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Abstract

As transformer-based large language models (LLMs) increasingly permeate so-
ciety, they have revolutionized domains such as software engineering, creative
writing, and digital arts. However, their adoption in cybersecurity remains lim-
ited due to challenges like scarcity of specialized training data and complexity of
representing cybersecurity-specific knowledge. To address these gaps, we present
Foundation-Sec-8B, a cybersecurity-focused LLM built on the Llama 3.1 archi-
tecture and enhanced through continued pretraining on a carefully curated cyber-
security corpus. We evaluate Foundation-Sec-8B across both established and new
cybersecurity benchmarks, showing that it matches Llama 3.1-70B and GPT-4o-
mini in certain cybersecurity-specific tasks. By releasing our model to the public,
we aim to accelerate progress and adoption of AI-driven tools in both public and
private cybersecurity contexts.

1 Introduction

Artificial intelligence tools have rapidly become essential for boosting productivity and automating
tasks across various domains. Frontier large language models (LLMs) such as ChatGPT [43] have
accelerated this trend, enabling users to complete in minutes tasks that once took hours or days.
Since the release of ChatGPT, AI capabilities have advanced significantly [8, 50, 66]. The rise of
highly capable open-source LLMs [22, 62] has further democratized access, allowing researchers to
adapt these models through fine-tuning and continued pretraining [20, 37]. These adaptations often
yield models that match or exceed proprietary counterparts on specialized tasks [13, 68].

Despite these advancements, the integration of LLMs into standard cybersecurity practices remains
limited. Cybersecurity professionals face several barriers to adopting frontier LLMs, including re-
strictive safety guardrails from commercial providers, a lack of clean and publicly available cy-
bersecurity datasets [2, 40], model hallucinations [29, 61], and challenges from distribution shifts
[24, 52]. Meanwhile, serious threat actors have the compute and data resources to train custom,
closed-source LLMs for nefarious purposes. The broad and heterogeneous nature of cybersecurity
– from phishing detection to cryptographic analysis—makes developing a general-purpose security
AI particularly difficult. As a result, the field is dominated by fragmented, task-specific tools [18].

In this work, we introduce Foundation-Sec-8B, a cybersecurity-specialized LLM built on Llama
3.1-8B [22]. Our model shows significant performance gains over Llama 3.1-8B across cyberse-
curity benchmarks. We also release trained checkpoints to the research community, supported by
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(a) CTIBench-MCQA (b) CTIBench-RCM

Figure 1: Overview of core results on the selected cybersecurity benchmarks. Foundation-Sec-
8B shows significant improvement over Llama 3.1-8B while matching or surpassing GPT-4o-mini
in cyber threat intelligence knowledge.

comprehensive evaluations that highlight the model’s capabilities2. With this contribution, we ad-
vance research on applying LLMs to cybersecurity tasks and level the playing field for defensive
cybersecurity practitioners.

2 Related Works

2.1 Continued Pretraining

Continued pretraining was initially proposed for transformer-based models as a way to improve
domain-specific adaptation [11, 23, 25, 27, 35, 44, 68]. Wu et al. [68] showed that it enhances
zero-shot and few-shot promptability, while Gururangan et al. [25] demonstrated that task-specific
pretraining, even on unlabeled data, can boost model performance.

This approach has also been extended to LLMs, where models are continuously pretrained on bil-
lions of tokens to improve performance in specific domains such as medicine [13, 73], law [15, 16],
mathematics [3, 53], and code [49]. Ibrahim et al. [28], Parmar et al. [44] further provide guidelines
on when domain-specific continued pretraining is most effective.

2.2 Benchmarks

We reviewed a range of benchmarks and evaluation techniques at the intersection of LLMs and
cybersecurity. Since our primary objective is to assess the knowledge of pretrained models, we
exclude tasks that emphasize behavioral robustness over factual understanding.

We have selected three cybersecurity benchmarks framed as multi-class classification tasks. This
design choice was motivated by the observation that pretrained models often fail to reliably follow
instructions, rendering open-ended formats such as short answer questions (SAQ) unsuitable. We
therefore focus on two formats: multiple choice question answering (MCQA) and root cause map-
ping (RCM). Each MCQA question includes four options with a single correct ground truth answer.
For the RCM task, each Common Weakness Enumeration (CWE) [14] description maps to exactly
one CWE ID.

2.2.1 Security Benchmarks

CTIBench Cyber threat intelligence (CTI) plays a key role in understanding and mitigating evolv-
ing cyber threats. CTIBench [1] targets practical, CTI-specific tasks and consists of five sections.
However, most require advanced, consistent instruction-following capabilities and are not suitable
for evaluation with a pretrained model. Therefore, we adapt two of them for base model evaluation:
MCQA and RCM tasks. MCQA includes 2,500 questions drawn from CTI frameworks such as
NIST [32], the Diamond Model of Intrusion Detection [9]; regulations like GDPR [17]; CTI sharing
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standards such as STIX and TAXII [41]; and taxonomies like the MITRE ATT&CK Framework
[56] and CAPEC [10]. The RCM section evaluates a model’s ability to identify the root cause of a
vulnerability by linking CVE (Common Vulnerability Enumeration) [58] records and bug reports to
CWE (Common Weakness Enumeration) entries [14]. This task is highly nuanced, requiring a deep
understanding of both CVE descriptions and the CWE taxonomy.

CyberMetric The CyberMetric dataset [59] was built from a collection of documents—such as
NIST standards, research papers, public books, RFCs, and other cybersecurity publications—and
converted into MCQA format using GPT-3.5 with Retrieval-Augmented Generation (RAG). Human
experts spent over 200 hours validating the questions and answers to ensure accuracy, relevance,
and topic alignment. CyberMetric is available in four sizes: 80, 500, 2000, and 10,000 samples. We
use the 500-sample version, as the larger sets contain only ChatGPT-generated questions on similar
topics, without additional human validation.

SecBench SecBench [31] includes both MCQA and SAQ questions, designed to assess LLM
knowledge across two dimensions: Knowledge Retention and Logical Reasoning. A key strength
of the benchmark is that a large portion of its content was created by human experts through a
Cybersecurity Question Design Contest, making it more challenging than benchmarks like MMLU
and CyberMetric. It is also the most recent in our collection, released in December 2024. Built
using both contest submissions and open-source resources, SecBench includes English and Chinese
sections. Since we are developing a monolingual model, we use only the English portion which
contains 600 samples.

2.2.2 Non-Security Benchmarks

MMLU To evaluate whether continued pretraining on cybersecurity data affects the model’s gen-
eral knowledge, we evaluate our model on the full Measuring Massive Multitask Language Un-
derstanding (MMLU) benchmark [26]. MMLU covers a broad range of topics, including STEM,
humanities, and social sciences, and serves as a strong indicator of a model’s retained knowledge
across diverse domains. This allows us to check for any signs of overfitting or catastrophic forget-
ting, ensuring that domain specialization does not come at the cost of severe degradations to general
reasoning and factual recall.

2.3 LLMs for Security

Several works [70, 75] have reviewed the use of LLMs in cybersecurity. For a broader overview, we
refer the reader to those studies and focus here on prior efforts most relevant to our work. While
much research has focused on secure code generation [45, 54, 74], our model is not designed or
optimized for coding tasks. Instead, our primary goal was to integrate core cybersecurity knowledge
into a pretrained language model, making it a strong foundation for downstream use cases (see
Section 6). This enables broader applicability across cybersecurity tasks beyond code generation.

Prior to our work, several notable models were trained on general cybersecurity data. We include
them as baselines in our evaluations, with the exception of the final model described below.

WhiteRabbitNeo-V2 WhiteRabbitNeo [67] introduced one of the earliest open-source cybersecu-
rity LLMs, based on the Llama 3.1 family. Released in 8B and 70B variants, it focused on building
uncensored models tuned for offensive security tasks.

Primus Yu et al. [72] curated a cybersecurity corpus from sources like MITRE, Wikipedia, cy-
bersecurity companies, and manually collected cyber threat intelligence. Their dataset, containing
nearly 2 billion tokens, was used to pretrain and instruct-finetune models based on Llama 3.1-8B.

SecurityLLM SecurityLLM3, though not described in a technical report, is an open-source model
based on Hugging Face’s Zephyr series [63] and built on Mistral 7B [30]. It was designed as a
helpful security-focused assistant and finetuned across 30 domains, including attack surface threats,
cloud security, and compliance frameworks like CIS Controls.

3https://huggingface.co/ZySec-AI/SecurityLLM
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SecGemini SecGemini [51] introduced the only frontier LLM specifically tailored for cybersecu-
rity. SecGemini is a reasoning-enhanced [42, 55] variant of Gemini Flash [21], augmented with live
threat intelligence access with a knowledge-based system. As of this writing, it remains in closed
preview and is not publicly available.

3 Data Collection and Preparation

One of the key challenges in developing LLMs for cybersecurity is the need for large volumes of
high-quality data to drive meaningful downstream improvements. Further pretraining in other do-
mains often relies on tens or hundreds of billions of tokens to effectively infuse domain-specific
knowledge [71]. In contrast, current cybersecurity models are typically trained on fewer than 2
billion tokens [67, 72]. Since cybersecurity is a relatively niche topic in the broader landscape of
internet content, we developed a two-pronged approach to ensure diverse and high-quality data col-
lection. First, we deployed general-purpose scrapers with a relevancy filter for broad data coverage.
Second, we built custom scrapers targeting known high-quality cybersecurity sources and sites that
are less accessible to URL-based scrapers.

We chose to build our dataset from scratch rather than filtering existing web-scale datasets like Hug-
ging Face’s FineWeb [46]. Security-related content often appears “non-English” due to the presence
of code, abbreviations, and fragmented sentences—leading to high perplexity. Datasets such as
FineWeb [46] and The Pile [19] apply a definition of “quality” that does not align well with cyber-
security needs. For instance, FineWeb uses a fastText-based English filter with a threshold of 0.65
[33], which we found unsuitable for cybersecurity texts. This setting would exclude valuable content
like CVE descriptions (see Appendix A.1). While existing datasets are valuable in their own con-
texts, we designed a focused data collection and curation pipeline—outlined in Figure 2—tailored
to the unique demands of cybersecurity.

3.1 Data Collection via Wide-Net Scraper

To expand our collection of cybersecurity data from sources that are harder to identify or navigate,
we deployed a wide-net internet crawler to capture relevant content. The crawler begins by visiting
a set of initial seed URLs, fetching and storing the raw page content, then parsing each response to
extract new links, which are added to a processing queue. We seeded the crawler with URLs from a
diverse set of cybersecurity domains.

The crawler prioritized URLs based on their depth in the search tree, favoring exploration within
a domain before moving on to a new one. This produced a hybrid strategy—breadth-first search
within a domain and depth-first search across domains.

To keep the crawl focused, we pruned irrelevant branches by applying a relevancy filter to the content
of each scraped page. Links were only extracted if the page content passed this filter. Details of the
relevancy filter are provided in Section 3.2.2.

3.2 Data Preprocessing

While the top-of-funnel collection (Section 3.1) gathered over 4 TiB of raw data, we built a scalable
preprocessing pipeline to filter, clean, and transform the raw data into a high-quality, standardized
dataset suitable for pretraining. We leveraged existing primitives to construct our own composable
data pipelines, which were deployed across a cluster of virtual machines.

After running through this pipeline, the original 4 TiB of raw data was reduced to just under 25 GiB
of cleaned text, yielding approximately 0.6%. This low yield reflects both the extraction of only text
content from noisy HTML pages and the removal of low-quality or irrelevant files. An analysis of
the pipeline stages shows that about 90% of the files were filtered out.

3.2.1 Text Extraction

Text extraction is the most computationally intensive and time-consuming part of the pipeline. This
stage involved converting files of varying formats and sizes into clean Markdown files. We evaluated
a range of closed and open-source tools on a sample dataset and developed a simple strategy to select
the best tool for each file based on its format and size.
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Figure 2: Three-stage data collection and processing pipeline: (1) Scraping Stage—a wide-
net scraper gathers 4 TiB of raw web content; (2) Parallelized Processing Stage—language fil-
tering, quality filtering, and relevancy classification prune the data; (3) Training Preparation
Stage—deduplication, PII replacement, and tokenization produce 25 GiB (about 5 billion tokens)
of final training data.

3.2.2 Relevancy Filtering

To ensure that our dataset consisted exclusively of cybersecurity-related documents, we imple-
mented a relevance filtering pipeline. The initial filtering stage employed a keyword matching mech-
anism utilizing a curated list of approximately 800 cybersecurity-related terms and acronyms. The
presence of any keyword within a source document was treated as an indicator of relevance. While
this approach offered computational efficiency and high recall, it suffered from a significant false
positive rate.

To address the limitations of the keyword filter, we developed a small transformer-based classifier
[64]. We constructed a labeled dataset comprising 26,000 documents. Labels were generated using
Gemini 2.0 Flash-Lite [21] prompted with an instruction to label each document as related/unre-
lated to cybersecurity. The resulting dataset was balanced, containing 13,000 positive (relevant) and
13,000 negative (irrelevant) samples, each under 1024 tokens long.

We evaluated both the keyword-matching filter and the finetuned classifier on a held-out test set
and found that the finetuned classifier significantly improved upon the keyword-matching filter,
obtaining an F1 score of 0.924 (see Figure 3).

3.2.3 Filter Evaluation Experiments
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Figure 3: Relevancy classifier on evaluation set

In addition to our relevancy filter, we imple-
mented additional filters to further remove low-
quality data. In particular, we used a language
filter and simple regex-based heuristics to iden-
tify files that were deficient or degenerate.

We conducted a series of experiments to as-
sess the effectiveness of these filters within our
data processing pipeline. In each experiment,
we evaluated how well the filters retained high-
quality, cybersecurity-relevant documents.

To carry out this analysis, we randomly sam-
pled 1,000 documents from our raw dataset.
Each document was then assessed for qual-
ity and topic relevance using a frontier LLM,
prompted to provide binary labels based on two
criteria: (1) textual quality and (2) relevance to
cybersecurity. A document was considered ac-
ceptable for inclusion only if it satisfied both criteria; otherwise, it should be filtered out.

We then applied the different filters independently to this labeled subset and compared their outputs
against the ground truth. Some documents from key sources, including pages from the CVE and
MITRE ATT&CK databases, were excluded by these filters (see Appendix A.2). Based on these
evaluations, we ultimately chose to exclude most of the heuristic-based filters from our final data
processing pipeline.

3.3 Data Preparation

Before training, we perform additional steps to clean and format the data for optimal use. To dedu-
plicate our corpus, we applied an n-gram Bloom filter method [7] at the paragraph level. We also
followed best practices to filter out personally identifiable information (PII) and prevent training on
private data. Following prior work [6, 22, 25, 69], we upsampled known high-quality data related to
Tactics, Techniques, and Procedures (TTPs). Finally, we split the resulting 5.1 billion tokens into a
99% training set and a 1% test set.

4 Training and Evaluation

We trained a Llama 3.1-8B model on the curated dataset through a further pretraining approach.
Documents were packed into sequences of 4096 tokens for maximum efficiency [47]. Training was
performed using DeepSpeed [48] on a multi-node compute cluster. We used the AdamW optimizer
[38] with a cosine decay learning rate schedule [39].

Benchmarks We consider the benchmarks detailed in Section 2.2.1 in our experiments. In Ap-
pendix B.2, we also discuss other cybersecurity benchmarks from the literature that we reviewed but
chose not to include in our evaluation, as they were misaligned with our evaluation objectives.

Baselines The models reviewed in Section 2.3 are included as baselines for comparison. For
further details, we refer readers to their respective model cards on Hugging Face.

Input Formatting and Prompting To ensure fair evaluation, we carefully design the prompting
strategy, as poor formatting can obscure a model’s knowledge and capability. Since log-probabilities
are unavailable for closed models, we evaluate based on predicted tokens. Pretrained models, which
do not follow instructions directly, are evaluated using 5-shot prompts to help infer both the task
and the expected output format. Instruct-finetuned (IFT) models, on the other hand, are evaluated
in a zero-shot setting to avoid inconsistent or verbose completions. We prompt them only with the
question and extract their answers using regex (regular expressions). Additional implementation
details, including templates and regex patterns, are provided in Appendices B.3 and B.4.
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Model CTIBench-MCQA CTIBench-RCM CyberMetric-500 SecBench

SecurityLLM 0.601±0.009 N/A† 0.807±0.010 0.668±0.012
Llama 3.1-8B 0.623±0.012 0.630±0.024 0.848±0.008 0.735±0.011
WhiteRabbitNeo-V2-8B 0.629±0.011 0.631±0.031 0.846±0.006 0.738±0.010
Primus-Seed-8B 0.660±0.009 0.622±0.014 0.853±0.007 0.732±0.009

Llama 3.1-70B 0.678±0.008 0.709±0.010 0.918±0.008 0.832±0.008
WhiteRabbitNeo-V2-70B 0.680±0.007 0.711±0.008 0.917±0.009 0.836±0.008
GPT-4o-mini 0.670±0.003 0.659±0.002 0.889±0.002 0.800±0.002
SecGemini 0.8630 0.8610 N/A‡ N/A‡

Foundation-Sec-8B 0.662±0.007 (↑6.26%) 0.720±0.017 (↑14.29%) 0.848±0.009 (↔0.0%) 0.723±0.009 (↓1.63%)
† Due to its limited context length, SecurityLLM did not produce meaningful results on CTIBench-RCM.
‡ Results are not reported by the developer.

Table 1: Performance of the models on the selected cybersecurity benchmarks (temperature 0.3).
Reported performance differences are relative to the Llama 3.1-8B model, which Foundation-Sec is
based on.

Model CTIBench-MCQA CTIBench-RCM CyberMetric-500 SecBench
Llama 3.1-8B 0.641 0.636 0.849 0.744
Llama 3.1-70B 0.689 0.710 0.924 0.839

Foundation-Sec-8B 0.676 (↑5.46%) 0.724 (↑13.84%) 0.851 (↑0.24%) 0.734 (↓1.34%)

Table 2: Performance of the models on the selected cybersecurity benchmarks (temperature 0).
Reported performance differences are relative to the Llama 3.1-8B model, which Foundation-Sec is
based on.

5 Results

Evaluations were conducted over 10 trials to account for stochasticity in token sampling (with tem-
perature set to 0.3) and in the selection of few-shot examples. We report mean accuracy with the
standard deviation over 10 trials. Results are shown in Table 1. We also evaluate the models at
temperature 0 and present those results in Table 2.

5.1 Security Benchmark Performance

Foundation-Sec-8B achieves state-of-the-art performance for its size class on the selected CTI
tasks, performing on par with GPT-4o-mini. It trails GPT-4o-mini by only 0.8 points on CTIBench-
MCQA while outperforming it by 6.1 points on CTIBench-RCM. Foundation-Sec-8B also surpasses
both Llama 3.1-70B and WhiteRabbitNeo-V2-70B by about 1 point on CTIBench-RCM, while
falling short by less than 2 points on CTIBench-MCQA.

The model achieves a notable improvement of over 3 points in accuracy compared to its parent
model, Llama 3.1-8B-base. We emphasize that, since we evaluate general knowledge rather than a
task-specific fine-tuning setup, these gains are substantially large for improvements over a general-
purpose model on a specialized, nuanced domain of knowledge—a trend also observed in prior work
[13, 67, 72].

Overall, our results position Foundation-Sec-8B as the leading 8-billion parameter model for CTI
security tasks.

5.2 General Benchmark Performance

Prior work [12, 57] shows that continued pretraining is typically followed by evaluations on general
benchmarks to check for catastrophic forgetting. Following this practice, we verify that our training
does not significantly degrade general performance. We evaluate our model on the full MMLU
benchmark. Foundation-Sec-8B achieves a score of 0.593±0.004, compared to 0.617±0.004 for
Llama 3.1-8B. The observed 2.4 point drop is consistent with prior literature.
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6 Use Cases

Large language models in cybersecurity are no longer just theoretical—they are increasingly being
integrated into high-value, operational workflows across the security lifecycle. Foundation-Sec was
developed with these real-world applications in mind. We outline three core areas where Foundation-
Sec is currently being piloted or deployed, either in its pretrained form or after fine-tuning.

SOC Acceleration Security Operations Centers (SOCs) face a constant stream of alerts that re-
quire triage, enrichment, and contextualization. Foundation-Sec is currently being piloted to auto-
mate key parts of this workflow. When finetuned or prompted effectively, it is used to:

• Summarize multi-source alerts into human-readable case notes
• Generate incident timelines and identify relevant entities
• Draft analyst-style reports to support incident resolution and handoffs

These capabilities reduce time-to-triage and enable analysts to handle more alerts with higher accu-
racy.

Proactive Threat Defense Beyond reactive workflows, Foundation-Sec is being deployed to
model and simulate attacker behavior. This includes:

• Extracting Tactics, Techniques, and Procedures (TTPs) from threat intelligence reports
• Prioritizing vulnerabilities based on contextual impact and exploitability
• Generating attack path hypotheses from asset and configuration data
• Drafting penetration test reports with vulnerability details and remediation steps

A particularly effective application has been fine-tuning Foundation-Sec for MITRE ATT&CK
Technique extraction from unstructured threat reports. In internal evaluations, Foundation-Sec out-
performed a similarly sized non-security-tuned model (Llama 3.1-8B) by over 10% on this classifi-
cation task, highlighting the value of security-domain pretraining.

Engineering Enablement Security engineering and platform teams often face the challenge of
enforcing security standards across rapidly evolving development environments. Foundation-Sec is
being used to streamline and enhance these workflows by providing secure development guidance,
validating configurations, and supporting compliance efforts.

When applied effectively, Foundation-Sec helps teams:

• Interpret and apply security policies during development and deployment
• Validate configuration files and infrastructure setups against best practices
• Assess whether submitted evidence meets compliance control requirements
• Analyze security policies for inconsistencies and outdated controls

These tasks typically require a combination of context awareness and domain-specific knowl-
edge—areas where Foundation-Sec excels.

If you are interested in using Foundation-Sec for your own cybersecurity applications or research,
please reach out to Paul Kassianik (paulkass@cisco.com) or Dhruv Kedia (dkedia@cisco.com)
at Foundation AI.

7 Conclusion and Future Work

In this work, we introduced Foundation-Sec, a cybersecurity-specialized large language model built
upon Llama 3.1. Addressing key limitations that have hindered LLM adoption in cybersecurity,
we curated a high-quality cybersecurity dataset and demonstrated significant improvements in task-
specific performance. Our evaluations show that Foundation-Sec achieves capabilities competitive
with much larger models, such as Llama 3.1-70B, without compromising general-purpose function-
ality.
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We highlight several promising directions for further research and development:

• Scale up Foundation-Sec by increasing its parameter count and expanding the training cor-
pus.

• Extend Foundation-Sec to handle cybersecurity-related coding tasks.
• Integrate Foundation-Sec into tool-calling and agentic systems for more interactive appli-

cations.

By releasing Foundation-Sec publicly, we aim to support both the cybersecurity and AI research
communities, fostering broader experimentation, advancement, and practical deployment of AI-
driven security tools. We envision Foundation-Sec accelerating LLM adoption among cybersecurity
professionals and enabling new lines of security research.

We also hope this work inspires future studies on optimizing specialized pretraining techniques,
expanding coverage of cybersecurity domains, and investigating how smaller models can rival or
surpass larger general-purpose LLMs in domain-specific tasks. Ultimately, Foundation-Sec high-
lights the impact of targeted, domain-aware training in making LLMs more effective for secure,
intelligent cybersecurity operations.
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A Data Processing Details

A.1 Example of CVE Description

Below is an example of a CVE description that scores below 0.65 on the fastText language filter [33]
but is considered a high-quality cybersecurity document.

Advisory ID: CVE−2016−6335

Summary: No summary provided.

Details:
MediaWiki before 1.23.15, 1.26.x before 1.26.4, and 1.27.x before 1.27.1 does not generate head
items in the context of a given title, which allows remote attackers to obtain sensitive information via
a parse action to api.php.

Published: 2017−04−20T17:59:00Z
Modified: 2024−09−18T02:36:06.797830Z

Affected Packages:
− mediawiki (Debian:11)

Introduced in: 0
Fixed in: 1:1.27.1−1
Source: https://storage.googleapis.com/cve−osv−conversion/osv−output/CVE−2016−6335.json

− mediawiki (Debian:12)
Introduced in: 0
Fixed in: 1:1.27.1−1
Source: https://storage.googleapis.com/cve−osv−conversion/osv−output/CVE−2016−6335.json

− mediawiki (Debian:13)
Introduced in: 0
Fixed in: 1:1.27.1−1
Source: https://storage.googleapis.com/cve−osv−conversion/osv−output/CVE−2016−6335.json

− Unknown package (Unknown ecosystem)
Introduced in: 0
Source: https://storage.googleapis.com/cve−osv−conversion/osv−output/CVE−2016−6335.json

References:
− https://lists.wikimedia.org/pipermail/mediawiki−announce/2016−August/000195.html
− https://phabricator.wikimedia.org/T139570
− https://bugzilla.redhat.com/show bug.cgi?id=1369613
− https://phabricator.wikimedia.org/T139565
− https://security−tracker.debian.org/tracker/CVE−2016−6335

A.2 Example of a MITRE ATT&CK Page

Below is an example of a page from the MITRE ATT&CK database that fails the quality filter of a
well-known text filtering system but is considered a high-quality cybersecurity document.

Description: Adversaries may gather credentials from the proc filesystem or `/proc`. The proc
filesystem is a pseudo−filesystem used as an interface to kernel data structures for Linux based
systems managing virtual memory. For each process, the `/proc/<PID>/maps` file shows how
memory is mapped within the process's virtual address space. And `/proc/<PID>/mem`, exposed
for debugging purposes, provides access to the process's virtual address space.Huseyin Can YUCEEL
& Picus Labs. (2022, March 22).baeldung. (2022, April 8). Understanding the Linux /proc/id/maps

File. When executing with root privileges, adversaries can search these memory locations for all
processes on a system that contain patterns indicative of credentials. Adversaries may use regex
patterns, such as <code>grep −E ”ˆ[0−9a−f−]* r” /proc/”\$pid”/maps | cut −d' ' −f 1</code>, to
look for fixed strings in memory structures or cached hashes.Atomic Red Team. (2023, November).
T1003.007 − OS Credential Dumping: Proc Filesystem. When running without privileged access,
processes can still view their own virtual memory locations. Some services or programs may save
credentials in clear text inside the process's memory.Gregal, H. (2017, May 12). MimiPenguin.Carlos
Polop. (2023, March 5). Linux Privilege Escalation. If running as or with the permissions of a web

browser, a process can search the `/maps` & `/mem` locations for common website credential
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patterns (that can also be used to find adjacent memory within the same structure) in which hashes or
cleartext credentials may be located.

Domain: Enterprise Attack

Tactics: Credential Access

Detection: To obtain the passwords and hashes stored in memory, processes must open a maps file in
the `/proc` filesystem for the process being analyzed. This file is stored under the path `/proc/PID/
maps`, where the `PID` directory is the unique pid of the program being interrogated for such
authentication data. The AuditD monitoring tool, which ships stock in many Linux distributions, can
be used to watch for hostile processes opening this file in the proc file system, alerting on the pid,
process name, and arguments of such programs.

Platforms: Linux

Data Sources: Command: Command Execution, File: File Access

Sub−Technique Of: T1003

B Evaluation Details

B.1 Implementation

We used the vLLM framework [34], an open-source, high-throughput engine optimized for infer-
ence. vLLM introduces paged attention, a memory management technique that decouples attention
computation from memory layout, enabling efficient dynamic batching and reducing memory frag-
mentation. This design improves GPU utilization by supporting continuous-token streaming and
lowering overhead in multi-query processing. The system also supports asynchronous execution
and tensor parallelism, allowing it to scale across multiple GPUs. Compatible with Hugging Face,
vLLM offers an optimized runtime with low latency, making it well-suited for production-grade
LLM serving. Additional details are available on their website4.

B.2 Additional Benchmarks

The following benchmarks, although recognized in the literature, were excluded from our evalua-
tions as they were either out of scope for our study or could have led to misleading conclusions. The
specific justifications are detailed below.

MMLU – computer security Although highly relevant, we did not report results on the com-
puter security section of MMLU as it contains only 100 samples, which could lead to statistically
unreliable conclusions.

CyberSecEval-3 The CyberSecEval benchmarks [65], part of the Purple Llama suite [4], form a
comprehensive collection of tasks aimed at evaluating the cybersecurity vulnerabilities of LLMs.
CyberSecEval-3 assesses eight types of risks across two broad categories: risks to third parties, and
risks to application developers and end users. While we recognize the significance of this suite,
we excluded it from our evaluation because it focuses on model robustness—such as resistance to
prompt injections, spear phishing, and autonomous offensive cyber operations—rather than assess-
ing cybersecurity knowledge.

SecEval SecEval [36] provides over 1200 MCQA questions (English section) spanning nine cy-
bersecurity domains. The dataset is generated by prompting GPT-4 with content from authoritative
sources, including open-licensed textbooks, official documentation, and industry standards. We ex-
cluded SecEval from our evaluation as it appears highly saturated—many models, regardless of
size, architecture, or pretraining corpus (e.g., Llama 3.1-8B achieves 86% while GPT-4 achieves
90%), exhibit similar performance levels.

4https://docs.vllm.ai/en/stable/serving/offline inference.html
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SECURE SECurity Extraction, Understanding & Reasoning Evaluation [5] was developed to
assess model performance in realistic cybersecurity scenarios. It includes six datasets focused on
the Industrial Control System (ICS) domain, evaluating knowledge extraction, comprehension, and
reasoning using industry-standard sources. We also omit SECURE due to its saturation; for instance,
Llama 3.1-8B scores 83% and GPT-4o scores 90%.

SecQA The MCQA dataset SecQA was generated by GPT-4 using content from the textbook
Computer Systems Security: Planning for Success [60]. Although it is a recognized resource in the
field, we excluded it from our evaluation due to its small size (around 120 samples).

B.3 Prompt Design

Designing an effective prompting strategy is essential to fairly evaluate a model’s knowledge, as
improper phrasing or formatting can obscure what the model actually knows and lead to misleading
conclusions. Since log-probabilities are not accessible in closed models, we evaluate based on the
model’s predicted next tokens.

B.3.1 Pretrained Models

Base pretrained LMs do not follow instructions explicitly but instead complete the given input text.
Therefore, we leverage their few-shot learning capabilities. We use 5-shot prompts to help the model
infer both the task and the expected answer format (e.g., MCQA or CWE ID mapping).

When available, we construct these examples from the benchmark’s development (dev) set. Among
our selected benchmarks, only MMLU includes a dev set; for the others, we sample examples di-
rectly from the dataset. Since we run multiple trials and report the average performance, the effect
of this stochasticity is also averaged out. In each trial, the model sees a different set of examples,
ensuring prompt diversity and randomness.

Lastly, although pretrained models are not instruction-following by design, we append a brief sen-
tence—“The following are multiple choice questions about computer security.”—to
help them infer the task context. This is a common practice in evaluations, as seen in benchmarks
for models like Llama 3.1.

The input templates for pretrained models are provided for both MCQA and CWE ID mapping (i.e.,
CTIBench-RCM) in Figures 4 and 5.

B.3.2 Instruction-Finetuned Models

Instruct-finetuned models are designed to follow specific prompt formats but often produce incon-
sistent outputs in few-shot settings. Instead of returning a clean “Answer: ” format, they may
prepend phrases like “Sure, here’s the answer...,” which breaks format consistency and complicates
evaluation.

To mitigate this, we evaluate IFT models in a zero-shot setting—prompting only with the question
and extracting the answer using regex. That is, no examples are included in the input. To guide the
model’s output format, we append a short instruction of 1–2 sentences. If the benchmark provides
its own instruction, we use it directly. Otherwise, we adopt the fusion of the instructions used in
Llama 3.1 evaluations (based on MMLU) and OpenAI Simple Evals5: “Given the following
question and four candidate answers (A, B, C and D), choose the best answer. Your
response should be of the following format: ’Answer: $LETTER’ (without quotes)
where LETTER is one of A, B, C, or D.” Among our benchmarks, only CTIBench provides
its own instruction. No system prompts are used in any evaluation.

Example input prompts for chat models in MCQA and CWE ID mapping tasks are shown in Figures
6 and 7.

B.4 Postprocessing and Answer Extraction

We apply several regular expression (regex) operations to the model’s output string responses.

5https://github.com/openai/simple-evals
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The following are multiple choice questions about computer security.

The ____________ is anything which your search engine cannot search.

A. Haunted web

B. World Wide Web

C. Surface web

D. Deep Web

Answer: D

Exploitation of the Heartbleed bug permits

A. overwriting cryptographic keys in memory

B. a kind of code injection

C. a read outside bounds of a buffer

D. a format string attack

Answer: C

.

.

.

Three of the following are classic security properties; which one is

not?

A. Confidentiality

B. Availability

C. Correctness

D. Integrity

Figure 4: Few-shot prompt format used with pretrained models for MCQA tasks. The model is
expected to respond in the format “Answer: X,” where X is one of A, B, C, or D.

B.4.1 MCQA Tasks

Correct Format We start by matching a case-insensitive “answer:”—allowing optional spaces
and an optional opening parenthesis—followed by a letter A–D, and optionally ending with a closing
parenthesis or a word boundary. This captures variations such as “Answer: C” or “answer: (B)”.
If no match is found in this format, we flag the sample as “misformatted” and proceed with the
“misformatted patterns” described below. Note that pretrained models almost never misformat their
responses, so these operations are primarily applied to chat models.

1. Responses in “answer is”: Matches case-insensitive patterns like “Answer is A” or
“answer is: (D)”, allowing an optional colon, optional “(”, and an uppercase A–Z,
optionally ending with “)” or a word boundary.

2. Single Letter Responses: Captures standalone uppercase letters A–Z, optionally enclosed
in parentheses, such as “C” or “(B)”.

3. Use of “option” instead of “answer”: Matches case-insensitive “option” followed by an
uppercase A–Z at a word boundary, e.g., “Option A”.

B.4.2 CWE ID Mapping Task

Since this task is part of CTIBench, we use the authors’ codebase6 to extract CWE IDs. The extrac-
tion process is similar to that of MCQA answers, where we search for the pattern “CWE-X,” with X
representing a sequence of digits.

6https://github.com/xashru/cti-bench
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The following is a CVE description. Map it to the appropriate CWE ID.

CVE Description: A SQL injection vulnerability exists in Novel -Plus v4

.3.0-RC1 and prior. An attacker can pass specially crafted offset ,

limit , and sort parameters to perform SQL injection via /novel/

userFeedback/list.

Answer: CWE -89

CVE Description: Cross -Site Request Forgery (CSRF) vulnerability in

Doofinder WP & WooCommerce Search.This issue affects Doofinder WP &

WooCommerce Search: from n/a through 2.0.33.

Answer: CWE -352

.

.

.

CVE Description: Tenda AX1803 v1 .0.0.1 contains a stack overflow via

the iptv.city.vlan parameter in the function getIptvInfo.

Figure 5: Few-shot prompt format used with pretrained models for the CWE ID mapping task
(CTIBench-RCM). The model is expected to respond in the format “Answer: CWE-X,” where X is a
unique CWE ID.

Given the following question and four candidate answers (A, B, C and D)

, choose the best answer. Your response should be of the following

format: 'Answer: $LETTER ' (without quotes) where LETTER is one of A, B,

C, or D.

Three of the following are classic security properties; which one is

not?

A. Confidentiality

B. Availability

C. Correctness

D. Integrity

Figure 6: Zero-shot prompt format used with instruct-finetuned models for MCQA tasks.

Analyze the following CVE description and map it to the appropriate CWE

. Provide a brief justification for your choice. Ensure the last line

of your response contains only the CWE ID.

CVE Description: Tenda AX1803 v1 .0.0.1 contains a stack overflow via

the iptv.city.vlan parameter in the function getIptvInfo.

Figure 7: Zero-shot prompt format used with instruct-finetuned models for the CWE ID mapping
task (CTIBench-RCM).
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