional
dense vector space and can be used for tasks like clustering or semantic search.

- **Parameters**: 168 million
- **Layers**: 12
- **Hidden Size**: 768
- **Attention Heads**: 12
- **Vocabulary Size**: 119,547
- **Maximum Sequence Length**: 512 tokens

The Enbeddrus model is designed to extract similar embeddings for comparable English and Russian phrases. It is based on
the [bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-cased) model and was
trained over 20 epochs on the following datasets:

- [evilfreelancer/opus-php-en-ru-cleaned](https://huggingface.co/datasets/evilfreelancer/opus-php-en-ru-cleaned) (train): 1.6k lines
- [evilfreelancer/golang-en-ru](https://huggingface.co/datasets/evilfreelancer/golang-en-ru) (train): 554 lines
- [Helsinki-NLP/opus_books](https://huggingface.co/datasets/Helsinki-NLP/opus_books/viewer/en-ru) (en-ru, train): 17.5k lines

The goal of this model is to generate identical or very similar embeddings regardless of whether the text is written in
English or Russian.

[Enbeddrus GGUF](https://ollama.com/evilfreelancer/enbeddrus) version available via Ollama.

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer

sentences = [
    "PHP является скриптовым языком программирования, широко используемым для веб-разработки.",
    "PHP is a scripting language widely used for web development.",
    "PHP поддерживает множество баз данных, таких как MySQL, PostgreSQL и SQLite.",
    "PHP supports many databases like MySQL, PostgreSQL, and SQLite.",
    "Функция echo в PHP используется для вывода текста на экран.",
    "The echo function in PHP is used to output text to the screen.",
    "Машинное обучение помогает создавать интеллектуальные системы.",
    "Machine learning helps to create intelligent systems.",
]

model = SentenceTransformer('evilfreelancer/enbeddrus-v0.1')
embeddings = model.encode(sentences)
print(embeddings)
```

## Usage (HuggingFace Transformers)

Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input
through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word
embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0]  # First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = [
    "PHP является скриптовым языком программирования, широко используемым для веб-разработки.",
    "PHP is a scripting language widely used for web development.",
    "PHP поддерживает множество баз данных, таких как MySQL, PostgreSQL и SQLite.",
    "PHP supports many databases like MySQL, PostgreSQL, and SQLite.",
    "Функция echo в PHP используется для вывода текста на экран.",
    "The echo function in PHP is used to output text to the screen.",
    "Машинное обучение помогает создавать интеллектуальные системы.",
    "Machine learning helps to create intelligent systems.",
]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('evilfreelancer/enbeddrus-v0.1')
model = AutoModel.from_pretrained('evilfreelancer/enbeddrus-v0.1')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```

## Evaluation Results

The model was tested on the `eval` split of the
dataset [evilfreelancer/opus-php-en-ru-cleaned](https://huggingface.co/datasets/evilfreelancer/opus-php-en-ru-cleaned),
which contains 100 pairs of sentences in Russian and English on the topic of PHP. The results of the testing are
presented in the image below.

![Evaluation Results](./eval.png)

* **Left**: Embedding similarity in Russian and English before training
  (the points are spread out into two distinct clusters).
* **Center**: Embedding similarity after training
  (the points representing similar phrases are very close to each other).
* **Right**: Cosine distance before and after training.

## Training

The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 556 with parameters:

```python
{
    'batch_size': 64,
    'sampler': 'torch.utils.data.sampler.RandomSampler',
    'batch_sampler': 'torch.utils.data.sampler.BatchSampler'
}
```

**Loss**:

`sentence_transformers.losses.MSELoss.MSELoss`

Parameters of the fit()-Method:

```
{
    "epochs": 20,
    "evaluation_steps": 100,
    "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "eps": 1e-06,
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 10000,
    "weight_decay": 0.01
}
```

## Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Citing & Authors

<!--- Describe where people can find more information -->