Upload 5 files
Browse files- ultravox_config.py +19 -7
ultravox_config.py
CHANGED
@@ -32,6 +32,8 @@ class LossFunction(str, Enum):
|
|
32 |
class LossConfig:
|
33 |
loss_function: LossFunction = LossFunction.CrossEntropy
|
34 |
kl_temperature: float = 2.0
|
|
|
|
|
35 |
|
36 |
@property
|
37 |
def requires_alt_fields(self):
|
@@ -47,7 +49,7 @@ class UltravoxConfig(transformers.PretrainedConfig):
|
|
47 |
documentation from [`PretrainedConfig`] for more information.
|
48 |
|
49 |
Args:
|
50 |
-
audio_config (`
|
51 |
Custom audio config or dict
|
52 |
text_config (`Union[AutoConfig, dict]`, *optional*):
|
53 |
The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
|
@@ -65,15 +67,17 @@ class UltravoxConfig(transformers.PretrainedConfig):
|
|
65 |
The LoRA configuration for finetuning the text model.
|
66 |
audio_model_lora_config (`LoraConfigSimplified`, *optional*):
|
67 |
The LoRA configuration for finetuning the audio model.
|
|
|
|
|
68 |
|
69 |
|
70 |
Example:
|
71 |
|
72 |
```python
|
73 |
-
>>> from transformers import
|
74 |
|
75 |
>>> # Initializing an audio encoder config
|
76 |
-
>>> audio_config =
|
77 |
|
78 |
>>> # Initializing a Llama config
|
79 |
>>> text_config = LlamaConfig()
|
@@ -82,13 +86,13 @@ class UltravoxConfig(transformers.PretrainedConfig):
|
|
82 |
>>> configuration = UltravoxConfig(audio_config, text_config)
|
83 |
|
84 |
>>> # Initializing a completely untrained model from the configuration
|
85 |
-
>>> model =
|
86 |
|
87 |
>>> # Accessing the model configuration
|
88 |
>>> configuration = model.config
|
89 |
|
90 |
>>> # Initialize a model from pretrained checkpoints and random projector weights
|
91 |
-
>>> config = UltravoxConfig(audio_model_id="
|
92 |
```"""
|
93 |
|
94 |
model_type = "ultravox"
|
@@ -105,8 +109,10 @@ class UltravoxConfig(transformers.PretrainedConfig):
|
|
105 |
stack_factor: int = 8,
|
106 |
norm_init: float = 0.4,
|
107 |
projector_act: str = "swiglu",
|
|
|
108 |
text_model_lora_config: Optional[LoraConfigSimplified] = None,
|
109 |
audio_model_lora_config: Optional[LoraConfigSimplified] = None,
|
|
|
110 |
**kwargs,
|
111 |
):
|
112 |
self.ignore_index = ignore_index
|
@@ -118,7 +124,7 @@ class UltravoxConfig(transformers.PretrainedConfig):
|
|
118 |
self.stack_factor = stack_factor
|
119 |
self.norm_init = norm_init
|
120 |
self.projector_act = projector_act
|
121 |
-
|
122 |
if text_model_id is not None:
|
123 |
self.text_config: transformers.LlamaConfig = (
|
124 |
transformers.AutoConfig.from_pretrained(text_model_id)
|
@@ -136,7 +142,7 @@ class UltravoxConfig(transformers.PretrainedConfig):
|
|
136 |
else:
|
137 |
audio_config = audio_config or {}
|
138 |
self.audio_config = transformers.CONFIG_MAPPING[
|
139 |
-
audio_config.get("model_type", "
|
140 |
](**audio_config)
|
141 |
|
142 |
self.text_model_lora_config = (
|
@@ -149,6 +155,7 @@ class UltravoxConfig(transformers.PretrainedConfig):
|
|
149 |
if isinstance(audio_model_lora_config, dict)
|
150 |
else dataclasses.asdict(audio_model_lora_config or LoraConfigSimplified())
|
151 |
)
|
|
|
152 |
|
153 |
self.vocab_size = self.text_config.vocab_size
|
154 |
|
@@ -162,7 +169,12 @@ class UltravoxConfig(transformers.PretrainedConfig):
|
|
162 |
# remove text_config and audio_config if text_model_id and audio_model_id are present
|
163 |
if self.text_model_id is not None:
|
164 |
diff_dict.pop("text_config", None)
|
|
|
|
|
|
|
165 |
if self.audio_model_id is not None:
|
166 |
diff_dict.pop("audio_config", None)
|
|
|
|
|
167 |
|
168 |
return diff_dict
|
|
|
32 |
class LossConfig:
|
33 |
loss_function: LossFunction = LossFunction.CrossEntropy
|
34 |
kl_temperature: float = 2.0
|
35 |
+
# Number of tokens to ignore from the beginning of the sequence. Only used in LSM
|
36 |
+
initial_tokens_to_ignore: int = 0
|
37 |
|
38 |
@property
|
39 |
def requires_alt_fields(self):
|
|
|
49 |
documentation from [`PretrainedConfig`] for more information.
|
50 |
|
51 |
Args:
|
52 |
+
audio_config (`WhisperConfig`, *optional*):
|
53 |
Custom audio config or dict
|
54 |
text_config (`Union[AutoConfig, dict]`, *optional*):
|
55 |
The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
|
|
|
67 |
The LoRA configuration for finetuning the text model.
|
68 |
audio_model_lora_config (`LoraConfigSimplified`, *optional*):
|
69 |
The LoRA configuration for finetuning the audio model.
|
70 |
+
audio_latency_block_size (`int`, *optional*, defaults to `None`):
|
71 |
+
The latency block size for simulating audio streaming.
|
72 |
|
73 |
|
74 |
Example:
|
75 |
|
76 |
```python
|
77 |
+
>>> from transformers import UltravoxModel, WhisperConfig, UltravoxConfig, LlamaConfig
|
78 |
|
79 |
>>> # Initializing an audio encoder config
|
80 |
+
>>> audio_config = WhisperConfig()
|
81 |
|
82 |
>>> # Initializing a Llama config
|
83 |
>>> text_config = LlamaConfig()
|
|
|
86 |
>>> configuration = UltravoxConfig(audio_config, text_config)
|
87 |
|
88 |
>>> # Initializing a completely untrained model from the configuration
|
89 |
+
>>> model = UltravoxModel(configuration)
|
90 |
|
91 |
>>> # Accessing the model configuration
|
92 |
>>> configuration = model.config
|
93 |
|
94 |
>>> # Initialize a model from pretrained checkpoints and random projector weights
|
95 |
+
>>> config = UltravoxConfig(audio_model_id="openai/whisper-tiny", text_model_id="meta-llama/Llama-2-7b-chat-hf")
|
96 |
```"""
|
97 |
|
98 |
model_type = "ultravox"
|
|
|
109 |
stack_factor: int = 8,
|
110 |
norm_init: float = 0.4,
|
111 |
projector_act: str = "swiglu",
|
112 |
+
projector_ln_mid: bool = False, # defaults to False for compatibility with v0.4.1 and below
|
113 |
text_model_lora_config: Optional[LoraConfigSimplified] = None,
|
114 |
audio_model_lora_config: Optional[LoraConfigSimplified] = None,
|
115 |
+
audio_latency_block_size: Optional[int] = None,
|
116 |
**kwargs,
|
117 |
):
|
118 |
self.ignore_index = ignore_index
|
|
|
124 |
self.stack_factor = stack_factor
|
125 |
self.norm_init = norm_init
|
126 |
self.projector_act = projector_act
|
127 |
+
self.projector_ln_mid = projector_ln_mid
|
128 |
if text_model_id is not None:
|
129 |
self.text_config: transformers.LlamaConfig = (
|
130 |
transformers.AutoConfig.from_pretrained(text_model_id)
|
|
|
142 |
else:
|
143 |
audio_config = audio_config or {}
|
144 |
self.audio_config = transformers.CONFIG_MAPPING[
|
145 |
+
audio_config.get("model_type", "whisper")
|
146 |
](**audio_config)
|
147 |
|
148 |
self.text_model_lora_config = (
|
|
|
155 |
if isinstance(audio_model_lora_config, dict)
|
156 |
else dataclasses.asdict(audio_model_lora_config or LoraConfigSimplified())
|
157 |
)
|
158 |
+
self.audio_latency_block_size = audio_latency_block_size
|
159 |
|
160 |
self.vocab_size = self.text_config.vocab_size
|
161 |
|
|
|
169 |
# remove text_config and audio_config if text_model_id and audio_model_id are present
|
170 |
if self.text_model_id is not None:
|
171 |
diff_dict.pop("text_config", None)
|
172 |
+
elif "text_config" in diff_dict:
|
173 |
+
diff_dict["text_config"].pop("_attn_implementation_autoset", None)
|
174 |
+
|
175 |
if self.audio_model_id is not None:
|
176 |
diff_dict.pop("audio_config", None)
|
177 |
+
elif "audio_config" in diff_dict:
|
178 |
+
diff_dict["audio_config"].pop("_attn_implementation_autoset", None)
|
179 |
|
180 |
return diff_dict
|