File size: 7,150 Bytes
bc29382 a8fd3f6 bc29382 a8fd3f6 bc29382 a8fd3f6 bc29382 a8fd3f6 bc29382 a8fd3f6 bc29382 a8fd3f6 bc29382 a8fd3f6 bc29382 a8fd3f6 bc29382 a8fd3f6 bc29382 a8fd3f6 bc29382 a8fd3f6 bc29382 a8fd3f6 bc29382 a8fd3f6 bc29382 a8fd3f6 bc29382 a8fd3f6 bc29382 a8fd3f6 bc29382 a8fd3f6 bc29382 a8fd3f6 bc29382 a8fd3f6 bc29382 a8fd3f6 bc29382 a8fd3f6 bc29382 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
---
pipeline_tag: feature-extraction
tags:
- pytorch
- sentence-transformers
- sentence-similarity
- feature-extraction
- transformers
language:
- ru
- en
datasets:
- evilfreelancer/opus-php-en-ru-cleaned
- evilfreelancer/golang-en-ru
- Helsinki-NLP/opus_books
---
# Enbeddrus v0.2 - English and Russian embedder
> This model trained on Parallel Corpora of Russian and English texts
This is a BERT (uncased) [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional
dense vector space and can be used for tasks like clustering or semantic search.
- **Parameters**: 168 million
- **Layers**: 12
- **Hidden Size**: 768
- **Attention Heads**: 12
- **Vocabulary Size**: 119,547
- **Maximum Sequence Length**: 512 tokens
The Enbeddrus model is designed to extract similar embeddings for comparable English and Russian phrases. It is based on
the [bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-cased) model and was
trained over 20 epochs on the following datasets:
- [evilfreelancer/opus-php-en-ru-cleaned](https://huggingface.co/datasets/evilfreelancer/opus-php-en-ru-cleaned) (train): 1.6k lines
- [evilfreelancer/golang-en-ru](https://huggingface.co/datasets/evilfreelancer/golang-en-ru) (train): 554 lines
- [Helsinki-NLP/opus_books](https://huggingface.co/datasets/Helsinki-NLP/opus_books/viewer/en-ru) (en-ru, train): 17.5k lines
The goal of this model is to generate identical or very similar embeddings regardless of whether the text is written in
English or Russian.
[Enbeddrus GGUF](https://ollama.com/evilfreelancer/enbeddrus) version available via Ollama.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = [
"PHP является скриптовым языком программирования, широко используемым для веб-разработки.",
"PHP is a scripting language widely used for web development.",
"PHP поддерживает множество баз данных, таких как MySQL, PostgreSQL и SQLite.",
"PHP supports many databases like MySQL, PostgreSQL, and SQLite.",
"Функция echo в PHP используется для вывода текста на экран.",
"The echo function in PHP is used to output text to the screen.",
"Машинное обучение помогает создавать интеллектуальные системы.",
"Machine learning helps to create intelligent systems.",
]
model = SentenceTransformer('evilfreelancer/enbeddrus-v0.1')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input
through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word
embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = [
"PHP является скриптовым языком программирования, широко используемым для веб-разработки.",
"PHP is a scripting language widely used for web development.",
"PHP поддерживает множество баз данных, таких как MySQL, PostgreSQL и SQLite.",
"PHP supports many databases like MySQL, PostgreSQL, and SQLite.",
"Функция echo в PHP используется для вывода текста на экран.",
"The echo function in PHP is used to output text to the screen.",
"Машинное обучение помогает создавать интеллектуальные системы.",
"Machine learning helps to create intelligent systems.",
]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('evilfreelancer/enbeddrus-v0.1')
model = AutoModel.from_pretrained('evilfreelancer/enbeddrus-v0.1')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
The model was tested on the `eval` split of the
dataset [evilfreelancer/opus-php-en-ru-cleaned](https://huggingface.co/datasets/evilfreelancer/opus-php-en-ru-cleaned),
which contains 100 pairs of sentences in Russian and English on the topic of PHP. The results of the testing are
presented in the image below.

* **Left**: Embedding similarity in Russian and English before training
(the points are spread out into two distinct clusters).
* **Center**: Embedding similarity after training
(the points representing similar phrases are very close to each other).
* **Right**: Cosine distance before and after training.
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 556 with parameters:
```python
{
'batch_size': 64,
'sampler': 'torch.utils.data.sampler.RandomSampler',
'batch_sampler': 'torch.utils.data.sampler.BatchSampler'
}
```
**Loss**:
`sentence_transformers.losses.MSELoss.MSELoss`
Parameters of the fit()-Method:
```
{
"epochs": 20,
"evaluation_steps": 100,
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"eps": 1e-06,
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 10000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |