androstj commited on
Commit
c70239c
·
verified ·
1 Parent(s): f6c2748

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +94 -3
README.md CHANGED
@@ -1,3 +1,94 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ tags:
4
+ - audio quality
5
+ - audio aesthetics
6
+ ---
7
+ # Model Summary
8
+ audiobox-aesthetics is a unified automatic quality assessment for speech, music, and sound.
9
+
10
+ # Model Details
11
+
12
+ Audiobox-Aesthetics is introduced in [Meta Audiobox Aesthetics: Unified Automatic Quality Assessment for Speech, Music, and Sound](https://arxiv.org/abs/2502.05139)
13
+
14
+ **Model Developer**: FAIR @ Meta AI
15
+
16
+ **Model Architecture**: Audiobox-Aesthetics
17
+
18
+
19
+ # How to install
20
+ We are providing 2 ways to run the model:
21
+
22
+ 1. Install via pip
23
+ ```
24
+ pip install audiobox_aesthetics
25
+ ```
26
+ 2. Install directly from source
27
+
28
+ This repository requires Python 3.9 and Pytorch 2.2 or greater. To install, you can clone this repo and run:
29
+ ```
30
+ pip install -e .
31
+ ```
32
+
33
+ # How to run prediction:
34
+
35
+ 1. Create a jsonl files with the following format
36
+ ```
37
+ {"path":"/path/to/a.wav"}
38
+ {"path":"/path/to/b.wav"}
39
+ ...
40
+ {"path":"/path/to/z.wav"}
41
+ ```
42
+ or if you only want to predict aesthetic scores from certain timestamp
43
+ ```
44
+ {"path":"/path/to/a.wav", "start_time":0, "end_time": 5}
45
+ {"path":"/path/to/b.wav", "start_time":3, "end_time": 10}
46
+ ```
47
+ and save it as `input.jsonl`
48
+
49
+ 2. Run following command
50
+ ```
51
+ audio-aes input.jsonl --batch-size 100 > output.jsonl
52
+ ```
53
+ If you haven't downloade the checkpoint, the script will try to download it automatically. Otherwise, you can provide the path by `--ckpt /path/to/checkpoint.pt`
54
+
55
+ If you have SLURM, run the following command
56
+ ```
57
+ audio-aes input.jsonl --batch-size 100 --remote --array 5 --job-dir $HOME/slurm_logs/ --chunk 1000 > output.jsonl
58
+ ```
59
+ Please adjust CPU & GPU settings using `--slurm-gpu, --slurm-cpu` depending on your nodes.
60
+
61
+
62
+ 3. Output file will contain the same number of rows as `input.jsonl`. Each row contains 4 axes of prediction with a JSON-formatted dictionary. Check the following table for more info:
63
+ Axes name | Full name
64
+ |---|---|
65
+ CE | Content Enjoyment
66
+ CU | Content Usefulness
67
+ PC | Production Complexity
68
+ PQ | Production Quality
69
+
70
+ Output line example:
71
+ ```
72
+ {"CE": 5.146, "CU": 5.779, "PC": 2.148, "PQ": 7.220}
73
+ ```
74
+
75
+ 4. (Extra) If you want to extract only one axis (i.e. CE), post-process the output file with the following command using `jq` utility:
76
+
77
+ ```jq '.CE' output.jsonl > output-aes_ce.txt```
78
+
79
+
80
+
81
+ ## Citation
82
+ If you found this repository useful, please cite the following BibTeX entry.
83
+
84
+ ```
85
+ @article{tjandra2025aes,
86
+ title={Meta Audiobox Aesthetics: Unified Automatic Quality Assessment for Speech, Music, and Sound},
87
+ author={Andros Tjandra and Yi-Chiao Wu and Baishan Guo and John Hoffman and Brian Ellis and Apoorv Vyas and Bowen Shi and Sanyuan Chen and Matt Le and Nick Zacharov and Carleigh Wood and Ann Lee and Wei-Ning Hsu},
88
+ year={2025},
89
+ url={https://arxiv.org/abs/2502.05139}
90
+ }
91
+ ```
92
+ ## License
93
+ The majority of audiobox-aesthetics is licensed under CC-BY 4.0, as found in the LICENSE file.
94
+ However, portions of the project are available under separate license terms: [https://github.com/microsoft/unilm](https://github.com/microsoft/unilm) is licensed under MIT license.