> Using CUDA: True > Number of GPUs: 1 > Restoring from checkpoint_950000.pth ... > Restoring Model... > Restoring Optimizer... > Model restored from step 950000 > Model has 86835484 parameters > Restoring best loss from ... > Starting with loaded last best loss 17.839491  > EPOCH: 0/1000 --> ./checkpoints/yourtts_multilingual/yourtts-du_en_fr_ge_it_pl_ptbr_sp-November-08-2022_12+19PM-0cbaa0f6  > TRAINING (2022-11-08 12:19:41)   --> STEP: 24/15287 -- GLOBAL_STEP: 950025 | > loss_disc: 2.35618 (2.30958) | > loss_disc_real_0: 0.10207 (0.12600) | > loss_disc_real_1: 0.24142 (0.20606) | > loss_disc_real_2: 0.20628 (0.21728) | > loss_disc_real_3: 0.21600 (0.22118) | > loss_disc_real_4: 0.22002 (0.21219) | > loss_disc_real_5: 0.23381 (0.21536) | > loss_0: 2.35618 (2.30958) | > grad_norm_0: 19.75892 (15.28785) | > loss_gen: 2.51309 (2.56764) | > loss_kl: 2.56334 (2.63835) | > loss_feat: 8.45651 (8.50806) | > loss_mel: 17.53087 (17.72895) | > loss_duration: 1.71718 (1.70932) | > loss_1: 32.78100 (33.15233) | > grad_norm_1: 94.21747 (125.25717) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.69610 (2.02880) | > loader_time: 0.03260 (0.03764)  --> STEP: 49/15287 -- GLOBAL_STEP: 950050 | > loss_disc: 2.32080 (2.30294) | > loss_disc_real_0: 0.10365 (0.12080) | > loss_disc_real_1: 0.20194 (0.20720) | > loss_disc_real_2: 0.20313 (0.21472) | > loss_disc_real_3: 0.22634 (0.22219) | > loss_disc_real_4: 0.21732 (0.21353) | > loss_disc_real_5: 0.24667 (0.21379) | > loss_0: 2.32080 (2.30294) | > grad_norm_0: 11.04954 (16.90496) | > loss_gen: 2.57317 (2.56812) | > loss_kl: 2.57095 (2.64276) | > loss_feat: 8.53694 (8.59317) | > loss_mel: 17.63229 (17.72977) | > loss_duration: 1.70443 (1.70918) | > loss_1: 33.01778 (33.24299) | > grad_norm_1: 125.04243 (133.16594) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90590 (1.99478) | > loader_time: 0.03390 (0.03824)  --> STEP: 74/15287 -- GLOBAL_STEP: 950075 | > loss_disc: 2.32001 (2.30400) | > loss_disc_real_0: 0.08559 (0.12231) | > loss_disc_real_1: 0.17969 (0.20625) | > loss_disc_real_2: 0.21991 (0.21374) | > loss_disc_real_3: 0.19101 (0.21901) | > loss_disc_real_4: 0.19948 (0.21374) | > loss_disc_real_5: 0.22163 (0.21195) | > loss_0: 2.32001 (2.30400) | > grad_norm_0: 22.76865 (17.06259) | > loss_gen: 2.41879 (2.55674) | > loss_kl: 2.57925 (2.64888) | > loss_feat: 8.04909 (8.60660) | > loss_mel: 17.94151 (17.75860) | > loss_duration: 1.71800 (1.70914) | > loss_1: 32.70665 (33.27995) | > grad_norm_1: 163.96220 (138.61697) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89600 (1.99112) | > loader_time: 0.03340 (0.03678)  --> STEP: 99/15287 -- GLOBAL_STEP: 950100 | > loss_disc: 2.37209 (2.29916) | > loss_disc_real_0: 0.09805 (0.12023) | > loss_disc_real_1: 0.22130 (0.20681) | > loss_disc_real_2: 0.20996 (0.21335) | > loss_disc_real_3: 0.18170 (0.21847) | > loss_disc_real_4: 0.18465 (0.21284) | > loss_disc_real_5: 0.22755 (0.21188) | > loss_0: 2.37209 (2.29916) | > grad_norm_0: 11.18730 (16.27634) | > loss_gen: 2.44063 (2.56475) | > loss_kl: 2.61869 (2.65117) | > loss_feat: 8.70370 (8.65904) | > loss_mel: 17.33731 (17.75957) | > loss_duration: 1.67403 (1.70804) | > loss_1: 32.77436 (33.34255) | > grad_norm_1: 133.35170 (140.18735) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05250 (1.97853) | > loader_time: 0.03340 (0.03618)  --> STEP: 124/15287 -- GLOBAL_STEP: 950125 | > loss_disc: 2.25869 (2.30029) | > loss_disc_real_0: 0.09989 (0.11984) | > loss_disc_real_1: 0.19923 (0.20672) | > loss_disc_real_2: 0.21291 (0.21370) | > loss_disc_real_3: 0.20535 (0.21789) | > loss_disc_real_4: 0.21264 (0.21298) | > loss_disc_real_5: 0.18969 (0.21245) | > loss_0: 2.25869 (2.30029) | > grad_norm_0: 28.53631 (18.10198) | > loss_gen: 2.54582 (2.56030) | > loss_kl: 2.83907 (2.64875) | > loss_feat: 8.61112 (8.63199) | > loss_mel: 17.57659 (17.73409) | > loss_duration: 1.68669 (1.70972) | > loss_1: 33.25928 (33.28483) | > grad_norm_1: 234.25685 (148.16112) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43020 (1.98046) | > loader_time: 0.03320 (0.03670)  --> STEP: 149/15287 -- GLOBAL_STEP: 950150 | > loss_disc: 2.29878 (2.29340) | > loss_disc_real_0: 0.10516 (0.11955) | > loss_disc_real_1: 0.19899 (0.20674) | > loss_disc_real_2: 0.18227 (0.21335) | > loss_disc_real_3: 0.20697 (0.21736) | > loss_disc_real_4: 0.19592 (0.21250) | > loss_disc_real_5: 0.18523 (0.21205) | > loss_0: 2.29878 (2.29340) | > grad_norm_0: 15.98750 (17.87858) | > loss_gen: 2.50270 (2.56696) | > loss_kl: 2.65789 (2.64686) | > loss_feat: 8.68432 (8.65842) | > loss_mel: 17.49755 (17.74474) | > loss_duration: 1.70132 (1.70936) | > loss_1: 33.04379 (33.32634) | > grad_norm_1: 201.58040 (151.13638) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97110 (2.01480) | > loader_time: 0.03260 (0.03710)  --> STEP: 174/15287 -- GLOBAL_STEP: 950175 | > loss_disc: 2.28825 (2.28916) | > loss_disc_real_0: 0.10579 (0.11875) | > loss_disc_real_1: 0.23214 (0.20703) | > loss_disc_real_2: 0.24315 (0.21373) | > loss_disc_real_3: 0.22473 (0.21784) | > loss_disc_real_4: 0.22974 (0.21277) | > loss_disc_real_5: 0.20746 (0.21091) | > loss_0: 2.28825 (2.28916) | > grad_norm_0: 7.43054 (17.78095) | > loss_gen: 2.56023 (2.57324) | > loss_kl: 2.63715 (2.64816) | > loss_feat: 8.89527 (8.68899) | > loss_mel: 18.14456 (17.75100) | > loss_duration: 1.67951 (1.70830) | > loss_1: 33.91672 (33.36969) | > grad_norm_1: 177.43828 (151.09938) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13060 (2.03014) | > loader_time: 0.03210 (0.03665)  --> STEP: 199/15287 -- GLOBAL_STEP: 950200 | > loss_disc: 2.26319 (2.28914) | > loss_disc_real_0: 0.12653 (0.11941) | > loss_disc_real_1: 0.19540 (0.20693) | > loss_disc_real_2: 0.20752 (0.21368) | > loss_disc_real_3: 0.19964 (0.21765) | > loss_disc_real_4: 0.18116 (0.21250) | > loss_disc_real_5: 0.21561 (0.21135) | > loss_0: 2.26319 (2.28914) | > grad_norm_0: 28.01790 (18.47213) | > loss_gen: 2.41740 (2.57256) | > loss_kl: 2.52228 (2.64927) | > loss_feat: 8.03769 (8.69511) | > loss_mel: 17.86329 (17.77063) | > loss_duration: 1.73392 (1.70663) | > loss_1: 32.57458 (33.39420) | > grad_norm_1: 190.38919 (151.87276) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89260 (2.05076) | > loader_time: 0.03920 (0.03698)  --> STEP: 224/15287 -- GLOBAL_STEP: 950225 | > loss_disc: 2.32586 (2.29148) | > loss_disc_real_0: 0.11348 (0.11996) | > loss_disc_real_1: 0.21189 (0.20712) | > loss_disc_real_2: 0.18200 (0.21392) | > loss_disc_real_3: 0.20845 (0.21791) | > loss_disc_real_4: 0.21530 (0.21274) | > loss_disc_real_5: 0.20606 (0.21177) | > loss_0: 2.32586 (2.29148) | > grad_norm_0: 10.35064 (18.23209) | > loss_gen: 2.62650 (2.57128) | > loss_kl: 2.74269 (2.65419) | > loss_feat: 8.60865 (8.68995) | > loss_mel: 17.48365 (17.75551) | > loss_duration: 1.73561 (1.70620) | > loss_1: 33.19710 (33.37713) | > grad_norm_1: 149.49594 (151.56320) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.48350 (2.09264) | > loader_time: 0.03550 (0.03708)  --> STEP: 249/15287 -- GLOBAL_STEP: 950250 | > loss_disc: 2.23261 (2.29113) | > loss_disc_real_0: 0.09564 (0.11949) | > loss_disc_real_1: 0.20949 (0.20754) | > loss_disc_real_2: 0.20461 (0.21422) | > loss_disc_real_3: 0.19997 (0.21770) | > loss_disc_real_4: 0.19937 (0.21246) | > loss_disc_real_5: 0.18886 (0.21192) | > loss_0: 2.23261 (2.29113) | > grad_norm_0: 10.00226 (17.97773) | > loss_gen: 2.71097 (2.57272) | > loss_kl: 2.53260 (2.65506) | > loss_feat: 9.16516 (8.70235) | > loss_mel: 17.71460 (17.76103) | > loss_duration: 1.75056 (1.70659) | > loss_1: 33.87389 (33.39775) | > grad_norm_1: 194.05939 (151.83099) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11900 (2.10748) | > loader_time: 0.03190 (0.03712)  --> STEP: 274/15287 -- GLOBAL_STEP: 950275 | > loss_disc: 2.40325 (2.29273) | > loss_disc_real_0: 0.08755 (0.12054) | > loss_disc_real_1: 0.23105 (0.20734) | > loss_disc_real_2: 0.20590 (0.21467) | > loss_disc_real_3: 0.20677 (0.21742) | > loss_disc_real_4: 0.20317 (0.21250) | > loss_disc_real_5: 0.25773 (0.21247) | > loss_0: 2.40325 (2.29273) | > grad_norm_0: 14.99478 (17.76572) | > loss_gen: 2.45895 (2.57406) | > loss_kl: 2.72446 (2.65828) | > loss_feat: 8.56781 (8.70079) | > loss_mel: 17.23967 (17.75665) | > loss_duration: 1.69021 (1.70596) | > loss_1: 32.68110 (33.39573) | > grad_norm_1: 68.35754 (150.30209) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43020 (2.12356) | > loader_time: 0.03670 (0.03794)  --> STEP: 299/15287 -- GLOBAL_STEP: 950300 | > loss_disc: 2.31980 (2.29510) | > loss_disc_real_0: 0.11536 (0.12033) | > loss_disc_real_1: 0.21738 (0.20779) | > loss_disc_real_2: 0.21576 (0.21489) | > loss_disc_real_3: 0.18898 (0.21733) | > loss_disc_real_4: 0.22056 (0.21280) | > loss_disc_real_5: 0.18747 (0.21243) | > loss_0: 2.31980 (2.29510) | > grad_norm_0: 7.46529 (17.15026) | > loss_gen: 2.53758 (2.57343) | > loss_kl: 2.69139 (2.66003) | > loss_feat: 8.63671 (8.70363) | > loss_mel: 18.04524 (17.76568) | > loss_duration: 1.68116 (1.70565) | > loss_1: 33.59208 (33.40842) | > grad_norm_1: 70.53553 (144.92455) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33320 (2.12997) | > loader_time: 0.03580 (0.03851)  --> STEP: 324/15287 -- GLOBAL_STEP: 950325 | > loss_disc: 2.32873 (2.29961) | > loss_disc_real_0: 0.10403 (0.12079) | > loss_disc_real_1: 0.19897 (0.20829) | > loss_disc_real_2: 0.21073 (0.21540) | > loss_disc_real_3: 0.18657 (0.21757) | > loss_disc_real_4: 0.18481 (0.21294) | > loss_disc_real_5: 0.18747 (0.21237) | > loss_0: 2.32873 (2.29961) | > grad_norm_0: 17.21397 (16.96216) | > loss_gen: 2.53532 (2.57105) | > loss_kl: 2.53983 (2.65965) | > loss_feat: 8.23407 (8.68876) | > loss_mel: 17.97979 (17.77614) | > loss_duration: 1.65446 (1.70513) | > loss_1: 32.94348 (33.40073) | > grad_norm_1: 97.73113 (143.33263) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10570 (2.14604) | > loader_time: 0.03660 (0.03845)  --> STEP: 349/15287 -- GLOBAL_STEP: 950350 | > loss_disc: 2.24844 (2.29844) | > loss_disc_real_0: 0.09376 (0.12036) | > loss_disc_real_1: 0.21115 (0.20830) | > loss_disc_real_2: 0.22030 (0.21527) | > loss_disc_real_3: 0.21078 (0.21770) | > loss_disc_real_4: 0.20506 (0.21288) | > loss_disc_real_5: 0.23328 (0.21189) | > loss_0: 2.24844 (2.29844) | > grad_norm_0: 15.54760 (17.07108) | > loss_gen: 2.66224 (2.57273) | > loss_kl: 2.70322 (2.66273) | > loss_feat: 9.44859 (8.69368) | > loss_mel: 17.80281 (17.77333) | > loss_duration: 1.73116 (1.70440) | > loss_1: 34.34803 (33.40689) | > grad_norm_1: 56.02756 (143.67561) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28840 (2.16041) | > loader_time: 0.03860 (0.03849)  --> STEP: 374/15287 -- GLOBAL_STEP: 950375 | > loss_disc: 2.33005 (2.30075) | > loss_disc_real_0: 0.11539 (0.12015) | > loss_disc_real_1: 0.20057 (0.20858) | > loss_disc_real_2: 0.22213 (0.21521) | > loss_disc_real_3: 0.22329 (0.21818) | > loss_disc_real_4: 0.24240 (0.21320) | > loss_disc_real_5: 0.19684 (0.21204) | > loss_0: 2.33005 (2.30075) | > grad_norm_0: 22.04115 (17.45034) | > loss_gen: 2.68977 (2.57147) | > loss_kl: 2.63042 (2.66281) | > loss_feat: 9.17137 (8.68547) | > loss_mel: 17.74933 (17.77187) | > loss_duration: 1.76745 (1.70456) | > loss_1: 34.00834 (33.39618) | > grad_norm_1: 168.63734 (144.37924) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.83520 (2.16569) | > loader_time: 0.03280 (0.03843)  --> STEP: 399/15287 -- GLOBAL_STEP: 950400 | > loss_disc: 2.26671 (2.30074) | > loss_disc_real_0: 0.13216 (0.12013) | > loss_disc_real_1: 0.23722 (0.20849) | > loss_disc_real_2: 0.18869 (0.21514) | > loss_disc_real_3: 0.17441 (0.21820) | > loss_disc_real_4: 0.19375 (0.21315) | > loss_disc_real_5: 0.21371 (0.21232) | > loss_0: 2.26671 (2.30074) | > grad_norm_0: 25.26106 (17.61095) | > loss_gen: 2.58578 (2.56943) | > loss_kl: 2.71406 (2.66253) | > loss_feat: 8.74957 (8.68119) | > loss_mel: 17.91979 (17.76861) | > loss_duration: 1.69212 (1.70425) | > loss_1: 33.66132 (33.38604) | > grad_norm_1: 279.31641 (145.96124) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.68020 (2.17769) | > loader_time: 0.04740 (0.03838)  --> STEP: 424/15287 -- GLOBAL_STEP: 950425 | > loss_disc: 2.25123 (2.30032) | > loss_disc_real_0: 0.15082 (0.11988) | > loss_disc_real_1: 0.21865 (0.20849) | > loss_disc_real_2: 0.21089 (0.21504) | > loss_disc_real_3: 0.19492 (0.21803) | > loss_disc_real_4: 0.20024 (0.21301) | > loss_disc_real_5: 0.20052 (0.21226) | > loss_0: 2.25123 (2.30032) | > grad_norm_0: 21.72898 (18.04733) | > loss_gen: 2.63277 (2.56901) | > loss_kl: 2.77603 (2.66331) | > loss_feat: 9.12088 (8.68488) | > loss_mel: 17.70777 (17.76623) | > loss_duration: 1.68998 (1.70385) | > loss_1: 33.92743 (33.38727) | > grad_norm_1: 218.25212 (148.78745) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01800 (2.18371) | > loader_time: 0.03240 (0.03851)  --> STEP: 449/15287 -- GLOBAL_STEP: 950450 | > loss_disc: 2.39678 (2.29921) | > loss_disc_real_0: 0.11533 (0.12028) | > loss_disc_real_1: 0.23306 (0.20852) | > loss_disc_real_2: 0.18389 (0.21501) | > loss_disc_real_3: 0.21756 (0.21800) | > loss_disc_real_4: 0.21773 (0.21317) | > loss_disc_real_5: 0.22325 (0.21224) | > loss_0: 2.39678 (2.29921) | > grad_norm_0: 8.10382 (18.22670) | > loss_gen: 2.41022 (2.57046) | > loss_kl: 2.75820 (2.66443) | > loss_feat: 8.10036 (8.68845) | > loss_mel: 17.23013 (17.77048) | > loss_duration: 1.71082 (1.70434) | > loss_1: 32.20973 (33.39816) | > grad_norm_1: 62.99198 (149.21106) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.74550 (2.18707) | > loader_time: 0.03600 (0.03864)  --> STEP: 474/15287 -- GLOBAL_STEP: 950475 | > loss_disc: 2.27360 (2.30052) | > loss_disc_real_0: 0.13066 (0.12051) | > loss_disc_real_1: 0.20864 (0.20858) | > loss_disc_real_2: 0.22126 (0.21570) | > loss_disc_real_3: 0.21988 (0.21776) | > loss_disc_real_4: 0.21675 (0.21345) | > loss_disc_real_5: 0.23498 (0.21239) | > loss_0: 2.27360 (2.30052) | > grad_norm_0: 15.80475 (17.99117) | > loss_gen: 2.55772 (2.57159) | > loss_kl: 2.71307 (2.66641) | > loss_feat: 8.50293 (8.68303) | > loss_mel: 17.37672 (17.77111) | > loss_duration: 1.74035 (1.70492) | > loss_1: 32.89078 (33.39704) | > grad_norm_1: 148.78558 (148.16234) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39840 (2.19451) | > loader_time: 0.03750 (0.03876)  --> STEP: 499/15287 -- GLOBAL_STEP: 950500 | > loss_disc: 2.35070 (2.30123) | > loss_disc_real_0: 0.15637 (0.12048) | > loss_disc_real_1: 0.19428 (0.20894) | > loss_disc_real_2: 0.19883 (0.21541) | > loss_disc_real_3: 0.21165 (0.21764) | > loss_disc_real_4: 0.21228 (0.21342) | > loss_disc_real_5: 0.20183 (0.21234) | > loss_0: 2.35070 (2.30123) | > grad_norm_0: 13.86747 (17.76221) | > loss_gen: 2.50388 (2.57166) | > loss_kl: 2.47351 (2.66385) | > loss_feat: 8.67123 (8.68414) | > loss_mel: 17.48273 (17.76653) | > loss_duration: 1.72898 (1.70513) | > loss_1: 32.86034 (33.39130) | > grad_norm_1: 108.68482 (146.96298) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35200 (2.20203) | > loader_time: 0.03890 (0.03865)  --> STEP: 524/15287 -- GLOBAL_STEP: 950525 | > loss_disc: 2.29509 (2.30267) | > loss_disc_real_0: 0.09614 (0.12086) | > loss_disc_real_1: 0.24713 (0.20917) | > loss_disc_real_2: 0.22228 (0.21542) | > loss_disc_real_3: 0.22549 (0.21766) | > loss_disc_real_4: 0.22582 (0.21362) | > loss_disc_real_5: 0.18841 (0.21233) | > loss_0: 2.29509 (2.30267) | > grad_norm_0: 14.63693 (17.59889) | > loss_gen: 2.58278 (2.57111) | > loss_kl: 2.69490 (2.66436) | > loss_feat: 8.63081 (8.67807) | > loss_mel: 17.65339 (17.76744) | > loss_duration: 1.72899 (1.70540) | > loss_1: 33.29087 (33.38636) | > grad_norm_1: 97.13706 (145.69481) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.83440 (2.20605) | > loader_time: 0.04150 (0.03903)  --> STEP: 549/15287 -- GLOBAL_STEP: 950550 | > loss_disc: 2.25232 (2.30333) | > loss_disc_real_0: 0.09653 (0.12078) | > loss_disc_real_1: 0.20076 (0.20918) | > loss_disc_real_2: 0.18997 (0.21551) | > loss_disc_real_3: 0.21556 (0.21784) | > loss_disc_real_4: 0.20563 (0.21377) | > loss_disc_real_5: 0.21692 (0.21244) | > loss_0: 2.25232 (2.30333) | > grad_norm_0: 10.55847 (17.41419) | > loss_gen: 2.69644 (2.57035) | > loss_kl: 2.64023 (2.66321) | > loss_feat: 8.69937 (8.67545) | > loss_mel: 17.63384 (17.76783) | > loss_duration: 1.70722 (1.70535) | > loss_1: 33.37709 (33.38220) | > grad_norm_1: 166.11273 (145.06732) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28320 (2.21597) | > loader_time: 0.03610 (0.03892)  --> STEP: 574/15287 -- GLOBAL_STEP: 950575 | > loss_disc: 2.33963 (2.30296) | > loss_disc_real_0: 0.13492 (0.12055) | > loss_disc_real_1: 0.19074 (0.20918) | > loss_disc_real_2: 0.22854 (0.21551) | > loss_disc_real_3: 0.20416 (0.21796) | > loss_disc_real_4: 0.18774 (0.21374) | > loss_disc_real_5: 0.20106 (0.21244) | > loss_0: 2.33963 (2.30296) | > grad_norm_0: 10.78421 (17.40275) | > loss_gen: 2.71041 (2.57130) | > loss_kl: 2.93148 (2.66090) | > loss_feat: 8.91326 (8.67351) | > loss_mel: 18.10206 (17.76318) | > loss_duration: 1.68183 (1.70558) | > loss_1: 34.33904 (33.37447) | > grad_norm_1: 145.84808 (145.00436) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28240 (2.21861) | > loader_time: 0.03360 (0.03880)  --> STEP: 599/15287 -- GLOBAL_STEP: 950600 | > loss_disc: 2.31431 (2.30253) | > loss_disc_real_0: 0.12983 (0.12040) | > loss_disc_real_1: 0.20231 (0.20916) | > loss_disc_real_2: 0.19979 (0.21515) | > loss_disc_real_3: 0.18557 (0.21805) | > loss_disc_real_4: 0.22697 (0.21365) | > loss_disc_real_5: 0.20512 (0.21254) | > loss_0: 2.31431 (2.30253) | > grad_norm_0: 17.02888 (17.43674) | > loss_gen: 2.46827 (2.57031) | > loss_kl: 2.66133 (2.66065) | > loss_feat: 8.75468 (8.67652) | > loss_mel: 17.30052 (17.76203) | > loss_duration: 1.71920 (1.70548) | > loss_1: 32.90401 (33.37498) | > grad_norm_1: 178.22110 (144.66678) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29970 (2.22181) | > loader_time: 0.03930 (0.03878)  --> STEP: 624/15287 -- GLOBAL_STEP: 950625 | > loss_disc: 2.31787 (2.30283) | > loss_disc_real_0: 0.26470 (0.12064) | > loss_disc_real_1: 0.22840 (0.20934) | > loss_disc_real_2: 0.21406 (0.21526) | > loss_disc_real_3: 0.24427 (0.21803) | > loss_disc_real_4: 0.19922 (0.21366) | > loss_disc_real_5: 0.18229 (0.21240) | > loss_0: 2.31787 (2.30283) | > grad_norm_0: 24.22887 (17.41389) | > loss_gen: 2.65747 (2.57160) | > loss_kl: 2.62374 (2.65923) | > loss_feat: 9.03645 (8.67889) | > loss_mel: 17.58174 (17.76610) | > loss_duration: 1.69791 (1.70585) | > loss_1: 33.59731 (33.38166) | > grad_norm_1: 76.77301 (144.64485) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28030 (2.22733) | > loader_time: 0.03630 (0.03888)  --> STEP: 649/15287 -- GLOBAL_STEP: 950650 | > loss_disc: 2.34624 (2.30477) | > loss_disc_real_0: 0.12628 (0.12122) | > loss_disc_real_1: 0.24021 (0.20959) | > loss_disc_real_2: 0.22138 (0.21524) | > loss_disc_real_3: 0.21175 (0.21791) | > loss_disc_real_4: 0.22559 (0.21365) | > loss_disc_real_5: 0.18192 (0.21251) | > loss_0: 2.34624 (2.30477) | > grad_norm_0: 17.95290 (17.50459) | > loss_gen: 2.58014 (2.57052) | > loss_kl: 2.53352 (2.65839) | > loss_feat: 8.33861 (8.67580) | > loss_mel: 17.46637 (17.76455) | > loss_duration: 1.72258 (1.70595) | > loss_1: 32.64123 (33.37522) | > grad_norm_1: 51.07726 (144.70575) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43740 (2.23292) | > loader_time: 0.03270 (0.03895)  --> STEP: 674/15287 -- GLOBAL_STEP: 950675 | > loss_disc: 2.48196 (2.30497) | > loss_disc_real_0: 0.15193 (0.12121) | > loss_disc_real_1: 0.22673 (0.20952) | > loss_disc_real_2: 0.23851 (0.21526) | > loss_disc_real_3: 0.24597 (0.21816) | > loss_disc_real_4: 0.25542 (0.21374) | > loss_disc_real_5: 0.24492 (0.21233) | > loss_0: 2.48196 (2.30497) | > grad_norm_0: 16.89082 (17.45985) | > loss_gen: 2.51263 (2.57152) | > loss_kl: 2.57859 (2.65754) | > loss_feat: 7.88112 (8.67810) | > loss_mel: 17.38774 (17.76573) | > loss_duration: 1.73287 (1.70605) | > loss_1: 32.09295 (33.37894) | > grad_norm_1: 135.89214 (144.74707) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56920 (2.23726) | > loader_time: 0.03170 (0.03888)  --> STEP: 699/15287 -- GLOBAL_STEP: 950700 | > loss_disc: 2.32897 (2.30504) | > loss_disc_real_0: 0.09761 (0.12104) | > loss_disc_real_1: 0.19856 (0.20963) | > loss_disc_real_2: 0.21222 (0.21516) | > loss_disc_real_3: 0.20755 (0.21811) | > loss_disc_real_4: 0.21128 (0.21367) | > loss_disc_real_5: 0.24625 (0.21244) | > loss_0: 2.32897 (2.30504) | > grad_norm_0: 21.64093 (17.39934) | > loss_gen: 2.59949 (2.57027) | > loss_kl: 2.61154 (2.65659) | > loss_feat: 8.86145 (8.67799) | > loss_mel: 17.99015 (17.76522) | > loss_duration: 1.67694 (1.70574) | > loss_1: 33.73958 (33.37581) | > grad_norm_1: 159.25221 (144.41885) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34760 (2.24091) | > loader_time: 0.03220 (0.03875)  --> STEP: 724/15287 -- GLOBAL_STEP: 950725 | > loss_disc: 2.30058 (2.30549) | > loss_disc_real_0: 0.07044 (0.12096) | > loss_disc_real_1: 0.18835 (0.20985) | > loss_disc_real_2: 0.18802 (0.21525) | > loss_disc_real_3: 0.21258 (0.21808) | > loss_disc_real_4: 0.18591 (0.21380) | > loss_disc_real_5: 0.19856 (0.21232) | > loss_0: 2.30058 (2.30549) | > grad_norm_0: 10.50433 (17.18345) | > loss_gen: 2.78105 (2.57227) | > loss_kl: 2.56414 (2.65693) | > loss_feat: 8.68156 (8.68063) | > loss_mel: 17.87809 (17.76733) | > loss_duration: 1.71787 (1.70598) | > loss_1: 33.62271 (33.38313) | > grad_norm_1: 142.78696 (143.83734) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29870 (2.24377) | > loader_time: 0.03130 (0.03864)  --> STEP: 749/15287 -- GLOBAL_STEP: 950750 | > loss_disc: 2.30080 (2.30676) | > loss_disc_real_0: 0.15421 (0.12103) | > loss_disc_real_1: 0.24777 (0.21023) | > loss_disc_real_2: 0.23698 (0.21557) | > loss_disc_real_3: 0.18976 (0.21800) | > loss_disc_real_4: 0.20913 (0.21366) | > loss_disc_real_5: 0.20095 (0.21231) | > loss_0: 2.30080 (2.30676) | > grad_norm_0: 28.34271 (17.25579) | > loss_gen: 2.57156 (2.57128) | > loss_kl: 2.66103 (2.65674) | > loss_feat: 8.70796 (8.67748) | > loss_mel: 17.42385 (17.76829) | > loss_duration: 1.71520 (1.70605) | > loss_1: 33.07958 (33.37981) | > grad_norm_1: 192.89349 (144.25729) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44640 (2.24224) | > loader_time: 0.03190 (0.03846)  --> STEP: 774/15287 -- GLOBAL_STEP: 950775 | > loss_disc: 2.34116 (2.30646) | > loss_disc_real_0: 0.09871 (0.12080) | > loss_disc_real_1: 0.22779 (0.21039) | > loss_disc_real_2: 0.22503 (0.21544) | > loss_disc_real_3: 0.19556 (0.21790) | > loss_disc_real_4: 0.23025 (0.21356) | > loss_disc_real_5: 0.21104 (0.21217) | > loss_0: 2.34116 (2.30646) | > grad_norm_0: 11.68064 (17.26446) | > loss_gen: 2.54315 (2.56988) | > loss_kl: 2.83462 (2.65695) | > loss_feat: 8.17380 (8.67591) | > loss_mel: 17.68996 (17.76651) | > loss_duration: 1.69530 (1.70602) | > loss_1: 32.93684 (33.37525) | > grad_norm_1: 71.62733 (144.51607) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09920 (2.24060) | > loader_time: 0.03010 (0.03837)  --> STEP: 799/15287 -- GLOBAL_STEP: 950800 | > loss_disc: 2.33545 (2.30668) | > loss_disc_real_0: 0.09114 (0.12083) | > loss_disc_real_1: 0.20206 (0.21036) | > loss_disc_real_2: 0.23501 (0.21547) | > loss_disc_real_3: 0.20692 (0.21785) | > loss_disc_real_4: 0.20926 (0.21355) | > loss_disc_real_5: 0.22514 (0.21226) | > loss_0: 2.33545 (2.30668) | > grad_norm_0: 7.22051 (17.17452) | > loss_gen: 2.63352 (2.56925) | > loss_kl: 2.80553 (2.65861) | > loss_feat: 8.23478 (8.67851) | > loss_mel: 18.09982 (17.76712) | > loss_duration: 1.71074 (1.70615) | > loss_1: 33.48438 (33.37963) | > grad_norm_1: 107.94145 (143.55923) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32820 (2.24269) | > loader_time: 0.03180 (0.03829)  --> STEP: 824/15287 -- GLOBAL_STEP: 950825 | > loss_disc: 2.32922 (2.30723) | > loss_disc_real_0: 0.12365 (0.12126) | > loss_disc_real_1: 0.21646 (0.21038) | > loss_disc_real_2: 0.20300 (0.21536) | > loss_disc_real_3: 0.22319 (0.21788) | > loss_disc_real_4: 0.22369 (0.21374) | > loss_disc_real_5: 0.22843 (0.21241) | > loss_0: 2.32922 (2.30723) | > grad_norm_0: 16.83931 (17.17751) | > loss_gen: 2.36153 (2.56951) | > loss_kl: 2.87138 (2.66025) | > loss_feat: 8.72368 (8.68012) | > loss_mel: 17.97702 (17.76789) | > loss_duration: 1.73153 (1.70653) | > loss_1: 33.66514 (33.38428) | > grad_norm_1: 95.61023 (142.49533) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00230 (2.24239) | > loader_time: 0.02960 (0.03840)  --> STEP: 849/15287 -- GLOBAL_STEP: 950850 | > loss_disc: 2.23448 (2.30736) | > loss_disc_real_0: 0.07040 (0.12125) | > loss_disc_real_1: 0.20954 (0.21039) | > loss_disc_real_2: 0.22055 (0.21538) | > loss_disc_real_3: 0.21669 (0.21788) | > loss_disc_real_4: 0.21462 (0.21364) | > loss_disc_real_5: 0.23271 (0.21232) | > loss_0: 2.23448 (2.30736) | > grad_norm_0: 10.00502 (17.04410) | > loss_gen: 2.69041 (2.56974) | > loss_kl: 2.69949 (2.66105) | > loss_feat: 9.08047 (8.68165) | > loss_mel: 17.95728 (17.77379) | > loss_duration: 1.71329 (1.70658) | > loss_1: 34.14093 (33.39280) | > grad_norm_1: 116.70138 (140.87691) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02080 (2.24334) | > loader_time: 0.03020 (0.03828)  --> STEP: 874/15287 -- GLOBAL_STEP: 950875 | > loss_disc: 2.28158 (2.30822) | > loss_disc_real_0: 0.10231 (0.12164) | > loss_disc_real_1: 0.19073 (0.21036) | > loss_disc_real_2: 0.20152 (0.21525) | > loss_disc_real_3: 0.20993 (0.21794) | > loss_disc_real_4: 0.20677 (0.21373) | > loss_disc_real_5: 0.21269 (0.21242) | > loss_0: 2.28158 (2.30822) | > grad_norm_0: 6.42739 (16.97146) | > loss_gen: 2.54716 (2.56919) | > loss_kl: 2.48335 (2.66148) | > loss_feat: 8.22918 (8.68481) | > loss_mel: 17.47531 (17.77927) | > loss_duration: 1.69551 (1.70647) | > loss_1: 32.43051 (33.40120) | > grad_norm_1: 114.11018 (140.28714) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30690 (2.24456) | > loader_time: 0.03320 (0.03814)  --> STEP: 899/15287 -- GLOBAL_STEP: 950900 | > loss_disc: 2.27023 (2.30775) | > loss_disc_real_0: 0.11559 (0.12149) | > loss_disc_real_1: 0.20440 (0.21050) | > loss_disc_real_2: 0.20362 (0.21523) | > loss_disc_real_3: 0.18406 (0.21789) | > loss_disc_real_4: 0.20750 (0.21367) | > loss_disc_real_5: 0.20198 (0.21241) | > loss_0: 2.27023 (2.30775) | > grad_norm_0: 18.74708 (16.88191) | > loss_gen: 2.48321 (2.56994) | > loss_kl: 2.58329 (2.66091) | > loss_feat: 9.02711 (8.69005) | > loss_mel: 17.94265 (17.78001) | > loss_duration: 1.70203 (1.70650) | > loss_1: 33.73829 (33.40740) | > grad_norm_1: 138.86533 (139.66406) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93750 (2.24709) | > loader_time: 0.03450 (0.03807)  --> STEP: 924/15287 -- GLOBAL_STEP: 950925 | > loss_disc: 2.29732 (2.30793) | > loss_disc_real_0: 0.11393 (0.12135) | > loss_disc_real_1: 0.21555 (0.21050) | > loss_disc_real_2: 0.25265 (0.21522) | > loss_disc_real_3: 0.25900 (0.21793) | > loss_disc_real_4: 0.23614 (0.21369) | > loss_disc_real_5: 0.22807 (0.21244) | > loss_0: 2.29732 (2.30793) | > grad_norm_0: 14.39118 (16.81129) | > loss_gen: 2.66148 (2.56965) | > loss_kl: 2.69212 (2.66109) | > loss_feat: 8.75934 (8.69034) | > loss_mel: 17.70655 (17.78249) | > loss_duration: 1.71141 (1.70663) | > loss_1: 33.53090 (33.41018) | > grad_norm_1: 143.03360 (138.90974) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.48430 (2.25015) | > loader_time: 0.03480 (0.03799)  --> STEP: 949/15287 -- GLOBAL_STEP: 950950 | > loss_disc: 2.36865 (2.30724) | > loss_disc_real_0: 0.15313 (0.12138) | > loss_disc_real_1: 0.21748 (0.21040) | > loss_disc_real_2: 0.21213 (0.21522) | > loss_disc_real_3: 0.24712 (0.21804) | > loss_disc_real_4: 0.24764 (0.21381) | > loss_disc_real_5: 0.20476 (0.21238) | > loss_0: 2.36865 (2.30724) | > grad_norm_0: 27.81301 (16.78193) | > loss_gen: 2.61910 (2.57157) | > loss_kl: 2.48843 (2.66009) | > loss_feat: 8.63869 (8.69073) | > loss_mel: 17.20729 (17.77648) | > loss_duration: 1.75733 (1.70657) | > loss_1: 32.71085 (33.40544) | > grad_norm_1: 176.47791 (138.61629) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28140 (2.24745) | > loader_time: 0.03890 (0.03803)  --> STEP: 974/15287 -- GLOBAL_STEP: 950975 | > loss_disc: 2.22365 (2.30727) | > loss_disc_real_0: 0.10212 (0.12118) | > loss_disc_real_1: 0.20611 (0.21054) | > loss_disc_real_2: 0.21742 (0.21522) | > loss_disc_real_3: 0.19745 (0.21806) | > loss_disc_real_4: 0.19268 (0.21376) | > loss_disc_real_5: 0.18104 (0.21229) | > loss_0: 2.22365 (2.30727) | > grad_norm_0: 9.69757 (16.78503) | > loss_gen: 2.78397 (2.57114) | > loss_kl: 2.63759 (2.65921) | > loss_feat: 9.06293 (8.69096) | > loss_mel: 17.58661 (17.77659) | > loss_duration: 1.71808 (1.70659) | > loss_1: 33.78918 (33.40446) | > grad_norm_1: 177.56384 (139.03011) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56400 (2.24991) | > loader_time: 0.04130 (0.03827)  --> STEP: 999/15287 -- GLOBAL_STEP: 951000 | > loss_disc: 2.36708 (2.30701) | > loss_disc_real_0: 0.16627 (0.12112) | > loss_disc_real_1: 0.24268 (0.21047) | > loss_disc_real_2: 0.22766 (0.21520) | > loss_disc_real_3: 0.22149 (0.21808) | > loss_disc_real_4: 0.20223 (0.21378) | > loss_disc_real_5: 0.19457 (0.21253) | > loss_0: 2.36708 (2.30701) | > grad_norm_0: 19.34599 (16.82386) | > loss_gen: 2.54138 (2.57111) | > loss_kl: 2.77914 (2.66059) | > loss_feat: 8.75470 (8.69392) | > loss_mel: 17.40178 (17.77728) | > loss_duration: 1.69532 (1.70653) | > loss_1: 33.17231 (33.40940) | > grad_norm_1: 150.85088 (139.20514) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.53980 (2.25828) | > loader_time: 0.03120 (0.03821)  --> STEP: 1024/15287 -- GLOBAL_STEP: 951025 | > loss_disc: 2.27290 (2.30672) | > loss_disc_real_0: 0.10820 (0.12110) | > loss_disc_real_1: 0.16409 (0.21049) | > loss_disc_real_2: 0.18797 (0.21515) | > loss_disc_real_3: 0.20828 (0.21804) | > loss_disc_real_4: 0.19122 (0.21374) | > loss_disc_real_5: 0.19710 (0.21238) | > loss_0: 2.27290 (2.30672) | > grad_norm_0: 8.81071 (16.72390) | > loss_gen: 2.55000 (2.57111) | > loss_kl: 2.72958 (2.66129) | > loss_feat: 8.58648 (8.69559) | > loss_mel: 17.72427 (17.77727) | > loss_duration: 1.74049 (1.70639) | > loss_1: 33.33083 (33.41162) | > grad_norm_1: 119.49934 (139.12141) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.54900 (2.26238) | > loader_time: 0.03270 (0.03817)  --> STEP: 1049/15287 -- GLOBAL_STEP: 951050 | > loss_disc: 2.30143 (2.30655) | > loss_disc_real_0: 0.11278 (0.12095) | > loss_disc_real_1: 0.20301 (0.21071) | > loss_disc_real_2: 0.21283 (0.21526) | > loss_disc_real_3: 0.23841 (0.21813) | > loss_disc_real_4: 0.21738 (0.21377) | > loss_disc_real_5: 0.19748 (0.21256) | > loss_0: 2.30143 (2.30655) | > grad_norm_0: 16.92093 (16.74505) | > loss_gen: 2.48348 (2.57178) | > loss_kl: 2.72166 (2.66109) | > loss_feat: 8.86518 (8.69419) | > loss_mel: 17.99673 (17.77625) | > loss_duration: 1.70834 (1.70648) | > loss_1: 33.77540 (33.40978) | > grad_norm_1: 65.69629 (138.78979) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55600 (2.26173) | > loader_time: 0.03150 (0.03809)  --> STEP: 1074/15287 -- GLOBAL_STEP: 951075 | > loss_disc: 2.26947 (2.30605) | > loss_disc_real_0: 0.11322 (0.12088) | > loss_disc_real_1: 0.20716 (0.21048) | > loss_disc_real_2: 0.22052 (0.21515) | > loss_disc_real_3: 0.22115 (0.21810) | > loss_disc_real_4: 0.22497 (0.21371) | > loss_disc_real_5: 0.19374 (0.21255) | > loss_0: 2.26947 (2.30605) | > grad_norm_0: 21.12347 (16.89089) | > loss_gen: 2.54461 (2.57143) | > loss_kl: 2.65299 (2.66146) | > loss_feat: 8.90924 (8.69710) | > loss_mel: 18.23371 (17.77498) | > loss_duration: 1.69923 (1.70649) | > loss_1: 34.03978 (33.41145) | > grad_norm_1: 189.80473 (139.62257) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30390 (2.26179) | > loader_time: 0.03220 (0.03801)  --> STEP: 1099/15287 -- GLOBAL_STEP: 951100 | > loss_disc: 2.33551 (2.30561) | > loss_disc_real_0: 0.16374 (0.12112) | > loss_disc_real_1: 0.21772 (0.21045) | > loss_disc_real_2: 0.20762 (0.21506) | > loss_disc_real_3: 0.22509 (0.21803) | > loss_disc_real_4: 0.21298 (0.21360) | > loss_disc_real_5: 0.21968 (0.21246) | > loss_0: 2.33551 (2.30561) | > grad_norm_0: 20.77510 (16.94933) | > loss_gen: 2.72584 (2.57223) | > loss_kl: 2.86652 (2.66210) | > loss_feat: 8.81508 (8.70152) | > loss_mel: 17.79661 (17.77781) | > loss_duration: 1.66973 (1.70634) | > loss_1: 33.87379 (33.42001) | > grad_norm_1: 66.65012 (139.83144) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38500 (2.26395) | > loader_time: 0.03650 (0.03790)  --> STEP: 1124/15287 -- GLOBAL_STEP: 951125 | > loss_disc: 2.40726 (2.30568) | > loss_disc_real_0: 0.13429 (0.12125) | > loss_disc_real_1: 0.21658 (0.21049) | > loss_disc_real_2: 0.24012 (0.21499) | > loss_disc_real_3: 0.22446 (0.21791) | > loss_disc_real_4: 0.20191 (0.21360) | > loss_disc_real_5: 0.21754 (0.21236) | > loss_0: 2.40726 (2.30568) | > grad_norm_0: 15.24614 (16.96244) | > loss_gen: 2.50987 (2.57207) | > loss_kl: 2.69616 (2.66270) | > loss_feat: 7.79974 (8.69992) | > loss_mel: 17.76577 (17.77884) | > loss_duration: 1.71098 (1.70629) | > loss_1: 32.48252 (33.41981) | > grad_norm_1: 148.32036 (140.23581) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37450 (2.26237) | > loader_time: 0.03990 (0.03781)  --> STEP: 1149/15287 -- GLOBAL_STEP: 951150 | > loss_disc: 2.28525 (2.30522) | > loss_disc_real_0: 0.08290 (0.12119) | > loss_disc_real_1: 0.20098 (0.21040) | > loss_disc_real_2: 0.21218 (0.21493) | > loss_disc_real_3: 0.22025 (0.21776) | > loss_disc_real_4: 0.23101 (0.21348) | > loss_disc_real_5: 0.21332 (0.21232) | > loss_0: 2.28525 (2.30522) | > grad_norm_0: 23.35693 (16.98913) | > loss_gen: 2.52253 (2.57157) | > loss_kl: 2.59251 (2.66281) | > loss_feat: 9.06883 (8.69998) | > loss_mel: 17.89662 (17.78079) | > loss_duration: 1.67690 (1.70619) | > loss_1: 33.75739 (33.42134) | > grad_norm_1: 177.94214 (140.55254) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.75850 (2.25600) | > loader_time: 0.03290 (0.03776)  --> STEP: 1174/15287 -- GLOBAL_STEP: 951175 | > loss_disc: 2.33877 (2.30520) | > loss_disc_real_0: 0.10592 (0.12123) | > loss_disc_real_1: 0.21795 (0.21039) | > loss_disc_real_2: 0.21061 (0.21490) | > loss_disc_real_3: 0.21543 (0.21780) | > loss_disc_real_4: 0.21672 (0.21338) | > loss_disc_real_5: 0.21504 (0.21245) | > loss_0: 2.33877 (2.30520) | > grad_norm_0: 14.54916 (17.09208) | > loss_gen: 2.34291 (2.57120) | > loss_kl: 2.62956 (2.66219) | > loss_feat: 8.08615 (8.69824) | > loss_mel: 16.77793 (17.77651) | > loss_duration: 1.68781 (1.70631) | > loss_1: 31.52434 (33.41444) | > grad_norm_1: 175.76718 (141.11372) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.95460 (2.25518) | > loader_time: 0.04260 (0.03773)  --> STEP: 1199/15287 -- GLOBAL_STEP: 951200 | > loss_disc: 2.36952 (2.30540) | > loss_disc_real_0: 0.14269 (0.12128) | > loss_disc_real_1: 0.17099 (0.21023) | > loss_disc_real_2: 0.22290 (0.21482) | > loss_disc_real_3: 0.27063 (0.21774) | > loss_disc_real_4: 0.21691 (0.21323) | > loss_disc_real_5: 0.21255 (0.21231) | > loss_0: 2.36952 (2.30540) | > grad_norm_0: 21.59035 (17.04157) | > loss_gen: 2.47733 (2.57038) | > loss_kl: 2.73938 (2.66220) | > loss_feat: 8.47945 (8.69804) | > loss_mel: 18.63995 (17.77536) | > loss_duration: 1.70957 (1.70646) | > loss_1: 34.04568 (33.41244) | > grad_norm_1: 175.14236 (141.06470) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94280 (2.24818) | > loader_time: 0.03550 (0.03767)  --> STEP: 1224/15287 -- GLOBAL_STEP: 951225 | > loss_disc: 2.30864 (2.30516) | > loss_disc_real_0: 0.08544 (0.12134) | > loss_disc_real_1: 0.23490 (0.21013) | > loss_disc_real_2: 0.22279 (0.21474) | > loss_disc_real_3: 0.19845 (0.21789) | > loss_disc_real_4: 0.19837 (0.21313) | > loss_disc_real_5: 0.20938 (0.21236) | > loss_0: 2.30864 (2.30516) | > grad_norm_0: 19.17442 (17.10949) | > loss_gen: 2.49887 (2.57051) | > loss_kl: 2.57164 (2.66238) | > loss_feat: 8.25264 (8.70062) | > loss_mel: 17.52716 (17.77700) | > loss_duration: 1.70348 (1.70649) | > loss_1: 32.55380 (33.41701) | > grad_norm_1: 199.07147 (141.37187) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91410 (2.24287) | > loader_time: 0.03280 (0.03768)  --> STEP: 1249/15287 -- GLOBAL_STEP: 951250 | > loss_disc: 2.46111 (2.30525) | > loss_disc_real_0: 0.15381 (0.12141) | > loss_disc_real_1: 0.24087 (0.21001) | > loss_disc_real_2: 0.25049 (0.21478) | > loss_disc_real_3: 0.21793 (0.21786) | > loss_disc_real_4: 0.19392 (0.21313) | > loss_disc_real_5: 0.24203 (0.21244) | > loss_0: 2.46111 (2.30525) | > grad_norm_0: 16.61100 (17.10985) | > loss_gen: 2.28930 (2.57056) | > loss_kl: 2.62571 (2.66219) | > loss_feat: 7.59822 (8.70102) | > loss_mel: 17.37378 (17.77859) | > loss_duration: 1.69051 (1.70650) | > loss_1: 31.57751 (33.41887) | > grad_norm_1: 119.67718 (141.35242) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00900 (2.23676) | > loader_time: 0.03480 (0.03772)  --> STEP: 1274/15287 -- GLOBAL_STEP: 951275 | > loss_disc: 2.43124 (2.30636) | > loss_disc_real_0: 0.11473 (0.12153) | > loss_disc_real_1: 0.20305 (0.21012) | > loss_disc_real_2: 0.20877 (0.21492) | > loss_disc_real_3: 0.20487 (0.21785) | > loss_disc_real_4: 0.22151 (0.21323) | > loss_disc_real_5: 0.22463 (0.21240) | > loss_0: 2.43124 (2.30636) | > grad_norm_0: 15.19391 (17.05512) | > loss_gen: 2.51391 (2.57023) | > loss_kl: 2.74564 (2.66366) | > loss_feat: 8.83166 (8.70034) | > loss_mel: 18.88210 (17.78166) | > loss_duration: 1.73268 (1.70656) | > loss_1: 34.70599 (33.42247) | > grad_norm_1: 141.52716 (140.99557) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93690 (2.23237) | > loader_time: 0.03440 (0.03766)  --> STEP: 1299/15287 -- GLOBAL_STEP: 951300 | > loss_disc: 2.44536 (2.30671) | > loss_disc_real_0: 0.14479 (0.12157) | > loss_disc_real_1: 0.16498 (0.21015) | > loss_disc_real_2: 0.20931 (0.21492) | > loss_disc_real_3: 0.28746 (0.21805) | > loss_disc_real_4: 0.24005 (0.21333) | > loss_disc_real_5: 0.31311 (0.21253) | > loss_0: 2.44536 (2.30671) | > grad_norm_0: 27.63535 (17.00406) | > loss_gen: 2.53404 (2.57085) | > loss_kl: 2.81118 (2.66327) | > loss_feat: 8.30384 (8.70165) | > loss_mel: 17.21910 (17.77938) | > loss_duration: 1.68037 (1.70652) | > loss_1: 32.54853 (33.42169) | > grad_norm_1: 68.62600 (141.01729) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.24450 (2.23050) | > loader_time: 0.05900 (0.03763)  --> STEP: 1324/15287 -- GLOBAL_STEP: 951325 | > loss_disc: 2.29395 (2.30745) | > loss_disc_real_0: 0.12678 (0.12159) | > loss_disc_real_1: 0.24924 (0.21015) | > loss_disc_real_2: 0.22643 (0.21485) | > loss_disc_real_3: 0.21546 (0.21803) | > loss_disc_real_4: 0.19753 (0.21322) | > loss_disc_real_5: 0.20663 (0.21292) | > loss_0: 2.29395 (2.30745) | > grad_norm_0: 38.15532 (17.10575) | > loss_gen: 2.50955 (2.56973) | > loss_kl: 2.61251 (2.66277) | > loss_feat: 8.46343 (8.70056) | > loss_mel: 17.69914 (17.78042) | > loss_duration: 1.66495 (1.70656) | > loss_1: 32.94958 (33.42005) | > grad_norm_1: 174.62404 (141.11279) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.75130 (2.22567) | > loader_time: 0.03320 (0.03760)  --> STEP: 1349/15287 -- GLOBAL_STEP: 951350 | > loss_disc: 2.26584 (2.30670) | > loss_disc_real_0: 0.14380 (0.12152) | > loss_disc_real_1: 0.21114 (0.21006) | > loss_disc_real_2: 0.19900 (0.21482) | > loss_disc_real_3: 0.21453 (0.21803) | > loss_disc_real_4: 0.21932 (0.21325) | > loss_disc_real_5: 0.20848 (0.21283) | > loss_0: 2.26584 (2.30670) | > grad_norm_0: 15.05140 (17.20568) | > loss_gen: 2.62102 (2.56994) | > loss_kl: 2.68563 (2.66245) | > loss_feat: 8.94236 (8.70230) | > loss_mel: 17.95985 (17.77852) | > loss_duration: 1.72811 (1.70643) | > loss_1: 33.93697 (33.41965) | > grad_norm_1: 52.94872 (141.85951) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98620 (2.22165) | > loader_time: 0.03370 (0.03756)  --> STEP: 1374/15287 -- GLOBAL_STEP: 951375 | > loss_disc: 2.27601 (2.30615) | > loss_disc_real_0: 0.12976 (0.12140) | > loss_disc_real_1: 0.19882 (0.21007) | > loss_disc_real_2: 0.20129 (0.21471) | > loss_disc_real_3: 0.24193 (0.21807) | > loss_disc_real_4: 0.25149 (0.21332) | > loss_disc_real_5: 0.20641 (0.21275) | > loss_0: 2.27601 (2.30615) | > grad_norm_0: 24.46584 (17.28901) | > loss_gen: 2.53872 (2.57053) | > loss_kl: 2.70072 (2.66196) | > loss_feat: 8.96283 (8.70587) | > loss_mel: 18.24646 (17.78011) | > loss_duration: 1.71810 (1.70646) | > loss_1: 34.16684 (33.42495) | > grad_norm_1: 155.52368 (142.57320) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33840 (2.21778) | > loader_time: 0.03480 (0.03749)  --> STEP: 1399/15287 -- GLOBAL_STEP: 951400 | > loss_disc: 2.26399 (2.30637) | > loss_disc_real_0: 0.13884 (0.12146) | > loss_disc_real_1: 0.20572 (0.21002) | > loss_disc_real_2: 0.20206 (0.21465) | > loss_disc_real_3: 0.22347 (0.21807) | > loss_disc_real_4: 0.21454 (0.21331) | > loss_disc_real_5: 0.22505 (0.21275) | > loss_0: 2.26399 (2.30637) | > grad_norm_0: 10.28330 (17.31991) | > loss_gen: 2.60789 (2.57001) | > loss_kl: 2.65459 (2.66207) | > loss_feat: 8.43124 (8.70548) | > loss_mel: 17.52614 (17.78060) | > loss_duration: 1.67528 (1.70652) | > loss_1: 32.89514 (33.42469) | > grad_norm_1: 57.67133 (142.71979) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90240 (2.21663) | > loader_time: 0.03340 (0.03747)  --> STEP: 1424/15287 -- GLOBAL_STEP: 951425 | > loss_disc: 2.36591 (2.30668) | > loss_disc_real_0: 0.15647 (0.12153) | > loss_disc_real_1: 0.24403 (0.21006) | > loss_disc_real_2: 0.22603 (0.21464) | > loss_disc_real_3: 0.21589 (0.21817) | > loss_disc_real_4: 0.23839 (0.21331) | > loss_disc_real_5: 0.22806 (0.21271) | > loss_0: 2.36591 (2.30668) | > grad_norm_0: 14.76093 (17.21732) | > loss_gen: 2.73861 (2.57051) | > loss_kl: 2.60959 (2.66270) | > loss_feat: 8.78223 (8.70588) | > loss_mel: 18.22512 (17.78305) | > loss_duration: 1.70631 (1.70657) | > loss_1: 34.06186 (33.42872) | > grad_norm_1: 136.62572 (141.66667) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.78830 (2.21177) | > loader_time: 0.03350 (0.03750)  --> STEP: 1449/15287 -- GLOBAL_STEP: 951450 | > loss_disc: 2.28111 (2.30671) | > loss_disc_real_0: 0.11502 (0.12152) | > loss_disc_real_1: 0.17324 (0.21012) | > loss_disc_real_2: 0.16881 (0.21463) | > loss_disc_real_3: 0.21166 (0.21821) | > loss_disc_real_4: 0.20346 (0.21330) | > loss_disc_real_5: 0.21915 (0.21268) | > loss_0: 2.28111 (2.30671) | > grad_norm_0: 16.13888 (17.18532) | > loss_gen: 2.46159 (2.57073) | > loss_kl: 2.53725 (2.66284) | > loss_feat: 9.06882 (8.70737) | > loss_mel: 17.65638 (17.78655) | > loss_duration: 1.72078 (1.70673) | > loss_1: 33.44482 (33.43423) | > grad_norm_1: 98.63197 (141.31932) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89680 (2.20713) | > loader_time: 0.03820 (0.03746)  --> STEP: 1474/15287 -- GLOBAL_STEP: 951475 | > loss_disc: 2.39447 (2.30711) | > loss_disc_real_0: 0.19161 (0.12161) | > loss_disc_real_1: 0.21252 (0.21018) | > loss_disc_real_2: 0.25816 (0.21465) | > loss_disc_real_3: 0.21455 (0.21815) | > loss_disc_real_4: 0.18910 (0.21334) | > loss_disc_real_5: 0.20601 (0.21269) | > loss_0: 2.39447 (2.30711) | > grad_norm_0: 18.89256 (17.26326) | > loss_gen: 2.45575 (2.57077) | > loss_kl: 2.47643 (2.66259) | > loss_feat: 8.15434 (8.70512) | > loss_mel: 17.46675 (17.78810) | > loss_duration: 1.71729 (1.70678) | > loss_1: 32.27055 (33.43336) | > grad_norm_1: 168.33963 (141.50934) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99850 (2.20327) | > loader_time: 0.03650 (0.03743)  --> STEP: 1499/15287 -- GLOBAL_STEP: 951500 | > loss_disc: 2.21097 (2.30670) | > loss_disc_real_0: 0.09671 (0.12181) | > loss_disc_real_1: 0.20792 (0.21010) | > loss_disc_real_2: 0.20542 (0.21461) | > loss_disc_real_3: 0.18843 (0.21806) | > loss_disc_real_4: 0.20676 (0.21331) | > loss_disc_real_5: 0.21798 (0.21260) | > loss_0: 2.21097 (2.30670) | > grad_norm_0: 17.91253 (17.37099) | > loss_gen: 2.58505 (2.57123) | > loss_kl: 2.54926 (2.66189) | > loss_feat: 8.59821 (8.70578) | > loss_mel: 17.65854 (17.78705) | > loss_duration: 1.70582 (1.70661) | > loss_1: 33.09688 (33.43258) | > grad_norm_1: 194.01163 (141.97900) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97600 (2.19890) | > loader_time: 0.03530 (0.03739)  --> STEP: 1524/15287 -- GLOBAL_STEP: 951525 | > loss_disc: 2.29872 (2.30651) | > loss_disc_real_0: 0.12076 (0.12179) | > loss_disc_real_1: 0.22615 (0.21001) | > loss_disc_real_2: 0.17848 (0.21451) | > loss_disc_real_3: 0.22464 (0.21797) | > loss_disc_real_4: 0.22782 (0.21324) | > loss_disc_real_5: 0.26177 (0.21267) | > loss_0: 2.29872 (2.30651) | > grad_norm_0: 23.72815 (17.34143) | > loss_gen: 2.61804 (2.57115) | > loss_kl: 2.75665 (2.66189) | > loss_feat: 8.44536 (8.70782) | > loss_mel: 17.84871 (17.78600) | > loss_duration: 1.72533 (1.70660) | > loss_1: 33.39408 (33.43348) | > grad_norm_1: 224.25758 (142.04688) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.80960 (2.19505) | > loader_time: 0.03240 (0.03734)  --> STEP: 1549/15287 -- GLOBAL_STEP: 951550 | > loss_disc: 2.25897 (2.30708) | > loss_disc_real_0: 0.11764 (0.12194) | > loss_disc_real_1: 0.20068 (0.21010) | > loss_disc_real_2: 0.19681 (0.21445) | > loss_disc_real_3: 0.19259 (0.21794) | > loss_disc_real_4: 0.21052 (0.21325) | > loss_disc_real_5: 0.25883 (0.21270) | > loss_0: 2.25897 (2.30708) | > grad_norm_0: 13.10171 (17.37092) | > loss_gen: 2.75966 (2.57047) | > loss_kl: 2.52741 (2.66163) | > loss_feat: 8.64431 (8.70605) | > loss_mel: 17.63597 (17.78815) | > loss_duration: 1.71816 (1.70662) | > loss_1: 33.28552 (33.43295) | > grad_norm_1: 105.56356 (142.19705) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.12560 (2.19225) | > loader_time: 0.03500 (0.03731)  --> STEP: 1574/15287 -- GLOBAL_STEP: 951575 | > loss_disc: 2.25970 (2.30741) | > loss_disc_real_0: 0.08243 (0.12210) | > loss_disc_real_1: 0.21260 (0.21017) | > loss_disc_real_2: 0.21643 (0.21446) | > loss_disc_real_3: 0.23883 (0.21799) | > loss_disc_real_4: 0.20509 (0.21327) | > loss_disc_real_5: 0.26778 (0.21277) | > loss_0: 2.25970 (2.30741) | > grad_norm_0: 24.41451 (17.40061) | > loss_gen: 2.56455 (2.57033) | > loss_kl: 2.61940 (2.66153) | > loss_feat: 8.93623 (8.70436) | > loss_mel: 17.83788 (17.78785) | > loss_duration: 1.65279 (1.70646) | > loss_1: 33.61086 (33.43055) | > grad_norm_1: 208.71437 (142.30434) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99900 (2.18889) | > loader_time: 0.03100 (0.03729)  --> STEP: 1599/15287 -- GLOBAL_STEP: 951600 | > loss_disc: 2.20920 (2.30686) | > loss_disc_real_0: 0.11048 (0.12194) | > loss_disc_real_1: 0.21996 (0.21011) | > loss_disc_real_2: 0.19628 (0.21439) | > loss_disc_real_3: 0.19685 (0.21804) | > loss_disc_real_4: 0.19205 (0.21324) | > loss_disc_real_5: 0.19282 (0.21276) | > loss_0: 2.20920 (2.30686) | > grad_norm_0: 21.36674 (17.39109) | > loss_gen: 2.60084 (2.57057) | > loss_kl: 2.62143 (2.66092) | > loss_feat: 8.88641 (8.70625) | > loss_mel: 17.74597 (17.78675) | > loss_duration: 1.71901 (1.70648) | > loss_1: 33.57365 (33.43099) | > grad_norm_1: 168.97304 (142.56500) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94050 (2.18520) | > loader_time: 0.03250 (0.03723)  --> STEP: 1624/15287 -- GLOBAL_STEP: 951625 | > loss_disc: 2.28608 (2.30720) | > loss_disc_real_0: 0.13259 (0.12211) | > loss_disc_real_1: 0.23341 (0.21027) | > loss_disc_real_2: 0.20221 (0.21435) | > loss_disc_real_3: 0.20893 (0.21805) | > loss_disc_real_4: 0.18936 (0.21326) | > loss_disc_real_5: 0.19173 (0.21279) | > loss_0: 2.28608 (2.30720) | > grad_norm_0: 11.60596 (17.41971) | > loss_gen: 2.53026 (2.57035) | > loss_kl: 2.70698 (2.66090) | > loss_feat: 8.66120 (8.70638) | > loss_mel: 17.86246 (17.78556) | > loss_duration: 1.71270 (1.70639) | > loss_1: 33.47360 (33.42962) | > grad_norm_1: 202.97160 (142.52667) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11620 (2.18178) | > loader_time: 0.03340 (0.03718)  --> STEP: 1649/15287 -- GLOBAL_STEP: 951650 | > loss_disc: 2.24903 (2.30717) | > loss_disc_real_0: 0.07977 (0.12207) | > loss_disc_real_1: 0.18919 (0.21026) | > loss_disc_real_2: 0.19078 (0.21434) | > loss_disc_real_3: 0.16632 (0.21799) | > loss_disc_real_4: 0.20111 (0.21321) | > loss_disc_real_5: 0.19825 (0.21281) | > loss_0: 2.24903 (2.30717) | > grad_norm_0: 13.65272 (17.41357) | > loss_gen: 2.58366 (2.57030) | > loss_kl: 2.58141 (2.66039) | > loss_feat: 8.48702 (8.70739) | > loss_mel: 18.06549 (17.78584) | > loss_duration: 1.69812 (1.70643) | > loss_1: 33.41571 (33.43040) | > grad_norm_1: 148.71570 (142.56099) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93560 (2.17814) | > loader_time: 0.03470 (0.03716)  --> STEP: 1674/15287 -- GLOBAL_STEP: 951675 | > loss_disc: 2.39264 (2.30735) | > loss_disc_real_0: 0.12587 (0.12200) | > loss_disc_real_1: 0.22414 (0.21030) | > loss_disc_real_2: 0.23261 (0.21440) | > loss_disc_real_3: 0.20403 (0.21805) | > loss_disc_real_4: 0.20273 (0.21321) | > loss_disc_real_5: 0.22643 (0.21286) | > loss_0: 2.39264 (2.30735) | > grad_norm_0: 16.86102 (17.37132) | > loss_gen: 2.36037 (2.57048) | > loss_kl: 2.72751 (2.66054) | > loss_feat: 8.14473 (8.70838) | > loss_mel: 17.63121 (17.78759) | > loss_duration: 1.73387 (1.70638) | > loss_1: 32.59770 (33.43341) | > grad_norm_1: 69.30357 (142.19981) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98330 (2.17442) | > loader_time: 0.03250 (0.03711)  --> STEP: 1699/15287 -- GLOBAL_STEP: 951700 | > loss_disc: 2.32204 (2.30771) | > loss_disc_real_0: 0.12165 (0.12210) | > loss_disc_real_1: 0.20809 (0.21033) | > loss_disc_real_2: 0.24917 (0.21443) | > loss_disc_real_3: 0.23830 (0.21807) | > loss_disc_real_4: 0.20361 (0.21327) | > loss_disc_real_5: 0.20695 (0.21290) | > loss_0: 2.32204 (2.30771) | > grad_norm_0: 7.66666 (17.35683) | > loss_gen: 2.54940 (2.57076) | > loss_kl: 2.53985 (2.66007) | > loss_feat: 8.48149 (8.70704) | > loss_mel: 17.61381 (17.78804) | > loss_duration: 1.71890 (1.70647) | > loss_1: 32.90345 (33.43243) | > grad_norm_1: 130.93921 (142.24922) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94980 (2.17095) | > loader_time: 0.03520 (0.03707)  --> STEP: 1724/15287 -- GLOBAL_STEP: 951725 | > loss_disc: 2.42328 (2.30788) | > loss_disc_real_0: 0.07601 (0.12213) | > loss_disc_real_1: 0.22256 (0.21036) | > loss_disc_real_2: 0.19883 (0.21438) | > loss_disc_real_3: 0.23647 (0.21803) | > loss_disc_real_4: 0.17229 (0.21336) | > loss_disc_real_5: 0.22292 (0.21288) | > loss_0: 2.42328 (2.30788) | > grad_norm_0: 8.46656 (17.36156) | > loss_gen: 2.75924 (2.57077) | > loss_kl: 2.82947 (2.66040) | > loss_feat: 8.80263 (8.70695) | > loss_mel: 18.17892 (17.78845) | > loss_duration: 1.71288 (1.70644) | > loss_1: 34.28314 (33.43307) | > grad_norm_1: 63.57335 (142.15004) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94340 (2.16738) | > loader_time: 0.03420 (0.03702)  --> STEP: 1749/15287 -- GLOBAL_STEP: 951750 | > loss_disc: 2.71743 (2.30625) | > loss_disc_real_0: 0.13009 (0.12209) | > loss_disc_real_1: 0.18196 (0.21024) | > loss_disc_real_2: 0.19020 (0.21428) | > loss_disc_real_3: 0.27543 (0.21786) | > loss_disc_real_4: 0.29356 (0.21319) | > loss_disc_real_5: 0.34948 (0.21243) | > loss_0: 2.71743 (2.30625) | > grad_norm_0: 44.13362 (17.52187) | > loss_gen: 2.56809 (2.57580) | > loss_kl: 2.55113 (2.65974) | > loss_feat: 8.82591 (8.71737) | > loss_mel: 18.67334 (17.79389) | > loss_duration: 1.71473 (1.70654) | > loss_1: 34.33320 (33.45338) | > grad_norm_1: 109.57048 (143.97935) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99380 (2.16378) | > loader_time: 0.03340 (0.03697)  --> STEP: 1774/15287 -- GLOBAL_STEP: 951775 | > loss_disc: 2.45804 (2.30763) | > loss_disc_real_0: 0.20258 (0.12187) | > loss_disc_real_1: 0.22128 (0.21041) | > loss_disc_real_2: 0.21713 (0.21454) | > loss_disc_real_3: 0.22019 (0.21825) | > loss_disc_real_4: 0.20018 (0.21356) | > loss_disc_real_5: 0.24130 (0.21231) | > loss_0: 2.45804 (2.30763) | > grad_norm_0: 30.12200 (17.66853) | > loss_gen: 2.20368 (2.57930) | > loss_kl: 2.78137 (2.65917) | > loss_feat: 7.82374 (8.72298) | > loss_mel: 18.14113 (17.80196) | > loss_duration: 1.70207 (1.70664) | > loss_1: 32.65199 (33.47010) | > grad_norm_1: 104.70631 (145.09354) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90220 (2.16143) | > loader_time: 0.03280 (0.03693)  --> STEP: 1799/15287 -- GLOBAL_STEP: 951800 | > loss_disc: 2.34526 (2.30835) | > loss_disc_real_0: 0.12017 (0.12198) | > loss_disc_real_1: 0.21077 (0.21043) | > loss_disc_real_2: 0.21055 (0.21455) | > loss_disc_real_3: 0.19872 (0.21823) | > loss_disc_real_4: 0.25600 (0.21356) | > loss_disc_real_5: 0.18145 (0.21248) | > loss_0: 2.34526 (2.30835) | > grad_norm_0: 17.85816 (17.67433) | > loss_gen: 2.63374 (2.57826) | > loss_kl: 2.63393 (2.65876) | > loss_feat: 8.82174 (8.71811) | > loss_mel: 17.62165 (17.80031) | > loss_duration: 1.71827 (1.70666) | > loss_1: 33.42933 (33.46213) | > grad_norm_1: 182.13193 (145.66441) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.72600 (2.15767) | > loader_time: 0.03260 (0.03687)  --> STEP: 1824/15287 -- GLOBAL_STEP: 951825 | > loss_disc: 2.34541 (2.30876) | > loss_disc_real_0: 0.15049 (0.12202) | > loss_disc_real_1: 0.21892 (0.21048) | > loss_disc_real_2: 0.21295 (0.21459) | > loss_disc_real_3: 0.26397 (0.21835) | > loss_disc_real_4: 0.25847 (0.21363) | > loss_disc_real_5: 0.28492 (0.21261) | > loss_0: 2.34541 (2.30876) | > grad_norm_0: 30.38552 (17.70162) | > loss_gen: 2.56392 (2.57815) | > loss_kl: 2.55606 (2.65810) | > loss_feat: 8.76000 (8.71636) | > loss_mel: 17.88489 (17.80133) | > loss_duration: 1.75763 (1.70680) | > loss_1: 33.52250 (33.46077) | > grad_norm_1: 179.94901 (146.08287) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08620 (2.15484) | > loader_time: 0.03320 (0.03681)  --> STEP: 1849/15287 -- GLOBAL_STEP: 951850 | > loss_disc: 2.37229 (2.30886) | > loss_disc_real_0: 0.10334 (0.12195) | > loss_disc_real_1: 0.18640 (0.21052) | > loss_disc_real_2: 0.20818 (0.21458) | > loss_disc_real_3: 0.20885 (0.21834) | > loss_disc_real_4: 0.21521 (0.21364) | > loss_disc_real_5: 0.24338 (0.21266) | > loss_0: 2.37229 (2.30886) | > grad_norm_0: 18.10446 (17.69153) | > loss_gen: 2.51934 (2.57742) | > loss_kl: 2.69505 (2.65798) | > loss_feat: 8.55258 (8.71361) | > loss_mel: 17.96342 (17.79981) | > loss_duration: 1.74147 (1.70684) | > loss_1: 33.47186 (33.45570) | > grad_norm_1: 167.36517 (146.38501) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.74180 (2.15211) | > loader_time: 0.03360 (0.03675)  --> STEP: 1874/15287 -- GLOBAL_STEP: 951875 | > loss_disc: 2.31875 (2.30883) | > loss_disc_real_0: 0.13553 (0.12198) | > loss_disc_real_1: 0.16427 (0.21041) | > loss_disc_real_2: 0.25178 (0.21466) | > loss_disc_real_3: 0.24440 (0.21834) | > loss_disc_real_4: 0.23257 (0.21367) | > loss_disc_real_5: 0.20016 (0.21256) | > loss_0: 2.31875 (2.30883) | > grad_norm_0: 23.75244 (17.65652) | > loss_gen: 2.46152 (2.57719) | > loss_kl: 2.65864 (2.65762) | > loss_feat: 8.82840 (8.71266) | > loss_mel: 18.04645 (17.79956) | > loss_duration: 1.67968 (1.70687) | > loss_1: 33.67469 (33.45395) | > grad_norm_1: 161.05208 (146.46930) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93560 (2.14936) | > loader_time: 0.03160 (0.03670)  --> STEP: 1899/15287 -- GLOBAL_STEP: 951900 | > loss_disc: 2.39775 (2.30900) | > loss_disc_real_0: 0.14897 (0.12195) | > loss_disc_real_1: 0.23823 (0.21049) | > loss_disc_real_2: 0.22152 (0.21464) | > loss_disc_real_3: 0.21999 (0.21833) | > loss_disc_real_4: 0.22996 (0.21369) | > loss_disc_real_5: 0.22095 (0.21257) | > loss_0: 2.39775 (2.30900) | > grad_norm_0: 9.60097 (17.60262) | > loss_gen: 2.56621 (2.57728) | > loss_kl: 2.77125 (2.65761) | > loss_feat: 8.96312 (8.71302) | > loss_mel: 18.51465 (17.80129) | > loss_duration: 1.68545 (1.70677) | > loss_1: 34.50068 (33.45601) | > grad_norm_1: 192.69775 (146.48343) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.75410 (2.14659) | > loader_time: 0.03670 (0.03669)  --> STEP: 1924/15287 -- GLOBAL_STEP: 951925 | > loss_disc: 2.35219 (2.30899) | > loss_disc_real_0: 0.07630 (0.12187) | > loss_disc_real_1: 0.23152 (0.21050) | > loss_disc_real_2: 0.22730 (0.21463) | > loss_disc_real_3: 0.19370 (0.21836) | > loss_disc_real_4: 0.17188 (0.21369) | > loss_disc_real_5: 0.20703 (0.21260) | > loss_0: 2.35219 (2.30899) | > grad_norm_0: 19.50163 (17.52246) | > loss_gen: 2.47385 (2.57730) | > loss_kl: 2.68525 (2.65720) | > loss_feat: 8.92388 (8.71491) | > loss_mel: 18.48168 (17.80135) | > loss_duration: 1.69395 (1.70681) | > loss_1: 34.25861 (33.45760) | > grad_norm_1: 153.21167 (146.18253) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97580 (2.14530) | > loader_time: 0.04260 (0.03673)  --> STEP: 1949/15287 -- GLOBAL_STEP: 951950 | > loss_disc: 2.38698 (2.30973) | > loss_disc_real_0: 0.10238 (0.12201) | > loss_disc_real_1: 0.27467 (0.21054) | > loss_disc_real_2: 0.27825 (0.21466) | > loss_disc_real_3: 0.25876 (0.21840) | > loss_disc_real_4: 0.26598 (0.21375) | > loss_disc_real_5: 0.22447 (0.21261) | > loss_0: 2.38698 (2.30973) | > grad_norm_0: 5.70309 (17.46189) | > loss_gen: 2.81378 (2.57690) | > loss_kl: 2.63403 (2.65752) | > loss_feat: 8.69035 (8.71237) | > loss_mel: 17.66864 (17.80145) | > loss_duration: 1.69456 (1.70679) | > loss_1: 33.50135 (33.45507) | > grad_norm_1: 121.50301 (145.45003) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02460 (2.14358) | > loader_time: 0.03490 (0.03675)  --> STEP: 1974/15287 -- GLOBAL_STEP: 951975 | > loss_disc: 2.31594 (2.31017) | > loss_disc_real_0: 0.12449 (0.12215) | > loss_disc_real_1: 0.24369 (0.21056) | > loss_disc_real_2: 0.23148 (0.21470) | > loss_disc_real_3: 0.21855 (0.21841) | > loss_disc_real_4: 0.22398 (0.21374) | > loss_disc_real_5: 0.21233 (0.21262) | > loss_0: 2.31594 (2.31017) | > grad_norm_0: 8.95620 (17.42323) | > loss_gen: 2.60096 (2.57683) | > loss_kl: 2.55997 (2.65795) | > loss_feat: 8.75259 (8.71087) | > loss_mel: 17.75154 (17.80087) | > loss_duration: 1.69980 (1.70671) | > loss_1: 33.36486 (33.45327) | > grad_norm_1: 155.84952 (144.97998) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.61870 (2.14145) | > loader_time: 0.03300 (0.03674)  --> STEP: 1999/15287 -- GLOBAL_STEP: 952000 | > loss_disc: 2.36744 (2.31011) | > loss_disc_real_0: 0.11927 (0.12215) | > loss_disc_real_1: 0.21496 (0.21052) | > loss_disc_real_2: 0.19060 (0.21469) | > loss_disc_real_3: 0.19332 (0.21842) | > loss_disc_real_4: 0.19152 (0.21374) | > loss_disc_real_5: 0.20413 (0.21256) | > loss_0: 2.36744 (2.31011) | > grad_norm_0: 11.30902 (17.35213) | > loss_gen: 2.43038 (2.57676) | > loss_kl: 2.78730 (2.65799) | > loss_feat: 8.89948 (8.71088) | > loss_mel: 17.71769 (17.80258) | > loss_duration: 1.72635 (1.70665) | > loss_1: 33.56120 (33.45488) | > grad_norm_1: 98.23003 (144.56693) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06600 (2.13964) | > loader_time: 0.03610 (0.03676)  --> STEP: 2024/15287 -- GLOBAL_STEP: 952025 | > loss_disc: 2.22722 (2.31068) | > loss_disc_real_0: 0.11852 (0.12218) | > loss_disc_real_1: 0.20861 (0.21060) | > loss_disc_real_2: 0.21098 (0.21467) | > loss_disc_real_3: 0.21289 (0.21846) | > loss_disc_real_4: 0.20881 (0.21376) | > loss_disc_real_5: 0.20666 (0.21265) | > loss_0: 2.22722 (2.31068) | > grad_norm_0: 7.57453 (17.27074) | > loss_gen: 2.72846 (2.57631) | > loss_kl: 2.57776 (2.65771) | > loss_feat: 9.04299 (8.71058) | > loss_mel: 17.53776 (17.80369) | > loss_duration: 1.73737 (1.70676) | > loss_1: 33.62434 (33.45509) | > grad_norm_1: 114.94392 (143.96742) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06480 (2.13712) | > loader_time: 0.03470 (0.03673)  --> STEP: 2049/15287 -- GLOBAL_STEP: 952050 | > loss_disc: 2.32112 (2.31074) | > loss_disc_real_0: 0.14103 (0.12213) | > loss_disc_real_1: 0.18487 (0.21060) | > loss_disc_real_2: 0.18161 (0.21464) | > loss_disc_real_3: 0.23426 (0.21848) | > loss_disc_real_4: 0.23679 (0.21376) | > loss_disc_real_5: 0.23883 (0.21263) | > loss_0: 2.32112 (2.31074) | > grad_norm_0: 13.09912 (17.21955) | > loss_gen: 2.69141 (2.57637) | > loss_kl: 2.85120 (2.65760) | > loss_feat: 8.53369 (8.71040) | > loss_mel: 18.01630 (17.80532) | > loss_duration: 1.72686 (1.70680) | > loss_1: 33.81946 (33.45653) | > grad_norm_1: 75.32220 (143.73189) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.62520 (2.13439) | > loader_time: 0.03540 (0.03672)  --> STEP: 2074/15287 -- GLOBAL_STEP: 952075 | > loss_disc: 2.32847 (2.31085) | > loss_disc_real_0: 0.10732 (0.12209) | > loss_disc_real_1: 0.22947 (0.21070) | > loss_disc_real_2: 0.20687 (0.21468) | > loss_disc_real_3: 0.20782 (0.21845) | > loss_disc_real_4: 0.18889 (0.21368) | > loss_disc_real_5: 0.22395 (0.21269) | > loss_0: 2.32847 (2.31085) | > grad_norm_0: 28.76696 (17.25632) | > loss_gen: 2.41210 (2.57600) | > loss_kl: 2.61773 (2.65738) | > loss_feat: 8.57597 (8.70969) | > loss_mel: 17.70540 (17.80508) | > loss_duration: 1.72360 (1.70682) | > loss_1: 33.03479 (33.45500) | > grad_norm_1: 227.01620 (143.93848) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92700 (2.13299) | > loader_time: 0.03150 (0.03672)  --> STEP: 2099/15287 -- GLOBAL_STEP: 952100 | > loss_disc: 2.22235 (2.31041) | > loss_disc_real_0: 0.09914 (0.12207) | > loss_disc_real_1: 0.19582 (0.21062) | > loss_disc_real_2: 0.21078 (0.21467) | > loss_disc_real_3: 0.23171 (0.21841) | > loss_disc_real_4: 0.21002 (0.21365) | > loss_disc_real_5: 0.22165 (0.21267) | > loss_0: 2.22235 (2.31041) | > grad_norm_0: 16.08358 (17.30700) | > loss_gen: 2.64155 (2.57604) | > loss_kl: 2.71079 (2.65713) | > loss_feat: 8.67661 (8.71058) | > loss_mel: 17.81458 (17.80526) | > loss_duration: 1.69461 (1.70681) | > loss_1: 33.53814 (33.45583) | > grad_norm_1: 198.55769 (144.23854) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.58110 (2.13187) | > loader_time: 0.03200 (0.03671)  --> STEP: 2124/15287 -- GLOBAL_STEP: 952125 | > loss_disc: 2.30169 (2.30986) | > loss_disc_real_0: 0.10577 (0.12205) | > loss_disc_real_1: 0.25967 (0.21052) | > loss_disc_real_2: 0.21258 (0.21458) | > loss_disc_real_3: 0.22473 (0.21839) | > loss_disc_real_4: 0.21682 (0.21356) | > loss_disc_real_5: 0.21790 (0.21268) | > loss_0: 2.30169 (2.30986) | > grad_norm_0: 8.63181 (17.28349) | > loss_gen: 2.67584 (2.57634) | > loss_kl: 2.54839 (2.65692) | > loss_feat: 8.46696 (8.71241) | > loss_mel: 17.74248 (17.80413) | > loss_duration: 1.70304 (1.70681) | > loss_1: 33.13670 (33.45664) | > grad_norm_1: 135.83429 (144.36301) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04150 (2.13017) | > loader_time: 0.03540 (0.03671)  --> STEP: 2149/15287 -- GLOBAL_STEP: 952150 | > loss_disc: 2.31804 (2.30948) | > loss_disc_real_0: 0.11670 (0.12204) | > loss_disc_real_1: 0.21230 (0.21047) | > loss_disc_real_2: 0.23907 (0.21457) | > loss_disc_real_3: 0.21378 (0.21836) | > loss_disc_real_4: 0.23655 (0.21351) | > loss_disc_real_5: 0.19911 (0.21260) | > loss_0: 2.31804 (2.30948) | > grad_norm_0: 8.80792 (17.21964) | > loss_gen: 2.50501 (2.57660) | > loss_kl: 2.59350 (2.65679) | > loss_feat: 8.19372 (8.71341) | > loss_mel: 17.36924 (17.80414) | > loss_duration: 1.72147 (1.70681) | > loss_1: 32.38294 (33.45778) | > grad_norm_1: 144.77985 (144.03152) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.68110 (2.12828) | > loader_time: 0.03100 (0.03667)  --> STEP: 2174/15287 -- GLOBAL_STEP: 952175 | > loss_disc: 2.28895 (2.30960) | > loss_disc_real_0: 0.13849 (0.12219) | > loss_disc_real_1: 0.23922 (0.21051) | > loss_disc_real_2: 0.21706 (0.21456) | > loss_disc_real_3: 0.21496 (0.21837) | > loss_disc_real_4: 0.25854 (0.21352) | > loss_disc_real_5: 0.17890 (0.21258) | > loss_0: 2.28895 (2.30960) | > grad_norm_0: 7.04524 (17.16337) | > loss_gen: 2.45340 (2.57676) | > loss_kl: 2.64481 (2.65684) | > loss_feat: 8.72937 (8.71307) | > loss_mel: 17.51365 (17.80348) | > loss_duration: 1.72900 (1.70679) | > loss_1: 33.07024 (33.45696) | > grad_norm_1: 131.90277 (143.66306) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.68360 (2.12648) | > loader_time: 0.03520 (0.03666)  --> STEP: 2199/15287 -- GLOBAL_STEP: 952200 | > loss_disc: 2.26534 (2.30970) | > loss_disc_real_0: 0.12571 (0.12210) | > loss_disc_real_1: 0.21291 (0.21047) | > loss_disc_real_2: 0.20984 (0.21463) | > loss_disc_real_3: 0.22155 (0.21835) | > loss_disc_real_4: 0.20574 (0.21351) | > loss_disc_real_5: 0.23890 (0.21254) | > loss_0: 2.26534 (2.30970) | > grad_norm_0: 9.96369 (17.11670) | > loss_gen: 2.61725 (2.57638) | > loss_kl: 2.61555 (2.65670) | > loss_feat: 8.78258 (8.71150) | > loss_mel: 17.98881 (17.80400) | > loss_duration: 1.70533 (1.70685) | > loss_1: 33.70953 (33.45545) | > grad_norm_1: 75.25417 (143.18517) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92030 (2.12510) | > loader_time: 0.03150 (0.03663)  --> STEP: 2224/15287 -- GLOBAL_STEP: 952225 | > loss_disc: 2.31483 (2.30957) | > loss_disc_real_0: 0.13761 (0.12201) | > loss_disc_real_1: 0.24058 (0.21052) | > loss_disc_real_2: 0.23637 (0.21462) | > loss_disc_real_3: 0.22503 (0.21840) | > loss_disc_real_4: 0.18858 (0.21355) | > loss_disc_real_5: 0.18646 (0.21257) | > loss_0: 2.31483 (2.30957) | > grad_norm_0: 7.24859 (17.06781) | > loss_gen: 2.60108 (2.57655) | > loss_kl: 2.58473 (2.65694) | > loss_feat: 8.59685 (8.71139) | > loss_mel: 17.64253 (17.80235) | > loss_duration: 1.66687 (1.70680) | > loss_1: 33.09205 (33.45404) | > grad_norm_1: 150.70592 (143.02377) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00740 (2.12256) | > loader_time: 0.03170 (0.03659)  --> STEP: 2249/15287 -- GLOBAL_STEP: 952250 | > loss_disc: 2.38260 (2.30970) | > loss_disc_real_0: 0.20105 (0.12196) | > loss_disc_real_1: 0.19468 (0.21047) | > loss_disc_real_2: 0.22191 (0.21461) | > loss_disc_real_3: 0.23370 (0.21845) | > loss_disc_real_4: 0.21622 (0.21358) | > loss_disc_real_5: 0.22728 (0.21268) | > loss_0: 2.38260 (2.30970) | > grad_norm_0: 27.15454 (17.07433) | > loss_gen: 2.58297 (2.57636) | > loss_kl: 2.72878 (2.65697) | > loss_feat: 8.38238 (8.71107) | > loss_mel: 17.31730 (17.80125) | > loss_duration: 1.65372 (1.70683) | > loss_1: 32.66514 (33.45250) | > grad_norm_1: 116.67164 (143.03300) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17070 (2.12096) | > loader_time: 0.03340 (0.03661)  --> STEP: 2274/15287 -- GLOBAL_STEP: 952275 | > loss_disc: 2.23924 (2.30956) | > loss_disc_real_0: 0.09886 (0.12208) | > loss_disc_real_1: 0.20667 (0.21042) | > loss_disc_real_2: 0.19025 (0.21459) | > loss_disc_real_3: 0.21607 (0.21838) | > loss_disc_real_4: 0.25832 (0.21355) | > loss_disc_real_5: 0.21937 (0.21266) | > loss_0: 2.23924 (2.30956) | > grad_norm_0: 13.64640 (17.06028) | > loss_gen: 2.64778 (2.57587) | > loss_kl: 2.67751 (2.65709) | > loss_feat: 8.75840 (8.70986) | > loss_mel: 18.04766 (17.80092) | > loss_duration: 1.67849 (1.70689) | > loss_1: 33.80984 (33.45067) | > grad_norm_1: 179.11714 (142.92073) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96240 (2.11936) | > loader_time: 0.03510 (0.03658)  --> STEP: 2299/15287 -- GLOBAL_STEP: 952300 | > loss_disc: 2.28490 (2.30913) | > loss_disc_real_0: 0.11679 (0.12201) | > loss_disc_real_1: 0.17424 (0.21038) | > loss_disc_real_2: 0.23288 (0.21459) | > loss_disc_real_3: 0.21604 (0.21835) | > loss_disc_real_4: 0.18011 (0.21349) | > loss_disc_real_5: 0.19758 (0.21266) | > loss_0: 2.28490 (2.30913) | > grad_norm_0: 21.54757 (17.04132) | > loss_gen: 2.55756 (2.57621) | > loss_kl: 2.53196 (2.65686) | > loss_feat: 8.46133 (8.71116) | > loss_mel: 17.47277 (17.79945) | > loss_duration: 1.71022 (1.70700) | > loss_1: 32.73384 (33.45071) | > grad_norm_1: 129.32854 (142.89580) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.66540 (2.11704) | > loader_time: 0.03500 (0.03655)  --> STEP: 2324/15287 -- GLOBAL_STEP: 952325 | > loss_disc: 2.23000 (2.30890) | > loss_disc_real_0: 0.10477 (0.12201) | > loss_disc_real_1: 0.21929 (0.21038) | > loss_disc_real_2: 0.22497 (0.21461) | > loss_disc_real_3: 0.23364 (0.21829) | > loss_disc_real_4: 0.21203 (0.21345) | > loss_disc_real_5: 0.22088 (0.21264) | > loss_0: 2.23000 (2.30890) | > grad_norm_0: 7.47523 (16.99784) | > loss_gen: 2.57647 (2.57617) | > loss_kl: 2.60471 (2.65705) | > loss_feat: 8.81868 (8.71149) | > loss_mel: 17.44028 (17.79886) | > loss_duration: 1.73727 (1.70707) | > loss_1: 33.17741 (33.45069) | > grad_norm_1: 188.02110 (142.63667) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01420 (2.11507) | > loader_time: 0.03180 (0.03653)  --> STEP: 2349/15287 -- GLOBAL_STEP: 952350 | > loss_disc: 2.30315 (2.30928) | > loss_disc_real_0: 0.11530 (0.12204) | > loss_disc_real_1: 0.21151 (0.21041) | > loss_disc_real_2: 0.21781 (0.21460) | > loss_disc_real_3: 0.28583 (0.21829) | > loss_disc_real_4: 0.23554 (0.21346) | > loss_disc_real_5: 0.25210 (0.21263) | > loss_0: 2.30315 (2.30928) | > grad_norm_0: 11.37045 (17.00226) | > loss_gen: 2.60133 (2.57566) | > loss_kl: 2.71538 (2.65713) | > loss_feat: 8.68538 (8.71086) | > loss_mel: 17.93639 (17.79949) | > loss_duration: 1.74951 (1.70719) | > loss_1: 33.68799 (33.45038) | > grad_norm_1: 191.24319 (142.53578) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06670 (2.11344) | > loader_time: 0.03650 (0.03650)  --> STEP: 2374/15287 -- GLOBAL_STEP: 952375 | > loss_disc: 2.26041 (2.30956) | > loss_disc_real_0: 0.10965 (0.12212) | > loss_disc_real_1: 0.20514 (0.21041) | > loss_disc_real_2: 0.20437 (0.21466) | > loss_disc_real_3: 0.21439 (0.21825) | > loss_disc_real_4: 0.22108 (0.21343) | > loss_disc_real_5: 0.20865 (0.21263) | > loss_0: 2.26041 (2.30956) | > grad_norm_0: 12.32626 (16.98148) | > loss_gen: 2.53000 (2.57523) | > loss_kl: 2.76343 (2.65762) | > loss_feat: 8.79179 (8.71098) | > loss_mel: 17.74311 (17.79944) | > loss_duration: 1.71075 (1.70722) | > loss_1: 33.53910 (33.45052) | > grad_norm_1: 113.53177 (142.31158) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04100 (2.11221) | > loader_time: 0.03170 (0.03649)  --> STEP: 2399/15287 -- GLOBAL_STEP: 952400 | > loss_disc: 2.34973 (2.30955) | > loss_disc_real_0: 0.11453 (0.12217) | > loss_disc_real_1: 0.21463 (0.21038) | > loss_disc_real_2: 0.22339 (0.21464) | > loss_disc_real_3: 0.24053 (0.21826) | > loss_disc_real_4: 0.22346 (0.21342) | > loss_disc_real_5: 0.22538 (0.21267) | > loss_0: 2.34973 (2.30955) | > grad_norm_0: 19.90886 (16.98165) | > loss_gen: 2.44856 (2.57535) | > loss_kl: 2.62778 (2.65754) | > loss_feat: 9.20537 (8.71091) | > loss_mel: 17.91612 (17.79923) | > loss_duration: 1.68728 (1.70718) | > loss_1: 33.88511 (33.45024) | > grad_norm_1: 177.77516 (142.29182) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88450 (2.11060) | > loader_time: 0.03540 (0.03649)  --> STEP: 2424/15287 -- GLOBAL_STEP: 952425 | > loss_disc: 2.29011 (2.30978) | > loss_disc_real_0: 0.12896 (0.12224) | > loss_disc_real_1: 0.25218 (0.21043) | > loss_disc_real_2: 0.22947 (0.21470) | > loss_disc_real_3: 0.20387 (0.21833) | > loss_disc_real_4: 0.16384 (0.21346) | > loss_disc_real_5: 0.21640 (0.21264) | > loss_0: 2.29011 (2.30978) | > grad_norm_0: 7.38678 (16.92283) | > loss_gen: 2.65218 (2.57571) | > loss_kl: 2.63297 (2.65752) | > loss_feat: 8.66229 (8.71073) | > loss_mel: 18.30760 (17.80105) | > loss_duration: 1.74791 (1.70709) | > loss_1: 34.00295 (33.45212) | > grad_norm_1: 104.79191 (141.79630) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94430 (2.10873) | > loader_time: 0.03500 (0.03647)  --> STEP: 2449/15287 -- GLOBAL_STEP: 952450 | > loss_disc: 2.30223 (2.31027) | > loss_disc_real_0: 0.11251 (0.12234) | > loss_disc_real_1: 0.21291 (0.21049) | > loss_disc_real_2: 0.23898 (0.21475) | > loss_disc_real_3: 0.20643 (0.21834) | > loss_disc_real_4: 0.20242 (0.21348) | > loss_disc_real_5: 0.22387 (0.21263) | > loss_0: 2.30223 (2.31027) | > grad_norm_0: 5.18114 (16.86658) | > loss_gen: 2.69310 (2.57532) | > loss_kl: 2.71131 (2.65806) | > loss_feat: 8.63912 (8.70938) | > loss_mel: 17.92152 (17.80222) | > loss_duration: 1.66954 (1.70716) | > loss_1: 33.63460 (33.45214) | > grad_norm_1: 124.13702 (141.10364) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17270 (2.10739) | > loader_time: 0.03150 (0.03644)  --> STEP: 2474/15287 -- GLOBAL_STEP: 952475 | > loss_disc: 2.38877 (2.31047) | > loss_disc_real_0: 0.14617 (0.12233) | > loss_disc_real_1: 0.22166 (0.21053) | > loss_disc_real_2: 0.23229 (0.21478) | > loss_disc_real_3: 0.20558 (0.21836) | > loss_disc_real_4: 0.21009 (0.21351) | > loss_disc_real_5: 0.20553 (0.21257) | > loss_0: 2.38877 (2.31047) | > grad_norm_0: 13.27620 (16.80439) | > loss_gen: 2.59234 (2.57562) | > loss_kl: 2.70882 (2.65812) | > loss_feat: 7.71923 (8.70953) | > loss_mel: 17.12293 (17.80260) | > loss_duration: 1.68460 (1.70717) | > loss_1: 31.82792 (33.45304) | > grad_norm_1: 134.76038 (140.75778) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.12040 (2.10537) | > loader_time: 0.03520 (0.03641)  --> STEP: 2499/15287 -- GLOBAL_STEP: 952500 | > loss_disc: 2.33850 (2.31047) | > loss_disc_real_0: 0.13163 (0.12236) | > loss_disc_real_1: 0.21210 (0.21059) | > loss_disc_real_2: 0.20376 (0.21480) | > loss_disc_real_3: 0.20649 (0.21835) | > loss_disc_real_4: 0.21612 (0.21354) | > loss_disc_real_5: 0.23644 (0.21258) | > loss_0: 2.33850 (2.31047) | > grad_norm_0: 31.35738 (16.81168) | > loss_gen: 2.51313 (2.57554) | > loss_kl: 2.72119 (2.65765) | > loss_feat: 8.05069 (8.70798) | > loss_mel: 17.20932 (17.80230) | > loss_duration: 1.66140 (1.70717) | > loss_1: 32.15574 (33.45062) | > grad_norm_1: 192.70430 (140.78648) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.68520 (2.10348) | > loader_time: 0.03820 (0.03639)  --> STEP: 2524/15287 -- GLOBAL_STEP: 952525 | > loss_disc: 2.23590 (2.31023) | > loss_disc_real_0: 0.08939 (0.12230) | > loss_disc_real_1: 0.19548 (0.21057) | > loss_disc_real_2: 0.18508 (0.21474) | > loss_disc_real_3: 0.17637 (0.21828) | > loss_disc_real_4: 0.19673 (0.21352) | > loss_disc_real_5: 0.19861 (0.21258) | > loss_0: 2.23590 (2.31023) | > grad_norm_0: 8.39989 (16.79736) | > loss_gen: 2.61785 (2.57555) | > loss_kl: 2.66594 (2.65734) | > loss_feat: 9.35868 (8.70850) | > loss_mel: 18.08508 (17.80194) | > loss_duration: 1.70966 (1.70715) | > loss_1: 34.43721 (33.45047) | > grad_norm_1: 150.48895 (140.80768) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01140 (2.10224) | > loader_time: 0.03570 (0.03635)  --> STEP: 2549/15287 -- GLOBAL_STEP: 952550 | > loss_disc: 2.26087 (2.31005) | > loss_disc_real_0: 0.12182 (0.12229) | > loss_disc_real_1: 0.20417 (0.21054) | > loss_disc_real_2: 0.22153 (0.21471) | > loss_disc_real_3: 0.21460 (0.21827) | > loss_disc_real_4: 0.19699 (0.21354) | > loss_disc_real_5: 0.21097 (0.21258) | > loss_0: 2.26087 (2.31005) | > grad_norm_0: 10.46260 (16.86200) | > loss_gen: 2.55938 (2.57517) | > loss_kl: 2.53409 (2.65715) | > loss_feat: 9.01632 (8.70794) | > loss_mel: 17.66472 (17.80000) | > loss_duration: 1.72294 (1.70713) | > loss_1: 33.49745 (33.44741) | > grad_norm_1: 70.39088 (140.86952) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05660 (2.10069) | > loader_time: 0.03450 (0.03632)  --> STEP: 2574/15287 -- GLOBAL_STEP: 952575 | > loss_disc: 2.33039 (2.30966) | > loss_disc_real_0: 0.20453 (0.12227) | > loss_disc_real_1: 0.21523 (0.21048) | > loss_disc_real_2: 0.22947 (0.21468) | > loss_disc_real_3: 0.23525 (0.21822) | > loss_disc_real_4: 0.21783 (0.21348) | > loss_disc_real_5: 0.22373 (0.21256) | > loss_0: 2.33039 (2.30966) | > grad_norm_0: 10.47844 (16.87724) | > loss_gen: 2.53136 (2.57531) | > loss_kl: 2.72991 (2.65713) | > loss_feat: 8.29551 (8.70840) | > loss_mel: 17.83828 (17.79948) | > loss_duration: 1.71741 (1.70715) | > loss_1: 33.11246 (33.44751) | > grad_norm_1: 115.48647 (141.12218) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86460 (2.09870) | > loader_time: 0.03170 (0.03629)  --> STEP: 2599/15287 -- GLOBAL_STEP: 952600 | > loss_disc: 2.30804 (2.30928) | > loss_disc_real_0: 0.10931 (0.12221) | > loss_disc_real_1: 0.20478 (0.21045) | > loss_disc_real_2: 0.20993 (0.21467) | > loss_disc_real_3: 0.21591 (0.21818) | > loss_disc_real_4: 0.22258 (0.21351) | > loss_disc_real_5: 0.26618 (0.21260) | > loss_0: 2.30804 (2.30928) | > grad_norm_0: 29.91832 (16.90596) | > loss_gen: 2.47624 (2.57524) | > loss_kl: 2.72533 (2.65730) | > loss_feat: 9.04702 (8.70825) | > loss_mel: 17.93935 (17.79785) | > loss_duration: 1.68269 (1.70713) | > loss_1: 33.87062 (33.44580) | > grad_norm_1: 155.97978 (141.30026) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00360 (2.09721) | > loader_time: 0.03020 (0.03626)  --> STEP: 2624/15287 -- GLOBAL_STEP: 952625 | > loss_disc: 2.35860 (2.30894) | > loss_disc_real_0: 0.10432 (0.12212) | > loss_disc_real_1: 0.21707 (0.21039) | > loss_disc_real_2: 0.22875 (0.21462) | > loss_disc_real_3: 0.22139 (0.21816) | > loss_disc_real_4: 0.21392 (0.21349) | > loss_disc_real_5: 0.24488 (0.21258) | > loss_0: 2.35860 (2.30894) | > grad_norm_0: 20.46705 (16.92457) | > loss_gen: 2.37953 (2.57497) | > loss_kl: 2.62771 (2.65709) | > loss_feat: 8.59931 (8.71012) | > loss_mel: 17.82752 (17.79663) | > loss_duration: 1.75219 (1.70713) | > loss_1: 33.18626 (33.44599) | > grad_norm_1: 119.74664 (141.44339) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99030 (2.09571) | > loader_time: 0.03150 (0.03624)  --> STEP: 2649/15287 -- GLOBAL_STEP: 952650 | > loss_disc: 2.26347 (2.30889) | > loss_disc_real_0: 0.10968 (0.12212) | > loss_disc_real_1: 0.13655 (0.21037) | > loss_disc_real_2: 0.19026 (0.21462) | > loss_disc_real_3: 0.18576 (0.21812) | > loss_disc_real_4: 0.17183 (0.21347) | > loss_disc_real_5: 0.21261 (0.21256) | > loss_0: 2.26347 (2.30889) | > grad_norm_0: 10.94569 (16.88793) | > loss_gen: 2.65671 (2.57490) | > loss_kl: 2.68719 (2.65737) | > loss_feat: 9.15875 (8.70992) | > loss_mel: 17.84347 (17.79641) | > loss_duration: 1.70608 (1.70717) | > loss_1: 34.05220 (33.44581) | > grad_norm_1: 88.19199 (141.05458) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.54200 (2.09492) | > loader_time: 0.04670 (0.03623)  --> STEP: 2674/15287 -- GLOBAL_STEP: 952675 | > loss_disc: 2.26698 (2.30884) | > loss_disc_real_0: 0.12226 (0.12212) | > loss_disc_real_1: 0.20386 (0.21042) | > loss_disc_real_2: 0.23068 (0.21464) | > loss_disc_real_3: 0.19883 (0.21810) | > loss_disc_real_4: 0.18247 (0.21347) | > loss_disc_real_5: 0.20115 (0.21254) | > loss_0: 2.26698 (2.30884) | > grad_norm_0: 14.44515 (16.82448) | > loss_gen: 2.62949 (2.57513) | > loss_kl: 2.70150 (2.65764) | > loss_feat: 9.03855 (8.71067) | > loss_mel: 17.63592 (17.79654) | > loss_duration: 1.72304 (1.70721) | > loss_1: 33.72850 (33.44723) | > grad_norm_1: 141.32104 (140.77060) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98940 (2.09319) | > loader_time: 0.03190 (0.03620)  --> STEP: 2699/15287 -- GLOBAL_STEP: 952700 | > loss_disc: 2.24347 (2.30903) | > loss_disc_real_0: 0.08410 (0.12214) | > loss_disc_real_1: 0.20256 (0.21045) | > loss_disc_real_2: 0.22013 (0.21467) | > loss_disc_real_3: 0.22289 (0.21812) | > loss_disc_real_4: 0.20745 (0.21350) | > loss_disc_real_5: 0.23217 (0.21256) | > loss_0: 2.24347 (2.30903) | > grad_norm_0: 16.57700 (16.81233) | > loss_gen: 2.63152 (2.57499) | > loss_kl: 2.66137 (2.65800) | > loss_feat: 9.07034 (8.71019) | > loss_mel: 17.99258 (17.79767) | > loss_duration: 1.70371 (1.70713) | > loss_1: 34.05953 (33.44802) | > grad_norm_1: 284.58881 (140.59312) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00600 (2.09172) | > loader_time: 0.03190 (0.03616)  --> STEP: 2724/15287 -- GLOBAL_STEP: 952725 | > loss_disc: 2.24778 (2.30911) | > loss_disc_real_0: 0.11670 (0.12211) | > loss_disc_real_1: 0.21174 (0.21046) | > loss_disc_real_2: 0.22723 (0.21476) | > loss_disc_real_3: 0.19816 (0.21811) | > loss_disc_real_4: 0.20632 (0.21352) | > loss_disc_real_5: 0.20701 (0.21253) | > loss_0: 2.24778 (2.30911) | > grad_norm_0: 9.32718 (16.83362) | > loss_gen: 2.58320 (2.57482) | > loss_kl: 2.76044 (2.65787) | > loss_feat: 8.87562 (8.71001) | > loss_mel: 18.07323 (17.79739) | > loss_duration: 1.75058 (1.70724) | > loss_1: 34.04308 (33.44736) | > grad_norm_1: 99.97203 (140.53912) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97600 (2.09021) | > loader_time: 0.03910 (0.03613)  --> STEP: 2749/15287 -- GLOBAL_STEP: 952750 | > loss_disc: 2.19884 (2.30868) | > loss_disc_real_0: 0.11918 (0.12204) | > loss_disc_real_1: 0.20408 (0.21040) | > loss_disc_real_2: 0.20818 (0.21473) | > loss_disc_real_3: 0.21440 (0.21809) | > loss_disc_real_4: 0.22277 (0.21349) | > loss_disc_real_5: 0.21353 (0.21254) | > loss_0: 2.19884 (2.30868) | > grad_norm_0: 38.85695 (16.86681) | > loss_gen: 2.67357 (2.57496) | > loss_kl: 2.63965 (2.65804) | > loss_feat: 9.22548 (8.71072) | > loss_mel: 18.32073 (17.79640) | > loss_duration: 1.69385 (1.70720) | > loss_1: 34.55329 (33.44735) | > grad_norm_1: 126.80768 (140.83672) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91580 (2.08892) | > loader_time: 0.03550 (0.03612)  --> STEP: 2774/15287 -- GLOBAL_STEP: 952775 | > loss_disc: 2.32457 (2.30842) | > loss_disc_real_0: 0.14309 (0.12198) | > loss_disc_real_1: 0.23889 (0.21040) | > loss_disc_real_2: 0.23491 (0.21473) | > loss_disc_real_3: 0.22459 (0.21808) | > loss_disc_real_4: 0.23765 (0.21349) | > loss_disc_real_5: 0.20928 (0.21256) | > loss_0: 2.32457 (2.30842) | > grad_norm_0: 12.20478 (16.85806) | > loss_gen: 2.64635 (2.57514) | > loss_kl: 2.85078 (2.65796) | > loss_feat: 9.06149 (8.71149) | > loss_mel: 17.84497 (17.79503) | > loss_duration: 1.70529 (1.70718) | > loss_1: 34.10889 (33.44684) | > grad_norm_1: 78.99965 (140.77051) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97420 (2.08777) | > loader_time: 0.03160 (0.03611)  --> STEP: 2799/15287 -- GLOBAL_STEP: 952800 | > loss_disc: 2.32291 (2.30843) | > loss_disc_real_0: 0.13635 (0.12198) | > loss_disc_real_1: 0.20087 (0.21038) | > loss_disc_real_2: 0.18790 (0.21477) | > loss_disc_real_3: 0.20631 (0.21809) | > loss_disc_real_4: 0.23956 (0.21354) | > loss_disc_real_5: 0.20949 (0.21254) | > loss_0: 2.32291 (2.30843) | > grad_norm_0: 11.30625 (16.81648) | > loss_gen: 2.49922 (2.57523) | > loss_kl: 2.80349 (2.65815) | > loss_feat: 8.93414 (8.71146) | > loss_mel: 17.83736 (17.79477) | > loss_duration: 1.73487 (1.70714) | > loss_1: 33.80909 (33.44678) | > grad_norm_1: 51.05730 (140.23993) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.50700 (2.08666) | > loader_time: 0.04470 (0.03609)  --> STEP: 2824/15287 -- GLOBAL_STEP: 952825 | > loss_disc: 2.33194 (2.30869) | > loss_disc_real_0: 0.10882 (0.12196) | > loss_disc_real_1: 0.20408 (0.21042) | > loss_disc_real_2: 0.21550 (0.21484) | > loss_disc_real_3: 0.20972 (0.21813) | > loss_disc_real_4: 0.21952 (0.21355) | > loss_disc_real_5: 0.19525 (0.21253) | > loss_0: 2.33194 (2.30869) | > grad_norm_0: 18.56561 (16.81458) | > loss_gen: 2.56460 (2.57496) | > loss_kl: 2.77723 (2.65824) | > loss_feat: 8.58185 (8.71063) | > loss_mel: 16.80163 (17.79517) | > loss_duration: 1.67872 (1.70715) | > loss_1: 32.40403 (33.44617) | > grad_norm_1: 153.05414 (140.20078) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96330 (2.08563) | > loader_time: 0.03130 (0.03606)  --> STEP: 2849/15287 -- GLOBAL_STEP: 952850 | > loss_disc: 2.23493 (2.30868) | > loss_disc_real_0: 0.08421 (0.12193) | > loss_disc_real_1: 0.22773 (0.21046) | > loss_disc_real_2: 0.22686 (0.21493) | > loss_disc_real_3: 0.21442 (0.21816) | > loss_disc_real_4: 0.19788 (0.21357) | > loss_disc_real_5: 0.18113 (0.21252) | > loss_0: 2.23493 (2.30868) | > grad_norm_0: 21.24535 (16.84707) | > loss_gen: 2.56621 (2.57532) | > loss_kl: 2.59617 (2.65802) | > loss_feat: 8.62722 (8.71178) | > loss_mel: 17.33967 (17.79597) | > loss_duration: 1.70074 (1.70717) | > loss_1: 32.83001 (33.44828) | > grad_norm_1: 174.87392 (140.46719) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19050 (2.08432) | > loader_time: 0.03240 (0.03604)  --> STEP: 2874/15287 -- GLOBAL_STEP: 952875 | > loss_disc: 2.36595 (2.30865) | > loss_disc_real_0: 0.06931 (0.12200) | > loss_disc_real_1: 0.23511 (0.21046) | > loss_disc_real_2: 0.21803 (0.21495) | > loss_disc_real_3: 0.22047 (0.21813) | > loss_disc_real_4: 0.22072 (0.21357) | > loss_disc_real_5: 0.21644 (0.21255) | > loss_0: 2.36595 (2.30865) | > grad_norm_0: 10.11663 (16.86275) | > loss_gen: 2.53894 (2.57545) | > loss_kl: 2.73352 (2.65789) | > loss_feat: 8.47091 (8.71159) | > loss_mel: 18.54193 (17.79513) | > loss_duration: 1.70234 (1.70721) | > loss_1: 33.98765 (33.44729) | > grad_norm_1: 96.94014 (140.47725) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08940 (2.08314) | > loader_time: 0.03160 (0.03601)  --> STEP: 2899/15287 -- GLOBAL_STEP: 952900 | > loss_disc: 2.30528 (2.30879) | > loss_disc_real_0: 0.13304 (0.12205) | > loss_disc_real_1: 0.19045 (0.21048) | > loss_disc_real_2: 0.24255 (0.21499) | > loss_disc_real_3: 0.19359 (0.21816) | > loss_disc_real_4: 0.21556 (0.21358) | > loss_disc_real_5: 0.21659 (0.21254) | > loss_0: 2.30528 (2.30879) | > grad_norm_0: 7.32112 (16.82406) | > loss_gen: 2.48064 (2.57550) | > loss_kl: 2.59381 (2.65788) | > loss_feat: 8.39568 (8.71131) | > loss_mel: 17.75422 (17.79531) | > loss_duration: 1.70730 (1.70723) | > loss_1: 32.93165 (33.44726) | > grad_norm_1: 164.10553 (140.14989) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00310 (2.08216) | > loader_time: 0.03070 (0.03600)  --> STEP: 2924/15287 -- GLOBAL_STEP: 952925 | > loss_disc: 2.35735 (2.30887) | > loss_disc_real_0: 0.09780 (0.12204) | > loss_disc_real_1: 0.19841 (0.21054) | > loss_disc_real_2: 0.22215 (0.21499) | > loss_disc_real_3: 0.22081 (0.21817) | > loss_disc_real_4: 0.21192 (0.21357) | > loss_disc_real_5: 0.21764 (0.21254) | > loss_0: 2.35735 (2.30887) | > grad_norm_0: 11.20772 (16.83211) | > loss_gen: 2.49177 (2.57551) | > loss_kl: 2.52149 (2.65762) | > loss_feat: 8.75564 (8.71082) | > loss_mel: 18.82268 (17.79554) | > loss_duration: 1.71756 (1.70717) | > loss_1: 34.30915 (33.44671) | > grad_norm_1: 104.56668 (140.04987) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92250 (2.08125) | > loader_time: 0.03100 (0.03599)  --> STEP: 2949/15287 -- GLOBAL_STEP: 952950 | > loss_disc: 2.35266 (2.30914) | > loss_disc_real_0: 0.17079 (0.12210) | > loss_disc_real_1: 0.20015 (0.21059) | > loss_disc_real_2: 0.20359 (0.21500) | > loss_disc_real_3: 0.21718 (0.21819) | > loss_disc_real_4: 0.22162 (0.21359) | > loss_disc_real_5: 0.23378 (0.21255) | > loss_0: 2.35266 (2.30914) | > grad_norm_0: 15.85906 (16.80254) | > loss_gen: 2.66517 (2.57542) | > loss_kl: 2.68249 (2.65753) | > loss_feat: 8.64033 (8.70980) | > loss_mel: 18.41408 (17.79747) | > loss_duration: 1.71033 (1.70720) | > loss_1: 34.11241 (33.44746) | > grad_norm_1: 96.34612 (139.63385) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91940 (2.07992) | > loader_time: 0.03020 (0.03599)  --> STEP: 2974/15287 -- GLOBAL_STEP: 952975 | > loss_disc: 2.36093 (2.30916) | > loss_disc_real_0: 0.10943 (0.12204) | > loss_disc_real_1: 0.23497 (0.21061) | > loss_disc_real_2: 0.20782 (0.21502) | > loss_disc_real_3: 0.23430 (0.21817) | > loss_disc_real_4: 0.21312 (0.21361) | > loss_disc_real_5: 0.21077 (0.21249) | > loss_0: 2.36093 (2.30916) | > grad_norm_0: 20.48527 (16.76202) | > loss_gen: 2.56102 (2.57565) | > loss_kl: 2.68433 (2.65755) | > loss_feat: 8.00718 (8.71048) | > loss_mel: 17.53965 (17.79912) | > loss_duration: 1.68129 (1.70723) | > loss_1: 32.47347 (33.45006) | > grad_norm_1: 123.75002 (139.28033) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98350 (2.07901) | > loader_time: 0.03120 (0.03597)  --> STEP: 2999/15287 -- GLOBAL_STEP: 953000 | > loss_disc: 2.37602 (2.30946) | > loss_disc_real_0: 0.11814 (0.12212) | > loss_disc_real_1: 0.15515 (0.21058) | > loss_disc_real_2: 0.20872 (0.21502) | > loss_disc_real_3: 0.21304 (0.21817) | > loss_disc_real_4: 0.22896 (0.21358) | > loss_disc_real_5: 0.27742 (0.21253) | > loss_0: 2.37602 (2.30946) | > grad_norm_0: 13.15139 (16.75457) | > loss_gen: 2.47030 (2.57551) | > loss_kl: 2.58581 (2.65772) | > loss_feat: 8.51769 (8.71104) | > loss_mel: 17.55675 (17.80025) | > loss_duration: 1.73433 (1.70727) | > loss_1: 32.86488 (33.45184) | > grad_norm_1: 111.03603 (139.24478) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00010 (2.07748) | > loader_time: 0.03100 (0.03596)  --> STEP: 3024/15287 -- GLOBAL_STEP: 953025 | > loss_disc: 2.32336 (2.30951) | > loss_disc_real_0: 0.10858 (0.12210) | > loss_disc_real_1: 0.19236 (0.21065) | > loss_disc_real_2: 0.22280 (0.21502) | > loss_disc_real_3: 0.21348 (0.21816) | > loss_disc_real_4: 0.21612 (0.21358) | > loss_disc_real_5: 0.22043 (0.21261) | > loss_0: 2.32336 (2.30951) | > grad_norm_0: 7.93806 (16.73703) | > loss_gen: 2.58510 (2.57583) | > loss_kl: 2.65900 (2.65756) | > loss_feat: 8.40485 (8.71026) | > loss_mel: 17.56240 (17.79984) | > loss_duration: 1.70434 (1.70728) | > loss_1: 32.91568 (33.45081) | > grad_norm_1: 129.18489 (139.04590) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95050 (2.07605) | > loader_time: 0.03360 (0.03594)  --> STEP: 3049/15287 -- GLOBAL_STEP: 953050 | > loss_disc: 2.27679 (2.30952) | > loss_disc_real_0: 0.08874 (0.12221) | > loss_disc_real_1: 0.20583 (0.21062) | > loss_disc_real_2: 0.19532 (0.21507) | > loss_disc_real_3: 0.22387 (0.21812) | > loss_disc_real_4: 0.22624 (0.21357) | > loss_disc_real_5: 0.18696 (0.21261) | > loss_0: 2.27679 (2.30952) | > grad_norm_0: 18.29391 (16.79972) | > loss_gen: 2.48745 (2.57595) | > loss_kl: 2.57877 (2.65701) | > loss_feat: 8.57949 (8.71059) | > loss_mel: 17.58654 (17.79951) | > loss_duration: 1.71586 (1.70727) | > loss_1: 32.94811 (33.45037) | > grad_norm_1: 205.40601 (139.21091) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06560 (2.07488) | > loader_time: 0.03540 (0.03593)  --> STEP: 3074/15287 -- GLOBAL_STEP: 953075 | > loss_disc: 2.42908 (2.30943) | > loss_disc_real_0: 0.16207 (0.12220) | > loss_disc_real_1: 0.22091 (0.21061) | > loss_disc_real_2: 0.23721 (0.21505) | > loss_disc_real_3: 0.21591 (0.21808) | > loss_disc_real_4: 0.24607 (0.21357) | > loss_disc_real_5: 0.23452 (0.21265) | > loss_0: 2.42908 (2.30943) | > grad_norm_0: 31.05241 (16.81076) | > loss_gen: 2.49307 (2.57592) | > loss_kl: 2.66703 (2.65663) | > loss_feat: 8.59121 (8.70987) | > loss_mel: 17.81598 (17.79745) | > loss_duration: 1.71123 (1.70729) | > loss_1: 33.27851 (33.44722) | > grad_norm_1: 93.95088 (139.21710) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.84630 (2.07361) | > loader_time: 0.03480 (0.03592)  --> STEP: 3099/15287 -- GLOBAL_STEP: 953100 | > loss_disc: 2.30655 (2.30934) | > loss_disc_real_0: 0.11858 (0.12216) | > loss_disc_real_1: 0.21916 (0.21059) | > loss_disc_real_2: 0.23729 (0.21504) | > loss_disc_real_3: 0.21444 (0.21806) | > loss_disc_real_4: 0.20002 (0.21356) | > loss_disc_real_5: 0.20759 (0.21259) | > loss_0: 2.30655 (2.30934) | > grad_norm_0: 17.50782 (16.80434) | > loss_gen: 2.57313 (2.57556) | > loss_kl: 2.64860 (2.65668) | > loss_feat: 8.81417 (8.70923) | > loss_mel: 17.79995 (17.79612) | > loss_duration: 1.73563 (1.70733) | > loss_1: 33.57146 (33.44498) | > grad_norm_1: 171.02374 (139.25710) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.46680 (2.07271) | > loader_time: 0.03600 (0.03592)  --> STEP: 3124/15287 -- GLOBAL_STEP: 953125 | > loss_disc: 2.31241 (2.30906) | > loss_disc_real_0: 0.12118 (0.12206) | > loss_disc_real_1: 0.19580 (0.21058) | > loss_disc_real_2: 0.22011 (0.21505) | > loss_disc_real_3: 0.25202 (0.21807) | > loss_disc_real_4: 0.25234 (0.21356) | > loss_disc_real_5: 0.21430 (0.21256) | > loss_0: 2.31241 (2.30906) | > grad_norm_0: 11.97684 (16.78442) | > loss_gen: 2.50125 (2.57573) | > loss_kl: 2.60797 (2.65673) | > loss_feat: 8.39478 (8.71081) | > loss_mel: 17.02402 (17.79600) | > loss_duration: 1.72763 (1.70734) | > loss_1: 32.25564 (33.44666) | > grad_norm_1: 57.36907 (139.23172) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.66160 (2.07143) | > loader_time: 0.03060 (0.03591)  --> STEP: 3149/15287 -- GLOBAL_STEP: 953150 | > loss_disc: 2.35867 (2.30894) | > loss_disc_real_0: 0.08907 (0.12205) | > loss_disc_real_1: 0.19784 (0.21058) | > loss_disc_real_2: 0.17469 (0.21505) | > loss_disc_real_3: 0.22915 (0.21806) | > loss_disc_real_4: 0.22855 (0.21356) | > loss_disc_real_5: 0.21534 (0.21258) | > loss_0: 2.35867 (2.30894) | > grad_norm_0: 8.82631 (16.79548) | > loss_gen: 2.59816 (2.57579) | > loss_kl: 2.56601 (2.65654) | > loss_feat: 9.03782 (8.71073) | > loss_mel: 17.71251 (17.79529) | > loss_duration: 1.72886 (1.70737) | > loss_1: 33.64336 (33.44579) | > grad_norm_1: 86.59720 (139.33269) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98390 (2.07050) | > loader_time: 0.03260 (0.03589)  --> STEP: 3174/15287 -- GLOBAL_STEP: 953175 | > loss_disc: 2.33268 (2.30908) | > loss_disc_real_0: 0.11830 (0.12210) | > loss_disc_real_1: 0.23498 (0.21059) | > loss_disc_real_2: 0.22885 (0.21508) | > loss_disc_real_3: 0.21680 (0.21807) | > loss_disc_real_4: 0.21360 (0.21355) | > loss_disc_real_5: 0.24661 (0.21257) | > loss_0: 2.33268 (2.30908) | > grad_norm_0: 9.34883 (16.75414) | > loss_gen: 2.70969 (2.57568) | > loss_kl: 2.75451 (2.65660) | > loss_feat: 8.86834 (8.71015) | > loss_mel: 18.44270 (17.79474) | > loss_duration: 1.76352 (1.70741) | > loss_1: 34.53876 (33.44466) | > grad_norm_1: 114.23415 (138.97758) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01950 (2.06985) | > loader_time: 0.03570 (0.03588)  --> STEP: 3199/15287 -- GLOBAL_STEP: 953200 | > loss_disc: 2.31450 (2.30943) | > loss_disc_real_0: 0.10997 (0.12215) | > loss_disc_real_1: 0.15929 (0.21062) | > loss_disc_real_2: 0.22612 (0.21514) | > loss_disc_real_3: 0.18062 (0.21808) | > loss_disc_real_4: 0.17999 (0.21354) | > loss_disc_real_5: 0.20029 (0.21257) | > loss_0: 2.31450 (2.30943) | > grad_norm_0: 6.70818 (16.70469) | > loss_gen: 2.64449 (2.57550) | > loss_kl: 2.71700 (2.65696) | > loss_feat: 9.14248 (8.71015) | > loss_mel: 18.01476 (17.79597) | > loss_duration: 1.73739 (1.70751) | > loss_1: 34.25611 (33.44617) | > grad_norm_1: 74.26347 (138.52354) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98340 (2.06879) | > loader_time: 0.03060 (0.03586)  --> STEP: 3224/15287 -- GLOBAL_STEP: 953225 | > loss_disc: 2.34205 (2.30970) | > loss_disc_real_0: 0.07745 (0.12217) | > loss_disc_real_1: 0.20179 (0.21068) | > loss_disc_real_2: 0.23037 (0.21515) | > loss_disc_real_3: 0.21358 (0.21811) | > loss_disc_real_4: 0.20904 (0.21358) | > loss_disc_real_5: 0.20864 (0.21255) | > loss_0: 2.34205 (2.30970) | > grad_norm_0: 13.50393 (16.67984) | > loss_gen: 2.38473 (2.57520) | > loss_kl: 2.54034 (2.65686) | > loss_feat: 8.26191 (8.70966) | > loss_mel: 17.77520 (17.79643) | > loss_duration: 1.71622 (1.70754) | > loss_1: 32.67840 (33.44578) | > grad_norm_1: 48.57326 (138.30045) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.67790 (2.06770) | > loader_time: 0.03040 (0.03585)  --> STEP: 3249/15287 -- GLOBAL_STEP: 953250 | > loss_disc: 2.34142 (2.30971) | > loss_disc_real_0: 0.12908 (0.12222) | > loss_disc_real_1: 0.19610 (0.21068) | > loss_disc_real_2: 0.23002 (0.21515) | > loss_disc_real_3: 0.19364 (0.21809) | > loss_disc_real_4: 0.21478 (0.21355) | > loss_disc_real_5: 0.18680 (0.21254) | > loss_0: 2.34142 (2.30971) | > grad_norm_0: 5.86984 (16.64246) | > loss_gen: 2.46639 (2.57527) | > loss_kl: 2.74419 (2.65683) | > loss_feat: 8.86502 (8.71049) | > loss_mel: 17.86046 (17.79711) | > loss_duration: 1.68588 (1.70761) | > loss_1: 33.62193 (33.44738) | > grad_norm_1: 50.81607 (138.03162) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22580 (2.06673) | > loader_time: 0.03490 (0.03583)  --> STEP: 3274/15287 -- GLOBAL_STEP: 953275 | > loss_disc: 2.25671 (2.30979) | > loss_disc_real_0: 0.11731 (0.12223) | > loss_disc_real_1: 0.18615 (0.21069) | > loss_disc_real_2: 0.20570 (0.21516) | > loss_disc_real_3: 0.24794 (0.21810) | > loss_disc_real_4: 0.21131 (0.21351) | > loss_disc_real_5: 0.19372 (0.21253) | > loss_0: 2.25671 (2.30979) | > grad_norm_0: 21.89165 (16.63745) | > loss_gen: 2.56318 (2.57507) | > loss_kl: 2.63211 (2.65685) | > loss_feat: 8.99470 (8.71029) | > loss_mel: 17.61202 (17.79750) | > loss_duration: 1.74532 (1.70762) | > loss_1: 33.54733 (33.44739) | > grad_norm_1: 140.54718 (137.98534) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95790 (2.06544) | > loader_time: 0.03540 (0.03581)  --> STEP: 3299/15287 -- GLOBAL_STEP: 953300 | > loss_disc: 2.29990 (2.30971) | > loss_disc_real_0: 0.12160 (0.12220) | > loss_disc_real_1: 0.24250 (0.21062) | > loss_disc_real_2: 0.22244 (0.21510) | > loss_disc_real_3: 0.19717 (0.21811) | > loss_disc_real_4: 0.22671 (0.21342) | > loss_disc_real_5: 0.20733 (0.21255) | > loss_0: 2.29990 (2.30971) | > grad_norm_0: 7.77447 (16.66963) | > loss_gen: 2.53166 (2.57479) | > loss_kl: 2.51788 (2.65645) | > loss_feat: 8.44196 (8.71025) | > loss_mel: 17.12014 (17.79643) | > loss_duration: 1.68934 (1.70761) | > loss_1: 32.30097 (33.44561) | > grad_norm_1: 63.15863 (138.13216) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.69120 (2.06414) | > loader_time: 0.03290 (0.03581)  --> STEP: 3324/15287 -- GLOBAL_STEP: 953325 | > loss_disc: 2.28438 (2.30961) | > loss_disc_real_0: 0.10622 (0.12219) | > loss_disc_real_1: 0.24144 (0.21064) | > loss_disc_real_2: 0.21724 (0.21508) | > loss_disc_real_3: 0.19724 (0.21810) | > loss_disc_real_4: 0.20150 (0.21340) | > loss_disc_real_5: 0.20099 (0.21254) | > loss_0: 2.28438 (2.30961) | > grad_norm_0: 19.14830 (16.64684) | > loss_gen: 2.49216 (2.57487) | > loss_kl: 2.57943 (2.65642) | > loss_feat: 9.03590 (8.71089) | > loss_mel: 18.07090 (17.79667) | > loss_duration: 1.72647 (1.70760) | > loss_1: 33.90487 (33.44655) | > grad_norm_1: 156.86040 (137.92761) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96150 (2.06273) | > loader_time: 0.03520 (0.03579)  --> STEP: 3349/15287 -- GLOBAL_STEP: 953350 | > loss_disc: 2.36831 (2.30956) | > loss_disc_real_0: 0.10951 (0.12213) | > loss_disc_real_1: 0.20306 (0.21064) | > loss_disc_real_2: 0.20168 (0.21509) | > loss_disc_real_3: 0.21795 (0.21810) | > loss_disc_real_4: 0.18532 (0.21335) | > loss_disc_real_5: 0.22648 (0.21252) | > loss_0: 2.36831 (2.30956) | > grad_norm_0: 25.57235 (16.62647) | > loss_gen: 2.30357 (2.57486) | > loss_kl: 2.73042 (2.65645) | > loss_feat: 8.36867 (8.71183) | > loss_mel: 18.07438 (17.79834) | > loss_duration: 1.72804 (1.70768) | > loss_1: 33.20508 (33.44927) | > grad_norm_1: 193.15175 (137.93695) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.64660 (2.06140) | > loader_time: 0.03570 (0.03578)  --> STEP: 3374/15287 -- GLOBAL_STEP: 953375 | > loss_disc: 2.33036 (2.30956) | > loss_disc_real_0: 0.15427 (0.12211) | > loss_disc_real_1: 0.21899 (0.21058) | > loss_disc_real_2: 0.23824 (0.21508) | > loss_disc_real_3: 0.21530 (0.21806) | > loss_disc_real_4: 0.24250 (0.21337) | > loss_disc_real_5: 0.25396 (0.21252) | > loss_0: 2.33036 (2.30956) | > grad_norm_0: 22.51098 (16.62761) | > loss_gen: 2.68286 (2.57469) | > loss_kl: 2.68368 (2.65636) | > loss_feat: 8.94163 (8.71099) | > loss_mel: 17.92562 (17.79792) | > loss_duration: 1.69542 (1.70769) | > loss_1: 33.92921 (33.44776) | > grad_norm_1: 164.32768 (138.07379) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95070 (2.06081) | > loader_time: 0.03480 (0.03578)  --> STEP: 3399/15287 -- GLOBAL_STEP: 953400 | > loss_disc: 2.19623 (2.30972) | > loss_disc_real_0: 0.08433 (0.12217) | > loss_disc_real_1: 0.18473 (0.21059) | > loss_disc_real_2: 0.18995 (0.21508) | > loss_disc_real_3: 0.21595 (0.21807) | > loss_disc_real_4: 0.20459 (0.21341) | > loss_disc_real_5: 0.17893 (0.21254) | > loss_0: 2.19623 (2.30972) | > grad_norm_0: 8.55987 (16.62859) | > loss_gen: 2.68397 (2.57453) | > loss_kl: 2.76431 (2.65636) | > loss_feat: 9.45818 (8.71090) | > loss_mel: 18.39620 (17.79878) | > loss_duration: 1.72540 (1.70773) | > loss_1: 35.02806 (33.44841) | > grad_norm_1: 81.86014 (137.88409) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.61130 (2.05970) | > loader_time: 0.03510 (0.03577)  --> STEP: 3424/15287 -- GLOBAL_STEP: 953425 | > loss_disc: 2.31154 (2.30961) | > loss_disc_real_0: 0.09830 (0.12215) | > loss_disc_real_1: 0.23321 (0.21060) | > loss_disc_real_2: 0.21029 (0.21507) | > loss_disc_real_3: 0.22702 (0.21806) | > loss_disc_real_4: 0.20857 (0.21340) | > loss_disc_real_5: 0.25693 (0.21255) | > loss_0: 2.31154 (2.30961) | > grad_norm_0: 8.03812 (16.60647) | > loss_gen: 2.59486 (2.57451) | > loss_kl: 2.60347 (2.65615) | > loss_feat: 8.82753 (8.71098) | > loss_mel: 17.83159 (17.79837) | > loss_duration: 1.72556 (1.70773) | > loss_1: 33.58302 (33.44782) | > grad_norm_1: 150.84207 (137.87758) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14590 (2.05857) | > loader_time: 0.03780 (0.03576)  --> STEP: 3449/15287 -- GLOBAL_STEP: 953450 | > loss_disc: 2.27311 (2.30964) | > loss_disc_real_0: 0.11166 (0.12217) | > loss_disc_real_1: 0.22111 (0.21058) | > loss_disc_real_2: 0.20501 (0.21505) | > loss_disc_real_3: 0.21987 (0.21805) | > loss_disc_real_4: 0.21051 (0.21338) | > loss_disc_real_5: 0.21067 (0.21251) | > loss_0: 2.27311 (2.30964) | > grad_norm_0: 13.48137 (16.61828) | > loss_gen: 2.47280 (2.57415) | > loss_kl: 2.58188 (2.65616) | > loss_feat: 8.62016 (8.71101) | > loss_mel: 17.74014 (17.79885) | > loss_duration: 1.67498 (1.70776) | > loss_1: 33.08995 (33.44801) | > grad_norm_1: 128.66266 (137.83205) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01680 (2.05760) | > loader_time: 0.03420 (0.03574)  --> STEP: 3474/15287 -- GLOBAL_STEP: 953475 | > loss_disc: 2.31768 (2.30935) | > loss_disc_real_0: 0.14110 (0.12211) | > loss_disc_real_1: 0.22166 (0.21056) | > loss_disc_real_2: 0.20252 (0.21502) | > loss_disc_real_3: 0.22522 (0.21806) | > loss_disc_real_4: 0.19967 (0.21343) | > loss_disc_real_5: 0.25634 (0.21251) | > loss_0: 2.31768 (2.30935) | > grad_norm_0: 18.32906 (16.60414) | > loss_gen: 2.41941 (2.57435) | > loss_kl: 2.60307 (2.65616) | > loss_feat: 8.49382 (8.71139) | > loss_mel: 17.28417 (17.79845) | > loss_duration: 1.69321 (1.70777) | > loss_1: 32.49369 (33.44820) | > grad_norm_1: 92.60071 (137.85956) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04870 (2.05693) | > loader_time: 0.03520 (0.03574)  --> STEP: 3499/15287 -- GLOBAL_STEP: 953500 | > loss_disc: 2.26033 (2.30948) | > loss_disc_real_0: 0.14127 (0.12216) | > loss_disc_real_1: 0.19207 (0.21053) | > loss_disc_real_2: 0.19057 (0.21502) | > loss_disc_real_3: 0.20169 (0.21802) | > loss_disc_real_4: 0.18588 (0.21339) | > loss_disc_real_5: 0.20575 (0.21252) | > loss_0: 2.26033 (2.30948) | > grad_norm_0: 9.64157 (16.64265) | > loss_gen: 2.61747 (2.57407) | > loss_kl: 2.66113 (2.65628) | > loss_feat: 8.15757 (8.71078) | > loss_mel: 17.28980 (17.79781) | > loss_duration: 1.75569 (1.70775) | > loss_1: 32.48166 (33.44678) | > grad_norm_1: 100.41632 (137.93060) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94690 (2.05639) | > loader_time: 0.03510 (0.03574)  --> STEP: 3524/15287 -- GLOBAL_STEP: 953525 | > loss_disc: 2.22168 (2.30943) | > loss_disc_real_0: 0.16566 (0.12221) | > loss_disc_real_1: 0.19015 (0.21052) | > loss_disc_real_2: 0.20547 (0.21501) | > loss_disc_real_3: 0.19831 (0.21802) | > loss_disc_real_4: 0.19879 (0.21340) | > loss_disc_real_5: 0.17205 (0.21253) | > loss_0: 2.22168 (2.30943) | > grad_norm_0: 17.99719 (16.63129) | > loss_gen: 2.69941 (2.57418) | > loss_kl: 2.85443 (2.65650) | > loss_feat: 9.37122 (8.71127) | > loss_mel: 18.38422 (17.79743) | > loss_duration: 1.73986 (1.70785) | > loss_1: 35.04914 (33.44733) | > grad_norm_1: 136.95454 (137.72795) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10850 (2.05555) | > loader_time: 0.03200 (0.03573)  --> STEP: 3549/15287 -- GLOBAL_STEP: 953550 | > loss_disc: 2.28164 (2.30954) | > loss_disc_real_0: 0.12107 (0.12221) | > loss_disc_real_1: 0.19939 (0.21055) | > loss_disc_real_2: 0.18916 (0.21503) | > loss_disc_real_3: 0.19628 (0.21802) | > loss_disc_real_4: 0.19581 (0.21340) | > loss_disc_real_5: 0.22056 (0.21253) | > loss_0: 2.28164 (2.30954) | > grad_norm_0: 8.17903 (16.60778) | > loss_gen: 2.61081 (2.57399) | > loss_kl: 2.74474 (2.65662) | > loss_feat: 9.10628 (8.71103) | > loss_mel: 17.85918 (17.79802) | > loss_duration: 1.70676 (1.70792) | > loss_1: 34.02776 (33.44767) | > grad_norm_1: 149.90807 (137.51047) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00220 (2.05484) | > loader_time: 0.03620 (0.03574)  --> STEP: 3574/15287 -- GLOBAL_STEP: 953575 | > loss_disc: 2.32826 (2.30973) | > loss_disc_real_0: 0.09686 (0.12228) | > loss_disc_real_1: 0.22553 (0.21057) | > loss_disc_real_2: 0.22011 (0.21505) | > loss_disc_real_3: 0.19473 (0.21801) | > loss_disc_real_4: 0.19346 (0.21341) | > loss_disc_real_5: 0.21704 (0.21253) | > loss_0: 2.32826 (2.30973) | > grad_norm_0: 7.75921 (16.58623) | > loss_gen: 2.42941 (2.57398) | > loss_kl: 2.68753 (2.65654) | > loss_feat: 8.48755 (8.71080) | > loss_mel: 17.55796 (17.79776) | > loss_duration: 1.65753 (1.70798) | > loss_1: 32.81999 (33.44715) | > grad_norm_1: 141.46159 (137.20181) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96580 (2.05384) | > loader_time: 0.03110 (0.03572)  --> STEP: 3599/15287 -- GLOBAL_STEP: 953600 | > loss_disc: 2.39267 (2.30997) | > loss_disc_real_0: 0.14079 (0.12230) | > loss_disc_real_1: 0.24133 (0.21063) | > loss_disc_real_2: 0.22723 (0.21509) | > loss_disc_real_3: 0.21636 (0.21801) | > loss_disc_real_4: 0.20909 (0.21341) | > loss_disc_real_5: 0.21475 (0.21251) | > loss_0: 2.39267 (2.30997) | > grad_norm_0: 10.60627 (16.56523) | > loss_gen: 2.46294 (2.57399) | > loss_kl: 2.54315 (2.65659) | > loss_feat: 8.29553 (8.71051) | > loss_mel: 17.33568 (17.79827) | > loss_duration: 1.72066 (1.70792) | > loss_1: 32.35797 (33.44739) | > grad_norm_1: 94.94424 (136.98866) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.67610 (2.05314) | > loader_time: 0.03210 (0.03571)  --> STEP: 3624/15287 -- GLOBAL_STEP: 953625 | > loss_disc: 2.31979 (2.31001) | > loss_disc_real_0: 0.11880 (0.12228) | > loss_disc_real_1: 0.19338 (0.21068) | > loss_disc_real_2: 0.21282 (0.21509) | > loss_disc_real_3: 0.20124 (0.21802) | > loss_disc_real_4: 0.21039 (0.21340) | > loss_disc_real_5: 0.22808 (0.21253) | > loss_0: 2.31979 (2.31001) | > grad_norm_0: 13.97820 (16.53663) | > loss_gen: 2.65684 (2.57407) | > loss_kl: 2.89575 (2.65648) | > loss_feat: 8.81023 (8.71038) | > loss_mel: 18.55491 (17.79827) | > loss_duration: 1.71040 (1.70791) | > loss_1: 34.62812 (33.44721) | > grad_norm_1: 203.74837 (136.86299) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15350 (2.05247) | > loader_time: 0.03950 (0.03570)  --> STEP: 3649/15287 -- GLOBAL_STEP: 953650 | > loss_disc: 2.25301 (2.30987) | > loss_disc_real_0: 0.08337 (0.12226) | > loss_disc_real_1: 0.18971 (0.21066) | > loss_disc_real_2: 0.18965 (0.21509) | > loss_disc_real_3: 0.24909 (0.21804) | > loss_disc_real_4: 0.22874 (0.21342) | > loss_disc_real_5: 0.22083 (0.21252) | > loss_0: 2.25301 (2.30987) | > grad_norm_0: 12.08673 (16.51154) | > loss_gen: 2.45261 (2.57419) | > loss_kl: 2.69443 (2.65632) | > loss_feat: 9.25659 (8.71144) | > loss_mel: 17.45251 (17.79900) | > loss_duration: 1.66652 (1.70783) | > loss_1: 33.52266 (33.44886) | > grad_norm_1: 102.55579 (136.73485) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02450 (2.05160) | > loader_time: 0.03540 (0.03568)  --> STEP: 3674/15287 -- GLOBAL_STEP: 953675 | > loss_disc: 2.26469 (2.30985) | > loss_disc_real_0: 0.09925 (0.12224) | > loss_disc_real_1: 0.18390 (0.21069) | > loss_disc_real_2: 0.20593 (0.21507) | > loss_disc_real_3: 0.21617 (0.21804) | > loss_disc_real_4: 0.18932 (0.21340) | > loss_disc_real_5: 0.22332 (0.21251) | > loss_0: 2.26469 (2.30985) | > grad_norm_0: 19.97220 (16.51524) | > loss_gen: 2.41342 (2.57420) | > loss_kl: 2.63806 (2.65641) | > loss_feat: 8.53196 (8.71232) | > loss_mel: 17.61200 (17.79953) | > loss_duration: 1.69532 (1.70781) | > loss_1: 32.89076 (33.45034) | > grad_norm_1: 92.88531 (136.78520) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44610 (2.05115) | > loader_time: 0.04070 (0.03568)  --> STEP: 3699/15287 -- GLOBAL_STEP: 953700 | > loss_disc: 2.26183 (2.30976) | > loss_disc_real_0: 0.06737 (0.12221) | > loss_disc_real_1: 0.23533 (0.21070) | > loss_disc_real_2: 0.22115 (0.21510) | > loss_disc_real_3: 0.22646 (0.21802) | > loss_disc_real_4: 0.22692 (0.21340) | > loss_disc_real_5: 0.22005 (0.21249) | > loss_0: 2.26183 (2.30976) | > grad_norm_0: 12.21765 (16.49056) | > loss_gen: 2.61437 (2.57416) | > loss_kl: 2.58854 (2.65638) | > loss_feat: 8.56627 (8.71270) | > loss_mel: 17.92566 (17.79931) | > loss_duration: 1.73375 (1.70775) | > loss_1: 33.42859 (33.45037) | > grad_norm_1: 107.20300 (136.75499) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97460 (2.05019) | > loader_time: 0.03180 (0.03566)  --> STEP: 3724/15287 -- GLOBAL_STEP: 953725 | > loss_disc: 2.30606 (2.30987) | > loss_disc_real_0: 0.10835 (0.12221) | > loss_disc_real_1: 0.18710 (0.21069) | > loss_disc_real_2: 0.21620 (0.21509) | > loss_disc_real_3: 0.19937 (0.21801) | > loss_disc_real_4: 0.17972 (0.21338) | > loss_disc_real_5: 0.18983 (0.21249) | > loss_0: 2.30606 (2.30987) | > grad_norm_0: 18.26370 (16.48287) | > loss_gen: 2.31103 (2.57364) | > loss_kl: 2.81061 (2.65662) | > loss_feat: 9.10103 (8.71238) | > loss_mel: 17.88734 (17.79903) | > loss_duration: 1.74920 (1.70779) | > loss_1: 33.85921 (33.44951) | > grad_norm_1: 129.67108 (136.69652) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.60900 (2.04915) | > loader_time: 0.03220 (0.03565)  --> STEP: 3749/15287 -- GLOBAL_STEP: 953750 | > loss_disc: 2.28852 (2.30988) | > loss_disc_real_0: 0.10757 (0.12222) | > loss_disc_real_1: 0.19087 (0.21069) | > loss_disc_real_2: 0.24442 (0.21509) | > loss_disc_real_3: 0.20491 (0.21798) | > loss_disc_real_4: 0.21150 (0.21336) | > loss_disc_real_5: 0.18982 (0.21249) | > loss_0: 2.28852 (2.30988) | > grad_norm_0: 21.58251 (16.46178) | > loss_gen: 2.49994 (2.57359) | > loss_kl: 2.65518 (2.65664) | > loss_feat: 8.82017 (8.71216) | > loss_mel: 18.15163 (17.79911) | > loss_duration: 1.67478 (1.70778) | > loss_1: 33.80169 (33.44933) | > grad_norm_1: 176.05594 (136.60040) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36390 (2.04813) | > loader_time: 0.03550 (0.03563)  --> STEP: 3774/15287 -- GLOBAL_STEP: 953775 | > loss_disc: 2.33324 (2.30981) | > loss_disc_real_0: 0.16529 (0.12223) | > loss_disc_real_1: 0.23500 (0.21069) | > loss_disc_real_2: 0.24288 (0.21510) | > loss_disc_real_3: 0.23196 (0.21800) | > loss_disc_real_4: 0.25424 (0.21338) | > loss_disc_real_5: 0.22477 (0.21248) | > loss_0: 2.33324 (2.30981) | > grad_norm_0: 26.78851 (16.43863) | > loss_gen: 2.64940 (2.57392) | > loss_kl: 2.55297 (2.65655) | > loss_feat: 8.50746 (8.71290) | > loss_mel: 17.76898 (17.79954) | > loss_duration: 1.71377 (1.70775) | > loss_1: 33.19257 (33.45070) | > grad_norm_1: 130.28551 (136.53796) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05730 (2.04827) | > loader_time: 0.03520 (0.03562)  --> STEP: 3799/15287 -- GLOBAL_STEP: 953800 | > loss_disc: 2.27934 (2.30979) | > loss_disc_real_0: 0.08562 (0.12218) | > loss_disc_real_1: 0.18798 (0.21065) | > loss_disc_real_2: 0.22420 (0.21512) | > loss_disc_real_3: 0.22059 (0.21798) | > loss_disc_real_4: 0.18595 (0.21339) | > loss_disc_real_5: 0.20115 (0.21248) | > loss_0: 2.27934 (2.30979) | > grad_norm_0: 17.17837 (16.45104) | > loss_gen: 2.58349 (2.57364) | > loss_kl: 2.84044 (2.65643) | > loss_feat: 9.32911 (8.71255) | > loss_mel: 18.00922 (17.79915) | > loss_duration: 1.74916 (1.70773) | > loss_1: 34.51143 (33.44958) | > grad_norm_1: 122.23173 (136.67841) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92100 (2.04870) | > loader_time: 0.02990 (0.03565)  --> STEP: 3824/15287 -- GLOBAL_STEP: 953825 | > loss_disc: 2.23262 (2.30956) | > loss_disc_real_0: 0.09886 (0.12214) | > loss_disc_real_1: 0.20496 (0.21060) | > loss_disc_real_2: 0.19011 (0.21507) | > loss_disc_real_3: 0.22410 (0.21797) | > loss_disc_real_4: 0.16605 (0.21336) | > loss_disc_real_5: 0.18852 (0.21247) | > loss_0: 2.23262 (2.30956) | > grad_norm_0: 22.61511 (16.43789) | > loss_gen: 2.54210 (2.57353) | > loss_kl: 2.57749 (2.65628) | > loss_feat: 9.04722 (8.71313) | > loss_mel: 17.37952 (17.79787) | > loss_duration: 1.70379 (1.70774) | > loss_1: 33.25013 (33.44862) | > grad_norm_1: 178.47073 (136.81091) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06620 (2.04826) | > loader_time: 0.03250 (0.03564)  --> STEP: 3849/15287 -- GLOBAL_STEP: 953850 | > loss_disc: 2.33918 (2.30949) | > loss_disc_real_0: 0.07059 (0.12212) | > loss_disc_real_1: 0.18825 (0.21058) | > loss_disc_real_2: 0.22112 (0.21505) | > loss_disc_real_3: 0.22736 (0.21799) | > loss_disc_real_4: 0.26855 (0.21337) | > loss_disc_real_5: 0.20158 (0.21244) | > loss_0: 2.33918 (2.30949) | > grad_norm_0: 6.52002 (16.41054) | > loss_gen: 2.74400 (2.57358) | > loss_kl: 2.56577 (2.65652) | > loss_feat: 8.97017 (8.71388) | > loss_mel: 17.80842 (17.79827) | > loss_duration: 1.70426 (1.70774) | > loss_1: 33.79263 (33.45009) | > grad_norm_1: 45.57579 (136.51865) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98190 (2.04762) | > loader_time: 0.02900 (0.03563)  --> STEP: 3874/15287 -- GLOBAL_STEP: 953875 | > loss_disc: 2.31421 (2.30961) | > loss_disc_real_0: 0.15760 (0.12221) | > loss_disc_real_1: 0.24219 (0.21060) | > loss_disc_real_2: 0.22502 (0.21505) | > loss_disc_real_3: 0.22998 (0.21799) | > loss_disc_real_4: 0.18172 (0.21336) | > loss_disc_real_5: 0.19109 (0.21245) | > loss_0: 2.31421 (2.30961) | > grad_norm_0: 14.02621 (16.38006) | > loss_gen: 2.51266 (2.57383) | > loss_kl: 2.57332 (2.65671) | > loss_feat: 8.52103 (8.71418) | > loss_mel: 17.55486 (17.79976) | > loss_duration: 1.70855 (1.70776) | > loss_1: 32.87042 (33.45230) | > grad_norm_1: 198.99426 (136.20763) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.68540 (2.04680) | > loader_time: 0.03040 (0.03561)  --> STEP: 3899/15287 -- GLOBAL_STEP: 953900 | > loss_disc: 2.38164 (2.30988) | > loss_disc_real_0: 0.15990 (0.12224) | > loss_disc_real_1: 0.21681 (0.21070) | > loss_disc_real_2: 0.24835 (0.21510) | > loss_disc_real_3: 0.23421 (0.21802) | > loss_disc_real_4: 0.21380 (0.21341) | > loss_disc_real_5: 0.20688 (0.21247) | > loss_0: 2.38164 (2.30988) | > grad_norm_0: 16.06721 (16.36544) | > loss_gen: 2.68769 (2.57405) | > loss_kl: 2.62529 (2.65661) | > loss_feat: 9.11166 (8.71380) | > loss_mel: 17.80058 (17.80032) | > loss_duration: 1.65455 (1.70783) | > loss_1: 33.87977 (33.45267) | > grad_norm_1: 179.23926 (136.11031) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95560 (2.04590) | > loader_time: 0.03490 (0.03559)  --> STEP: 3924/15287 -- GLOBAL_STEP: 953925 | > loss_disc: 2.20776 (2.30975) | > loss_disc_real_0: 0.10736 (0.12220) | > loss_disc_real_1: 0.21288 (0.21074) | > loss_disc_real_2: 0.24082 (0.21511) | > loss_disc_real_3: 0.19002 (0.21803) | > loss_disc_real_4: 0.20348 (0.21341) | > loss_disc_real_5: 0.22080 (0.21244) | > loss_0: 2.20776 (2.30975) | > grad_norm_0: 14.62329 (16.36045) | > loss_gen: 2.70182 (2.57400) | > loss_kl: 2.70767 (2.65639) | > loss_feat: 8.90159 (8.71345) | > loss_mel: 17.61081 (17.79979) | > loss_duration: 1.68686 (1.70782) | > loss_1: 33.60874 (33.45152) | > grad_norm_1: 139.85806 (136.12408) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95240 (2.04524) | > loader_time: 0.03500 (0.03557)  --> STEP: 3949/15287 -- GLOBAL_STEP: 953950 | > loss_disc: 2.24716 (2.30968) | > loss_disc_real_0: 0.10932 (0.12218) | > loss_disc_real_1: 0.19809 (0.21075) | > loss_disc_real_2: 0.21202 (0.21511) | > loss_disc_real_3: 0.21124 (0.21804) | > loss_disc_real_4: 0.20626 (0.21341) | > loss_disc_real_5: 0.23168 (0.21245) | > loss_0: 2.24716 (2.30968) | > grad_norm_0: 12.16378 (16.34009) | > loss_gen: 2.55700 (2.57390) | > loss_kl: 2.69738 (2.65640) | > loss_feat: 9.23976 (8.71280) | > loss_mel: 17.93491 (17.79924) | > loss_duration: 1.70454 (1.70778) | > loss_1: 34.13359 (33.45021) | > grad_norm_1: 84.27028 (136.03812) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03050 (2.04551) | > loader_time: 0.02980 (0.03555)  --> STEP: 3974/15287 -- GLOBAL_STEP: 953975 | > loss_disc: 2.38585 (2.30960) | > loss_disc_real_0: 0.17937 (0.12216) | > loss_disc_real_1: 0.21571 (0.21076) | > loss_disc_real_2: 0.23487 (0.21511) | > loss_disc_real_3: 0.19329 (0.21805) | > loss_disc_real_4: 0.21644 (0.21342) | > loss_disc_real_5: 0.21420 (0.21245) | > loss_0: 2.38585 (2.30960) | > grad_norm_0: 13.35443 (16.31166) | > loss_gen: 2.45146 (2.57400) | > loss_kl: 2.65865 (2.65662) | > loss_feat: 8.69155 (8.71327) | > loss_mel: 18.05993 (17.79953) | > loss_duration: 1.71106 (1.70775) | > loss_1: 33.57266 (33.45129) | > grad_norm_1: 153.97664 (135.84682) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05560 (2.04480) | > loader_time: 0.03530 (0.03554)  --> STEP: 3999/15287 -- GLOBAL_STEP: 954000 | > loss_disc: 2.31070 (2.30970) | > loss_disc_real_0: 0.11627 (0.12215) | > loss_disc_real_1: 0.21937 (0.21078) | > loss_disc_real_2: 0.23315 (0.21513) | > loss_disc_real_3: 0.23334 (0.21806) | > loss_disc_real_4: 0.21239 (0.21343) | > loss_disc_real_5: 0.21179 (0.21244) | > loss_0: 2.31070 (2.30970) | > grad_norm_0: 17.24756 (16.28424) | > loss_gen: 2.47247 (2.57386) | > loss_kl: 2.62606 (2.65645) | > loss_feat: 8.18968 (8.71224) | > loss_mel: 17.26236 (17.79966) | > loss_duration: 1.67616 (1.70773) | > loss_1: 32.22673 (33.45003) | > grad_norm_1: 71.98616 (135.61641) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97580 (2.04408) | > loader_time: 0.03420 (0.03552)  --> STEP: 4024/15287 -- GLOBAL_STEP: 954025 | > loss_disc: 2.31790 (2.30977) | > loss_disc_real_0: 0.08223 (0.12215) | > loss_disc_real_1: 0.21585 (0.21080) | > loss_disc_real_2: 0.23787 (0.21516) | > loss_disc_real_3: 0.24435 (0.21808) | > loss_disc_real_4: 0.24248 (0.21346) | > loss_disc_real_5: 0.23410 (0.21243) | > loss_0: 2.31790 (2.30977) | > grad_norm_0: 12.96272 (16.26810) | > loss_gen: 2.57089 (2.57392) | > loss_kl: 2.51535 (2.65625) | > loss_feat: 8.42026 (8.71205) | > loss_mel: 17.87962 (17.80044) | > loss_duration: 1.71209 (1.70775) | > loss_1: 33.09821 (33.45051) | > grad_norm_1: 146.96712 (135.40402) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07000 (2.04345) | > loader_time: 0.03540 (0.03552)  --> STEP: 4049/15287 -- GLOBAL_STEP: 954050 | > loss_disc: 2.23638 (2.30963) | > loss_disc_real_0: 0.09472 (0.12211) | > loss_disc_real_1: 0.20828 (0.21079) | > loss_disc_real_2: 0.21199 (0.21516) | > loss_disc_real_3: 0.20904 (0.21805) | > loss_disc_real_4: 0.20694 (0.21344) | > loss_disc_real_5: 0.20538 (0.21240) | > loss_0: 2.23638 (2.30963) | > grad_norm_0: 10.70893 (16.27618) | > loss_gen: 2.60697 (2.57393) | > loss_kl: 2.51570 (2.65596) | > loss_feat: 8.73234 (8.71216) | > loss_mel: 17.62551 (17.79987) | > loss_duration: 1.71170 (1.70776) | > loss_1: 33.19221 (33.44973) | > grad_norm_1: 271.11761 (135.59192) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.64540 (2.04261) | > loader_time: 0.03490 (0.03550)  --> STEP: 4074/15287 -- GLOBAL_STEP: 954075 | > loss_disc: 2.24780 (2.30942) | > loss_disc_real_0: 0.11356 (0.12205) | > loss_disc_real_1: 0.19945 (0.21077) | > loss_disc_real_2: 0.19516 (0.21513) | > loss_disc_real_3: 0.21062 (0.21804) | > loss_disc_real_4: 0.21172 (0.21343) | > loss_disc_real_5: 0.21821 (0.21239) | > loss_0: 2.24780 (2.30942) | > grad_norm_0: 8.76254 (16.30283) | > loss_gen: 2.63831 (2.57386) | > loss_kl: 2.78635 (2.65599) | > loss_feat: 8.81626 (8.71241) | > loss_mel: 17.84861 (17.79948) | > loss_duration: 1.65730 (1.70774) | > loss_1: 33.74683 (33.44955) | > grad_norm_1: 237.33379 (135.79539) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.70140 (2.04165) | > loader_time: 0.03490 (0.03549)  --> STEP: 4099/15287 -- GLOBAL_STEP: 954100 | > loss_disc: 2.24061 (2.30920) | > loss_disc_real_0: 0.08303 (0.12198) | > loss_disc_real_1: 0.21813 (0.21076) | > loss_disc_real_2: 0.20765 (0.21511) | > loss_disc_real_3: 0.21410 (0.21800) | > loss_disc_real_4: 0.19069 (0.21342) | > loss_disc_real_5: 0.20757 (0.21239) | > loss_0: 2.24061 (2.30920) | > grad_norm_0: 25.30109 (16.32717) | > loss_gen: 2.58972 (2.57389) | > loss_kl: 2.54672 (2.65604) | > loss_feat: 8.82978 (8.71250) | > loss_mel: 17.74605 (17.79883) | > loss_duration: 1.66265 (1.70772) | > loss_1: 33.37491 (33.44904) | > grad_norm_1: 256.61658 (136.13936) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00380 (2.04085) | > loader_time: 0.03770 (0.03549)  --> STEP: 4124/15287 -- GLOBAL_STEP: 954125 | > loss_disc: 2.32844 (2.30918) | > loss_disc_real_0: 0.15547 (0.12204) | > loss_disc_real_1: 0.24787 (0.21069) | > loss_disc_real_2: 0.19749 (0.21507) | > loss_disc_real_3: 0.21720 (0.21800) | > loss_disc_real_4: 0.23665 (0.21342) | > loss_disc_real_5: 0.22965 (0.21240) | > loss_0: 2.32844 (2.30918) | > grad_norm_0: 37.92659 (16.35154) | > loss_gen: 2.58675 (2.57389) | > loss_kl: 2.60682 (2.65608) | > loss_feat: 8.47312 (8.71325) | > loss_mel: 17.88521 (17.79808) | > loss_duration: 1.69137 (1.70771) | > loss_1: 33.24327 (33.44907) | > grad_norm_1: 178.28262 (136.26851) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.75530 (2.04022) | > loader_time: 0.03070 (0.03548)  --> STEP: 4149/15287 -- GLOBAL_STEP: 954150 | > loss_disc: 2.31497 (2.30891) | > loss_disc_real_0: 0.12171 (0.12198) | > loss_disc_real_1: 0.20699 (0.21070) | > loss_disc_real_2: 0.22149 (0.21507) | > loss_disc_real_3: 0.19546 (0.21796) | > loss_disc_real_4: 0.19646 (0.21342) | > loss_disc_real_5: 0.21248 (0.21240) | > loss_0: 2.31497 (2.30891) | > grad_norm_0: 5.55999 (16.34956) | > loss_gen: 2.75736 (2.57407) | > loss_kl: 2.75337 (2.65617) | > loss_feat: 8.75128 (8.71392) | > loss_mel: 17.14713 (17.79713) | > loss_duration: 1.68131 (1.70773) | > loss_1: 33.09044 (33.44907) | > grad_norm_1: 119.85736 (136.35081) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02490 (2.03964) | > loader_time: 0.03250 (0.03548)  --> STEP: 4174/15287 -- GLOBAL_STEP: 954175 | > loss_disc: 2.32258 (2.30890) | > loss_disc_real_0: 0.12032 (0.12196) | > loss_disc_real_1: 0.21329 (0.21068) | > loss_disc_real_2: 0.21476 (0.21504) | > loss_disc_real_3: 0.20695 (0.21798) | > loss_disc_real_4: 0.21555 (0.21340) | > loss_disc_real_5: 0.18872 (0.21239) | > loss_0: 2.32258 (2.30890) | > grad_norm_0: 13.19364 (16.34963) | > loss_gen: 2.39736 (2.57392) | > loss_kl: 2.76449 (2.65641) | > loss_feat: 8.31496 (8.71442) | > loss_mel: 17.59934 (17.79644) | > loss_duration: 1.68166 (1.70776) | > loss_1: 32.75780 (33.44897) | > grad_norm_1: 134.78635 (136.45526) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01500 (2.03917) | > loader_time: 0.03360 (0.03549)  --> STEP: 4199/15287 -- GLOBAL_STEP: 954200 | > loss_disc: 2.21168 (2.30874) | > loss_disc_real_0: 0.11441 (0.12194) | > loss_disc_real_1: 0.20784 (0.21067) | > loss_disc_real_2: 0.19714 (0.21501) | > loss_disc_real_3: 0.20292 (0.21796) | > loss_disc_real_4: 0.20763 (0.21339) | > loss_disc_real_5: 0.21368 (0.21239) | > loss_0: 2.21168 (2.30874) | > grad_norm_0: 6.85254 (16.37413) | > loss_gen: 2.72519 (2.57382) | > loss_kl: 2.61286 (2.65657) | > loss_feat: 9.02865 (8.71436) | > loss_mel: 17.70968 (17.79564) | > loss_duration: 1.71060 (1.70774) | > loss_1: 33.78698 (33.44817) | > grad_norm_1: 217.99300 (136.57544) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.65110 (2.03879) | > loader_time: 0.03510 (0.03549)  --> STEP: 4224/15287 -- GLOBAL_STEP: 954225 | > loss_disc: 2.23849 (2.30866) | > loss_disc_real_0: 0.08219 (0.12195) | > loss_disc_real_1: 0.26281 (0.21067) | > loss_disc_real_2: 0.23610 (0.21500) | > loss_disc_real_3: 0.22313 (0.21795) | > loss_disc_real_4: 0.21119 (0.21341) | > loss_disc_real_5: 0.20245 (0.21238) | > loss_0: 2.23849 (2.30866) | > grad_norm_0: 15.69684 (16.35055) | > loss_gen: 2.72328 (2.57396) | > loss_kl: 2.58805 (2.65664) | > loss_feat: 8.87715 (8.71454) | > loss_mel: 17.89542 (17.79536) | > loss_duration: 1.70351 (1.70775) | > loss_1: 33.78741 (33.44830) | > grad_norm_1: 204.44049 (136.52693) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92330 (2.03839) | > loader_time: 0.03530 (0.03549)  --> STEP: 4249/15287 -- GLOBAL_STEP: 954250 | > loss_disc: 2.39800 (2.30885) | > loss_disc_real_0: 0.16909 (0.12198) | > loss_disc_real_1: 0.21981 (0.21068) | > loss_disc_real_2: 0.24489 (0.21502) | > loss_disc_real_3: 0.22887 (0.21796) | > loss_disc_real_4: 0.23382 (0.21341) | > loss_disc_real_5: 0.21977 (0.21238) | > loss_0: 2.39800 (2.30885) | > grad_norm_0: 13.22204 (16.35792) | > loss_gen: 2.64893 (2.57394) | > loss_kl: 2.54978 (2.65649) | > loss_feat: 8.45180 (8.71434) | > loss_mel: 17.54695 (17.79565) | > loss_duration: 1.68287 (1.70776) | > loss_1: 32.88034 (33.44825) | > grad_norm_1: 64.88564 (136.55089) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23340 (2.03740) | > loader_time: 0.03540 (0.03548)  --> STEP: 4274/15287 -- GLOBAL_STEP: 954275 | > loss_disc: 2.35449 (2.30878) | > loss_disc_real_0: 0.09571 (0.12200) | > loss_disc_real_1: 0.19952 (0.21069) | > loss_disc_real_2: 0.21528 (0.21504) | > loss_disc_real_3: 0.19554 (0.21794) | > loss_disc_real_4: 0.21847 (0.21341) | > loss_disc_real_5: 0.20984 (0.21237) | > loss_0: 2.35449 (2.30878) | > grad_norm_0: 8.84291 (16.37688) | > loss_gen: 2.75424 (2.57402) | > loss_kl: 2.73032 (2.65620) | > loss_feat: 8.39364 (8.71435) | > loss_mel: 17.62910 (17.79463) | > loss_duration: 1.68871 (1.70779) | > loss_1: 33.19600 (33.44705) | > grad_norm_1: 72.47543 (136.57304) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07300 (2.03698) | > loader_time: 0.03390 (0.03549)  --> STEP: 4299/15287 -- GLOBAL_STEP: 954300 | > loss_disc: 2.25863 (2.30892) | > loss_disc_real_0: 0.16437 (0.12213) | > loss_disc_real_1: 0.16905 (0.21071) | > loss_disc_real_2: 0.17739 (0.21504) | > loss_disc_real_3: 0.21515 (0.21795) | > loss_disc_real_4: 0.21323 (0.21343) | > loss_disc_real_5: 0.18909 (0.21238) | > loss_0: 2.25863 (2.30892) | > grad_norm_0: 25.36536 (16.37393) | > loss_gen: 2.53113 (2.57405) | > loss_kl: 2.63851 (2.65624) | > loss_feat: 9.15952 (8.71381) | > loss_mel: 18.03212 (17.79460) | > loss_duration: 1.66051 (1.70777) | > loss_1: 34.02179 (33.44655) | > grad_norm_1: 155.94801 (136.50453) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04310 (2.03663) | > loader_time: 0.03070 (0.03549)  --> STEP: 4324/15287 -- GLOBAL_STEP: 954325 | > loss_disc: 2.36994 (2.30891) | > loss_disc_real_0: 0.09659 (0.12212) | > loss_disc_real_1: 0.20938 (0.21069) | > loss_disc_real_2: 0.20349 (0.21502) | > loss_disc_real_3: 0.20597 (0.21795) | > loss_disc_real_4: 0.21256 (0.21343) | > loss_disc_real_5: 0.21166 (0.21236) | > loss_0: 2.36994 (2.30891) | > grad_norm_0: 9.68017 (16.34996) | > loss_gen: 2.57939 (2.57410) | > loss_kl: 2.61113 (2.65638) | > loss_feat: 8.26459 (8.71346) | > loss_mel: 17.25881 (17.79433) | > loss_duration: 1.67476 (1.70777) | > loss_1: 32.38867 (33.44612) | > grad_norm_1: 51.13200 (136.40448) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10080 (2.03632) | > loader_time: 0.02980 (0.03549)  --> STEP: 4349/15287 -- GLOBAL_STEP: 954350 | > loss_disc: 2.36636 (2.30922) | > loss_disc_real_0: 0.16493 (0.12225) | > loss_disc_real_1: 0.21345 (0.21072) | > loss_disc_real_2: 0.21456 (0.21503) | > loss_disc_real_3: 0.20804 (0.21799) | > loss_disc_real_4: 0.22938 (0.21343) | > loss_disc_real_5: 0.21423 (0.21239) | > loss_0: 2.36636 (2.30922) | > grad_norm_0: 13.79202 (16.32533) | > loss_gen: 2.42274 (2.57407) | > loss_kl: 2.75233 (2.65622) | > loss_feat: 7.72042 (8.71303) | > loss_mel: 18.22739 (17.79555) | > loss_duration: 1.72480 (1.70775) | > loss_1: 32.84769 (33.44670) | > grad_norm_1: 171.77307 (136.22212) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.61790 (2.03566) | > loader_time: 0.03000 (0.03547)  --> STEP: 4374/15287 -- GLOBAL_STEP: 954375 | > loss_disc: 2.39824 (2.30947) | > loss_disc_real_0: 0.14646 (0.12239) | > loss_disc_real_1: 0.23472 (0.21075) | > loss_disc_real_2: 0.24501 (0.21508) | > loss_disc_real_3: 0.25690 (0.21803) | > loss_disc_real_4: 0.23609 (0.21347) | > loss_disc_real_5: 0.19661 (0.21237) | > loss_0: 2.39824 (2.30947) | > grad_norm_0: 30.84660 (16.35677) | > loss_gen: 2.45992 (2.57399) | > loss_kl: 2.72288 (2.65612) | > loss_feat: 8.44803 (8.71177) | > loss_mel: 17.92942 (17.79529) | > loss_duration: 1.69681 (1.70773) | > loss_1: 33.25705 (33.44500) | > grad_norm_1: 138.66542 (136.30441) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01010 (2.03486) | > loader_time: 0.03560 (0.03547)  --> STEP: 4399/15287 -- GLOBAL_STEP: 954400 | > loss_disc: 2.33844 (2.30981) | > loss_disc_real_0: 0.08960 (0.12255) | > loss_disc_real_1: 0.19540 (0.21078) | > loss_disc_real_2: 0.20382 (0.21522) | > loss_disc_real_3: 0.19367 (0.21807) | > loss_disc_real_4: 0.21283 (0.21360) | > loss_disc_real_5: 0.22315 (0.21247) | > loss_0: 2.33844 (2.30981) | > grad_norm_0: 8.11861 (16.36717) | > loss_gen: 2.37205 (2.57457) | > loss_kl: 2.63626 (2.65597) | > loss_feat: 8.64119 (8.71122) | > loss_mel: 17.81333 (17.79503) | > loss_duration: 1.71472 (1.70770) | > loss_1: 33.17756 (33.44458) | > grad_norm_1: 55.70509 (136.21530) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92250 (2.03464) | > loader_time: 0.03040 (0.03546)  --> STEP: 4424/15287 -- GLOBAL_STEP: 954425 | > loss_disc: 2.30481 (2.30978) | > loss_disc_real_0: 0.14428 (0.12252) | > loss_disc_real_1: 0.20326 (0.21076) | > loss_disc_real_2: 0.20494 (0.21519) | > loss_disc_real_3: 0.22056 (0.21809) | > loss_disc_real_4: 0.23949 (0.21357) | > loss_disc_real_5: 0.20898 (0.21245) | > loss_0: 2.30481 (2.30978) | > grad_norm_0: 16.04538 (16.35861) | > loss_gen: 2.71440 (2.57453) | > loss_kl: 2.68336 (2.65607) | > loss_feat: 8.33121 (8.71080) | > loss_mel: 16.94180 (17.79405) | > loss_duration: 1.65379 (1.70768) | > loss_1: 32.32457 (33.44321) | > grad_norm_1: 122.24418 (136.20860) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96420 (2.03421) | > loader_time: 0.03050 (0.03545)  --> STEP: 4449/15287 -- GLOBAL_STEP: 954450 | > loss_disc: 2.26217 (2.30990) | > loss_disc_real_0: 0.12929 (0.12253) | > loss_disc_real_1: 0.24708 (0.21077) | > loss_disc_real_2: 0.19932 (0.21518) | > loss_disc_real_3: 0.24243 (0.21813) | > loss_disc_real_4: 0.21493 (0.21360) | > loss_disc_real_5: 0.18286 (0.21247) | > loss_0: 2.26217 (2.30990) | > grad_norm_0: 24.80658 (16.35687) | > loss_gen: 2.59403 (2.57443) | > loss_kl: 2.61937 (2.65588) | > loss_feat: 8.67727 (8.71022) | > loss_mel: 17.38473 (17.79405) | > loss_duration: 1.68946 (1.70761) | > loss_1: 32.96486 (33.44228) | > grad_norm_1: 88.99265 (136.06575) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.65180 (2.03371) | > loader_time: 0.03120 (0.03544)  --> STEP: 4474/15287 -- GLOBAL_STEP: 954475 | > loss_disc: 2.35671 (2.30996) | > loss_disc_real_0: 0.15027 (0.12251) | > loss_disc_real_1: 0.22817 (0.21079) | > loss_disc_real_2: 0.21007 (0.21519) | > loss_disc_real_3: 0.21138 (0.21812) | > loss_disc_real_4: 0.19834 (0.21357) | > loss_disc_real_5: 0.19728 (0.21246) | > loss_0: 2.35671 (2.30996) | > grad_norm_0: 16.37938 (16.33881) | > loss_gen: 2.65800 (2.57432) | > loss_kl: 2.65920 (2.65588) | > loss_feat: 9.07252 (8.70994) | > loss_mel: 18.15558 (17.79399) | > loss_duration: 1.72238 (1.70760) | > loss_1: 34.26767 (33.44181) | > grad_norm_1: 100.98011 (135.96182) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91710 (2.03327) | > loader_time: 0.03010 (0.03543)  --> STEP: 4499/15287 -- GLOBAL_STEP: 954500 | > loss_disc: 2.27656 (2.30999) | > loss_disc_real_0: 0.09257 (0.12253) | > loss_disc_real_1: 0.19091 (0.21077) | > loss_disc_real_2: 0.20217 (0.21519) | > loss_disc_real_3: 0.21279 (0.21812) | > loss_disc_real_4: 0.19346 (0.21358) | > loss_disc_real_5: 0.21350 (0.21246) | > loss_0: 2.27656 (2.30999) | > grad_norm_0: 13.14119 (16.34110) | > loss_gen: 2.59616 (2.57409) | > loss_kl: 2.71444 (2.65602) | > loss_feat: 8.77439 (8.71007) | > loss_mel: 17.64938 (17.79399) | > loss_duration: 1.68023 (1.70762) | > loss_1: 33.41460 (33.44189) | > grad_norm_1: 126.89133 (135.97099) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99820 (2.03302) | > loader_time: 0.03540 (0.03543)  --> STEP: 4524/15287 -- GLOBAL_STEP: 954525 | > loss_disc: 2.30438 (2.30992) | > loss_disc_real_0: 0.13802 (0.12251) | > loss_disc_real_1: 0.22875 (0.21076) | > loss_disc_real_2: 0.21289 (0.21518) | > loss_disc_real_3: 0.19294 (0.21810) | > loss_disc_real_4: 0.20113 (0.21357) | > loss_disc_real_5: 0.19773 (0.21244) | > loss_0: 2.30438 (2.30992) | > grad_norm_0: 21.29553 (16.32578) | > loss_gen: 2.63534 (2.57401) | > loss_kl: 2.60727 (2.65593) | > loss_feat: 8.84368 (8.70983) | > loss_mel: 18.36732 (17.79391) | > loss_duration: 1.68149 (1.70765) | > loss_1: 34.13509 (33.44143) | > grad_norm_1: 80.53115 (135.93826) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98160 (2.03252) | > loader_time: 0.03540 (0.03541)  --> STEP: 4549/15287 -- GLOBAL_STEP: 954550 | > loss_disc: 2.43282 (2.31010) | > loss_disc_real_0: 0.15811 (0.12258) | > loss_disc_real_1: 0.25268 (0.21079) | > loss_disc_real_2: 0.26054 (0.21518) | > loss_disc_real_3: 0.21735 (0.21809) | > loss_disc_real_4: 0.24267 (0.21357) | > loss_disc_real_5: 0.23234 (0.21244) | > loss_0: 2.43282 (2.31010) | > grad_norm_0: 16.93578 (16.31123) | > loss_gen: 2.61878 (2.57399) | > loss_kl: 2.50391 (2.65582) | > loss_feat: 7.76881 (8.70973) | > loss_mel: 17.73265 (17.79421) | > loss_duration: 1.68520 (1.70759) | > loss_1: 32.30935 (33.44144) | > grad_norm_1: 86.21320 (135.75890) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.64660 (2.03183) | > loader_time: 0.03450 (0.03540)  --> STEP: 4574/15287 -- GLOBAL_STEP: 954575 | > loss_disc: 2.32706 (2.31023) | > loss_disc_real_0: 0.10903 (0.12265) | > loss_disc_real_1: 0.25678 (0.21076) | > loss_disc_real_2: 0.23837 (0.21519) | > loss_disc_real_3: 0.20219 (0.21807) | > loss_disc_real_4: 0.23008 (0.21355) | > loss_disc_real_5: 0.18232 (0.21246) | > loss_0: 2.32706 (2.31023) | > grad_norm_0: 9.43046 (16.30330) | > loss_gen: 2.66134 (2.57380) | > loss_kl: 2.57527 (2.65581) | > loss_feat: 8.30163 (8.70912) | > loss_mel: 18.31503 (17.79385) | > loss_duration: 1.76472 (1.70762) | > loss_1: 33.61799 (33.44030) | > grad_norm_1: 144.56595 (135.57501) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.66760 (2.03132) | > loader_time: 0.03110 (0.03539)  --> STEP: 4599/15287 -- GLOBAL_STEP: 954600 | > loss_disc: 2.29232 (2.31012) | > loss_disc_real_0: 0.10378 (0.12263) | > loss_disc_real_1: 0.20846 (0.21076) | > loss_disc_real_2: 0.22252 (0.21517) | > loss_disc_real_3: 0.20297 (0.21804) | > loss_disc_real_4: 0.21987 (0.21355) | > loss_disc_real_5: 0.17656 (0.21245) | > loss_0: 2.29232 (2.31012) | > grad_norm_0: 12.80797 (16.29572) | > loss_gen: 2.49630 (2.57381) | > loss_kl: 2.61992 (2.65575) | > loss_feat: 8.88564 (8.70918) | > loss_mel: 17.79786 (17.79356) | > loss_duration: 1.68845 (1.70764) | > loss_1: 33.48817 (33.44004) | > grad_norm_1: 130.11899 (135.55505) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99580 (2.03051) | > loader_time: 0.03190 (0.03538)  --> STEP: 4624/15287 -- GLOBAL_STEP: 954625 | > loss_disc: 2.37351 (2.31005) | > loss_disc_real_0: 0.16975 (0.12260) | > loss_disc_real_1: 0.20960 (0.21075) | > loss_disc_real_2: 0.22042 (0.21517) | > loss_disc_real_3: 0.21609 (0.21805) | > loss_disc_real_4: 0.24901 (0.21359) | > loss_disc_real_5: 0.28056 (0.21248) | > loss_0: 2.37351 (2.31005) | > grad_norm_0: 33.58831 (16.28601) | > loss_gen: 2.66022 (2.57398) | > loss_kl: 2.69092 (2.65579) | > loss_feat: 9.04594 (8.71016) | > loss_mel: 17.62550 (17.79424) | > loss_duration: 1.68627 (1.70767) | > loss_1: 33.70884 (33.44194) | > grad_norm_1: 72.85600 (135.53868) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08490 (2.02994) | > loader_time: 0.03510 (0.03537)  --> STEP: 4649/15287 -- GLOBAL_STEP: 954650 | > loss_disc: 2.27902 (2.31004) | > loss_disc_real_0: 0.13136 (0.12258) | > loss_disc_real_1: 0.22429 (0.21080) | > loss_disc_real_2: 0.20707 (0.21519) | > loss_disc_real_3: 0.22379 (0.21804) | > loss_disc_real_4: 0.23604 (0.21359) | > loss_disc_real_5: 0.23145 (0.21251) | > loss_0: 2.27902 (2.31004) | > grad_norm_0: 16.31483 (16.32763) | > loss_gen: 2.61108 (2.57401) | > loss_kl: 2.56176 (2.65574) | > loss_feat: 8.87426 (8.71024) | > loss_mel: 17.34282 (17.79405) | > loss_duration: 1.72180 (1.70764) | > loss_1: 33.11172 (33.44177) | > grad_norm_1: 198.17447 (135.74211) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00890 (2.02934) | > loader_time: 0.03540 (0.03537)  --> STEP: 4674/15287 -- GLOBAL_STEP: 954675 | > loss_disc: 2.25231 (2.30984) | > loss_disc_real_0: 0.09397 (0.12256) | > loss_disc_real_1: 0.22837 (0.21079) | > loss_disc_real_2: 0.21235 (0.21516) | > loss_disc_real_3: 0.22474 (0.21801) | > loss_disc_real_4: 0.21661 (0.21357) | > loss_disc_real_5: 0.21053 (0.21249) | > loss_0: 2.25231 (2.30984) | > grad_norm_0: 12.81028 (16.32663) | > loss_gen: 2.49554 (2.57398) | > loss_kl: 2.60691 (2.65552) | > loss_feat: 9.25667 (8.71095) | > loss_mel: 17.73952 (17.79337) | > loss_duration: 1.71563 (1.70763) | > loss_1: 33.81426 (33.44154) | > grad_norm_1: 178.30460 (135.81717) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03650 (2.02900) | > loader_time: 0.03550 (0.03537)  --> STEP: 4699/15287 -- GLOBAL_STEP: 954700 | > loss_disc: 2.26405 (2.30962) | > loss_disc_real_0: 0.13476 (0.12251) | > loss_disc_real_1: 0.18035 (0.21077) | > loss_disc_real_2: 0.21176 (0.21517) | > loss_disc_real_3: 0.24665 (0.21799) | > loss_disc_real_4: 0.23304 (0.21356) | > loss_disc_real_5: 0.21252 (0.21246) | > loss_0: 2.26405 (2.30962) | > grad_norm_0: 21.70458 (16.32583) | > loss_gen: 2.55231 (2.57408) | > loss_kl: 2.56427 (2.65551) | > loss_feat: 9.04744 (8.71188) | > loss_mel: 17.35150 (17.79234) | > loss_duration: 1.66836 (1.70760) | > loss_1: 33.18388 (33.44151) | > grad_norm_1: 160.89505 (135.95340) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26690 (2.02831) | > loader_time: 0.03970 (0.03537)  --> STEP: 4724/15287 -- GLOBAL_STEP: 954725 | > loss_disc: 2.23024 (2.30945) | > loss_disc_real_0: 0.12299 (0.12246) | > loss_disc_real_1: 0.23417 (0.21075) | > loss_disc_real_2: 0.24855 (0.21515) | > loss_disc_real_3: 0.22878 (0.21799) | > loss_disc_real_4: 0.23131 (0.21354) | > loss_disc_real_5: 0.20691 (0.21246) | > loss_0: 2.23024 (2.30945) | > grad_norm_0: 13.35048 (16.32537) | > loss_gen: 2.79685 (2.57413) | > loss_kl: 2.53023 (2.65537) | > loss_feat: 9.69734 (8.71318) | > loss_mel: 19.23451 (17.79288) | > loss_duration: 1.72082 (1.70764) | > loss_1: 35.97976 (33.44327) | > grad_norm_1: 87.70159 (136.10587) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09140 (2.02812) | > loader_time: 0.03490 (0.03538)  --> STEP: 4749/15287 -- GLOBAL_STEP: 954750 | > loss_disc: 2.23664 (2.30922) | > loss_disc_real_0: 0.09899 (0.12241) | > loss_disc_real_1: 0.20267 (0.21074) | > loss_disc_real_2: 0.19506 (0.21513) | > loss_disc_real_3: 0.19260 (0.21798) | > loss_disc_real_4: 0.18666 (0.21355) | > loss_disc_real_5: 0.21743 (0.21243) | > loss_0: 2.23664 (2.30922) | > grad_norm_0: 10.98711 (16.35243) | > loss_gen: 2.64272 (2.57419) | > loss_kl: 2.60207 (2.65526) | > loss_feat: 9.07641 (8.71389) | > loss_mel: 17.90597 (17.79208) | > loss_duration: 1.75154 (1.70766) | > loss_1: 33.97869 (33.44316) | > grad_norm_1: 139.13823 (136.24445) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00870 (2.02817) | > loader_time: 0.03700 (0.03543)  --> STEP: 4774/15287 -- GLOBAL_STEP: 954775 | > loss_disc: 2.33985 (2.30901) | > loss_disc_real_0: 0.13016 (0.12235) | > loss_disc_real_1: 0.23309 (0.21073) | > loss_disc_real_2: 0.23795 (0.21513) | > loss_disc_real_3: 0.24827 (0.21799) | > loss_disc_real_4: 0.26418 (0.21356) | > loss_disc_real_5: 0.17921 (0.21244) | > loss_0: 2.33985 (2.30901) | > grad_norm_0: 4.99747 (16.35065) | > loss_gen: 2.40944 (2.57440) | > loss_kl: 2.76781 (2.65533) | > loss_feat: 8.63141 (8.71454) | > loss_mel: 17.50116 (17.79109) | > loss_duration: 1.69927 (1.70765) | > loss_1: 33.00909 (33.44311) | > grad_norm_1: 116.02638 (136.39497) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03240 (2.02765) | > loader_time: 0.04080 (0.03544)  --> STEP: 4799/15287 -- GLOBAL_STEP: 954800 | > loss_disc: 2.27568 (2.30912) | > loss_disc_real_0: 0.14028 (0.12233) | > loss_disc_real_1: 0.22993 (0.21070) | > loss_disc_real_2: 0.23143 (0.21512) | > loss_disc_real_3: 0.22372 (0.21797) | > loss_disc_real_4: 0.20190 (0.21356) | > loss_disc_real_5: 0.21977 (0.21257) | > loss_0: 2.27568 (2.30912) | > grad_norm_0: 7.06653 (16.36934) | > loss_gen: 2.45024 (2.57435) | > loss_kl: 2.73072 (2.65545) | > loss_feat: 9.08036 (8.71473) | > loss_mel: 18.16810 (17.79080) | > loss_duration: 1.70336 (1.70764) | > loss_1: 34.13279 (33.44305) | > grad_norm_1: 92.00688 (136.48003) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96700 (2.02731) | > loader_time: 0.03490 (0.03545)  --> STEP: 4824/15287 -- GLOBAL_STEP: 954825 | > loss_disc: 2.31816 (2.30922) | > loss_disc_real_0: 0.11915 (0.12239) | > loss_disc_real_1: 0.22706 (0.21070) | > loss_disc_real_2: 0.19339 (0.21513) | > loss_disc_real_3: 0.21043 (0.21796) | > loss_disc_real_4: 0.21873 (0.21355) | > loss_disc_real_5: 0.20928 (0.21256) | > loss_0: 2.31816 (2.30922) | > grad_norm_0: 5.72998 (16.36946) | > loss_gen: 2.58668 (2.57417) | > loss_kl: 2.57535 (2.65542) | > loss_feat: 8.54726 (8.71445) | > loss_mel: 17.55582 (17.79039) | > loss_duration: 1.69728 (1.70762) | > loss_1: 32.96239 (33.44212) | > grad_norm_1: 174.88615 (136.47720) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98140 (2.02686) | > loader_time: 0.03550 (0.03546)  --> STEP: 4849/15287 -- GLOBAL_STEP: 954850 | > loss_disc: 2.32364 (2.30914) | > loss_disc_real_0: 0.09613 (0.12239) | > loss_disc_real_1: 0.20699 (0.21070) | > loss_disc_real_2: 0.20519 (0.21518) | > loss_disc_real_3: 0.21020 (0.21797) | > loss_disc_real_4: 0.22908 (0.21354) | > loss_disc_real_5: 0.18351 (0.21254) | > loss_0: 2.32364 (2.30914) | > grad_norm_0: 17.27405 (16.38358) | > loss_gen: 2.59729 (2.57426) | > loss_kl: 2.67749 (2.65538) | > loss_feat: 9.20591 (8.71485) | > loss_mel: 17.67687 (17.79025) | > loss_duration: 1.69973 (1.70765) | > loss_1: 33.85730 (33.44247) | > grad_norm_1: 195.86603 (136.54480) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13320 (2.02696) | > loader_time: 0.04810 (0.03549)  --> STEP: 4874/15287 -- GLOBAL_STEP: 954875 | > loss_disc: 2.38040 (2.30906) | > loss_disc_real_0: 0.10942 (0.12236) | > loss_disc_real_1: 0.22336 (0.21069) | > loss_disc_real_2: 0.21075 (0.21516) | > loss_disc_real_3: 0.21206 (0.21795) | > loss_disc_real_4: 0.21868 (0.21352) | > loss_disc_real_5: 0.23603 (0.21256) | > loss_0: 2.38040 (2.30906) | > grad_norm_0: 20.46471 (16.40199) | > loss_gen: 2.51240 (2.57423) | > loss_kl: 2.73071 (2.65529) | > loss_feat: 8.39850 (8.71570) | > loss_mel: 17.99511 (17.79038) | > loss_duration: 1.68592 (1.70763) | > loss_1: 33.32264 (33.44330) | > grad_norm_1: 180.62976 (136.64021) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07260 (2.02660) | > loader_time: 0.03630 (0.03550)  --> STEP: 4899/15287 -- GLOBAL_STEP: 954900 | > loss_disc: 2.28867 (2.30897) | > loss_disc_real_0: 0.09894 (0.12233) | > loss_disc_real_1: 0.19564 (0.21070) | > loss_disc_real_2: 0.24326 (0.21515) | > loss_disc_real_3: 0.22187 (0.21794) | > loss_disc_real_4: 0.22833 (0.21350) | > loss_disc_real_5: 0.20880 (0.21254) | > loss_0: 2.28867 (2.30897) | > grad_norm_0: 15.07396 (16.40098) | > loss_gen: 2.44642 (2.57416) | > loss_kl: 2.70159 (2.65519) | > loss_feat: 8.65268 (8.71594) | > loss_mel: 17.58041 (17.78947) | > loss_duration: 1.66344 (1.70763) | > loss_1: 33.04454 (33.44248) | > grad_norm_1: 103.14881 (136.71664) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97130 (2.02645) | > loader_time: 0.03850 (0.03552)  --> STEP: 4924/15287 -- GLOBAL_STEP: 954925 | > loss_disc: 2.33834 (2.30912) | > loss_disc_real_0: 0.13616 (0.12233) | > loss_disc_real_1: 0.22479 (0.21070) | > loss_disc_real_2: 0.22029 (0.21514) | > loss_disc_real_3: 0.22088 (0.21794) | > loss_disc_real_4: 0.22418 (0.21353) | > loss_disc_real_5: 0.21361 (0.21254) | > loss_0: 2.33834 (2.30912) | > grad_norm_0: 29.96679 (16.43644) | > loss_gen: 2.60302 (2.57415) | > loss_kl: 2.59331 (2.65535) | > loss_feat: 8.65987 (8.71643) | > loss_mel: 17.77389 (17.78968) | > loss_duration: 1.71646 (1.70762) | > loss_1: 33.34654 (33.44334) | > grad_norm_1: 153.19019 (136.74826) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.84540 (2.02590) | > loader_time: 0.03650 (0.03552)  --> STEP: 4949/15287 -- GLOBAL_STEP: 954950 | > loss_disc: 2.29281 (2.30900) | > loss_disc_real_0: 0.12291 (0.12240) | > loss_disc_real_1: 0.18779 (0.21066) | > loss_disc_real_2: 0.18114 (0.21514) | > loss_disc_real_3: 0.19475 (0.21792) | > loss_disc_real_4: 0.20660 (0.21351) | > loss_disc_real_5: 0.19677 (0.21254) | > loss_0: 2.29281 (2.30900) | > grad_norm_0: 18.14570 (16.49258) | > loss_gen: 2.48583 (2.57424) | > loss_kl: 2.86036 (2.65535) | > loss_feat: 8.76983 (8.71643) | > loss_mel: 17.57094 (17.78885) | > loss_duration: 1.70051 (1.70763) | > loss_1: 33.38747 (33.44260) | > grad_norm_1: 109.77918 (136.94539) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.61210 (2.02567) | > loader_time: 0.03490 (0.03553)  --> STEP: 4974/15287 -- GLOBAL_STEP: 954975 | > loss_disc: 2.35289 (2.30912) | > loss_disc_real_0: 0.11176 (0.12243) | > loss_disc_real_1: 0.23319 (0.21070) | > loss_disc_real_2: 0.22311 (0.21517) | > loss_disc_real_3: 0.21527 (0.21792) | > loss_disc_real_4: 0.21901 (0.21352) | > loss_disc_real_5: 0.21024 (0.21255) | > loss_0: 2.35289 (2.30912) | > grad_norm_0: 9.36033 (16.48081) | > loss_gen: 2.62266 (2.57441) | > loss_kl: 2.63106 (2.65558) | > loss_feat: 8.18760 (8.71659) | > loss_mel: 17.41139 (17.78911) | > loss_duration: 1.71554 (1.70768) | > loss_1: 32.56824 (33.44345) | > grad_norm_1: 201.65842 (136.86790) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95920 (2.02519) | > loader_time: 0.03530 (0.03555)  --> STEP: 4999/15287 -- GLOBAL_STEP: 955000 | > loss_disc: 2.30828 (2.30923) | > loss_disc_real_0: 0.12725 (0.12242) | > loss_disc_real_1: 0.22350 (0.21072) | > loss_disc_real_2: 0.22547 (0.21519) | > loss_disc_real_3: 0.21341 (0.21792) | > loss_disc_real_4: 0.18657 (0.21352) | > loss_disc_real_5: 0.18786 (0.21256) | > loss_0: 2.30828 (2.30923) | > grad_norm_0: 7.73940 (16.48028) | > loss_gen: 2.48134 (2.57442) | > loss_kl: 2.77659 (2.65570) | > loss_feat: 8.77742 (8.71661) | > loss_mel: 17.68806 (17.79035) | > loss_duration: 1.69348 (1.70770) | > loss_1: 33.41688 (33.44487) | > grad_norm_1: 95.71749 (136.98241) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91530 (2.02483) | > loader_time: 0.04040 (0.03557)  --> STEP: 5024/15287 -- GLOBAL_STEP: 955025 | > loss_disc: 2.35709 (2.30947) | > loss_disc_real_0: 0.16642 (0.12252) | > loss_disc_real_1: 0.20053 (0.21073) | > loss_disc_real_2: 0.25692 (0.21521) | > loss_disc_real_3: 0.22054 (0.21793) | > loss_disc_real_4: 0.22570 (0.21352) | > loss_disc_real_5: 0.21573 (0.21259) | > loss_0: 2.35709 (2.30947) | > grad_norm_0: 16.96416 (16.50337) | > loss_gen: 2.59268 (2.57447) | > loss_kl: 2.61610 (2.65577) | > loss_feat: 8.49398 (8.71607) | > loss_mel: 18.10722 (17.79106) | > loss_duration: 1.68492 (1.70772) | > loss_1: 33.49489 (33.44519) | > grad_norm_1: 96.11179 (137.07866) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05620 (2.02506) | > loader_time: 0.03930 (0.03558)  --> STEP: 5049/15287 -- GLOBAL_STEP: 955050 | > loss_disc: 2.28115 (2.30935) | > loss_disc_real_0: 0.13520 (0.12252) | > loss_disc_real_1: 0.21302 (0.21071) | > loss_disc_real_2: 0.21108 (0.21518) | > loss_disc_real_3: 0.24327 (0.21791) | > loss_disc_real_4: 0.24351 (0.21349) | > loss_disc_real_5: 0.22864 (0.21255) | > loss_0: 2.28115 (2.30935) | > grad_norm_0: 14.49444 (16.49994) | > loss_gen: 2.70235 (2.57436) | > loss_kl: 2.67278 (2.65568) | > loss_feat: 8.98760 (8.71591) | > loss_mel: 18.30482 (17.79084) | > loss_duration: 1.72275 (1.70774) | > loss_1: 34.39029 (33.44461) | > grad_norm_1: 80.15626 (137.02457) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24450 (2.02489) | > loader_time: 0.03970 (0.03559)  --> STEP: 5074/15287 -- GLOBAL_STEP: 955075 | > loss_disc: 2.40698 (2.30934) | > loss_disc_real_0: 0.16779 (0.12251) | > loss_disc_real_1: 0.22400 (0.21070) | > loss_disc_real_2: 0.20604 (0.21518) | > loss_disc_real_3: 0.22244 (0.21791) | > loss_disc_real_4: 0.22220 (0.21349) | > loss_disc_real_5: 0.21680 (0.21256) | > loss_0: 2.40698 (2.30934) | > grad_norm_0: 15.87343 (16.48299) | > loss_gen: 2.30362 (2.57433) | > loss_kl: 2.69438 (2.65570) | > loss_feat: 7.89532 (8.71590) | > loss_mel: 17.33374 (17.79093) | > loss_duration: 1.69568 (1.70777) | > loss_1: 31.92274 (33.44472) | > grad_norm_1: 82.54388 (136.97249) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27920 (2.02485) | > loader_time: 0.04010 (0.03560)  --> STEP: 5099/15287 -- GLOBAL_STEP: 955100 | > loss_disc: 2.38671 (2.30929) | > loss_disc_real_0: 0.18773 (0.12250) | > loss_disc_real_1: 0.13342 (0.21070) | > loss_disc_real_2: 0.13626 (0.21517) | > loss_disc_real_3: 0.19778 (0.21788) | > loss_disc_real_4: 0.15138 (0.21345) | > loss_disc_real_5: 0.18557 (0.21253) | > loss_0: 2.38671 (2.30929) | > grad_norm_0: 12.96144 (16.47718) | > loss_gen: 2.33698 (2.57419) | > loss_kl: 2.58270 (2.65571) | > loss_feat: 8.47049 (8.71561) | > loss_mel: 17.91024 (17.79137) | > loss_duration: 1.76715 (1.70781) | > loss_1: 33.06755 (33.44477) | > grad_norm_1: 82.27377 (136.96887) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.68390 (2.02474) | > loader_time: 0.03350 (0.03561)  --> STEP: 5124/15287 -- GLOBAL_STEP: 955125 | > loss_disc: 2.32847 (2.30934) | > loss_disc_real_0: 0.15167 (0.12256) | > loss_disc_real_1: 0.22793 (0.21068) | > loss_disc_real_2: 0.22137 (0.21516) | > loss_disc_real_3: 0.27062 (0.21789) | > loss_disc_real_4: 0.24752 (0.21345) | > loss_disc_real_5: 0.24293 (0.21252) | > loss_0: 2.32847 (2.30934) | > grad_norm_0: 7.06065 (16.46777) | > loss_gen: 2.56513 (2.57428) | > loss_kl: 2.74322 (2.65586) | > loss_feat: 8.43197 (8.71546) | > loss_mel: 17.64486 (17.79215) | > loss_duration: 1.67974 (1.70779) | > loss_1: 33.06491 (33.44561) | > grad_norm_1: 163.85500 (136.95821) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.69890 (2.02428) | > loader_time: 0.03810 (0.03562)  --> STEP: 5149/15287 -- GLOBAL_STEP: 955150 | > loss_disc: 2.38869 (2.30949) | > loss_disc_real_0: 0.18140 (0.12255) | > loss_disc_real_1: 0.23982 (0.21070) | > loss_disc_real_2: 0.20942 (0.21519) | > loss_disc_real_3: 0.23474 (0.21786) | > loss_disc_real_4: 0.23859 (0.21344) | > loss_disc_real_5: 0.20139 (0.21251) | > loss_0: 2.38869 (2.30949) | > grad_norm_0: 19.92314 (16.45320) | > loss_gen: 2.67356 (2.57414) | > loss_kl: 2.69801 (2.65597) | > loss_feat: 8.85146 (8.71532) | > loss_mel: 17.99275 (17.79235) | > loss_duration: 1.68508 (1.70781) | > loss_1: 33.90086 (33.44567) | > grad_norm_1: 49.37671 (136.91289) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00200 (2.02384) | > loader_time: 0.03330 (0.03563)  --> STEP: 5174/15287 -- GLOBAL_STEP: 955175 | > loss_disc: 2.27456 (2.30952) | > loss_disc_real_0: 0.09001 (0.12256) | > loss_disc_real_1: 0.18907 (0.21071) | > loss_disc_real_2: 0.19483 (0.21519) | > loss_disc_real_3: 0.22559 (0.21788) | > loss_disc_real_4: 0.20139 (0.21344) | > loss_disc_real_5: 0.21194 (0.21251) | > loss_0: 2.27456 (2.30952) | > grad_norm_0: 6.36786 (16.44055) | > loss_gen: 2.70600 (2.57408) | > loss_kl: 2.70011 (2.65605) | > loss_feat: 8.76578 (8.71484) | > loss_mel: 17.76350 (17.79236) | > loss_duration: 1.69402 (1.70783) | > loss_1: 33.62940 (33.44525) | > grad_norm_1: 119.31925 (136.91986) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92350 (2.02365) | > loader_time: 0.03540 (0.03564)  --> STEP: 5199/15287 -- GLOBAL_STEP: 955200 | > loss_disc: 2.32597 (2.30948) | > loss_disc_real_0: 0.10328 (0.12254) | > loss_disc_real_1: 0.22574 (0.21076) | > loss_disc_real_2: 0.23238 (0.21522) | > loss_disc_real_3: 0.23223 (0.21788) | > loss_disc_real_4: 0.22000 (0.21344) | > loss_disc_real_5: 0.22338 (0.21248) | > loss_0: 2.32597 (2.30948) | > grad_norm_0: 14.44712 (16.42519) | > loss_gen: 2.47660 (2.57416) | > loss_kl: 2.69555 (2.65593) | > loss_feat: 9.09704 (8.71450) | > loss_mel: 17.70615 (17.79240) | > loss_duration: 1.66664 (1.70784) | > loss_1: 33.64199 (33.44494) | > grad_norm_1: 174.39647 (136.90764) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99660 (2.02332) | > loader_time: 0.03650 (0.03565)  --> STEP: 5224/15287 -- GLOBAL_STEP: 955225 | > loss_disc: 2.25229 (2.30937) | > loss_disc_real_0: 0.10712 (0.12249) | > loss_disc_real_1: 0.22198 (0.21075) | > loss_disc_real_2: 0.20067 (0.21522) | > loss_disc_real_3: 0.22485 (0.21787) | > loss_disc_real_4: 0.20815 (0.21344) | > loss_disc_real_5: 0.20203 (0.21245) | > loss_0: 2.25229 (2.30937) | > grad_norm_0: 7.46782 (16.41134) | > loss_gen: 2.71132 (2.57416) | > loss_kl: 2.71328 (2.65583) | > loss_feat: 8.79069 (8.71496) | > loss_mel: 17.69860 (17.79158) | > loss_duration: 1.69186 (1.70785) | > loss_1: 33.60574 (33.44448) | > grad_norm_1: 197.90863 (136.94119) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02510 (2.02332) | > loader_time: 0.04340 (0.03567)  --> STEP: 5249/15287 -- GLOBAL_STEP: 955250 | > loss_disc: 2.18261 (2.30927) | > loss_disc_real_0: 0.14688 (0.12247) | > loss_disc_real_1: 0.19243 (0.21073) | > loss_disc_real_2: 0.21001 (0.21521) | > loss_disc_real_3: 0.20007 (0.21786) | > loss_disc_real_4: 0.20580 (0.21343) | > loss_disc_real_5: 0.18815 (0.21244) | > loss_0: 2.18261 (2.30927) | > grad_norm_0: 12.93987 (16.40092) | > loss_gen: 2.87962 (2.57406) | > loss_kl: 2.64506 (2.65585) | > loss_feat: 9.54950 (8.71498) | > loss_mel: 18.24261 (17.79153) | > loss_duration: 1.71256 (1.70788) | > loss_1: 35.02934 (33.44439) | > grad_norm_1: 63.01210 (136.85277) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06800 (2.02347) | > loader_time: 0.04510 (0.03570)  --> STEP: 5274/15287 -- GLOBAL_STEP: 955275 | > loss_disc: 2.15752 (2.30928) | > loss_disc_real_0: 0.09356 (0.12245) | > loss_disc_real_1: 0.20652 (0.21072) | > loss_disc_real_2: 0.20217 (0.21521) | > loss_disc_real_3: 0.19357 (0.21785) | > loss_disc_real_4: 0.18216 (0.21342) | > loss_disc_real_5: 0.20543 (0.21246) | > loss_0: 2.15752 (2.30928) | > grad_norm_0: 16.03794 (16.40101) | > loss_gen: 2.76668 (2.57384) | > loss_kl: 2.62912 (2.65602) | > loss_feat: 9.02851 (8.71478) | > loss_mel: 17.78309 (17.79088) | > loss_duration: 1.64182 (1.70790) | > loss_1: 33.84922 (33.44352) | > grad_norm_1: 168.62094 (136.90761) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06660 (2.02292) | > loader_time: 0.03790 (0.03572)  --> STEP: 5299/15287 -- GLOBAL_STEP: 955300 | > loss_disc: 2.26387 (2.30929) | > loss_disc_real_0: 0.09235 (0.12244) | > loss_disc_real_1: 0.19402 (0.21072) | > loss_disc_real_2: 0.19401 (0.21520) | > loss_disc_real_3: 0.21093 (0.21785) | > loss_disc_real_4: 0.19951 (0.21344) | > loss_disc_real_5: 0.22293 (0.21248) | > loss_0: 2.26387 (2.30929) | > grad_norm_0: 21.24709 (16.40965) | > loss_gen: 2.53695 (2.57376) | > loss_kl: 2.49470 (2.65604) | > loss_feat: 9.15974 (8.71449) | > loss_mel: 17.77282 (17.79009) | > loss_duration: 1.73168 (1.70793) | > loss_1: 33.69589 (33.44241) | > grad_norm_1: 155.01428 (136.97034) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.64500 (2.02281) | > loader_time: 0.05630 (0.03574)  --> STEP: 5324/15287 -- GLOBAL_STEP: 955325 | > loss_disc: 2.34114 (2.30923) | > loss_disc_real_0: 0.10299 (0.12241) | > loss_disc_real_1: 0.23376 (0.21070) | > loss_disc_real_2: 0.22705 (0.21518) | > loss_disc_real_3: 0.23586 (0.21784) | > loss_disc_real_4: 0.23420 (0.21345) | > loss_disc_real_5: 0.24331 (0.21252) | > loss_0: 2.34114 (2.30923) | > grad_norm_0: 19.48578 (16.43865) | > loss_gen: 2.50817 (2.57370) | > loss_kl: 2.66178 (2.65604) | > loss_feat: 8.81074 (8.71483) | > loss_mel: 18.13493 (17.78946) | > loss_duration: 1.74768 (1.70793) | > loss_1: 33.86330 (33.44208) | > grad_norm_1: 167.65221 (137.04648) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56980 (2.02318) | > loader_time: 0.05090 (0.03578)  --> STEP: 5349/15287 -- GLOBAL_STEP: 955350 | > loss_disc: 2.34538 (2.30904) | > loss_disc_real_0: 0.11151 (0.12237) | > loss_disc_real_1: 0.21153 (0.21068) | > loss_disc_real_2: 0.21883 (0.21515) | > loss_disc_real_3: 0.22391 (0.21782) | > loss_disc_real_4: 0.19688 (0.21343) | > loss_disc_real_5: 0.22237 (0.21253) | > loss_0: 2.34538 (2.30904) | > grad_norm_0: 13.41960 (16.44775) | > loss_gen: 2.61202 (2.57374) | > loss_kl: 2.72987 (2.65623) | > loss_feat: 8.57293 (8.71551) | > loss_mel: 17.58064 (17.78999) | > loss_duration: 1.70152 (1.70795) | > loss_1: 33.19698 (33.44353) | > grad_norm_1: 144.59703 (137.16496) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02230 (2.02297) | > loader_time: 0.03100 (0.03578)  --> STEP: 5374/15287 -- GLOBAL_STEP: 955375 | > loss_disc: 2.29333 (2.30904) | > loss_disc_real_0: 0.15762 (0.12236) | > loss_disc_real_1: 0.26233 (0.21066) | > loss_disc_real_2: 0.25803 (0.21514) | > loss_disc_real_3: 0.19510 (0.21778) | > loss_disc_real_4: 0.19791 (0.21343) | > loss_disc_real_5: 0.23179 (0.21252) | > loss_0: 2.29333 (2.30904) | > grad_norm_0: 21.53256 (16.45563) | > loss_gen: 2.86943 (2.57353) | > loss_kl: 2.63563 (2.65622) | > loss_feat: 8.77776 (8.71512) | > loss_mel: 17.41534 (17.78975) | > loss_duration: 1.70527 (1.70799) | > loss_1: 33.40343 (33.44272) | > grad_norm_1: 200.65358 (137.24152) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99320 (2.02298) | > loader_time: 0.03540 (0.03579)  --> STEP: 5399/15287 -- GLOBAL_STEP: 955400 | > loss_disc: 2.24664 (2.30914) | > loss_disc_real_0: 0.09076 (0.12238) | > loss_disc_real_1: 0.20336 (0.21073) | > loss_disc_real_2: 0.18941 (0.21517) | > loss_disc_real_3: 0.20005 (0.21778) | > loss_disc_real_4: 0.20119 (0.21341) | > loss_disc_real_5: 0.19719 (0.21253) | > loss_0: 2.24664 (2.30914) | > grad_norm_0: 13.43815 (16.46045) | > loss_gen: 2.56122 (2.57352) | > loss_kl: 2.65066 (2.65640) | > loss_feat: 8.63916 (8.71510) | > loss_mel: 17.67101 (17.78994) | > loss_duration: 1.68913 (1.70797) | > loss_1: 33.21118 (33.44303) | > grad_norm_1: 173.53815 (137.35876) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.83510 (2.02278) | > loader_time: 0.04060 (0.03580)  --> STEP: 5424/15287 -- GLOBAL_STEP: 955425 | > loss_disc: 2.33286 (2.30908) | > loss_disc_real_0: 0.13593 (0.12237) | > loss_disc_real_1: 0.23127 (0.21071) | > loss_disc_real_2: 0.23621 (0.21516) | > loss_disc_real_3: 0.24045 (0.21776) | > loss_disc_real_4: 0.23087 (0.21340) | > loss_disc_real_5: 0.21756 (0.21256) | > loss_0: 2.33286 (2.30908) | > grad_norm_0: 13.27405 (16.46531) | > loss_gen: 2.51428 (2.57341) | > loss_kl: 2.69110 (2.65627) | > loss_feat: 8.73251 (8.71504) | > loss_mel: 17.38850 (17.78875) | > loss_duration: 1.74904 (1.70795) | > loss_1: 33.07543 (33.44151) | > grad_norm_1: 181.19002 (137.47934) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.64360 (2.02271) | > loader_time: 0.03330 (0.03582)  --> STEP: 5449/15287 -- GLOBAL_STEP: 955450 | > loss_disc: 2.27613 (2.30904) | > loss_disc_real_0: 0.13322 (0.12235) | > loss_disc_real_1: 0.18993 (0.21067) | > loss_disc_real_2: 0.19611 (0.21511) | > loss_disc_real_3: 0.20843 (0.21777) | > loss_disc_real_4: 0.21575 (0.21339) | > loss_disc_real_5: 0.20944 (0.21255) | > loss_0: 2.27613 (2.30904) | > grad_norm_0: 17.90582 (16.47532) | > loss_gen: 2.53146 (2.57322) | > loss_kl: 2.74195 (2.65638) | > loss_feat: 8.50260 (8.71509) | > loss_mel: 18.10224 (17.78824) | > loss_duration: 1.72780 (1.70793) | > loss_1: 33.60604 (33.44093) | > grad_norm_1: 90.44744 (137.50810) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02170 (2.02264) | > loader_time: 0.03930 (0.03583)  --> STEP: 5474/15287 -- GLOBAL_STEP: 955475 | > loss_disc: 2.33382 (2.30909) | > loss_disc_real_0: 0.15420 (0.12235) | > loss_disc_real_1: 0.22525 (0.21067) | > loss_disc_real_2: 0.20594 (0.21511) | > loss_disc_real_3: 0.22720 (0.21777) | > loss_disc_real_4: 0.20829 (0.21338) | > loss_disc_real_5: 0.20565 (0.21256) | > loss_0: 2.33382 (2.30909) | > grad_norm_0: 23.25628 (16.47187) | > loss_gen: 2.81164 (2.57318) | > loss_kl: 2.64353 (2.65636) | > loss_feat: 9.21007 (8.71500) | > loss_mel: 17.87603 (17.78819) | > loss_duration: 1.70856 (1.70795) | > loss_1: 34.24982 (33.44075) | > grad_norm_1: 78.16459 (137.48349) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90480 (2.02237) | > loader_time: 0.03500 (0.03583)  --> STEP: 5499/15287 -- GLOBAL_STEP: 955500 | > loss_disc: 2.31388 (2.30936) | > loss_disc_real_0: 0.14221 (0.12244) | > loss_disc_real_1: 0.21990 (0.21070) | > loss_disc_real_2: 0.20714 (0.21512) | > loss_disc_real_3: 0.20630 (0.21779) | > loss_disc_real_4: 0.20890 (0.21340) | > loss_disc_real_5: 0.20569 (0.21256) | > loss_0: 2.31388 (2.30936) | > grad_norm_0: 14.71979 (16.44539) | > loss_gen: 2.61249 (2.57311) | > loss_kl: 2.69289 (2.65653) | > loss_feat: 8.99551 (8.71466) | > loss_mel: 17.76511 (17.78809) | > loss_duration: 1.73871 (1.70793) | > loss_1: 33.80472 (33.44041) | > grad_norm_1: 50.33417 (137.29637) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.76540 (2.02209) | > loader_time: 0.03030 (0.03583)  --> STEP: 5524/15287 -- GLOBAL_STEP: 955525 | > loss_disc: 2.41594 (2.30974) | > loss_disc_real_0: 0.16450 (0.12248) | > loss_disc_real_1: 0.21792 (0.21075) | > loss_disc_real_2: 0.24705 (0.21516) | > loss_disc_real_3: 0.21551 (0.21781) | > loss_disc_real_4: 0.22101 (0.21342) | > loss_disc_real_5: 0.20898 (0.21258) | > loss_0: 2.41594 (2.30974) | > grad_norm_0: 11.89685 (16.42252) | > loss_gen: 2.52360 (2.57296) | > loss_kl: 2.72752 (2.65648) | > loss_feat: 8.40180 (8.71355) | > loss_mel: 18.30286 (17.78875) | > loss_duration: 1.70535 (1.70792) | > loss_1: 33.66113 (33.43973) | > grad_norm_1: 54.26311 (137.08029) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01720 (2.02218) | > loader_time: 0.03080 (0.03583)  --> STEP: 5549/15287 -- GLOBAL_STEP: 955550 | > loss_disc: 2.37448 (2.30986) | > loss_disc_real_0: 0.10280 (0.12248) | > loss_disc_real_1: 0.20504 (0.21075) | > loss_disc_real_2: 0.22505 (0.21518) | > loss_disc_real_3: 0.21721 (0.21781) | > loss_disc_real_4: 0.24095 (0.21344) | > loss_disc_real_5: 0.20175 (0.21257) | > loss_0: 2.37448 (2.30986) | > grad_norm_0: 15.59944 (16.40525) | > loss_gen: 2.53444 (2.57286) | > loss_kl: 2.60236 (2.65631) | > loss_feat: 8.61968 (8.71302) | > loss_mel: 17.59884 (17.78910) | > loss_duration: 1.73782 (1.70794) | > loss_1: 33.09314 (33.43930) | > grad_norm_1: 101.92262 (136.98470) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.69040 (2.02184) | > loader_time: 0.03550 (0.03582)  --> STEP: 5574/15287 -- GLOBAL_STEP: 955575 | > loss_disc: 2.32496 (2.30986) | > loss_disc_real_0: 0.10552 (0.12248) | > loss_disc_real_1: 0.22614 (0.21075) | > loss_disc_real_2: 0.22571 (0.21518) | > loss_disc_real_3: 0.22240 (0.21780) | > loss_disc_real_4: 0.23974 (0.21345) | > loss_disc_real_5: 0.21159 (0.21256) | > loss_0: 2.32496 (2.30986) | > grad_norm_0: 16.24804 (16.41159) | > loss_gen: 2.46837 (2.57271) | > loss_kl: 2.68449 (2.65623) | > loss_feat: 8.25167 (8.71248) | > loss_mel: 16.91742 (17.78835) | > loss_duration: 1.69084 (1.70798) | > loss_1: 32.01279 (33.43782) | > grad_norm_1: 190.54428 (137.00832) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97640 (2.02152) | > loader_time: 0.03530 (0.03582)  --> STEP: 5599/15287 -- GLOBAL_STEP: 955600 | > loss_disc: 2.28414 (2.30973) | > loss_disc_real_0: 0.11708 (0.12245) | > loss_disc_real_1: 0.18203 (0.21075) | > loss_disc_real_2: 0.20024 (0.21519) | > loss_disc_real_3: 0.19214 (0.21778) | > loss_disc_real_4: 0.20302 (0.21344) | > loss_disc_real_5: 0.19206 (0.21255) | > loss_0: 2.28414 (2.30973) | > grad_norm_0: 11.09337 (16.40985) | > loss_gen: 2.59575 (2.57271) | > loss_kl: 2.72611 (2.65623) | > loss_feat: 9.11194 (8.71293) | > loss_mel: 18.35501 (17.78880) | > loss_duration: 1.71295 (1.70798) | > loss_1: 34.50177 (33.43871) | > grad_norm_1: 139.22386 (136.97314) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20750 (2.02122) | > loader_time: 0.03820 (0.03582)  --> STEP: 5624/15287 -- GLOBAL_STEP: 955625 | > loss_disc: 2.22120 (2.30955) | > loss_disc_real_0: 0.09192 (0.12242) | > loss_disc_real_1: 0.22267 (0.21075) | > loss_disc_real_2: 0.20998 (0.21518) | > loss_disc_real_3: 0.23780 (0.21779) | > loss_disc_real_4: 0.18982 (0.21341) | > loss_disc_real_5: 0.23268 (0.21254) | > loss_0: 2.22120 (2.30955) | > grad_norm_0: 13.54299 (16.41848) | > loss_gen: 2.62920 (2.57271) | > loss_kl: 2.57787 (2.65614) | > loss_feat: 9.12024 (8.71317) | > loss_mel: 17.33516 (17.78857) | > loss_duration: 1.73527 (1.70798) | > loss_1: 33.39773 (33.43862) | > grad_norm_1: 162.27614 (137.03621) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.65420 (2.02104) | > loader_time: 0.03310 (0.03582)  --> STEP: 5649/15287 -- GLOBAL_STEP: 955650 | > loss_disc: 2.29975 (2.30948) | > loss_disc_real_0: 0.12702 (0.12238) | > loss_disc_real_1: 0.19121 (0.21075) | > loss_disc_real_2: 0.21687 (0.21517) | > loss_disc_real_3: 0.22210 (0.21782) | > loss_disc_real_4: 0.24354 (0.21341) | > loss_disc_real_5: 0.19777 (0.21259) | > loss_0: 2.29975 (2.30948) | > grad_norm_0: 22.37029 (16.43824) | > loss_gen: 2.52635 (2.57279) | > loss_kl: 2.84780 (2.65609) | > loss_feat: 9.12712 (8.71417) | > loss_mel: 18.21353 (17.78844) | > loss_duration: 1.68041 (1.70797) | > loss_1: 34.39521 (33.43950) | > grad_norm_1: 151.08180 (137.02660) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29580 (2.02083) | > loader_time: 0.04320 (0.03583)  --> STEP: 5674/15287 -- GLOBAL_STEP: 955675 | > loss_disc: 2.30473 (2.30941) | > loss_disc_real_0: 0.12690 (0.12234) | > loss_disc_real_1: 0.22827 (0.21075) | > loss_disc_real_2: 0.24252 (0.21516) | > loss_disc_real_3: 0.22096 (0.21780) | > loss_disc_real_4: 0.20374 (0.21341) | > loss_disc_real_5: 0.21306 (0.21259) | > loss_0: 2.30473 (2.30941) | > grad_norm_0: 9.69993 (16.42494) | > loss_gen: 2.62073 (2.57279) | > loss_kl: 2.67359 (2.65625) | > loss_feat: 8.98411 (8.71464) | > loss_mel: 17.81765 (17.78848) | > loss_duration: 1.69127 (1.70797) | > loss_1: 33.78736 (33.44015) | > grad_norm_1: 101.24949 (136.98152) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15950 (2.02058) | > loader_time: 0.03400 (0.03583)  --> STEP: 5699/15287 -- GLOBAL_STEP: 955700 | > loss_disc: 2.22787 (2.30935) | > loss_disc_real_0: 0.12403 (0.12235) | > loss_disc_real_1: 0.19383 (0.21072) | > loss_disc_real_2: 0.18690 (0.21515) | > loss_disc_real_3: 0.19684 (0.21778) | > loss_disc_real_4: 0.19816 (0.21342) | > loss_disc_real_5: 0.23450 (0.21256) | > loss_0: 2.22787 (2.30935) | > grad_norm_0: 15.06317 (16.44959) | > loss_gen: 2.55985 (2.57269) | > loss_kl: 2.70726 (2.65646) | > loss_feat: 9.46187 (8.71458) | > loss_mel: 17.87052 (17.78867) | > loss_duration: 1.66494 (1.70796) | > loss_1: 34.26444 (33.44036) | > grad_norm_1: 114.26273 (137.07988) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91580 (2.02053) | > loader_time: 0.03920 (0.03582)  --> STEP: 5724/15287 -- GLOBAL_STEP: 955725 | > loss_disc: 2.34144 (2.30944) | > loss_disc_real_0: 0.10084 (0.12232) | > loss_disc_real_1: 0.20157 (0.21073) | > loss_disc_real_2: 0.19180 (0.21515) | > loss_disc_real_3: 0.21722 (0.21777) | > loss_disc_real_4: 0.20676 (0.21340) | > loss_disc_real_5: 0.21408 (0.21254) | > loss_0: 2.34144 (2.30944) | > grad_norm_0: 9.76608 (16.44784) | > loss_gen: 2.55834 (2.57262) | > loss_kl: 2.65779 (2.65642) | > loss_feat: 8.76771 (8.71474) | > loss_mel: 18.40686 (17.78861) | > loss_duration: 1.72492 (1.70799) | > loss_1: 34.11562 (33.44041) | > grad_norm_1: 80.87253 (137.03665) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98420 (2.02032) | > loader_time: 0.03890 (0.03582)  --> STEP: 5749/15287 -- GLOBAL_STEP: 955750 | > loss_disc: 2.33910 (2.30937) | > loss_disc_real_0: 0.09944 (0.12232) | > loss_disc_real_1: 0.20069 (0.21073) | > loss_disc_real_2: 0.21754 (0.21516) | > loss_disc_real_3: 0.22429 (0.21777) | > loss_disc_real_4: 0.20630 (0.21340) | > loss_disc_real_5: 0.22659 (0.21254) | > loss_0: 2.33910 (2.30937) | > grad_norm_0: 44.88052 (16.49269) | > loss_gen: 2.41315 (2.57266) | > loss_kl: 2.71481 (2.65654) | > loss_feat: 8.60522 (8.71474) | > loss_mel: 17.94243 (17.78850) | > loss_duration: 1.70991 (1.70802) | > loss_1: 33.38552 (33.44049) | > grad_norm_1: 268.07083 (137.26405) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.66000 (2.02026) | > loader_time: 0.04020 (0.03583)  --> STEP: 5774/15287 -- GLOBAL_STEP: 955775 | > loss_disc: 2.24904 (2.30914) | > loss_disc_real_0: 0.08493 (0.12229) | > loss_disc_real_1: 0.21689 (0.21071) | > loss_disc_real_2: 0.20169 (0.21513) | > loss_disc_real_3: 0.22405 (0.21776) | > loss_disc_real_4: 0.22563 (0.21339) | > loss_disc_real_5: 0.23290 (0.21253) | > loss_0: 2.24904 (2.30914) | > grad_norm_0: 30.28077 (16.53214) | > loss_gen: 2.52677 (2.57271) | > loss_kl: 2.46426 (2.65631) | > loss_feat: 8.83397 (8.71556) | > loss_mel: 17.43591 (17.78816) | > loss_duration: 1.71503 (1.70802) | > loss_1: 32.97594 (33.44077) | > grad_norm_1: 243.54390 (137.56097) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.74090 (2.01976) | > loader_time: 0.04070 (0.03584)  --> STEP: 5799/15287 -- GLOBAL_STEP: 955800 | > loss_disc: 2.28019 (2.30902) | > loss_disc_real_0: 0.07275 (0.12232) | > loss_disc_real_1: 0.22428 (0.21069) | > loss_disc_real_2: 0.21273 (0.21510) | > loss_disc_real_3: 0.22244 (0.21777) | > loss_disc_real_4: 0.20885 (0.21339) | > loss_disc_real_5: 0.20292 (0.21252) | > loss_0: 2.28019 (2.30902) | > grad_norm_0: 26.81700 (16.55680) | > loss_gen: 2.38639 (2.57287) | > loss_kl: 2.60541 (2.65634) | > loss_feat: 8.53947 (8.71605) | > loss_mel: 17.85425 (17.78803) | > loss_duration: 1.68424 (1.70798) | > loss_1: 33.06977 (33.44129) | > grad_norm_1: 205.59409 (137.80969) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.65370 (2.01972) | > loader_time: 0.03460 (0.03584)  --> STEP: 5824/15287 -- GLOBAL_STEP: 955825 | > loss_disc: 2.28473 (2.30899) | > loss_disc_real_0: 0.10906 (0.12233) | > loss_disc_real_1: 0.19486 (0.21068) | > loss_disc_real_2: 0.20940 (0.21509) | > loss_disc_real_3: 0.20020 (0.21775) | > loss_disc_real_4: 0.18072 (0.21339) | > loss_disc_real_5: 0.21322 (0.21251) | > loss_0: 2.28473 (2.30899) | > grad_norm_0: 27.42370 (16.55364) | > loss_gen: 2.46690 (2.57284) | > loss_kl: 2.56355 (2.65637) | > loss_feat: 9.04575 (8.71614) | > loss_mel: 18.04144 (17.78783) | > loss_duration: 1.73003 (1.70792) | > loss_1: 33.84768 (33.44111) | > grad_norm_1: 169.99582 (137.88483) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.12960 (2.01938) | > loader_time: 0.03780 (0.03584)  --> STEP: 5849/15287 -- GLOBAL_STEP: 955850 | > loss_disc: 2.32638 (2.30890) | > loss_disc_real_0: 0.13931 (0.12228) | > loss_disc_real_1: 0.19907 (0.21069) | > loss_disc_real_2: 0.21723 (0.21509) | > loss_disc_real_3: 0.22623 (0.21775) | > loss_disc_real_4: 0.21367 (0.21340) | > loss_disc_real_5: 0.17972 (0.21249) | > loss_0: 2.32638 (2.30890) | > grad_norm_0: 33.48352 (16.56808) | > loss_gen: 2.45490 (2.57278) | > loss_kl: 2.58051 (2.65644) | > loss_feat: 8.58880 (8.71636) | > loss_mel: 17.39982 (17.78754) | > loss_duration: 1.69359 (1.70790) | > loss_1: 32.71762 (33.44103) | > grad_norm_1: 200.06032 (138.05898) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04700 (2.01898) | > loader_time: 0.02920 (0.03583)  --> STEP: 5874/15287 -- GLOBAL_STEP: 955875 | > loss_disc: 2.32195 (2.30898) | > loss_disc_real_0: 0.12463 (0.12228) | > loss_disc_real_1: 0.23247 (0.21069) | > loss_disc_real_2: 0.22069 (0.21510) | > loss_disc_real_3: 0.18872 (0.21775) | > loss_disc_real_4: 0.18253 (0.21337) | > loss_disc_real_5: 0.20990 (0.21250) | > loss_0: 2.32195 (2.30898) | > grad_norm_0: 30.59327 (16.56522) | > loss_gen: 2.49213 (2.57267) | > loss_kl: 2.61550 (2.65665) | > loss_feat: 8.08390 (8.71612) | > loss_mel: 17.97217 (17.78765) | > loss_duration: 1.68540 (1.70791) | > loss_1: 32.84910 (33.44100) | > grad_norm_1: 134.49388 (138.06396) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21680 (2.01880) | > loader_time: 0.03070 (0.03584)  --> STEP: 5899/15287 -- GLOBAL_STEP: 955900 | > loss_disc: 2.30223 (2.30906) | > loss_disc_real_0: 0.13898 (0.12228) | > loss_disc_real_1: 0.22138 (0.21069) | > loss_disc_real_2: 0.22301 (0.21509) | > loss_disc_real_3: 0.21568 (0.21776) | > loss_disc_real_4: 0.23171 (0.21337) | > loss_disc_real_5: 0.22708 (0.21250) | > loss_0: 2.30223 (2.30906) | > grad_norm_0: 13.34631 (16.55796) | > loss_gen: 2.60582 (2.57260) | > loss_kl: 2.71872 (2.65682) | > loss_feat: 8.89174 (8.71599) | > loss_mel: 17.50721 (17.78811) | > loss_duration: 1.65684 (1.70788) | > loss_1: 33.38034 (33.44139) | > grad_norm_1: 199.85265 (138.12477) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01780 (2.01856) | > loader_time: 0.03510 (0.03585)  --> STEP: 5924/15287 -- GLOBAL_STEP: 955925 | > loss_disc: 2.14065 (2.30901) | > loss_disc_real_0: 0.10127 (0.12227) | > loss_disc_real_1: 0.20921 (0.21070) | > loss_disc_real_2: 0.19852 (0.21509) | > loss_disc_real_3: 0.19585 (0.21776) | > loss_disc_real_4: 0.19926 (0.21339) | > loss_disc_real_5: 0.19682 (0.21250) | > loss_0: 2.14065 (2.30901) | > grad_norm_0: 8.23647 (16.55860) | > loss_gen: 2.65451 (2.57267) | > loss_kl: 2.60417 (2.65678) | > loss_feat: 8.70312 (8.71631) | > loss_mel: 17.85322 (17.78871) | > loss_duration: 1.69437 (1.70786) | > loss_1: 33.50939 (33.44233) | > grad_norm_1: 202.86311 (138.21083) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98580 (2.01829) | > loader_time: 0.03870 (0.03586)  --> STEP: 5949/15287 -- GLOBAL_STEP: 955950 | > loss_disc: 2.36504 (2.30904) | > loss_disc_real_0: 0.08852 (0.12226) | > loss_disc_real_1: 0.20261 (0.21070) | > loss_disc_real_2: 0.23048 (0.21508) | > loss_disc_real_3: 0.22251 (0.21776) | > loss_disc_real_4: 0.21124 (0.21339) | > loss_disc_real_5: 0.23599 (0.21250) | > loss_0: 2.36504 (2.30904) | > grad_norm_0: 14.46565 (16.55375) | > loss_gen: 2.54232 (2.57261) | > loss_kl: 2.55360 (2.65685) | > loss_feat: 8.46217 (8.71607) | > loss_mel: 17.66896 (17.78860) | > loss_duration: 1.73398 (1.70784) | > loss_1: 32.96104 (33.44197) | > grad_norm_1: 104.70147 (138.16530) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93990 (2.01806) | > loader_time: 0.03440 (0.03586)  --> STEP: 5974/15287 -- GLOBAL_STEP: 955975 | > loss_disc: 2.32926 (2.30916) | > loss_disc_real_0: 0.16025 (0.12234) | > loss_disc_real_1: 0.26934 (0.21071) | > loss_disc_real_2: 0.22278 (0.21511) | > loss_disc_real_3: 0.20169 (0.21775) | > loss_disc_real_4: 0.20326 (0.21339) | > loss_disc_real_5: 0.20806 (0.21250) | > loss_0: 2.32926 (2.30916) | > grad_norm_0: 19.09029 (16.54929) | > loss_gen: 2.62835 (2.57274) | > loss_kl: 2.70738 (2.65688) | > loss_feat: 8.89230 (8.71592) | > loss_mel: 18.38953 (17.78886) | > loss_duration: 1.72388 (1.70784) | > loss_1: 34.34144 (33.44222) | > grad_norm_1: 158.28546 (137.98877) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16550 (2.01761) | > loader_time: 0.03410 (0.03588)  --> STEP: 5999/15287 -- GLOBAL_STEP: 956000 | > loss_disc: 2.32383 (2.30922) | > loss_disc_real_0: 0.18025 (0.12236) | > loss_disc_real_1: 0.21325 (0.21072) | > loss_disc_real_2: 0.24295 (0.21511) | > loss_disc_real_3: 0.25328 (0.21776) | > loss_disc_real_4: 0.22531 (0.21340) | > loss_disc_real_5: 0.17801 (0.21250) | > loss_0: 2.32383 (2.30922) | > grad_norm_0: 17.11373 (16.53279) | > loss_gen: 2.74041 (2.57289) | > loss_kl: 2.57377 (2.65689) | > loss_feat: 9.10093 (8.71607) | > loss_mel: 18.68087 (17.78940) | > loss_duration: 1.72504 (1.70784) | > loss_1: 34.82102 (33.44309) | > grad_norm_1: 137.93483 (137.91933) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.66590 (2.01710) | > loader_time: 0.04060 (0.03589)  --> STEP: 6024/15287 -- GLOBAL_STEP: 956025 | > loss_disc: 2.28454 (2.30945) | > loss_disc_real_0: 0.11115 (0.12244) | > loss_disc_real_1: 0.18606 (0.21073) | > loss_disc_real_2: 0.20162 (0.21511) | > loss_disc_real_3: 0.21723 (0.21779) | > loss_disc_real_4: 0.19923 (0.21341) | > loss_disc_real_5: 0.18768 (0.21251) | > loss_0: 2.28454 (2.30945) | > grad_norm_0: 17.92346 (16.53258) | > loss_gen: 2.56997 (2.57273) | > loss_kl: 2.64799 (2.65673) | > loss_feat: 8.67638 (8.71533) | > loss_mel: 17.92814 (17.78969) | > loss_duration: 1.70057 (1.70781) | > loss_1: 33.52304 (33.44230) | > grad_norm_1: 178.23665 (137.80450) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97920 (2.01689) | > loader_time: 0.04340 (0.03589)  --> STEP: 6049/15287 -- GLOBAL_STEP: 956050 | > loss_disc: 2.29828 (2.30951) | > loss_disc_real_0: 0.16115 (0.12246) | > loss_disc_real_1: 0.22239 (0.21075) | > loss_disc_real_2: 0.22299 (0.21510) | > loss_disc_real_3: 0.23908 (0.21780) | > loss_disc_real_4: 0.26014 (0.21343) | > loss_disc_real_5: 0.21622 (0.21252) | > loss_0: 2.29828 (2.30951) | > grad_norm_0: 30.08718 (16.51828) | > loss_gen: 2.67824 (2.57279) | > loss_kl: 2.74732 (2.65680) | > loss_feat: 8.35483 (8.71501) | > loss_mel: 17.26116 (17.78966) | > loss_duration: 1.66378 (1.70781) | > loss_1: 32.70533 (33.44208) | > grad_norm_1: 192.86011 (137.69086) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19730 (2.01657) | > loader_time: 0.04360 (0.03590)  --> STEP: 6074/15287 -- GLOBAL_STEP: 956075 | > loss_disc: 2.29326 (2.30949) | > loss_disc_real_0: 0.11084 (0.12248) | > loss_disc_real_1: 0.22076 (0.21076) | > loss_disc_real_2: 0.20235 (0.21510) | > loss_disc_real_3: 0.20863 (0.21779) | > loss_disc_real_4: 0.21478 (0.21343) | > loss_disc_real_5: 0.20182 (0.21252) | > loss_0: 2.29326 (2.30949) | > grad_norm_0: 15.64927 (16.51497) | > loss_gen: 2.40983 (2.57279) | > loss_kl: 2.50381 (2.65682) | > loss_feat: 8.73079 (8.71554) | > loss_mel: 17.19478 (17.78946) | > loss_duration: 1.71296 (1.70779) | > loss_1: 32.55217 (33.44240) | > grad_norm_1: 174.07103 (137.66333) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05200 (2.01631) | > loader_time: 0.03870 (0.03591)  --> STEP: 6099/15287 -- GLOBAL_STEP: 956100 | > loss_disc: 2.32407 (2.30949) | > loss_disc_real_0: 0.14246 (0.12252) | > loss_disc_real_1: 0.21256 (0.21075) | > loss_disc_real_2: 0.22034 (0.21509) | > loss_disc_real_3: 0.23086 (0.21779) | > loss_disc_real_4: 0.22124 (0.21344) | > loss_disc_real_5: 0.22787 (0.21250) | > loss_0: 2.32407 (2.30949) | > grad_norm_0: 12.65355 (16.50916) | > loss_gen: 2.54978 (2.57276) | > loss_kl: 2.62389 (2.65679) | > loss_feat: 8.76761 (8.71526) | > loss_mel: 17.39939 (17.78896) | > loss_duration: 1.68115 (1.70779) | > loss_1: 33.02182 (33.44157) | > grad_norm_1: 51.43529 (137.60437) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03540 (2.01594) | > loader_time: 0.04110 (0.03591)  --> STEP: 6124/15287 -- GLOBAL_STEP: 956125 | > loss_disc: 2.33429 (2.30945) | > loss_disc_real_0: 0.13880 (0.12248) | > loss_disc_real_1: 0.22102 (0.21075) | > loss_disc_real_2: 0.20608 (0.21510) | > loss_disc_real_3: 0.23609 (0.21779) | > loss_disc_real_4: 0.21193 (0.21346) | > loss_disc_real_5: 0.22296 (0.21250) | > loss_0: 2.33429 (2.30945) | > grad_norm_0: 19.69942 (16.50362) | > loss_gen: 2.51715 (2.57280) | > loss_kl: 2.68443 (2.65685) | > loss_feat: 8.79735 (8.71541) | > loss_mel: 17.38490 (17.78888) | > loss_duration: 1.70585 (1.70776) | > loss_1: 33.08967 (33.44171) | > grad_norm_1: 122.15717 (137.61612) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00140 (2.01584) | > loader_time: 0.04280 (0.03592)  --> STEP: 6149/15287 -- GLOBAL_STEP: 956150 | > loss_disc: 2.20686 (2.30940) | > loss_disc_real_0: 0.11565 (0.12247) | > loss_disc_real_1: 0.18154 (0.21074) | > loss_disc_real_2: 0.21474 (0.21509) | > loss_disc_real_3: 0.20940 (0.21776) | > loss_disc_real_4: 0.21859 (0.21342) | > loss_disc_real_5: 0.20113 (0.21249) | > loss_0: 2.20686 (2.30940) | > grad_norm_0: 15.50550 (16.52974) | > loss_gen: 2.65299 (2.57257) | > loss_kl: 2.66700 (2.65683) | > loss_feat: 9.53150 (8.71539) | > loss_mel: 18.26460 (17.78904) | > loss_duration: 1.73874 (1.70779) | > loss_1: 34.85483 (33.44162) | > grad_norm_1: 156.75371 (137.70056) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02130 (2.01545) | > loader_time: 0.03370 (0.03592)  --> STEP: 6174/15287 -- GLOBAL_STEP: 956175 | > loss_disc: 2.27466 (2.30939) | > loss_disc_real_0: 0.12736 (0.12246) | > loss_disc_real_1: 0.22381 (0.21073) | > loss_disc_real_2: 0.19921 (0.21509) | > loss_disc_real_3: 0.21958 (0.21774) | > loss_disc_real_4: 0.19822 (0.21342) | > loss_disc_real_5: 0.19037 (0.21248) | > loss_0: 2.27466 (2.30939) | > grad_norm_0: 18.66032 (16.54019) | > loss_gen: 2.66567 (2.57252) | > loss_kl: 2.71234 (2.65694) | > loss_feat: 8.90258 (8.71623) | > loss_mel: 18.02737 (17.78927) | > loss_duration: 1.72522 (1.70777) | > loss_1: 34.03318 (33.44274) | > grad_norm_1: 210.20811 (137.74208) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97120 (2.01510) | > loader_time: 0.04790 (0.03593)  --> STEP: 6199/15287 -- GLOBAL_STEP: 956200 | > loss_disc: 2.27993 (2.30937) | > loss_disc_real_0: 0.10919 (0.12245) | > loss_disc_real_1: 0.17495 (0.21072) | > loss_disc_real_2: 0.21505 (0.21508) | > loss_disc_real_3: 0.20480 (0.21773) | > loss_disc_real_4: 0.20675 (0.21340) | > loss_disc_real_5: 0.17339 (0.21247) | > loss_0: 2.27993 (2.30937) | > grad_norm_0: 38.16387 (16.53519) | > loss_gen: 2.47243 (2.57237) | > loss_kl: 2.70807 (2.65698) | > loss_feat: 9.10721 (8.71610) | > loss_mel: 18.47293 (17.78911) | > loss_duration: 1.72367 (1.70776) | > loss_1: 34.48431 (33.44234) | > grad_norm_1: 200.88504 (137.75992) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10520 (2.01501) | > loader_time: 0.03100 (0.03593)  --> STEP: 6224/15287 -- GLOBAL_STEP: 956225 | > loss_disc: 2.33793 (2.30939) | > loss_disc_real_0: 0.20571 (0.12248) | > loss_disc_real_1: 0.14299 (0.21069) | > loss_disc_real_2: 0.13789 (0.21507) | > loss_disc_real_3: 0.21326 (0.21774) | > loss_disc_real_4: 0.23862 (0.21343) | > loss_disc_real_5: 0.19825 (0.21248) | > loss_0: 2.33793 (2.30939) | > grad_norm_0: 48.65077 (16.54774) | > loss_gen: 2.58893 (2.57240) | > loss_kl: 2.58865 (2.65690) | > loss_feat: 8.79261 (8.71611) | > loss_mel: 17.62723 (17.78862) | > loss_duration: 1.65988 (1.70773) | > loss_1: 33.25729 (33.44178) | > grad_norm_1: 128.04631 (137.78165) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01160 (2.01498) | > loader_time: 0.03140 (0.03594)  --> STEP: 6249/15287 -- GLOBAL_STEP: 956250 | > loss_disc: 2.30645 (2.30935) | > loss_disc_real_0: 0.11464 (0.12248) | > loss_disc_real_1: 0.23564 (0.21068) | > loss_disc_real_2: 0.22785 (0.21505) | > loss_disc_real_3: 0.22690 (0.21773) | > loss_disc_real_4: 0.19594 (0.21341) | > loss_disc_real_5: 0.19681 (0.21247) | > loss_0: 2.30645 (2.30935) | > grad_norm_0: 21.81155 (16.53855) | > loss_gen: 2.61528 (2.57246) | > loss_kl: 2.55251 (2.65706) | > loss_feat: 8.98127 (8.71651) | > loss_mel: 17.24176 (17.78907) | > loss_duration: 1.73040 (1.70776) | > loss_1: 33.12122 (33.44290) | > grad_norm_1: 80.27357 (137.71574) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97970 (2.01466) | > loader_time: 0.04400 (0.03595)  --> STEP: 6274/15287 -- GLOBAL_STEP: 956275 | > loss_disc: 2.41772 (2.30942) | > loss_disc_real_0: 0.12375 (0.12252) | > loss_disc_real_1: 0.22296 (0.21069) | > loss_disc_real_2: 0.21490 (0.21507) | > loss_disc_real_3: 0.27099 (0.21775) | > loss_disc_real_4: 0.22139 (0.21341) | > loss_disc_real_5: 0.21617 (0.21246) | > loss_0: 2.41772 (2.30942) | > grad_norm_0: 7.87750 (16.53411) | > loss_gen: 2.45832 (2.57254) | > loss_kl: 2.70373 (2.65703) | > loss_feat: 8.38481 (8.71652) | > loss_mel: 17.55169 (17.78940) | > loss_duration: 1.68013 (1.70774) | > loss_1: 32.77869 (33.44327) | > grad_norm_1: 86.82237 (137.63832) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05750 (2.01451) | > loader_time: 0.03210 (0.03594)  --> STEP: 6299/15287 -- GLOBAL_STEP: 956300 | > loss_disc: 2.23380 (2.30961) | > loss_disc_real_0: 0.11234 (0.12263) | > loss_disc_real_1: 0.19405 (0.21070) | > loss_disc_real_2: 0.18524 (0.21508) | > loss_disc_real_3: 0.20794 (0.21774) | > loss_disc_real_4: 0.19693 (0.21340) | > loss_disc_real_5: 0.20498 (0.21245) | > loss_0: 2.23380 (2.30961) | > grad_norm_0: 9.52536 (16.53092) | > loss_gen: 2.49678 (2.57246) | > loss_kl: 2.61989 (2.65709) | > loss_feat: 8.94416 (8.71653) | > loss_mel: 17.82433 (17.78953) | > loss_duration: 1.69467 (1.70771) | > loss_1: 33.57983 (33.44337) | > grad_norm_1: 100.33694 (137.39897) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98350 (2.01445) | > loader_time: 0.03240 (0.03594)  --> STEP: 6324/15287 -- GLOBAL_STEP: 956325 | > loss_disc: 2.34852 (2.30970) | > loss_disc_real_0: 0.10440 (0.12263) | > loss_disc_real_1: 0.17838 (0.21071) | > loss_disc_real_2: 0.21088 (0.21510) | > loss_disc_real_3: 0.21090 (0.21775) | > loss_disc_real_4: 0.22098 (0.21342) | > loss_disc_real_5: 0.25877 (0.21245) | > loss_0: 2.34852 (2.30970) | > grad_norm_0: 16.50410 (16.50520) | > loss_gen: 2.37561 (2.57248) | > loss_kl: 2.64708 (2.65708) | > loss_feat: 8.31208 (8.71612) | > loss_mel: 17.49313 (17.78955) | > loss_duration: 1.72332 (1.70772) | > loss_1: 32.55123 (33.44301) | > grad_norm_1: 92.73365 (137.24361) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96570 (2.01431) | > loader_time: 0.03780 (0.03594)  --> STEP: 6349/15287 -- GLOBAL_STEP: 956350 | > loss_disc: 2.32288 (2.30976) | > loss_disc_real_0: 0.16372 (0.12266) | > loss_disc_real_1: 0.21532 (0.21074) | > loss_disc_real_2: 0.20439 (0.21510) | > loss_disc_real_3: 0.21163 (0.21775) | > loss_disc_real_4: 0.21198 (0.21341) | > loss_disc_real_5: 0.27886 (0.21247) | > loss_0: 2.32288 (2.30976) | > grad_norm_0: 19.61463 (16.50265) | > loss_gen: 2.53672 (2.57250) | > loss_kl: 2.68877 (2.65700) | > loss_feat: 8.74455 (8.71582) | > loss_mel: 17.78506 (17.78942) | > loss_duration: 1.71401 (1.70768) | > loss_1: 33.46912 (33.44249) | > grad_norm_1: 111.60709 (137.21211) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11610 (2.01406) | > loader_time: 0.03610 (0.03594)  --> STEP: 6374/15287 -- GLOBAL_STEP: 956375 | > loss_disc: 2.29138 (2.30972) | > loss_disc_real_0: 0.12125 (0.12263) | > loss_disc_real_1: 0.21229 (0.21075) | > loss_disc_real_2: 0.22983 (0.21510) | > loss_disc_real_3: 0.20921 (0.21774) | > loss_disc_real_4: 0.21144 (0.21339) | > loss_disc_real_5: 0.22719 (0.21246) | > loss_0: 2.29138 (2.30972) | > grad_norm_0: 18.19563 (16.48721) | > loss_gen: 2.62045 (2.57245) | > loss_kl: 2.77130 (2.65701) | > loss_feat: 8.52050 (8.71589) | > loss_mel: 17.14747 (17.78974) | > loss_duration: 1.70455 (1.70768) | > loss_1: 32.76428 (33.44283) | > grad_norm_1: 120.46268 (137.13226) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.67500 (2.01361) | > loader_time: 0.03290 (0.03594)  --> STEP: 6399/15287 -- GLOBAL_STEP: 956400 | > loss_disc: 2.29488 (2.30965) | > loss_disc_real_0: 0.11189 (0.12261) | > loss_disc_real_1: 0.17033 (0.21072) | > loss_disc_real_2: 0.15377 (0.21506) | > loss_disc_real_3: 0.18358 (0.21772) | > loss_disc_real_4: 0.18261 (0.21337) | > loss_disc_real_5: 0.22481 (0.21248) | > loss_0: 2.29488 (2.30965) | > grad_norm_0: 18.25086 (16.48651) | > loss_gen: 2.29385 (2.57230) | > loss_kl: 2.59115 (2.65698) | > loss_feat: 8.40040 (8.71565) | > loss_mel: 17.69448 (17.78934) | > loss_duration: 1.72993 (1.70764) | > loss_1: 32.70980 (33.44197) | > grad_norm_1: 173.47464 (137.14175) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86940 (2.01326) | > loader_time: 0.03200 (0.03594)  --> STEP: 6424/15287 -- GLOBAL_STEP: 956425 | > loss_disc: 2.26786 (2.30952) | > loss_disc_real_0: 0.16070 (0.12259) | > loss_disc_real_1: 0.19048 (0.21070) | > loss_disc_real_2: 0.20950 (0.21504) | > loss_disc_real_3: 0.20766 (0.21768) | > loss_disc_real_4: 0.18381 (0.21334) | > loss_disc_real_5: 0.19075 (0.21248) | > loss_0: 2.26786 (2.30952) | > grad_norm_0: 32.78313 (16.48936) | > loss_gen: 2.49320 (2.57221) | > loss_kl: 2.77824 (2.65693) | > loss_feat: 8.69125 (8.71540) | > loss_mel: 17.76443 (17.78889) | > loss_duration: 1.71493 (1.70762) | > loss_1: 33.44205 (33.44112) | > grad_norm_1: 198.78630 (137.18622) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.77670 (2.01320) | > loader_time: 0.05470 (0.03593)  --> STEP: 6449/15287 -- GLOBAL_STEP: 956450 | > loss_disc: 2.29767 (2.30961) | > loss_disc_real_0: 0.11701 (0.12269) | > loss_disc_real_1: 0.17480 (0.21069) | > loss_disc_real_2: 0.21221 (0.21504) | > loss_disc_real_3: 0.20029 (0.21768) | > loss_disc_real_4: 0.16878 (0.21341) | > loss_disc_real_5: 0.21073 (0.21247) | > loss_0: 2.29767 (2.30961) | > grad_norm_0: 9.71727 (16.48762) | > loss_gen: 2.49352 (2.57242) | > loss_kl: 2.62704 (2.65687) | > loss_feat: 8.52290 (8.71522) | > loss_mel: 17.82359 (17.78865) | > loss_duration: 1.67474 (1.70760) | > loss_1: 33.14179 (33.44084) | > grad_norm_1: 126.20901 (137.05702) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.67080 (2.01278) | > loader_time: 0.03700 (0.03593)  --> STEP: 6474/15287 -- GLOBAL_STEP: 956475 | > loss_disc: 2.30329 (2.30965) | > loss_disc_real_0: 0.15533 (0.12269) | > loss_disc_real_1: 0.23693 (0.21069) | > loss_disc_real_2: 0.23570 (0.21504) | > loss_disc_real_3: 0.20936 (0.21769) | > loss_disc_real_4: 0.21076 (0.21342) | > loss_disc_real_5: 0.20806 (0.21248) | > loss_0: 2.30329 (2.30965) | > grad_norm_0: 8.77603 (16.46705) | > loss_gen: 2.60552 (2.57250) | > loss_kl: 2.73718 (2.65707) | > loss_feat: 8.74733 (8.71509) | > loss_mel: 18.26023 (17.78885) | > loss_duration: 1.70530 (1.70758) | > loss_1: 34.05556 (33.44115) | > grad_norm_1: 157.40573 (136.98950) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32680 (2.01264) | > loader_time: 0.04630 (0.03593)  --> STEP: 6499/15287 -- GLOBAL_STEP: 956500 | > loss_disc: 2.35644 (2.30967) | > loss_disc_real_0: 0.09689 (0.12265) | > loss_disc_real_1: 0.21274 (0.21069) | > loss_disc_real_2: 0.24389 (0.21504) | > loss_disc_real_3: 0.22261 (0.21770) | > loss_disc_real_4: 0.21839 (0.21341) | > loss_disc_real_5: 0.22455 (0.21249) | > loss_0: 2.35644 (2.30967) | > grad_norm_0: 10.98927 (16.45880) | > loss_gen: 2.71951 (2.57240) | > loss_kl: 2.85513 (2.65701) | > loss_feat: 8.90778 (8.71470) | > loss_mel: 18.28198 (17.78853) | > loss_duration: 1.65641 (1.70756) | > loss_1: 34.42082 (33.44027) | > grad_norm_1: 167.69594 (136.97499) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89890 (2.01231) | > loader_time: 0.03320 (0.03592)  --> STEP: 6524/15287 -- GLOBAL_STEP: 956525 | > loss_disc: 2.31975 (2.30965) | > loss_disc_real_0: 0.18281 (0.12266) | > loss_disc_real_1: 0.21181 (0.21068) | > loss_disc_real_2: 0.22270 (0.21503) | > loss_disc_real_3: 0.25270 (0.21770) | > loss_disc_real_4: 0.21758 (0.21340) | > loss_disc_real_5: 0.20388 (0.21249) | > loss_0: 2.31975 (2.30965) | > grad_norm_0: 31.05736 (16.45661) | > loss_gen: 2.65236 (2.57236) | > loss_kl: 2.58122 (2.65707) | > loss_feat: 8.46796 (8.71434) | > loss_mel: 17.37724 (17.78805) | > loss_duration: 1.69252 (1.70754) | > loss_1: 32.77130 (33.43940) | > grad_norm_1: 102.33631 (136.99008) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03630 (2.01214) | > loader_time: 0.05190 (0.03593)  --> STEP: 6549/15287 -- GLOBAL_STEP: 956550 | > loss_disc: 2.32380 (2.30958) | > loss_disc_real_0: 0.10979 (0.12265) | > loss_disc_real_1: 0.22857 (0.21068) | > loss_disc_real_2: 0.23497 (0.21502) | > loss_disc_real_3: 0.21394 (0.21771) | > loss_disc_real_4: 0.22731 (0.21338) | > loss_disc_real_5: 0.20810 (0.21247) | > loss_0: 2.32380 (2.30958) | > grad_norm_0: 10.30817 (16.45065) | > loss_gen: 2.63172 (2.57232) | > loss_kl: 2.64383 (2.65704) | > loss_feat: 8.72293 (8.71476) | > loss_mel: 18.06582 (17.78799) | > loss_duration: 1.69975 (1.70752) | > loss_1: 33.76405 (33.43970) | > grad_norm_1: 65.40185 (136.95020) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95870 (2.01207) | > loader_time: 0.03660 (0.03592)  --> STEP: 6574/15287 -- GLOBAL_STEP: 956575 | > loss_disc: 2.27951 (2.30959) | > loss_disc_real_0: 0.15492 (0.12265) | > loss_disc_real_1: 0.24326 (0.21070) | > loss_disc_real_2: 0.24568 (0.21502) | > loss_disc_real_3: 0.22894 (0.21772) | > loss_disc_real_4: 0.23124 (0.21339) | > loss_disc_real_5: 0.20625 (0.21247) | > loss_0: 2.27951 (2.30959) | > grad_norm_0: 14.05254 (16.47002) | > loss_gen: 2.70417 (2.57237) | > loss_kl: 2.46228 (2.65695) | > loss_feat: 8.55957 (8.71510) | > loss_mel: 18.00428 (17.78796) | > loss_duration: 1.68635 (1.70750) | > loss_1: 33.41665 (33.43994) | > grad_norm_1: 83.54580 (136.93576) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09830 (2.01157) | > loader_time: 0.03220 (0.03592)  --> STEP: 6599/15287 -- GLOBAL_STEP: 956600 | > loss_disc: 2.29992 (2.30974) | > loss_disc_real_0: 0.07307 (0.12275) | > loss_disc_real_1: 0.18460 (0.21072) | > loss_disc_real_2: 0.17627 (0.21503) | > loss_disc_real_3: 0.16297 (0.21772) | > loss_disc_real_4: 0.16395 (0.21341) | > loss_disc_real_5: 0.19169 (0.21248) | > loss_0: 2.29992 (2.30974) | > grad_norm_0: 11.26481 (16.47544) | > loss_gen: 2.57286 (2.57242) | > loss_kl: 2.67886 (2.65691) | > loss_feat: 8.81012 (8.71476) | > loss_mel: 18.09160 (17.78795) | > loss_duration: 1.70635 (1.70749) | > loss_1: 33.85979 (33.43960) | > grad_norm_1: 166.41776 (136.77098) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94050 (2.01125) | > loader_time: 0.04540 (0.03593)  --> STEP: 6624/15287 -- GLOBAL_STEP: 956625 | > loss_disc: 2.29982 (2.30982) | > loss_disc_real_0: 0.14182 (0.12281) | > loss_disc_real_1: 0.24259 (0.21074) | > loss_disc_real_2: 0.21932 (0.21506) | > loss_disc_real_3: 0.24787 (0.21774) | > loss_disc_real_4: 0.25661 (0.21343) | > loss_disc_real_5: 0.17764 (0.21249) | > loss_0: 2.29982 (2.30982) | > grad_norm_0: 19.75238 (16.47882) | > loss_gen: 2.68104 (2.57251) | > loss_kl: 2.53855 (2.65690) | > loss_feat: 9.06821 (8.71438) | > loss_mel: 17.71120 (17.78809) | > loss_duration: 1.66973 (1.70745) | > loss_1: 33.66873 (33.43939) | > grad_norm_1: 150.93457 (136.73889) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95130 (2.01094) | > loader_time: 0.03510 (0.03593)  --> STEP: 6649/15287 -- GLOBAL_STEP: 956650 | > loss_disc: 2.35751 (2.30981) | > loss_disc_real_0: 0.11214 (0.12279) | > loss_disc_real_1: 0.22738 (0.21071) | > loss_disc_real_2: 0.21949 (0.21505) | > loss_disc_real_3: 0.21171 (0.21775) | > loss_disc_real_4: 0.21524 (0.21344) | > loss_disc_real_5: 0.20759 (0.21250) | > loss_0: 2.35751 (2.30981) | > grad_norm_0: 21.68081 (16.48306) | > loss_gen: 2.52755 (2.57245) | > loss_kl: 2.79704 (2.65687) | > loss_feat: 8.53816 (8.71396) | > loss_mel: 18.17826 (17.78779) | > loss_duration: 1.73087 (1.70745) | > loss_1: 33.77188 (33.43858) | > grad_norm_1: 147.31358 (136.73944) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98650 (2.01060) | > loader_time: 0.03050 (0.03592)  --> STEP: 6674/15287 -- GLOBAL_STEP: 956675 | > loss_disc: 2.36118 (2.30976) | > loss_disc_real_0: 0.11363 (0.12276) | > loss_disc_real_1: 0.23260 (0.21069) | > loss_disc_real_2: 0.23561 (0.21503) | > loss_disc_real_3: 0.21726 (0.21775) | > loss_disc_real_4: 0.20495 (0.21344) | > loss_disc_real_5: 0.23781 (0.21252) | > loss_0: 2.36118 (2.30976) | > grad_norm_0: 20.17989 (16.47696) | > loss_gen: 2.56541 (2.57240) | > loss_kl: 2.63124 (2.65687) | > loss_feat: 8.75783 (8.71428) | > loss_mel: 17.64816 (17.78787) | > loss_duration: 1.67246 (1.70744) | > loss_1: 33.27509 (33.43894) | > grad_norm_1: 134.39943 (136.71780) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.64380 (2.01006) | > loader_time: 0.03070 (0.03591)  --> STEP: 6699/15287 -- GLOBAL_STEP: 956700 | > loss_disc: 2.27407 (2.30972) | > loss_disc_real_0: 0.12515 (0.12274) | > loss_disc_real_1: 0.20988 (0.21068) | > loss_disc_real_2: 0.22814 (0.21503) | > loss_disc_real_3: 0.22188 (0.21775) | > loss_disc_real_4: 0.21423 (0.21345) | > loss_disc_real_5: 0.20862 (0.21252) | > loss_0: 2.27407 (2.30972) | > grad_norm_0: 12.08471 (16.49003) | > loss_gen: 2.56526 (2.57226) | > loss_kl: 2.74213 (2.65666) | > loss_feat: 9.17429 (8.71362) | > loss_mel: 18.05681 (17.78749) | > loss_duration: 1.68268 (1.70745) | > loss_1: 34.22116 (33.43754) | > grad_norm_1: 184.56656 (136.74390) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01210 (2.00970) | > loader_time: 0.04030 (0.03591)  --> STEP: 6724/15287 -- GLOBAL_STEP: 956725 | > loss_disc: 2.29268 (2.30953) | > loss_disc_real_0: 0.09426 (0.12272) | > loss_disc_real_1: 0.22038 (0.21067) | > loss_disc_real_2: 0.22067 (0.21498) | > loss_disc_real_3: 0.22944 (0.21774) | > loss_disc_real_4: 0.21017 (0.21344) | > loss_disc_real_5: 0.21223 (0.21249) | > loss_0: 2.29268 (2.30953) | > grad_norm_0: 24.70009 (16.51552) | > loss_gen: 2.57484 (2.57229) | > loss_kl: 2.62191 (2.65672) | > loss_feat: 9.01109 (8.71394) | > loss_mel: 17.92370 (17.78732) | > loss_duration: 1.67712 (1.70742) | > loss_1: 33.80865 (33.43773) | > grad_norm_1: 139.48366 (136.91768) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14880 (2.00957) | > loader_time: 0.03170 (0.03592)  --> STEP: 6749/15287 -- GLOBAL_STEP: 956750 | > loss_disc: 2.39099 (2.30951) | > loss_disc_real_0: 0.12244 (0.12270) | > loss_disc_real_1: 0.18909 (0.21064) | > loss_disc_real_2: 0.20673 (0.21498) | > loss_disc_real_3: 0.21208 (0.21774) | > loss_disc_real_4: 0.19865 (0.21343) | > loss_disc_real_5: 0.23633 (0.21251) | > loss_0: 2.39099 (2.30951) | > grad_norm_0: 26.35097 (16.51751) | > loss_gen: 2.34856 (2.57226) | > loss_kl: 2.74056 (2.65667) | > loss_feat: 8.53131 (8.71440) | > loss_mel: 17.64768 (17.78742) | > loss_duration: 1.70611 (1.70739) | > loss_1: 32.97422 (33.43818) | > grad_norm_1: 185.57330 (136.90144) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.65810 (2.00924) | > loader_time: 0.04450 (0.03592)  --> STEP: 6774/15287 -- GLOBAL_STEP: 956775 | > loss_disc: 2.38914 (2.30954) | > loss_disc_real_0: 0.15745 (0.12269) | > loss_disc_real_1: 0.23196 (0.21064) | > loss_disc_real_2: 0.24612 (0.21498) | > loss_disc_real_3: 0.21694 (0.21775) | > loss_disc_real_4: 0.23140 (0.21344) | > loss_disc_real_5: 0.21219 (0.21250) | > loss_0: 2.38914 (2.30954) | > grad_norm_0: 11.10872 (16.53021) | > loss_gen: 2.42554 (2.57216) | > loss_kl: 2.63114 (2.65680) | > loss_feat: 8.64991 (8.71418) | > loss_mel: 17.88571 (17.78740) | > loss_duration: 1.73400 (1.70736) | > loss_1: 33.32630 (33.43795) | > grad_norm_1: 52.96818 (136.92090) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.64370 (2.00904) | > loader_time: 0.03100 (0.03591)  --> STEP: 6799/15287 -- GLOBAL_STEP: 956800 | > loss_disc: 2.36718 (2.30948) | > loss_disc_real_0: 0.13925 (0.12267) | > loss_disc_real_1: 0.21262 (0.21063) | > loss_disc_real_2: 0.22874 (0.21498) | > loss_disc_real_3: 0.20893 (0.21774) | > loss_disc_real_4: 0.21886 (0.21343) | > loss_disc_real_5: 0.20628 (0.21248) | > loss_0: 2.36718 (2.30948) | > grad_norm_0: 22.63741 (16.53435) | > loss_gen: 2.40319 (2.57208) | > loss_kl: 2.52555 (2.65674) | > loss_feat: 8.64034 (8.71471) | > loss_mel: 17.48876 (17.78737) | > loss_duration: 1.72344 (1.70734) | > loss_1: 32.78127 (33.43831) | > grad_norm_1: 182.44171 (136.99924) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15180 (2.00885) | > loader_time: 0.03070 (0.03591)  --> STEP: 6824/15287 -- GLOBAL_STEP: 956825 | > loss_disc: 2.29637 (2.30939) | > loss_disc_real_0: 0.07442 (0.12266) | > loss_disc_real_1: 0.21611 (0.21060) | > loss_disc_real_2: 0.21470 (0.21498) | > loss_disc_real_3: 0.23664 (0.21773) | > loss_disc_real_4: 0.20475 (0.21341) | > loss_disc_real_5: 0.20997 (0.21248) | > loss_0: 2.29637 (2.30939) | > grad_norm_0: 24.56910 (16.54608) | > loss_gen: 2.47755 (2.57208) | > loss_kl: 2.61782 (2.65685) | > loss_feat: 8.30560 (8.71525) | > loss_mel: 17.61075 (17.78699) | > loss_duration: 1.71869 (1.70733) | > loss_1: 32.73041 (33.43857) | > grad_norm_1: 131.89519 (137.06804) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.68180 (2.00862) | > loader_time: 0.03800 (0.03590)  --> STEP: 6849/15287 -- GLOBAL_STEP: 956850 | > loss_disc: 2.37301 (2.30941) | > loss_disc_real_0: 0.15219 (0.12269) | > loss_disc_real_1: 0.23629 (0.21060) | > loss_disc_real_2: 0.23358 (0.21498) | > loss_disc_real_3: 0.23020 (0.21772) | > loss_disc_real_4: 0.25893 (0.21341) | > loss_disc_real_5: 0.23617 (0.21246) | > loss_0: 2.37301 (2.30941) | > grad_norm_0: 22.74683 (16.55156) | > loss_gen: 2.42175 (2.57209) | > loss_kl: 2.50707 (2.65675) | > loss_feat: 8.47325 (8.71507) | > loss_mel: 17.69323 (17.78716) | > loss_duration: 1.73414 (1.70732) | > loss_1: 32.82944 (33.43845) | > grad_norm_1: 91.86294 (137.07156) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94750 (2.00826) | > loader_time: 0.03210 (0.03590)  --> STEP: 6874/15287 -- GLOBAL_STEP: 956875 | > loss_disc: 2.32173 (2.30934) | > loss_disc_real_0: 0.14025 (0.12266) | > loss_disc_real_1: 0.19748 (0.21061) | > loss_disc_real_2: 0.21701 (0.21497) | > loss_disc_real_3: 0.22575 (0.21772) | > loss_disc_real_4: 0.21123 (0.21342) | > loss_disc_real_5: 0.19054 (0.21244) | > loss_0: 2.32173 (2.30934) | > grad_norm_0: 16.42695 (16.55685) | > loss_gen: 2.52298 (2.57206) | > loss_kl: 2.71961 (2.65682) | > loss_feat: 8.50883 (8.71553) | > loss_mel: 17.57158 (17.78725) | > loss_duration: 1.74498 (1.70733) | > loss_1: 33.06799 (33.43907) | > grad_norm_1: 86.14864 (137.04749) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.66160 (2.00779) | > loader_time: 0.03240 (0.03589)  --> STEP: 6899/15287 -- GLOBAL_STEP: 956900 | > loss_disc: 2.34475 (2.30938) | > loss_disc_real_0: 0.20554 (0.12271) | > loss_disc_real_1: 0.21563 (0.21060) | > loss_disc_real_2: 0.24986 (0.21496) | > loss_disc_real_3: 0.21008 (0.21772) | > loss_disc_real_4: 0.21288 (0.21340) | > loss_disc_real_5: 0.19622 (0.21245) | > loss_0: 2.34475 (2.30938) | > grad_norm_0: 16.79480 (16.55998) | > loss_gen: 2.63208 (2.57206) | > loss_kl: 2.77189 (2.65692) | > loss_feat: 8.48813 (8.71543) | > loss_mel: 17.76891 (17.78716) | > loss_duration: 1.72867 (1.70732) | > loss_1: 33.38969 (33.43897) | > grad_norm_1: 110.77476 (137.00656) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94670 (2.00743) | > loader_time: 0.03150 (0.03588)  --> STEP: 6924/15287 -- GLOBAL_STEP: 956925 | > loss_disc: 2.30387 (2.30941) | > loss_disc_real_0: 0.10711 (0.12272) | > loss_disc_real_1: 0.21898 (0.21060) | > loss_disc_real_2: 0.22247 (0.21497) | > loss_disc_real_3: 0.21062 (0.21772) | > loss_disc_real_4: 0.18602 (0.21339) | > loss_disc_real_5: 0.21642 (0.21244) | > loss_0: 2.30387 (2.30941) | > grad_norm_0: 8.73479 (16.54078) | > loss_gen: 2.55227 (2.57198) | > loss_kl: 2.64187 (2.65703) | > loss_feat: 8.40762 (8.71544) | > loss_mel: 18.07528 (17.78680) | > loss_duration: 1.70871 (1.70728) | > loss_1: 33.38574 (33.43859) | > grad_norm_1: 89.78730 (136.85843) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00300 (2.00724) | > loader_time: 0.03490 (0.03591)  --> STEP: 6949/15287 -- GLOBAL_STEP: 956950 | > loss_disc: 2.36572 (2.30947) | > loss_disc_real_0: 0.12385 (0.12270) | > loss_disc_real_1: 0.23889 (0.21060) | > loss_disc_real_2: 0.22567 (0.21498) | > loss_disc_real_3: 0.22830 (0.21773) | > loss_disc_real_4: 0.21749 (0.21339) | > loss_disc_real_5: 0.21141 (0.21244) | > loss_0: 2.36572 (2.30947) | > grad_norm_0: 20.25922 (16.52566) | > loss_gen: 2.56152 (2.57201) | > loss_kl: 2.58440 (2.65721) | > loss_feat: 8.40694 (8.71566) | > loss_mel: 17.51135 (17.78687) | > loss_duration: 1.69836 (1.70726) | > loss_1: 32.76257 (33.43908) | > grad_norm_1: 115.13017 (136.79863) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94340 (2.00702) | > loader_time: 0.03120 (0.03590)  --> STEP: 6974/15287 -- GLOBAL_STEP: 956975 | > loss_disc: 2.32709 (2.30951) | > loss_disc_real_0: 0.12569 (0.12270) | > loss_disc_real_1: 0.20437 (0.21061) | > loss_disc_real_2: 0.20492 (0.21498) | > loss_disc_real_3: 0.21456 (0.21774) | > loss_disc_real_4: 0.21447 (0.21339) | > loss_disc_real_5: 0.20977 (0.21245) | > loss_0: 2.32709 (2.30951) | > grad_norm_0: 13.02596 (16.54246) | > loss_gen: 2.57930 (2.57193) | > loss_kl: 2.69191 (2.65711) | > loss_feat: 8.85042 (8.71528) | > loss_mel: 18.03509 (17.78660) | > loss_duration: 1.72706 (1.70723) | > loss_1: 33.88377 (33.43821) | > grad_norm_1: 115.79644 (136.83488) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.63160 (2.00671) | > loader_time: 0.03200 (0.03589)  --> STEP: 6999/15287 -- GLOBAL_STEP: 957000 | > loss_disc: 2.30033 (2.30951) | > loss_disc_real_0: 0.09496 (0.12268) | > loss_disc_real_1: 0.24601 (0.21061) | > loss_disc_real_2: 0.20272 (0.21499) | > loss_disc_real_3: 0.20206 (0.21774) | > loss_disc_real_4: 0.20676 (0.21340) | > loss_disc_real_5: 0.20345 (0.21246) | > loss_0: 2.30033 (2.30951) | > grad_norm_0: 7.32531 (16.53108) | > loss_gen: 2.66070 (2.57191) | > loss_kl: 2.52875 (2.65704) | > loss_feat: 8.30212 (8.71512) | > loss_mel: 17.37972 (17.78653) | > loss_duration: 1.71849 (1.70723) | > loss_1: 32.58978 (33.43791) | > grad_norm_1: 139.31914 (136.82104) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01100 (2.00639) | > loader_time: 0.02950 (0.03588)  --> STEP: 7024/15287 -- GLOBAL_STEP: 957025 | > loss_disc: 2.28365 (2.30955) | > loss_disc_real_0: 0.09928 (0.12271) | > loss_disc_real_1: 0.21399 (0.21060) | > loss_disc_real_2: 0.20210 (0.21499) | > loss_disc_real_3: 0.18426 (0.21776) | > loss_disc_real_4: 0.22908 (0.21340) | > loss_disc_real_5: 0.19524 (0.21246) | > loss_0: 2.28365 (2.30955) | > grad_norm_0: 11.03853 (16.52511) | > loss_gen: 2.62121 (2.57175) | > loss_kl: 2.59881 (2.65716) | > loss_feat: 8.61387 (8.71490) | > loss_mel: 17.67701 (17.78669) | > loss_duration: 1.68765 (1.70725) | > loss_1: 33.19854 (33.43782) | > grad_norm_1: 122.03530 (136.74631) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91050 (2.00611) | > loader_time: 0.03270 (0.03587)  --> STEP: 7049/15287 -- GLOBAL_STEP: 957050 | > loss_disc: 2.29785 (2.30941) | > loss_disc_real_0: 0.12329 (0.12269) | > loss_disc_real_1: 0.20243 (0.21058) | > loss_disc_real_2: 0.21528 (0.21498) | > loss_disc_real_3: 0.20467 (0.21775) | > loss_disc_real_4: 0.22743 (0.21339) | > loss_disc_real_5: 0.21928 (0.21246) | > loss_0: 2.29785 (2.30941) | > grad_norm_0: 17.61939 (16.52963) | > loss_gen: 2.51182 (2.57177) | > loss_kl: 2.77025 (2.65727) | > loss_feat: 8.55680 (8.71530) | > loss_mel: 17.68233 (17.78650) | > loss_duration: 1.68233 (1.70720) | > loss_1: 33.20353 (33.43812) | > grad_norm_1: 152.43990 (136.78630) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98250 (2.00575) | > loader_time: 0.03730 (0.03587)  --> STEP: 7074/15287 -- GLOBAL_STEP: 957075 | > loss_disc: 2.28372 (2.30936) | > loss_disc_real_0: 0.11881 (0.12270) | > loss_disc_real_1: 0.19550 (0.21059) | > loss_disc_real_2: 0.21277 (0.21499) | > loss_disc_real_3: 0.20972 (0.21774) | > loss_disc_real_4: 0.21702 (0.21338) | > loss_disc_real_5: 0.22837 (0.21246) | > loss_0: 2.28372 (2.30936) | > grad_norm_0: 19.24573 (16.52133) | > loss_gen: 2.61623 (2.57176) | > loss_kl: 2.57154 (2.65736) | > loss_feat: 8.80917 (8.71525) | > loss_mel: 17.89197 (17.78613) | > loss_duration: 1.67534 (1.70718) | > loss_1: 33.56425 (33.43776) | > grad_norm_1: 99.71387 (136.73813) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98680 (2.00531) | > loader_time: 0.03080 (0.03586)  --> STEP: 7099/15287 -- GLOBAL_STEP: 957100 | > loss_disc: 2.33597 (2.30941) | > loss_disc_real_0: 0.09551 (0.12272) | > loss_disc_real_1: 0.25728 (0.21061) | > loss_disc_real_2: 0.20891 (0.21500) | > loss_disc_real_3: 0.20347 (0.21774) | > loss_disc_real_4: 0.19448 (0.21337) | > loss_disc_real_5: 0.20172 (0.21245) | > loss_0: 2.33597 (2.30941) | > grad_norm_0: 10.85978 (16.51247) | > loss_gen: 2.54233 (2.57173) | > loss_kl: 2.54825 (2.65736) | > loss_feat: 8.44187 (8.71514) | > loss_mel: 17.71284 (17.78641) | > loss_duration: 1.73354 (1.70716) | > loss_1: 32.97883 (33.43787) | > grad_norm_1: 93.50694 (136.67973) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.73780 (2.00521) | > loader_time: 0.03130 (0.03585)  --> STEP: 7124/15287 -- GLOBAL_STEP: 957125 | > loss_disc: 2.26954 (2.30941) | > loss_disc_real_0: 0.11040 (0.12272) | > loss_disc_real_1: 0.21635 (0.21061) | > loss_disc_real_2: 0.20867 (0.21501) | > loss_disc_real_3: 0.21280 (0.21774) | > loss_disc_real_4: 0.18871 (0.21338) | > loss_disc_real_5: 0.24452 (0.21248) | > loss_0: 2.26954 (2.30941) | > grad_norm_0: 15.04127 (16.50856) | > loss_gen: 2.52257 (2.57176) | > loss_kl: 2.64389 (2.65740) | > loss_feat: 9.10474 (8.71529) | > loss_mel: 18.18295 (17.78664) | > loss_duration: 1.71263 (1.70714) | > loss_1: 34.16677 (33.43831) | > grad_norm_1: 145.21983 (136.65594) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.63080 (2.00488) | > loader_time: 0.03480 (0.03586)  --> STEP: 7149/15287 -- GLOBAL_STEP: 957150 | > loss_disc: 2.36913 (2.30936) | > loss_disc_real_0: 0.12040 (0.12270) | > loss_disc_real_1: 0.20638 (0.21060) | > loss_disc_real_2: 0.21105 (0.21502) | > loss_disc_real_3: 0.23619 (0.21776) | > loss_disc_real_4: 0.22073 (0.21339) | > loss_disc_real_5: 0.24316 (0.21247) | > loss_0: 2.36913 (2.30936) | > grad_norm_0: 29.72764 (16.52676) | > loss_gen: 2.41105 (2.57175) | > loss_kl: 2.75325 (2.65733) | > loss_feat: 8.65253 (8.71515) | > loss_mel: 17.96268 (17.78668) | > loss_duration: 1.68341 (1.70711) | > loss_1: 33.46291 (33.43810) | > grad_norm_1: 152.35568 (136.67810) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99990 (2.00470) | > loader_time: 0.03240 (0.03585)  --> STEP: 7174/15287 -- GLOBAL_STEP: 957175 | > loss_disc: 2.28995 (2.30925) | > loss_disc_real_0: 0.14135 (0.12268) | > loss_disc_real_1: 0.23093 (0.21059) | > loss_disc_real_2: 0.19564 (0.21502) | > loss_disc_real_3: 0.19965 (0.21774) | > loss_disc_real_4: 0.18857 (0.21337) | > loss_disc_real_5: 0.21901 (0.21246) | > loss_0: 2.28995 (2.30925) | > grad_norm_0: 14.51110 (16.51778) | > loss_gen: 2.49937 (2.57179) | > loss_kl: 2.70349 (2.65733) | > loss_feat: 8.40194 (8.71538) | > loss_mel: 17.75100 (17.78652) | > loss_duration: 1.70158 (1.70706) | > loss_1: 33.05737 (33.43815) | > grad_norm_1: 70.92246 (136.65050) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01930 (2.00453) | > loader_time: 0.03240 (0.03584)  --> STEP: 7199/15287 -- GLOBAL_STEP: 957200 | > loss_disc: 2.29022 (2.30929) | > loss_disc_real_0: 0.11556 (0.12267) | > loss_disc_real_1: 0.20941 (0.21058) | > loss_disc_real_2: 0.18992 (0.21502) | > loss_disc_real_3: 0.23591 (0.21776) | > loss_disc_real_4: 0.20519 (0.21339) | > loss_disc_real_5: 0.25230 (0.21245) | > loss_0: 2.29022 (2.30929) | > grad_norm_0: 9.54820 (16.52678) | > loss_gen: 2.55303 (2.57173) | > loss_kl: 2.62850 (2.65741) | > loss_feat: 8.97095 (8.71529) | > loss_mel: 17.65148 (17.78639) | > loss_duration: 1.72012 (1.70706) | > loss_1: 33.52408 (33.43795) | > grad_norm_1: 97.05594 (136.60767) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05410 (2.00430) | > loader_time: 0.03270 (0.03584)  --> STEP: 7224/15287 -- GLOBAL_STEP: 957225 | > loss_disc: 2.33406 (2.30922) | > loss_disc_real_0: 0.13161 (0.12265) | > loss_disc_real_1: 0.19625 (0.21057) | > loss_disc_real_2: 0.17243 (0.21500) | > loss_disc_real_3: 0.21928 (0.21775) | > loss_disc_real_4: 0.22283 (0.21338) | > loss_disc_real_5: 0.20136 (0.21245) | > loss_0: 2.33406 (2.30922) | > grad_norm_0: 27.90328 (16.52436) | > loss_gen: 2.40218 (2.57181) | > loss_kl: 2.65460 (2.65746) | > loss_feat: 8.75957 (8.71585) | > loss_mel: 17.62180 (17.78609) | > loss_duration: 1.72250 (1.70705) | > loss_1: 33.16066 (33.43834) | > grad_norm_1: 196.43236 (136.65324) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 5.95690 (2.00447) | > loader_time: 0.03410 (0.03584)  --> STEP: 7249/15287 -- GLOBAL_STEP: 957250 | > loss_disc: 2.29487 (2.30919) | > loss_disc_real_0: 0.11210 (0.12263) | > loss_disc_real_1: 0.20721 (0.21056) | > loss_disc_real_2: 0.17702 (0.21499) | > loss_disc_real_3: 0.21221 (0.21774) | > loss_disc_real_4: 0.19875 (0.21338) | > loss_disc_real_5: 0.22064 (0.21245) | > loss_0: 2.29487 (2.30919) | > grad_norm_0: 29.27777 (16.53588) | > loss_gen: 2.60807 (2.57174) | > loss_kl: 2.63052 (2.65741) | > loss_feat: 9.17137 (8.71610) | > loss_mel: 17.65311 (17.78622) | > loss_duration: 1.73896 (1.70705) | > loss_1: 33.80202 (33.43860) | > grad_norm_1: 171.07538 (136.77518) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07190 (2.00431) | > loader_time: 0.03610 (0.03583)  --> STEP: 7274/15287 -- GLOBAL_STEP: 957275 | > loss_disc: 2.37615 (2.30916) | > loss_disc_real_0: 0.14743 (0.12264) | > loss_disc_real_1: 0.23707 (0.21058) | > loss_disc_real_2: 0.23599 (0.21498) | > loss_disc_real_3: 0.22484 (0.21772) | > loss_disc_real_4: 0.22202 (0.21337) | > loss_disc_real_5: 0.20015 (0.21243) | > loss_0: 2.37615 (2.30916) | > grad_norm_0: 33.81673 (16.55542) | > loss_gen: 2.42113 (2.57172) | > loss_kl: 2.73315 (2.65741) | > loss_feat: 8.30501 (8.71627) | > loss_mel: 17.44566 (17.78607) | > loss_duration: 1.70661 (1.70704) | > loss_1: 32.61156 (33.43858) | > grad_norm_1: 187.44974 (136.81984) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.69600 (2.00404) | > loader_time: 0.03710 (0.03583)  --> STEP: 7299/15287 -- GLOBAL_STEP: 957300 | > loss_disc: 2.34541 (2.30901) | > loss_disc_real_0: 0.10852 (0.12260) | > loss_disc_real_1: 0.22383 (0.21057) | > loss_disc_real_2: 0.20973 (0.21497) | > loss_disc_real_3: 0.23793 (0.21771) | > loss_disc_real_4: 0.20242 (0.21335) | > loss_disc_real_5: 0.24565 (0.21241) | > loss_0: 2.34541 (2.30901) | > grad_norm_0: 9.76585 (16.55618) | > loss_gen: 2.43501 (2.57170) | > loss_kl: 2.62128 (2.65728) | > loss_feat: 8.50271 (8.71655) | > loss_mel: 18.16629 (17.78604) | > loss_duration: 1.65507 (1.70704) | > loss_1: 33.38036 (33.43867) | > grad_norm_1: 79.05984 (136.98404) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04250 (2.00385) | > loader_time: 0.03180 (0.03583)  --> STEP: 7324/15287 -- GLOBAL_STEP: 957325 | > loss_disc: 2.36964 (2.30899) | > loss_disc_real_0: 0.12770 (0.12259) | > loss_disc_real_1: 0.19350 (0.21058) | > loss_disc_real_2: 0.17522 (0.21495) | > loss_disc_real_3: 0.20007 (0.21770) | > loss_disc_real_4: 0.18199 (0.21334) | > loss_disc_real_5: 0.21156 (0.21239) | > loss_0: 2.36964 (2.30899) | > grad_norm_0: 33.55242 (16.56343) | > loss_gen: 2.24834 (2.57166) | > loss_kl: 2.64527 (2.65732) | > loss_feat: 8.28112 (8.71703) | > loss_mel: 18.07131 (17.78626) | > loss_duration: 1.70012 (1.70702) | > loss_1: 32.94616 (33.43936) | > grad_norm_1: 133.25967 (137.08153) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89960 (2.00361) | > loader_time: 0.05080 (0.03583)  --> STEP: 7349/15287 -- GLOBAL_STEP: 957350 | > loss_disc: 2.31763 (2.30895) | > loss_disc_real_0: 0.18538 (0.12261) | > loss_disc_real_1: 0.21343 (0.21057) | > loss_disc_real_2: 0.21744 (0.21496) | > loss_disc_real_3: 0.20545 (0.21769) | > loss_disc_real_4: 0.22098 (0.21332) | > loss_disc_real_5: 0.22695 (0.21237) | > loss_0: 2.31763 (2.30895) | > grad_norm_0: 31.58218 (16.57850) | > loss_gen: 2.55122 (2.57164) | > loss_kl: 2.87787 (2.65739) | > loss_feat: 8.56920 (8.71677) | > loss_mel: 17.79137 (17.78605) | > loss_duration: 1.69610 (1.70703) | > loss_1: 33.48576 (33.43895) | > grad_norm_1: 145.61275 (137.15193) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01080 (2.00326) | > loader_time: 0.03540 (0.03583)  --> STEP: 7374/15287 -- GLOBAL_STEP: 957375 | > loss_disc: 2.32146 (2.30884) | > loss_disc_real_0: 0.11796 (0.12258) | > loss_disc_real_1: 0.20206 (0.21057) | > loss_disc_real_2: 0.17564 (0.21496) | > loss_disc_real_3: 0.20871 (0.21768) | > loss_disc_real_4: 0.19882 (0.21332) | > loss_disc_real_5: 0.18622 (0.21236) | > loss_0: 2.32146 (2.30884) | > grad_norm_0: 17.44763 (16.58216) | > loss_gen: 2.49602 (2.57174) | > loss_kl: 2.73967 (2.65752) | > loss_feat: 9.04119 (8.71762) | > loss_mel: 17.65442 (17.78609) | > loss_duration: 1.67196 (1.70703) | > loss_1: 33.60327 (33.44007) | > grad_norm_1: 186.31419 (137.24576) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.70760 (2.00315) | > loader_time: 0.03480 (0.03584)  --> STEP: 7399/15287 -- GLOBAL_STEP: 957400 | > loss_disc: 2.33169 (2.30883) | > loss_disc_real_0: 0.11865 (0.12256) | > loss_disc_real_1: 0.19156 (0.21056) | > loss_disc_real_2: 0.19437 (0.21498) | > loss_disc_real_3: 0.20369 (0.21769) | > loss_disc_real_4: 0.19047 (0.21332) | > loss_disc_real_5: 0.21779 (0.21236) | > loss_0: 2.33169 (2.30883) | > grad_norm_0: 24.41085 (16.59751) | > loss_gen: 2.34977 (2.57168) | > loss_kl: 2.66144 (2.65753) | > loss_feat: 8.69868 (8.71749) | > loss_mel: 17.47560 (17.78598) | > loss_duration: 1.68478 (1.70702) | > loss_1: 32.87027 (33.43978) | > grad_norm_1: 145.25137 (137.25854) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15640 (2.00300) | > loader_time: 0.03220 (0.03584)  --> STEP: 7424/15287 -- GLOBAL_STEP: 957425 | > loss_disc: 2.35927 (2.30889) | > loss_disc_real_0: 0.08485 (0.12256) | > loss_disc_real_1: 0.26025 (0.21059) | > loss_disc_real_2: 0.25321 (0.21497) | > loss_disc_real_3: 0.24828 (0.21769) | > loss_disc_real_4: 0.20593 (0.21333) | > loss_disc_real_5: 0.20819 (0.21237) | > loss_0: 2.35927 (2.30889) | > grad_norm_0: 7.16349 (16.58015) | > loss_gen: 2.81043 (2.57181) | > loss_kl: 2.68192 (2.65757) | > loss_feat: 8.79535 (8.71786) | > loss_mel: 18.22637 (17.78668) | > loss_duration: 1.67800 (1.70704) | > loss_1: 34.19205 (33.44102) | > grad_norm_1: 90.91613 (137.14632) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91850 (2.00278) | > loader_time: 0.03140 (0.03583)  --> STEP: 7449/15287 -- GLOBAL_STEP: 957450 | > loss_disc: 2.36456 (2.30903) | > loss_disc_real_0: 0.12200 (0.12260) | > loss_disc_real_1: 0.24819 (0.21059) | > loss_disc_real_2: 0.23280 (0.21497) | > loss_disc_real_3: 0.23028 (0.21771) | > loss_disc_real_4: 0.23264 (0.21334) | > loss_disc_real_5: 0.19508 (0.21238) | > loss_0: 2.36456 (2.30903) | > grad_norm_0: 14.52452 (16.56384) | > loss_gen: 2.50766 (2.57179) | > loss_kl: 2.67879 (2.65760) | > loss_feat: 8.85664 (8.71795) | > loss_mel: 18.30496 (17.78756) | > loss_duration: 1.74204 (1.70701) | > loss_1: 34.09009 (33.44199) | > grad_norm_1: 190.60939 (136.99031) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00990 (2.00230) | > loader_time: 0.03220 (0.03584)  --> STEP: 7474/15287 -- GLOBAL_STEP: 957475 | > loss_disc: 2.31978 (2.30920) | > loss_disc_real_0: 0.14036 (0.12265) | > loss_disc_real_1: 0.21789 (0.21057) | > loss_disc_real_2: 0.23378 (0.21498) | > loss_disc_real_3: 0.19520 (0.21774) | > loss_disc_real_4: 0.19244 (0.21335) | > loss_disc_real_5: 0.21209 (0.21237) | > loss_0: 2.31978 (2.30920) | > grad_norm_0: 16.68359 (16.57331) | > loss_gen: 2.69445 (2.57176) | > loss_kl: 2.74670 (2.65753) | > loss_feat: 9.14542 (8.71775) | > loss_mel: 18.12766 (17.78812) | > loss_duration: 1.69081 (1.70697) | > loss_1: 34.40504 (33.44221) | > grad_norm_1: 91.65956 (136.93851) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98150 (2.00219) | > loader_time: 0.03040 (0.03583)  --> STEP: 7499/15287 -- GLOBAL_STEP: 957500 | > loss_disc: 2.39754 (2.30925) | > loss_disc_real_0: 0.11171 (0.12266) | > loss_disc_real_1: 0.21364 (0.21059) | > loss_disc_real_2: 0.22052 (0.21500) | > loss_disc_real_3: 0.22413 (0.21774) | > loss_disc_real_4: 0.22932 (0.21335) | > loss_disc_real_5: 0.23409 (0.21238) | > loss_0: 2.39754 (2.30925) | > grad_norm_0: 9.90584 (16.57697) | > loss_gen: 2.66094 (2.57175) | > loss_kl: 2.66905 (2.65750) | > loss_feat: 8.21539 (8.71733) | > loss_mel: 17.67241 (17.78822) | > loss_duration: 1.64034 (1.70694) | > loss_1: 32.85814 (33.44182) | > grad_norm_1: 175.73158 (136.95462) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23220 (2.00209) | > loader_time: 0.03570 (0.03583)  --> STEP: 7524/15287 -- GLOBAL_STEP: 957525 | > loss_disc: 2.26367 (2.30917) | > loss_disc_real_0: 0.08987 (0.12263) | > loss_disc_real_1: 0.20907 (0.21059) | > loss_disc_real_2: 0.21417 (0.21498) | > loss_disc_real_3: 0.19512 (0.21774) | > loss_disc_real_4: 0.22975 (0.21333) | > loss_disc_real_5: 0.22530 (0.21238) | > loss_0: 2.26367 (2.30917) | > grad_norm_0: 11.21623 (16.57847) | > loss_gen: 2.67989 (2.57166) | > loss_kl: 2.57993 (2.65743) | > loss_feat: 8.91329 (8.71739) | > loss_mel: 17.72503 (17.78795) | > loss_duration: 1.71073 (1.70694) | > loss_1: 33.60887 (33.44145) | > grad_norm_1: 178.11247 (137.00574) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00110 (2.00171) | > loader_time: 0.03130 (0.03582)  --> STEP: 7549/15287 -- GLOBAL_STEP: 957550 | > loss_disc: 2.40055 (2.30907) | > loss_disc_real_0: 0.13639 (0.12261) | > loss_disc_real_1: 0.22656 (0.21058) | > loss_disc_real_2: 0.23854 (0.21497) | > loss_disc_real_3: 0.21090 (0.21774) | > loss_disc_real_4: 0.25187 (0.21332) | > loss_disc_real_5: 0.22070 (0.21237) | > loss_0: 2.40055 (2.30907) | > grad_norm_0: 20.22542 (16.57935) | > loss_gen: 2.47991 (2.57172) | > loss_kl: 2.71424 (2.65741) | > loss_feat: 8.65248 (8.71778) | > loss_mel: 17.60129 (17.78763) | > loss_duration: 1.70131 (1.70691) | > loss_1: 33.14923 (33.44155) | > grad_norm_1: 104.36983 (136.98734) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92190 (2.00126) | > loader_time: 0.03150 (0.03582)  --> STEP: 7574/15287 -- GLOBAL_STEP: 957575 | > loss_disc: 2.26444 (2.30900) | > loss_disc_real_0: 0.15043 (0.12260) | > loss_disc_real_1: 0.21938 (0.21058) | > loss_disc_real_2: 0.24499 (0.21497) | > loss_disc_real_3: 0.22547 (0.21774) | > loss_disc_real_4: 0.20531 (0.21332) | > loss_disc_real_5: 0.19505 (0.21237) | > loss_0: 2.26444 (2.30900) | > grad_norm_0: 28.73932 (16.59838) | > loss_gen: 2.93787 (2.57177) | > loss_kl: 2.53843 (2.65736) | > loss_feat: 8.45390 (8.71828) | > loss_mel: 17.60429 (17.78748) | > loss_duration: 1.68763 (1.70692) | > loss_1: 33.22213 (33.44190) | > grad_norm_1: 65.31321 (137.09012) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91570 (2.00082) | > loader_time: 0.03580 (0.03581)  --> STEP: 7599/15287 -- GLOBAL_STEP: 957600 | > loss_disc: 2.30921 (2.30907) | > loss_disc_real_0: 0.11672 (0.12265) | > loss_disc_real_1: 0.24056 (0.21061) | > loss_disc_real_2: 0.21791 (0.21499) | > loss_disc_real_3: 0.19813 (0.21775) | > loss_disc_real_4: 0.22326 (0.21333) | > loss_disc_real_5: 0.24606 (0.21239) | > loss_0: 2.30921 (2.30907) | > grad_norm_0: 30.19509 (16.60734) | > loss_gen: 2.45289 (2.57188) | > loss_kl: 2.69399 (2.65754) | > loss_feat: 8.64464 (8.71844) | > loss_mel: 17.70554 (17.78769) | > loss_duration: 1.72702 (1.70690) | > loss_1: 33.22408 (33.44254) | > grad_norm_1: 135.91151 (137.07428) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09570 (2.00065) | > loader_time: 0.03130 (0.03581)  --> STEP: 7624/15287 -- GLOBAL_STEP: 957625 | > loss_disc: 2.35974 (2.30913) | > loss_disc_real_0: 0.12935 (0.12263) | > loss_disc_real_1: 0.21559 (0.21064) | > loss_disc_real_2: 0.23716 (0.21500) | > loss_disc_real_3: 0.25074 (0.21775) | > loss_disc_real_4: 0.21289 (0.21332) | > loss_disc_real_5: 0.19556 (0.21238) | > loss_0: 2.35974 (2.30913) | > grad_norm_0: 23.13693 (16.61614) | > loss_gen: 2.56171 (2.57171) | > loss_kl: 2.60900 (2.65757) | > loss_feat: 8.48804 (8.71795) | > loss_mel: 17.52711 (17.78737) | > loss_duration: 1.69514 (1.70688) | > loss_1: 32.88100 (33.44155) | > grad_norm_1: 148.63162 (137.10487) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26180 (2.00069) | > loader_time: 0.03940 (0.03581)  --> STEP: 7649/15287 -- GLOBAL_STEP: 957650 | > loss_disc: 2.30434 (2.30913) | > loss_disc_real_0: 0.13745 (0.12262) | > loss_disc_real_1: 0.19626 (0.21064) | > loss_disc_real_2: 0.20409 (0.21501) | > loss_disc_real_3: 0.18848 (0.21775) | > loss_disc_real_4: 0.18659 (0.21331) | > loss_disc_real_5: 0.19661 (0.21238) | > loss_0: 2.30434 (2.30913) | > grad_norm_0: 9.90140 (16.61238) | > loss_gen: 2.46267 (2.57166) | > loss_kl: 2.70856 (2.65753) | > loss_feat: 8.43974 (8.71777) | > loss_mel: 17.90941 (17.78754) | > loss_duration: 1.68113 (1.70686) | > loss_1: 33.20152 (33.44144) | > grad_norm_1: 92.80751 (137.11818) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93680 (2.00064) | > loader_time: 0.03320 (0.03581)  --> STEP: 7674/15287 -- GLOBAL_STEP: 957675 | > loss_disc: 2.27476 (2.30918) | > loss_disc_real_0: 0.13682 (0.12263) | > loss_disc_real_1: 0.19529 (0.21065) | > loss_disc_real_2: 0.22849 (0.21502) | > loss_disc_real_3: 0.19864 (0.21777) | > loss_disc_real_4: 0.19810 (0.21331) | > loss_disc_real_5: 0.25325 (0.21238) | > loss_0: 2.27476 (2.30918) | > grad_norm_0: 14.70156 (16.61240) | > loss_gen: 2.51157 (2.57171) | > loss_kl: 2.57329 (2.65762) | > loss_feat: 8.19706 (8.71795) | > loss_mel: 17.55360 (17.78765) | > loss_duration: 1.72368 (1.70683) | > loss_1: 32.55920 (33.44183) | > grad_norm_1: 73.55783 (137.12619) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.68460 (2.00051) | > loader_time: 0.03160 (0.03581)  --> STEP: 7699/15287 -- GLOBAL_STEP: 957700 | > loss_disc: 2.24135 (2.30913) | > loss_disc_real_0: 0.09092 (0.12261) | > loss_disc_real_1: 0.19038 (0.21066) | > loss_disc_real_2: 0.21654 (0.21501) | > loss_disc_real_3: 0.21690 (0.21774) | > loss_disc_real_4: 0.20627 (0.21329) | > loss_disc_real_5: 0.21763 (0.21239) | > loss_0: 2.24135 (2.30913) | > grad_norm_0: 26.84056 (16.63461) | > loss_gen: 2.67182 (2.57161) | > loss_kl: 2.65378 (2.65753) | > loss_feat: 8.93725 (8.71806) | > loss_mel: 17.89058 (17.78753) | > loss_duration: 1.69443 (1.70680) | > loss_1: 33.84785 (33.44159) | > grad_norm_1: 194.11656 (137.21667) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89380 (2.00038) | > loader_time: 0.03140 (0.03580)  --> STEP: 7724/15287 -- GLOBAL_STEP: 957725 | > loss_disc: 2.32161 (2.30904) | > loss_disc_real_0: 0.16737 (0.12260) | > loss_disc_real_1: 0.19568 (0.21065) | > loss_disc_real_2: 0.22753 (0.21500) | > loss_disc_real_3: 0.22876 (0.21774) | > loss_disc_real_4: 0.24504 (0.21329) | > loss_disc_real_5: 0.19077 (0.21238) | > loss_0: 2.32161 (2.30904) | > grad_norm_0: 23.89969 (16.64178) | > loss_gen: 2.67245 (2.57161) | > loss_kl: 2.66704 (2.65757) | > loss_feat: 8.56069 (8.71849) | > loss_mel: 17.38394 (17.78737) | > loss_duration: 1.71001 (1.70679) | > loss_1: 32.99413 (33.44189) | > grad_norm_1: 96.57906 (137.30600) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01540 (2.00016) | > loader_time: 0.03780 (0.03580)  --> STEP: 7749/15287 -- GLOBAL_STEP: 957750 | > loss_disc: 2.34751 (2.30897) | > loss_disc_real_0: 0.12352 (0.12259) | > loss_disc_real_1: 0.18219 (0.21064) | > loss_disc_real_2: 0.18504 (0.21499) | > loss_disc_real_3: 0.23015 (0.21775) | > loss_disc_real_4: 0.22032 (0.21332) | > loss_disc_real_5: 0.22438 (0.21237) | > loss_0: 2.34751 (2.30897) | > grad_norm_0: 12.87441 (16.64328) | > loss_gen: 2.29868 (2.57168) | > loss_kl: 2.64878 (2.65765) | > loss_feat: 8.82013 (8.71920) | > loss_mel: 17.69627 (17.78760) | > loss_duration: 1.72175 (1.70677) | > loss_1: 33.18560 (33.44296) | > grad_norm_1: 84.39566 (137.38042) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13650 (1.99998) | > loader_time: 0.03320 (0.03580)  --> STEP: 7774/15287 -- GLOBAL_STEP: 957775 | > loss_disc: 2.31027 (2.30890) | > loss_disc_real_0: 0.12668 (0.12256) | > loss_disc_real_1: 0.21343 (0.21062) | > loss_disc_real_2: 0.20057 (0.21498) | > loss_disc_real_3: 0.23724 (0.21772) | > loss_disc_real_4: 0.25174 (0.21330) | > loss_disc_real_5: 0.22344 (0.21237) | > loss_0: 2.31027 (2.30890) | > grad_norm_0: 28.70784 (16.64553) | > loss_gen: 2.55354 (2.57165) | > loss_kl: 2.73550 (2.65763) | > loss_feat: 8.65528 (8.71952) | > loss_mel: 17.10625 (17.78693) | > loss_duration: 1.70427 (1.70674) | > loss_1: 32.75485 (33.44253) | > grad_norm_1: 156.65762 (137.39799) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09450 (1.99983) | > loader_time: 0.03300 (0.03580)  --> STEP: 7799/15287 -- GLOBAL_STEP: 957800 | > loss_disc: 2.27695 (2.30890) | > loss_disc_real_0: 0.12139 (0.12255) | > loss_disc_real_1: 0.17477 (0.21063) | > loss_disc_real_2: 0.19602 (0.21497) | > loss_disc_real_3: 0.22486 (0.21773) | > loss_disc_real_4: 0.21807 (0.21331) | > loss_disc_real_5: 0.21156 (0.21238) | > loss_0: 2.27695 (2.30890) | > grad_norm_0: 20.76857 (16.64913) | > loss_gen: 2.55635 (2.57165) | > loss_kl: 2.71294 (2.65762) | > loss_feat: 9.13995 (8.71975) | > loss_mel: 17.40249 (17.78682) | > loss_duration: 1.72211 (1.70671) | > loss_1: 33.53386 (33.44262) | > grad_norm_1: 146.06512 (137.48753) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04300 (1.99955) | > loader_time: 0.03460 (0.03580)  --> STEP: 7824/15287 -- GLOBAL_STEP: 957825 | > loss_disc: 2.26932 (2.30878) | > loss_disc_real_0: 0.12041 (0.12252) | > loss_disc_real_1: 0.19448 (0.21061) | > loss_disc_real_2: 0.22025 (0.21497) | > loss_disc_real_3: 0.21266 (0.21772) | > loss_disc_real_4: 0.22479 (0.21329) | > loss_disc_real_5: 0.22498 (0.21237) | > loss_0: 2.26932 (2.30878) | > grad_norm_0: 5.46940 (16.65520) | > loss_gen: 2.64873 (2.57168) | > loss_kl: 2.76726 (2.65778) | > loss_feat: 9.15582 (8.72015) | > loss_mel: 17.75629 (17.78663) | > loss_duration: 1.70496 (1.70670) | > loss_1: 34.03307 (33.44300) | > grad_norm_1: 188.72327 (137.61940) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95140 (1.99939) | > loader_time: 0.03280 (0.03579)  --> STEP: 7849/15287 -- GLOBAL_STEP: 957850 | > loss_disc: 2.31243 (2.30884) | > loss_disc_real_0: 0.11706 (0.12251) | > loss_disc_real_1: 0.19150 (0.21060) | > loss_disc_real_2: 0.20933 (0.21496) | > loss_disc_real_3: 0.21527 (0.21772) | > loss_disc_real_4: 0.23985 (0.21330) | > loss_disc_real_5: 0.19146 (0.21237) | > loss_0: 2.31243 (2.30884) | > grad_norm_0: 13.74513 (16.66044) | > loss_gen: 2.49425 (2.57148) | > loss_kl: 2.87147 (2.65791) | > loss_feat: 8.83732 (8.72037) | > loss_mel: 18.19622 (17.78663) | > loss_duration: 1.70787 (1.70669) | > loss_1: 34.10713 (33.44314) | > grad_norm_1: 146.68790 (137.62943) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95330 (1.99919) | > loader_time: 0.04240 (0.03580)  --> STEP: 7874/15287 -- GLOBAL_STEP: 957875 | > loss_disc: 2.30539 (2.30887) | > loss_disc_real_0: 0.12302 (0.12250) | > loss_disc_real_1: 0.17684 (0.21058) | > loss_disc_real_2: 0.19754 (0.21495) | > loss_disc_real_3: 0.22409 (0.21773) | > loss_disc_real_4: 0.21125 (0.21330) | > loss_disc_real_5: 0.19914 (0.21236) | > loss_0: 2.30539 (2.30887) | > grad_norm_0: 14.64900 (16.65957) | > loss_gen: 2.59915 (2.57141) | > loss_kl: 2.69484 (2.65800) | > loss_feat: 9.19337 (8.72025) | > loss_mel: 18.01842 (17.78647) | > loss_duration: 1.72899 (1.70669) | > loss_1: 34.23478 (33.44288) | > grad_norm_1: 201.92368 (137.66513) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.72520 (1.99895) | > loader_time: 0.03650 (0.03580)  --> STEP: 7899/15287 -- GLOBAL_STEP: 957900 | > loss_disc: 2.33335 (2.30881) | > loss_disc_real_0: 0.07677 (0.12249) | > loss_disc_real_1: 0.22130 (0.21059) | > loss_disc_real_2: 0.21026 (0.21496) | > loss_disc_real_3: 0.20783 (0.21771) | > loss_disc_real_4: 0.19810 (0.21332) | > loss_disc_real_5: 0.20123 (0.21235) | > loss_0: 2.33335 (2.30881) | > grad_norm_0: 10.83401 (16.65715) | > loss_gen: 2.46997 (2.57157) | > loss_kl: 2.74307 (2.65803) | > loss_feat: 9.51830 (8.72084) | > loss_mel: 18.44795 (17.78684) | > loss_duration: 1.73473 (1.70672) | > loss_1: 34.91401 (33.44405) | > grad_norm_1: 134.47279 (137.69073) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.62250 (1.99890) | > loader_time: 0.03030 (0.03579)  --> STEP: 7924/15287 -- GLOBAL_STEP: 957925 | > loss_disc: 2.33581 (2.30885) | > loss_disc_real_0: 0.14426 (0.12250) | > loss_disc_real_1: 0.18650 (0.21058) | > loss_disc_real_2: 0.25146 (0.21497) | > loss_disc_real_3: 0.21225 (0.21770) | > loss_disc_real_4: 0.22230 (0.21331) | > loss_disc_real_5: 0.21935 (0.21233) | > loss_0: 2.33581 (2.30885) | > grad_norm_0: 13.79631 (16.65589) | > loss_gen: 2.41960 (2.57142) | > loss_kl: 2.71519 (2.65796) | > loss_feat: 8.60567 (8.72076) | > loss_mel: 17.83555 (17.78677) | > loss_duration: 1.69053 (1.70671) | > loss_1: 33.26653 (33.44368) | > grad_norm_1: 123.61870 (137.68347) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39640 (1.99876) | > loader_time: 0.03450 (0.03579)  --> STEP: 7949/15287 -- GLOBAL_STEP: 957950 | > loss_disc: 2.25784 (2.30888) | > loss_disc_real_0: 0.11906 (0.12251) | > loss_disc_real_1: 0.18565 (0.21058) | > loss_disc_real_2: 0.21918 (0.21495) | > loss_disc_real_3: 0.20262 (0.21771) | > loss_disc_real_4: 0.19362 (0.21331) | > loss_disc_real_5: 0.23445 (0.21234) | > loss_0: 2.25784 (2.30888) | > grad_norm_0: 16.46312 (16.66044) | > loss_gen: 2.48910 (2.57134) | > loss_kl: 2.64518 (2.65788) | > loss_feat: 9.00168 (8.72098) | > loss_mel: 17.58602 (17.78635) | > loss_duration: 1.70268 (1.70668) | > loss_1: 33.42467 (33.44328) | > grad_norm_1: 113.63256 (137.67407) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02940 (1.99880) | > loader_time: 0.03610 (0.03579)  --> STEP: 7974/15287 -- GLOBAL_STEP: 957975 | > loss_disc: 2.33546 (2.30888) | > loss_disc_real_0: 0.09237 (0.12248) | > loss_disc_real_1: 0.19038 (0.21058) | > loss_disc_real_2: 0.21332 (0.21495) | > loss_disc_real_3: 0.21128 (0.21772) | > loss_disc_real_4: 0.18450 (0.21332) | > loss_disc_real_5: 0.19924 (0.21234) | > loss_0: 2.33546 (2.30888) | > grad_norm_0: 22.03387 (16.65125) | > loss_gen: 2.38636 (2.57145) | > loss_kl: 2.54941 (2.65781) | > loss_feat: 8.76148 (8.72105) | > loss_mel: 17.46761 (17.78629) | > loss_duration: 1.73918 (1.70668) | > loss_1: 32.90405 (33.44333) | > grad_norm_1: 159.33029 (137.69711) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.68940 (1.99859) | > loader_time: 0.03480 (0.03578)  --> STEP: 7999/15287 -- GLOBAL_STEP: 958000 | > loss_disc: 2.37585 (2.30887) | > loss_disc_real_0: 0.15224 (0.12248) | > loss_disc_real_1: 0.22316 (0.21056) | > loss_disc_real_2: 0.21663 (0.21494) | > loss_disc_real_3: 0.21199 (0.21772) | > loss_disc_real_4: 0.21867 (0.21332) | > loss_disc_real_5: 0.23703 (0.21236) | > loss_0: 2.37585 (2.30887) | > grad_norm_0: 30.55328 (16.66184) | > loss_gen: 2.53928 (2.57145) | > loss_kl: 2.83051 (2.65785) | > loss_feat: 8.77025 (8.72115) | > loss_mel: 17.67414 (17.78609) | > loss_duration: 1.73337 (1.70666) | > loss_1: 33.54754 (33.44324) | > grad_norm_1: 222.95985 (137.79391) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.62240 (1.99829) | > loader_time: 0.03080 (0.03578)  --> STEP: 8024/15287 -- GLOBAL_STEP: 958025 | > loss_disc: 2.36693 (2.30874) | > loss_disc_real_0: 0.15597 (0.12245) | > loss_disc_real_1: 0.21433 (0.21056) | > loss_disc_real_2: 0.20151 (0.21493) | > loss_disc_real_3: 0.21574 (0.21773) | > loss_disc_real_4: 0.22291 (0.21331) | > loss_disc_real_5: 0.20701 (0.21236) | > loss_0: 2.36693 (2.30874) | > grad_norm_0: 9.67983 (16.66576) | > loss_gen: 2.52149 (2.57155) | > loss_kl: 2.74070 (2.65779) | > loss_feat: 8.61946 (8.72139) | > loss_mel: 17.69050 (17.78603) | > loss_duration: 1.74134 (1.70665) | > loss_1: 33.31349 (33.44345) | > grad_norm_1: 225.89703 (137.90039) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87540 (1.99803) | > loader_time: 0.03580 (0.03577)  --> STEP: 8049/15287 -- GLOBAL_STEP: 958050 | > loss_disc: 2.29505 (2.30866) | > loss_disc_real_0: 0.10370 (0.12245) | > loss_disc_real_1: 0.19895 (0.21056) | > loss_disc_real_2: 0.20036 (0.21492) | > loss_disc_real_3: 0.22386 (0.21772) | > loss_disc_real_4: 0.21254 (0.21329) | > loss_disc_real_5: 0.20660 (0.21237) | > loss_0: 2.29505 (2.30866) | > grad_norm_0: 29.02693 (16.68363) | > loss_gen: 2.43501 (2.57160) | > loss_kl: 2.75927 (2.65780) | > loss_feat: 8.86244 (8.72185) | > loss_mel: 18.54777 (17.78646) | > loss_duration: 1.71522 (1.70665) | > loss_1: 34.31971 (33.44439) | > grad_norm_1: 207.22357 (137.92355) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93350 (1.99798) | > loader_time: 0.03360 (0.03577)  --> STEP: 8074/15287 -- GLOBAL_STEP: 958075 | > loss_disc: 2.22126 (2.30853) | > loss_disc_real_0: 0.11886 (0.12241) | > loss_disc_real_1: 0.21620 (0.21054) | > loss_disc_real_2: 0.20049 (0.21491) | > loss_disc_real_3: 0.20980 (0.21771) | > loss_disc_real_4: 0.19419 (0.21329) | > loss_disc_real_5: 0.17597 (0.21237) | > loss_0: 2.22126 (2.30853) | > grad_norm_0: 16.69678 (16.69574) | > loss_gen: 2.70577 (2.57168) | > loss_kl: 2.59337 (2.65784) | > loss_feat: 8.87973 (8.72231) | > loss_mel: 17.60499 (17.78583) | > loss_duration: 1.68220 (1.70662) | > loss_1: 33.46606 (33.44430) | > grad_norm_1: 194.65967 (138.09239) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90940 (1.99768) | > loader_time: 0.03030 (0.03576)  --> STEP: 8099/15287 -- GLOBAL_STEP: 958100 | > loss_disc: 2.26736 (2.30851) | > loss_disc_real_0: 0.13223 (0.12241) | > loss_disc_real_1: 0.21487 (0.21053) | > loss_disc_real_2: 0.21762 (0.21491) | > loss_disc_real_3: 0.23256 (0.21770) | > loss_disc_real_4: 0.21986 (0.21329) | > loss_disc_real_5: 0.21169 (0.21238) | > loss_0: 2.26736 (2.30851) | > grad_norm_0: 5.89305 (16.70842) | > loss_gen: 2.40627 (2.57161) | > loss_kl: 2.74779 (2.65795) | > loss_feat: 9.16885 (8.72277) | > loss_mel: 18.14179 (17.78601) | > loss_duration: 1.69759 (1.70660) | > loss_1: 34.16229 (33.44496) | > grad_norm_1: 127.19343 (138.23669) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92050 (1.99741) | > loader_time: 0.03050 (0.03575)  --> STEP: 8124/15287 -- GLOBAL_STEP: 958125 | > loss_disc: 2.27166 (2.30848) | > loss_disc_real_0: 0.12641 (0.12239) | > loss_disc_real_1: 0.19996 (0.21051) | > loss_disc_real_2: 0.18887 (0.21489) | > loss_disc_real_3: 0.19235 (0.21768) | > loss_disc_real_4: 0.16545 (0.21326) | > loss_disc_real_5: 0.19419 (0.21237) | > loss_0: 2.27166 (2.30848) | > grad_norm_0: 22.20210 (16.71430) | > loss_gen: 2.61718 (2.57148) | > loss_kl: 2.58049 (2.65791) | > loss_feat: 8.81169 (8.72289) | > loss_mel: 18.01629 (17.78553) | > loss_duration: 1.70772 (1.70660) | > loss_1: 33.73338 (33.44442) | > grad_norm_1: 159.44461 (138.36534) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93590 (1.99712) | > loader_time: 0.03610 (0.03574)  --> STEP: 8149/15287 -- GLOBAL_STEP: 958150 | > loss_disc: 2.40129 (2.30850) | > loss_disc_real_0: 0.21136 (0.12240) | > loss_disc_real_1: 0.28301 (0.21052) | > loss_disc_real_2: 0.24990 (0.21490) | > loss_disc_real_3: 0.23387 (0.21767) | > loss_disc_real_4: 0.22067 (0.21326) | > loss_disc_real_5: 0.23139 (0.21240) | > loss_0: 2.40129 (2.30850) | > grad_norm_0: 12.01611 (16.72654) | > loss_gen: 2.74438 (2.57161) | > loss_kl: 2.70304 (2.65791) | > loss_feat: 8.46026 (8.72327) | > loss_mel: 17.97618 (17.78529) | > loss_duration: 1.66308 (1.70658) | > loss_1: 33.54694 (33.44467) | > grad_norm_1: 82.63002 (138.42175) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00960 (1.99707) | > loader_time: 0.03130 (0.03573)  --> STEP: 8174/15287 -- GLOBAL_STEP: 958175 | > loss_disc: 2.29302 (2.30850) | > loss_disc_real_0: 0.12782 (0.12240) | > loss_disc_real_1: 0.20292 (0.21052) | > loss_disc_real_2: 0.21501 (0.21490) | > loss_disc_real_3: 0.23721 (0.21767) | > loss_disc_real_4: 0.22805 (0.21326) | > loss_disc_real_5: 0.21471 (0.21238) | > loss_0: 2.29302 (2.30850) | > grad_norm_0: 14.96632 (16.72124) | > loss_gen: 2.46944 (2.57155) | > loss_kl: 2.81957 (2.65802) | > loss_feat: 8.87575 (8.72340) | > loss_mel: 18.13267 (17.78559) | > loss_duration: 1.72125 (1.70659) | > loss_1: 34.01867 (33.44516) | > grad_norm_1: 150.88011 (138.38785) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97690 (1.99697) | > loader_time: 0.03470 (0.03573)  --> STEP: 8199/15287 -- GLOBAL_STEP: 958200 | > loss_disc: 2.34595 (2.30857) | > loss_disc_real_0: 0.15627 (0.12238) | > loss_disc_real_1: 0.20338 (0.21053) | > loss_disc_real_2: 0.19977 (0.21492) | > loss_disc_real_3: 0.22315 (0.21767) | > loss_disc_real_4: 0.17692 (0.21326) | > loss_disc_real_5: 0.20794 (0.21239) | > loss_0: 2.34595 (2.30857) | > grad_norm_0: 10.73052 (16.70983) | > loss_gen: 2.60674 (2.57168) | > loss_kl: 2.66088 (2.65805) | > loss_feat: 8.66505 (8.72383) | > loss_mel: 17.73258 (17.78583) | > loss_duration: 1.70181 (1.70658) | > loss_1: 33.36705 (33.44598) | > grad_norm_1: 105.24394 (138.35359) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.68130 (1.99664) | > loader_time: 0.02980 (0.03573)  --> STEP: 8224/15287 -- GLOBAL_STEP: 958225 | > loss_disc: 2.30218 (2.30870) | > loss_disc_real_0: 0.13523 (0.12239) | > loss_disc_real_1: 0.21924 (0.21054) | > loss_disc_real_2: 0.20956 (0.21493) | > loss_disc_real_3: 0.22351 (0.21769) | > loss_disc_real_4: 0.21675 (0.21328) | > loss_disc_real_5: 0.22277 (0.21239) | > loss_0: 2.30218 (2.30870) | > grad_norm_0: 12.97856 (16.69019) | > loss_gen: 2.60810 (2.57164) | > loss_kl: 2.64515 (2.65797) | > loss_feat: 8.81194 (8.72385) | > loss_mel: 17.74337 (17.78637) | > loss_duration: 1.69317 (1.70657) | > loss_1: 33.50172 (33.44639) | > grad_norm_1: 93.34293 (138.15308) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10680 (1.99680) | > loader_time: 0.03110 (0.03572)  --> STEP: 8249/15287 -- GLOBAL_STEP: 958250 | > loss_disc: 2.40780 (2.30894) | > loss_disc_real_0: 0.11964 (0.12246) | > loss_disc_real_1: 0.27421 (0.21058) | > loss_disc_real_2: 0.21519 (0.21495) | > loss_disc_real_3: 0.20374 (0.21771) | > loss_disc_real_4: 0.22248 (0.21328) | > loss_disc_real_5: 0.19611 (0.21240) | > loss_0: 2.40780 (2.30894) | > grad_norm_0: 15.42918 (16.69132) | > loss_gen: 2.42457 (2.57160) | > loss_kl: 2.65494 (2.65795) | > loss_feat: 8.02380 (8.72289) | > loss_mel: 17.93543 (17.78671) | > loss_duration: 1.69661 (1.70659) | > loss_1: 32.73533 (33.44575) | > grad_norm_1: 118.15427 (138.00650) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08770 (1.99693) | > loader_time: 0.03130 (0.03571)  --> STEP: 8274/15287 -- GLOBAL_STEP: 958275 | > loss_disc: 2.37465 (2.30895) | > loss_disc_real_0: 0.09993 (0.12245) | > loss_disc_real_1: 0.25413 (0.21059) | > loss_disc_real_2: 0.24728 (0.21496) | > loss_disc_real_3: 0.21659 (0.21769) | > loss_disc_real_4: 0.23392 (0.21327) | > loss_disc_real_5: 0.22479 (0.21240) | > loss_0: 2.37465 (2.30895) | > grad_norm_0: 11.81645 (16.68844) | > loss_gen: 2.66044 (2.57159) | > loss_kl: 2.64298 (2.65793) | > loss_feat: 8.59104 (8.72243) | > loss_mel: 18.07741 (17.78694) | > loss_duration: 1.68009 (1.70655) | > loss_1: 33.65197 (33.44544) | > grad_norm_1: 53.17835 (137.97935) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38950 (1.99767) | > loader_time: 0.03150 (0.03571)  --> STEP: 8299/15287 -- GLOBAL_STEP: 958300 | > loss_disc: 2.24228 (2.30891) | > loss_disc_real_0: 0.11161 (0.12246) | > loss_disc_real_1: 0.18640 (0.21058) | > loss_disc_real_2: 0.21000 (0.21496) | > loss_disc_real_3: 0.21649 (0.21770) | > loss_disc_real_4: 0.21587 (0.21328) | > loss_disc_real_5: 0.22054 (0.21240) | > loss_0: 2.24228 (2.30891) | > grad_norm_0: 23.95765 (16.69445) | > loss_gen: 2.49278 (2.57158) | > loss_kl: 2.69082 (2.65786) | > loss_feat: 8.82311 (8.72258) | > loss_mel: 17.69730 (17.78673) | > loss_duration: 1.72551 (1.70655) | > loss_1: 33.42952 (33.44532) | > grad_norm_1: 141.94591 (137.97214) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.12940 (1.99848) | > loader_time: 0.03780 (0.03571)  --> STEP: 8324/15287 -- GLOBAL_STEP: 958325 | > loss_disc: 2.29302 (2.30882) | > loss_disc_real_0: 0.10061 (0.12243) | > loss_disc_real_1: 0.22402 (0.21058) | > loss_disc_real_2: 0.21757 (0.21495) | > loss_disc_real_3: 0.22265 (0.21770) | > loss_disc_real_4: 0.22105 (0.21328) | > loss_disc_real_5: 0.19164 (0.21238) | > loss_0: 2.29302 (2.30882) | > grad_norm_0: 11.09822 (16.69426) | > loss_gen: 2.68615 (2.57170) | > loss_kl: 2.66571 (2.65787) | > loss_feat: 9.23559 (8.72311) | > loss_mel: 18.46740 (17.78666) | > loss_duration: 1.73230 (1.70655) | > loss_1: 34.78715 (33.44590) | > grad_norm_1: 185.53284 (138.00963) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.79900 (1.99925) | > loader_time: 0.03500 (0.03570)  --> STEP: 8349/15287 -- GLOBAL_STEP: 958350 | > loss_disc: 2.34136 (2.30882) | > loss_disc_real_0: 0.10153 (0.12244) | > loss_disc_real_1: 0.20556 (0.21059) | > loss_disc_real_2: 0.21570 (0.21495) | > loss_disc_real_3: 0.24778 (0.21770) | > loss_disc_real_4: 0.22834 (0.21329) | > loss_disc_real_5: 0.24142 (0.21240) | > loss_0: 2.34136 (2.30882) | > grad_norm_0: 32.60072 (16.70292) | > loss_gen: 2.39467 (2.57165) | > loss_kl: 2.77590 (2.65786) | > loss_feat: 8.64854 (8.72299) | > loss_mel: 18.12978 (17.78640) | > loss_duration: 1.71499 (1.70653) | > loss_1: 33.66388 (33.44545) | > grad_norm_1: 191.47742 (137.98581) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 4.35570 (2.00001) | > loader_time: 0.03460 (0.03569)  --> STEP: 8374/15287 -- GLOBAL_STEP: 958375 | > loss_disc: 2.29630 (2.30878) | > loss_disc_real_0: 0.11491 (0.12244) | > loss_disc_real_1: 0.22536 (0.21058) | > loss_disc_real_2: 0.22145 (0.21494) | > loss_disc_real_3: 0.24585 (0.21769) | > loss_disc_real_4: 0.21916 (0.21329) | > loss_disc_real_5: 0.22893 (0.21240) | > loss_0: 2.29630 (2.30878) | > grad_norm_0: 7.71424 (16.69794) | > loss_gen: 2.60152 (2.57161) | > loss_kl: 2.81405 (2.65784) | > loss_feat: 8.67479 (8.72289) | > loss_mel: 17.79980 (17.78579) | > loss_duration: 1.74727 (1.70651) | > loss_1: 33.63744 (33.44465) | > grad_norm_1: 128.78951 (137.96870) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26650 (2.00114) | > loader_time: 0.03500 (0.03569)  --> STEP: 8399/15287 -- GLOBAL_STEP: 958400 | > loss_disc: 2.32373 (2.30870) | > loss_disc_real_0: 0.11455 (0.12242) | > loss_disc_real_1: 0.26274 (0.21058) | > loss_disc_real_2: 0.25751 (0.21494) | > loss_disc_real_3: 0.20894 (0.21768) | > loss_disc_real_4: 0.24786 (0.21329) | > loss_disc_real_5: 0.20528 (0.21238) | > loss_0: 2.32373 (2.30870) | > grad_norm_0: 25.50948 (16.69940) | > loss_gen: 2.60856 (2.57166) | > loss_kl: 2.58463 (2.65798) | > loss_feat: 8.71249 (8.72295) | > loss_mel: 17.39284 (17.78535) | > loss_duration: 1.71506 (1.70651) | > loss_1: 33.01357 (33.44445) | > grad_norm_1: 172.75983 (138.01173) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32770 (2.00187) | > loader_time: 0.03170 (0.03569)  --> STEP: 8424/15287 -- GLOBAL_STEP: 958425 | > loss_disc: 2.28012 (2.30871) | > loss_disc_real_0: 0.11273 (0.12239) | > loss_disc_real_1: 0.20882 (0.21056) | > loss_disc_real_2: 0.22618 (0.21494) | > loss_disc_real_3: 0.21515 (0.21766) | > loss_disc_real_4: 0.18481 (0.21329) | > loss_disc_real_5: 0.20325 (0.21239) | > loss_0: 2.28012 (2.30871) | > grad_norm_0: 14.99019 (16.72155) | > loss_gen: 2.57061 (2.57153) | > loss_kl: 2.49475 (2.65812) | > loss_feat: 8.72126 (8.72268) | > loss_mel: 17.77927 (17.78503) | > loss_duration: 1.70580 (1.70649) | > loss_1: 33.27169 (33.44387) | > grad_norm_1: 184.67654 (138.06387) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92460 (2.00261) | > loader_time: 0.03090 (0.03568)  --> STEP: 8449/15287 -- GLOBAL_STEP: 958450 | > loss_disc: 2.33690 (2.30864) | > loss_disc_real_0: 0.21259 (0.12238) | > loss_disc_real_1: 0.16639 (0.21055) | > loss_disc_real_2: 0.18108 (0.21493) | > loss_disc_real_3: 0.18649 (0.21766) | > loss_disc_real_4: 0.20381 (0.21328) | > loss_disc_real_5: 0.18660 (0.21239) | > loss_0: 2.33690 (2.30864) | > grad_norm_0: 37.90310 (16.72094) | > loss_gen: 2.70523 (2.57158) | > loss_kl: 2.68164 (2.65817) | > loss_feat: 8.24718 (8.72272) | > loss_mel: 17.85908 (17.78494) | > loss_duration: 1.67345 (1.70649) | > loss_1: 33.16657 (33.44391) | > grad_norm_1: 81.83735 (138.12265) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.50000 (2.00358) | > loader_time: 0.03440 (0.03568)  --> STEP: 8474/15287 -- GLOBAL_STEP: 958475 | > loss_disc: 2.36098 (2.30864) | > loss_disc_real_0: 0.12874 (0.12241) | > loss_disc_real_1: 0.19519 (0.21054) | > loss_disc_real_2: 0.23648 (0.21493) | > loss_disc_real_3: 0.24142 (0.21765) | > loss_disc_real_4: 0.22842 (0.21328) | > loss_disc_real_5: 0.26788 (0.21241) | > loss_0: 2.36098 (2.30864) | > grad_norm_0: 13.84910 (16.72775) | > loss_gen: 2.48620 (2.57155) | > loss_kl: 2.77036 (2.65824) | > loss_feat: 8.50168 (8.72289) | > loss_mel: 17.42027 (17.78450) | > loss_duration: 1.72048 (1.70649) | > loss_1: 32.89898 (33.44368) | > grad_norm_1: 181.99498 (138.17064) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34590 (2.00472) | > loader_time: 0.03370 (0.03567)  --> STEP: 8499/15287 -- GLOBAL_STEP: 958500 | > loss_disc: 2.22917 (2.30862) | > loss_disc_real_0: 0.10414 (0.12242) | > loss_disc_real_1: 0.20423 (0.21054) | > loss_disc_real_2: 0.20791 (0.21493) | > loss_disc_real_3: 0.19853 (0.21764) | > loss_disc_real_4: 0.20521 (0.21328) | > loss_disc_real_5: 0.19296 (0.21240) | > loss_0: 2.22917 (2.30862) | > grad_norm_0: 14.81948 (16.73428) | > loss_gen: 2.49507 (2.57156) | > loss_kl: 2.66572 (2.65830) | > loss_feat: 8.57736 (8.72314) | > loss_mel: 17.95400 (17.78469) | > loss_duration: 1.73535 (1.70648) | > loss_1: 33.42751 (33.44418) | > grad_norm_1: 158.45757 (138.23343) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.14700 (2.00578) | > loader_time: 0.04910 (0.03567)  --> STEP: 8524/15287 -- GLOBAL_STEP: 958525 | > loss_disc: 2.35700 (2.30872) | > loss_disc_real_0: 0.16613 (0.12244) | > loss_disc_real_1: 0.18748 (0.21055) | > loss_disc_real_2: 0.21409 (0.21493) | > loss_disc_real_3: 0.23464 (0.21766) | > loss_disc_real_4: 0.22436 (0.21327) | > loss_disc_real_5: 0.20301 (0.21240) | > loss_0: 2.35700 (2.30872) | > grad_norm_0: 14.48081 (16.72937) | > loss_gen: 2.42757 (2.57161) | > loss_kl: 2.70041 (2.65838) | > loss_feat: 9.13148 (8.72330) | > loss_mel: 18.26648 (17.78482) | > loss_duration: 1.73027 (1.70650) | > loss_1: 34.25621 (33.44461) | > grad_norm_1: 93.97437 (138.22546) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.62230 (2.00658) | > loader_time: 0.03470 (0.03567)  --> STEP: 8549/15287 -- GLOBAL_STEP: 958550 | > loss_disc: 2.29528 (2.30873) | > loss_disc_real_0: 0.15904 (0.12244) | > loss_disc_real_1: 0.19052 (0.21056) | > loss_disc_real_2: 0.18734 (0.21493) | > loss_disc_real_3: 0.21288 (0.21767) | > loss_disc_real_4: 0.21117 (0.21327) | > loss_disc_real_5: 0.21564 (0.21240) | > loss_0: 2.29528 (2.30873) | > grad_norm_0: 25.14429 (16.74363) | > loss_gen: 2.47415 (2.57149) | > loss_kl: 2.79225 (2.65844) | > loss_feat: 8.51863 (8.72311) | > loss_mel: 17.67727 (17.78471) | > loss_duration: 1.70870 (1.70651) | > loss_1: 33.17101 (33.44429) | > grad_norm_1: 135.57036 (138.30608) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98080 (2.00775) | > loader_time: 0.03100 (0.03566)  --> STEP: 8574/15287 -- GLOBAL_STEP: 958575 | > loss_disc: 2.32942 (2.30864) | > loss_disc_real_0: 0.12317 (0.12242) | > loss_disc_real_1: 0.21035 (0.21056) | > loss_disc_real_2: 0.23324 (0.21494) | > loss_disc_real_3: 0.24848 (0.21766) | > loss_disc_real_4: 0.23803 (0.21327) | > loss_disc_real_5: 0.19747 (0.21238) | > loss_0: 2.32942 (2.30864) | > grad_norm_0: 39.68057 (16.75571) | > loss_gen: 2.47804 (2.57158) | > loss_kl: 2.71162 (2.65847) | > loss_feat: 8.60502 (8.72316) | > loss_mel: 18.18955 (17.78433) | > loss_duration: 1.66928 (1.70648) | > loss_1: 33.65352 (33.44406) | > grad_norm_1: 200.94408 (138.42618) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37280 (2.00904) | > loader_time: 0.03530 (0.03566)  --> STEP: 8599/15287 -- GLOBAL_STEP: 958600 | > loss_disc: 2.30380 (2.30874) | > loss_disc_real_0: 0.15436 (0.12245) | > loss_disc_real_1: 0.20700 (0.21057) | > loss_disc_real_2: 0.22466 (0.21494) | > loss_disc_real_3: 0.28588 (0.21769) | > loss_disc_real_4: 0.24070 (0.21328) | > loss_disc_real_5: 0.22057 (0.21239) | > loss_0: 2.30380 (2.30874) | > grad_norm_0: 16.12784 (16.75577) | > loss_gen: 2.55344 (2.57162) | > loss_kl: 2.74116 (2.65867) | > loss_feat: 9.04590 (8.72298) | > loss_mel: 18.02131 (17.78469) | > loss_duration: 1.69038 (1.70646) | > loss_1: 34.05219 (33.44449) | > grad_norm_1: 74.80457 (138.44360) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.49200 (2.01026) | > loader_time: 0.03730 (0.03566)  --> STEP: 8624/15287 -- GLOBAL_STEP: 958625 | > loss_disc: 2.23640 (2.30869) | > loss_disc_real_0: 0.10891 (0.12243) | > loss_disc_real_1: 0.16904 (0.21057) | > loss_disc_real_2: 0.18230 (0.21495) | > loss_disc_real_3: 0.19570 (0.21767) | > loss_disc_real_4: 0.20941 (0.21328) | > loss_disc_real_5: 0.22003 (0.21238) | > loss_0: 2.23640 (2.30869) | > grad_norm_0: 11.29389 (16.75794) | > loss_gen: 2.66553 (2.57156) | > loss_kl: 2.61989 (2.65872) | > loss_feat: 8.85552 (8.72274) | > loss_mel: 17.58595 (17.78492) | > loss_duration: 1.67576 (1.70645) | > loss_1: 33.40266 (33.44444) | > grad_norm_1: 147.42245 (138.43794) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01390 (2.01140) | > loader_time: 0.03430 (0.03565)  --> STEP: 8649/15287 -- GLOBAL_STEP: 958650 | > loss_disc: 2.37692 (2.30872) | > loss_disc_real_0: 0.09417 (0.12243) | > loss_disc_real_1: 0.23290 (0.21058) | > loss_disc_real_2: 0.21882 (0.21494) | > loss_disc_real_3: 0.22978 (0.21767) | > loss_disc_real_4: 0.22877 (0.21329) | > loss_disc_real_5: 0.24616 (0.21239) | > loss_0: 2.37692 (2.30872) | > grad_norm_0: 8.62034 (16.75986) | > loss_gen: 2.65293 (2.57158) | > loss_kl: 2.69328 (2.65871) | > loss_feat: 8.81424 (8.72292) | > loss_mel: 17.53245 (17.78487) | > loss_duration: 1.69767 (1.70644) | > loss_1: 33.39057 (33.44456) | > grad_norm_1: 195.20772 (138.48882) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.50260 (2.01266) | > loader_time: 0.03040 (0.03564)  --> STEP: 8674/15287 -- GLOBAL_STEP: 958675 | > loss_disc: 2.23151 (2.30871) | > loss_disc_real_0: 0.12011 (0.12243) | > loss_disc_real_1: 0.21609 (0.21057) | > loss_disc_real_2: 0.19204 (0.21495) | > loss_disc_real_3: 0.20460 (0.21765) | > loss_disc_real_4: 0.19915 (0.21328) | > loss_disc_real_5: 0.19744 (0.21238) | > loss_0: 2.23151 (2.30871) | > grad_norm_0: 9.35492 (16.77836) | > loss_gen: 2.65748 (2.57150) | > loss_kl: 2.53910 (2.65872) | > loss_feat: 8.79442 (8.72270) | > loss_mel: 17.48993 (17.78473) | > loss_duration: 1.66182 (1.70640) | > loss_1: 33.14276 (33.44409) | > grad_norm_1: 70.98684 (138.55214) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88700 (2.01371) | > loader_time: 0.03100 (0.03564)  --> STEP: 8699/15287 -- GLOBAL_STEP: 958700 | > loss_disc: 2.25522 (2.30863) | > loss_disc_real_0: 0.08790 (0.12241) | > loss_disc_real_1: 0.20035 (0.21057) | > loss_disc_real_2: 0.20924 (0.21496) | > loss_disc_real_3: 0.22669 (0.21765) | > loss_disc_real_4: 0.20675 (0.21327) | > loss_disc_real_5: 0.17770 (0.21238) | > loss_0: 2.25522 (2.30863) | > grad_norm_0: 17.59148 (16.77279) | > loss_gen: 2.60503 (2.57154) | > loss_kl: 2.48869 (2.65870) | > loss_feat: 9.25360 (8.72310) | > loss_mel: 17.84877 (17.78442) | > loss_duration: 1.74954 (1.70639) | > loss_1: 33.94564 (33.44419) | > grad_norm_1: 148.87439 (138.57480) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14830 (2.01458) | > loader_time: 0.03320 (0.03563)  --> STEP: 8724/15287 -- GLOBAL_STEP: 958725 | > loss_disc: 2.29937 (2.30864) | > loss_disc_real_0: 0.08249 (0.12239) | > loss_disc_real_1: 0.23371 (0.21056) | > loss_disc_real_2: 0.23886 (0.21495) | > loss_disc_real_3: 0.24163 (0.21766) | > loss_disc_real_4: 0.23285 (0.21329) | > loss_disc_real_5: 0.23542 (0.21239) | > loss_0: 2.29937 (2.30864) | > grad_norm_0: 17.88600 (16.77090) | > loss_gen: 2.70543 (2.57161) | > loss_kl: 2.71377 (2.65874) | > loss_feat: 8.80482 (8.72343) | > loss_mel: 17.87501 (17.78488) | > loss_duration: 1.70813 (1.70639) | > loss_1: 33.80717 (33.44506) | > grad_norm_1: 116.45191 (138.63637) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.68390 (2.01567) | > loader_time: 0.03590 (0.03563)  --> STEP: 8749/15287 -- GLOBAL_STEP: 958750 | > loss_disc: 2.26159 (2.30862) | > loss_disc_real_0: 0.11136 (0.12235) | > loss_disc_real_1: 0.18885 (0.21055) | > loss_disc_real_2: 0.20515 (0.21494) | > loss_disc_real_3: 0.23016 (0.21766) | > loss_disc_real_4: 0.20202 (0.21328) | > loss_disc_real_5: 0.19271 (0.21239) | > loss_0: 2.26159 (2.30862) | > grad_norm_0: 15.89473 (16.78300) | > loss_gen: 2.52769 (2.57160) | > loss_kl: 2.54599 (2.65872) | > loss_feat: 8.59533 (8.72353) | > loss_mel: 17.61617 (17.78471) | > loss_duration: 1.72835 (1.70636) | > loss_1: 33.01353 (33.44495) | > grad_norm_1: 87.74139 (138.67477) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.04570 (2.01690) | > loader_time: 0.03200 (0.03562)  --> STEP: 8774/15287 -- GLOBAL_STEP: 958775 | > loss_disc: 2.26529 (2.30863) | > loss_disc_real_0: 0.12380 (0.12236) | > loss_disc_real_1: 0.20895 (0.21054) | > loss_disc_real_2: 0.20101 (0.21496) | > loss_disc_real_3: 0.21997 (0.21768) | > loss_disc_real_4: 0.21620 (0.21328) | > loss_disc_real_5: 0.22435 (0.21240) | > loss_0: 2.26529 (2.30863) | > grad_norm_0: 14.29978 (16.79833) | > loss_gen: 2.60044 (2.57160) | > loss_kl: 2.73827 (2.65880) | > loss_feat: 8.84248 (8.72346) | > loss_mel: 17.87980 (17.78479) | > loss_duration: 1.71582 (1.70634) | > loss_1: 33.77681 (33.44502) | > grad_norm_1: 119.19904 (138.80106) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88530 (2.01752) | > loader_time: 0.03510 (0.03562)  --> STEP: 8799/15287 -- GLOBAL_STEP: 958800 | > loss_disc: 2.35334 (2.30863) | > loss_disc_real_0: 0.15297 (0.12236) | > loss_disc_real_1: 0.18639 (0.21053) | > loss_disc_real_2: 0.17436 (0.21496) | > loss_disc_real_3: 0.23094 (0.21769) | > loss_disc_real_4: 0.21074 (0.21329) | > loss_disc_real_5: 0.23229 (0.21240) | > loss_0: 2.35334 (2.30863) | > grad_norm_0: 24.48303 (16.81324) | > loss_gen: 2.49706 (2.57162) | > loss_kl: 2.78625 (2.65878) | > loss_feat: 9.08301 (8.72335) | > loss_mel: 18.12832 (17.78502) | > loss_duration: 1.69094 (1.70633) | > loss_1: 34.18558 (33.44513) | > grad_norm_1: 66.68220 (138.95479) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58750 (2.01841) | > loader_time: 0.03310 (0.03563)  --> STEP: 8824/15287 -- GLOBAL_STEP: 958825 | > loss_disc: 2.23034 (2.30866) | > loss_disc_real_0: 0.12449 (0.12238) | > loss_disc_real_1: 0.19925 (0.21053) | > loss_disc_real_2: 0.19106 (0.21496) | > loss_disc_real_3: 0.22283 (0.21770) | > loss_disc_real_4: 0.19988 (0.21329) | > loss_disc_real_5: 0.22955 (0.21239) | > loss_0: 2.23034 (2.30866) | > grad_norm_0: 37.98613 (16.82256) | > loss_gen: 2.50761 (2.57158) | > loss_kl: 2.64682 (2.65877) | > loss_feat: 8.84974 (8.72316) | > loss_mel: 17.89827 (17.78479) | > loss_duration: 1.66774 (1.70631) | > loss_1: 33.57018 (33.44465) | > grad_norm_1: 120.57293 (139.03099) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08770 (2.01973) | > loader_time: 0.03150 (0.03563)  --> STEP: 8849/15287 -- GLOBAL_STEP: 958850 | > loss_disc: 2.38015 (2.30866) | > loss_disc_real_0: 0.13812 (0.12236) | > loss_disc_real_1: 0.26440 (0.21052) | > loss_disc_real_2: 0.21592 (0.21496) | > loss_disc_real_3: 0.20811 (0.21768) | > loss_disc_real_4: 0.20312 (0.21329) | > loss_disc_real_5: 0.21921 (0.21240) | > loss_0: 2.38015 (2.30866) | > grad_norm_0: 29.99637 (16.82936) | > loss_gen: 2.61378 (2.57153) | > loss_kl: 2.55760 (2.65875) | > loss_feat: 8.74967 (8.72320) | > loss_mel: 17.53299 (17.78473) | > loss_duration: 1.69076 (1.70629) | > loss_1: 33.14480 (33.44455) | > grad_norm_1: 156.57892 (139.09235) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23660 (2.02088) | > loader_time: 0.03180 (0.03562)  --> STEP: 8874/15287 -- GLOBAL_STEP: 958875 | > loss_disc: 2.26109 (2.30865) | > loss_disc_real_0: 0.11529 (0.12236) | > loss_disc_real_1: 0.18799 (0.21053) | > loss_disc_real_2: 0.19321 (0.21497) | > loss_disc_real_3: 0.20192 (0.21768) | > loss_disc_real_4: 0.19809 (0.21329) | > loss_disc_real_5: 0.22573 (0.21240) | > loss_0: 2.26109 (2.30865) | > grad_norm_0: 7.97567 (16.82424) | > loss_gen: 2.61473 (2.57154) | > loss_kl: 2.58725 (2.65884) | > loss_feat: 8.66517 (8.72299) | > loss_mel: 17.99696 (17.78472) | > loss_duration: 1.74304 (1.70628) | > loss_1: 33.60714 (33.44444) | > grad_norm_1: 178.29507 (139.12268) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16910 (2.02191) | > loader_time: 0.03060 (0.03562)  --> STEP: 8899/15287 -- GLOBAL_STEP: 958900 | > loss_disc: 2.31347 (2.30880) | > loss_disc_real_0: 0.13211 (0.12237) | > loss_disc_real_1: 0.21177 (0.21053) | > loss_disc_real_2: 0.20618 (0.21497) | > loss_disc_real_3: 0.23866 (0.21768) | > loss_disc_real_4: 0.23869 (0.21330) | > loss_disc_real_5: 0.21937 (0.21240) | > loss_0: 2.31347 (2.30880) | > grad_norm_0: 6.04078 (16.82045) | > loss_gen: 2.59256 (2.57135) | > loss_kl: 2.70864 (2.65896) | > loss_feat: 8.45659 (8.72254) | > loss_mel: 17.78349 (17.78527) | > loss_duration: 1.70173 (1.70626) | > loss_1: 33.24302 (33.44442) | > grad_norm_1: 57.87954 (139.06935) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28200 (2.02256) | > loader_time: 0.03100 (0.03561)  --> STEP: 8924/15287 -- GLOBAL_STEP: 958925 | > loss_disc: 2.28937 (2.30886) | > loss_disc_real_0: 0.13758 (0.12237) | > loss_disc_real_1: 0.20437 (0.21053) | > loss_disc_real_2: 0.22014 (0.21499) | > loss_disc_real_3: 0.22634 (0.21768) | > loss_disc_real_4: 0.22467 (0.21330) | > loss_disc_real_5: 0.24450 (0.21243) | > loss_0: 2.28937 (2.30886) | > grad_norm_0: 16.81045 (16.81190) | > loss_gen: 2.72721 (2.57135) | > loss_kl: 2.64849 (2.65897) | > loss_feat: 8.37461 (8.72218) | > loss_mel: 17.71000 (17.78540) | > loss_duration: 1.70492 (1.70623) | > loss_1: 33.16523 (33.44416) | > grad_norm_1: 102.09566 (139.01167) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.69600 (2.02371) | > loader_time: 0.03960 (0.03561)  --> STEP: 8949/15287 -- GLOBAL_STEP: 958950 | > loss_disc: 2.22826 (2.30885) | > loss_disc_real_0: 0.12093 (0.12237) | > loss_disc_real_1: 0.20406 (0.21054) | > loss_disc_real_2: 0.20307 (0.21498) | > loss_disc_real_3: 0.21229 (0.21767) | > loss_disc_real_4: 0.21482 (0.21330) | > loss_disc_real_5: 0.17387 (0.21242) | > loss_0: 2.22826 (2.30885) | > grad_norm_0: 10.96066 (16.80890) | > loss_gen: 2.51995 (2.57135) | > loss_kl: 2.70610 (2.65891) | > loss_feat: 9.69454 (8.72243) | > loss_mel: 18.26956 (17.78536) | > loss_duration: 1.75194 (1.70622) | > loss_1: 34.94209 (33.44431) | > grad_norm_1: 166.88406 (139.01410) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22010 (2.02458) | > loader_time: 0.03710 (0.03561)  --> STEP: 8974/15287 -- GLOBAL_STEP: 958975 | > loss_disc: 2.34851 (2.30880) | > loss_disc_real_0: 0.09044 (0.12236) | > loss_disc_real_1: 0.23350 (0.21054) | > loss_disc_real_2: 0.23141 (0.21499) | > loss_disc_real_3: 0.22785 (0.21765) | > loss_disc_real_4: 0.21991 (0.21328) | > loss_disc_real_5: 0.20601 (0.21242) | > loss_0: 2.34851 (2.30880) | > grad_norm_0: 10.63128 (16.81778) | > loss_gen: 2.67650 (2.57145) | > loss_kl: 2.68680 (2.65889) | > loss_feat: 8.05553 (8.72304) | > loss_mel: 17.11943 (17.78500) | > loss_duration: 1.64225 (1.70620) | > loss_1: 32.18051 (33.44464) | > grad_norm_1: 200.47697 (139.09938) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28270 (2.02568) | > loader_time: 0.06430 (0.03561)  --> STEP: 8999/15287 -- GLOBAL_STEP: 959000 | > loss_disc: 2.23897 (2.30876) | > loss_disc_real_0: 0.09804 (0.12233) | > loss_disc_real_1: 0.21993 (0.21055) | > loss_disc_real_2: 0.21963 (0.21501) | > loss_disc_real_3: 0.21672 (0.21763) | > loss_disc_real_4: 0.19441 (0.21326) | > loss_disc_real_5: 0.19453 (0.21241) | > loss_0: 2.23897 (2.30876) | > grad_norm_0: 11.24031 (16.81750) | > loss_gen: 2.65915 (2.57143) | > loss_kl: 2.62664 (2.65884) | > loss_feat: 8.77115 (8.72328) | > loss_mel: 17.36388 (17.78496) | > loss_duration: 1.70390 (1.70621) | > loss_1: 33.12472 (33.44477) | > grad_norm_1: 169.48901 (139.17122) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31030 (2.02651) | > loader_time: 0.03380 (0.03561)  --> STEP: 9024/15287 -- GLOBAL_STEP: 959025 | > loss_disc: 2.22518 (2.30876) | > loss_disc_real_0: 0.09113 (0.12233) | > loss_disc_real_1: 0.20371 (0.21055) | > loss_disc_real_2: 0.19725 (0.21501) | > loss_disc_real_3: 0.23885 (0.21763) | > loss_disc_real_4: 0.20645 (0.21326) | > loss_disc_real_5: 0.26508 (0.21241) | > loss_0: 2.22518 (2.30876) | > grad_norm_0: 24.30011 (16.82225) | > loss_gen: 2.56521 (2.57134) | > loss_kl: 2.61988 (2.65893) | > loss_feat: 9.24629 (8.72322) | > loss_mel: 18.09360 (17.78470) | > loss_duration: 1.66951 (1.70615) | > loss_1: 34.19449 (33.44439) | > grad_norm_1: 172.47890 (139.22289) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.80250 (2.02731) | > loader_time: 0.03550 (0.03560)  --> STEP: 9049/15287 -- GLOBAL_STEP: 959050 | > loss_disc: 2.44454 (2.30876) | > loss_disc_real_0: 0.09261 (0.12232) | > loss_disc_real_1: 0.20358 (0.21056) | > loss_disc_real_2: 0.21513 (0.21502) | > loss_disc_real_3: 0.21543 (0.21763) | > loss_disc_real_4: 0.20920 (0.21326) | > loss_disc_real_5: 0.20369 (0.21240) | > loss_0: 2.44454 (2.30876) | > grad_norm_0: 23.54823 (16.82332) | > loss_gen: 2.38192 (2.57137) | > loss_kl: 2.71346 (2.65906) | > loss_feat: 7.65727 (8.72342) | > loss_mel: 17.60484 (17.78487) | > loss_duration: 1.68421 (1.70615) | > loss_1: 32.04170 (33.44492) | > grad_norm_1: 171.13919 (139.29250) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13120 (2.02774) | > loader_time: 0.03440 (0.03560)  --> STEP: 9074/15287 -- GLOBAL_STEP: 959075 | > loss_disc: 2.32690 (2.30885) | > loss_disc_real_0: 0.08314 (0.12233) | > loss_disc_real_1: 0.23812 (0.21060) | > loss_disc_real_2: 0.21756 (0.21504) | > loss_disc_real_3: 0.21429 (0.21763) | > loss_disc_real_4: 0.21967 (0.21327) | > loss_disc_real_5: 0.24632 (0.21242) | > loss_0: 2.32690 (2.30885) | > grad_norm_0: 8.57888 (16.81523) | > loss_gen: 2.45101 (2.57142) | > loss_kl: 2.64801 (2.65916) | > loss_feat: 8.33515 (8.72320) | > loss_mel: 17.37677 (17.78461) | > loss_duration: 1.68264 (1.70616) | > loss_1: 32.49359 (33.44459) | > grad_norm_1: 110.27194 (139.20638) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.67950 (2.02849) | > loader_time: 0.03170 (0.03560)  --> STEP: 9099/15287 -- GLOBAL_STEP: 959100 | > loss_disc: 2.29816 (2.30895) | > loss_disc_real_0: 0.09346 (0.12234) | > loss_disc_real_1: 0.23123 (0.21061) | > loss_disc_real_2: 0.22950 (0.21505) | > loss_disc_real_3: 0.21295 (0.21764) | > loss_disc_real_4: 0.18884 (0.21328) | > loss_disc_real_5: 0.18596 (0.21242) | > loss_0: 2.29816 (2.30895) | > grad_norm_0: 26.61617 (16.81636) | > loss_gen: 2.36837 (2.57135) | > loss_kl: 2.61793 (2.65911) | > loss_feat: 8.52443 (8.72258) | > loss_mel: 18.35820 (17.78482) | > loss_duration: 1.70155 (1.70614) | > loss_1: 33.57048 (33.44404) | > grad_norm_1: 167.36974 (139.15077) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.73500 (2.02900) | > loader_time: 0.03710 (0.03560)  --> STEP: 9124/15287 -- GLOBAL_STEP: 959125 | > loss_disc: 2.29702 (2.30889) | > loss_disc_real_0: 0.07971 (0.12232) | > loss_disc_real_1: 0.21718 (0.21061) | > loss_disc_real_2: 0.21534 (0.21506) | > loss_disc_real_3: 0.20532 (0.21764) | > loss_disc_real_4: 0.22687 (0.21328) | > loss_disc_real_5: 0.18891 (0.21241) | > loss_0: 2.29702 (2.30889) | > grad_norm_0: 22.30916 (16.82515) | > loss_gen: 2.46694 (2.57137) | > loss_kl: 2.63587 (2.65903) | > loss_feat: 9.18136 (8.72253) | > loss_mel: 17.80267 (17.78466) | > loss_duration: 1.70052 (1.70615) | > loss_1: 33.78736 (33.44378) | > grad_norm_1: 168.89650 (139.20581) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20810 (2.02980) | > loader_time: 0.03140 (0.03560)  --> STEP: 9149/15287 -- GLOBAL_STEP: 959150 | > loss_disc: 2.27269 (2.30883) | > loss_disc_real_0: 0.15190 (0.12233) | > loss_disc_real_1: 0.19308 (0.21059) | > loss_disc_real_2: 0.19735 (0.21504) | > loss_disc_real_3: 0.20915 (0.21762) | > loss_disc_real_4: 0.18077 (0.21326) | > loss_disc_real_5: 0.19829 (0.21239) | > loss_0: 2.27269 (2.30883) | > grad_norm_0: 21.65273 (16.83514) | > loss_gen: 2.33170 (2.57131) | > loss_kl: 2.73960 (2.65907) | > loss_feat: 9.19460 (8.72265) | > loss_mel: 18.09576 (17.78452) | > loss_duration: 1.66919 (1.70612) | > loss_1: 34.03085 (33.44371) | > grad_norm_1: 87.67657 (139.27611) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.77690 (2.03077) | > loader_time: 0.03260 (0.03559)  --> STEP: 9174/15287 -- GLOBAL_STEP: 959175 | > loss_disc: 2.25690 (2.30879) | > loss_disc_real_0: 0.09287 (0.12233) | > loss_disc_real_1: 0.21188 (0.21059) | > loss_disc_real_2: 0.22818 (0.21504) | > loss_disc_real_3: 0.20906 (0.21762) | > loss_disc_real_4: 0.19109 (0.21327) | > loss_disc_real_5: 0.20659 (0.21239) | > loss_0: 2.25690 (2.30879) | > grad_norm_0: 20.71067 (16.82996) | > loss_gen: 2.44361 (2.57130) | > loss_kl: 2.60351 (2.65912) | > loss_feat: 8.92482 (8.72251) | > loss_mel: 18.11679 (17.78426) | > loss_duration: 1.70691 (1.70611) | > loss_1: 33.79564 (33.44335) | > grad_norm_1: 161.07652 (139.29243) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26460 (2.03154) | > loader_time: 0.03720 (0.03559)  --> STEP: 9199/15287 -- GLOBAL_STEP: 959200 | > loss_disc: 2.25399 (2.30873) | > loss_disc_real_0: 0.07909 (0.12231) | > loss_disc_real_1: 0.20701 (0.21058) | > loss_disc_real_2: 0.19677 (0.21502) | > loss_disc_real_3: 0.20504 (0.21762) | > loss_disc_real_4: 0.19555 (0.21325) | > loss_disc_real_5: 0.18589 (0.21241) | > loss_0: 2.25399 (2.30873) | > grad_norm_0: 11.47158 (16.84082) | > loss_gen: 2.54301 (2.57129) | > loss_kl: 2.67832 (2.65908) | > loss_feat: 9.19416 (8.72252) | > loss_mel: 18.08505 (17.78431) | > loss_duration: 1.75464 (1.70612) | > loss_1: 34.25518 (33.44336) | > grad_norm_1: 159.47562 (139.38373) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23660 (2.03200) | > loader_time: 0.03200 (0.03559)  --> STEP: 9224/15287 -- GLOBAL_STEP: 959225 | > loss_disc: 2.41385 (2.30872) | > loss_disc_real_0: 0.08521 (0.12230) | > loss_disc_real_1: 0.22383 (0.21059) | > loss_disc_real_2: 0.23516 (0.21503) | > loss_disc_real_3: 0.24615 (0.21764) | > loss_disc_real_4: 0.20227 (0.21325) | > loss_disc_real_5: 0.21929 (0.21243) | > loss_0: 2.41385 (2.30872) | > grad_norm_0: 24.65554 (16.84553) | > loss_gen: 2.33635 (2.57143) | > loss_kl: 2.60831 (2.65918) | > loss_feat: 8.65678 (8.72254) | > loss_mel: 17.93536 (17.78412) | > loss_duration: 1.70377 (1.70613) | > loss_1: 33.24057 (33.44342) | > grad_norm_1: 142.47801 (139.40503) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40260 (2.03235) | > loader_time: 0.03350 (0.03559)  --> STEP: 9249/15287 -- GLOBAL_STEP: 959250 | > loss_disc: 2.26756 (2.30873) | > loss_disc_real_0: 0.14459 (0.12229) | > loss_disc_real_1: 0.20257 (0.21060) | > loss_disc_real_2: 0.22023 (0.21505) | > loss_disc_real_3: 0.21871 (0.21765) | > loss_disc_real_4: 0.21845 (0.21326) | > loss_disc_real_5: 0.19970 (0.21243) | > loss_0: 2.26756 (2.30873) | > grad_norm_0: 12.70650 (16.86099) | > loss_gen: 2.51342 (2.57141) | > loss_kl: 2.66198 (2.65912) | > loss_feat: 8.76958 (8.72249) | > loss_mel: 17.65518 (17.78401) | > loss_duration: 1.70243 (1.70613) | > loss_1: 33.30260 (33.44320) | > grad_norm_1: 198.45703 (139.48990) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39200 (2.03291) | > loader_time: 0.03170 (0.03559)  --> STEP: 9274/15287 -- GLOBAL_STEP: 959275 | > loss_disc: 2.24452 (2.30871) | > loss_disc_real_0: 0.09151 (0.12226) | > loss_disc_real_1: 0.23686 (0.21060) | > loss_disc_real_2: 0.21914 (0.21504) | > loss_disc_real_3: 0.20770 (0.21764) | > loss_disc_real_4: 0.21582 (0.21325) | > loss_disc_real_5: 0.19866 (0.21244) | > loss_0: 2.24452 (2.30871) | > grad_norm_0: 9.21471 (16.86579) | > loss_gen: 2.59749 (2.57131) | > loss_kl: 2.66050 (2.65913) | > loss_feat: 8.96380 (8.72274) | > loss_mel: 17.64040 (17.78410) | > loss_duration: 1.71903 (1.70614) | > loss_1: 33.58122 (33.44346) | > grad_norm_1: 113.89156 (139.50693) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22830 (2.03376) | > loader_time: 0.03800 (0.03559)  --> STEP: 9299/15287 -- GLOBAL_STEP: 959300 | > loss_disc: 2.29940 (2.30871) | > loss_disc_real_0: 0.13364 (0.12225) | > loss_disc_real_1: 0.17635 (0.21061) | > loss_disc_real_2: 0.20262 (0.21506) | > loss_disc_real_3: 0.20182 (0.21764) | > loss_disc_real_4: 0.22910 (0.21325) | > loss_disc_real_5: 0.20193 (0.21243) | > loss_0: 2.29940 (2.30871) | > grad_norm_0: 5.52826 (16.86603) | > loss_gen: 2.73059 (2.57139) | > loss_kl: 2.68905 (2.65910) | > loss_feat: 9.24118 (8.72259) | > loss_mel: 17.93802 (17.78363) | > loss_duration: 1.72290 (1.70616) | > loss_1: 34.32174 (33.44291) | > grad_norm_1: 129.41168 (139.49910) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01630 (2.03442) | > loader_time: 0.03310 (0.03559)  --> STEP: 9324/15287 -- GLOBAL_STEP: 959325 | > loss_disc: 2.39328 (2.30882) | > loss_disc_real_0: 0.07088 (0.12229) | > loss_disc_real_1: 0.20610 (0.21062) | > loss_disc_real_2: 0.20907 (0.21506) | > loss_disc_real_3: 0.21301 (0.21764) | > loss_disc_real_4: 0.21081 (0.21324) | > loss_disc_real_5: 0.22278 (0.21242) | > loss_0: 2.39328 (2.30882) | > grad_norm_0: 15.97626 (16.86230) | > loss_gen: 2.42453 (2.57145) | > loss_kl: 2.72174 (2.65916) | > loss_feat: 8.89186 (8.72236) | > loss_mel: 17.54454 (17.78415) | > loss_duration: 1.71621 (1.70618) | > loss_1: 33.29889 (33.44332) | > grad_norm_1: 132.35471 (139.39474) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30920 (2.03499) | > loader_time: 0.03460 (0.03558)  --> STEP: 9349/15287 -- GLOBAL_STEP: 959350 | > loss_disc: 2.42159 (2.30888) | > loss_disc_real_0: 0.09601 (0.12230) | > loss_disc_real_1: 0.23280 (0.21064) | > loss_disc_real_2: 0.21509 (0.21508) | > loss_disc_real_3: 0.22074 (0.21767) | > loss_disc_real_4: 0.22783 (0.21327) | > loss_disc_real_5: 0.22628 (0.21242) | > loss_0: 2.42159 (2.30888) | > grad_norm_0: 19.07185 (16.85900) | > loss_gen: 2.50616 (2.57159) | > loss_kl: 2.61862 (2.65911) | > loss_feat: 8.84117 (8.72239) | > loss_mel: 17.85173 (17.78455) | > loss_duration: 1.69039 (1.70620) | > loss_1: 33.50807 (33.44386) | > grad_norm_1: 194.47406 (139.41823) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27830 (2.03526) | > loader_time: 0.04000 (0.03558)  --> STEP: 9374/15287 -- GLOBAL_STEP: 959375 | > loss_disc: 2.34866 (2.30892) | > loss_disc_real_0: 0.09187 (0.12229) | > loss_disc_real_1: 0.29404 (0.21064) | > loss_disc_real_2: 0.24424 (0.21508) | > loss_disc_real_3: 0.23521 (0.21768) | > loss_disc_real_4: 0.26071 (0.21327) | > loss_disc_real_5: 0.23833 (0.21242) | > loss_0: 2.34866 (2.30892) | > grad_norm_0: 13.36523 (16.85821) | > loss_gen: 2.63756 (2.57163) | > loss_kl: 2.81886 (2.65910) | > loss_feat: 8.80994 (8.72256) | > loss_mel: 18.17421 (17.78486) | > loss_duration: 1.70947 (1.70623) | > loss_1: 34.15004 (33.44439) | > grad_norm_1: 153.26907 (139.41306) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.77040 (2.03546) | > loader_time: 0.03970 (0.03559)  --> STEP: 9399/15287 -- GLOBAL_STEP: 959400 | > loss_disc: 2.27879 (2.30889) | > loss_disc_real_0: 0.10963 (0.12226) | > loss_disc_real_1: 0.21161 (0.21065) | > loss_disc_real_2: 0.20824 (0.21508) | > loss_disc_real_3: 0.23725 (0.21767) | > loss_disc_real_4: 0.21709 (0.21327) | > loss_disc_real_5: 0.21619 (0.21242) | > loss_0: 2.27879 (2.30889) | > grad_norm_0: 14.90218 (16.86622) | > loss_gen: 2.65153 (2.57162) | > loss_kl: 2.68496 (2.65902) | > loss_feat: 8.89077 (8.72249) | > loss_mel: 18.17703 (17.78452) | > loss_duration: 1.73335 (1.70623) | > loss_1: 34.13764 (33.44388) | > grad_norm_1: 61.47997 (139.47752) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.81280 (2.03607) | > loader_time: 0.03860 (0.03559)  --> STEP: 9424/15287 -- GLOBAL_STEP: 959425 | > loss_disc: 2.24436 (2.30885) | > loss_disc_real_0: 0.10593 (0.12224) | > loss_disc_real_1: 0.20598 (0.21066) | > loss_disc_real_2: 0.20848 (0.21507) | > loss_disc_real_3: 0.19125 (0.21766) | > loss_disc_real_4: 0.20503 (0.21328) | > loss_disc_real_5: 0.20875 (0.21241) | > loss_0: 2.24436 (2.30885) | > grad_norm_0: 20.65249 (16.87741) | > loss_gen: 2.67665 (2.57161) | > loss_kl: 2.72730 (2.65898) | > loss_feat: 9.22017 (8.72218) | > loss_mel: 17.98145 (17.78414) | > loss_duration: 1.70875 (1.70622) | > loss_1: 34.31432 (33.44313) | > grad_norm_1: 213.72464 (139.59827) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92750 (2.03674) | > loader_time: 0.03200 (0.03558)  --> STEP: 9449/15287 -- GLOBAL_STEP: 959450 | > loss_disc: 2.25523 (2.30878) | > loss_disc_real_0: 0.11890 (0.12221) | > loss_disc_real_1: 0.18449 (0.21065) | > loss_disc_real_2: 0.20037 (0.21507) | > loss_disc_real_3: 0.21077 (0.21767) | > loss_disc_real_4: 0.21265 (0.21328) | > loss_disc_real_5: 0.21935 (0.21241) | > loss_0: 2.25523 (2.30878) | > grad_norm_0: 12.66907 (16.88720) | > loss_gen: 2.62388 (2.57159) | > loss_kl: 2.47366 (2.65892) | > loss_feat: 8.26762 (8.72206) | > loss_mel: 17.50562 (17.78368) | > loss_duration: 1.70746 (1.70620) | > loss_1: 32.57825 (33.44246) | > grad_norm_1: 183.16678 (139.72467) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24900 (2.03724) | > loader_time: 0.03970 (0.03559)  --> STEP: 9474/15287 -- GLOBAL_STEP: 959475 | > loss_disc: 2.26823 (2.30866) | > loss_disc_real_0: 0.09044 (0.12220) | > loss_disc_real_1: 0.16691 (0.21065) | > loss_disc_real_2: 0.19064 (0.21507) | > loss_disc_real_3: 0.19691 (0.21766) | > loss_disc_real_4: 0.18049 (0.21327) | > loss_disc_real_5: 0.20493 (0.21241) | > loss_0: 2.26823 (2.30866) | > grad_norm_0: 20.39060 (16.89444) | > loss_gen: 2.60885 (2.57169) | > loss_kl: 2.55113 (2.65887) | > loss_feat: 9.37490 (8.72262) | > loss_mel: 17.78094 (17.78344) | > loss_duration: 1.73497 (1.70620) | > loss_1: 34.05077 (33.44282) | > grad_norm_1: 213.21617 (139.83359) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.80840 (2.03794) | > loader_time: 0.04220 (0.03559)  --> STEP: 9499/15287 -- GLOBAL_STEP: 959500 | > loss_disc: 2.28408 (2.30869) | > loss_disc_real_0: 0.09366 (0.12224) | > loss_disc_real_1: 0.23057 (0.21066) | > loss_disc_real_2: 0.22230 (0.21507) | > loss_disc_real_3: 0.19857 (0.21765) | > loss_disc_real_4: 0.19739 (0.21328) | > loss_disc_real_5: 0.21098 (0.21241) | > loss_0: 2.28408 (2.30869) | > grad_norm_0: 19.73070 (16.90220) | > loss_gen: 2.51433 (2.57178) | > loss_kl: 2.55696 (2.65878) | > loss_feat: 8.57135 (8.72260) | > loss_mel: 17.50931 (17.78342) | > loss_duration: 1.68395 (1.70621) | > loss_1: 32.83591 (33.44280) | > grad_norm_1: 125.25478 (139.82492) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33830 (2.03850) | > loader_time: 0.03040 (0.03559)  --> STEP: 9524/15287 -- GLOBAL_STEP: 959525 | > loss_disc: 2.33713 (2.30874) | > loss_disc_real_0: 0.10185 (0.12223) | > loss_disc_real_1: 0.24115 (0.21068) | > loss_disc_real_2: 0.21464 (0.21506) | > loss_disc_real_3: 0.23065 (0.21767) | > loss_disc_real_4: 0.21897 (0.21329) | > loss_disc_real_5: 0.20988 (0.21240) | > loss_0: 2.33713 (2.30874) | > grad_norm_0: 7.48880 (16.89623) | > loss_gen: 2.73491 (2.57179) | > loss_kl: 2.63523 (2.65884) | > loss_feat: 9.01155 (8.72283) | > loss_mel: 17.96271 (17.78355) | > loss_duration: 1.70946 (1.70620) | > loss_1: 34.05385 (33.44323) | > grad_norm_1: 157.78056 (139.85471) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27870 (2.03888) | > loader_time: 0.03350 (0.03558)  --> STEP: 9549/15287 -- GLOBAL_STEP: 959550 | > loss_disc: 2.24297 (2.30878) | > loss_disc_real_0: 0.10041 (0.12226) | > loss_disc_real_1: 0.20083 (0.21067) | > loss_disc_real_2: 0.21575 (0.21507) | > loss_disc_real_3: 0.18829 (0.21766) | > loss_disc_real_4: 0.20898 (0.21328) | > loss_disc_real_5: 0.20487 (0.21240) | > loss_0: 2.24297 (2.30878) | > grad_norm_0: 19.88348 (16.91039) | > loss_gen: 2.46948 (2.57169) | > loss_kl: 2.70717 (2.65879) | > loss_feat: 9.23968 (8.72270) | > loss_mel: 17.96630 (17.78351) | > loss_duration: 1.70105 (1.70620) | > loss_1: 34.08368 (33.44290) | > grad_norm_1: 230.06337 (139.93091) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40500 (2.03934) | > loader_time: 0.03460 (0.03558)  --> STEP: 9574/15287 -- GLOBAL_STEP: 959575 | > loss_disc: 2.23231 (2.30875) | > loss_disc_real_0: 0.15139 (0.12224) | > loss_disc_real_1: 0.15949 (0.21068) | > loss_disc_real_2: 0.21969 (0.21508) | > loss_disc_real_3: 0.21402 (0.21766) | > loss_disc_real_4: 0.18603 (0.21328) | > loss_disc_real_5: 0.20039 (0.21240) | > loss_0: 2.23231 (2.30875) | > grad_norm_0: 11.47171 (16.91861) | > loss_gen: 2.73286 (2.57176) | > loss_kl: 2.53151 (2.65872) | > loss_feat: 9.34937 (8.72307) | > loss_mel: 18.06343 (17.78361) | > loss_duration: 1.68884 (1.70618) | > loss_1: 34.36601 (33.44334) | > grad_norm_1: 201.10370 (139.99359) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31380 (2.04018) | > loader_time: 0.03090 (0.03558)  --> STEP: 9599/15287 -- GLOBAL_STEP: 959600 | > loss_disc: 2.23757 (2.30872) | > loss_disc_real_0: 0.11960 (0.12223) | > loss_disc_real_1: 0.24160 (0.21068) | > loss_disc_real_2: 0.22126 (0.21508) | > loss_disc_real_3: 0.24310 (0.21765) | > loss_disc_real_4: 0.21091 (0.21328) | > loss_disc_real_5: 0.23596 (0.21240) | > loss_0: 2.23757 (2.30872) | > grad_norm_0: 12.55930 (16.91545) | > loss_gen: 2.73758 (2.57176) | > loss_kl: 2.68243 (2.65861) | > loss_feat: 9.15543 (8.72305) | > loss_mel: 17.74452 (17.78333) | > loss_duration: 1.71304 (1.70617) | > loss_1: 34.03301 (33.44291) | > grad_norm_1: 217.74832 (140.03891) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.57800 (2.04066) | > loader_time: 0.03090 (0.03558)  --> STEP: 9624/15287 -- GLOBAL_STEP: 959625 | > loss_disc: 2.41441 (2.30882) | > loss_disc_real_0: 0.08466 (0.12224) | > loss_disc_real_1: 0.21560 (0.21067) | > loss_disc_real_2: 0.19401 (0.21508) | > loss_disc_real_3: 0.23205 (0.21766) | > loss_disc_real_4: 0.18757 (0.21330) | > loss_disc_real_5: 0.19178 (0.21242) | > loss_0: 2.41441 (2.30882) | > grad_norm_0: 17.91996 (16.91293) | > loss_gen: 2.42327 (2.57176) | > loss_kl: 2.68039 (2.65874) | > loss_feat: 8.97069 (8.72314) | > loss_mel: 18.04063 (17.78362) | > loss_duration: 1.70771 (1.70615) | > loss_1: 33.82269 (33.44340) | > grad_norm_1: 97.86702 (140.03963) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96870 (2.04088) | > loader_time: 0.03860 (0.03558)  --> STEP: 9649/15287 -- GLOBAL_STEP: 959650 | > loss_disc: 2.25450 (2.30884) | > loss_disc_real_0: 0.12567 (0.12224) | > loss_disc_real_1: 0.21924 (0.21069) | > loss_disc_real_2: 0.19088 (0.21508) | > loss_disc_real_3: 0.19912 (0.21766) | > loss_disc_real_4: 0.20049 (0.21330) | > loss_disc_real_5: 0.19373 (0.21242) | > loss_0: 2.25450 (2.30884) | > grad_norm_0: 15.67614 (16.92104) | > loss_gen: 2.50848 (2.57168) | > loss_kl: 2.65012 (2.65871) | > loss_feat: 8.53742 (8.72293) | > loss_mel: 17.77570 (17.78380) | > loss_duration: 1.70340 (1.70614) | > loss_1: 33.17511 (33.44323) | > grad_norm_1: 134.53528 (140.07233) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92800 (2.04132) | > loader_time: 0.03350 (0.03558)  --> STEP: 9674/15287 -- GLOBAL_STEP: 959675 | > loss_disc: 2.32345 (2.30880) | > loss_disc_real_0: 0.10567 (0.12222) | > loss_disc_real_1: 0.21406 (0.21069) | > loss_disc_real_2: 0.21523 (0.21507) | > loss_disc_real_3: 0.18682 (0.21766) | > loss_disc_real_4: 0.23708 (0.21330) | > loss_disc_real_5: 0.22794 (0.21243) | > loss_0: 2.32345 (2.30880) | > grad_norm_0: 9.36306 (16.91994) | > loss_gen: 2.57603 (2.57174) | > loss_kl: 2.87473 (2.65877) | > loss_feat: 8.60245 (8.72311) | > loss_mel: 17.51829 (17.78387) | > loss_duration: 1.72115 (1.70611) | > loss_1: 33.29265 (33.44359) | > grad_norm_1: 130.29898 (140.12134) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52790 (2.04199) | > loader_time: 0.03240 (0.03558)  --> STEP: 9699/15287 -- GLOBAL_STEP: 959700 | > loss_disc: 2.40531 (2.30893) | > loss_disc_real_0: 0.13598 (0.12225) | > loss_disc_real_1: 0.19151 (0.21070) | > loss_disc_real_2: 0.21994 (0.21508) | > loss_disc_real_3: 0.23610 (0.21767) | > loss_disc_real_4: 0.22505 (0.21331) | > loss_disc_real_5: 0.20731 (0.21243) | > loss_0: 2.40531 (2.30893) | > grad_norm_0: 9.40150 (16.91105) | > loss_gen: 2.33843 (2.57172) | > loss_kl: 2.54750 (2.65880) | > loss_feat: 8.10825 (8.72289) | > loss_mel: 17.43025 (17.78440) | > loss_duration: 1.76391 (1.70613) | > loss_1: 32.18834 (33.44393) | > grad_norm_1: 78.38699 (139.98950) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11360 (2.04242) | > loader_time: 0.04000 (0.03558)  --> STEP: 9724/15287 -- GLOBAL_STEP: 959725 | > loss_disc: 2.44197 (2.30899) | > loss_disc_real_0: 0.19699 (0.12225) | > loss_disc_real_1: 0.21780 (0.21070) | > loss_disc_real_2: 0.23363 (0.21507) | > loss_disc_real_3: 0.25254 (0.21768) | > loss_disc_real_4: 0.22281 (0.21332) | > loss_disc_real_5: 0.25060 (0.21243) | > loss_0: 2.44197 (2.30899) | > grad_norm_0: 32.11142 (16.90488) | > loss_gen: 2.51212 (2.57168) | > loss_kl: 2.61370 (2.65883) | > loss_feat: 8.46070 (8.72246) | > loss_mel: 17.81417 (17.78461) | > loss_duration: 1.72040 (1.70614) | > loss_1: 33.12109 (33.44370) | > grad_norm_1: 176.54424 (139.96892) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09820 (2.04257) | > loader_time: 0.03660 (0.03557)  --> STEP: 9749/15287 -- GLOBAL_STEP: 959750 | > loss_disc: 2.31296 (2.30902) | > loss_disc_real_0: 0.19018 (0.12226) | > loss_disc_real_1: 0.19440 (0.21069) | > loss_disc_real_2: 0.22409 (0.21507) | > loss_disc_real_3: 0.24107 (0.21769) | > loss_disc_real_4: 0.22757 (0.21332) | > loss_disc_real_5: 0.21993 (0.21244) | > loss_0: 2.31296 (2.30902) | > grad_norm_0: 20.89888 (16.91506) | > loss_gen: 2.69698 (2.57161) | > loss_kl: 2.69356 (2.65881) | > loss_feat: 8.51441 (8.72239) | > loss_mel: 17.57431 (17.78495) | > loss_duration: 1.69440 (1.70612) | > loss_1: 33.17366 (33.44387) | > grad_norm_1: 139.82509 (139.97026) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11440 (2.04264) | > loader_time: 0.03500 (0.03557)  --> STEP: 9774/15287 -- GLOBAL_STEP: 959775 | > loss_disc: 2.32186 (2.30904) | > loss_disc_real_0: 0.19571 (0.12230) | > loss_disc_real_1: 0.20553 (0.21069) | > loss_disc_real_2: 0.25218 (0.21508) | > loss_disc_real_3: 0.22570 (0.21768) | > loss_disc_real_4: 0.18558 (0.21332) | > loss_disc_real_5: 0.19570 (0.21243) | > loss_0: 2.32186 (2.30904) | > grad_norm_0: 15.63720 (16.92544) | > loss_gen: 2.50819 (2.57162) | > loss_kl: 2.66760 (2.65873) | > loss_feat: 8.38640 (8.72207) | > loss_mel: 17.14986 (17.78484) | > loss_duration: 1.71042 (1.70613) | > loss_1: 32.42247 (33.44341) | > grad_norm_1: 129.86276 (140.02299) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.62880 (2.04299) | > loader_time: 0.03970 (0.03557)  --> STEP: 9799/15287 -- GLOBAL_STEP: 959800 | > loss_disc: 2.24520 (2.30895) | > loss_disc_real_0: 0.12770 (0.12230) | > loss_disc_real_1: 0.19065 (0.21069) | > loss_disc_real_2: 0.17269 (0.21507) | > loss_disc_real_3: 0.20004 (0.21767) | > loss_disc_real_4: 0.17599 (0.21330) | > loss_disc_real_5: 0.18863 (0.21242) | > loss_0: 2.24520 (2.30895) | > grad_norm_0: 24.14021 (16.92146) | > loss_gen: 2.46117 (2.57171) | > loss_kl: 2.74061 (2.65875) | > loss_feat: 8.66928 (8.72255) | > loss_mel: 17.99547 (17.78501) | > loss_duration: 1.77652 (1.70618) | > loss_1: 33.64305 (33.44419) | > grad_norm_1: 138.96040 (140.02278) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56090 (2.04337) | > loader_time: 0.03520 (0.03556)  --> STEP: 9824/15287 -- GLOBAL_STEP: 959825 | > loss_disc: 2.30072 (2.30890) | > loss_disc_real_0: 0.12722 (0.12228) | > loss_disc_real_1: 0.23281 (0.21068) | > loss_disc_real_2: 0.24097 (0.21507) | > loss_disc_real_3: 0.20774 (0.21767) | > loss_disc_real_4: 0.20424 (0.21329) | > loss_disc_real_5: 0.17337 (0.21242) | > loss_0: 2.30072 (2.30890) | > grad_norm_0: 11.15440 (16.91403) | > loss_gen: 2.52304 (2.57176) | > loss_kl: 2.69857 (2.65883) | > loss_feat: 8.03632 (8.72269) | > loss_mel: 17.63535 (17.78518) | > loss_duration: 1.67681 (1.70619) | > loss_1: 32.57010 (33.44464) | > grad_norm_1: 167.36467 (140.03714) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44390 (2.04379) | > loader_time: 0.05190 (0.03556)  --> STEP: 9849/15287 -- GLOBAL_STEP: 959850 | > loss_disc: 2.31441 (2.30887) | > loss_disc_real_0: 0.11861 (0.12227) | > loss_disc_real_1: 0.19497 (0.21068) | > loss_disc_real_2: 0.18940 (0.21506) | > loss_disc_real_3: 0.22017 (0.21766) | > loss_disc_real_4: 0.17028 (0.21329) | > loss_disc_real_5: 0.21920 (0.21245) | > loss_0: 2.31441 (2.30887) | > grad_norm_0: 22.41868 (16.92123) | > loss_gen: 2.51591 (2.57182) | > loss_kl: 2.70201 (2.65885) | > loss_feat: 8.86157 (8.72302) | > loss_mel: 18.11438 (17.78515) | > loss_duration: 1.72173 (1.70620) | > loss_1: 33.91561 (33.44503) | > grad_norm_1: 171.01683 (140.07663) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43450 (2.04429) | > loader_time: 0.03650 (0.03556)  --> STEP: 9874/15287 -- GLOBAL_STEP: 959875 | > loss_disc: 2.32881 (2.30882) | > loss_disc_real_0: 0.16326 (0.12227) | > loss_disc_real_1: 0.19281 (0.21067) | > loss_disc_real_2: 0.18925 (0.21506) | > loss_disc_real_3: 0.25875 (0.21768) | > loss_disc_real_4: 0.21438 (0.21328) | > loss_disc_real_5: 0.21013 (0.21245) | > loss_0: 2.32881 (2.30882) | > grad_norm_0: 8.12502 (16.92212) | > loss_gen: 2.56462 (2.57195) | > loss_kl: 2.63264 (2.65881) | > loss_feat: 8.44747 (8.72321) | > loss_mel: 17.40919 (17.78472) | > loss_duration: 1.67742 (1.70620) | > loss_1: 32.73135 (33.44490) | > grad_norm_1: 101.20583 (140.11523) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28250 (2.04487) | > loader_time: 0.02990 (0.03556)  --> STEP: 9899/15287 -- GLOBAL_STEP: 959900 | > loss_disc: 2.29120 (2.30877) | > loss_disc_real_0: 0.09286 (0.12228) | > loss_disc_real_1: 0.20459 (0.21068) | > loss_disc_real_2: 0.23081 (0.21506) | > loss_disc_real_3: 0.19994 (0.21767) | > loss_disc_real_4: 0.22560 (0.21328) | > loss_disc_real_5: 0.20740 (0.21244) | > loss_0: 2.29120 (2.30877) | > grad_norm_0: 15.93878 (16.92733) | > loss_gen: 2.55473 (2.57202) | > loss_kl: 2.62644 (2.65876) | > loss_feat: 8.90013 (8.72347) | > loss_mel: 17.50715 (17.78464) | > loss_duration: 1.64899 (1.70621) | > loss_1: 33.23745 (33.44513) | > grad_norm_1: 146.72400 (140.14890) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42110 (2.04560) | > loader_time: 0.03260 (0.03556)  --> STEP: 9924/15287 -- GLOBAL_STEP: 959925 | > loss_disc: 2.24040 (2.30868) | > loss_disc_real_0: 0.16930 (0.12227) | > loss_disc_real_1: 0.16155 (0.21068) | > loss_disc_real_2: 0.20064 (0.21505) | > loss_disc_real_3: 0.22320 (0.21767) | > loss_disc_real_4: 0.19389 (0.21327) | > loss_disc_real_5: 0.23978 (0.21244) | > loss_0: 2.24040 (2.30868) | > grad_norm_0: 15.12584 (16.91844) | > loss_gen: 2.72400 (2.57207) | > loss_kl: 2.73656 (2.65880) | > loss_feat: 8.55450 (8.72348) | > loss_mel: 17.41429 (17.78421) | > loss_duration: 1.68028 (1.70621) | > loss_1: 33.10963 (33.44482) | > grad_norm_1: 74.69980 (140.11508) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43490 (2.04661) | > loader_time: 0.03140 (0.03556)  --> STEP: 9949/15287 -- GLOBAL_STEP: 959950 | > loss_disc: 2.27719 (2.30870) | > loss_disc_real_0: 0.11502 (0.12227) | > loss_disc_real_1: 0.20602 (0.21068) | > loss_disc_real_2: 0.18382 (0.21505) | > loss_disc_real_3: 0.23012 (0.21767) | > loss_disc_real_4: 0.21768 (0.21328) | > loss_disc_real_5: 0.24325 (0.21244) | > loss_0: 2.27719 (2.30870) | > grad_norm_0: 17.18282 (16.92555) | > loss_gen: 2.51048 (2.57202) | > loss_kl: 2.65858 (2.65887) | > loss_feat: 8.88199 (8.72331) | > loss_mel: 17.98513 (17.78417) | > loss_duration: 1.71752 (1.70621) | > loss_1: 33.75370 (33.44463) | > grad_norm_1: 178.08748 (140.15236) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28980 (2.04720) | > loader_time: 0.03420 (0.03556)  --> STEP: 9974/15287 -- GLOBAL_STEP: 959975 | > loss_disc: 2.34435 (2.30865) | > loss_disc_real_0: 0.14632 (0.12225) | > loss_disc_real_1: 0.21278 (0.21068) | > loss_disc_real_2: 0.25763 (0.21505) | > loss_disc_real_3: 0.22289 (0.21767) | > loss_disc_real_4: 0.25576 (0.21327) | > loss_disc_real_5: 0.20320 (0.21244) | > loss_0: 2.34435 (2.30865) | > grad_norm_0: 23.20651 (16.92130) | > loss_gen: 2.65607 (2.57206) | > loss_kl: 2.57562 (2.65885) | > loss_feat: 8.53270 (8.72329) | > loss_mel: 17.18052 (17.78399) | > loss_duration: 1.69152 (1.70622) | > loss_1: 32.63644 (33.44446) | > grad_norm_1: 67.10919 (140.15727) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28800 (2.04784) | > loader_time: 0.03520 (0.03555)  --> STEP: 9999/15287 -- GLOBAL_STEP: 960000 | > loss_disc: 2.40149 (2.30869) | > loss_disc_real_0: 0.13909 (0.12225) | > loss_disc_real_1: 0.23854 (0.21069) | > loss_disc_real_2: 0.22272 (0.21506) | > loss_disc_real_3: 0.20093 (0.21767) | > loss_disc_real_4: 0.21656 (0.21328) | > loss_disc_real_5: 0.21128 (0.21244) | > loss_0: 2.40149 (2.30869) | > grad_norm_0: 17.59688 (16.91931) | > loss_gen: 2.60848 (2.57205) | > loss_kl: 2.64608 (2.65880) | > loss_feat: 7.54305 (8.72318) | > loss_mel: 17.51816 (17.78411) | > loss_duration: 1.68913 (1.70623) | > loss_1: 32.00490 (33.44440) | > grad_norm_1: 85.74119 (140.07440) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26650 (2.04858) | > loader_time: 0.03560 (0.03555) > CHECKPOINT : ./checkpoints/yourtts_multilingual/yourtts-du_en_fr_ge_it_pl_ptbr_sp-November-08-2022_12+19PM-0cbaa0f6/checkpoint_960000.pth  --> STEP: 10024/15287 -- GLOBAL_STEP: 960025 | > loss_disc: 2.34145 (2.30873) | > loss_disc_real_0: 0.06557 (0.12226) | > loss_disc_real_1: 0.17099 (0.21069) | > loss_disc_real_2: 0.16211 (0.21507) | > loss_disc_real_3: 0.21560 (0.21767) | > loss_disc_real_4: 0.20427 (0.21328) | > loss_disc_real_5: 0.19728 (0.21245) | > loss_0: 2.34145 (2.30873) | > grad_norm_0: 10.71982 (16.91011) | > loss_gen: 2.39659 (2.57198) | > loss_kl: 2.69931 (2.65880) | > loss_feat: 8.87109 (8.72318) | > loss_mel: 18.11495 (17.78419) | > loss_duration: 1.73674 (1.70625) | > loss_1: 33.81868 (33.44444) | > grad_norm_1: 110.95474 (139.97101) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.53880 (2.04932) | > loader_time: 0.03520 (0.03555)  --> STEP: 10049/15287 -- GLOBAL_STEP: 960050 | > loss_disc: 2.29759 (2.30884) | > loss_disc_real_0: 0.13767 (0.12232) | > loss_disc_real_1: 0.21400 (0.21070) | > loss_disc_real_2: 0.20821 (0.21507) | > loss_disc_real_3: 0.22852 (0.21768) | > loss_disc_real_4: 0.20790 (0.21330) | > loss_disc_real_5: 0.26278 (0.21246) | > loss_0: 2.29759 (2.30884) | > grad_norm_0: 19.28847 (16.91031) | > loss_gen: 2.62213 (2.57200) | > loss_kl: 2.75945 (2.65879) | > loss_feat: 9.20843 (8.72286) | > loss_mel: 17.90398 (17.78435) | > loss_duration: 1.70906 (1.70626) | > loss_1: 34.20304 (33.44429) | > grad_norm_1: 187.02139 (139.91916) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.90190 (2.05016) | > loader_time: 0.03420 (0.03554)  --> STEP: 10074/15287 -- GLOBAL_STEP: 960075 | > loss_disc: 2.33090 (2.30882) | > loss_disc_real_0: 0.13783 (0.12232) | > loss_disc_real_1: 0.21346 (0.21069) | > loss_disc_real_2: 0.23291 (0.21507) | > loss_disc_real_3: 0.23840 (0.21768) | > loss_disc_real_4: 0.21375 (0.21331) | > loss_disc_real_5: 0.22190 (0.21247) | > loss_0: 2.33090 (2.30882) | > grad_norm_0: 12.14590 (16.91256) | > loss_gen: 2.53662 (2.57203) | > loss_kl: 2.62623 (2.65873) | > loss_feat: 8.39934 (8.72287) | > loss_mel: 17.26610 (17.78465) | > loss_duration: 1.69601 (1.70626) | > loss_1: 32.52429 (33.44457) | > grad_norm_1: 167.25360 (139.90120) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28070 (2.05079) | > loader_time: 0.03630 (0.03554)  --> STEP: 10099/15287 -- GLOBAL_STEP: 960100 | > loss_disc: 2.36216 (2.30875) | > loss_disc_real_0: 0.09306 (0.12231) | > loss_disc_real_1: 0.21153 (0.21069) | > loss_disc_real_2: 0.23175 (0.21508) | > loss_disc_real_3: 0.22112 (0.21767) | > loss_disc_real_4: 0.20745 (0.21330) | > loss_disc_real_5: 0.22661 (0.21246) | > loss_0: 2.36216 (2.30875) | > grad_norm_0: 23.24267 (16.91598) | > loss_gen: 2.51690 (2.57206) | > loss_kl: 2.68656 (2.65869) | > loss_feat: 8.90854 (8.72300) | > loss_mel: 17.45716 (17.78432) | > loss_duration: 1.69913 (1.70623) | > loss_1: 33.26829 (33.44433) | > grad_norm_1: 159.17751 (139.92119) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.53140 (2.05171) | > loader_time: 0.03200 (0.03554)  --> STEP: 10124/15287 -- GLOBAL_STEP: 960125 | > loss_disc: 2.32044 (2.30876) | > loss_disc_real_0: 0.07260 (0.12230) | > loss_disc_real_1: 0.20505 (0.21069) | > loss_disc_real_2: 0.21376 (0.21508) | > loss_disc_real_3: 0.21990 (0.21768) | > loss_disc_real_4: 0.20906 (0.21331) | > loss_disc_real_5: 0.24133 (0.21247) | > loss_0: 2.32044 (2.30876) | > grad_norm_0: 26.53648 (16.92356) | > loss_gen: 2.55798 (2.57204) | > loss_kl: 2.62685 (2.65862) | > loss_feat: 9.01786 (8.72290) | > loss_mel: 17.96652 (17.78394) | > loss_duration: 1.70410 (1.70624) | > loss_1: 33.87330 (33.44377) | > grad_norm_1: 168.79213 (139.93137) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.57480 (2.05229) | > loader_time: 0.03070 (0.03553)  --> STEP: 10149/15287 -- GLOBAL_STEP: 960150 | > loss_disc: 2.30336 (2.30869) | > loss_disc_real_0: 0.10883 (0.12229) | > loss_disc_real_1: 0.20993 (0.21066) | > loss_disc_real_2: 0.20922 (0.21508) | > loss_disc_real_3: 0.22914 (0.21770) | > loss_disc_real_4: 0.22357 (0.21331) | > loss_disc_real_5: 0.18345 (0.21247) | > loss_0: 2.30336 (2.30869) | > grad_norm_0: 25.45525 (16.94126) | > loss_gen: 2.50614 (2.57209) | > loss_kl: 2.67790 (2.65861) | > loss_feat: 9.56159 (8.72350) | > loss_mel: 18.13552 (17.78371) | > loss_duration: 1.69915 (1.70627) | > loss_1: 34.58029 (33.44422) | > grad_norm_1: 174.44257 (140.02193) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44340 (2.05280) | > loader_time: 0.03360 (0.03553)  --> STEP: 10174/15287 -- GLOBAL_STEP: 960175 | > loss_disc: 2.21716 (2.30865) | > loss_disc_real_0: 0.13026 (0.12227) | > loss_disc_real_1: 0.21512 (0.21066) | > loss_disc_real_2: 0.22358 (0.21508) | > loss_disc_real_3: 0.24479 (0.21771) | > loss_disc_real_4: 0.22248 (0.21332) | > loss_disc_real_5: 0.19812 (0.21246) | > loss_0: 2.21716 (2.30865) | > grad_norm_0: 33.80502 (16.95016) | > loss_gen: 2.60967 (2.57214) | > loss_kl: 2.65881 (2.65863) | > loss_feat: 9.50935 (8.72383) | > loss_mel: 17.82343 (17.78335) | > loss_duration: 1.74023 (1.70626) | > loss_1: 34.34149 (33.44426) | > grad_norm_1: 230.48026 (140.10429) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.49830 (2.05344) | > loader_time: 0.03420 (0.03553)  --> STEP: 10199/15287 -- GLOBAL_STEP: 960200 | > loss_disc: 2.35086 (2.30865) | > loss_disc_real_0: 0.13858 (0.12226) | > loss_disc_real_1: 0.22255 (0.21067) | > loss_disc_real_2: 0.21790 (0.21509) | > loss_disc_real_3: 0.21148 (0.21770) | > loss_disc_real_4: 0.18392 (0.21332) | > loss_disc_real_5: 0.23895 (0.21246) | > loss_0: 2.35086 (2.30865) | > grad_norm_0: 21.00114 (16.95222) | > loss_gen: 2.45149 (2.57206) | > loss_kl: 2.78622 (2.65865) | > loss_feat: 8.35539 (8.72387) | > loss_mel: 17.67594 (17.78326) | > loss_duration: 1.71760 (1.70624) | > loss_1: 32.98664 (33.44411) | > grad_norm_1: 88.64432 (140.15048) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27140 (2.05404) | > loader_time: 0.03060 (0.03553)  --> STEP: 10224/15287 -- GLOBAL_STEP: 960225 | > loss_disc: 2.26831 (2.30864) | > loss_disc_real_0: 0.14027 (0.12225) | > loss_disc_real_1: 0.18173 (0.21068) | > loss_disc_real_2: 0.19281 (0.21509) | > loss_disc_real_3: 0.20427 (0.21767) | > loss_disc_real_4: 0.21400 (0.21331) | > loss_disc_real_5: 0.18465 (0.21245) | > loss_0: 2.26831 (2.30864) | > grad_norm_0: 14.25499 (16.95238) | > loss_gen: 2.56327 (2.57197) | > loss_kl: 2.57575 (2.65862) | > loss_feat: 9.20080 (8.72404) | > loss_mel: 17.95173 (17.78321) | > loss_duration: 1.66246 (1.70623) | > loss_1: 33.95401 (33.44411) | > grad_norm_1: 89.29173 (140.15837) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24420 (2.05488) | > loader_time: 0.03220 (0.03553)  --> STEP: 10249/15287 -- GLOBAL_STEP: 960250 | > loss_disc: 2.35417 (2.30874) | > loss_disc_real_0: 0.09942 (0.12227) | > loss_disc_real_1: 0.24815 (0.21070) | > loss_disc_real_2: 0.18941 (0.21510) | > loss_disc_real_3: 0.25201 (0.21769) | > loss_disc_real_4: 0.21389 (0.21331) | > loss_disc_real_5: 0.22713 (0.21246) | > loss_0: 2.35417 (2.30874) | > grad_norm_0: 13.93787 (16.94755) | > loss_gen: 2.28631 (2.57195) | > loss_kl: 2.71861 (2.65872) | > loss_feat: 8.80018 (8.72403) | > loss_mel: 17.97833 (17.78322) | > loss_duration: 1.71028 (1.70621) | > loss_1: 33.49370 (33.44416) | > grad_norm_1: 90.13522 (140.10159) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94900 (2.05568) | > loader_time: 0.03350 (0.03553)  --> STEP: 10274/15287 -- GLOBAL_STEP: 960275 | > loss_disc: 2.33962 (2.30875) | > loss_disc_real_0: 0.13839 (0.12227) | > loss_disc_real_1: 0.15038 (0.21069) | > loss_disc_real_2: 0.19628 (0.21510) | > loss_disc_real_3: 0.20759 (0.21768) | > loss_disc_real_4: 0.23831 (0.21332) | > loss_disc_real_5: 0.22734 (0.21245) | > loss_0: 2.33962 (2.30875) | > grad_norm_0: 12.91667 (16.94452) | > loss_gen: 2.59856 (2.57194) | > loss_kl: 2.61564 (2.65862) | > loss_feat: 8.76052 (8.72400) | > loss_mel: 17.78742 (17.78323) | > loss_duration: 1.67745 (1.70618) | > loss_1: 33.43959 (33.44403) | > grad_norm_1: 117.54700 (140.10303) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40970 (2.05611) | > loader_time: 0.03650 (0.03553)  --> STEP: 10299/15287 -- GLOBAL_STEP: 960300 | > loss_disc: 2.35735 (2.30880) | > loss_disc_real_0: 0.13222 (0.12228) | > loss_disc_real_1: 0.23091 (0.21070) | > loss_disc_real_2: 0.24111 (0.21510) | > loss_disc_real_3: 0.22649 (0.21767) | > loss_disc_real_4: 0.18869 (0.21332) | > loss_disc_real_5: 0.19636 (0.21246) | > loss_0: 2.35735 (2.30880) | > grad_norm_0: 18.87349 (16.94991) | > loss_gen: 2.40947 (2.57192) | > loss_kl: 2.44768 (2.65853) | > loss_feat: 8.65800 (8.72389) | > loss_mel: 17.99642 (17.78323) | > loss_duration: 1.70651 (1.70618) | > loss_1: 33.21808 (33.44381) | > grad_norm_1: 244.79602 (140.10413) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.53950 (2.05655) | > loader_time: 0.04060 (0.03553)  --> STEP: 10324/15287 -- GLOBAL_STEP: 960325 | > loss_disc: 2.29907 (2.30876) | > loss_disc_real_0: 0.08730 (0.12227) | > loss_disc_real_1: 0.22068 (0.21071) | > loss_disc_real_2: 0.18300 (0.21510) | > loss_disc_real_3: 0.19975 (0.21766) | > loss_disc_real_4: 0.20853 (0.21332) | > loss_disc_real_5: 0.22632 (0.21245) | > loss_0: 2.29907 (2.30876) | > grad_norm_0: 10.52918 (16.95042) | > loss_gen: 2.57559 (2.57196) | > loss_kl: 2.64972 (2.65838) | > loss_feat: 9.08454 (8.72374) | > loss_mel: 18.43662 (17.78297) | > loss_duration: 1.70890 (1.70617) | > loss_1: 34.45537 (33.44327) | > grad_norm_1: 95.44541 (140.08383) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87010 (2.05757) | > loader_time: 0.03530 (0.03552)  --> STEP: 10349/15287 -- GLOBAL_STEP: 960350 | > loss_disc: 2.26906 (2.30882) | > loss_disc_real_0: 0.09343 (0.12228) | > loss_disc_real_1: 0.19134 (0.21071) | > loss_disc_real_2: 0.19106 (0.21510) | > loss_disc_real_3: 0.18849 (0.21766) | > loss_disc_real_4: 0.20029 (0.21332) | > loss_disc_real_5: 0.22429 (0.21244) | > loss_0: 2.26906 (2.30882) | > grad_norm_0: 5.01876 (16.95104) | > loss_gen: 3.02814 (2.57193) | > loss_kl: 2.54454 (2.65839) | > loss_feat: 8.98475 (8.72358) | > loss_mel: 17.72695 (17.78320) | > loss_duration: 1.68752 (1.70617) | > loss_1: 33.97191 (33.44332) | > grad_norm_1: 131.68835 (140.10165) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.75060 (2.05804) | > loader_time: 0.03060 (0.03552)  --> STEP: 10374/15287 -- GLOBAL_STEP: 960375 | > loss_disc: 2.37340 (2.30887) | > loss_disc_real_0: 0.11875 (0.12231) | > loss_disc_real_1: 0.20558 (0.21073) | > loss_disc_real_2: 0.19474 (0.21511) | > loss_disc_real_3: 0.23834 (0.21768) | > loss_disc_real_4: 0.25108 (0.21333) | > loss_disc_real_5: 0.24132 (0.21244) | > loss_0: 2.37340 (2.30887) | > grad_norm_0: 16.11460 (16.95124) | > loss_gen: 2.40675 (2.57196) | > loss_kl: 2.66767 (2.65841) | > loss_feat: 8.43334 (8.72345) | > loss_mel: 17.88195 (17.78341) | > loss_duration: 1.73956 (1.70617) | > loss_1: 33.12926 (33.44345) | > grad_norm_1: 113.42241 (140.07669) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58280 (2.05870) | > loader_time: 0.03220 (0.03552)  --> STEP: 10399/15287 -- GLOBAL_STEP: 960400 | > loss_disc: 2.37486 (2.30885) | > loss_disc_real_0: 0.09101 (0.12230) | > loss_disc_real_1: 0.21340 (0.21073) | > loss_disc_real_2: 0.24407 (0.21511) | > loss_disc_real_3: 0.26608 (0.21769) | > loss_disc_real_4: 0.17255 (0.21334) | > loss_disc_real_5: 0.25297 (0.21244) | > loss_0: 2.37486 (2.30885) | > grad_norm_0: 12.61580 (16.95015) | > loss_gen: 2.60000 (2.57199) | > loss_kl: 2.61539 (2.65832) | > loss_feat: 8.74255 (8.72341) | > loss_mel: 17.40512 (17.78337) | > loss_duration: 1.70633 (1.70618) | > loss_1: 33.06939 (33.44333) | > grad_norm_1: 136.58174 (140.03497) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93960 (2.05950) | > loader_time: 0.03440 (0.03552)  --> STEP: 10424/15287 -- GLOBAL_STEP: 960425 | > loss_disc: 2.31470 (2.30883) | > loss_disc_real_0: 0.17689 (0.12232) | > loss_disc_real_1: 0.23346 (0.21073) | > loss_disc_real_2: 0.19365 (0.21510) | > loss_disc_real_3: 0.22441 (0.21768) | > loss_disc_real_4: 0.20254 (0.21334) | > loss_disc_real_5: 0.19076 (0.21243) | > loss_0: 2.31470 (2.30883) | > grad_norm_0: 12.86447 (16.94035) | > loss_gen: 2.53919 (2.57207) | > loss_kl: 2.61750 (2.65835) | > loss_feat: 8.61867 (8.72390) | > loss_mel: 17.46219 (17.78382) | > loss_duration: 1.73370 (1.70621) | > loss_1: 32.97126 (33.44439) | > grad_norm_1: 112.11917 (139.94731) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35890 (2.05992) | > loader_time: 0.06800 (0.03552)  --> STEP: 10449/15287 -- GLOBAL_STEP: 960450 | > loss_disc: 2.30350 (2.30885) | > loss_disc_real_0: 0.14636 (0.12234) | > loss_disc_real_1: 0.16233 (0.21073) | > loss_disc_real_2: 0.18551 (0.21509) | > loss_disc_real_3: 0.21161 (0.21768) | > loss_disc_real_4: 0.20036 (0.21332) | > loss_disc_real_5: 0.24140 (0.21243) | > loss_0: 2.30350 (2.30885) | > grad_norm_0: 15.62867 (16.93005) | > loss_gen: 2.62141 (2.57213) | > loss_kl: 2.60512 (2.65829) | > loss_feat: 9.00105 (8.72406) | > loss_mel: 17.93113 (17.78380) | > loss_duration: 1.79196 (1.70622) | > loss_1: 33.95068 (33.44454) | > grad_norm_1: 88.23794 (139.92279) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40020 (2.06046) | > loader_time: 0.03910 (0.03552)  --> STEP: 10474/15287 -- GLOBAL_STEP: 960475 | > loss_disc: 2.29287 (2.30885) | > loss_disc_real_0: 0.17085 (0.12233) | > loss_disc_real_1: 0.20781 (0.21072) | > loss_disc_real_2: 0.21511 (0.21509) | > loss_disc_real_3: 0.20445 (0.21767) | > loss_disc_real_4: 0.23792 (0.21332) | > loss_disc_real_5: 0.23265 (0.21243) | > loss_0: 2.29287 (2.30885) | > grad_norm_0: 14.33041 (16.91970) | > loss_gen: 2.71338 (2.57206) | > loss_kl: 2.65642 (2.65825) | > loss_feat: 8.57293 (8.72366) | > loss_mel: 18.00166 (17.78393) | > loss_duration: 1.68186 (1.70622) | > loss_1: 33.62626 (33.44417) | > grad_norm_1: 165.93056 (139.88234) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35970 (2.06096) | > loader_time: 0.03110 (0.03551)  --> STEP: 10499/15287 -- GLOBAL_STEP: 960500 | > loss_disc: 2.22231 (2.30892) | > loss_disc_real_0: 0.12035 (0.12236) | > loss_disc_real_1: 0.19255 (0.21072) | > loss_disc_real_2: 0.19612 (0.21509) | > loss_disc_real_3: 0.23392 (0.21767) | > loss_disc_real_4: 0.20624 (0.21333) | > loss_disc_real_5: 0.21855 (0.21243) | > loss_0: 2.22231 (2.30892) | > grad_norm_0: 13.50334 (16.91245) | > loss_gen: 2.69297 (2.57199) | > loss_kl: 2.73031 (2.65829) | > loss_feat: 8.81655 (8.72343) | > loss_mel: 17.77945 (17.78399) | > loss_duration: 1.70510 (1.70622) | > loss_1: 33.72439 (33.44398) | > grad_norm_1: 201.63501 (139.85378) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.78030 (2.06161) | > loader_time: 0.04370 (0.03551)  --> STEP: 10524/15287 -- GLOBAL_STEP: 960525 | > loss_disc: 2.25823 (2.30887) | > loss_disc_real_0: 0.09206 (0.12234) | > loss_disc_real_1: 0.21067 (0.21072) | > loss_disc_real_2: 0.24375 (0.21510) | > loss_disc_real_3: 0.24246 (0.21766) | > loss_disc_real_4: 0.19723 (0.21332) | > loss_disc_real_5: 0.19880 (0.21243) | > loss_0: 2.25823 (2.30887) | > grad_norm_0: 7.22029 (16.90919) | > loss_gen: 2.59398 (2.57196) | > loss_kl: 2.54433 (2.65828) | > loss_feat: 8.08361 (8.72359) | > loss_mel: 16.74994 (17.78426) | > loss_duration: 1.71548 (1.70623) | > loss_1: 31.68734 (33.44437) | > grad_norm_1: 149.12628 (139.86401) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35650 (2.06234) | > loader_time: 0.03150 (0.03551)  --> STEP: 10549/15287 -- GLOBAL_STEP: 960550 | > loss_disc: 2.36111 (2.30888) | > loss_disc_real_0: 0.14798 (0.12235) | > loss_disc_real_1: 0.21347 (0.21073) | > loss_disc_real_2: 0.20403 (0.21509) | > loss_disc_real_3: 0.23687 (0.21766) | > loss_disc_real_4: 0.23439 (0.21333) | > loss_disc_real_5: 0.19699 (0.21243) | > loss_0: 2.36111 (2.30888) | > grad_norm_0: 35.86267 (16.92113) | > loss_gen: 2.45814 (2.57200) | > loss_kl: 2.67363 (2.65818) | > loss_feat: 8.67958 (8.72352) | > loss_mel: 17.54298 (17.78389) | > loss_duration: 1.69637 (1.70622) | > loss_1: 33.05070 (33.44386) | > grad_norm_1: 201.57964 (139.88133) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37900 (2.06275) | > loader_time: 0.03040 (0.03550)  --> STEP: 10574/15287 -- GLOBAL_STEP: 960575 | > loss_disc: 2.24006 (2.30882) | > loss_disc_real_0: 0.09869 (0.12234) | > loss_disc_real_1: 0.23741 (0.21073) | > loss_disc_real_2: 0.21596 (0.21508) | > loss_disc_real_3: 0.22050 (0.21765) | > loss_disc_real_4: 0.21406 (0.21333) | > loss_disc_real_5: 0.18521 (0.21242) | > loss_0: 2.24006 (2.30882) | > grad_norm_0: 9.99707 (16.91257) | > loss_gen: 2.59774 (2.57200) | > loss_kl: 2.65496 (2.65812) | > loss_feat: 8.84033 (8.72380) | > loss_mel: 17.79245 (17.78374) | > loss_duration: 1.67220 (1.70622) | > loss_1: 33.55768 (33.44393) | > grad_norm_1: 141.23283 (139.82610) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32870 (2.06332) | > loader_time: 0.03070 (0.03551)  --> STEP: 10599/15287 -- GLOBAL_STEP: 960600 | > loss_disc: 2.29561 (2.30885) | > loss_disc_real_0: 0.11152 (0.12234) | > loss_disc_real_1: 0.20585 (0.21073) | > loss_disc_real_2: 0.22169 (0.21509) | > loss_disc_real_3: 0.20945 (0.21765) | > loss_disc_real_4: 0.25107 (0.21334) | > loss_disc_real_5: 0.21119 (0.21242) | > loss_0: 2.29561 (2.30885) | > grad_norm_0: 10.14651 (16.90116) | > loss_gen: 2.56596 (2.57194) | > loss_kl: 2.62120 (2.65815) | > loss_feat: 8.55424 (8.72339) | > loss_mel: 17.96218 (17.78350) | > loss_duration: 1.70563 (1.70623) | > loss_1: 33.40921 (33.44325) | > grad_norm_1: 160.29408 (139.75874) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20080 (2.06358) | > loader_time: 0.03010 (0.03551)  --> STEP: 10624/15287 -- GLOBAL_STEP: 960625 | > loss_disc: 2.34437 (2.30888) | > loss_disc_real_0: 0.11651 (0.12234) | > loss_disc_real_1: 0.24882 (0.21073) | > loss_disc_real_2: 0.22244 (0.21509) | > loss_disc_real_3: 0.22265 (0.21766) | > loss_disc_real_4: 0.21776 (0.21334) | > loss_disc_real_5: 0.23618 (0.21242) | > loss_0: 2.34437 (2.30888) | > grad_norm_0: 24.81391 (16.89104) | > loss_gen: 2.59945 (2.57194) | > loss_kl: 2.58892 (2.65802) | > loss_feat: 8.82337 (8.72355) | > loss_mel: 18.24675 (17.78361) | > loss_duration: 1.74918 (1.70623) | > loss_1: 34.00767 (33.44339) | > grad_norm_1: 73.78662 (139.64471) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.78380 (2.06403) | > loader_time: 0.03060 (0.03551)  --> STEP: 10649/15287 -- GLOBAL_STEP: 960650 | > loss_disc: 2.40674 (2.30888) | > loss_disc_real_0: 0.18118 (0.12233) | > loss_disc_real_1: 0.20930 (0.21073) | > loss_disc_real_2: 0.19891 (0.21510) | > loss_disc_real_3: 0.23680 (0.21766) | > loss_disc_real_4: 0.20009 (0.21334) | > loss_disc_real_5: 0.21410 (0.21242) | > loss_0: 2.40674 (2.30888) | > grad_norm_0: 17.47009 (16.87969) | > loss_gen: 2.40896 (2.57193) | > loss_kl: 2.74987 (2.65806) | > loss_feat: 8.65316 (8.72354) | > loss_mel: 17.88142 (17.78357) | > loss_duration: 1.75471 (1.70624) | > loss_1: 33.44813 (33.44339) | > grad_norm_1: 52.04193 (139.55801) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.68160 (2.06476) | > loader_time: 0.05760 (0.03551)  --> STEP: 10674/15287 -- GLOBAL_STEP: 960675 | > loss_disc: 2.42575 (2.30885) | > loss_disc_real_0: 0.11990 (0.12232) | > loss_disc_real_1: 0.21912 (0.21074) | > loss_disc_real_2: 0.20646 (0.21510) | > loss_disc_real_3: 0.23926 (0.21767) | > loss_disc_real_4: 0.20842 (0.21334) | > loss_disc_real_5: 0.21781 (0.21241) | > loss_0: 2.42575 (2.30885) | > grad_norm_0: 26.63622 (16.88276) | > loss_gen: 2.42966 (2.57200) | > loss_kl: 2.58205 (2.65800) | > loss_feat: 8.07984 (8.72372) | > loss_mel: 17.89014 (17.78381) | > loss_duration: 1.72996 (1.70626) | > loss_1: 32.71165 (33.44382) | > grad_norm_1: 105.58165 (139.56894) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.48460 (2.06522) | > loader_time: 0.03290 (0.03552)  --> STEP: 10699/15287 -- GLOBAL_STEP: 960700 | > loss_disc: 2.30030 (2.30886) | > loss_disc_real_0: 0.11607 (0.12232) | > loss_disc_real_1: 0.19956 (0.21073) | > loss_disc_real_2: 0.18835 (0.21510) | > loss_disc_real_3: 0.21722 (0.21769) | > loss_disc_real_4: 0.17695 (0.21335) | > loss_disc_real_5: 0.22260 (0.21243) | > loss_0: 2.30030 (2.30886) | > grad_norm_0: 18.00856 (16.90300) | > loss_gen: 2.62500 (2.57199) | > loss_kl: 2.58150 (2.65801) | > loss_feat: 8.72455 (8.72346) | > loss_mel: 17.56279 (17.78365) | > loss_duration: 1.71063 (1.70628) | > loss_1: 33.20448 (33.44343) | > grad_norm_1: 126.74859 (139.62779) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.60080 (2.06612) | > loader_time: 0.03070 (0.03552)  --> STEP: 10724/15287 -- GLOBAL_STEP: 960725 | > loss_disc: 2.22374 (2.30879) | > loss_disc_real_0: 0.10294 (0.12230) | > loss_disc_real_1: 0.20819 (0.21072) | > loss_disc_real_2: 0.20640 (0.21509) | > loss_disc_real_3: 0.23548 (0.21769) | > loss_disc_real_4: 0.22962 (0.21334) | > loss_disc_real_5: 0.18989 (0.21242) | > loss_0: 2.22374 (2.30879) | > grad_norm_0: 18.99490 (16.91044) | > loss_gen: 2.58693 (2.57192) | > loss_kl: 2.52065 (2.65797) | > loss_feat: 8.74237 (8.72344) | > loss_mel: 17.43269 (17.78351) | > loss_duration: 1.74280 (1.70630) | > loss_1: 33.02544 (33.44319) | > grad_norm_1: 78.65423 (139.61842) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99830 (2.06665) | > loader_time: 0.03510 (0.03551)  --> STEP: 10749/15287 -- GLOBAL_STEP: 960750 | > loss_disc: 2.36495 (2.30874) | > loss_disc_real_0: 0.13119 (0.12228) | > loss_disc_real_1: 0.19880 (0.21071) | > loss_disc_real_2: 0.21423 (0.21507) | > loss_disc_real_3: 0.20586 (0.21768) | > loss_disc_real_4: 0.18535 (0.21334) | > loss_disc_real_5: 0.25730 (0.21243) | > loss_0: 2.36495 (2.30874) | > grad_norm_0: 34.02174 (16.92246) | > loss_gen: 2.37378 (2.57189) | > loss_kl: 2.58482 (2.65798) | > loss_feat: 7.57649 (8.72342) | > loss_mel: 16.86476 (17.78306) | > loss_duration: 1.68094 (1.70631) | > loss_1: 31.08079 (33.44270) | > grad_norm_1: 257.03934 (139.68202) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.82820 (2.06732) | > loader_time: 0.02980 (0.03551)  --> STEP: 10774/15287 -- GLOBAL_STEP: 960775 | > loss_disc: 2.30406 (2.30863) | > loss_disc_real_0: 0.10452 (0.12226) | > loss_disc_real_1: 0.21409 (0.21069) | > loss_disc_real_2: 0.23216 (0.21506) | > loss_disc_real_3: 0.20565 (0.21767) | > loss_disc_real_4: 0.21361 (0.21332) | > loss_disc_real_5: 0.21349 (0.21243) | > loss_0: 2.30406 (2.30863) | > grad_norm_0: 30.98123 (16.93523) | > loss_gen: 2.55760 (2.57191) | > loss_kl: 2.59143 (2.65795) | > loss_feat: 8.86921 (8.72352) | > loss_mel: 18.00396 (17.78284) | > loss_duration: 1.72099 (1.70633) | > loss_1: 33.74319 (33.44258) | > grad_norm_1: 261.44876 (139.79379) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.63150 (2.06786) | > loader_time: 0.03200 (0.03551)  --> STEP: 10799/15287 -- GLOBAL_STEP: 960800 | > loss_disc: 2.25977 (2.30854) | > loss_disc_real_0: 0.12349 (0.12223) | > loss_disc_real_1: 0.21693 (0.21069) | > loss_disc_real_2: 0.22940 (0.21505) | > loss_disc_real_3: 0.22175 (0.21766) | > loss_disc_real_4: 0.22646 (0.21331) | > loss_disc_real_5: 0.19600 (0.21242) | > loss_0: 2.25977 (2.30854) | > grad_norm_0: 10.06777 (16.94529) | > loss_gen: 2.56536 (2.57187) | > loss_kl: 2.70275 (2.65793) | > loss_feat: 8.72568 (8.72376) | > loss_mel: 17.50259 (17.78267) | > loss_duration: 1.69203 (1.70634) | > loss_1: 33.18841 (33.44262) | > grad_norm_1: 232.86601 (139.90160) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34220 (2.06818) | > loader_time: 0.03570 (0.03550)  --> STEP: 10824/15287 -- GLOBAL_STEP: 960825 | > loss_disc: 2.29862 (2.30854) | > loss_disc_real_0: 0.13296 (0.12226) | > loss_disc_real_1: 0.22688 (0.21068) | > loss_disc_real_2: 0.21008 (0.21507) | > loss_disc_real_3: 0.21754 (0.21767) | > loss_disc_real_4: 0.24282 (0.21330) | > loss_disc_real_5: 0.21129 (0.21242) | > loss_0: 2.29862 (2.30854) | > grad_norm_0: 5.76440 (16.95764) | > loss_gen: 2.38081 (2.57194) | > loss_kl: 2.64173 (2.65789) | > loss_feat: 8.61752 (8.72413) | > loss_mel: 17.62186 (17.78249) | > loss_duration: 1.72874 (1.70636) | > loss_1: 32.99067 (33.44287) | > grad_norm_1: 90.34498 (139.95714) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36080 (2.06853) | > loader_time: 0.03960 (0.03550)  --> STEP: 10849/15287 -- GLOBAL_STEP: 960850 | > loss_disc: 2.27899 (2.30853) | > loss_disc_real_0: 0.10438 (0.12225) | > loss_disc_real_1: 0.20950 (0.21068) | > loss_disc_real_2: 0.24201 (0.21509) | > loss_disc_real_3: 0.21536 (0.21769) | > loss_disc_real_4: 0.20211 (0.21331) | > loss_disc_real_5: 0.21304 (0.21244) | > loss_0: 2.27899 (2.30853) | > grad_norm_0: 10.72016 (16.96008) | > loss_gen: 2.58422 (2.57202) | > loss_kl: 2.75961 (2.65802) | > loss_feat: 9.01539 (8.72441) | > loss_mel: 18.07498 (17.78269) | > loss_duration: 1.72421 (1.70636) | > loss_1: 34.15842 (33.44354) | > grad_norm_1: 98.43583 (139.93889) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88040 (2.06891) | > loader_time: 0.03550 (0.03550)  --> STEP: 10874/15287 -- GLOBAL_STEP: 960875 | > loss_disc: 2.39784 (2.30856) | > loss_disc_real_0: 0.10852 (0.12223) | > loss_disc_real_1: 0.21543 (0.21068) | > loss_disc_real_2: 0.23402 (0.21510) | > loss_disc_real_3: 0.25257 (0.21770) | > loss_disc_real_4: 0.22982 (0.21332) | > loss_disc_real_5: 0.21934 (0.21243) | > loss_0: 2.39784 (2.30856) | > grad_norm_0: 14.44582 (16.94967) | > loss_gen: 2.47028 (2.57206) | > loss_kl: 2.87321 (2.65815) | > loss_feat: 8.36734 (8.72471) | > loss_mel: 17.66717 (17.78296) | > loss_duration: 1.68689 (1.70637) | > loss_1: 33.06488 (33.44427) | > grad_norm_1: 83.85832 (139.89452) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.62670 (2.06934) | > loader_time: 0.03110 (0.03549)  --> STEP: 10899/15287 -- GLOBAL_STEP: 960900 | > loss_disc: 2.29316 (2.30863) | > loss_disc_real_0: 0.10658 (0.12224) | > loss_disc_real_1: 0.23182 (0.21068) | > loss_disc_real_2: 0.19721 (0.21510) | > loss_disc_real_3: 0.21856 (0.21769) | > loss_disc_real_4: 0.20027 (0.21331) | > loss_disc_real_5: 0.20566 (0.21244) | > loss_0: 2.29316 (2.30863) | > grad_norm_0: 21.58895 (16.94978) | > loss_gen: 2.45436 (2.57195) | > loss_kl: 2.61316 (2.65807) | > loss_feat: 8.73248 (8.72418) | > loss_mel: 17.61792 (17.78319) | > loss_duration: 1.70188 (1.70640) | > loss_1: 33.11980 (33.44382) | > grad_norm_1: 143.86246 (139.88899) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42140 (2.06972) | > loader_time: 0.03330 (0.03548)  --> STEP: 10924/15287 -- GLOBAL_STEP: 960925 | > loss_disc: 2.26226 (2.30861) | > loss_disc_real_0: 0.10422 (0.12223) | > loss_disc_real_1: 0.18178 (0.21068) | > loss_disc_real_2: 0.20137 (0.21510) | > loss_disc_real_3: 0.19558 (0.21770) | > loss_disc_real_4: 0.16970 (0.21330) | > loss_disc_real_5: 0.22150 (0.21244) | > loss_0: 2.26226 (2.30861) | > grad_norm_0: 30.60949 (16.95680) | > loss_gen: 2.36876 (2.57193) | > loss_kl: 2.61895 (2.65806) | > loss_feat: 9.00517 (8.72436) | > loss_mel: 17.98580 (17.78297) | > loss_duration: 1.74106 (1.70641) | > loss_1: 33.71974 (33.44376) | > grad_norm_1: 232.39413 (139.91156) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42810 (2.07017) | > loader_time: 0.03690 (0.03548)  --> STEP: 10949/15287 -- GLOBAL_STEP: 960950 | > loss_disc: 2.29443 (2.30859) | > loss_disc_real_0: 0.15149 (0.12222) | > loss_disc_real_1: 0.21666 (0.21068) | > loss_disc_real_2: 0.20436 (0.21508) | > loss_disc_real_3: 0.18355 (0.21768) | > loss_disc_real_4: 0.20607 (0.21329) | > loss_disc_real_5: 0.22540 (0.21243) | > loss_0: 2.29443 (2.30859) | > grad_norm_0: 14.89659 (16.95675) | > loss_gen: 2.76026 (2.57190) | > loss_kl: 2.73397 (2.65806) | > loss_feat: 9.08027 (8.72456) | > loss_mel: 17.70506 (17.78281) | > loss_duration: 1.71913 (1.70640) | > loss_1: 33.99869 (33.44378) | > grad_norm_1: 138.21126 (139.95406) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21850 (2.07083) | > loader_time: 0.03070 (0.03548)  --> STEP: 10974/15287 -- GLOBAL_STEP: 960975 | > loss_disc: 2.28759 (2.30854) | > loss_disc_real_0: 0.10076 (0.12221) | > loss_disc_real_1: 0.21925 (0.21068) | > loss_disc_real_2: 0.20630 (0.21509) | > loss_disc_real_3: 0.23463 (0.21768) | > loss_disc_real_4: 0.21289 (0.21329) | > loss_disc_real_5: 0.17113 (0.21243) | > loss_0: 2.28759 (2.30854) | > grad_norm_0: 7.74070 (16.95758) | > loss_gen: 2.85316 (2.57192) | > loss_kl: 2.70489 (2.65813) | > loss_feat: 8.99237 (8.72470) | > loss_mel: 17.99092 (17.78240) | > loss_duration: 1.74011 (1.70641) | > loss_1: 34.28145 (33.44360) | > grad_norm_1: 137.54523 (139.96292) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93800 (2.07131) | > loader_time: 0.03560 (0.03548)  --> STEP: 10999/15287 -- GLOBAL_STEP: 961000 | > loss_disc: 2.25747 (2.30854) | > loss_disc_real_0: 0.09472 (0.12221) | > loss_disc_real_1: 0.22586 (0.21067) | > loss_disc_real_2: 0.18699 (0.21509) | > loss_disc_real_3: 0.17296 (0.21768) | > loss_disc_real_4: 0.17983 (0.21329) | > loss_disc_real_5: 0.18864 (0.21245) | > loss_0: 2.25747 (2.30854) | > grad_norm_0: 15.09495 (16.95319) | > loss_gen: 2.55932 (2.57196) | > loss_kl: 2.66555 (2.65817) | > loss_feat: 9.04724 (8.72473) | > loss_mel: 18.45892 (17.78265) | > loss_duration: 1.68645 (1.70641) | > loss_1: 34.41749 (33.44398) | > grad_norm_1: 199.37534 (139.92241) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.93920 (2.07210) | > loader_time: 0.04170 (0.03548)  --> STEP: 11024/15287 -- GLOBAL_STEP: 961025 | > loss_disc: 2.29152 (2.30859) | > loss_disc_real_0: 0.11360 (0.12222) | > loss_disc_real_1: 0.21789 (0.21068) | > loss_disc_real_2: 0.23099 (0.21511) | > loss_disc_real_3: 0.22128 (0.21770) | > loss_disc_real_4: 0.25489 (0.21329) | > loss_disc_real_5: 0.21454 (0.21245) | > loss_0: 2.29152 (2.30859) | > grad_norm_0: 8.95603 (16.95076) | > loss_gen: 2.71422 (2.57199) | > loss_kl: 2.64114 (2.65825) | > loss_feat: 8.31104 (8.72484) | > loss_mel: 17.39319 (17.78265) | > loss_duration: 1.71003 (1.70642) | > loss_1: 32.76961 (33.44420) | > grad_norm_1: 46.24653 (139.83966) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17190 (2.07266) | > loader_time: 0.02990 (0.03547)  --> STEP: 11049/15287 -- GLOBAL_STEP: 961050 | > loss_disc: 2.35507 (2.30862) | > loss_disc_real_0: 0.12100 (0.12222) | > loss_disc_real_1: 0.24707 (0.21068) | > loss_disc_real_2: 0.23077 (0.21511) | > loss_disc_real_3: 0.21012 (0.21769) | > loss_disc_real_4: 0.20557 (0.21329) | > loss_disc_real_5: 0.21506 (0.21244) | > loss_0: 2.35507 (2.30862) | > grad_norm_0: 5.52149 (16.94978) | > loss_gen: 2.69034 (2.57200) | > loss_kl: 2.67687 (2.65828) | > loss_feat: 8.35585 (8.72509) | > loss_mel: 17.23857 (17.78287) | > loss_duration: 1.68467 (1.70645) | > loss_1: 32.64630 (33.44474) | > grad_norm_1: 125.80737 (139.82881) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96490 (2.07335) | > loader_time: 0.03290 (0.03547)  --> STEP: 11074/15287 -- GLOBAL_STEP: 961075 | > loss_disc: 2.26133 (2.30866) | > loss_disc_real_0: 0.12186 (0.12222) | > loss_disc_real_1: 0.20660 (0.21069) | > loss_disc_real_2: 0.20546 (0.21511) | > loss_disc_real_3: 0.21161 (0.21770) | > loss_disc_real_4: 0.20852 (0.21330) | > loss_disc_real_5: 0.19225 (0.21244) | > loss_0: 2.26133 (2.30866) | > grad_norm_0: 8.56004 (16.95256) | > loss_gen: 2.42259 (2.57194) | > loss_kl: 2.59550 (2.65828) | > loss_feat: 8.80479 (8.72490) | > loss_mel: 17.53281 (17.78270) | > loss_duration: 1.68392 (1.70645) | > loss_1: 33.03960 (33.44431) | > grad_norm_1: 157.18466 (139.81058) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33210 (2.07407) | > loader_time: 0.03700 (0.03547)  --> STEP: 11099/15287 -- GLOBAL_STEP: 961100 | > loss_disc: 2.29086 (2.30858) | > loss_disc_real_0: 0.10495 (0.12219) | > loss_disc_real_1: 0.19999 (0.21069) | > loss_disc_real_2: 0.22388 (0.21510) | > loss_disc_real_3: 0.23747 (0.21769) | > loss_disc_real_4: 0.21087 (0.21329) | > loss_disc_real_5: 0.21814 (0.21244) | > loss_0: 2.29086 (2.30858) | > grad_norm_0: 12.19549 (16.95467) | > loss_gen: 2.68579 (2.57196) | > loss_kl: 2.72200 (2.65826) | > loss_feat: 8.95025 (8.72497) | > loss_mel: 18.04669 (17.78245) | > loss_duration: 1.71523 (1.70644) | > loss_1: 34.11996 (33.44413) | > grad_norm_1: 174.99249 (139.84663) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13030 (2.07469) | > loader_time: 0.03380 (0.03546)  --> STEP: 11124/15287 -- GLOBAL_STEP: 961125 | > loss_disc: 2.30672 (2.30860) | > loss_disc_real_0: 0.11775 (0.12221) | > loss_disc_real_1: 0.20239 (0.21069) | > loss_disc_real_2: 0.21671 (0.21511) | > loss_disc_real_3: 0.19284 (0.21768) | > loss_disc_real_4: 0.21769 (0.21328) | > loss_disc_real_5: 0.24651 (0.21243) | > loss_0: 2.30672 (2.30860) | > grad_norm_0: 11.61334 (16.95805) | > loss_gen: 2.50536 (2.57196) | > loss_kl: 2.63475 (2.65824) | > loss_feat: 8.96798 (8.72529) | > loss_mel: 17.66345 (17.78246) | > loss_duration: 1.69651 (1.70645) | > loss_1: 33.46805 (33.44445) | > grad_norm_1: 150.37349 (139.83311) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52870 (2.07506) | > loader_time: 0.03050 (0.03546)  --> STEP: 11149/15287 -- GLOBAL_STEP: 961150 | > loss_disc: 2.23330 (2.30858) | > loss_disc_real_0: 0.10166 (0.12220) | > loss_disc_real_1: 0.18065 (0.21069) | > loss_disc_real_2: 0.24023 (0.21511) | > loss_disc_real_3: 0.22903 (0.21768) | > loss_disc_real_4: 0.21875 (0.21329) | > loss_disc_real_5: 0.19435 (0.21242) | > loss_0: 2.23330 (2.30858) | > grad_norm_0: 12.17183 (16.95970) | > loss_gen: 2.65985 (2.57204) | > loss_kl: 2.77743 (2.65835) | > loss_feat: 8.78922 (8.72579) | > loss_mel: 17.81722 (17.78242) | > loss_duration: 1.72031 (1.70645) | > loss_1: 33.76403 (33.44510) | > grad_norm_1: 134.66859 (139.86014) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34150 (2.07592) | > loader_time: 0.04840 (0.03546)  --> STEP: 11174/15287 -- GLOBAL_STEP: 961175 | > loss_disc: 2.30338 (2.30859) | > loss_disc_real_0: 0.10353 (0.12221) | > loss_disc_real_1: 0.18586 (0.21069) | > loss_disc_real_2: 0.21664 (0.21511) | > loss_disc_real_3: 0.22670 (0.21769) | > loss_disc_real_4: 0.22300 (0.21331) | > loss_disc_real_5: 0.22427 (0.21242) | > loss_0: 2.30338 (2.30859) | > grad_norm_0: 19.61460 (16.97427) | > loss_gen: 2.52944 (2.57204) | > loss_kl: 2.68572 (2.65842) | > loss_feat: 8.40992 (8.72573) | > loss_mel: 18.05404 (17.78251) | > loss_duration: 1.72627 (1.70643) | > loss_1: 33.40539 (33.44516) | > grad_norm_1: 216.48659 (139.92494) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58170 (2.07646) | > loader_time: 0.03370 (0.03546)  --> STEP: 11199/15287 -- GLOBAL_STEP: 961200 | > loss_disc: 2.36238 (2.30858) | > loss_disc_real_0: 0.16472 (0.12221) | > loss_disc_real_1: 0.21896 (0.21068) | > loss_disc_real_2: 0.18598 (0.21510) | > loss_disc_real_3: 0.21420 (0.21768) | > loss_disc_real_4: 0.21261 (0.21331) | > loss_disc_real_5: 0.25963 (0.21245) | > loss_0: 2.36238 (2.30858) | > grad_norm_0: 36.26170 (16.97541) | > loss_gen: 2.59486 (2.57207) | > loss_kl: 2.80558 (2.65857) | > loss_feat: 8.42692 (8.72565) | > loss_mel: 18.05594 (17.78260) | > loss_duration: 1.68565 (1.70642) | > loss_1: 33.56895 (33.44536) | > grad_norm_1: 84.88853 (139.95619) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.50720 (2.07666) | > loader_time: 0.03730 (0.03546)  --> STEP: 11224/15287 -- GLOBAL_STEP: 961225 | > loss_disc: 2.35406 (2.30868) | > loss_disc_real_0: 0.16961 (0.12221) | > loss_disc_real_1: 0.31457 (0.21069) | > loss_disc_real_2: 0.16718 (0.21511) | > loss_disc_real_3: 0.20039 (0.21768) | > loss_disc_real_4: 0.19114 (0.21331) | > loss_disc_real_5: 0.25130 (0.21246) | > loss_0: 2.35406 (2.30868) | > grad_norm_0: 18.92108 (16.97472) | > loss_gen: 2.63908 (2.57207) | > loss_kl: 2.73881 (2.65861) | > loss_feat: 9.13176 (8.72568) | > loss_mel: 18.27780 (17.78284) | > loss_duration: 1.67418 (1.70641) | > loss_1: 34.46163 (33.44565) | > grad_norm_1: 167.44446 (139.87874) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41900 (2.07735) | > loader_time: 0.03060 (0.03546)  --> STEP: 11249/15287 -- GLOBAL_STEP: 961250 | > loss_disc: 2.41529 (2.30875) | > loss_disc_real_0: 0.19410 (0.12223) | > loss_disc_real_1: 0.22272 (0.21070) | > loss_disc_real_2: 0.23042 (0.21512) | > loss_disc_real_3: 0.23631 (0.21768) | > loss_disc_real_4: 0.22378 (0.21330) | > loss_disc_real_5: 0.26302 (0.21246) | > loss_0: 2.41529 (2.30875) | > grad_norm_0: 12.74087 (16.97596) | > loss_gen: 2.43744 (2.57205) | > loss_kl: 2.67327 (2.65857) | > loss_feat: 8.62485 (8.72567) | > loss_mel: 17.30280 (17.78305) | > loss_duration: 1.75021 (1.70643) | > loss_1: 32.78856 (33.44580) | > grad_norm_1: 95.44479 (139.88356) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27450 (2.07766) | > loader_time: 0.03400 (0.03546)  --> STEP: 11274/15287 -- GLOBAL_STEP: 961275 | > loss_disc: 2.27522 (2.30876) | > loss_disc_real_0: 0.11375 (0.12226) | > loss_disc_real_1: 0.21531 (0.21069) | > loss_disc_real_2: 0.23438 (0.21512) | > loss_disc_real_3: 0.21630 (0.21766) | > loss_disc_real_4: 0.17115 (0.21329) | > loss_disc_real_5: 0.21420 (0.21246) | > loss_0: 2.27522 (2.30876) | > grad_norm_0: 20.19219 (16.97928) | > loss_gen: 2.63696 (2.57193) | > loss_kl: 2.62724 (2.65848) | > loss_feat: 8.84421 (8.72535) | > loss_mel: 17.42934 (17.78277) | > loss_duration: 1.73247 (1.70642) | > loss_1: 33.27023 (33.44500) | > grad_norm_1: 147.01974 (139.86684) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91340 (2.07829) | > loader_time: 0.03110 (0.03545)  --> STEP: 11299/15287 -- GLOBAL_STEP: 961300 | > loss_disc: 2.28681 (2.30879) | > loss_disc_real_0: 0.13314 (0.12224) | > loss_disc_real_1: 0.22196 (0.21070) | > loss_disc_real_2: 0.21999 (0.21513) | > loss_disc_real_3: 0.21040 (0.21767) | > loss_disc_real_4: 0.20592 (0.21330) | > loss_disc_real_5: 0.19697 (0.21246) | > loss_0: 2.28681 (2.30879) | > grad_norm_0: 13.30177 (16.98340) | > loss_gen: 2.60969 (2.57191) | > loss_kl: 2.52210 (2.65843) | > loss_feat: 8.49478 (8.72533) | > loss_mel: 17.66190 (17.78313) | > loss_duration: 1.73379 (1.70644) | > loss_1: 33.02225 (33.44526) | > grad_norm_1: 140.47513 (139.82935) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11950 (2.07867) | > loader_time: 0.03310 (0.03545)  --> STEP: 11324/15287 -- GLOBAL_STEP: 961325 | > loss_disc: 2.37221 (2.30882) | > loss_disc_real_0: 0.21061 (0.12229) | > loss_disc_real_1: 0.22122 (0.21070) | > loss_disc_real_2: 0.23103 (0.21513) | > loss_disc_real_3: 0.24429 (0.21767) | > loss_disc_real_4: 0.20692 (0.21331) | > loss_disc_real_5: 0.22832 (0.21247) | > loss_0: 2.37221 (2.30882) | > grad_norm_0: 25.06802 (16.98639) | > loss_gen: 2.56017 (2.57199) | > loss_kl: 2.78373 (2.65840) | > loss_feat: 9.36279 (8.72523) | > loss_mel: 18.00762 (17.78296) | > loss_duration: 1.66345 (1.70641) | > loss_1: 34.37776 (33.44503) | > grad_norm_1: 120.33556 (139.76044) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72910 (2.07929) | > loader_time: 0.03130 (0.03545)  --> STEP: 11349/15287 -- GLOBAL_STEP: 961350 | > loss_disc: 2.29766 (2.30884) | > loss_disc_real_0: 0.10461 (0.12228) | > loss_disc_real_1: 0.25615 (0.21071) | > loss_disc_real_2: 0.22969 (0.21513) | > loss_disc_real_3: 0.21707 (0.21768) | > loss_disc_real_4: 0.21193 (0.21331) | > loss_disc_real_5: 0.17526 (0.21247) | > loss_0: 2.29766 (2.30884) | > grad_norm_0: 16.09329 (16.97567) | > loss_gen: 2.49345 (2.57204) | > loss_kl: 2.56544 (2.65841) | > loss_feat: 8.70689 (8.72525) | > loss_mel: 17.76113 (17.78313) | > loss_duration: 1.69664 (1.70643) | > loss_1: 33.22355 (33.44529) | > grad_norm_1: 163.34813 (139.68280) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.01590 (2.08012) | > loader_time: 0.04400 (0.03545)  --> STEP: 11374/15287 -- GLOBAL_STEP: 961375 | > loss_disc: 2.35022 (2.30882) | > loss_disc_real_0: 0.12873 (0.12228) | > loss_disc_real_1: 0.20467 (0.21072) | > loss_disc_real_2: 0.19982 (0.21513) | > loss_disc_real_3: 0.22717 (0.21768) | > loss_disc_real_4: 0.18994 (0.21331) | > loss_disc_real_5: 0.22137 (0.21247) | > loss_0: 2.35022 (2.30882) | > grad_norm_0: 12.23578 (16.97535) | > loss_gen: 2.52514 (2.57208) | > loss_kl: 2.63184 (2.65840) | > loss_feat: 8.87946 (8.72522) | > loss_mel: 18.04916 (17.78312) | > loss_duration: 1.70656 (1.70643) | > loss_1: 33.79216 (33.44528) | > grad_norm_1: 142.40675 (139.67653) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.81580 (2.08042) | > loader_time: 0.03820 (0.03546)  --> STEP: 11399/15287 -- GLOBAL_STEP: 961400 | > loss_disc: 2.29073 (2.30876) | > loss_disc_real_0: 0.12263 (0.12227) | > loss_disc_real_1: 0.21104 (0.21072) | > loss_disc_real_2: 0.21998 (0.21512) | > loss_disc_real_3: 0.20716 (0.21768) | > loss_disc_real_4: 0.21247 (0.21331) | > loss_disc_real_5: 0.23353 (0.21245) | > loss_0: 2.29073 (2.30876) | > grad_norm_0: 5.24825 (16.97841) | > loss_gen: 2.63608 (2.57210) | > loss_kl: 2.57963 (2.65832) | > loss_feat: 8.81798 (8.72515) | > loss_mel: 17.55633 (17.78294) | > loss_duration: 1.72188 (1.70641) | > loss_1: 33.31189 (33.44497) | > grad_norm_1: 38.46032 (139.67477) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24160 (2.08097) | > loader_time: 0.03700 (0.03547)  --> STEP: 11424/15287 -- GLOBAL_STEP: 961425 | > loss_disc: 2.38989 (2.30874) | > loss_disc_real_0: 0.14485 (0.12226) | > loss_disc_real_1: 0.23076 (0.21073) | > loss_disc_real_2: 0.24964 (0.21512) | > loss_disc_real_3: 0.22815 (0.21769) | > loss_disc_real_4: 0.26197 (0.21331) | > loss_disc_real_5: 0.22685 (0.21245) | > loss_0: 2.38989 (2.30874) | > grad_norm_0: 10.59693 (16.97202) | > loss_gen: 2.51616 (2.57211) | > loss_kl: 2.81401 (2.65844) | > loss_feat: 8.33930 (8.72537) | > loss_mel: 17.87338 (17.78292) | > loss_duration: 1.72180 (1.70641) | > loss_1: 33.26466 (33.44529) | > grad_norm_1: 147.93803 (139.65672) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30330 (2.08118) | > loader_time: 0.03840 (0.03547)  --> STEP: 11449/15287 -- GLOBAL_STEP: 961450 | > loss_disc: 2.28350 (2.30876) | > loss_disc_real_0: 0.07954 (0.12226) | > loss_disc_real_1: 0.20127 (0.21072) | > loss_disc_real_2: 0.18678 (0.21512) | > loss_disc_real_3: 0.21389 (0.21769) | > loss_disc_real_4: 0.21835 (0.21331) | > loss_disc_real_5: 0.23783 (0.21244) | > loss_0: 2.28350 (2.30876) | > grad_norm_0: 12.62374 (16.96622) | > loss_gen: 2.83046 (2.57215) | > loss_kl: 2.75028 (2.65851) | > loss_feat: 9.37015 (8.72548) | > loss_mel: 18.44893 (17.78310) | > loss_duration: 1.68427 (1.70640) | > loss_1: 35.08410 (33.44567) | > grad_norm_1: 215.28784 (139.66515) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19270 (2.08125) | > loader_time: 0.03220 (0.03547)  --> STEP: 11474/15287 -- GLOBAL_STEP: 961475 | > loss_disc: 2.27527 (2.30879) | > loss_disc_real_0: 0.08775 (0.12229) | > loss_disc_real_1: 0.20111 (0.21072) | > loss_disc_real_2: 0.20174 (0.21512) | > loss_disc_real_3: 0.21158 (0.21768) | > loss_disc_real_4: 0.19439 (0.21330) | > loss_disc_real_5: 0.20860 (0.21243) | > loss_0: 2.27527 (2.30879) | > grad_norm_0: 25.43284 (16.97518) | > loss_gen: 2.42930 (2.57215) | > loss_kl: 2.56666 (2.65855) | > loss_feat: 9.21782 (8.72546) | > loss_mel: 18.39728 (17.78327) | > loss_duration: 1.70534 (1.70640) | > loss_1: 34.31640 (33.44586) | > grad_norm_1: 167.62527 (139.67482) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.76910 (2.08151) | > loader_time: 0.03270 (0.03547)  --> STEP: 11499/15287 -- GLOBAL_STEP: 961500 | > loss_disc: 2.30060 (2.30878) | > loss_disc_real_0: 0.09217 (0.12227) | > loss_disc_real_1: 0.18992 (0.21072) | > loss_disc_real_2: 0.21820 (0.21513) | > loss_disc_real_3: 0.19712 (0.21768) | > loss_disc_real_4: 0.20957 (0.21330) | > loss_disc_real_5: 0.16840 (0.21243) | > loss_0: 2.30060 (2.30878) | > grad_norm_0: 22.51105 (16.97424) | > loss_gen: 2.49821 (2.57212) | > loss_kl: 2.63908 (2.65852) | > loss_feat: 8.21028 (8.72539) | > loss_mel: 17.48601 (17.78323) | > loss_duration: 1.65514 (1.70641) | > loss_1: 32.48872 (33.44568) | > grad_norm_1: 165.00096 (139.68797) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.51610 (2.08174) | > loader_time: 0.03300 (0.03547)  --> STEP: 11524/15287 -- GLOBAL_STEP: 961525 | > loss_disc: 2.28511 (2.30877) | > loss_disc_real_0: 0.11356 (0.12227) | > loss_disc_real_1: 0.21790 (0.21072) | > loss_disc_real_2: 0.27666 (0.21514) | > loss_disc_real_3: 0.21837 (0.21768) | > loss_disc_real_4: 0.27387 (0.21331) | > loss_disc_real_5: 0.27887 (0.21244) | > loss_0: 2.28511 (2.30877) | > grad_norm_0: 8.00080 (16.96676) | > loss_gen: 2.60870 (2.57213) | > loss_kl: 2.80196 (2.65855) | > loss_feat: 9.14606 (8.72538) | > loss_mel: 17.87055 (17.78315) | > loss_duration: 1.68908 (1.70640) | > loss_1: 34.11634 (33.44562) | > grad_norm_1: 83.32858 (139.59604) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21100 (2.08192) | > loader_time: 0.03330 (0.03547)  --> STEP: 11549/15287 -- GLOBAL_STEP: 961550 | > loss_disc: 2.31928 (2.30886) | > loss_disc_real_0: 0.14466 (0.12227) | > loss_disc_real_1: 0.19649 (0.21073) | > loss_disc_real_2: 0.23437 (0.21515) | > loss_disc_real_3: 0.20864 (0.21769) | > loss_disc_real_4: 0.23018 (0.21332) | > loss_disc_real_5: 0.21724 (0.21243) | > loss_0: 2.31928 (2.30886) | > grad_norm_0: 16.97437 (16.95660) | > loss_gen: 2.68300 (2.57215) | > loss_kl: 2.58642 (2.65851) | > loss_feat: 8.59049 (8.72503) | > loss_mel: 17.97990 (17.78329) | > loss_duration: 1.71182 (1.70639) | > loss_1: 33.55163 (33.44539) | > grad_norm_1: 156.16597 (139.50949) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97140 (2.08188) | > loader_time: 0.03120 (0.03547)  --> STEP: 11574/15287 -- GLOBAL_STEP: 961575 | > loss_disc: 2.33193 (2.30896) | > loss_disc_real_0: 0.12429 (0.12230) | > loss_disc_real_1: 0.20313 (0.21074) | > loss_disc_real_2: 0.23731 (0.21516) | > loss_disc_real_3: 0.22736 (0.21769) | > loss_disc_real_4: 0.19188 (0.21331) | > loss_disc_real_5: 0.20616 (0.21243) | > loss_0: 2.33193 (2.30896) | > grad_norm_0: 4.02680 (16.94854) | > loss_gen: 2.52678 (2.57204) | > loss_kl: 2.65484 (2.65841) | > loss_feat: 7.85478 (8.72453) | > loss_mel: 17.53452 (17.78314) | > loss_duration: 1.73800 (1.70639) | > loss_1: 32.30891 (33.44453) | > grad_norm_1: 64.85029 (139.43430) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99950 (2.08160) | > loader_time: 0.03140 (0.03547)  --> STEP: 11599/15287 -- GLOBAL_STEP: 961600 | > loss_disc: 2.29896 (2.30900) | > loss_disc_real_0: 0.11281 (0.12230) | > loss_disc_real_1: 0.20232 (0.21074) | > loss_disc_real_2: 0.22778 (0.21515) | > loss_disc_real_3: 0.19751 (0.21769) | > loss_disc_real_4: 0.20589 (0.21331) | > loss_disc_real_5: 0.19149 (0.21244) | > loss_0: 2.29896 (2.30900) | > grad_norm_0: 9.85428 (16.93644) | > loss_gen: 2.63942 (2.57201) | > loss_kl: 2.62200 (2.65840) | > loss_feat: 9.09436 (8.72445) | > loss_mel: 17.87084 (17.78358) | > loss_duration: 1.71245 (1.70640) | > loss_1: 33.93906 (33.44485) | > grad_norm_1: 155.56712 (139.34215) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.62770 (2.08124) | > loader_time: 0.03040 (0.03546)  --> STEP: 11624/15287 -- GLOBAL_STEP: 961625 | > loss_disc: 2.33342 (2.30903) | > loss_disc_real_0: 0.11641 (0.12231) | > loss_disc_real_1: 0.18302 (0.21075) | > loss_disc_real_2: 0.20796 (0.21516) | > loss_disc_real_3: 0.22258 (0.21769) | > loss_disc_real_4: 0.24423 (0.21331) | > loss_disc_real_5: 0.21739 (0.21243) | > loss_0: 2.33342 (2.30903) | > grad_norm_0: 12.63295 (16.93808) | > loss_gen: 2.55658 (2.57194) | > loss_kl: 2.54296 (2.65836) | > loss_feat: 9.14180 (8.72414) | > loss_mel: 17.51411 (17.78353) | > loss_duration: 1.72911 (1.70639) | > loss_1: 33.48455 (33.44437) | > grad_norm_1: 71.43073 (139.27896) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.63540 (2.08081) | > loader_time: 0.03450 (0.03546)  --> STEP: 11649/15287 -- GLOBAL_STEP: 961650 | > loss_disc: 2.25240 (2.30897) | > loss_disc_real_0: 0.13114 (0.12231) | > loss_disc_real_1: 0.19050 (0.21074) | > loss_disc_real_2: 0.18876 (0.21514) | > loss_disc_real_3: 0.21223 (0.21769) | > loss_disc_real_4: 0.22071 (0.21331) | > loss_disc_real_5: 0.19775 (0.21243) | > loss_0: 2.25240 (2.30897) | > grad_norm_0: 8.13854 (16.94179) | > loss_gen: 2.64544 (2.57201) | > loss_kl: 2.66736 (2.65836) | > loss_feat: 8.99913 (8.72416) | > loss_mel: 17.48131 (17.78315) | > loss_duration: 1.72769 (1.70637) | > loss_1: 33.52093 (33.44403) | > grad_norm_1: 70.98055 (139.28983) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.80910 (2.08043) | > loader_time: 0.02940 (0.03546)  --> STEP: 11674/15287 -- GLOBAL_STEP: 961675 | > loss_disc: 2.30145 (2.30891) | > loss_disc_real_0: 0.14183 (0.12231) | > loss_disc_real_1: 0.23675 (0.21073) | > loss_disc_real_2: 0.21499 (0.21514) | > loss_disc_real_3: 0.20777 (0.21768) | > loss_disc_real_4: 0.21521 (0.21330) | > loss_disc_real_5: 0.20610 (0.21242) | > loss_0: 2.30145 (2.30891) | > grad_norm_0: 16.62650 (16.94101) | > loss_gen: 2.61883 (2.57203) | > loss_kl: 2.65190 (2.65832) | > loss_feat: 9.35270 (8.72439) | > loss_mel: 17.79935 (17.78304) | > loss_duration: 1.70626 (1.70637) | > loss_1: 34.12903 (33.44414) | > grad_norm_1: 217.65807 (139.28348) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.48780 (2.08017) | > loader_time: 0.04030 (0.03545)  --> STEP: 11699/15287 -- GLOBAL_STEP: 961700 | > loss_disc: 2.30931 (2.30890) | > loss_disc_real_0: 0.15057 (0.12232) | > loss_disc_real_1: 0.22136 (0.21074) | > loss_disc_real_2: 0.20859 (0.21515) | > loss_disc_real_3: 0.22961 (0.21768) | > loss_disc_real_4: 0.20421 (0.21330) | > loss_disc_real_5: 0.18537 (0.21242) | > loss_0: 2.30931 (2.30890) | > grad_norm_0: 9.62830 (16.94562) | > loss_gen: 2.58174 (2.57210) | > loss_kl: 2.62340 (2.65829) | > loss_feat: 8.49879 (8.72431) | > loss_mel: 17.86542 (17.78281) | > loss_duration: 1.73743 (1.70635) | > loss_1: 33.30678 (33.44387) | > grad_norm_1: 90.10220 (139.29956) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88270 (2.07996) | > loader_time: 0.03140 (0.03545)  --> STEP: 11724/15287 -- GLOBAL_STEP: 961725 | > loss_disc: 2.27335 (2.30880) | > loss_disc_real_0: 0.10940 (0.12231) | > loss_disc_real_1: 0.26069 (0.21075) | > loss_disc_real_2: 0.19408 (0.21515) | > loss_disc_real_3: 0.22270 (0.21768) | > loss_disc_real_4: 0.19586 (0.21329) | > loss_disc_real_5: 0.22320 (0.21242) | > loss_0: 2.27335 (2.30880) | > grad_norm_0: 16.48700 (16.94865) | > loss_gen: 2.59309 (2.57213) | > loss_kl: 2.58572 (2.65840) | > loss_feat: 8.93088 (8.72445) | > loss_mel: 17.50083 (17.78274) | > loss_duration: 1.71509 (1.70634) | > loss_1: 33.32561 (33.44407) | > grad_norm_1: 182.19618 (139.34079) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31790 (2.08002) | > loader_time: 0.04050 (0.03545)  --> STEP: 11749/15287 -- GLOBAL_STEP: 961750 | > loss_disc: 2.37223 (2.30876) | > loss_disc_real_0: 0.06868 (0.12231) | > loss_disc_real_1: 0.20607 (0.21074) | > loss_disc_real_2: 0.23137 (0.21514) | > loss_disc_real_3: 0.21605 (0.21766) | > loss_disc_real_4: 0.22416 (0.21329) | > loss_disc_real_5: 0.20535 (0.21241) | > loss_0: 2.37223 (2.30876) | > grad_norm_0: 24.28486 (16.94850) | > loss_gen: 2.35770 (2.57212) | > loss_kl: 2.69750 (2.65843) | > loss_feat: 8.43884 (8.72443) | > loss_mel: 17.58061 (17.78232) | > loss_duration: 1.68892 (1.70632) | > loss_1: 32.76356 (33.44363) | > grad_norm_1: 173.54889 (139.37236) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25700 (2.08049) | > loader_time: 0.03260 (0.03546)  --> STEP: 11774/15287 -- GLOBAL_STEP: 961775 | > loss_disc: 2.27562 (2.30875) | > loss_disc_real_0: 0.10553 (0.12231) | > loss_disc_real_1: 0.17679 (0.21075) | > loss_disc_real_2: 0.20865 (0.21515) | > loss_disc_real_3: 0.23895 (0.21767) | > loss_disc_real_4: 0.23612 (0.21329) | > loss_disc_real_5: 0.18638 (0.21240) | > loss_0: 2.27562 (2.30875) | > grad_norm_0: 6.02741 (16.94863) | > loss_gen: 2.72192 (2.57214) | > loss_kl: 2.63119 (2.65849) | > loss_feat: 8.31448 (8.72448) | > loss_mel: 17.47260 (17.78229) | > loss_duration: 1.71028 (1.70631) | > loss_1: 32.85047 (33.44373) | > grad_norm_1: 64.69895 (139.34528) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.73020 (2.08068) | > loader_time: 0.03710 (0.03546)  --> STEP: 11799/15287 -- GLOBAL_STEP: 961800 | > loss_disc: 2.29578 (2.30875) | > loss_disc_real_0: 0.10768 (0.12231) | > loss_disc_real_1: 0.20048 (0.21075) | > loss_disc_real_2: 0.21366 (0.21515) | > loss_disc_real_3: 0.22592 (0.21767) | > loss_disc_real_4: 0.20764 (0.21330) | > loss_disc_real_5: 0.21392 (0.21241) | > loss_0: 2.29578 (2.30875) | > grad_norm_0: 12.15799 (16.94384) | > loss_gen: 2.49639 (2.57219) | > loss_kl: 2.79799 (2.65849) | > loss_feat: 8.50597 (8.72462) | > loss_mel: 18.47058 (17.78247) | > loss_duration: 1.70078 (1.70630) | > loss_1: 33.97171 (33.44408) | > grad_norm_1: 159.11703 (139.34961) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38900 (2.08092) | > loader_time: 0.03480 (0.03546)  --> STEP: 11824/15287 -- GLOBAL_STEP: 961825 | > loss_disc: 2.44326 (2.30881) | > loss_disc_real_0: 0.09979 (0.12232) | > loss_disc_real_1: 0.20639 (0.21075) | > loss_disc_real_2: 0.21694 (0.21516) | > loss_disc_real_3: 0.23742 (0.21768) | > loss_disc_real_4: 0.25222 (0.21331) | > loss_disc_real_5: 0.25193 (0.21240) | > loss_0: 2.44326 (2.30881) | > grad_norm_0: 17.86362 (16.94224) | > loss_gen: 2.31869 (2.57224) | > loss_kl: 2.71354 (2.65851) | > loss_feat: 8.55016 (8.72459) | > loss_mel: 18.83121 (17.78254) | > loss_duration: 1.64538 (1.70628) | > loss_1: 34.05898 (33.44419) | > grad_norm_1: 104.50126 (139.29645) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.61880 (2.08172) | > loader_time: 0.03120 (0.03546)  --> STEP: 11849/15287 -- GLOBAL_STEP: 961850 | > loss_disc: 2.34228 (2.30894) | > loss_disc_real_0: 0.14761 (0.12241) | > loss_disc_real_1: 0.22182 (0.21077) | > loss_disc_real_2: 0.21523 (0.21516) | > loss_disc_real_3: 0.23206 (0.21768) | > loss_disc_real_4: 0.23109 (0.21330) | > loss_disc_real_5: 0.19572 (0.21240) | > loss_0: 2.34228 (2.30894) | > grad_norm_0: 9.84157 (16.94631) | > loss_gen: 2.50651 (2.57216) | > loss_kl: 2.54432 (2.65849) | > loss_feat: 8.41076 (8.72409) | > loss_mel: 17.41371 (17.78248) | > loss_duration: 1.71620 (1.70628) | > loss_1: 32.59150 (33.44354) | > grad_norm_1: 108.14714 (139.20357) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18880 (2.08240) | > loader_time: 0.03540 (0.03546)  --> STEP: 11874/15287 -- GLOBAL_STEP: 961875 | > loss_disc: 2.42313 (2.30899) | > loss_disc_real_0: 0.11304 (0.12244) | > loss_disc_real_1: 0.22433 (0.21078) | > loss_disc_real_2: 0.22516 (0.21517) | > loss_disc_real_3: 0.22553 (0.21768) | > loss_disc_real_4: 0.21362 (0.21330) | > loss_disc_real_5: 0.18569 (0.21240) | > loss_0: 2.42313 (2.30899) | > grad_norm_0: 13.78630 (16.93968) | > loss_gen: 2.28049 (2.57224) | > loss_kl: 2.59168 (2.65847) | > loss_feat: 8.88963 (8.72411) | > loss_mel: 18.00816 (17.78241) | > loss_duration: 1.69016 (1.70628) | > loss_1: 33.46012 (33.44355) | > grad_norm_1: 114.35361 (139.13039) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22920 (2.08252) | > loader_time: 0.03520 (0.03545)  --> STEP: 11899/15287 -- GLOBAL_STEP: 961900 | > loss_disc: 2.29544 (2.30898) | > loss_disc_real_0: 0.09830 (0.12243) | > loss_disc_real_1: 0.21045 (0.21078) | > loss_disc_real_2: 0.22615 (0.21517) | > loss_disc_real_3: 0.18725 (0.21767) | > loss_disc_real_4: 0.17590 (0.21330) | > loss_disc_real_5: 0.21501 (0.21240) | > loss_0: 2.29544 (2.30898) | > grad_norm_0: 17.22314 (16.93515) | > loss_gen: 2.45795 (2.57219) | > loss_kl: 2.56746 (2.65839) | > loss_feat: 8.68965 (8.72401) | > loss_mel: 17.63164 (17.78247) | > loss_duration: 1.73499 (1.70629) | > loss_1: 33.08169 (33.44339) | > grad_norm_1: 193.06187 (139.10333) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17720 (2.08283) | > loader_time: 0.03710 (0.03546)  --> STEP: 11924/15287 -- GLOBAL_STEP: 961925 | > loss_disc: 2.28067 (2.30895) | > loss_disc_real_0: 0.09456 (0.12242) | > loss_disc_real_1: 0.21016 (0.21078) | > loss_disc_real_2: 0.20010 (0.21517) | > loss_disc_real_3: 0.21453 (0.21770) | > loss_disc_real_4: 0.21957 (0.21331) | > loss_disc_real_5: 0.22939 (0.21242) | > loss_0: 2.28067 (2.30895) | > grad_norm_0: 12.72189 (16.93434) | > loss_gen: 2.49334 (2.57232) | > loss_kl: 2.72721 (2.65834) | > loss_feat: 8.73300 (8.72399) | > loss_mel: 17.80020 (17.78239) | > loss_duration: 1.72343 (1.70629) | > loss_1: 33.47718 (33.44337) | > grad_norm_1: 114.70885 (139.11717) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.98220 (2.08335) | > loader_time: 0.04430 (0.03546)  --> STEP: 11949/15287 -- GLOBAL_STEP: 961950 | > loss_disc: 2.30257 (2.30887) | > loss_disc_real_0: 0.12402 (0.12240) | > loss_disc_real_1: 0.23178 (0.21077) | > loss_disc_real_2: 0.21476 (0.21517) | > loss_disc_real_3: 0.19457 (0.21769) | > loss_disc_real_4: 0.21287 (0.21331) | > loss_disc_real_5: 0.20988 (0.21240) | > loss_0: 2.30257 (2.30887) | > grad_norm_0: 17.86461 (16.93432) | > loss_gen: 2.49985 (2.57234) | > loss_kl: 2.71730 (2.65833) | > loss_feat: 8.76818 (8.72428) | > loss_mel: 17.59703 (17.78226) | > loss_duration: 1.67341 (1.70627) | > loss_1: 33.25576 (33.44352) | > grad_norm_1: 48.68269 (139.11998) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42330 (2.08394) | > loader_time: 0.03780 (0.03546)  --> STEP: 11974/15287 -- GLOBAL_STEP: 961975 | > loss_disc: 2.38648 (2.30886) | > loss_disc_real_0: 0.08501 (0.12238) | > loss_disc_real_1: 0.22208 (0.21078) | > loss_disc_real_2: 0.25842 (0.21517) | > loss_disc_real_3: 0.22584 (0.21768) | > loss_disc_real_4: 0.24257 (0.21330) | > loss_disc_real_5: 0.22579 (0.21241) | > loss_0: 2.38648 (2.30886) | > grad_norm_0: 20.84453 (16.93323) | > loss_gen: 2.43720 (2.57231) | > loss_kl: 2.69960 (2.65839) | > loss_feat: 8.46332 (8.72429) | > loss_mel: 17.85901 (17.78210) | > loss_duration: 1.70160 (1.70626) | > loss_1: 33.16073 (33.44341) | > grad_norm_1: 188.05624 (139.14465) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.62480 (2.08455) | > loader_time: 0.03170 (0.03546)  --> STEP: 11999/15287 -- GLOBAL_STEP: 962000 | > loss_disc: 2.37127 (2.30884) | > loss_disc_real_0: 0.18404 (0.12237) | > loss_disc_real_1: 0.25201 (0.21079) | > loss_disc_real_2: 0.23690 (0.21516) | > loss_disc_real_3: 0.20833 (0.21767) | > loss_disc_real_4: 0.20506 (0.21330) | > loss_disc_real_5: 0.20904 (0.21241) | > loss_0: 2.37127 (2.30884) | > grad_norm_0: 27.13241 (16.93707) | > loss_gen: 2.68224 (2.57229) | > loss_kl: 2.63665 (2.65834) | > loss_feat: 8.38004 (8.72446) | > loss_mel: 17.62468 (17.78205) | > loss_duration: 1.65809 (1.70626) | > loss_1: 32.98170 (33.44344) | > grad_norm_1: 50.13271 (139.16478) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.01100 (2.08526) | > loader_time: 0.03910 (0.03545)  --> STEP: 12024/15287 -- GLOBAL_STEP: 962025 | > loss_disc: 2.15972 (2.30882) | > loss_disc_real_0: 0.11185 (0.12236) | > loss_disc_real_1: 0.19259 (0.21079) | > loss_disc_real_2: 0.21501 (0.21515) | > loss_disc_real_3: 0.19169 (0.21767) | > loss_disc_real_4: 0.21048 (0.21329) | > loss_disc_real_5: 0.19439 (0.21241) | > loss_0: 2.15972 (2.30882) | > grad_norm_0: 13.50810 (16.93958) | > loss_gen: 2.86767 (2.57229) | > loss_kl: 2.70397 (2.65832) | > loss_feat: 9.82697 (8.72490) | > loss_mel: 17.53811 (17.78231) | > loss_duration: 1.69352 (1.70626) | > loss_1: 34.63023 (33.44413) | > grad_norm_1: 66.63338 (139.18793) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41400 (2.08592) | > loader_time: 0.03240 (0.03545)  --> STEP: 12049/15287 -- GLOBAL_STEP: 962050 | > loss_disc: 2.24715 (2.30880) | > loss_disc_real_0: 0.09911 (0.12236) | > loss_disc_real_1: 0.18186 (0.21078) | > loss_disc_real_2: 0.18944 (0.21515) | > loss_disc_real_3: 0.21966 (0.21767) | > loss_disc_real_4: 0.21784 (0.21330) | > loss_disc_real_5: 0.20625 (0.21241) | > loss_0: 2.24715 (2.30880) | > grad_norm_0: 14.37914 (16.94101) | > loss_gen: 2.41610 (2.57225) | > loss_kl: 2.75027 (2.65836) | > loss_feat: 8.77734 (8.72502) | > loss_mel: 17.60541 (17.78231) | > loss_duration: 1.70036 (1.70626) | > loss_1: 33.24947 (33.44425) | > grad_norm_1: 182.25005 (139.21576) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32550 (2.08641) | > loader_time: 0.03080 (0.03544)  --> STEP: 12074/15287 -- GLOBAL_STEP: 962075 | > loss_disc: 2.34913 (2.30885) | > loss_disc_real_0: 0.14214 (0.12238) | > loss_disc_real_1: 0.21197 (0.21079) | > loss_disc_real_2: 0.24208 (0.21516) | > loss_disc_real_3: 0.22484 (0.21766) | > loss_disc_real_4: 0.21834 (0.21329) | > loss_disc_real_5: 0.20774 (0.21240) | > loss_0: 2.34913 (2.30885) | > grad_norm_0: 22.85247 (16.93015) | > loss_gen: 2.77617 (2.57235) | > loss_kl: 2.67983 (2.65836) | > loss_feat: 8.89740 (8.72514) | > loss_mel: 17.59974 (17.78242) | > loss_duration: 1.73038 (1.70628) | > loss_1: 33.68352 (33.44461) | > grad_norm_1: 50.93874 (139.09065) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.06600 (2.08709) | > loader_time: 0.03920 (0.03544)  --> STEP: 12099/15287 -- GLOBAL_STEP: 962100 | > loss_disc: 2.21282 (2.30895) | > loss_disc_real_0: 0.09252 (0.12240) | > loss_disc_real_1: 0.20133 (0.21080) | > loss_disc_real_2: 0.21446 (0.21516) | > loss_disc_real_3: 0.17527 (0.21766) | > loss_disc_real_4: 0.18370 (0.21330) | > loss_disc_real_5: 0.16031 (0.21238) | > loss_0: 2.21282 (2.30895) | > grad_norm_0: 18.61162 (16.92926) | > loss_gen: 2.53725 (2.57228) | > loss_kl: 2.50137 (2.65830) | > loss_feat: 8.75103 (8.72471) | > loss_mel: 17.62943 (17.78231) | > loss_duration: 1.73311 (1.70629) | > loss_1: 33.15219 (33.44396) | > grad_norm_1: 89.84009 (139.04497) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92580 (2.08758) | > loader_time: 0.03690 (0.03543)  --> STEP: 12124/15287 -- GLOBAL_STEP: 962125 | > loss_disc: 2.33789 (2.30896) | > loss_disc_real_0: 0.12111 (0.12240) | > loss_disc_real_1: 0.21274 (0.21080) | > loss_disc_real_2: 0.21795 (0.21516) | > loss_disc_real_3: 0.24033 (0.21766) | > loss_disc_real_4: 0.20599 (0.21330) | > loss_disc_real_5: 0.19303 (0.21239) | > loss_0: 2.33789 (2.30896) | > grad_norm_0: 29.84297 (16.93635) | > loss_gen: 2.43075 (2.57225) | > loss_kl: 2.64695 (2.65822) | > loss_feat: 8.48006 (8.72461) | > loss_mel: 17.31888 (17.78239) | > loss_duration: 1.66138 (1.70629) | > loss_1: 32.53801 (33.44382) | > grad_norm_1: 182.12296 (139.05428) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33360 (2.08833) | > loader_time: 0.03260 (0.03543)  --> STEP: 12149/15287 -- GLOBAL_STEP: 962150 | > loss_disc: 2.32984 (2.30893) | > loss_disc_real_0: 0.14217 (0.12241) | > loss_disc_real_1: 0.20376 (0.21079) | > loss_disc_real_2: 0.20578 (0.21516) | > loss_disc_real_3: 0.22933 (0.21766) | > loss_disc_real_4: 0.20927 (0.21330) | > loss_disc_real_5: 0.22183 (0.21238) | > loss_0: 2.32984 (2.30893) | > grad_norm_0: 13.14123 (16.93737) | > loss_gen: 2.47178 (2.57225) | > loss_kl: 2.62392 (2.65817) | > loss_feat: 8.18941 (8.72459) | > loss_mel: 16.99864 (17.78222) | > loss_duration: 1.69419 (1.70627) | > loss_1: 31.97793 (33.44358) | > grad_norm_1: 182.67622 (139.05357) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.75580 (2.08882) | > loader_time: 0.03030 (0.03543)  --> STEP: 12174/15287 -- GLOBAL_STEP: 962175 | > loss_disc: 2.29923 (2.30892) | > loss_disc_real_0: 0.12327 (0.12240) | > loss_disc_real_1: 0.17968 (0.21078) | > loss_disc_real_2: 0.17723 (0.21515) | > loss_disc_real_3: 0.21959 (0.21766) | > loss_disc_real_4: 0.23604 (0.21329) | > loss_disc_real_5: 0.26913 (0.21239) | > loss_0: 2.29923 (2.30892) | > grad_norm_0: 34.53768 (16.94154) | > loss_gen: 2.64401 (2.57218) | > loss_kl: 2.64904 (2.65822) | > loss_feat: 8.93103 (8.72461) | > loss_mel: 17.95904 (17.78191) | > loss_duration: 1.67119 (1.70626) | > loss_1: 33.85432 (33.44325) | > grad_norm_1: 95.34954 (139.05426) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.67270 (2.08942) | > loader_time: 0.03490 (0.03543)  --> STEP: 12199/15287 -- GLOBAL_STEP: 962200 | > loss_disc: 2.24730 (2.30889) | > loss_disc_real_0: 0.11280 (0.12239) | > loss_disc_real_1: 0.17352 (0.21076) | > loss_disc_real_2: 0.17546 (0.21514) | > loss_disc_real_3: 0.18801 (0.21765) | > loss_disc_real_4: 0.18066 (0.21328) | > loss_disc_real_5: 0.17760 (0.21238) | > loss_0: 2.24730 (2.30889) | > grad_norm_0: 7.80921 (16.93627) | > loss_gen: 2.61175 (2.57213) | > loss_kl: 2.66690 (2.65816) | > loss_feat: 8.88525 (8.72467) | > loss_mel: 17.91983 (17.78197) | > loss_duration: 1.71065 (1.70627) | > loss_1: 33.79438 (33.44325) | > grad_norm_1: 148.24881 (139.06033) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.80980 (2.08977) | > loader_time: 0.02960 (0.03543)  --> STEP: 12224/15287 -- GLOBAL_STEP: 962225 | > loss_disc: 2.24621 (2.30884) | > loss_disc_real_0: 0.13271 (0.12238) | > loss_disc_real_1: 0.19719 (0.21077) | > loss_disc_real_2: 0.21809 (0.21514) | > loss_disc_real_3: 0.22496 (0.21765) | > loss_disc_real_4: 0.19864 (0.21328) | > loss_disc_real_5: 0.19314 (0.21238) | > loss_0: 2.24621 (2.30884) | > grad_norm_0: 18.99161 (16.94451) | > loss_gen: 2.65721 (2.57218) | > loss_kl: 2.61080 (2.65815) | > loss_feat: 8.21404 (8.72484) | > loss_mel: 17.57565 (17.78213) | > loss_duration: 1.70929 (1.70626) | > loss_1: 32.76700 (33.44360) | > grad_norm_1: 228.34474 (139.09846) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35820 (2.09024) | > loader_time: 0.03610 (0.03542)  --> STEP: 12249/15287 -- GLOBAL_STEP: 962250 | > loss_disc: 2.31790 (2.30878) | > loss_disc_real_0: 0.13589 (0.12237) | > loss_disc_real_1: 0.22173 (0.21076) | > loss_disc_real_2: 0.24203 (0.21513) | > loss_disc_real_3: 0.20169 (0.21765) | > loss_disc_real_4: 0.19454 (0.21328) | > loss_disc_real_5: 0.22693 (0.21237) | > loss_0: 2.31790 (2.30878) | > grad_norm_0: 23.79702 (16.94816) | > loss_gen: 2.49191 (2.57220) | > loss_kl: 2.62531 (2.65811) | > loss_feat: 8.53571 (8.72499) | > loss_mel: 17.53765 (17.78197) | > loss_duration: 1.71397 (1.70625) | > loss_1: 32.90455 (33.44356) | > grad_norm_1: 137.23322 (139.13763) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.04470 (2.09078) | > loader_time: 0.03760 (0.03542)  --> STEP: 12274/15287 -- GLOBAL_STEP: 962275 | > loss_disc: 2.46745 (2.30877) | > loss_disc_real_0: 0.13667 (0.12237) | > loss_disc_real_1: 0.23601 (0.21076) | > loss_disc_real_2: 0.23392 (0.21513) | > loss_disc_real_3: 0.19285 (0.21765) | > loss_disc_real_4: 0.21646 (0.21327) | > loss_disc_real_5: 0.20181 (0.21238) | > loss_0: 2.46745 (2.30877) | > grad_norm_0: 6.66436 (16.94344) | > loss_gen: 2.67301 (2.57230) | > loss_kl: 2.66191 (2.65820) | > loss_feat: 8.27073 (8.72510) | > loss_mel: 17.33374 (17.78198) | > loss_duration: 1.68816 (1.70626) | > loss_1: 32.62755 (33.44387) | > grad_norm_1: 114.60779 (139.15176) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34280 (2.09110) | > loader_time: 0.03080 (0.03542)  --> STEP: 12299/15287 -- GLOBAL_STEP: 962300 | > loss_disc: 2.32286 (2.30878) | > loss_disc_real_0: 0.13015 (0.12237) | > loss_disc_real_1: 0.19134 (0.21076) | > loss_disc_real_2: 0.18639 (0.21513) | > loss_disc_real_3: 0.22626 (0.21765) | > loss_disc_real_4: 0.18008 (0.21327) | > loss_disc_real_5: 0.23616 (0.21237) | > loss_0: 2.32286 (2.30878) | > grad_norm_0: 19.38673 (16.93894) | > loss_gen: 2.37438 (2.57221) | > loss_kl: 2.76239 (2.65821) | > loss_feat: 8.72486 (8.72483) | > loss_mel: 17.23123 (17.78203) | > loss_duration: 1.69357 (1.70624) | > loss_1: 32.78642 (33.44355) | > grad_norm_1: 167.65656 (139.11774) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97850 (2.09137) | > loader_time: 0.03120 (0.03542)  --> STEP: 12324/15287 -- GLOBAL_STEP: 962325 | > loss_disc: 2.25241 (2.30875) | > loss_disc_real_0: 0.08464 (0.12236) | > loss_disc_real_1: 0.18237 (0.21077) | > loss_disc_real_2: 0.20652 (0.21513) | > loss_disc_real_3: 0.20069 (0.21765) | > loss_disc_real_4: 0.25311 (0.21329) | > loss_disc_real_5: 0.20484 (0.21237) | > loss_0: 2.25241 (2.30875) | > grad_norm_0: 29.94762 (16.93291) | > loss_gen: 2.35609 (2.57226) | > loss_kl: 2.77356 (2.65819) | > loss_feat: 8.96749 (8.72477) | > loss_mel: 17.67513 (17.78199) | > loss_duration: 1.68831 (1.70623) | > loss_1: 33.46057 (33.44347) | > grad_norm_1: 218.73907 (139.11366) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14990 (2.09164) | > loader_time: 0.03310 (0.03541)  --> STEP: 12349/15287 -- GLOBAL_STEP: 962350 | > loss_disc: 2.29302 (2.30876) | > loss_disc_real_0: 0.09554 (0.12236) | > loss_disc_real_1: 0.20220 (0.21076) | > loss_disc_real_2: 0.19141 (0.21512) | > loss_disc_real_3: 0.20938 (0.21765) | > loss_disc_real_4: 0.20335 (0.21330) | > loss_disc_real_5: 0.22200 (0.21239) | > loss_0: 2.29302 (2.30876) | > grad_norm_0: 25.68232 (16.94766) | > loss_gen: 2.41290 (2.57229) | > loss_kl: 2.63140 (2.65816) | > loss_feat: 8.42416 (8.72471) | > loss_mel: 17.64547 (17.78208) | > loss_duration: 1.70294 (1.70622) | > loss_1: 32.81688 (33.44349) | > grad_norm_1: 220.02580 (139.18321) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38170 (2.09183) | > loader_time: 0.03250 (0.03541)  --> STEP: 12374/15287 -- GLOBAL_STEP: 962375 | > loss_disc: 2.31002 (2.30875) | > loss_disc_real_0: 0.12057 (0.12237) | > loss_disc_real_1: 0.22781 (0.21074) | > loss_disc_real_2: 0.18990 (0.21511) | > loss_disc_real_3: 0.21652 (0.21765) | > loss_disc_real_4: 0.23445 (0.21330) | > loss_disc_real_5: 0.19901 (0.21240) | > loss_0: 2.31002 (2.30875) | > grad_norm_0: 12.24253 (16.95405) | > loss_gen: 2.71249 (2.57226) | > loss_kl: 2.61110 (2.65819) | > loss_feat: 9.17263 (8.72467) | > loss_mel: 18.53726 (17.78188) | > loss_duration: 1.72290 (1.70621) | > loss_1: 34.75638 (33.44323) | > grad_norm_1: 164.54515 (139.23418) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28570 (2.09227) | > loader_time: 0.02970 (0.03541)  --> STEP: 12399/15287 -- GLOBAL_STEP: 962400 | > loss_disc: 2.31559 (2.30874) | > loss_disc_real_0: 0.10980 (0.12237) | > loss_disc_real_1: 0.21062 (0.21073) | > loss_disc_real_2: 0.23022 (0.21510) | > loss_disc_real_3: 0.23319 (0.21765) | > loss_disc_real_4: 0.21993 (0.21330) | > loss_disc_real_5: 0.21426 (0.21239) | > loss_0: 2.31559 (2.30874) | > grad_norm_0: 11.86071 (16.95278) | > loss_gen: 2.49322 (2.57220) | > loss_kl: 2.80708 (2.65821) | > loss_feat: 8.90635 (8.72468) | > loss_mel: 17.84167 (17.78182) | > loss_duration: 1.69433 (1.70622) | > loss_1: 33.74265 (33.44313) | > grad_norm_1: 181.28302 (139.25879) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.53700 (2.09273) | > loader_time: 0.03560 (0.03540)  --> STEP: 12424/15287 -- GLOBAL_STEP: 962425 | > loss_disc: 2.25880 (2.30866) | > loss_disc_real_0: 0.12049 (0.12235) | > loss_disc_real_1: 0.22488 (0.21073) | > loss_disc_real_2: 0.22825 (0.21510) | > loss_disc_real_3: 0.21292 (0.21766) | > loss_disc_real_4: 0.19578 (0.21330) | > loss_disc_real_5: 0.20066 (0.21239) | > loss_0: 2.25880 (2.30866) | > grad_norm_0: 11.20168 (16.94843) | > loss_gen: 2.64410 (2.57231) | > loss_kl: 2.70801 (2.65836) | > loss_feat: 9.08130 (8.72517) | > loss_mel: 18.01233 (17.78186) | > loss_duration: 1.68754 (1.70621) | > loss_1: 34.13329 (33.44391) | > grad_norm_1: 111.61877 (139.28090) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15320 (2.09315) | > loader_time: 0.03110 (0.03540)  --> STEP: 12449/15287 -- GLOBAL_STEP: 962450 | > loss_disc: 2.26669 (2.30864) | > loss_disc_real_0: 0.11571 (0.12234) | > loss_disc_real_1: 0.20571 (0.21073) | > loss_disc_real_2: 0.22138 (0.21509) | > loss_disc_real_3: 0.23524 (0.21765) | > loss_disc_real_4: 0.25312 (0.21329) | > loss_disc_real_5: 0.19837 (0.21239) | > loss_0: 2.26669 (2.30864) | > grad_norm_0: 26.37754 (16.95312) | > loss_gen: 2.68447 (2.57226) | > loss_kl: 2.68145 (2.65841) | > loss_feat: 9.05458 (8.72512) | > loss_mel: 17.81054 (17.78182) | > loss_duration: 1.68763 (1.70620) | > loss_1: 33.91867 (33.44380) | > grad_norm_1: 207.78238 (139.33337) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.47130 (2.09354) | > loader_time: 0.03260 (0.03540)  --> STEP: 12474/15287 -- GLOBAL_STEP: 962475 | > loss_disc: 2.26270 (2.30862) | > loss_disc_real_0: 0.10301 (0.12232) | > loss_disc_real_1: 0.22274 (0.21072) | > loss_disc_real_2: 0.23804 (0.21509) | > loss_disc_real_3: 0.20581 (0.21764) | > loss_disc_real_4: 0.20438 (0.21329) | > loss_disc_real_5: 0.21283 (0.21239) | > loss_0: 2.26270 (2.30862) | > grad_norm_0: 12.57964 (16.95312) | > loss_gen: 2.64536 (2.57218) | > loss_kl: 2.71863 (2.65847) | > loss_feat: 9.19291 (8.72526) | > loss_mel: 17.60098 (17.78156) | > loss_duration: 1.70993 (1.70619) | > loss_1: 33.86781 (33.44364) | > grad_norm_1: 185.55275 (139.38562) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16710 (2.09380) | > loader_time: 0.03390 (0.03539)  --> STEP: 12499/15287 -- GLOBAL_STEP: 962500 | > loss_disc: 2.37313 (2.30860) | > loss_disc_real_0: 0.10913 (0.12231) | > loss_disc_real_1: 0.23324 (0.21071) | > loss_disc_real_2: 0.24085 (0.21508) | > loss_disc_real_3: 0.22876 (0.21764) | > loss_disc_real_4: 0.23856 (0.21329) | > loss_disc_real_5: 0.24424 (0.21238) | > loss_0: 2.37313 (2.30860) | > grad_norm_0: 7.89963 (16.95392) | > loss_gen: 2.41662 (2.57213) | > loss_kl: 2.66982 (2.65846) | > loss_feat: 8.73270 (8.72532) | > loss_mel: 17.80279 (17.78151) | > loss_duration: 1.69724 (1.70617) | > loss_1: 33.31917 (33.44354) | > grad_norm_1: 156.94963 (139.41579) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95670 (2.09426) | > loader_time: 0.03580 (0.03539)  --> STEP: 12524/15287 -- GLOBAL_STEP: 962525 | > loss_disc: 2.24072 (2.30858) | > loss_disc_real_0: 0.16630 (0.12232) | > loss_disc_real_1: 0.20076 (0.21070) | > loss_disc_real_2: 0.20263 (0.21507) | > loss_disc_real_3: 0.20542 (0.21764) | > loss_disc_real_4: 0.22371 (0.21328) | > loss_disc_real_5: 0.16590 (0.21238) | > loss_0: 2.24072 (2.30858) | > grad_norm_0: 12.36516 (16.96546) | > loss_gen: 2.71467 (2.57213) | > loss_kl: 2.55727 (2.65855) | > loss_feat: 9.35519 (8.72560) | > loss_mel: 18.23587 (17.78201) | > loss_duration: 1.67199 (1.70617) | > loss_1: 34.53499 (33.44441) | > grad_norm_1: 159.16959 (139.48309) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55660 (2.09474) | > loader_time: 0.03100 (0.03540)  --> STEP: 12549/15287 -- GLOBAL_STEP: 962550 | > loss_disc: 2.27654 (2.30859) | > loss_disc_real_0: 0.13883 (0.12234) | > loss_disc_real_1: 0.21332 (0.21070) | > loss_disc_real_2: 0.21141 (0.21508) | > loss_disc_real_3: 0.21814 (0.21764) | > loss_disc_real_4: 0.20274 (0.21328) | > loss_disc_real_5: 0.19687 (0.21237) | > loss_0: 2.27654 (2.30859) | > grad_norm_0: 13.06933 (16.96158) | > loss_gen: 2.62255 (2.57214) | > loss_kl: 2.78160 (2.65859) | > loss_feat: 8.69011 (8.72543) | > loss_mel: 17.89950 (17.78192) | > loss_duration: 1.70047 (1.70616) | > loss_1: 33.69424 (33.44418) | > grad_norm_1: 131.23038 (139.50989) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.04880 (2.09522) | > loader_time: 0.03690 (0.03539)  --> STEP: 12574/15287 -- GLOBAL_STEP: 962575 | > loss_disc: 2.29474 (2.30858) | > loss_disc_real_0: 0.12653 (0.12233) | > loss_disc_real_1: 0.21122 (0.21069) | > loss_disc_real_2: 0.21420 (0.21508) | > loss_disc_real_3: 0.23850 (0.21764) | > loss_disc_real_4: 0.21251 (0.21329) | > loss_disc_real_5: 0.20599 (0.21237) | > loss_0: 2.29474 (2.30858) | > grad_norm_0: 20.08880 (16.95833) | > loss_gen: 2.59409 (2.57215) | > loss_kl: 2.72494 (2.65861) | > loss_feat: 8.98645 (8.72534) | > loss_mel: 18.02967 (17.78181) | > loss_duration: 1.71884 (1.70615) | > loss_1: 34.05400 (33.44400) | > grad_norm_1: 112.70950 (139.52072) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23510 (2.09561) | > loader_time: 0.03400 (0.03539)  --> STEP: 12599/15287 -- GLOBAL_STEP: 962600 | > loss_disc: 2.33488 (2.30856) | > loss_disc_real_0: 0.14026 (0.12232) | > loss_disc_real_1: 0.20463 (0.21068) | > loss_disc_real_2: 0.22982 (0.21508) | > loss_disc_real_3: 0.22612 (0.21764) | > loss_disc_real_4: 0.21630 (0.21328) | > loss_disc_real_5: 0.18123 (0.21237) | > loss_0: 2.33488 (2.30856) | > grad_norm_0: 22.55158 (16.95925) | > loss_gen: 2.52807 (2.57209) | > loss_kl: 2.67548 (2.65860) | > loss_feat: 8.33475 (8.72518) | > loss_mel: 17.14082 (17.78136) | > loss_duration: 1.69917 (1.70614) | > loss_1: 32.37829 (33.44332) | > grad_norm_1: 160.28326 (139.56754) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.97280 (2.09619) | > loader_time: 0.03950 (0.03539)  --> STEP: 12624/15287 -- GLOBAL_STEP: 962625 | > loss_disc: 2.36879 (2.30851) | > loss_disc_real_0: 0.16646 (0.12231) | > loss_disc_real_1: 0.19347 (0.21068) | > loss_disc_real_2: 0.21120 (0.21508) | > loss_disc_real_3: 0.23180 (0.21763) | > loss_disc_real_4: 0.23944 (0.21328) | > loss_disc_real_5: 0.21843 (0.21236) | > loss_0: 2.36879 (2.30851) | > grad_norm_0: 9.51637 (16.95519) | > loss_gen: 2.62075 (2.57213) | > loss_kl: 2.66654 (2.65861) | > loss_feat: 9.29197 (8.72559) | > loss_mel: 17.79564 (17.78140) | > loss_duration: 1.70824 (1.70613) | > loss_1: 34.08314 (33.44380) | > grad_norm_1: 145.90512 (139.57985) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.47610 (2.09671) | > loader_time: 0.03120 (0.03539)  --> STEP: 12649/15287 -- GLOBAL_STEP: 962650 | > loss_disc: 2.27137 (2.30852) | > loss_disc_real_0: 0.07133 (0.12229) | > loss_disc_real_1: 0.17581 (0.21068) | > loss_disc_real_2: 0.18672 (0.21509) | > loss_disc_real_3: 0.20816 (0.21763) | > loss_disc_real_4: 0.21685 (0.21327) | > loss_disc_real_5: 0.20109 (0.21236) | > loss_0: 2.27137 (2.30852) | > grad_norm_0: 14.74204 (16.95625) | > loss_gen: 2.23919 (2.57204) | > loss_kl: 2.72807 (2.65853) | > loss_feat: 8.63399 (8.72582) | > loss_mel: 17.83912 (17.78148) | > loss_duration: 1.70142 (1.70612) | > loss_1: 33.14178 (33.44392) | > grad_norm_1: 47.71382 (139.60278) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.77870 (2.09701) | > loader_time: 0.04650 (0.03538)  --> STEP: 12674/15287 -- GLOBAL_STEP: 962675 | > loss_disc: 2.27439 (2.30855) | > loss_disc_real_0: 0.12072 (0.12231) | > loss_disc_real_1: 0.20059 (0.21068) | > loss_disc_real_2: 0.20844 (0.21509) | > loss_disc_real_3: 0.21091 (0.21763) | > loss_disc_real_4: 0.21214 (0.21326) | > loss_disc_real_5: 0.19213 (0.21235) | > loss_0: 2.27439 (2.30855) | > grad_norm_0: 10.68672 (16.95586) | > loss_gen: 2.67655 (2.57202) | > loss_kl: 2.57018 (2.65855) | > loss_feat: 8.85611 (8.72585) | > loss_mel: 18.14364 (17.78172) | > loss_duration: 1.70912 (1.70611) | > loss_1: 33.95561 (33.44419) | > grad_norm_1: 134.05318 (139.59894) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.83770 (2.09769) | > loader_time: 0.03040 (0.03539)  --> STEP: 12699/15287 -- GLOBAL_STEP: 962700 | > loss_disc: 2.25972 (2.30852) | > loss_disc_real_0: 0.09852 (0.12230) | > loss_disc_real_1: 0.20231 (0.21068) | > loss_disc_real_2: 0.20317 (0.21510) | > loss_disc_real_3: 0.22964 (0.21762) | > loss_disc_real_4: 0.21644 (0.21326) | > loss_disc_real_5: 0.20338 (0.21234) | > loss_0: 2.25972 (2.30852) | > grad_norm_0: 10.73823 (16.95164) | > loss_gen: 2.61629 (2.57204) | > loss_kl: 2.71326 (2.65863) | > loss_feat: 9.20442 (8.72622) | > loss_mel: 17.83670 (17.78193) | > loss_duration: 1.66724 (1.70611) | > loss_1: 34.03791 (33.44485) | > grad_norm_1: 185.79176 (139.58389) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91080 (2.09785) | > loader_time: 0.03110 (0.03538)  --> STEP: 12724/15287 -- GLOBAL_STEP: 962725 | > loss_disc: 2.30608 (2.30859) | > loss_disc_real_0: 0.11497 (0.12233) | > loss_disc_real_1: 0.20025 (0.21068) | > loss_disc_real_2: 0.20669 (0.21509) | > loss_disc_real_3: 0.20677 (0.21762) | > loss_disc_real_4: 0.19466 (0.21325) | > loss_disc_real_5: 0.21103 (0.21234) | > loss_0: 2.30608 (2.30859) | > grad_norm_0: 10.19342 (16.94960) | > loss_gen: 2.62989 (2.57202) | > loss_kl: 2.61188 (2.65864) | > loss_feat: 8.92067 (8.72607) | > loss_mel: 18.38719 (17.78183) | > loss_duration: 1.70342 (1.70611) | > loss_1: 34.25306 (33.44459) | > grad_norm_1: 157.95021 (139.58437) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23950 (2.09816) | > loader_time: 0.03140 (0.03538)  --> STEP: 12749/15287 -- GLOBAL_STEP: 962750 | > loss_disc: 2.32697 (2.30859) | > loss_disc_real_0: 0.17010 (0.12233) | > loss_disc_real_1: 0.21966 (0.21068) | > loss_disc_real_2: 0.22071 (0.21508) | > loss_disc_real_3: 0.25753 (0.21760) | > loss_disc_real_4: 0.26341 (0.21322) | > loss_disc_real_5: 0.19150 (0.21233) | > loss_0: 2.32697 (2.30859) | > grad_norm_0: 16.17664 (16.96024) | > loss_gen: 2.68015 (2.57192) | > loss_kl: 2.63422 (2.65865) | > loss_feat: 8.55445 (8.72615) | > loss_mel: 17.73403 (17.78181) | > loss_duration: 1.77757 (1.70612) | > loss_1: 33.38042 (33.44456) | > grad_norm_1: 97.29534 (139.57896) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25420 (2.09860) | > loader_time: 0.03180 (0.03538)  --> STEP: 12774/15287 -- GLOBAL_STEP: 962775 | > loss_disc: 2.36823 (2.30858) | > loss_disc_real_0: 0.22881 (0.12235) | > loss_disc_real_1: 0.27125 (0.21068) | > loss_disc_real_2: 0.23216 (0.21508) | > loss_disc_real_3: 0.24102 (0.21760) | > loss_disc_real_4: 0.22082 (0.21322) | > loss_disc_real_5: 0.20174 (0.21233) | > loss_0: 2.36823 (2.30858) | > grad_norm_0: 14.81535 (16.96706) | > loss_gen: 2.49554 (2.57195) | > loss_kl: 2.80036 (2.65868) | > loss_feat: 8.05929 (8.72620) | > loss_mel: 17.40335 (17.78166) | > loss_duration: 1.69828 (1.70611) | > loss_1: 32.45683 (33.44452) | > grad_norm_1: 119.66566 (139.61130) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.51570 (2.09889) | > loader_time: 0.03120 (0.03538)  --> STEP: 12799/15287 -- GLOBAL_STEP: 962800 | > loss_disc: 2.32878 (2.30859) | > loss_disc_real_0: 0.10593 (0.12234) | > loss_disc_real_1: 0.23074 (0.21068) | > loss_disc_real_2: 0.23829 (0.21508) | > loss_disc_real_3: 0.23308 (0.21759) | > loss_disc_real_4: 0.22451 (0.21323) | > loss_disc_real_5: 0.21924 (0.21234) | > loss_0: 2.32878 (2.30859) | > grad_norm_0: 6.65783 (16.95733) | > loss_gen: 2.64296 (2.57188) | > loss_kl: 2.75613 (2.65870) | > loss_feat: 8.58187 (8.72622) | > loss_mel: 17.27660 (17.78134) | > loss_duration: 1.67083 (1.70609) | > loss_1: 32.92839 (33.44414) | > grad_norm_1: 133.43356 (139.54321) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.76730 (2.09930) | > loader_time: 0.03190 (0.03537)  --> STEP: 12824/15287 -- GLOBAL_STEP: 962825 | > loss_disc: 2.39965 (2.30866) | > loss_disc_real_0: 0.15942 (0.12233) | > loss_disc_real_1: 0.21106 (0.21069) | > loss_disc_real_2: 0.20557 (0.21509) | > loss_disc_real_3: 0.22772 (0.21760) | > loss_disc_real_4: 0.23086 (0.21323) | > loss_disc_real_5: 0.22770 (0.21234) | > loss_0: 2.39965 (2.30866) | > grad_norm_0: 7.66707 (16.95228) | > loss_gen: 2.48478 (2.57185) | > loss_kl: 2.74409 (2.65871) | > loss_feat: 8.83410 (8.72635) | > loss_mel: 17.43921 (17.78137) | > loss_duration: 1.71899 (1.70607) | > loss_1: 33.22116 (33.44427) | > grad_norm_1: 62.97743 (139.53412) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21030 (2.09950) | > loader_time: 0.03830 (0.03537)  --> STEP: 12849/15287 -- GLOBAL_STEP: 962850 | > loss_disc: 2.21344 (2.30861) | > loss_disc_real_0: 0.10482 (0.12232) | > loss_disc_real_1: 0.22729 (0.21069) | > loss_disc_real_2: 0.22233 (0.21508) | > loss_disc_real_3: 0.22620 (0.21760) | > loss_disc_real_4: 0.22695 (0.21323) | > loss_disc_real_5: 0.16935 (0.21233) | > loss_0: 2.21344 (2.30861) | > grad_norm_0: 11.69630 (16.95709) | > loss_gen: 2.63111 (2.57178) | > loss_kl: 2.60619 (2.65871) | > loss_feat: 8.61900 (8.72614) | > loss_mel: 17.57929 (17.78097) | > loss_duration: 1.71867 (1.70608) | > loss_1: 33.15427 (33.44357) | > grad_norm_1: 169.56512 (139.56256) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39160 (2.09983) | > loader_time: 0.03110 (0.03537)  --> STEP: 12874/15287 -- GLOBAL_STEP: 962875 | > loss_disc: 2.19872 (2.30857) | > loss_disc_real_0: 0.08280 (0.12231) | > loss_disc_real_1: 0.20090 (0.21068) | > loss_disc_real_2: 0.19206 (0.21507) | > loss_disc_real_3: 0.22328 (0.21759) | > loss_disc_real_4: 0.23358 (0.21321) | > loss_disc_real_5: 0.19345 (0.21233) | > loss_0: 2.19872 (2.30857) | > grad_norm_0: 8.97213 (16.95562) | > loss_gen: 2.92360 (2.57177) | > loss_kl: 2.66083 (2.65872) | > loss_feat: 9.17000 (8.72645) | > loss_mel: 18.02267 (17.78093) | > loss_duration: 1.71358 (1.70606) | > loss_1: 34.49068 (33.44384) | > grad_norm_1: 166.55473 (139.57213) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94810 (2.10025) | > loader_time: 0.03110 (0.03536)  --> STEP: 12899/15287 -- GLOBAL_STEP: 962900 | > loss_disc: 2.25179 (2.30855) | > loss_disc_real_0: 0.10185 (0.12231) | > loss_disc_real_1: 0.20663 (0.21068) | > loss_disc_real_2: 0.22887 (0.21508) | > loss_disc_real_3: 0.20737 (0.21759) | > loss_disc_real_4: 0.19871 (0.21321) | > loss_disc_real_5: 0.20306 (0.21233) | > loss_0: 2.25179 (2.30855) | > grad_norm_0: 14.66485 (16.95115) | > loss_gen: 2.63571 (2.57176) | > loss_kl: 2.52904 (2.65866) | > loss_feat: 8.66801 (8.72660) | > loss_mel: 17.16712 (17.78108) | > loss_duration: 1.69128 (1.70605) | > loss_1: 32.69114 (33.44406) | > grad_norm_1: 67.44545 (139.52124) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.68420 (2.10069) | > loader_time: 0.03560 (0.03536)  --> STEP: 12924/15287 -- GLOBAL_STEP: 962925 | > loss_disc: 2.31052 (2.30854) | > loss_disc_real_0: 0.12935 (0.12231) | > loss_disc_real_1: 0.21080 (0.21068) | > loss_disc_real_2: 0.21578 (0.21508) | > loss_disc_real_3: 0.19436 (0.21760) | > loss_disc_real_4: 0.18150 (0.21321) | > loss_disc_real_5: 0.18014 (0.21233) | > loss_0: 2.31052 (2.30854) | > grad_norm_0: 11.10871 (16.94822) | > loss_gen: 2.54363 (2.57180) | > loss_kl: 2.75421 (2.65872) | > loss_feat: 9.19563 (8.72688) | > loss_mel: 18.28640 (17.78117) | > loss_duration: 1.70542 (1.70604) | > loss_1: 34.48528 (33.44451) | > grad_norm_1: 88.06240 (139.50835) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.65820 (2.10128) | > loader_time: 0.04880 (0.03536)  --> STEP: 12949/15287 -- GLOBAL_STEP: 962950 | > loss_disc: 2.23602 (2.30853) | > loss_disc_real_0: 0.10428 (0.12230) | > loss_disc_real_1: 0.17775 (0.21068) | > loss_disc_real_2: 0.21870 (0.21508) | > loss_disc_real_3: 0.20779 (0.21759) | > loss_disc_real_4: 0.18988 (0.21321) | > loss_disc_real_5: 0.20583 (0.21234) | > loss_0: 2.23602 (2.30853) | > grad_norm_0: 13.18870 (16.95094) | > loss_gen: 2.53084 (2.57176) | > loss_kl: 2.63636 (2.65876) | > loss_feat: 8.85428 (8.72668) | > loss_mel: 17.29689 (17.78077) | > loss_duration: 1.67873 (1.70604) | > loss_1: 32.99710 (33.44391) | > grad_norm_1: 73.90072 (139.49443) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56450 (2.10155) | > loader_time: 0.03070 (0.03536)  --> STEP: 12974/15287 -- GLOBAL_STEP: 962975 | > loss_disc: 2.37402 (2.30853) | > loss_disc_real_0: 0.14157 (0.12230) | > loss_disc_real_1: 0.22140 (0.21069) | > loss_disc_real_2: 0.15893 (0.21508) | > loss_disc_real_3: 0.25112 (0.21759) | > loss_disc_real_4: 0.23277 (0.21320) | > loss_disc_real_5: 0.21370 (0.21233) | > loss_0: 2.37402 (2.30853) | > grad_norm_0: 8.02047 (16.94991) | > loss_gen: 2.52547 (2.57178) | > loss_kl: 2.88558 (2.65879) | > loss_feat: 9.30179 (8.72669) | > loss_mel: 17.83099 (17.78061) | > loss_duration: 1.70917 (1.70603) | > loss_1: 34.25300 (33.44380) | > grad_norm_1: 58.74598 (139.41127) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23210 (2.10187) | > loader_time: 0.03760 (0.03535)  --> STEP: 12999/15287 -- GLOBAL_STEP: 963000 | > loss_disc: 2.36984 (2.30856) | > loss_disc_real_0: 0.10601 (0.12230) | > loss_disc_real_1: 0.22343 (0.21069) | > loss_disc_real_2: 0.24239 (0.21509) | > loss_disc_real_3: 0.22518 (0.21759) | > loss_disc_real_4: 0.22637 (0.21321) | > loss_disc_real_5: 0.21805 (0.21234) | > loss_0: 2.36984 (2.30856) | > grad_norm_0: 14.65549 (16.94393) | > loss_gen: 2.45251 (2.57178) | > loss_kl: 2.62930 (2.65883) | > loss_feat: 8.54824 (8.72669) | > loss_mel: 17.79887 (17.78091) | > loss_duration: 1.69202 (1.70602) | > loss_1: 33.12093 (33.44412) | > grad_norm_1: 93.93771 (139.33124) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32880 (2.10212) | > loader_time: 0.03360 (0.03535)  --> STEP: 13024/15287 -- GLOBAL_STEP: 963025 | > loss_disc: 2.36856 (2.30860) | > loss_disc_real_0: 0.12839 (0.12230) | > loss_disc_real_1: 0.23493 (0.21070) | > loss_disc_real_2: 0.25057 (0.21509) | > loss_disc_real_3: 0.20665 (0.21760) | > loss_disc_real_4: 0.18735 (0.21321) | > loss_disc_real_5: 0.22737 (0.21234) | > loss_0: 2.36856 (2.30860) | > grad_norm_0: 9.25719 (16.93430) | > loss_gen: 2.53041 (2.57179) | > loss_kl: 2.67557 (2.65891) | > loss_feat: 8.78069 (8.72670) | > loss_mel: 17.41918 (17.78110) | > loss_duration: 1.70246 (1.70603) | > loss_1: 33.10831 (33.44444) | > grad_norm_1: 129.58113 (139.28113) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27690 (2.10248) | > loader_time: 0.03540 (0.03535)  --> STEP: 13049/15287 -- GLOBAL_STEP: 963050 | > loss_disc: 2.36891 (2.30868) | > loss_disc_real_0: 0.13511 (0.12231) | > loss_disc_real_1: 0.21259 (0.21070) | > loss_disc_real_2: 0.21476 (0.21510) | > loss_disc_real_3: 0.23258 (0.21761) | > loss_disc_real_4: 0.23962 (0.21322) | > loss_disc_real_5: 0.22252 (0.21235) | > loss_0: 2.36891 (2.30868) | > grad_norm_0: 9.22954 (16.93385) | > loss_gen: 2.35458 (2.57171) | > loss_kl: 2.68990 (2.65895) | > loss_feat: 8.02491 (8.72645) | > loss_mel: 17.87630 (17.78075) | > loss_duration: 1.72598 (1.70602) | > loss_1: 32.67167 (33.44380) | > grad_norm_1: 153.84792 (139.26158) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.33430 (2.10301) | > loader_time: 0.04440 (0.03535)  --> STEP: 13074/15287 -- GLOBAL_STEP: 963075 | > loss_disc: 2.34574 (2.30867) | > loss_disc_real_0: 0.11825 (0.12231) | > loss_disc_real_1: 0.14637 (0.21069) | > loss_disc_real_2: 0.18883 (0.21509) | > loss_disc_real_3: 0.22295 (0.21761) | > loss_disc_real_4: 0.21205 (0.21321) | > loss_disc_real_5: 0.20296 (0.21235) | > loss_0: 2.34574 (2.30867) | > grad_norm_0: 22.59602 (16.93018) | > loss_gen: 2.39257 (2.57167) | > loss_kl: 2.71595 (2.65897) | > loss_feat: 8.73790 (8.72644) | > loss_mel: 18.10122 (17.78080) | > loss_duration: 1.71141 (1.70602) | > loss_1: 33.65905 (33.44382) | > grad_norm_1: 214.59396 (139.24268) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15870 (2.10317) | > loader_time: 0.03280 (0.03535)  --> STEP: 13099/15287 -- GLOBAL_STEP: 963100 | > loss_disc: 2.33146 (2.30866) | > loss_disc_real_0: 0.17882 (0.12231) | > loss_disc_real_1: 0.22511 (0.21069) | > loss_disc_real_2: 0.21115 (0.21509) | > loss_disc_real_3: 0.22977 (0.21761) | > loss_disc_real_4: 0.19214 (0.21321) | > loss_disc_real_5: 0.19777 (0.21235) | > loss_0: 2.33146 (2.30866) | > grad_norm_0: 20.79018 (16.92910) | > loss_gen: 2.64269 (2.57167) | > loss_kl: 2.57979 (2.65896) | > loss_feat: 8.60455 (8.72643) | > loss_mel: 17.77266 (17.78109) | > loss_duration: 1.72899 (1.70603) | > loss_1: 33.32867 (33.44411) | > grad_norm_1: 111.04034 (139.23743) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52650 (2.10324) | > loader_time: 0.03030 (0.03534)  --> STEP: 13124/15287 -- GLOBAL_STEP: 963125 | > loss_disc: 2.24448 (2.30869) | > loss_disc_real_0: 0.13405 (0.12235) | > loss_disc_real_1: 0.19472 (0.21068) | > loss_disc_real_2: 0.21440 (0.21508) | > loss_disc_real_3: 0.17713 (0.21760) | > loss_disc_real_4: 0.18335 (0.21320) | > loss_disc_real_5: 0.17810 (0.21235) | > loss_0: 2.24448 (2.30869) | > grad_norm_0: 9.84574 (16.92618) | > loss_gen: 2.60072 (2.57169) | > loss_kl: 2.57758 (2.65895) | > loss_feat: 9.08353 (8.72645) | > loss_mel: 18.15976 (17.78108) | > loss_duration: 1.68682 (1.70602) | > loss_1: 34.10842 (33.44412) | > grad_norm_1: 141.17471 (139.18066) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.46740 (2.10367) | > loader_time: 0.03430 (0.03534)  --> STEP: 13149/15287 -- GLOBAL_STEP: 963150 | > loss_disc: 2.27130 (2.30871) | > loss_disc_real_0: 0.09153 (0.12237) | > loss_disc_real_1: 0.22831 (0.21068) | > loss_disc_real_2: 0.21743 (0.21508) | > loss_disc_real_3: 0.17975 (0.21762) | > loss_disc_real_4: 0.19976 (0.21321) | > loss_disc_real_5: 0.23148 (0.21234) | > loss_0: 2.27130 (2.30871) | > grad_norm_0: 5.14341 (16.91936) | > loss_gen: 2.81758 (2.57173) | > loss_kl: 2.55588 (2.65903) | > loss_feat: 9.23769 (8.72668) | > loss_mel: 17.99737 (17.78119) | > loss_duration: 1.71162 (1.70603) | > loss_1: 34.32014 (33.44459) | > grad_norm_1: 142.73106 (139.13675) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29490 (2.10418) | > loader_time: 0.03240 (0.03534)  --> STEP: 13174/15287 -- GLOBAL_STEP: 963175 | > loss_disc: 2.43510 (2.30870) | > loss_disc_real_0: 0.12932 (0.12236) | > loss_disc_real_1: 0.24027 (0.21067) | > loss_disc_real_2: 0.22127 (0.21508) | > loss_disc_real_3: 0.23437 (0.21761) | > loss_disc_real_4: 0.25016 (0.21321) | > loss_disc_real_5: 0.23116 (0.21234) | > loss_0: 2.43510 (2.30870) | > grad_norm_0: 13.42493 (16.91511) | > loss_gen: 2.63648 (2.57176) | > loss_kl: 2.68354 (2.65899) | > loss_feat: 7.84793 (8.72666) | > loss_mel: 17.02702 (17.78102) | > loss_duration: 1.71517 (1.70602) | > loss_1: 31.91013 (33.44440) | > grad_norm_1: 122.98716 (139.11281) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15780 (2.10459) | > loader_time: 0.03120 (0.03533)  --> STEP: 13199/15287 -- GLOBAL_STEP: 963200 | > loss_disc: 2.30492 (2.30868) | > loss_disc_real_0: 0.14568 (0.12236) | > loss_disc_real_1: 0.18984 (0.21067) | > loss_disc_real_2: 0.22334 (0.21508) | > loss_disc_real_3: 0.22361 (0.21762) | > loss_disc_real_4: 0.22217 (0.21322) | > loss_disc_real_5: 0.20783 (0.21233) | > loss_0: 2.30492 (2.30868) | > grad_norm_0: 8.08366 (16.92237) | > loss_gen: 2.54001 (2.57174) | > loss_kl: 2.61432 (2.65896) | > loss_feat: 8.54756 (8.72670) | > loss_mel: 17.55546 (17.78104) | > loss_duration: 1.64704 (1.70600) | > loss_1: 32.90440 (33.44438) | > grad_norm_1: 145.63330 (139.09274) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41580 (2.10511) | > loader_time: 0.03510 (0.03533)  --> STEP: 13224/15287 -- GLOBAL_STEP: 963225 | > loss_disc: 2.30301 (2.30863) | > loss_disc_real_0: 0.08635 (0.12234) | > loss_disc_real_1: 0.18192 (0.21067) | > loss_disc_real_2: 0.18887 (0.21508) | > loss_disc_real_3: 0.21617 (0.21761) | > loss_disc_real_4: 0.17609 (0.21319) | > loss_disc_real_5: 0.18376 (0.21232) | > loss_0: 2.30301 (2.30863) | > grad_norm_0: 15.69914 (16.91870) | > loss_gen: 2.45525 (2.57169) | > loss_kl: 2.62185 (2.65898) | > loss_feat: 9.06921 (8.72697) | > loss_mel: 17.44762 (17.78104) | > loss_duration: 1.73983 (1.70599) | > loss_1: 33.33376 (33.44462) | > grad_norm_1: 130.12190 (139.09756) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90570 (2.10559) | > loader_time: 0.03780 (0.03533)  --> STEP: 13249/15287 -- GLOBAL_STEP: 963250 | > loss_disc: 2.35169 (2.30859) | > loss_disc_real_0: 0.11466 (0.12233) | > loss_disc_real_1: 0.25374 (0.21066) | > loss_disc_real_2: 0.22169 (0.21507) | > loss_disc_real_3: 0.23479 (0.21761) | > loss_disc_real_4: 0.23232 (0.21319) | > loss_disc_real_5: 0.25496 (0.21233) | > loss_0: 2.35169 (2.30859) | > grad_norm_0: 18.46210 (16.91382) | > loss_gen: 2.53138 (2.57175) | > loss_kl: 2.73852 (2.65900) | > loss_feat: 8.75118 (8.72725) | > loss_mel: 17.75150 (17.78125) | > loss_duration: 1.68269 (1.70599) | > loss_1: 33.45527 (33.44518) | > grad_norm_1: 164.24200 (139.11263) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33630 (2.10604) | > loader_time: 0.03530 (0.03533)  --> STEP: 13274/15287 -- GLOBAL_STEP: 963275 | > loss_disc: 2.28359 (2.30855) | > loss_disc_real_0: 0.10687 (0.12232) | > loss_disc_real_1: 0.22411 (0.21065) | > loss_disc_real_2: 0.20920 (0.21506) | > loss_disc_real_3: 0.21916 (0.21760) | > loss_disc_real_4: 0.22922 (0.21318) | > loss_disc_real_5: 0.22127 (0.21233) | > loss_0: 2.28359 (2.30855) | > grad_norm_0: 17.55372 (16.91770) | > loss_gen: 2.54973 (2.57168) | > loss_kl: 2.53759 (2.65901) | > loss_feat: 8.45113 (8.72731) | > loss_mel: 17.51161 (17.78114) | > loss_duration: 1.71085 (1.70598) | > loss_1: 32.76090 (33.44506) | > grad_norm_1: 105.62355 (139.13402) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14080 (2.10666) | > loader_time: 0.03080 (0.03533)  --> STEP: 13299/15287 -- GLOBAL_STEP: 963300 | > loss_disc: 2.24302 (2.30849) | > loss_disc_real_0: 0.11857 (0.12230) | > loss_disc_real_1: 0.20189 (0.21065) | > loss_disc_real_2: 0.20333 (0.21505) | > loss_disc_real_3: 0.20736 (0.21760) | > loss_disc_real_4: 0.19611 (0.21318) | > loss_disc_real_5: 0.20402 (0.21233) | > loss_0: 2.24302 (2.30849) | > grad_norm_0: 9.87069 (16.92203) | > loss_gen: 2.75467 (2.57171) | > loss_kl: 2.67903 (2.65907) | > loss_feat: 9.71784 (8.72743) | > loss_mel: 18.08380 (17.78087) | > loss_duration: 1.70725 (1.70597) | > loss_1: 34.94257 (33.44498) | > grad_norm_1: 213.42760 (139.14050) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17730 (2.10719) | > loader_time: 0.03660 (0.03533)  --> STEP: 13324/15287 -- GLOBAL_STEP: 963325 | > loss_disc: 2.18898 (2.30840) | > loss_disc_real_0: 0.10583 (0.12228) | > loss_disc_real_1: 0.18707 (0.21064) | > loss_disc_real_2: 0.18035 (0.21504) | > loss_disc_real_3: 0.21097 (0.21759) | > loss_disc_real_4: 0.17447 (0.21317) | > loss_disc_real_5: 0.19838 (0.21233) | > loss_0: 2.18898 (2.30840) | > grad_norm_0: 14.74653 (16.91947) | > loss_gen: 2.70003 (2.57177) | > loss_kl: 2.43967 (2.65905) | > loss_feat: 9.51189 (8.72802) | > loss_mel: 17.93631 (17.78079) | > loss_duration: 1.72681 (1.70596) | > loss_1: 34.31470 (33.44552) | > grad_norm_1: 194.72662 (139.17900) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43800 (2.10781) | > loader_time: 0.03140 (0.03532)  --> STEP: 13349/15287 -- GLOBAL_STEP: 963350 | > loss_disc: 2.30479 (2.30838) | > loss_disc_real_0: 0.10865 (0.12228) | > loss_disc_real_1: 0.21812 (0.21064) | > loss_disc_real_2: 0.22741 (0.21505) | > loss_disc_real_3: 0.22045 (0.21760) | > loss_disc_real_4: 0.22813 (0.21317) | > loss_disc_real_5: 0.21426 (0.21232) | > loss_0: 2.30479 (2.30838) | > grad_norm_0: 21.51136 (16.91861) | > loss_gen: 2.56489 (2.57182) | > loss_kl: 2.70744 (2.65902) | > loss_feat: 8.87046 (8.72823) | > loss_mel: 17.92995 (17.78063) | > loss_duration: 1.74114 (1.70596) | > loss_1: 33.81388 (33.44558) | > grad_norm_1: 160.93655 (139.19739) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29440 (2.10837) | > loader_time: 0.03160 (0.03532)  --> STEP: 13374/15287 -- GLOBAL_STEP: 963375 | > loss_disc: 2.32015 (2.30835) | > loss_disc_real_0: 0.12837 (0.12226) | > loss_disc_real_1: 0.21467 (0.21064) | > loss_disc_real_2: 0.22382 (0.21505) | > loss_disc_real_3: 0.22799 (0.21760) | > loss_disc_real_4: 0.20796 (0.21317) | > loss_disc_real_5: 0.22418 (0.21231) | > loss_0: 2.32015 (2.30835) | > grad_norm_0: 12.81964 (16.91689) | > loss_gen: 2.53986 (2.57181) | > loss_kl: 2.58562 (2.65895) | > loss_feat: 7.73090 (8.72810) | > loss_mel: 17.32883 (17.78064) | > loss_duration: 1.70009 (1.70598) | > loss_1: 31.88531 (33.44538) | > grad_norm_1: 61.30830 (139.21841) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55350 (2.10906) | > loader_time: 0.03170 (0.03532)  --> STEP: 13399/15287 -- GLOBAL_STEP: 963400 | > loss_disc: 2.38449 (2.30830) | > loss_disc_real_0: 0.08536 (0.12225) | > loss_disc_real_1: 0.24288 (0.21064) | > loss_disc_real_2: 0.21443 (0.21506) | > loss_disc_real_3: 0.25150 (0.21760) | > loss_disc_real_4: 0.22922 (0.21318) | > loss_disc_real_5: 0.20465 (0.21230) | > loss_0: 2.38449 (2.30830) | > grad_norm_0: 24.27680 (16.91796) | > loss_gen: 2.50834 (2.57191) | > loss_kl: 2.59800 (2.65902) | > loss_feat: 8.29850 (8.72843) | > loss_mel: 17.60941 (17.78068) | > loss_duration: 1.71391 (1.70599) | > loss_1: 32.72816 (33.44593) | > grad_norm_1: 166.97681 (139.24190) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21340 (2.10946) | > loader_time: 0.03170 (0.03532)  --> STEP: 13424/15287 -- GLOBAL_STEP: 963425 | > loss_disc: 2.27174 (2.30828) | > loss_disc_real_0: 0.11063 (0.12224) | > loss_disc_real_1: 0.20053 (0.21063) | > loss_disc_real_2: 0.21177 (0.21505) | > loss_disc_real_3: 0.20424 (0.21761) | > loss_disc_real_4: 0.21417 (0.21318) | > loss_disc_real_5: 0.22171 (0.21231) | > loss_0: 2.27174 (2.30828) | > grad_norm_0: 6.93553 (16.92204) | > loss_gen: 2.70590 (2.57189) | > loss_kl: 2.69961 (2.65896) | > loss_feat: 9.33546 (8.72845) | > loss_mel: 18.30346 (17.78052) | > loss_duration: 1.72284 (1.70600) | > loss_1: 34.76727 (33.44571) | > grad_norm_1: 79.24574 (139.26440) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.77820 (2.10973) | > loader_time: 0.03220 (0.03532)  --> STEP: 13449/15287 -- GLOBAL_STEP: 963450 | > loss_disc: 2.26232 (2.30825) | > loss_disc_real_0: 0.08585 (0.12223) | > loss_disc_real_1: 0.19367 (0.21063) | > loss_disc_real_2: 0.19986 (0.21504) | > loss_disc_real_3: 0.22274 (0.21762) | > loss_disc_real_4: 0.20941 (0.21318) | > loss_disc_real_5: 0.19469 (0.21230) | > loss_0: 2.26232 (2.30825) | > grad_norm_0: 15.54462 (16.92195) | > loss_gen: 2.52268 (2.57188) | > loss_kl: 2.67186 (2.65899) | > loss_feat: 9.17530 (8.72859) | > loss_mel: 17.83734 (17.78056) | > loss_duration: 1.69258 (1.70600) | > loss_1: 33.89976 (33.44592) | > grad_norm_1: 170.98555 (139.29999) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24250 (2.11021) | > loader_time: 0.03290 (0.03532)  --> STEP: 13474/15287 -- GLOBAL_STEP: 963475 | > loss_disc: 2.36936 (2.30824) | > loss_disc_real_0: 0.20218 (0.12225) | > loss_disc_real_1: 0.21739 (0.21063) | > loss_disc_real_2: 0.22327 (0.21504) | > loss_disc_real_3: 0.22382 (0.21761) | > loss_disc_real_4: 0.22512 (0.21318) | > loss_disc_real_5: 0.19728 (0.21230) | > loss_0: 2.36936 (2.30824) | > grad_norm_0: 24.06350 (16.92457) | > loss_gen: 2.47349 (2.57192) | > loss_kl: 2.60754 (2.65900) | > loss_feat: 8.50869 (8.72893) | > loss_mel: 17.98406 (17.78072) | > loss_duration: 1.71598 (1.70600) | > loss_1: 33.28978 (33.44647) | > grad_norm_1: 109.39338 (139.31197) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52340 (2.11039) | > loader_time: 0.03580 (0.03531)  --> STEP: 13499/15287 -- GLOBAL_STEP: 963500 | > loss_disc: 2.25934 (2.30818) | > loss_disc_real_0: 0.14485 (0.12225) | > loss_disc_real_1: 0.20100 (0.21063) | > loss_disc_real_2: 0.21077 (0.21504) | > loss_disc_real_3: 0.21660 (0.21761) | > loss_disc_real_4: 0.20093 (0.21317) | > loss_disc_real_5: 0.24686 (0.21230) | > loss_0: 2.25934 (2.30818) | > grad_norm_0: 24.93030 (16.92406) | > loss_gen: 2.51096 (2.57196) | > loss_kl: 2.66689 (2.65905) | > loss_feat: 8.92496 (8.72913) | > loss_mel: 17.59516 (17.78082) | > loss_duration: 1.70562 (1.70600) | > loss_1: 33.40359 (33.44684) | > grad_norm_1: 156.47258 (139.30191) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85330 (2.11078) | > loader_time: 0.03100 (0.03532)  --> STEP: 13524/15287 -- GLOBAL_STEP: 963525 | > loss_disc: 2.26597 (2.30817) | > loss_disc_real_0: 0.13381 (0.12225) | > loss_disc_real_1: 0.17768 (0.21062) | > loss_disc_real_2: 0.21818 (0.21504) | > loss_disc_real_3: 0.21268 (0.21761) | > loss_disc_real_4: 0.18258 (0.21317) | > loss_disc_real_5: 0.21489 (0.21229) | > loss_0: 2.26597 (2.30817) | > grad_norm_0: 27.57725 (16.92867) | > loss_gen: 2.48085 (2.57202) | > loss_kl: 2.68265 (2.65913) | > loss_feat: 9.36867 (8.72943) | > loss_mel: 18.05307 (17.78108) | > loss_duration: 1.72257 (1.70601) | > loss_1: 34.30782 (33.44757) | > grad_norm_1: 130.42937 (139.30524) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22280 (2.11114) | > loader_time: 0.03820 (0.03532)  --> STEP: 13549/15287 -- GLOBAL_STEP: 963550 | > loss_disc: 2.23993 (2.30818) | > loss_disc_real_0: 0.14510 (0.12227) | > loss_disc_real_1: 0.18068 (0.21062) | > loss_disc_real_2: 0.19374 (0.21504) | > loss_disc_real_3: 0.21220 (0.21761) | > loss_disc_real_4: 0.20910 (0.21317) | > loss_disc_real_5: 0.19027 (0.21229) | > loss_0: 2.23993 (2.30818) | > grad_norm_0: 7.63244 (16.93259) | > loss_gen: 2.77641 (2.57206) | > loss_kl: 2.66333 (2.65909) | > loss_feat: 9.12799 (8.72931) | > loss_mel: 17.79088 (17.78103) | > loss_duration: 1.68379 (1.70600) | > loss_1: 34.04240 (33.44739) | > grad_norm_1: 95.42331 (139.30551) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.84220 (2.11170) | > loader_time: 0.03100 (0.03531)  --> STEP: 13574/15287 -- GLOBAL_STEP: 963575 | > loss_disc: 2.27652 (2.30815) | > loss_disc_real_0: 0.09564 (0.12227) | > loss_disc_real_1: 0.20367 (0.21061) | > loss_disc_real_2: 0.20540 (0.21504) | > loss_disc_real_3: 0.22022 (0.21761) | > loss_disc_real_4: 0.22447 (0.21316) | > loss_disc_real_5: 0.21611 (0.21230) | > loss_0: 2.27652 (2.30815) | > grad_norm_0: 15.82039 (16.93211) | > loss_gen: 2.66597 (2.57211) | > loss_kl: 2.70468 (2.65911) | > loss_feat: 8.85851 (8.72949) | > loss_mel: 18.01920 (17.78095) | > loss_duration: 1.73154 (1.70600) | > loss_1: 33.97991 (33.44756) | > grad_norm_1: 160.68994 (139.32797) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29180 (2.11176) | > loader_time: 0.03260 (0.03532)  --> STEP: 13599/15287 -- GLOBAL_STEP: 963600 | > loss_disc: 2.25742 (2.30815) | > loss_disc_real_0: 0.15350 (0.12226) | > loss_disc_real_1: 0.19959 (0.21061) | > loss_disc_real_2: 0.21144 (0.21504) | > loss_disc_real_3: 0.17725 (0.21760) | > loss_disc_real_4: 0.17527 (0.21316) | > loss_disc_real_5: 0.23054 (0.21231) | > loss_0: 2.25742 (2.30815) | > grad_norm_0: 9.51550 (16.93561) | > loss_gen: 2.63670 (2.57209) | > loss_kl: 2.70952 (2.65917) | > loss_feat: 8.59673 (8.72941) | > loss_mel: 18.20044 (17.78110) | > loss_duration: 1.70532 (1.70600) | > loss_1: 33.84872 (33.44766) | > grad_norm_1: 137.21594 (139.34320) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85230 (2.11179) | > loader_time: 0.03680 (0.03532)  --> STEP: 13624/15287 -- GLOBAL_STEP: 963625 | > loss_disc: 2.27624 (2.30817) | > loss_disc_real_0: 0.14994 (0.12228) | > loss_disc_real_1: 0.20737 (0.21062) | > loss_disc_real_2: 0.22005 (0.21504) | > loss_disc_real_3: 0.21955 (0.21760) | > loss_disc_real_4: 0.23873 (0.21317) | > loss_disc_real_5: 0.18203 (0.21231) | > loss_0: 2.27624 (2.30817) | > grad_norm_0: 11.43818 (16.92726) | > loss_gen: 2.64719 (2.57213) | > loss_kl: 2.59628 (2.65915) | > loss_feat: 9.12463 (8.72953) | > loss_mel: 17.54625 (17.78138) | > loss_duration: 1.68132 (1.70598) | > loss_1: 33.59568 (33.44809) | > grad_norm_1: 134.61958 (139.31140) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26980 (2.11190) | > loader_time: 0.03570 (0.03532)  --> STEP: 13649/15287 -- GLOBAL_STEP: 963650 | > loss_disc: 2.30406 (2.30823) | > loss_disc_real_0: 0.09832 (0.12229) | > loss_disc_real_1: 0.21880 (0.21063) | > loss_disc_real_2: 0.19976 (0.21505) | > loss_disc_real_3: 0.24016 (0.21761) | > loss_disc_real_4: 0.21148 (0.21317) | > loss_disc_real_5: 0.19034 (0.21230) | > loss_0: 2.30406 (2.30823) | > grad_norm_0: 14.32553 (16.92132) | > loss_gen: 2.62140 (2.57209) | > loss_kl: 2.75641 (2.65917) | > loss_feat: 8.94517 (8.72937) | > loss_mel: 17.41309 (17.78164) | > loss_duration: 1.67168 (1.70599) | > loss_1: 33.40775 (33.44817) | > grad_norm_1: 142.39354 (139.29317) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23420 (2.11218) | > loader_time: 0.03190 (0.03531)  --> STEP: 13674/15287 -- GLOBAL_STEP: 963675 | > loss_disc: 2.31480 (2.30824) | > loss_disc_real_0: 0.10099 (0.12229) | > loss_disc_real_1: 0.20288 (0.21063) | > loss_disc_real_2: 0.22768 (0.21506) | > loss_disc_real_3: 0.26085 (0.21762) | > loss_disc_real_4: 0.21170 (0.21316) | > loss_disc_real_5: 0.24700 (0.21230) | > loss_0: 2.31480 (2.30824) | > grad_norm_0: 21.28368 (16.91414) | > loss_gen: 2.58811 (2.57212) | > loss_kl: 2.70721 (2.65922) | > loss_feat: 8.65365 (8.72936) | > loss_mel: 18.39186 (17.78177) | > loss_duration: 1.72034 (1.70600) | > loss_1: 34.06118 (33.44838) | > grad_norm_1: 164.49339 (139.23347) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21440 (2.11238) | > loader_time: 0.03220 (0.03531)  --> STEP: 13699/15287 -- GLOBAL_STEP: 963700 | > loss_disc: 2.20434 (2.30827) | > loss_disc_real_0: 0.10545 (0.12230) | > loss_disc_real_1: 0.21803 (0.21064) | > loss_disc_real_2: 0.19177 (0.21506) | > loss_disc_real_3: 0.19660 (0.21763) | > loss_disc_real_4: 0.20542 (0.21317) | > loss_disc_real_5: 0.19109 (0.21231) | > loss_0: 2.20434 (2.30827) | > grad_norm_0: 7.93953 (16.90874) | > loss_gen: 2.55216 (2.57207) | > loss_kl: 2.66294 (2.65924) | > loss_feat: 9.23615 (8.72931) | > loss_mel: 17.52077 (17.78172) | > loss_duration: 1.66968 (1.70599) | > loss_1: 33.64170 (33.44824) | > grad_norm_1: 143.40189 (139.20244) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86950 (2.11249) | > loader_time: 0.03420 (0.03531)  --> STEP: 13724/15287 -- GLOBAL_STEP: 963725 | > loss_disc: 2.39449 (2.30828) | > loss_disc_real_0: 0.13647 (0.12231) | > loss_disc_real_1: 0.23508 (0.21064) | > loss_disc_real_2: 0.23144 (0.21507) | > loss_disc_real_3: 0.23064 (0.21762) | > loss_disc_real_4: 0.19135 (0.21316) | > loss_disc_real_5: 0.17869 (0.21230) | > loss_0: 2.39449 (2.30828) | > grad_norm_0: 29.79045 (16.91277) | > loss_gen: 2.42331 (2.57210) | > loss_kl: 2.61534 (2.65924) | > loss_feat: 8.67935 (8.72953) | > loss_mel: 17.83917 (17.78202) | > loss_duration: 1.71423 (1.70598) | > loss_1: 33.27141 (33.44877) | > grad_norm_1: 174.72752 (139.20966) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87260 (2.11296) | > loader_time: 0.03350 (0.03531)  --> STEP: 13749/15287 -- GLOBAL_STEP: 963750 | > loss_disc: 2.26189 (2.30827) | > loss_disc_real_0: 0.13240 (0.12230) | > loss_disc_real_1: 0.18944 (0.21063) | > loss_disc_real_2: 0.20155 (0.21508) | > loss_disc_real_3: 0.18566 (0.21763) | > loss_disc_real_4: 0.18910 (0.21317) | > loss_disc_real_5: 0.20094 (0.21230) | > loss_0: 2.26189 (2.30827) | > grad_norm_0: 35.91946 (16.91209) | > loss_gen: 2.44173 (2.57209) | > loss_kl: 2.76558 (2.65928) | > loss_feat: 9.25240 (8.72965) | > loss_mel: 18.25816 (17.78209) | > loss_duration: 1.68998 (1.70597) | > loss_1: 34.40785 (33.44896) | > grad_norm_1: 158.73523 (139.22791) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85850 (2.11336) | > loader_time: 0.03470 (0.03531)  --> STEP: 13774/15287 -- GLOBAL_STEP: 963775 | > loss_disc: 2.34224 (2.30826) | > loss_disc_real_0: 0.06633 (0.12230) | > loss_disc_real_1: 0.20617 (0.21063) | > loss_disc_real_2: 0.24762 (0.21507) | > loss_disc_real_3: 0.19165 (0.21763) | > loss_disc_real_4: 0.18968 (0.21316) | > loss_disc_real_5: 0.16958 (0.21229) | > loss_0: 2.34224 (2.30826) | > grad_norm_0: 12.80176 (16.91082) | > loss_gen: 2.55999 (2.57209) | > loss_kl: 2.72255 (2.65930) | > loss_feat: 9.29994 (8.72968) | > loss_mel: 18.30200 (17.78211) | > loss_duration: 1.73474 (1.70597) | > loss_1: 34.61923 (33.44903) | > grad_norm_1: 175.64659 (139.23683) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86700 (2.11353) | > loader_time: 0.03130 (0.03531)  --> STEP: 13799/15287 -- GLOBAL_STEP: 963800 | > loss_disc: 2.35591 (2.30824) | > loss_disc_real_0: 0.12206 (0.12231) | > loss_disc_real_1: 0.21225 (0.21063) | > loss_disc_real_2: 0.21785 (0.21507) | > loss_disc_real_3: 0.21649 (0.21762) | > loss_disc_real_4: 0.21126 (0.21316) | > loss_disc_real_5: 0.22268 (0.21229) | > loss_0: 2.35591 (2.30824) | > grad_norm_0: 10.34168 (16.90848) | > loss_gen: 2.51790 (2.57210) | > loss_kl: 2.68918 (2.65934) | > loss_feat: 8.63875 (8.72982) | > loss_mel: 17.38418 (17.78219) | > loss_duration: 1.73907 (1.70597) | > loss_1: 32.96909 (33.44930) | > grad_norm_1: 167.27339 (139.21294) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87950 (2.11375) | > loader_time: 0.03560 (0.03531)  --> STEP: 13824/15287 -- GLOBAL_STEP: 963825 | > loss_disc: 2.40350 (2.30825) | > loss_disc_real_0: 0.14081 (0.12230) | > loss_disc_real_1: 0.22488 (0.21063) | > loss_disc_real_2: 0.23135 (0.21506) | > loss_disc_real_3: 0.22773 (0.21763) | > loss_disc_real_4: 0.22120 (0.21318) | > loss_disc_real_5: 0.23299 (0.21228) | > loss_0: 2.40350 (2.30825) | > grad_norm_0: 8.28766 (16.90331) | > loss_gen: 2.42804 (2.57211) | > loss_kl: 2.66059 (2.65933) | > loss_feat: 8.42281 (8.72966) | > loss_mel: 17.55326 (17.78206) | > loss_duration: 1.65271 (1.70596) | > loss_1: 32.71741 (33.44901) | > grad_norm_1: 120.74691 (139.21071) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.46810 (2.11404) | > loader_time: 0.03220 (0.03531)  --> STEP: 13849/15287 -- GLOBAL_STEP: 963850 | > loss_disc: 2.33676 (2.30828) | > loss_disc_real_0: 0.16675 (0.12230) | > loss_disc_real_1: 0.20091 (0.21063) | > loss_disc_real_2: 0.21119 (0.21506) | > loss_disc_real_3: 0.21629 (0.21763) | > loss_disc_real_4: 0.20717 (0.21318) | > loss_disc_real_5: 0.20620 (0.21228) | > loss_0: 2.33676 (2.30828) | > grad_norm_0: 17.29412 (16.89543) | > loss_gen: 2.66187 (2.57209) | > loss_kl: 2.81415 (2.65938) | > loss_feat: 8.87222 (8.72970) | > loss_mel: 18.42196 (17.78234) | > loss_duration: 1.68269 (1.70596) | > loss_1: 34.45288 (33.44934) | > grad_norm_1: 48.91814 (139.16786) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.50280 (2.11443) | > loader_time: 0.04080 (0.03531)  --> STEP: 13874/15287 -- GLOBAL_STEP: 963875 | > loss_disc: 2.32821 (2.30833) | > loss_disc_real_0: 0.13400 (0.12229) | > loss_disc_real_1: 0.25041 (0.21064) | > loss_disc_real_2: 0.24140 (0.21506) | > loss_disc_real_3: 0.22258 (0.21763) | > loss_disc_real_4: 0.20794 (0.21318) | > loss_disc_real_5: 0.20646 (0.21228) | > loss_0: 2.32821 (2.30833) | > grad_norm_0: 6.31027 (16.88947) | > loss_gen: 2.54898 (2.57205) | > loss_kl: 2.54435 (2.65937) | > loss_feat: 8.88347 (8.72951) | > loss_mel: 17.91131 (17.78260) | > loss_duration: 1.65703 (1.70595) | > loss_1: 33.54515 (33.44939) | > grad_norm_1: 99.47861 (139.14397) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.64190 (2.11482) | > loader_time: 0.03650 (0.03531)  --> STEP: 13899/15287 -- GLOBAL_STEP: 963900 | > loss_disc: 2.31627 (2.30837) | > loss_disc_real_0: 0.10829 (0.12229) | > loss_disc_real_1: 0.23726 (0.21065) | > loss_disc_real_2: 0.21088 (0.21506) | > loss_disc_real_3: 0.21169 (0.21764) | > loss_disc_real_4: 0.21368 (0.21319) | > loss_disc_real_5: 0.19984 (0.21228) | > loss_0: 2.31627 (2.30837) | > grad_norm_0: 9.35679 (16.88372) | > loss_gen: 2.58557 (2.57198) | > loss_kl: 2.82561 (2.65942) | > loss_feat: 8.68617 (8.72926) | > loss_mel: 18.18682 (17.78288) | > loss_duration: 1.75385 (1.70596) | > loss_1: 34.03802 (33.44941) | > grad_norm_1: 105.34501 (139.04391) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35030 (2.11520) | > loader_time: 0.03880 (0.03531)  --> STEP: 13924/15287 -- GLOBAL_STEP: 963925 | > loss_disc: 2.34125 (2.30847) | > loss_disc_real_0: 0.09845 (0.12231) | > loss_disc_real_1: 0.23152 (0.21065) | > loss_disc_real_2: 0.24251 (0.21508) | > loss_disc_real_3: 0.22314 (0.21764) | > loss_disc_real_4: 0.20657 (0.21319) | > loss_disc_real_5: 0.20633 (0.21228) | > loss_0: 2.34125 (2.30847) | > grad_norm_0: 6.45099 (16.87391) | > loss_gen: 2.63551 (2.57201) | > loss_kl: 2.64649 (2.65942) | > loss_feat: 9.32557 (8.72907) | > loss_mel: 17.93257 (17.78303) | > loss_duration: 1.73478 (1.70597) | > loss_1: 34.27492 (33.44940) | > grad_norm_1: 105.63543 (138.93561) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02430 (2.11551) | > loader_time: 0.03660 (0.03531)  --> STEP: 13949/15287 -- GLOBAL_STEP: 963950 | > loss_disc: 2.29192 (2.30857) | > loss_disc_real_0: 0.09366 (0.12233) | > loss_disc_real_1: 0.20088 (0.21065) | > loss_disc_real_2: 0.19750 (0.21507) | > loss_disc_real_3: 0.20822 (0.21765) | > loss_disc_real_4: 0.19103 (0.21320) | > loss_disc_real_5: 0.19868 (0.21228) | > loss_0: 2.29192 (2.30857) | > grad_norm_0: 10.99093 (16.86911) | > loss_gen: 2.71484 (2.57191) | > loss_kl: 2.64239 (2.65932) | > loss_feat: 8.86213 (8.72879) | > loss_mel: 17.76745 (17.78340) | > loss_duration: 1.73380 (1.70598) | > loss_1: 33.72060 (33.44928) | > grad_norm_1: 124.13821 (138.87909) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25220 (2.11593) | > loader_time: 0.03790 (0.03531)  --> STEP: 13974/15287 -- GLOBAL_STEP: 963975 | > loss_disc: 2.29676 (2.30855) | > loss_disc_real_0: 0.15173 (0.12233) | > loss_disc_real_1: 0.22166 (0.21065) | > loss_disc_real_2: 0.23375 (0.21507) | > loss_disc_real_3: 0.22196 (0.21765) | > loss_disc_real_4: 0.21731 (0.21320) | > loss_disc_real_5: 0.21434 (0.21227) | > loss_0: 2.29676 (2.30855) | > grad_norm_0: 9.24912 (16.86420) | > loss_gen: 2.73110 (2.57189) | > loss_kl: 2.58887 (2.65932) | > loss_feat: 8.68943 (8.72864) | > loss_mel: 18.03990 (17.78337) | > loss_duration: 1.70580 (1.70597) | > loss_1: 33.75511 (33.44909) | > grad_norm_1: 150.06351 (138.83702) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.07110 (2.11634) | > loader_time: 0.03510 (0.03531)  --> STEP: 13999/15287 -- GLOBAL_STEP: 964000 | > loss_disc: 2.16576 (2.30855) | > loss_disc_real_0: 0.08920 (0.12232) | > loss_disc_real_1: 0.18382 (0.21066) | > loss_disc_real_2: 0.21224 (0.21508) | > loss_disc_real_3: 0.20555 (0.21765) | > loss_disc_real_4: 0.19971 (0.21321) | > loss_disc_real_5: 0.19072 (0.21226) | > loss_0: 2.16576 (2.30855) | > grad_norm_0: 9.50551 (16.86105) | > loss_gen: 2.79181 (2.57187) | > loss_kl: 2.70331 (2.65933) | > loss_feat: 9.09627 (8.72851) | > loss_mel: 17.94546 (17.78340) | > loss_duration: 1.71502 (1.70595) | > loss_1: 34.25187 (33.44896) | > grad_norm_1: 152.05843 (138.82480) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32310 (2.11673) | > loader_time: 0.03030 (0.03531)  --> STEP: 14024/15287 -- GLOBAL_STEP: 964025 | > loss_disc: 2.28326 (2.30855) | > loss_disc_real_0: 0.10193 (0.12232) | > loss_disc_real_1: 0.21244 (0.21067) | > loss_disc_real_2: 0.19967 (0.21507) | > loss_disc_real_3: 0.23112 (0.21765) | > loss_disc_real_4: 0.21774 (0.21321) | > loss_disc_real_5: 0.22742 (0.21227) | > loss_0: 2.28326 (2.30855) | > grad_norm_0: 12.35230 (16.86070) | > loss_gen: 2.47650 (2.57183) | > loss_kl: 2.54222 (2.65930) | > loss_feat: 8.11753 (8.72841) | > loss_mel: 17.43291 (17.78319) | > loss_duration: 1.71442 (1.70595) | > loss_1: 32.28358 (33.44855) | > grad_norm_1: 137.94794 (138.80339) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85190 (2.11704) | > loader_time: 0.03620 (0.03531)  --> STEP: 14049/15287 -- GLOBAL_STEP: 964050 | > loss_disc: 2.32815 (2.30851) | > loss_disc_real_0: 0.16290 (0.12233) | > loss_disc_real_1: 0.23845 (0.21066) | > loss_disc_real_2: 0.20362 (0.21507) | > loss_disc_real_3: 0.21603 (0.21765) | > loss_disc_real_4: 0.19870 (0.21321) | > loss_disc_real_5: 0.21106 (0.21227) | > loss_0: 2.32815 (2.30851) | > grad_norm_0: 33.72779 (16.86209) | > loss_gen: 2.52063 (2.57185) | > loss_kl: 2.59910 (2.65920) | > loss_feat: 8.96239 (8.72837) | > loss_mel: 18.30132 (17.78308) | > loss_duration: 1.69153 (1.70594) | > loss_1: 34.07496 (33.44834) | > grad_norm_1: 203.91862 (138.80112) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38980 (2.11752) | > loader_time: 0.03830 (0.03531)  --> STEP: 14074/15287 -- GLOBAL_STEP: 964075 | > loss_disc: 2.35205 (2.30847) | > loss_disc_real_0: 0.15257 (0.12232) | > loss_disc_real_1: 0.23009 (0.21066) | > loss_disc_real_2: 0.22076 (0.21507) | > loss_disc_real_3: 0.25367 (0.21765) | > loss_disc_real_4: 0.22846 (0.21321) | > loss_disc_real_5: 0.26532 (0.21227) | > loss_0: 2.35205 (2.30847) | > grad_norm_0: 26.63231 (16.85655) | > loss_gen: 2.62951 (2.57190) | > loss_kl: 2.62842 (2.65912) | > loss_feat: 8.40506 (8.72838) | > loss_mel: 17.40459 (17.78279) | > loss_duration: 1.71105 (1.70592) | > loss_1: 32.77863 (33.44799) | > grad_norm_1: 123.18892 (138.78685) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26600 (2.11780) | > loader_time: 0.03730 (0.03531)  --> STEP: 14099/15287 -- GLOBAL_STEP: 964100 | > loss_disc: 2.32398 (2.30847) | > loss_disc_real_0: 0.13357 (0.12233) | > loss_disc_real_1: 0.23170 (0.21067) | > loss_disc_real_2: 0.21376 (0.21507) | > loss_disc_real_3: 0.28411 (0.21765) | > loss_disc_real_4: 0.20160 (0.21321) | > loss_disc_real_5: 0.22035 (0.21227) | > loss_0: 2.32398 (2.30847) | > grad_norm_0: 15.46149 (16.85336) | > loss_gen: 2.38548 (2.57190) | > loss_kl: 2.56097 (2.65914) | > loss_feat: 8.18925 (8.72840) | > loss_mel: 17.46716 (17.78277) | > loss_duration: 1.70810 (1.70591) | > loss_1: 32.31097 (33.44802) | > grad_norm_1: 115.41832 (138.74405) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24320 (2.11815) | > loader_time: 0.03610 (0.03531)  --> STEP: 14124/15287 -- GLOBAL_STEP: 964125 | > loss_disc: 2.29485 (2.30844) | > loss_disc_real_0: 0.11170 (0.12230) | > loss_disc_real_1: 0.20859 (0.21066) | > loss_disc_real_2: 0.22775 (0.21507) | > loss_disc_real_3: 0.21737 (0.21765) | > loss_disc_real_4: 0.23598 (0.21321) | > loss_disc_real_5: 0.18851 (0.21227) | > loss_0: 2.29485 (2.30844) | > grad_norm_0: 11.88260 (16.84484) | > loss_gen: 2.69730 (2.57193) | > loss_kl: 2.72534 (2.65917) | > loss_feat: 9.52279 (8.72865) | > loss_mel: 18.17147 (17.78275) | > loss_duration: 1.73794 (1.70591) | > loss_1: 34.85484 (33.44831) | > grad_norm_1: 155.01346 (138.69899) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.77900 (2.11824) | > loader_time: 0.05310 (0.03532)  --> STEP: 14149/15287 -- GLOBAL_STEP: 964150 | > loss_disc: 2.34092 (2.30846) | > loss_disc_real_0: 0.14179 (0.12229) | > loss_disc_real_1: 0.22760 (0.21067) | > loss_disc_real_2: 0.25913 (0.21508) | > loss_disc_real_3: 0.20673 (0.21765) | > loss_disc_real_4: 0.23887 (0.21321) | > loss_disc_real_5: 0.21137 (0.21227) | > loss_0: 2.34092 (2.30846) | > grad_norm_0: 23.75663 (16.84031) | > loss_gen: 2.68048 (2.57187) | > loss_kl: 2.68717 (2.65922) | > loss_feat: 8.70986 (8.72849) | > loss_mel: 17.92712 (17.78250) | > loss_duration: 1.72008 (1.70590) | > loss_1: 33.72471 (33.44787) | > grad_norm_1: 124.47987 (138.67249) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92310 (2.11837) | > loader_time: 0.04070 (0.03532)  --> STEP: 14174/15287 -- GLOBAL_STEP: 964175 | > loss_disc: 2.23468 (2.30842) | > loss_disc_real_0: 0.14065 (0.12229) | > loss_disc_real_1: 0.21098 (0.21067) | > loss_disc_real_2: 0.19561 (0.21508) | > loss_disc_real_3: 0.21234 (0.21765) | > loss_disc_real_4: 0.19098 (0.21321) | > loss_disc_real_5: 0.22226 (0.21227) | > loss_0: 2.23468 (2.30842) | > grad_norm_0: 14.84392 (16.83654) | > loss_gen: 2.62592 (2.57186) | > loss_kl: 2.68635 (2.65919) | > loss_feat: 9.13963 (8.72878) | > loss_mel: 17.45424 (17.78248) | > loss_duration: 1.70220 (1.70591) | > loss_1: 33.60834 (33.44810) | > grad_norm_1: 138.16092 (138.65407) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29260 (2.11862) | > loader_time: 0.03140 (0.03533)  --> STEP: 14199/15287 -- GLOBAL_STEP: 964200 | > loss_disc: 2.29255 (2.30840) | > loss_disc_real_0: 0.11463 (0.12227) | > loss_disc_real_1: 0.20981 (0.21066) | > loss_disc_real_2: 0.21773 (0.21508) | > loss_disc_real_3: 0.19686 (0.21765) | > loss_disc_real_4: 0.20159 (0.21321) | > loss_disc_real_5: 0.19885 (0.21226) | > loss_0: 2.29255 (2.30840) | > grad_norm_0: 14.06069 (16.83145) | > loss_gen: 2.58087 (2.57184) | > loss_kl: 2.75991 (2.65925) | > loss_feat: 8.83730 (8.72904) | > loss_mel: 17.58350 (17.78242) | > loss_duration: 1.71397 (1.70590) | > loss_1: 33.47555 (33.44835) | > grad_norm_1: 101.70231 (138.65077) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.45980 (2.11886) | > loader_time: 0.04060 (0.03533)  --> STEP: 14224/15287 -- GLOBAL_STEP: 964225 | > loss_disc: 2.20018 (2.30834) | > loss_disc_real_0: 0.09434 (0.12226) | > loss_disc_real_1: 0.17576 (0.21066) | > loss_disc_real_2: 0.20174 (0.21508) | > loss_disc_real_3: 0.21432 (0.21765) | > loss_disc_real_4: 0.23957 (0.21320) | > loss_disc_real_5: 0.20021 (0.21225) | > loss_0: 2.20018 (2.30834) | > grad_norm_0: 6.00714 (16.82824) | > loss_gen: 2.82266 (2.57185) | > loss_kl: 2.57759 (2.65923) | > loss_feat: 8.96648 (8.72908) | > loss_mel: 18.10656 (17.78236) | > loss_duration: 1.74130 (1.70593) | > loss_1: 34.21460 (33.44835) | > grad_norm_1: 129.39880 (138.63287) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89630 (2.11892) | > loader_time: 0.04130 (0.03533)  --> STEP: 14249/15287 -- GLOBAL_STEP: 964250 | > loss_disc: 2.30743 (2.30832) | > loss_disc_real_0: 0.11097 (0.12225) | > loss_disc_real_1: 0.19966 (0.21067) | > loss_disc_real_2: 0.20635 (0.21508) | > loss_disc_real_3: 0.23336 (0.21765) | > loss_disc_real_4: 0.22651 (0.21321) | > loss_disc_real_5: 0.21330 (0.21225) | > loss_0: 2.30743 (2.30832) | > grad_norm_0: 11.91263 (16.82800) | > loss_gen: 2.48116 (2.57186) | > loss_kl: 2.68199 (2.65925) | > loss_feat: 7.90632 (8.72886) | > loss_mel: 16.97024 (17.78217) | > loss_duration: 1.70169 (1.70592) | > loss_1: 31.74140 (33.44796) | > grad_norm_1: 81.75826 (138.61095) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32970 (2.11903) | > loader_time: 0.03490 (0.03533)  --> STEP: 14274/15287 -- GLOBAL_STEP: 964275 | > loss_disc: 2.36837 (2.30829) | > loss_disc_real_0: 0.11420 (0.12224) | > loss_disc_real_1: 0.21213 (0.21066) | > loss_disc_real_2: 0.26356 (0.21507) | > loss_disc_real_3: 0.23859 (0.21763) | > loss_disc_real_4: 0.20244 (0.21321) | > loss_disc_real_5: 0.19886 (0.21226) | > loss_0: 2.36837 (2.30829) | > grad_norm_0: 8.32850 (16.82898) | > loss_gen: 2.53295 (2.57185) | > loss_kl: 2.60711 (2.65927) | > loss_feat: 7.76916 (8.72925) | > loss_mel: 17.73314 (17.78194) | > loss_duration: 1.70107 (1.70592) | > loss_1: 32.34343 (33.44813) | > grad_norm_1: 110.68654 (138.62823) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.81310 (2.11914) | > loader_time: 0.03740 (0.03533)  --> STEP: 14299/15287 -- GLOBAL_STEP: 964300 | > loss_disc: 2.29702 (2.30825) | > loss_disc_real_0: 0.16145 (0.12223) | > loss_disc_real_1: 0.19965 (0.21065) | > loss_disc_real_2: 0.16565 (0.21508) | > loss_disc_real_3: 0.19429 (0.21763) | > loss_disc_real_4: 0.19461 (0.21320) | > loss_disc_real_5: 0.20768 (0.21227) | > loss_0: 2.29702 (2.30825) | > grad_norm_0: 22.87214 (16.83352) | > loss_gen: 2.47741 (2.57184) | > loss_kl: 2.86243 (2.65932) | > loss_feat: 9.07728 (8.72940) | > loss_mel: 18.11094 (17.78208) | > loss_duration: 1.68834 (1.70590) | > loss_1: 34.21640 (33.44844) | > grad_norm_1: 81.11755 (138.62653) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26310 (2.11922) | > loader_time: 0.03430 (0.03533)  --> STEP: 14324/15287 -- GLOBAL_STEP: 964325 | > loss_disc: 2.34753 (2.30825) | > loss_disc_real_0: 0.18061 (0.12224) | > loss_disc_real_1: 0.27557 (0.21066) | > loss_disc_real_2: 0.25034 (0.21508) | > loss_disc_real_3: 0.22207 (0.21762) | > loss_disc_real_4: 0.20465 (0.21320) | > loss_disc_real_5: 0.18735 (0.21226) | > loss_0: 2.34753 (2.30825) | > grad_norm_0: 18.60408 (16.83675) | > loss_gen: 2.45820 (2.57181) | > loss_kl: 2.61194 (2.65932) | > loss_feat: 8.38003 (8.72938) | > loss_mel: 17.74790 (17.78183) | > loss_duration: 1.72057 (1.70591) | > loss_1: 32.91864 (33.44812) | > grad_norm_1: 110.48958 (138.58444) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.82830 (2.11929) | > loader_time: 0.03530 (0.03534)  --> STEP: 14349/15287 -- GLOBAL_STEP: 964350 | > loss_disc: 2.34184 (2.30823) | > loss_disc_real_0: 0.13803 (0.12224) | > loss_disc_real_1: 0.20897 (0.21065) | > loss_disc_real_2: 0.21783 (0.21507) | > loss_disc_real_3: 0.20299 (0.21762) | > loss_disc_real_4: 0.20492 (0.21320) | > loss_disc_real_5: 0.19395 (0.21227) | > loss_0: 2.34184 (2.30823) | > grad_norm_0: 8.25538 (16.83635) | > loss_gen: 2.60971 (2.57184) | > loss_kl: 2.71204 (2.65938) | > loss_feat: 8.70918 (8.72957) | > loss_mel: 17.64546 (17.78191) | > loss_duration: 1.70655 (1.70591) | > loss_1: 33.38293 (33.44849) | > grad_norm_1: 161.12057 (138.60880) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17240 (2.11933) | > loader_time: 0.03810 (0.03534)  --> STEP: 14374/15287 -- GLOBAL_STEP: 964375 | > loss_disc: 2.33286 (2.30821) | > loss_disc_real_0: 0.11359 (0.12223) | > loss_disc_real_1: 0.21886 (0.21066) | > loss_disc_real_2: 0.22670 (0.21507) | > loss_disc_real_3: 0.24892 (0.21763) | > loss_disc_real_4: 0.26319 (0.21321) | > loss_disc_real_5: 0.24011 (0.21227) | > loss_0: 2.33286 (2.30821) | > grad_norm_0: 13.09465 (16.83932) | > loss_gen: 2.61405 (2.57187) | > loss_kl: 2.68621 (2.65935) | > loss_feat: 8.85859 (8.72991) | > loss_mel: 18.11101 (17.78191) | > loss_duration: 1.69222 (1.70589) | > loss_1: 33.96208 (33.44882) | > grad_norm_1: 70.77539 (138.63815) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23870 (2.11946) | > loader_time: 0.03960 (0.03534)  --> STEP: 14399/15287 -- GLOBAL_STEP: 964400 | > loss_disc: 2.31837 (2.30823) | > loss_disc_real_0: 0.10475 (0.12222) | > loss_disc_real_1: 0.21304 (0.21065) | > loss_disc_real_2: 0.21709 (0.21507) | > loss_disc_real_3: 0.20523 (0.21763) | > loss_disc_real_4: 0.21321 (0.21322) | > loss_disc_real_5: 0.18963 (0.21228) | > loss_0: 2.31837 (2.30823) | > grad_norm_0: 15.89521 (16.84599) | > loss_gen: 2.63090 (2.57185) | > loss_kl: 2.72435 (2.65937) | > loss_feat: 8.81816 (8.72989) | > loss_mel: 17.80513 (17.78169) | > loss_duration: 1.70388 (1.70588) | > loss_1: 33.68243 (33.44857) | > grad_norm_1: 161.97173 (138.64270) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42730 (2.11951) | > loader_time: 0.03900 (0.03534)  --> STEP: 14424/15287 -- GLOBAL_STEP: 964425 | > loss_disc: 2.38189 (2.30823) | > loss_disc_real_0: 0.17351 (0.12222) | > loss_disc_real_1: 0.20031 (0.21065) | > loss_disc_real_2: 0.18683 (0.21507) | > loss_disc_real_3: 0.22452 (0.21764) | > loss_disc_real_4: 0.22532 (0.21323) | > loss_disc_real_5: 0.24442 (0.21228) | > loss_0: 2.38189 (2.30823) | > grad_norm_0: 18.79129 (16.84146) | > loss_gen: 2.38017 (2.57185) | > loss_kl: 2.73578 (2.65941) | > loss_feat: 7.77428 (8.73002) | > loss_mel: 16.78471 (17.78159) | > loss_duration: 1.70338 (1.70587) | > loss_1: 31.37832 (33.44863) | > grad_norm_1: 114.75893 (138.61806) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13630 (2.11963) | > loader_time: 0.04290 (0.03534)  --> STEP: 14449/15287 -- GLOBAL_STEP: 964450 | > loss_disc: 2.26815 (2.30820) | > loss_disc_real_0: 0.10608 (0.12221) | > loss_disc_real_1: 0.20056 (0.21065) | > loss_disc_real_2: 0.21070 (0.21507) | > loss_disc_real_3: 0.18813 (0.21763) | > loss_disc_real_4: 0.20729 (0.21323) | > loss_disc_real_5: 0.21512 (0.21228) | > loss_0: 2.26815 (2.30820) | > grad_norm_0: 24.09068 (16.84068) | > loss_gen: 2.45832 (2.57190) | > loss_kl: 2.74206 (2.65942) | > loss_feat: 9.12265 (8.73028) | > loss_mel: 17.81375 (17.78183) | > loss_duration: 1.76610 (1.70588) | > loss_1: 33.90288 (33.44919) | > grad_norm_1: 110.62245 (138.63000) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89270 (2.11971) | > loader_time: 0.03520 (0.03534)  --> STEP: 14474/15287 -- GLOBAL_STEP: 964475 | > loss_disc: 2.28405 (2.30822) | > loss_disc_real_0: 0.14576 (0.12221) | > loss_disc_real_1: 0.25483 (0.21066) | > loss_disc_real_2: 0.22446 (0.21507) | > loss_disc_real_3: 0.19916 (0.21763) | > loss_disc_real_4: 0.19716 (0.21322) | > loss_disc_real_5: 0.20594 (0.21228) | > loss_0: 2.28405 (2.30822) | > grad_norm_0: 18.21598 (16.83839) | > loss_gen: 2.66985 (2.57188) | > loss_kl: 2.66808 (2.65939) | > loss_feat: 8.68037 (8.73038) | > loss_mel: 17.52451 (17.78186) | > loss_duration: 1.73837 (1.70589) | > loss_1: 33.28117 (33.44928) | > grad_norm_1: 127.90595 (138.62424) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10200 (2.11991) | > loader_time: 0.03820 (0.03534)  --> STEP: 14499/15287 -- GLOBAL_STEP: 964500 | > loss_disc: 2.29627 (2.30822) | > loss_disc_real_0: 0.13058 (0.12223) | > loss_disc_real_1: 0.21881 (0.21066) | > loss_disc_real_2: 0.20306 (0.21508) | > loss_disc_real_3: 0.19913 (0.21763) | > loss_disc_real_4: 0.20447 (0.21322) | > loss_disc_real_5: 0.23933 (0.21228) | > loss_0: 2.29627 (2.30822) | > grad_norm_0: 28.26240 (16.84046) | > loss_gen: 2.57666 (2.57187) | > loss_kl: 2.79605 (2.65942) | > loss_feat: 9.30363 (8.73030) | > loss_mel: 17.88077 (17.78155) | > loss_duration: 1.70989 (1.70589) | > loss_1: 34.26700 (33.44891) | > grad_norm_1: 162.34564 (138.61116) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.12380 (2.12001) | > loader_time: 0.04090 (0.03534)  --> STEP: 14524/15287 -- GLOBAL_STEP: 964525 | > loss_disc: 2.35800 (2.30828) | > loss_disc_real_0: 0.16290 (0.12225) | > loss_disc_real_1: 0.24271 (0.21067) | > loss_disc_real_2: 0.19548 (0.21508) | > loss_disc_real_3: 0.21641 (0.21762) | > loss_disc_real_4: 0.20773 (0.21322) | > loss_disc_real_5: 0.20610 (0.21228) | > loss_0: 2.35800 (2.30828) | > grad_norm_0: 13.97016 (16.83750) | > loss_gen: 2.45175 (2.57185) | > loss_kl: 2.64617 (2.65944) | > loss_feat: 8.48311 (8.73027) | > loss_mel: 18.18250 (17.78169) | > loss_duration: 1.71671 (1.70591) | > loss_1: 33.48024 (33.44904) | > grad_norm_1: 90.02806 (138.49579) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.75700 (2.12054) | > loader_time: 0.03240 (0.03535)  --> STEP: 14549/15287 -- GLOBAL_STEP: 964550 | > loss_disc: 2.30622 (2.30826) | > loss_disc_real_0: 0.11965 (0.12225) | > loss_disc_real_1: 0.21251 (0.21068) | > loss_disc_real_2: 0.22972 (0.21508) | > loss_disc_real_3: 0.21498 (0.21762) | > loss_disc_real_4: 0.21551 (0.21322) | > loss_disc_real_5: 0.18302 (0.21228) | > loss_0: 2.30622 (2.30826) | > grad_norm_0: 5.89546 (16.82810) | > loss_gen: 2.58979 (2.57188) | > loss_kl: 2.69787 (2.65949) | > loss_feat: 8.86448 (8.73040) | > loss_mel: 18.00160 (17.78187) | > loss_duration: 1.64545 (1.70592) | > loss_1: 33.79919 (33.44946) | > grad_norm_1: 69.10189 (138.39633) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.53930 (2.12057) | > loader_time: 0.04200 (0.03535)  --> STEP: 14574/15287 -- GLOBAL_STEP: 964575 | > loss_disc: 2.32529 (2.30831) | > loss_disc_real_0: 0.16030 (0.12228) | > loss_disc_real_1: 0.23611 (0.21069) | > loss_disc_real_2: 0.23844 (0.21508) | > loss_disc_real_3: 0.16987 (0.21762) | > loss_disc_real_4: 0.25050 (0.21323) | > loss_disc_real_5: 0.20201 (0.21228) | > loss_0: 2.32529 (2.30831) | > grad_norm_0: 24.01449 (16.82537) | > loss_gen: 2.46898 (2.57193) | > loss_kl: 2.71830 (2.65955) | > loss_feat: 8.79018 (8.73044) | > loss_mel: 18.01017 (17.78209) | > loss_duration: 1.72963 (1.70592) | > loss_1: 33.71725 (33.44983) | > grad_norm_1: 180.92137 (138.32845) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14320 (2.12086) | > loader_time: 0.03550 (0.03536)  --> STEP: 14599/15287 -- GLOBAL_STEP: 964600 | > loss_disc: 2.35137 (2.30829) | > loss_disc_real_0: 0.17950 (0.12227) | > loss_disc_real_1: 0.23005 (0.21070) | > loss_disc_real_2: 0.19301 (0.21508) | > loss_disc_real_3: 0.19699 (0.21762) | > loss_disc_real_4: 0.20697 (0.21323) | > loss_disc_real_5: 0.16955 (0.21227) | > loss_0: 2.35137 (2.30829) | > grad_norm_0: 11.21030 (16.81476) | > loss_gen: 2.38565 (2.57203) | > loss_kl: 2.56475 (2.65950) | > loss_feat: 8.68989 (8.73061) | > loss_mel: 17.52180 (17.78215) | > loss_duration: 1.68297 (1.70593) | > loss_1: 32.84505 (33.45009) | > grad_norm_1: 84.67436 (138.26697) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13120 (2.12101) | > loader_time: 0.03890 (0.03537)  --> STEP: 14624/15287 -- GLOBAL_STEP: 964625 | > loss_disc: 2.30751 (2.30832) | > loss_disc_real_0: 0.10578 (0.12225) | > loss_disc_real_1: 0.22099 (0.21071) | > loss_disc_real_2: 0.23290 (0.21509) | > loss_disc_real_3: 0.21207 (0.21763) | > loss_disc_real_4: 0.18897 (0.21324) | > loss_disc_real_5: 0.26225 (0.21228) | > loss_0: 2.30751 (2.30832) | > grad_norm_0: 15.71486 (16.81091) | > loss_gen: 2.59823 (2.57206) | > loss_kl: 2.69865 (2.65956) | > loss_feat: 8.72335 (8.73060) | > loss_mel: 18.12094 (17.78233) | > loss_duration: 1.71670 (1.70593) | > loss_1: 33.85787 (33.45036) | > grad_norm_1: 90.04121 (138.24242) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.84610 (2.12125) | > loader_time: 0.04380 (0.03537)  --> STEP: 14649/15287 -- GLOBAL_STEP: 964650 | > loss_disc: 2.28037 (2.30824) | > loss_disc_real_0: 0.09085 (0.12226) | > loss_disc_real_1: 0.19854 (0.21069) | > loss_disc_real_2: 0.21153 (0.21509) | > loss_disc_real_3: 0.22133 (0.21762) | > loss_disc_real_4: 0.21843 (0.21322) | > loss_disc_real_5: 0.22772 (0.21228) | > loss_0: 2.28037 (2.30824) | > grad_norm_0: 35.50338 (16.83496) | > loss_gen: 2.46282 (2.57215) | > loss_kl: 2.57325 (2.65957) | > loss_feat: 8.42987 (8.73081) | > loss_mel: 17.83990 (17.78211) | > loss_duration: 1.71695 (1.70593) | > loss_1: 33.02280 (33.45046) | > grad_norm_1: 282.93814 (138.36082) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30810 (2.12159) | > loader_time: 0.03970 (0.03537)  --> STEP: 14674/15287 -- GLOBAL_STEP: 964675 | > loss_disc: 2.26237 (2.30816) | > loss_disc_real_0: 0.10846 (0.12225) | > loss_disc_real_1: 0.20330 (0.21070) | > loss_disc_real_2: 0.20196 (0.21508) | > loss_disc_real_3: 0.22936 (0.21761) | > loss_disc_real_4: 0.22452 (0.21321) | > loss_disc_real_5: 0.19825 (0.21227) | > loss_0: 2.26237 (2.30816) | > grad_norm_0: 8.20467 (16.84423) | > loss_gen: 2.54831 (2.57210) | > loss_kl: 2.77478 (2.65955) | > loss_feat: 8.72307 (8.73100) | > loss_mel: 17.35470 (17.78178) | > loss_duration: 1.70378 (1.70594) | > loss_1: 33.10464 (33.45028) | > grad_norm_1: 148.08461 (138.45116) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44690 (2.12175) | > loader_time: 0.03110 (0.03537)  --> STEP: 14699/15287 -- GLOBAL_STEP: 964700 | > loss_disc: 2.26495 (2.30816) | > loss_disc_real_0: 0.14123 (0.12226) | > loss_disc_real_1: 0.21427 (0.21070) | > loss_disc_real_2: 0.19965 (0.21508) | > loss_disc_real_3: 0.18735 (0.21761) | > loss_disc_real_4: 0.20988 (0.21321) | > loss_disc_real_5: 0.20804 (0.21227) | > loss_0: 2.26495 (2.30816) | > grad_norm_0: 13.47918 (16.84826) | > loss_gen: 2.52804 (2.57212) | > loss_kl: 2.73902 (2.65957) | > loss_feat: 8.66227 (8.73112) | > loss_mel: 17.81636 (17.78157) | > loss_duration: 1.69785 (1.70594) | > loss_1: 33.44354 (33.45021) | > grad_norm_1: 140.62112 (138.48869) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25410 (2.12206) | > loader_time: 0.03410 (0.03537)  --> STEP: 14724/15287 -- GLOBAL_STEP: 964725 | > loss_disc: 2.21314 (2.30812) | > loss_disc_real_0: 0.08180 (0.12226) | > loss_disc_real_1: 0.22061 (0.21070) | > loss_disc_real_2: 0.22086 (0.21508) | > loss_disc_real_3: 0.20141 (0.21761) | > loss_disc_real_4: 0.23028 (0.21321) | > loss_disc_real_5: 0.21118 (0.21226) | > loss_0: 2.21314 (2.30812) | > grad_norm_0: 13.40799 (16.85167) | > loss_gen: 2.71903 (2.57211) | > loss_kl: 2.65395 (2.65955) | > loss_feat: 8.86610 (8.73121) | > loss_mel: 17.89812 (17.78154) | > loss_duration: 1.71018 (1.70594) | > loss_1: 33.84739 (33.45024) | > grad_norm_1: 165.61041 (138.51875) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26740 (2.12222) | > loader_time: 0.03310 (0.03537)  --> STEP: 14749/15287 -- GLOBAL_STEP: 964750 | > loss_disc: 2.28548 (2.30809) | > loss_disc_real_0: 0.12338 (0.12224) | > loss_disc_real_1: 0.18759 (0.21069) | > loss_disc_real_2: 0.21600 (0.21507) | > loss_disc_real_3: 0.24218 (0.21762) | > loss_disc_real_4: 0.21840 (0.21321) | > loss_disc_real_5: 0.24336 (0.21227) | > loss_0: 2.28548 (2.30809) | > grad_norm_0: 20.91599 (16.84749) | > loss_gen: 2.69705 (2.57217) | > loss_kl: 2.58001 (2.65958) | > loss_feat: 8.94014 (8.73137) | > loss_mel: 17.61919 (17.78133) | > loss_duration: 1.66478 (1.70593) | > loss_1: 33.50117 (33.45027) | > grad_norm_1: 112.05452 (138.52815) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18410 (2.12235) | > loader_time: 0.03530 (0.03538)  --> STEP: 14774/15287 -- GLOBAL_STEP: 964775 | > loss_disc: 2.27535 (2.30807) | > loss_disc_real_0: 0.08990 (0.12224) | > loss_disc_real_1: 0.20597 (0.21069) | > loss_disc_real_2: 0.20933 (0.21507) | > loss_disc_real_3: 0.21888 (0.21762) | > loss_disc_real_4: 0.23520 (0.21321) | > loss_disc_real_5: 0.23824 (0.21226) | > loss_0: 2.27535 (2.30807) | > grad_norm_0: 38.31376 (16.86621) | > loss_gen: 2.48842 (2.57222) | > loss_kl: 2.53211 (2.65960) | > loss_feat: 8.56518 (8.73149) | > loss_mel: 17.59228 (17.78138) | > loss_duration: 1.68137 (1.70593) | > loss_1: 32.85937 (33.45049) | > grad_norm_1: 220.02963 (138.57468) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30900 (2.12238) | > loader_time: 0.04330 (0.03538)  --> STEP: 14799/15287 -- GLOBAL_STEP: 964800 | > loss_disc: 2.29586 (2.30806) | > loss_disc_real_0: 0.08342 (0.12227) | > loss_disc_real_1: 0.20015 (0.21068) | > loss_disc_real_2: 0.21357 (0.21508) | > loss_disc_real_3: 0.23018 (0.21762) | > loss_disc_real_4: 0.23150 (0.21323) | > loss_disc_real_5: 0.22953 (0.21226) | > loss_0: 2.29586 (2.30806) | > grad_norm_0: 16.28834 (16.88304) | > loss_gen: 2.43293 (2.57229) | > loss_kl: 2.60665 (2.65955) | > loss_feat: 9.07689 (8.73144) | > loss_mel: 18.17305 (17.78128) | > loss_duration: 1.69968 (1.70593) | > loss_1: 33.98920 (33.45039) | > grad_norm_1: 76.77666 (138.60722) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.75850 (2.12247) | > loader_time: 0.03370 (0.03539)  --> STEP: 14824/15287 -- GLOBAL_STEP: 964825 | > loss_disc: 2.39269 (2.30806) | > loss_disc_real_0: 0.10161 (0.12228) | > loss_disc_real_1: 0.22382 (0.21067) | > loss_disc_real_2: 0.18738 (0.21509) | > loss_disc_real_3: 0.24358 (0.21762) | > loss_disc_real_4: 0.26324 (0.21321) | > loss_disc_real_5: 0.22066 (0.21226) | > loss_0: 2.39269 (2.30806) | > grad_norm_0: 6.04590 (16.88466) | > loss_gen: 2.56372 (2.57232) | > loss_kl: 2.76865 (2.65955) | > loss_feat: 8.06511 (8.73136) | > loss_mel: 17.34292 (17.78091) | > loss_duration: 1.69393 (1.70592) | > loss_1: 32.43433 (33.44998) | > grad_norm_1: 95.11348 (138.61249) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35250 (2.12251) | > loader_time: 0.03830 (0.03539)  --> STEP: 14849/15287 -- GLOBAL_STEP: 964850 | > loss_disc: 2.25558 (2.30810) | > loss_disc_real_0: 0.11856 (0.12230) | > loss_disc_real_1: 0.17003 (0.21066) | > loss_disc_real_2: 0.19797 (0.21509) | > loss_disc_real_3: 0.20073 (0.21762) | > loss_disc_real_4: 0.20703 (0.21321) | > loss_disc_real_5: 0.20376 (0.21226) | > loss_0: 2.25558 (2.30810) | > grad_norm_0: 6.80237 (16.88969) | > loss_gen: 2.78759 (2.57228) | > loss_kl: 2.60637 (2.65957) | > loss_feat: 9.35314 (8.73111) | > loss_mel: 17.83838 (17.78078) | > loss_duration: 1.70825 (1.70593) | > loss_1: 34.29372 (33.44959) | > grad_norm_1: 115.08252 (138.62721) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34820 (2.12252) | > loader_time: 0.03660 (0.03539)  --> STEP: 14874/15287 -- GLOBAL_STEP: 964875 | > loss_disc: 2.18864 (2.30807) | > loss_disc_real_0: 0.08017 (0.12228) | > loss_disc_real_1: 0.20427 (0.21066) | > loss_disc_real_2: 0.19684 (0.21509) | > loss_disc_real_3: 0.20390 (0.21763) | > loss_disc_real_4: 0.18783 (0.21321) | > loss_disc_real_5: 0.17002 (0.21225) | > loss_0: 2.18864 (2.30807) | > grad_norm_0: 11.93415 (16.88511) | > loss_gen: 2.71542 (2.57229) | > loss_kl: 2.67204 (2.65952) | > loss_feat: 9.13436 (8.73119) | > loss_mel: 17.74500 (17.78075) | > loss_duration: 1.69988 (1.70593) | > loss_1: 33.96670 (33.44958) | > grad_norm_1: 138.65189 (138.63759) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37790 (2.12278) | > loader_time: 0.03050 (0.03539)  --> STEP: 14899/15287 -- GLOBAL_STEP: 964900 | > loss_disc: 2.32568 (2.30815) | > loss_disc_real_0: 0.09450 (0.12229) | > loss_disc_real_1: 0.24200 (0.21068) | > loss_disc_real_2: 0.24499 (0.21509) | > loss_disc_real_3: 0.21873 (0.21764) | > loss_disc_real_4: 0.23127 (0.21322) | > loss_disc_real_5: 0.18826 (0.21226) | > loss_0: 2.32568 (2.30815) | > grad_norm_0: 7.44881 (16.88845) | > loss_gen: 2.57680 (2.57225) | > loss_kl: 2.59673 (2.65947) | > loss_feat: 8.64321 (8.73107) | > loss_mel: 17.84576 (17.78068) | > loss_duration: 1.71406 (1.70594) | > loss_1: 33.37655 (33.44932) | > grad_norm_1: 168.91890 (138.64418) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97300 (2.12311) | > loader_time: 0.03570 (0.03540)  --> STEP: 14924/15287 -- GLOBAL_STEP: 964925 | > loss_disc: 2.29945 (2.30817) | > loss_disc_real_0: 0.10446 (0.12229) | > loss_disc_real_1: 0.20922 (0.21067) | > loss_disc_real_2: 0.22599 (0.21509) | > loss_disc_real_3: 0.21886 (0.21764) | > loss_disc_real_4: 0.20615 (0.21322) | > loss_disc_real_5: 0.21146 (0.21226) | > loss_0: 2.29945 (2.30817) | > grad_norm_0: 12.14574 (16.88862) | > loss_gen: 2.53923 (2.57221) | > loss_kl: 2.62387 (2.65948) | > loss_feat: 8.56526 (8.73097) | > loss_mel: 17.40173 (17.78073) | > loss_duration: 1.69957 (1.70593) | > loss_1: 32.82967 (33.44925) | > grad_norm_1: 175.92688 (138.65474) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21960 (2.12329) | > loader_time: 0.03620 (0.03540)  --> STEP: 14949/15287 -- GLOBAL_STEP: 964950 | > loss_disc: 2.32389 (2.30817) | > loss_disc_real_0: 0.10085 (0.12228) | > loss_disc_real_1: 0.20555 (0.21067) | > loss_disc_real_2: 0.20365 (0.21508) | > loss_disc_real_3: 0.19825 (0.21764) | > loss_disc_real_4: 0.19894 (0.21322) | > loss_disc_real_5: 0.18568 (0.21226) | > loss_0: 2.32389 (2.30817) | > grad_norm_0: 19.36394 (16.88822) | > loss_gen: 2.63329 (2.57217) | > loss_kl: 2.63257 (2.65944) | > loss_feat: 8.63769 (8.73091) | > loss_mel: 17.90869 (17.78080) | > loss_duration: 1.68101 (1.70592) | > loss_1: 33.49325 (33.44917) | > grad_norm_1: 197.55820 (138.67249) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28900 (2.12368) | > loader_time: 0.03270 (0.03540)  --> STEP: 14974/15287 -- GLOBAL_STEP: 964975 | > loss_disc: 2.38212 (2.30824) | > loss_disc_real_0: 0.26341 (0.12231) | > loss_disc_real_1: 0.24155 (0.21068) | > loss_disc_real_2: 0.17177 (0.21508) | > loss_disc_real_3: 0.22841 (0.21764) | > loss_disc_real_4: 0.23396 (0.21322) | > loss_disc_real_5: 0.18094 (0.21225) | > loss_0: 2.38212 (2.30824) | > grad_norm_0: 41.82682 (16.88801) | > loss_gen: 2.75860 (2.57218) | > loss_kl: 2.69101 (2.65944) | > loss_feat: 8.18846 (8.73101) | > loss_mel: 17.56923 (17.78096) | > loss_duration: 1.67268 (1.70593) | > loss_1: 32.87996 (33.44944) | > grad_norm_1: 114.44785 (138.65608) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20760 (2.12389) | > loader_time: 0.03730 (0.03540)  --> STEP: 14999/15287 -- GLOBAL_STEP: 965000 | > loss_disc: 2.26301 (2.30828) | > loss_disc_real_0: 0.12213 (0.12232) | > loss_disc_real_1: 0.22519 (0.21069) | > loss_disc_real_2: 0.22604 (0.21507) | > loss_disc_real_3: 0.23169 (0.21765) | > loss_disc_real_4: 0.18607 (0.21322) | > loss_disc_real_5: 0.21882 (0.21225) | > loss_0: 2.26301 (2.30828) | > grad_norm_0: 16.45695 (16.89300) | > loss_gen: 2.67653 (2.57213) | > loss_kl: 2.79476 (2.65949) | > loss_feat: 8.73269 (8.73081) | > loss_mel: 17.79436 (17.78072) | > loss_duration: 1.71657 (1.70592) | > loss_1: 33.71491 (33.44899) | > grad_norm_1: 195.47429 (138.65717) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31780 (2.12425) | > loader_time: 0.03600 (0.03540)  --> STEP: 15024/15287 -- GLOBAL_STEP: 965025 | > loss_disc: 2.25699 (2.30825) | > loss_disc_real_0: 0.08512 (0.12231) | > loss_disc_real_1: 0.20995 (0.21068) | > loss_disc_real_2: 0.20603 (0.21507) | > loss_disc_real_3: 0.22561 (0.21765) | > loss_disc_real_4: 0.21823 (0.21322) | > loss_disc_real_5: 0.21320 (0.21225) | > loss_0: 2.25699 (2.30825) | > grad_norm_0: 16.43376 (16.90069) | > loss_gen: 2.65751 (2.57207) | > loss_kl: 2.54069 (2.65946) | > loss_feat: 8.56912 (8.73083) | > loss_mel: 17.41743 (17.78051) | > loss_duration: 1.73650 (1.70592) | > loss_1: 32.92125 (33.44870) | > grad_norm_1: 210.78987 (138.69176) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17670 (2.12446) | > loader_time: 0.03360 (0.03540)  --> STEP: 15049/15287 -- GLOBAL_STEP: 965050 | > loss_disc: 2.33644 (2.30820) | > loss_disc_real_0: 0.15795 (0.12229) | > loss_disc_real_1: 0.24965 (0.21068) | > loss_disc_real_2: 0.24275 (0.21508) | > loss_disc_real_3: 0.22867 (0.21764) | > loss_disc_real_4: 0.21634 (0.21321) | > loss_disc_real_5: 0.21715 (0.21225) | > loss_0: 2.33644 (2.30820) | > grad_norm_0: 25.06898 (16.90384) | > loss_gen: 2.78092 (2.57210) | > loss_kl: 2.67110 (2.65942) | > loss_feat: 8.54425 (8.73080) | > loss_mel: 17.60163 (17.78029) | > loss_duration: 1.69176 (1.70590) | > loss_1: 33.28965 (33.44846) | > grad_norm_1: 90.09101 (138.72102) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87380 (2.12467) | > loader_time: 0.03870 (0.03540)  --> STEP: 15074/15287 -- GLOBAL_STEP: 965075 | > loss_disc: 2.36614 (2.30819) | > loss_disc_real_0: 0.14133 (0.12229) | > loss_disc_real_1: 0.16080 (0.21069) | > loss_disc_real_2: 0.23967 (0.21508) | > loss_disc_real_3: 0.23725 (0.21763) | > loss_disc_real_4: 0.15900 (0.21321) | > loss_disc_real_5: 0.22529 (0.21224) | > loss_0: 2.36614 (2.30819) | > grad_norm_0: 8.03958 (16.90006) | > loss_gen: 2.55883 (2.57208) | > loss_kl: 2.64315 (2.65943) | > loss_feat: 8.83618 (8.73068) | > loss_mel: 18.00358 (17.78031) | > loss_duration: 1.72140 (1.70591) | > loss_1: 33.76313 (33.44836) | > grad_norm_1: 73.44029 (138.67784) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95420 (2.12487) | > loader_time: 0.03770 (0.03540)  --> STEP: 15099/15287 -- GLOBAL_STEP: 965100 | > loss_disc: 2.35274 (2.30819) | > loss_disc_real_0: 0.11485 (0.12230) | > loss_disc_real_1: 0.19152 (0.21068) | > loss_disc_real_2: 0.23080 (0.21508) | > loss_disc_real_3: 0.21128 (0.21764) | > loss_disc_real_4: 0.20590 (0.21321) | > loss_disc_real_5: 0.18238 (0.21223) | > loss_0: 2.35274 (2.30819) | > grad_norm_0: 27.57960 (16.90253) | > loss_gen: 2.43720 (2.57207) | > loss_kl: 2.53582 (2.65931) | > loss_feat: 8.39447 (8.73050) | > loss_mel: 17.71477 (17.78028) | > loss_duration: 1.72114 (1.70590) | > loss_1: 32.80340 (33.44800) | > grad_norm_1: 144.54893 (138.69060) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32130 (2.12521) | > loader_time: 0.03880 (0.03540)  --> STEP: 15124/15287 -- GLOBAL_STEP: 965125 | > loss_disc: 2.29558 (2.30819) | > loss_disc_real_0: 0.08761 (0.12228) | > loss_disc_real_1: 0.23926 (0.21069) | > loss_disc_real_2: 0.23757 (0.21509) | > loss_disc_real_3: 0.21088 (0.21764) | > loss_disc_real_4: 0.21109 (0.21321) | > loss_disc_real_5: 0.21082 (0.21223) | > loss_0: 2.29558 (2.30819) | > grad_norm_0: 6.94626 (16.89860) | > loss_gen: 2.74703 (2.57211) | > loss_kl: 2.66889 (2.65927) | > loss_feat: 8.54070 (8.73042) | > loss_mel: 18.03531 (17.78030) | > loss_duration: 1.71642 (1.70591) | > loss_1: 33.70834 (33.44794) | > grad_norm_1: 117.25551 (138.67357) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88310 (2.12543) | > loader_time: 0.03570 (0.03540)  --> STEP: 15149/15287 -- GLOBAL_STEP: 965150 | > loss_disc: 2.23540 (2.30822) | > loss_disc_real_0: 0.11394 (0.12228) | > loss_disc_real_1: 0.23025 (0.21070) | > loss_disc_real_2: 0.21544 (0.21509) | > loss_disc_real_3: 0.20794 (0.21765) | > loss_disc_real_4: 0.19158 (0.21321) | > loss_disc_real_5: 0.22367 (0.21223) | > loss_0: 2.23540 (2.30822) | > grad_norm_0: 8.66060 (16.90691) | > loss_gen: 2.63485 (2.57207) | > loss_kl: 2.63000 (2.65922) | > loss_feat: 8.99650 (8.73042) | > loss_mel: 17.63632 (17.78033) | > loss_duration: 1.68382 (1.70590) | > loss_1: 33.58150 (33.44789) | > grad_norm_1: 171.20836 (138.72397) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52130 (2.12571) | > loader_time: 0.03920 (0.03540)  --> STEP: 15174/15287 -- GLOBAL_STEP: 965175 | > loss_disc: 2.26125 (2.30819) | > loss_disc_real_0: 0.08293 (0.12227) | > loss_disc_real_1: 0.19629 (0.21070) | > loss_disc_real_2: 0.18127 (0.21508) | > loss_disc_real_3: 0.21506 (0.21764) | > loss_disc_real_4: 0.18699 (0.21321) | > loss_disc_real_5: 0.19720 (0.21222) | > loss_0: 2.26125 (2.30819) | > grad_norm_0: 15.13609 (16.91314) | > loss_gen: 2.57633 (2.57207) | > loss_kl: 2.57396 (2.65919) | > loss_feat: 9.09455 (8.73054) | > loss_mel: 17.82655 (17.78016) | > loss_duration: 1.76274 (1.70590) | > loss_1: 33.83415 (33.44782) | > grad_norm_1: 151.61739 (138.76878) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.88820 (2.12604) | > loader_time: 0.04700 (0.03540)  --> STEP: 15199/15287 -- GLOBAL_STEP: 965200 | > loss_disc: 2.25066 (2.30817) | > loss_disc_real_0: 0.11208 (0.12227) | > loss_disc_real_1: 0.18730 (0.21070) | > loss_disc_real_2: 0.22910 (0.21508) | > loss_disc_real_3: 0.20989 (0.21764) | > loss_disc_real_4: 0.17531 (0.21321) | > loss_disc_real_5: 0.18748 (0.21222) | > loss_0: 2.25066 (2.30817) | > grad_norm_0: 7.51476 (16.91035) | > loss_gen: 2.71599 (2.57212) | > loss_kl: 2.60116 (2.65925) | > loss_feat: 8.61096 (8.73077) | > loss_mel: 17.26752 (17.78021) | > loss_duration: 1.68639 (1.70589) | > loss_1: 32.88201 (33.44818) | > grad_norm_1: 126.74711 (138.77242) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40560 (2.12638) | > loader_time: 0.03540 (0.03540)  --> STEP: 15224/15287 -- GLOBAL_STEP: 965225 | > loss_disc: 2.28067 (2.30820) | > loss_disc_real_0: 0.18436 (0.12227) | > loss_disc_real_1: 0.20990 (0.21071) | > loss_disc_real_2: 0.22156 (0.21508) | > loss_disc_real_3: 0.22663 (0.21764) | > loss_disc_real_4: 0.20496 (0.21323) | > loss_disc_real_5: 0.19783 (0.21223) | > loss_0: 2.28067 (2.30820) | > grad_norm_0: 30.84210 (16.90869) | > loss_gen: 2.82148 (2.57216) | > loss_kl: 2.74480 (2.65928) | > loss_feat: 8.71091 (8.73084) | > loss_mel: 18.17943 (17.78033) | > loss_duration: 1.70219 (1.70590) | > loss_1: 34.15881 (33.44844) | > grad_norm_1: 138.79659 (138.77477) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33320 (2.12658) | > loader_time: 0.03520 (0.03540)  --> STEP: 15249/15287 -- GLOBAL_STEP: 965250 | > loss_disc: 2.32298 (2.30825) | > loss_disc_real_0: 0.13347 (0.12227) | > loss_disc_real_1: 0.21267 (0.21071) | > loss_disc_real_2: 0.20008 (0.21509) | > loss_disc_real_3: 0.22765 (0.21765) | > loss_disc_real_4: 0.22029 (0.21324) | > loss_disc_real_5: 0.20785 (0.21222) | > loss_0: 2.32298 (2.30825) | > grad_norm_0: 6.36581 (16.90897) | > loss_gen: 2.46745 (2.57207) | > loss_kl: 2.66727 (2.65927) | > loss_feat: 8.07450 (8.73050) | > loss_mel: 17.37184 (17.78014) | > loss_duration: 1.68084 (1.70590) | > loss_1: 32.26189 (33.44781) | > grad_norm_1: 77.84017 (138.79474) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18430 (2.12679) | > loader_time: 0.03320 (0.03540)  --> STEP: 15274/15287 -- GLOBAL_STEP: 965275 | > loss_disc: 2.23565 (2.30825) | > loss_disc_real_0: 0.11587 (0.12227) | > loss_disc_real_1: 0.19980 (0.21071) | > loss_disc_real_2: 0.19431 (0.21509) | > loss_disc_real_3: 0.18247 (0.21765) | > loss_disc_real_4: 0.19820 (0.21324) | > loss_disc_real_5: 0.17038 (0.21223) | > loss_0: 2.23565 (2.30825) | > grad_norm_0: 18.58075 (16.90718) | > loss_gen: 2.50218 (2.57205) | > loss_kl: 2.79344 (2.65925) | > loss_feat: 9.62580 (8.73053) | > loss_mel: 18.46178 (17.78021) | > loss_duration: 1.68955 (1.70589) | > loss_1: 35.07275 (33.44786) | > grad_norm_1: 213.99959 (138.79147) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07920 (2.12675) | > loader_time: 0.03520 (0.03540)  > EVALUATION   --> STEP: 0 | > loss_disc: 2.35160 (2.35160) | > loss_disc_real_0: 0.12405 (0.12405) | > loss_disc_real_1: 0.21286 (0.21286) | > loss_disc_real_2: 0.20268 (0.20268) | > loss_disc_real_3: 0.22121 (0.22121) | > loss_disc_real_4: 0.21418 (0.21418) | > loss_disc_real_5: 0.20414 (0.20414) | > loss_0: 2.35160 (2.35160) | > loss_gen: 2.30935 (2.30935) | > loss_kl: 2.59991 (2.59991) | > loss_feat: 8.10999 (8.10999) | > loss_mel: 17.99432 (17.99432) | > loss_duration: 1.72178 (1.72178) | > loss_1: 32.73534 (32.73534)  --> STEP: 1 | > loss_disc: 2.33332 (2.33332) | > loss_disc_real_0: 0.10655 (0.10655) | > loss_disc_real_1: 0.22166 (0.22166) | > loss_disc_real_2: 0.20887 (0.20887) | > loss_disc_real_3: 0.22305 (0.22305) | > loss_disc_real_4: 0.20486 (0.20486) | > loss_disc_real_5: 0.22363 (0.22363) | > loss_0: 2.33332 (2.33332) | > loss_gen: 2.38008 (2.38008) | > loss_kl: 2.60943 (2.60943) | > loss_feat: 8.16673 (8.16673) | > loss_mel: 17.09933 (17.09933) | > loss_duration: 1.65668 (1.65668) | > loss_1: 31.91225 (31.91225)  --> STEP: 2 | > loss_disc: 2.38865 (2.36099) | > loss_disc_real_0: 0.10364 (0.10509) | > loss_disc_real_1: 0.21375 (0.21771) | > loss_disc_real_2: 0.20098 (0.20493) | > loss_disc_real_3: 0.23402 (0.22853) | > loss_disc_real_4: 0.22674 (0.21580) | > loss_disc_real_5: 0.22198 (0.22281) | > loss_0: 2.38865 (2.36099) | > loss_gen: 2.30668 (2.34338) | > loss_kl: 2.66813 (2.63878) | > loss_feat: 8.79833 (8.48253) | > loss_mel: 17.96925 (17.53429) | > loss_duration: 1.69519 (1.67593) | > loss_1: 33.43758 (32.67491)  --> STEP: 3 | > loss_disc: 2.32565 (2.34921) | > loss_disc_real_0: 0.09413 (0.10144) | > loss_disc_real_1: 0.22550 (0.22030) | > loss_disc_real_2: 0.20768 (0.20584) | > loss_disc_real_3: 0.23536 (0.23081) | > loss_disc_real_4: 0.21407 (0.21522) | > loss_disc_real_5: 0.22084 (0.22215) | > loss_0: 2.32565 (2.34921) | > loss_gen: 2.41605 (2.36761) | > loss_kl: 2.66864 (2.64873) | > loss_feat: 8.10316 (8.35607) | > loss_mel: 18.04320 (17.70392) | > loss_duration: 1.71901 (1.69029) | > loss_1: 32.95007 (32.76663)  --> STEP: 4 | > loss_disc: 2.34287 (2.34762) | > loss_disc_real_0: 0.11180 (0.10403) | > loss_disc_real_1: 0.21995 (0.22022) | > loss_disc_real_2: 0.20070 (0.20456) | > loss_disc_real_3: 0.22512 (0.22939) | > loss_disc_real_4: 0.20839 (0.21352) | > loss_disc_real_5: 0.20391 (0.21759) | > loss_0: 2.34287 (2.34762) | > loss_gen: 2.35375 (2.36414) | > loss_kl: 2.57658 (2.63069) | > loss_feat: 8.92763 (8.49896) | > loss_mel: 18.37214 (17.87098) | > loss_duration: 1.71608 (1.69674) | > loss_1: 33.94617 (33.06152)  --> STEP: 5 | > loss_disc: 2.39490 (2.35708) | > loss_disc_real_0: 0.12163 (0.10755) | > loss_disc_real_1: 0.22807 (0.22179) | > loss_disc_real_2: 0.21227 (0.20610) | > loss_disc_real_3: 0.22488 (0.22849) | > loss_disc_real_4: 0.22407 (0.21563) | > loss_disc_real_5: 0.19964 (0.21400) | > loss_0: 2.39490 (2.35708) | > loss_gen: 2.29588 (2.35049) | > loss_kl: 2.80042 (2.66464) | > loss_feat: 7.89870 (8.37891) | > loss_mel: 17.39106 (17.77499) | > loss_duration: 1.69396 (1.69619) | > loss_1: 32.08001 (32.86522)  --> STEP: 6 | > loss_disc: 2.35239 (2.35630) | > loss_disc_real_0: 0.10153 (0.10655) | > loss_disc_real_1: 0.21060 (0.21992) | > loss_disc_real_2: 0.19308 (0.20393) | > loss_disc_real_3: 0.23468 (0.22952) | > loss_disc_real_4: 0.21221 (0.21506) | > loss_disc_real_5: 0.21006 (0.21335) | > loss_0: 2.35239 (2.35630) | > loss_gen: 2.33364 (2.34768) | > loss_kl: 2.73998 (2.67720) | > loss_feat: 8.90955 (8.46735) | > loss_mel: 18.37091 (17.87431) | > loss_duration: 1.71781 (1.69979) | > loss_1: 34.07190 (33.06633)  --> STEP: 7 | > loss_disc: 2.39894 (2.36239) | > loss_disc_real_0: 0.12609 (0.10934) | > loss_disc_real_1: 0.22647 (0.22086) | > loss_disc_real_2: 0.21355 (0.20531) | > loss_disc_real_3: 0.23491 (0.23029) | > loss_disc_real_4: 0.23389 (0.21775) | > loss_disc_real_5: 0.22250 (0.21465) | > loss_0: 2.39894 (2.36239) | > loss_gen: 2.38530 (2.35306) | > loss_kl: 2.59947 (2.66609) | > loss_feat: 8.18608 (8.42717) | > loss_mel: 17.81408 (17.86571) | > loss_duration: 1.70986 (1.70123) | > loss_1: 32.69480 (33.01326)  --> STEP: 8 | > loss_disc: 2.34878 (2.36069) | > loss_disc_real_0: 0.12227 (0.11096) | > loss_disc_real_1: 0.21766 (0.22046) | > loss_disc_real_2: 0.20943 (0.20582) | > loss_disc_real_3: 0.23235 (0.23055) | > loss_disc_real_4: 0.20774 (0.21650) | > loss_disc_real_5: 0.21031 (0.21411) | > loss_0: 2.34878 (2.36069) | > loss_gen: 2.32236 (2.34922) | > loss_kl: 2.71207 (2.67184) | > loss_feat: 8.17294 (8.39539) | > loss_mel: 17.73405 (17.84925) | > loss_duration: 1.70019 (1.70110) | > loss_1: 32.64160 (32.96680)  --> STEP: 9 | > loss_disc: 2.36574 (2.36125) | > loss_disc_real_0: 0.11644 (0.11157) | > loss_disc_real_1: 0.20992 (0.21929) | > loss_disc_real_2: 0.21785 (0.20716) | > loss_disc_real_3: 0.23889 (0.23147) | > loss_disc_real_4: 0.21059 (0.21584) | > loss_disc_real_5: 0.20907 (0.21355) | > loss_0: 2.36574 (2.36125) | > loss_gen: 2.33138 (2.34724) | > loss_kl: 2.70277 (2.67528) | > loss_feat: 8.53736 (8.41117) | > loss_mel: 17.56859 (17.81807) | > loss_duration: 1.66593 (1.69719) | > loss_1: 32.80603 (32.94893)  --> STEP: 10 | > loss_disc: 2.39485 (2.36461) | > loss_disc_real_0: 0.11093 (0.11150) | > loss_disc_real_1: 0.21968 (0.21933) | > loss_disc_real_2: 0.20758 (0.20720) | > loss_disc_real_3: 0.22924 (0.23125) | > loss_disc_real_4: 0.21290 (0.21555) | > loss_disc_real_5: 0.22673 (0.21487) | > loss_0: 2.39485 (2.36461) | > loss_gen: 2.28424 (2.34094) | > loss_kl: 2.56050 (2.66380) | > loss_feat: 8.09634 (8.37968) | > loss_mel: 17.84272 (17.82053) | > loss_duration: 1.69185 (1.69666) | > loss_1: 32.47566 (32.90161)  --> STEP: 11 | > loss_disc: 2.44989 (2.37236) | > loss_disc_real_0: 0.12642 (0.11286) | > loss_disc_real_1: 0.22145 (0.21952) | > loss_disc_real_2: 0.21187 (0.20762) | > loss_disc_real_3: 0.23907 (0.23196) | > loss_disc_real_4: 0.21475 (0.21547) | > loss_disc_real_5: 0.24814 (0.21789) | > loss_0: 2.44989 (2.37236) | > loss_gen: 2.27623 (2.33505) | > loss_kl: 2.67918 (2.66520) | > loss_feat: 7.80308 (8.32726) | > loss_mel: 17.54392 (17.79539) | > loss_duration: 1.69835 (1.69681) | > loss_1: 32.00076 (32.81971)  --> STEP: 12 | > loss_disc: 2.35876 (2.37123) | > loss_disc_real_0: 0.11098 (0.11270) | > loss_disc_real_1: 0.22075 (0.21962) | > loss_disc_real_2: 0.21028 (0.20785) | > loss_disc_real_3: 0.24430 (0.23299) | > loss_disc_real_4: 0.20911 (0.21494) | > loss_disc_real_5: 0.22717 (0.21866) | > loss_0: 2.35876 (2.37123) | > loss_gen: 2.36231 (2.33733) | > loss_kl: 2.66830 (2.66546) | > loss_feat: 8.21871 (8.31822) | > loss_mel: 18.24964 (17.83324) | > loss_duration: 1.73058 (1.69963) | > loss_1: 33.22954 (32.85387)  --> STEP: 13 | > loss_disc: 2.35697 (2.37013) | > loss_disc_real_0: 0.11759 (0.11308) | > loss_disc_real_1: 0.21204 (0.21904) | > loss_disc_real_2: 0.21040 (0.20804) | > loss_disc_real_3: 0.24664 (0.23404) | > loss_disc_real_4: 0.22622 (0.21581) | > loss_disc_real_5: 0.23068 (0.21959) | > loss_0: 2.35697 (2.37013) | > loss_gen: 2.38687 (2.34114) | > loss_kl: 2.61230 (2.66137) | > loss_feat: 8.30867 (8.31748) | > loss_mel: 17.55776 (17.81205) | > loss_duration: 1.71706 (1.70097) | > loss_1: 32.58266 (32.83301)  --> STEP: 14 | > loss_disc: 2.34383 (2.36825) | > loss_disc_real_0: 0.10420 (0.11244) | > loss_disc_real_1: 0.20690 (0.21817) | > loss_disc_real_2: 0.20667 (0.20794) | > loss_disc_real_3: 0.24592 (0.23489) | > loss_disc_real_4: 0.21842 (0.21600) | > loss_disc_real_5: 0.22582 (0.22003) | > loss_0: 2.34383 (2.36825) | > loss_gen: 2.38838 (2.34451) | > loss_kl: 2.59799 (2.65684) | > loss_feat: 8.68551 (8.34377) | > loss_mel: 18.15044 (17.83622) | > loss_duration: 1.73230 (1.70320) | > loss_1: 33.55462 (32.88455)  --> STEP: 15 | > loss_disc: 2.31811 (2.36491) | > loss_disc_real_0: 0.09022 (0.11096) | > loss_disc_real_1: 0.21578 (0.21801) | > loss_disc_real_2: 0.20182 (0.20754) | > loss_disc_real_3: 0.21875 (0.23381) | > loss_disc_real_4: 0.20644 (0.21536) | > loss_disc_real_5: 0.22159 (0.22014) | > loss_0: 2.31811 (2.36491) | > loss_gen: 2.33186 (2.34367) | > loss_kl: 2.53373 (2.64863) | > loss_feat: 8.64546 (8.36388) | > loss_mel: 17.86872 (17.83839) | > loss_duration: 1.68788 (1.70218) | > loss_1: 33.06765 (32.89676)  --> STEP: 16 | > loss_disc: 2.39054 (2.36651) | > loss_disc_real_0: 0.11850 (0.11143) | > loss_disc_real_1: 0.22783 (0.21863) | > loss_disc_real_2: 0.21556 (0.20804) | > loss_disc_real_3: 0.23884 (0.23413) | > loss_disc_real_4: 0.22103 (0.21571) | > loss_disc_real_5: 0.21261 (0.21967) | > loss_0: 2.39054 (2.36651) | > loss_gen: 2.37350 (2.34553) | > loss_kl: 2.77666 (2.65663) | > loss_feat: 8.52395 (8.37389) | > loss_mel: 17.66424 (17.82751) | > loss_duration: 1.68500 (1.70111) | > loss_1: 33.02336 (32.90467)  --> STEP: 17 | > loss_disc: 2.35943 (2.36610) | > loss_disc_real_0: 0.11667 (0.11174) | > loss_disc_real_1: 0.21521 (0.21843) | > loss_disc_real_2: 0.19824 (0.20746) | > loss_disc_real_3: 0.21281 (0.23287) | > loss_disc_real_4: 0.21804 (0.21585) | > loss_disc_real_5: 0.21216 (0.21923) | > loss_0: 2.35943 (2.36610) | > loss_gen: 2.30415 (2.34310) | > loss_kl: 2.57608 (2.65190) | > loss_feat: 7.97814 (8.35061) | > loss_mel: 17.67926 (17.81878) | > loss_duration: 1.67848 (1.69978) | > loss_1: 32.21610 (32.86417)  --> STEP: 18 | > loss_disc: 2.34605 (2.36498) | > loss_disc_real_0: 0.10366 (0.11129) | > loss_disc_real_1: 0.21407 (0.21818) | > loss_disc_real_2: 0.21615 (0.20794) | > loss_disc_real_3: 0.21975 (0.23214) | > loss_disc_real_4: 0.23162 (0.21673) | > loss_disc_real_5: 0.20211 (0.21827) | > loss_0: 2.34605 (2.36498) | > loss_gen: 2.35649 (2.34384) | > loss_kl: 2.55170 (2.64633) | > loss_feat: 8.03353 (8.33299) | > loss_mel: 18.04721 (17.83148) | > loss_duration: 1.70043 (1.69981) | > loss_1: 32.68937 (32.85446)  --> STEP: 19 | > loss_disc: 2.29539 (2.36132) | > loss_disc_real_0: 0.08791 (0.11006) | > loss_disc_real_1: 0.21282 (0.21790) | > loss_disc_real_2: 0.21023 (0.20806) | > loss_disc_real_3: 0.22493 (0.23176) | > loss_disc_real_4: 0.21277 (0.21652) | > loss_disc_real_5: 0.21102 (0.21789) | > loss_0: 2.29539 (2.36132) | > loss_gen: 2.43674 (2.34873) | > loss_kl: 2.73151 (2.65081) | > loss_feat: 8.70453 (8.35255) | > loss_mel: 18.14890 (17.84818) | > loss_duration: 1.71118 (1.70041) | > loss_1: 33.73286 (32.90069)  --> STEP: 20 | > loss_disc: 2.38627 (2.36257) | > loss_disc_real_0: 0.10961 (0.11004) | > loss_disc_real_1: 0.23019 (0.21852) | > loss_disc_real_2: 0.20309 (0.20781) | > loss_disc_real_3: 0.24247 (0.23230) | > loss_disc_real_4: 0.22547 (0.21697) | > loss_disc_real_5: 0.21399 (0.21770) | > loss_0: 2.38627 (2.36257) | > loss_gen: 2.35526 (2.34906) | > loss_kl: 2.53415 (2.64498) | > loss_feat: 8.47724 (8.35878) | > loss_mel: 17.93667 (17.85261) | > loss_duration: 1.71987 (1.70139) | > loss_1: 33.02320 (32.90682)  --> STEP: 21 | > loss_disc: 2.39543 (2.36413) | > loss_disc_real_0: 0.12052 (0.11054) | > loss_disc_real_1: 0.22231 (0.21870) | > loss_disc_real_2: 0.21186 (0.20801) | > loss_disc_real_3: 0.22934 (0.23216) | > loss_disc_real_4: 0.22116 (0.21717) | > loss_disc_real_5: 0.20923 (0.21729) | > loss_0: 2.39543 (2.36413) | > loss_gen: 2.32905 (2.34811) | > loss_kl: 2.73349 (2.64919) | > loss_feat: 8.35086 (8.35841) | > loss_mel: 17.45094 (17.83348) | > loss_duration: 1.70032 (1.70133) | > loss_1: 32.56466 (32.89052)  --> STEP: 22 | > loss_disc: 2.30761 (2.36156) | > loss_disc_real_0: 0.09871 (0.11000) | > loss_disc_real_1: 0.21631 (0.21859) | > loss_disc_real_2: 0.20358 (0.20781) | > loss_disc_real_3: 0.22122 (0.23166) | > loss_disc_real_4: 0.20491 (0.21661) | > loss_disc_real_5: 0.21779 (0.21732) | > loss_0: 2.30761 (2.36156) | > loss_gen: 2.41543 (2.35117) | > loss_kl: 2.77251 (2.65480) | > loss_feat: 8.97517 (8.38644) | > loss_mel: 18.01727 (17.84184) | > loss_duration: 1.68740 (1.70070) | > loss_1: 33.86779 (32.93494)  --> STEP: 23 | > loss_disc: 2.35153 (2.36113) | > loss_disc_real_0: 0.09022 (0.10914) | > loss_disc_real_1: 0.20963 (0.21820) | > loss_disc_real_2: 0.20134 (0.20753) | > loss_disc_real_3: 0.22409 (0.23133) | > loss_disc_real_4: 0.21661 (0.21661) | > loss_disc_real_5: 0.22708 (0.21774) | > loss_0: 2.35153 (2.36113) | > loss_gen: 2.32420 (2.34999) | > loss_kl: 2.58505 (2.65177) | > loss_feat: 8.42094 (8.38794) | > loss_mel: 17.86913 (17.84303) | > loss_duration: 1.68385 (1.69997) | > loss_1: 32.88318 (32.93269)  --> STEP: 24 | > loss_disc: 2.36351 (2.36123) | > loss_disc_real_0: 0.12960 (0.10999) | > loss_disc_real_1: 0.21963 (0.21826) | > loss_disc_real_2: 0.21682 (0.20791) | > loss_disc_real_3: 0.22779 (0.23118) | > loss_disc_real_4: 0.21772 (0.21666) | > loss_disc_real_5: 0.21600 (0.21767) | > loss_0: 2.36351 (2.36123) | > loss_gen: 2.36039 (2.35043) | > loss_kl: 2.58025 (2.64879) | > loss_feat: 8.18686 (8.37956) | > loss_mel: 17.75201 (17.83923) | > loss_duration: 1.73405 (1.70139) | > loss_1: 32.61355 (32.91940)  --> STEP: 25 | > loss_disc: 2.31097 (2.35922) | > loss_disc_real_0: 0.09582 (0.10943) | > loss_disc_real_1: 0.20804 (0.21785) | > loss_disc_real_2: 0.21047 (0.20801) | > loss_disc_real_3: 0.23023 (0.23115) | > loss_disc_real_4: 0.23523 (0.21740) | > loss_disc_real_5: 0.22457 (0.21794) | > loss_0: 2.31097 (2.35922) | > loss_gen: 2.46141 (2.35487) | > loss_kl: 2.66939 (2.64961) | > loss_feat: 8.61112 (8.38883) | > loss_mel: 18.11616 (17.85031) | > loss_duration: 1.66897 (1.70009) | > loss_1: 33.52706 (32.94370)  --> STEP: 26 | > loss_disc: 2.30918 (2.35729) | > loss_disc_real_0: 0.10784 (0.10937) | > loss_disc_real_1: 0.21636 (0.21779) | > loss_disc_real_2: 0.21252 (0.20819) | > loss_disc_real_3: 0.23170 (0.23117) | > loss_disc_real_4: 0.20995 (0.21711) | > loss_disc_real_5: 0.21706 (0.21791) | > loss_0: 2.30918 (2.35729) | > loss_gen: 2.42441 (2.35754) | > loss_kl: 2.68549 (2.65099) | > loss_feat: 8.63071 (8.39813) | > loss_mel: 17.95760 (17.85444) | > loss_duration: 1.70811 (1.70040) | > loss_1: 33.40631 (32.96149)  --> STEP: 27 | > loss_disc: 2.35622 (2.35725) | > loss_disc_real_0: 0.11510 (0.10958) | > loss_disc_real_1: 0.21052 (0.21752) | > loss_disc_real_2: 0.20554 (0.20809) | > loss_disc_real_3: 0.22824 (0.23106) | > loss_disc_real_4: 0.20962 (0.21683) | > loss_disc_real_5: 0.20864 (0.21757) | > loss_0: 2.35622 (2.35725) | > loss_gen: 2.34945 (2.35724) | > loss_kl: 2.78988 (2.65614) | > loss_feat: 8.82765 (8.41404) | > loss_mel: 18.17299 (17.86624) | > loss_duration: 1.70849 (1.70070) | > loss_1: 33.84847 (32.99434)  --> STEP: 28 | > loss_disc: 2.36167 (2.35741) | > loss_disc_real_0: 0.10280 (0.10934) | > loss_disc_real_1: 0.21819 (0.21755) | > loss_disc_real_2: 0.20168 (0.20786) | > loss_disc_real_3: 0.22782 (0.23094) | > loss_disc_real_4: 0.21038 (0.21660) | > loss_disc_real_5: 0.20563 (0.21714) | > loss_0: 2.36167 (2.35741) | > loss_gen: 2.28792 (2.35477) | > loss_kl: 2.72468 (2.65858) | > loss_feat: 8.37870 (8.41278) | > loss_mel: 17.61502 (17.85727) | > loss_duration: 1.71903 (1.70136) | > loss_1: 32.72535 (32.98474)  --> STEP: 29 | > loss_disc: 2.32750 (2.35638) | > loss_disc_real_0: 0.13019 (0.11005) | > loss_disc_real_1: 0.20956 (0.21727) | > loss_disc_real_2: 0.20261 (0.20768) | > loss_disc_real_3: 0.22845 (0.23086) | > loss_disc_real_4: 0.22013 (0.21673) | > loss_disc_real_5: 0.20802 (0.21683) | > loss_0: 2.32750 (2.35638) | > loss_gen: 2.41565 (2.35687) | > loss_kl: 2.65290 (2.65839) | > loss_feat: 8.65821 (8.42124) | > loss_mel: 17.72800 (17.85281) | > loss_duration: 1.66969 (1.70026) | > loss_1: 33.12445 (32.98956)  --> STEP: 30 | > loss_disc: 2.33936 (2.35581) | > loss_disc_real_0: 0.11326 (0.11016) | > loss_disc_real_1: 0.21734 (0.21727) | > loss_disc_real_2: 0.19970 (0.20741) | > loss_disc_real_3: 0.23078 (0.23086) | > loss_disc_real_4: 0.21528 (0.21668) | > loss_disc_real_5: 0.21218 (0.21667) | > loss_0: 2.33936 (2.35581) | > loss_gen: 2.38541 (2.35782) | > loss_kl: 2.75493 (2.66161) | > loss_feat: 8.65211 (8.42894) | > loss_mel: 17.96301 (17.85648) | > loss_duration: 1.67352 (1.69937) | > loss_1: 33.42897 (33.00420)  --> STEP: 31 | > loss_disc: 2.34044 (2.35532) | > loss_disc_real_0: 0.13028 (0.11081) | > loss_disc_real_1: 0.19992 (0.21671) | > loss_disc_real_2: 0.21158 (0.20755) | > loss_disc_real_3: 0.22847 (0.23078) | > loss_disc_real_4: 0.21620 (0.21666) | > loss_disc_real_5: 0.20370 (0.21625) | > loss_0: 2.34044 (2.35532) | > loss_gen: 2.38942 (2.35884) | > loss_kl: 2.65033 (2.66124) | > loss_feat: 8.65690 (8.43629) | > loss_mel: 18.01291 (17.86153) | > loss_duration: 1.68317 (1.69885) | > loss_1: 33.39273 (33.01674)  --> STEP: 32 | > loss_disc: 2.34467 (2.35498) | > loss_disc_real_0: 0.11692 (0.11100) | > loss_disc_real_1: 0.20268 (0.21628) | > loss_disc_real_2: 0.20648 (0.20751) | > loss_disc_real_3: 0.23373 (0.23087) | > loss_disc_real_4: 0.21419 (0.21658) | > loss_disc_real_5: 0.23720 (0.21691) | > loss_0: 2.34467 (2.35498) | > loss_gen: 2.38507 (2.35966) | > loss_kl: 2.61920 (2.65993) | > loss_feat: 8.06993 (8.42484) | > loss_mel: 17.85407 (17.86130) | > loss_duration: 1.70004 (1.69889) | > loss_1: 32.62830 (33.00460)  --> STEP: 33 | > loss_disc: 2.32942 (2.35421) | > loss_disc_real_0: 0.09245 (0.11044) | > loss_disc_real_1: 0.22122 (0.21643) | > loss_disc_real_2: 0.21925 (0.20787) | > loss_disc_real_3: 0.22679 (0.23075) | > loss_disc_real_4: 0.21896 (0.21666) | > loss_disc_real_5: 0.20544 (0.21656) | > loss_0: 2.32942 (2.35421) | > loss_gen: 2.37868 (2.36023) | > loss_kl: 2.60364 (2.65822) | > loss_feat: 8.34507 (8.42242) | > loss_mel: 17.90780 (17.86271) | > loss_duration: 1.70560 (1.69909) | > loss_1: 32.94080 (33.00266)  --> STEP: 34 | > loss_disc: 2.29447 (2.35245) | > loss_disc_real_0: 0.10201 (0.11019) | > loss_disc_real_1: 0.21571 (0.21640) | > loss_disc_real_2: 0.19849 (0.20759) | > loss_disc_real_3: 0.23501 (0.23087) | > loss_disc_real_4: 0.21489 (0.21660) | > loss_disc_real_5: 0.21796 (0.21660) | > loss_0: 2.29447 (2.35245) | > loss_gen: 2.44327 (2.36268) | > loss_kl: 2.59457 (2.65635) | > loss_feat: 8.53396 (8.42570) | > loss_mel: 18.17132 (17.87178) | > loss_duration: 1.72585 (1.69988) | > loss_1: 33.46896 (33.01638)  --> STEP: 35 | > loss_disc: 2.42840 (2.35462) | > loss_disc_real_0: 0.13883 (0.11101) | > loss_disc_real_1: 0.22820 (0.21674) | > loss_disc_real_2: 0.19928 (0.20736) | > loss_disc_real_3: 0.23115 (0.23088) | > loss_disc_real_4: 0.22892 (0.21696) | > loss_disc_real_5: 0.20877 (0.21638) | > loss_0: 2.42840 (2.35462) | > loss_gen: 2.31498 (2.36131) | > loss_kl: 2.79568 (2.66033) | > loss_feat: 7.95939 (8.41238) | > loss_mel: 18.15287 (17.87982) | > loss_duration: 1.66011 (1.69874) | > loss_1: 32.88303 (33.01257)  --> STEP: 36 | > loss_disc: 2.39625 (2.35578) | > loss_disc_real_0: 0.11456 (0.11111) | > loss_disc_real_1: 0.22477 (0.21696) | > loss_disc_real_2: 0.22719 (0.20791) | > loss_disc_real_3: 0.24385 (0.23124) | > loss_disc_real_4: 0.22167 (0.21709) | > loss_disc_real_5: 0.23689 (0.21695) | > loss_0: 2.39625 (2.35578) | > loss_gen: 2.41461 (2.36279) | > loss_kl: 2.64993 (2.66004) | > loss_feat: 8.01352 (8.40130) | > loss_mel: 17.56466 (17.87106) | > loss_duration: 1.68934 (1.69848) | > loss_1: 32.33207 (32.99367)  --> STEP: 37 | > loss_disc: 2.34310 (2.35543) | > loss_disc_real_0: 0.11181 (0.11113) | > loss_disc_real_1: 0.21842 (0.21700) | > loss_disc_real_2: 0.21802 (0.20818) | > loss_disc_real_3: 0.22763 (0.23114) | > loss_disc_real_4: 0.20926 (0.21688) | > loss_disc_real_5: 0.22671 (0.21721) | > loss_0: 2.34310 (2.35543) | > loss_gen: 2.37592 (2.36315) | > loss_kl: 2.63963 (2.65949) | > loss_feat: 8.26070 (8.39750) | > loss_mel: 17.96844 (17.87369) | > loss_duration: 1.67692 (1.69790) | > loss_1: 32.92161 (32.99172)  --> STEP: 38 | > loss_disc: 2.36258 (2.35562) | > loss_disc_real_0: 0.11268 (0.11117) | > loss_disc_real_1: 0.22730 (0.21727) | > loss_disc_real_2: 0.22400 (0.20860) | > loss_disc_real_3: 0.23894 (0.23135) | > loss_disc_real_4: 0.23589 (0.21738) | > loss_disc_real_5: 0.22090 (0.21731) | > loss_0: 2.36258 (2.35562) | > loss_gen: 2.42617 (2.36481) | > loss_kl: 2.62783 (2.65866) | > loss_feat: 8.02168 (8.38761) | > loss_mel: 17.52225 (17.86445) | > loss_duration: 1.71113 (1.69825) | > loss_1: 32.30905 (32.97375)  --> STEP: 39 | > loss_disc: 2.35673 (2.35565) | > loss_disc_real_0: 0.11458 (0.11126) | > loss_disc_real_1: 0.22051 (0.21736) | > loss_disc_real_2: 0.20089 (0.20840) | > loss_disc_real_3: 0.22888 (0.23128) | > loss_disc_real_4: 0.21545 (0.21733) | > loss_disc_real_5: 0.21015 (0.21713) | > loss_0: 2.35673 (2.35565) | > loss_gen: 2.32142 (2.36369) | > loss_kl: 2.74202 (2.66080) | > loss_feat: 8.00944 (8.37792) | > loss_mel: 18.08039 (17.86998) | > loss_duration: 1.69236 (1.69809) | > loss_1: 32.84564 (32.97047)  --> STEP: 40 | > loss_disc: 2.34633 (2.35542) | > loss_disc_real_0: 0.09976 (0.11097) | > loss_disc_real_1: 0.22234 (0.21748) | > loss_disc_real_2: 0.21243 (0.20850) | > loss_disc_real_3: 0.24491 (0.23163) | > loss_disc_real_4: 0.21908 (0.21737) | > loss_disc_real_5: 0.22287 (0.21727) | > loss_0: 2.34633 (2.35542) | > loss_gen: 2.43351 (2.36544) | > loss_kl: 2.65514 (2.66065) | > loss_feat: 8.46884 (8.38019) | > loss_mel: 18.56302 (17.88731) | > loss_duration: 1.69905 (1.69812) | > loss_1: 33.81956 (32.99170)  --> STEP: 41 | > loss_disc: 2.34910 (2.35526) | > loss_disc_real_0: 0.11322 (0.11102) | > loss_disc_real_1: 0.20909 (0.21728) | > loss_disc_real_2: 0.20426 (0.20840) | > loss_disc_real_3: 0.23423 (0.23169) | > loss_disc_real_4: 0.22427 (0.21754) | > loss_disc_real_5: 0.21363 (0.21718) | > loss_0: 2.34910 (2.35526) | > loss_gen: 2.35944 (2.36529) | > loss_kl: 2.64089 (2.66017) | > loss_feat: 8.13777 (8.37428) | > loss_mel: 17.84032 (17.88617) | > loss_duration: 1.68402 (1.69777) | > loss_1: 32.66245 (32.98367)  --> STEP: 42 | > loss_disc: 2.38125 (2.35588) | > loss_disc_real_0: 0.11091 (0.11102) | > loss_disc_real_1: 0.21825 (0.21730) | > loss_disc_real_2: 0.21368 (0.20852) | > loss_disc_real_3: 0.23503 (0.23177) | > loss_disc_real_4: 0.20813 (0.21732) | > loss_disc_real_5: 0.21994 (0.21725) | > loss_0: 2.38125 (2.35588) | > loss_gen: 2.31208 (2.36403) | > loss_kl: 2.47776 (2.65583) | > loss_feat: 8.23958 (8.37107) | > loss_mel: 17.56521 (17.87852) | > loss_duration: 1.68916 (1.69757) | > loss_1: 32.28379 (32.96701)  --> STEP: 43 | > loss_disc: 2.43312 (2.35768) | > loss_disc_real_0: 0.12374 (0.11132) | > loss_disc_real_1: 0.22694 (0.21752) | > loss_disc_real_2: 0.22093 (0.20881) | > loss_disc_real_3: 0.24443 (0.23206) | > loss_disc_real_4: 0.22014 (0.21738) | > loss_disc_real_5: 0.22346 (0.21739) | > loss_0: 2.43312 (2.35768) | > loss_gen: 2.31651 (2.36292) | > loss_kl: 2.63738 (2.65540) | > loss_feat: 7.97124 (8.36177) | > loss_mel: 17.83861 (17.87759) | > loss_duration: 1.72063 (1.69811) | > loss_1: 32.48437 (32.95578)  --> STEP: 44 | > loss_disc: 2.36341 (2.35781) | > loss_disc_real_0: 0.13468 (0.11185) | > loss_disc_real_1: 0.21346 (0.21743) | > loss_disc_real_2: 0.20593 (0.20875) | > loss_disc_real_3: 0.21974 (0.23178) | > loss_disc_real_4: 0.21281 (0.21728) | > loss_disc_real_5: 0.21323 (0.21730) | > loss_0: 2.36341 (2.35781) | > loss_gen: 2.35119 (2.36266) | > loss_kl: 2.67168 (2.65577) | > loss_feat: 8.19268 (8.35793) | > loss_mel: 17.88593 (17.87778) | > loss_duration: 1.70784 (1.69833) | > loss_1: 32.80931 (32.95246)  --> STEP: 45 | > loss_disc: 2.34066 (2.35743) | > loss_disc_real_0: 0.10094 (0.11160) | > loss_disc_real_1: 0.22010 (0.21749) | > loss_disc_real_2: 0.21595 (0.20891) | > loss_disc_real_3: 0.22191 (0.23156) | > loss_disc_real_4: 0.21672 (0.21726) | > loss_disc_real_5: 0.21554 (0.21726) | > loss_0: 2.34066 (2.35743) | > loss_gen: 2.38632 (2.36318) | > loss_kl: 2.53219 (2.65302) | > loss_feat: 8.28024 (8.35620) | > loss_mel: 18.00516 (17.88062) | > loss_duration: 1.73581 (1.69916) | > loss_1: 32.93972 (32.95218)  --> STEP: 46 | > loss_disc: 2.34827 (2.35723) | > loss_disc_real_0: 0.11769 (0.11174) | > loss_disc_real_1: 0.21901 (0.21752) | > loss_disc_real_2: 0.21078 (0.20895) | > loss_disc_real_3: 0.22786 (0.23148) | > loss_disc_real_4: 0.22377 (0.21741) | > loss_disc_real_5: 0.21882 (0.21729) | > loss_0: 2.34827 (2.35723) | > loss_gen: 2.39518 (2.36388) | > loss_kl: 2.55958 (2.65099) | > loss_feat: 8.41937 (8.35758) | > loss_mel: 17.50633 (17.87248) | > loss_duration: 1.67940 (1.69873) | > loss_1: 32.55986 (32.94365)  --> STEP: 47 | > loss_disc: 2.40688 (2.35829) | > loss_disc_real_0: 0.12697 (0.11206) | > loss_disc_real_1: 0.22425 (0.21767) | > loss_disc_real_2: 0.22924 (0.20938) | > loss_disc_real_3: 0.22627 (0.23137) | > loss_disc_real_4: 0.22276 (0.21752) | > loss_disc_real_5: 0.22130 (0.21738) | > loss_0: 2.40688 (2.35829) | > loss_gen: 2.36450 (2.36389) | > loss_kl: 2.71015 (2.65225) | > loss_feat: 8.18989 (8.35401) | > loss_mel: 17.54649 (17.86554) | > loss_duration: 1.71768 (1.69913) | > loss_1: 32.52871 (32.93481)  --> STEP: 48 | > loss_disc: 2.35339 (2.35818) | > loss_disc_real_0: 0.09956 (0.11180) | > loss_disc_real_1: 0.21479 (0.21761) | > loss_disc_real_2: 0.20581 (0.20930) | > loss_disc_real_3: 0.24057 (0.23156) | > loss_disc_real_4: 0.22253 (0.21762) | > loss_disc_real_5: 0.21183 (0.21726) | > loss_0: 2.35339 (2.35818) | > loss_gen: 2.32165 (2.36301) | > loss_kl: 2.56534 (2.65044) | > loss_feat: 7.28264 (8.33169) | > loss_mel: 17.25945 (17.85292) | > loss_duration: 1.68095 (1.69875) | > loss_1: 31.11002 (32.89680)  --> STEP: 49 | > loss_disc: 2.37489 (2.35853) | > loss_disc_real_0: 0.11872 (0.11194) | > loss_disc_real_1: 0.20986 (0.21745) | > loss_disc_real_2: 0.22028 (0.20953) | > loss_disc_real_3: 0.22043 (0.23134) | > loss_disc_real_4: 0.21530 (0.21758) | > loss_disc_real_5: 0.21059 (0.21712) | > loss_0: 2.37489 (2.35853) | > loss_gen: 2.29523 (2.36163) | > loss_kl: 2.57375 (2.64888) | > loss_feat: 8.37469 (8.33256) | > loss_mel: 17.75308 (17.85088) | > loss_duration: 1.67047 (1.69818) | > loss_1: 32.66721 (32.89211)  --> STEP: 50 | > loss_disc: 2.34737 (2.35830) | > loss_disc_real_0: 0.12221 (0.11215) | > loss_disc_real_1: 0.21712 (0.21744) | > loss_disc_real_2: 0.21356 (0.20961) | > loss_disc_real_3: 0.22942 (0.23130) | > loss_disc_real_4: 0.21933 (0.21761) | > loss_disc_real_5: 0.22696 (0.21732) | > loss_0: 2.34737 (2.35830) | > loss_gen: 2.42091 (2.36281) | > loss_kl: 2.54766 (2.64685) | > loss_feat: 8.36091 (8.33313) | > loss_mel: 17.89643 (17.85179) | > loss_duration: 1.67708 (1.69776) | > loss_1: 32.90299 (32.89233)  --> STEP: 51 | > loss_disc: 2.38037 (2.35873) | > loss_disc_real_0: 0.11638 (0.11223) | > loss_disc_real_1: 0.21529 (0.21740) | > loss_disc_real_2: 0.21364 (0.20969) | > loss_disc_real_3: 0.23613 (0.23139) | > loss_disc_real_4: 0.21847 (0.21763) | > loss_disc_real_5: 0.22776 (0.21753) | > loss_0: 2.38037 (2.35873) | > loss_gen: 2.37116 (2.36298) | > loss_kl: 2.58231 (2.64559) | > loss_feat: 7.96828 (8.32598) | > loss_mel: 17.75829 (17.84995) | > loss_duration: 1.70398 (1.69788) | > loss_1: 32.38403 (32.88236)  --> STEP: 52 | > loss_disc: 2.40834 (2.35969) | > loss_disc_real_0: 0.12312 (0.11244) | > loss_disc_real_1: 0.21329 (0.21732) | > loss_disc_real_2: 0.21027 (0.20970) | > loss_disc_real_3: 0.23669 (0.23149) | > loss_disc_real_4: 0.21819 (0.21764) | > loss_disc_real_5: 0.22542 (0.21768) | > loss_0: 2.40834 (2.35969) | > loss_gen: 2.32393 (2.36223) | > loss_kl: 2.67320 (2.64612) | > loss_feat: 8.10767 (8.32178) | > loss_mel: 17.81171 (17.84922) | > loss_duration: 1.69454 (1.69781) | > loss_1: 32.61105 (32.87715)  --> STEP: 53 | > loss_disc: 2.32560 (2.35905) | > loss_disc_real_0: 0.11210 (0.11243) | > loss_disc_real_1: 0.21096 (0.21720) | > loss_disc_real_2: 0.19575 (0.20944) | > loss_disc_real_3: 0.23268 (0.23152) | > loss_disc_real_4: 0.20867 (0.21747) | > loss_disc_real_5: 0.21827 (0.21769) | > loss_0: 2.32560 (2.35905) | > loss_gen: 2.37348 (2.36244) | > loss_kl: 2.72654 (2.64763) | > loss_feat: 8.73845 (8.32964) | > loss_mel: 18.44135 (17.86039) | > loss_duration: 1.68388 (1.69755) | > loss_1: 33.96369 (32.89765)  --> STEP: 54 | > loss_disc: 2.31782 (2.35828) | > loss_disc_real_0: 0.10376 (0.11227) | > loss_disc_real_1: 0.21064 (0.21708) | > loss_disc_real_2: 0.20788 (0.20941) | > loss_disc_real_3: 0.22218 (0.23134) | > loss_disc_real_4: 0.21452 (0.21742) | > loss_disc_real_5: 0.22310 (0.21779) | > loss_0: 2.31782 (2.35828) | > loss_gen: 2.40896 (2.36330) | > loss_kl: 2.69971 (2.64860) | > loss_feat: 9.33465 (8.34825) | > loss_mel: 18.59259 (17.87395) | > loss_duration: 1.67710 (1.69717) | > loss_1: 34.71302 (32.93127)  --> STEP: 55 | > loss_disc: 2.40035 (2.35905) | > loss_disc_real_0: 0.11871 (0.11239) | > loss_disc_real_1: 0.22181 (0.21717) | > loss_disc_real_2: 0.21552 (0.20952) | > loss_disc_real_3: 0.22890 (0.23130) | > loss_disc_real_4: 0.23968 (0.21782) | > loss_disc_real_5: 0.21911 (0.21781) | > loss_0: 2.40035 (2.35905) | > loss_gen: 2.36296 (2.36329) | > loss_kl: 2.60272 (2.64776) | > loss_feat: 8.72794 (8.35516) | > loss_mel: 18.54254 (17.88611) | > loss_duration: 1.66458 (1.69658) | > loss_1: 33.90074 (32.94889)  --> STEP: 56 | > loss_disc: 2.35578 (2.35899) | > loss_disc_real_0: 0.11440 (0.11243) | > loss_disc_real_1: 0.21144 (0.21706) | > loss_disc_real_2: 0.19046 (0.20918) | > loss_disc_real_3: 0.23097 (0.23129) | > loss_disc_real_4: 0.20452 (0.21758) | > loss_disc_real_5: 0.22257 (0.21790) | > loss_0: 2.35578 (2.35899) | > loss_gen: 2.35783 (2.36320) | > loss_kl: 2.74321 (2.64947) | > loss_feat: 8.73839 (8.36200) | > loss_mel: 18.73396 (17.90125) | > loss_duration: 1.66515 (1.69602) | > loss_1: 34.23856 (32.97192)  --> STEP: 57 | > loss_disc: 2.38385 (2.35942) | > loss_disc_real_0: 0.10961 (0.11238) | > loss_disc_real_1: 0.22894 (0.21727) | > loss_disc_real_2: 0.20722 (0.20914) | > loss_disc_real_3: 0.23328 (0.23133) | > loss_disc_real_4: 0.22289 (0.21768) | > loss_disc_real_5: 0.21945 (0.21793) | > loss_0: 2.38385 (2.35942) | > loss_gen: 2.33593 (2.36272) | > loss_kl: 2.59180 (2.64846) | > loss_feat: 8.34966 (8.36178) | > loss_mel: 17.64885 (17.89682) | > loss_duration: 1.70260 (1.69613) | > loss_1: 32.62884 (32.96590)  --> STEP: 58 | > loss_disc: 2.39312 (2.36001) | > loss_disc_real_0: 0.11819 (0.11248) | > loss_disc_real_1: 0.23490 (0.21758) | > loss_disc_real_2: 0.22240 (0.20937) | > loss_disc_real_3: 0.23009 (0.23131) | > loss_disc_real_4: 0.22465 (0.21780) | > loss_disc_real_5: 0.22131 (0.21798) | > loss_0: 2.39312 (2.36001) | > loss_gen: 2.36117 (2.36269) | > loss_kl: 2.59066 (2.64746) | > loss_feat: 7.59031 (8.34848) | > loss_mel: 17.45459 (17.88920) | > loss_duration: 1.69399 (1.69610) | > loss_1: 31.69072 (32.94392)  --> STEP: 59 | > loss_disc: 2.30847 (2.35913) | > loss_disc_real_0: 0.10545 (0.11236) | > loss_disc_real_1: 0.20276 (0.21732) | > loss_disc_real_2: 0.21714 (0.20950) | > loss_disc_real_3: 0.23586 (0.23138) | > loss_disc_real_4: 0.21746 (0.21779) | > loss_disc_real_5: 0.20300 (0.21773) | > loss_0: 2.30847 (2.35913) | > loss_gen: 2.40985 (2.36349) | > loss_kl: 2.69820 (2.64832) | > loss_feat: 8.23752 (8.34660) | > loss_mel: 17.40738 (17.88103) | > loss_duration: 1.65907 (1.69547) | > loss_1: 32.41202 (32.93490)  --> STEP: 60 | > loss_disc: 2.31993 (2.35848) | > loss_disc_real_0: 0.09775 (0.11211) | > loss_disc_real_1: 0.21828 (0.21734) | > loss_disc_real_2: 0.20893 (0.20949) | > loss_disc_real_3: 0.23224 (0.23140) | > loss_disc_real_4: 0.21555 (0.21775) | > loss_disc_real_5: 0.21476 (0.21768) | > loss_0: 2.31993 (2.35848) | > loss_gen: 2.39533 (2.36402) | > loss_kl: 2.70971 (2.64934) | > loss_feat: 8.74872 (8.35330) | > loss_mel: 18.26599 (17.88745) | > loss_duration: 1.70530 (1.69563) | > loss_1: 33.82505 (32.94974)  --> STEP: 61 | > loss_disc: 2.38517 (2.35892) | > loss_disc_real_0: 0.12885 (0.11239) | > loss_disc_real_1: 0.21372 (0.21728) | > loss_disc_real_2: 0.22122 (0.20969) | > loss_disc_real_3: 0.23759 (0.23150) | > loss_disc_real_4: 0.22885 (0.21794) | > loss_disc_real_5: 0.20424 (0.21746) | > loss_0: 2.38517 (2.35892) | > loss_gen: 2.36117 (2.36397) | > loss_kl: 2.76929 (2.65131) | > loss_feat: 8.30133 (8.35245) | > loss_mel: 17.76940 (17.88551) | > loss_duration: 1.70639 (1.69581) | > loss_1: 32.90758 (32.94904)  --> STEP: 62 | > loss_disc: 2.36558 (2.35902) | > loss_disc_real_0: 0.10077 (0.11220) | > loss_disc_real_1: 0.21316 (0.21721) | > loss_disc_real_2: 0.21965 (0.20985) | > loss_disc_real_3: 0.24626 (0.23174) | > loss_disc_real_4: 0.23208 (0.21816) | > loss_disc_real_5: 0.23393 (0.21773) | > loss_0: 2.36558 (2.35902) | > loss_gen: 2.39785 (2.36452) | > loss_kl: 2.64653 (2.65123) | > loss_feat: 8.25622 (8.35090) | > loss_mel: 17.53700 (17.87989) | > loss_duration: 1.65237 (1.69511) | > loss_1: 32.48997 (32.94164)  --> STEP: 63 | > loss_disc: 2.35872 (2.35902) | > loss_disc_real_0: 0.11801 (0.11229) | > loss_disc_real_1: 0.21935 (0.21725) | > loss_disc_real_2: 0.21134 (0.20987) | > loss_disc_real_3: 0.23049 (0.23172) | > loss_disc_real_4: 0.22330 (0.21825) | > loss_disc_real_5: 0.21309 (0.21765) | > loss_0: 2.35872 (2.35902) | > loss_gen: 2.37514 (2.36469) | > loss_kl: 2.64644 (2.65116) | > loss_feat: 8.33296 (8.35061) | > loss_mel: 18.04607 (17.88253) | > loss_duration: 1.65331 (1.69445) | > loss_1: 33.05392 (32.94342)  --> STEP: 64 | > loss_disc: 2.34200 (2.35875) | > loss_disc_real_0: 0.10346 (0.11215) | > loss_disc_real_1: 0.20366 (0.21704) | > loss_disc_real_2: 0.19755 (0.20968) | > loss_disc_real_3: 0.23495 (0.23177) | > loss_disc_real_4: 0.22066 (0.21828) | > loss_disc_real_5: 0.21957 (0.21768) | > loss_0: 2.34200 (2.35875) | > loss_gen: 2.35977 (2.36461) | > loss_kl: 2.58154 (2.65007) | > loss_feat: 8.64538 (8.35522) | > loss_mel: 18.21634 (17.88774) | > loss_duration: 1.72406 (1.69491) | > loss_1: 33.52710 (32.95255)  --> STEP: 65 | > loss_disc: 2.34695 (2.35857) | > loss_disc_real_0: 0.11060 (0.11213) | > loss_disc_real_1: 0.21185 (0.21696) | > loss_disc_real_2: 0.20500 (0.20961) | > loss_disc_real_3: 0.23277 (0.23178) | > loss_disc_real_4: 0.21272 (0.21820) | > loss_disc_real_5: 0.21738 (0.21768) | > loss_0: 2.34695 (2.35857) | > loss_gen: 2.36858 (2.36467) | > loss_kl: 2.79628 (2.65232) | > loss_feat: 8.33148 (8.35486) | > loss_mel: 18.12678 (17.89142) | > loss_duration: 1.68928 (1.69482) | > loss_1: 33.31240 (32.95808)  --> STEP: 66 | > loss_disc: 2.33556 (2.35822) | > loss_disc_real_0: 0.08741 (0.11176) | > loss_disc_real_1: 0.20916 (0.21684) | > loss_disc_real_2: 0.20325 (0.20951) | > loss_disc_real_3: 0.22285 (0.23165) | > loss_disc_real_4: 0.20269 (0.21796) | > loss_disc_real_5: 0.21587 (0.21765) | > loss_0: 2.33556 (2.35822) | > loss_gen: 2.31671 (2.36395) | > loss_kl: 2.64944 (2.65227) | > loss_feat: 8.88224 (8.36285) | > loss_mel: 17.97732 (17.89272) | > loss_duration: 1.71587 (1.69514) | > loss_1: 33.54159 (32.96692)  --> STEP: 67 | > loss_disc: 2.36723 (2.35836) | > loss_disc_real_0: 0.12508 (0.11196) | > loss_disc_real_1: 0.21982 (0.21688) | > loss_disc_real_2: 0.20825 (0.20949) | > loss_disc_real_3: 0.22944 (0.23162) | > loss_disc_real_4: 0.20967 (0.21784) | > loss_disc_real_5: 0.21806 (0.21766) | > loss_0: 2.36723 (2.35836) | > loss_gen: 2.35893 (2.36387) | > loss_kl: 2.70827 (2.65311) | > loss_feat: 8.42100 (8.36372) | > loss_mel: 17.86284 (17.89227) | > loss_duration: 1.69482 (1.69514) | > loss_1: 33.04587 (32.96810)  --> STEP: 68 | > loss_disc: 2.39523 (2.35890) | > loss_disc_real_0: 0.11583 (0.11201) | > loss_disc_real_1: 0.22009 (0.21693) | > loss_disc_real_2: 0.21196 (0.20953) | > loss_disc_real_3: 0.23711 (0.23170) | > loss_disc_real_4: 0.21412 (0.21778) | > loss_disc_real_5: 0.22132 (0.21771) | > loss_0: 2.39523 (2.35890) | > loss_gen: 2.34993 (2.36367) | > loss_kl: 2.69289 (2.65370) | > loss_feat: 8.29636 (8.36273) | > loss_mel: 17.92188 (17.89271) | > loss_duration: 1.69795 (1.69518) | > loss_1: 32.95901 (32.96797)  --> STEP: 69 | > loss_disc: 2.40097 (2.35951) | > loss_disc_real_0: 0.11292 (0.11203) | > loss_disc_real_1: 0.21482 (0.21690) | > loss_disc_real_2: 0.21486 (0.20960) | > loss_disc_real_3: 0.22269 (0.23157) | > loss_disc_real_4: 0.21887 (0.21780) | > loss_disc_real_5: 0.21337 (0.21765) | > loss_0: 2.40097 (2.35951) | > loss_gen: 2.29005 (2.36260) | > loss_kl: 2.61733 (2.65317) | > loss_feat: 8.22007 (8.36066) | > loss_mel: 17.90686 (17.89292) | > loss_duration: 1.70223 (1.69528) | > loss_1: 32.73654 (32.96461)  --> STEP: 70 | > loss_disc: 2.32330 (2.35899) | > loss_disc_real_0: 0.11062 (0.11201) | > loss_disc_real_1: 0.20003 (0.21666) | > loss_disc_real_2: 0.20872 (0.20959) | > loss_disc_real_3: 0.22104 (0.23142) | > loss_disc_real_4: 0.21770 (0.21780) | > loss_disc_real_5: 0.21736 (0.21764) | > loss_0: 2.32330 (2.35899) | > loss_gen: 2.42405 (2.36348) | > loss_kl: 2.61361 (2.65260) | > loss_feat: 8.96956 (8.36936) | > loss_mel: 18.36612 (17.89968) | > loss_duration: 1.73038 (1.69578) | > loss_1: 34.10372 (32.98089)  --> STEP: 71 | > loss_disc: 2.35666 (2.35896) | > loss_disc_real_0: 0.10398 (0.11189) | > loss_disc_real_1: 0.21864 (0.21669) | > loss_disc_real_2: 0.20063 (0.20947) | > loss_disc_real_3: 0.23094 (0.23141) | > loss_disc_real_4: 0.21351 (0.21774) | > loss_disc_real_5: 0.21531 (0.21761) | > loss_0: 2.35666 (2.35896) | > loss_gen: 2.30083 (2.36260) | > loss_kl: 2.54740 (2.65112) | > loss_feat: 8.17761 (8.36666) | > loss_mel: 17.92883 (17.90009) | > loss_duration: 1.71095 (1.69599) | > loss_1: 32.66561 (32.97644)  --> STEP: 72 | > loss_disc: 2.35708 (2.35893) | > loss_disc_real_0: 0.11660 (0.11196) | > loss_disc_real_1: 0.20748 (0.21656) | > loss_disc_real_2: 0.20353 (0.20938) | > loss_disc_real_3: 0.23061 (0.23140) | > loss_disc_real_4: 0.21732 (0.21773) | > loss_disc_real_5: 0.20657 (0.21746) | > loss_0: 2.35708 (2.35893) | > loss_gen: 2.32340 (2.36205) | > loss_kl: 2.57922 (2.65012) | > loss_feat: 8.06346 (8.36245) | > loss_mel: 17.93359 (17.90055) | > loss_duration: 1.71872 (1.69631) | > loss_1: 32.61839 (32.97147)  --> STEP: 73 | > loss_disc: 2.33746 (2.35864) | > loss_disc_real_0: 0.10945 (0.11192) | > loss_disc_real_1: 0.20856 (0.21645) | > loss_disc_real_2: 0.20507 (0.20932) | > loss_disc_real_3: 0.21148 (0.23112) | > loss_disc_real_4: 0.21015 (0.21763) | > loss_disc_real_5: 0.19806 (0.21719) | > loss_0: 2.33746 (2.35864) | > loss_gen: 2.33184 (2.36164) | > loss_kl: 2.58535 (2.64924) | > loss_feat: 8.63920 (8.36624) | > loss_mel: 18.51390 (17.90895) | > loss_duration: 1.68457 (1.69615) | > loss_1: 33.75486 (32.98220)  --> STEP: 74 | > loss_disc: 2.38415 (2.35898) | > loss_disc_real_0: 0.13132 (0.11219) | > loss_disc_real_1: 0.21616 (0.21645) | > loss_disc_real_2: 0.20814 (0.20931) | > loss_disc_real_3: 0.22941 (0.23110) | > loss_disc_real_4: 0.21956 (0.21765) | > loss_disc_real_5: 0.21380 (0.21714) | > loss_0: 2.38415 (2.35898) | > loss_gen: 2.34794 (2.36145) | > loss_kl: 2.61024 (2.64871) | > loss_feat: 8.67689 (8.37043) | > loss_mel: 17.77224 (17.90710) | > loss_duration: 1.69972 (1.69620) | > loss_1: 33.10704 (32.98389)  --> STEP: 75 | > loss_disc: 2.36182 (2.35902) | > loss_disc_real_0: 0.11193 (0.11218) | > loss_disc_real_1: 0.21482 (0.21642) | > loss_disc_real_2: 0.21082 (0.20933) | > loss_disc_real_3: 0.23850 (0.23120) | > loss_disc_real_4: 0.20650 (0.21751) | > loss_disc_real_5: 0.23564 (0.21739) | > loss_0: 2.36182 (2.35902) | > loss_gen: 2.36518 (2.36150) | > loss_kl: 2.76789 (2.65030) | > loss_feat: 8.18736 (8.36799) | > loss_mel: 17.82921 (17.90607) | > loss_duration: 1.70273 (1.69628) | > loss_1: 32.85237 (32.98214)  --> STEP: 76 | > loss_disc: 2.30637 (2.35833) | > loss_disc_real_0: 0.10800 (0.11213) | > loss_disc_real_1: 0.21321 (0.21638) | > loss_disc_real_2: 0.20780 (0.20931) | > loss_disc_real_3: 0.23650 (0.23127) | > loss_disc_real_4: 0.20855 (0.21739) | > loss_disc_real_5: 0.20336 (0.21721) | > loss_0: 2.30637 (2.35833) | > loss_gen: 2.40360 (2.36206) | > loss_kl: 2.55687 (2.64907) | > loss_feat: 8.42263 (8.36871) | > loss_mel: 17.94542 (17.90659) | > loss_duration: 1.68602 (1.69615) | > loss_1: 33.01453 (32.98256)  --> STEP: 77 | > loss_disc: 2.35044 (2.35823) | > loss_disc_real_0: 0.12536 (0.11230) | > loss_disc_real_1: 0.21765 (0.21640) | > loss_disc_real_2: 0.20381 (0.20924) | > loss_disc_real_3: 0.24013 (0.23139) | > loss_disc_real_4: 0.22789 (0.21752) | > loss_disc_real_5: 0.21584 (0.21719) | > loss_0: 2.35044 (2.35823) | > loss_gen: 2.43046 (2.36294) | > loss_kl: 2.57213 (2.64807) | > loss_feat: 8.16638 (8.36609) | > loss_mel: 17.81844 (17.90544) | > loss_duration: 1.69339 (1.69611) | > loss_1: 32.68079 (32.97865)  --> STEP: 78 | > loss_disc: 2.41723 (2.35898) | > loss_disc_real_0: 0.11562 (0.11234) | > loss_disc_real_1: 0.23227 (0.21660) | > loss_disc_real_2: 0.23337 (0.20955) | > loss_disc_real_3: 0.24779 (0.23160) | > loss_disc_real_4: 0.22342 (0.21760) | > loss_disc_real_5: 0.22595 (0.21730) | > loss_0: 2.41723 (2.35898) | > loss_gen: 2.34563 (2.36272) | > loss_kl: 2.53652 (2.64664) | > loss_feat: 7.84796 (8.35944) | > loss_mel: 17.41024 (17.89909) | > loss_duration: 1.72967 (1.69654) | > loss_1: 31.87002 (32.96444)  --> STEP: 79 | > loss_disc: 2.34699 (2.35883) | > loss_disc_real_0: 0.10755 (0.11228) | > loss_disc_real_1: 0.22061 (0.21665) | > loss_disc_real_2: 0.21861 (0.20966) | > loss_disc_real_3: 0.23851 (0.23168) | > loss_disc_real_4: 0.22145 (0.21765) | > loss_disc_real_5: 0.22625 (0.21741) | > loss_0: 2.34699 (2.35883) | > loss_gen: 2.42891 (2.36356) | > loss_kl: 2.47023 (2.64441) | > loss_feat: 8.06049 (8.35566) | > loss_mel: 17.54226 (17.89458) | > loss_duration: 1.74550 (1.69716) | > loss_1: 32.24739 (32.95536)  --> STEP: 80 | > loss_disc: 2.33581 (2.35854) | > loss_disc_real_0: 0.10168 (0.11215) | > loss_disc_real_1: 0.21101 (0.21658) | > loss_disc_real_2: 0.21158 (0.20969) | > loss_disc_real_3: 0.24460 (0.23184) | > loss_disc_real_4: 0.22672 (0.21776) | > loss_disc_real_5: 0.22469 (0.21751) | > loss_0: 2.33581 (2.35854) | > loss_gen: 2.39497 (2.36395) | > loss_kl: 2.52594 (2.64293) | > loss_feat: 7.93467 (8.35040) | > loss_mel: 17.63299 (17.89131) | > loss_duration: 1.70315 (1.69724) | > loss_1: 32.19172 (32.94581)  --> STEP: 81 | > loss_disc: 2.43718 (2.35951) | > loss_disc_real_0: 0.12909 (0.11236) | > loss_disc_real_1: 0.21962 (0.21662) | > loss_disc_real_2: 0.22780 (0.20991) | > loss_disc_real_3: 0.22925 (0.23181) | > loss_disc_real_4: 0.21672 (0.21775) | > loss_disc_real_5: 0.23142 (0.21768) | > loss_0: 2.43718 (2.35951) | > loss_gen: 2.32164 (2.36343) | > loss_kl: 2.55910 (2.64189) | > loss_feat: 8.36166 (8.35054) | > loss_mel: 17.73949 (17.88943) | > loss_duration: 1.74940 (1.69788) | > loss_1: 32.73128 (32.94316)  --> STEP: 82 | > loss_disc: 2.31193 (2.35893) | > loss_disc_real_0: 0.10444 (0.11226) | > loss_disc_real_1: 0.20766 (0.21651) | > loss_disc_real_2: 0.20027 (0.20979) | > loss_disc_real_3: 0.23032 (0.23179) | > loss_disc_real_4: 0.21337 (0.21770) | > loss_disc_real_5: 0.21897 (0.21769) | > loss_0: 2.31193 (2.35893) | > loss_gen: 2.40238 (2.36390) | > loss_kl: 2.64759 (2.64196) | > loss_feat: 8.85325 (8.35667) | > loss_mel: 17.71593 (17.88732) | > loss_duration: 1.69221 (1.69781) | > loss_1: 33.31136 (32.94765)  --> STEP: 83 | > loss_disc: 2.32743 (2.35856) | > loss_disc_real_0: 0.09375 (0.11204) | > loss_disc_real_1: 0.21674 (0.21651) | > loss_disc_real_2: 0.19753 (0.20964) | > loss_disc_real_3: 0.24802 (0.23199) | > loss_disc_real_4: 0.22200 (0.21775) | > loss_disc_real_5: 0.20773 (0.21757) | > loss_0: 2.32743 (2.35856) | > loss_gen: 2.38159 (2.36412) | > loss_kl: 2.64604 (2.64201) | > loss_feat: 8.59135 (8.35950) | > loss_mel: 18.05700 (17.88936) | > loss_duration: 1.73672 (1.69828) | > loss_1: 33.41271 (32.95325)  --> STEP: 84 | > loss_disc: 2.41032 (2.35917) | > loss_disc_real_0: 0.12551 (0.11220) | > loss_disc_real_1: 0.21238 (0.21646) | > loss_disc_real_2: 0.21458 (0.20970) | > loss_disc_real_3: 0.23220 (0.23199) | > loss_disc_real_4: 0.22137 (0.21779) | > loss_disc_real_5: 0.21790 (0.21758) | > loss_0: 2.41032 (2.35917) | > loss_gen: 2.26379 (2.36292) | > loss_kl: 2.78313 (2.64369) | > loss_feat: 8.39853 (8.35996) | > loss_mel: 18.21707 (17.89326) | > loss_duration: 1.72022 (1.69854) | > loss_1: 33.38274 (32.95837)  --> STEP: 85 | > loss_disc: 2.36584 (2.35925) | > loss_disc_real_0: 0.10633 (0.11213) | > loss_disc_real_1: 0.21693 (0.21647) | > loss_disc_real_2: 0.22333 (0.20986) | > loss_disc_real_3: 0.23689 (0.23205) | > loss_disc_real_4: 0.22063 (0.21782) | > loss_disc_real_5: 0.23256 (0.21775) | > loss_0: 2.36584 (2.35925) | > loss_gen: 2.38105 (2.36314) | > loss_kl: 2.58833 (2.64304) | > loss_feat: 8.14223 (8.35740) | > loss_mel: 17.56020 (17.88934) | > loss_duration: 1.70959 (1.69867) | > loss_1: 32.38140 (32.95158)  --> STEP: 86 | > loss_disc: 2.38028 (2.35949) | > loss_disc_real_0: 0.12774 (0.11231) | > loss_disc_real_1: 0.21255 (0.21642) | > loss_disc_real_2: 0.20266 (0.20978) | > loss_disc_real_3: 0.23635 (0.23210) | > loss_disc_real_4: 0.20985 (0.21773) | > loss_disc_real_5: 0.22690 (0.21786) | > loss_0: 2.38028 (2.35949) | > loss_gen: 2.37944 (2.36333) | > loss_kl: 2.58267 (2.64234) | > loss_feat: 8.66649 (8.36099) | > loss_mel: 17.85237 (17.88891) | > loss_duration: 1.66906 (1.69833) | > loss_1: 33.15002 (32.95388)  --> STEP: 87 | > loss_disc: 2.36728 (2.35958) | > loss_disc_real_0: 0.12226 (0.11243) | > loss_disc_real_1: 0.21905 (0.21645) | > loss_disc_real_2: 0.19771 (0.20964) | > loss_disc_real_3: 0.22497 (0.23202) | > loss_disc_real_4: 0.20318 (0.21756) | > loss_disc_real_5: 0.21131 (0.21778) | > loss_0: 2.36728 (2.35958) | > loss_gen: 2.33346 (2.36298) | > loss_kl: 2.64704 (2.64239) | > loss_feat: 8.49047 (8.36248) | > loss_mel: 17.83990 (17.88835) | > loss_duration: 1.68055 (1.69812) | > loss_1: 32.99142 (32.95432)  --> STEP: 88 | > loss_disc: 2.36731 (2.35967) | > loss_disc_real_0: 0.10460 (0.11234) | > loss_disc_real_1: 0.21264 (0.21641) | > loss_disc_real_2: 0.19601 (0.20949) | > loss_disc_real_3: 0.22611 (0.23195) | > loss_disc_real_4: 0.22591 (0.21766) | > loss_disc_real_5: 0.24020 (0.21804) | > loss_0: 2.36731 (2.35967) | > loss_gen: 2.33510 (2.36267) | > loss_kl: 2.68477 (2.64287) | > loss_feat: 8.02009 (8.35859) | > loss_mel: 17.78942 (17.88723) | > loss_duration: 1.68888 (1.69802) | > loss_1: 32.51828 (32.94936)  --> STEP: 89 | > loss_disc: 2.39190 (2.36003) | > loss_disc_real_0: 0.12860 (0.11252) | > loss_disc_real_1: 0.21637 (0.21641) | > loss_disc_real_2: 0.21493 (0.20955) | > loss_disc_real_3: 0.23054 (0.23193) | > loss_disc_real_4: 0.22424 (0.21773) | > loss_disc_real_5: 0.22004 (0.21806) | > loss_0: 2.39190 (2.36003) | > loss_gen: 2.37231 (2.36278) | > loss_kl: 2.77518 (2.64436) | > loss_feat: 8.50865 (8.36028) | > loss_mel: 18.09112 (17.88952) | > loss_duration: 1.66773 (1.69768) | > loss_1: 33.41497 (32.95459)  --> STEP: 90 | > loss_disc: 2.35498 (2.35998) | > loss_disc_real_0: 0.11186 (0.11251) | > loss_disc_real_1: 0.20335 (0.21626) | > loss_disc_real_2: 0.20256 (0.20947) | > loss_disc_real_3: 0.22934 (0.23191) | > loss_disc_real_4: 0.20844 (0.21763) | > loss_disc_real_5: 0.21479 (0.21803) | > loss_0: 2.35498 (2.35998) | > loss_gen: 2.35022 (2.36264) | > loss_kl: 2.70905 (2.64508) | > loss_feat: 8.19382 (8.35843) | > loss_mel: 17.67861 (17.88717) | > loss_duration: 1.70551 (1.69777) | > loss_1: 32.63721 (32.95107)  --> STEP: 91 | > loss_disc: 2.37895 (2.36019) | > loss_disc_real_0: 0.12670 (0.11267) | > loss_disc_real_1: 0.21816 (0.21629) | > loss_disc_real_2: 0.21879 (0.20957) | > loss_disc_real_3: 0.21999 (0.23177) | > loss_disc_real_4: 0.21933 (0.21765) | > loss_disc_real_5: 0.23731 (0.21824) | > loss_0: 2.37895 (2.36019) | > loss_gen: 2.35284 (2.36253) | > loss_kl: 2.57594 (2.64432) | > loss_feat: 8.11009 (8.35570) | > loss_mel: 17.88394 (17.88714) | > loss_duration: 1.69523 (1.69774) | > loss_1: 32.61803 (32.94741)  --> STEP: 92 | > loss_disc: 2.35064 (2.36008) | > loss_disc_real_0: 0.10903 (0.11263) | > loss_disc_real_1: 0.22248 (0.21635) | > loss_disc_real_2: 0.21887 (0.20967) | > loss_disc_real_3: 0.24171 (0.23188) | > loss_disc_real_4: 0.22145 (0.21769) | > loss_disc_real_5: 0.22112 (0.21827) | > loss_0: 2.35064 (2.36008) | > loss_gen: 2.45855 (2.36357) | > loss_kl: 2.63639 (2.64423) | > loss_feat: 8.49617 (8.35723) | > loss_mel: 18.61541 (17.89505) | > loss_duration: 1.69081 (1.69766) | > loss_1: 33.89734 (32.95773)  --> STEP: 93 | > loss_disc: 2.30141 (2.35945) | > loss_disc_real_0: 0.09313 (0.11242) | > loss_disc_real_1: 0.20258 (0.21620) | > loss_disc_real_2: 0.19556 (0.20952) | > loss_disc_real_3: 0.23041 (0.23187) | > loss_disc_real_4: 0.21176 (0.21763) | > loss_disc_real_5: 0.21652 (0.21825) | > loss_0: 2.30141 (2.35945) | > loss_gen: 2.36117 (2.36355) | > loss_kl: 2.65889 (2.64439) | > loss_feat: 8.65448 (8.36042) | > loss_mel: 18.20098 (17.89834) | > loss_duration: 1.67596 (1.69743) | > loss_1: 33.55148 (32.96412)  --> STEP: 94 | > loss_disc: 2.44971 (2.36041) | > loss_disc_real_0: 0.14392 (0.11275) | > loss_disc_real_1: 0.21588 (0.21620) | > loss_disc_real_2: 0.21249 (0.20955) | > loss_disc_real_3: 0.24498 (0.23201) | > loss_disc_real_4: 0.22369 (0.21769) | > loss_disc_real_5: 0.23526 (0.21843) | > loss_0: 2.44971 (2.36041) | > loss_gen: 2.33356 (2.36323) | > loss_kl: 2.76902 (2.64571) | > loss_feat: 8.44744 (8.36135) | > loss_mel: 18.33224 (17.90296) | > loss_duration: 1.71707 (1.69764) | > loss_1: 33.59933 (32.97087)  --> STEP: 95 | > loss_disc: 2.35283 (2.36033) | > loss_disc_real_0: 0.10083 (0.11263) | > loss_disc_real_1: 0.21678 (0.21621) | > loss_disc_real_2: 0.20302 (0.20948) | > loss_disc_real_3: 0.21629 (0.23184) | > loss_disc_real_4: 0.22606 (0.21778) | > loss_disc_real_5: 0.23571 (0.21861) | > loss_0: 2.35283 (2.36033) | > loss_gen: 2.38841 (2.36349) | > loss_kl: 2.63906 (2.64564) | > loss_feat: 8.35938 (8.36133) | > loss_mel: 18.46231 (17.90885) | > loss_duration: 1.68215 (1.69748) | > loss_1: 33.53131 (32.97677)  --> STEP: 96 | > loss_disc: 2.34581 (2.36018) | > loss_disc_real_0: 0.12599 (0.11277) | > loss_disc_real_1: 0.20513 (0.21609) | > loss_disc_real_2: 0.21902 (0.20958) | > loss_disc_real_3: 0.22389 (0.23176) | > loss_disc_real_4: 0.21006 (0.21770) | > loss_disc_real_5: 0.19897 (0.21841) | > loss_0: 2.34581 (2.36018) | > loss_gen: 2.37706 (2.36363) | > loss_kl: 2.66065 (2.64580) | > loss_feat: 8.41459 (8.36188) | > loss_mel: 18.17478 (17.91162) | > loss_duration: 1.77094 (1.69824) | > loss_1: 33.39802 (32.98116)  --> STEP: 97 | > loss_disc: 2.38466 (2.36043) | > loss_disc_real_0: 0.11231 (0.11276) | > loss_disc_real_1: 0.22841 (0.21622) | > loss_disc_real_2: 0.21337 (0.20962) | > loss_disc_real_3: 0.24523 (0.23190) | > loss_disc_real_4: 0.22249 (0.21775) | > loss_disc_real_5: 0.22900 (0.21852) | > loss_0: 2.38466 (2.36043) | > loss_gen: 2.39383 (2.36394) | > loss_kl: 2.71564 (2.64652) | > loss_feat: 8.14859 (8.35968) | > loss_mel: 18.10654 (17.91363) | > loss_duration: 1.72530 (1.69852) | > loss_1: 33.08990 (32.98228)  --> STEP: 98 | > loss_disc: 2.38280 (2.36066) | > loss_disc_real_0: 0.12625 (0.11290) | > loss_disc_real_1: 0.22497 (0.21631) | > loss_disc_real_2: 0.22674 (0.20980) | > loss_disc_real_3: 0.23024 (0.23188) | > loss_disc_real_4: 0.22117 (0.21778) | > loss_disc_real_5: 0.21392 (0.21847) | > loss_0: 2.38280 (2.36066) | > loss_gen: 2.35336 (2.36384) | > loss_kl: 2.46640 (2.64468) | > loss_feat: 7.73141 (8.35327) | > loss_mel: 17.11501 (17.90548) | > loss_duration: 1.70582 (1.69859) | > loss_1: 31.37199 (32.96585)  --> STEP: 99 | > loss_disc: 2.47236 (2.36179) | > loss_disc_real_0: 0.15524 (0.11333) | > loss_disc_real_1: 0.23132 (0.21646) | > loss_disc_real_2: 0.22263 (0.20993) | > loss_disc_real_3: 0.24401 (0.23200) | > loss_disc_real_4: 0.21628 (0.21777) | > loss_disc_real_5: 0.23969 (0.21868) | > loss_0: 2.47236 (2.36179) | > loss_gen: 2.37838 (2.36398) | > loss_kl: 2.69871 (2.64523) | > loss_feat: 8.37553 (8.35350) | > loss_mel: 18.06249 (17.90706) | > loss_duration: 1.71045 (1.69871) | > loss_1: 33.22555 (32.96848)  --> STEP: 100 | > loss_disc: 2.37641 (2.36194) | > loss_disc_real_0: 0.11456 (0.11334) | > loss_disc_real_1: 0.22877 (0.21658) | > loss_disc_real_2: 0.21862 (0.21001) | > loss_disc_real_3: 0.23625 (0.23205) | > loss_disc_real_4: 0.22270 (0.21782) | > loss_disc_real_5: 0.21725 (0.21867) | > loss_0: 2.37641 (2.36194) | > loss_gen: 2.38687 (2.36421) | > loss_kl: 2.63358 (2.64511) | > loss_feat: 8.19334 (8.35190) | > loss_mel: 17.65818 (17.90457) | > loss_duration: 1.70054 (1.69873) | > loss_1: 32.57251 (32.96452)  --> STEP: 101 | > loss_disc: 2.34340 (2.36175) | > loss_disc_real_0: 0.10555 (0.11326) | > loss_disc_real_1: 0.21296 (0.21655) | > loss_disc_real_2: 0.21144 (0.21003) | > loss_disc_real_3: 0.23119 (0.23204) | > loss_disc_real_4: 0.22027 (0.21784) | > loss_disc_real_5: 0.22484 (0.21873) | > loss_0: 2.34340 (2.36175) | > loss_gen: 2.39046 (2.36447) | > loss_kl: 2.68182 (2.64548) | > loss_feat: 8.53622 (8.35372) | > loss_mel: 18.15211 (17.90702) | > loss_duration: 1.71721 (1.69891) | > loss_1: 33.47782 (32.96960)  --> STEP: 102 | > loss_disc: 2.37474 (2.36188) | > loss_disc_real_0: 0.11523 (0.11328) | > loss_disc_real_1: 0.22628 (0.21664) | > loss_disc_real_2: 0.21576 (0.21008) | > loss_disc_real_3: 0.22624 (0.23198) | > loss_disc_real_4: 0.22550 (0.21792) | > loss_disc_real_5: 0.22356 (0.21878) | > loss_0: 2.37474 (2.36188) | > loss_gen: 2.35679 (2.36440) | > loss_kl: 2.76075 (2.64661) | > loss_feat: 7.87444 (8.34902) | > loss_mel: 18.03091 (17.90824) | > loss_duration: 1.70587 (1.69898) | > loss_1: 32.72876 (32.96724)  --> STEP: 103 | > loss_disc: 2.41308 (2.36238) | > loss_disc_real_0: 0.12751 (0.11342) | > loss_disc_real_1: 0.22242 (0.21670) | > loss_disc_real_2: 0.21773 (0.21016) | > loss_disc_real_3: 0.24070 (0.23206) | > loss_disc_real_4: 0.22227 (0.21796) | > loss_disc_real_5: 0.22785 (0.21887) | > loss_0: 2.41308 (2.36238) | > loss_gen: 2.35660 (2.36432) | > loss_kl: 2.70606 (2.64718) | > loss_feat: 8.29178 (8.34847) | > loss_mel: 17.93263 (17.90847) | > loss_duration: 1.72551 (1.69924) | > loss_1: 33.01258 (32.96768)  --> STEP: 104 | > loss_disc: 2.39285 (2.36267) | > loss_disc_real_0: 0.13016 (0.11358) | > loss_disc_real_1: 0.21646 (0.21670) | > loss_disc_real_2: 0.20639 (0.21012) | > loss_disc_real_3: 0.23404 (0.23208) | > loss_disc_real_4: 0.22210 (0.21800) | > loss_disc_real_5: 0.24191 (0.21909) | > loss_0: 2.39285 (2.36267) | > loss_gen: 2.38562 (2.36453) | > loss_kl: 2.72607 (2.64794) | > loss_feat: 8.55402 (8.35044) | > loss_mel: 18.04117 (17.90975) | > loss_duration: 1.68965 (1.69915) | > loss_1: 33.39651 (32.97180)  --> STEP: 105 | > loss_disc: 2.32578 (2.36232) | > loss_disc_real_0: 0.10926 (0.11354) | > loss_disc_real_1: 0.21439 (0.21667) | > loss_disc_real_2: 0.20857 (0.21011) | > loss_disc_real_3: 0.23225 (0.23209) | > loss_disc_real_4: 0.21422 (0.21796) | > loss_disc_real_5: 0.19750 (0.21888) | > loss_0: 2.32578 (2.36232) | > loss_gen: 2.36220 (2.36450) | > loss_kl: 2.66814 (2.64813) | > loss_feat: 8.15726 (8.34860) | > loss_mel: 17.89048 (17.90957) | > loss_duration: 1.68076 (1.69897) | > loss_1: 32.75884 (32.96978)  --> STEP: 106 | > loss_disc: 2.36830 (2.36238) | > loss_disc_real_0: 0.11818 (0.11358) | > loss_disc_real_1: 0.22422 (0.21675) | > loss_disc_real_2: 0.20938 (0.21010) | > loss_disc_real_3: 0.23304 (0.23209) | > loss_disc_real_4: 0.22307 (0.21801) | > loss_disc_real_5: 0.23207 (0.21901) | > loss_0: 2.36830 (2.36238) | > loss_gen: 2.37239 (2.36458) | > loss_kl: 2.63377 (2.64800) | > loss_feat: 8.18509 (8.34706) | > loss_mel: 17.69330 (17.90753) | > loss_duration: 1.69843 (1.69897) | > loss_1: 32.58297 (32.96613)  --> STEP: 107 | > loss_disc: 2.28796 (2.36168) | > loss_disc_real_0: 0.10418 (0.11350) | > loss_disc_real_1: 0.21248 (0.21671) | > loss_disc_real_2: 0.20905 (0.21009) | > loss_disc_real_3: 0.22191 (0.23200) | > loss_disc_real_4: 0.19508 (0.21780) | > loss_disc_real_5: 0.23097 (0.21912) | > loss_0: 2.28796 (2.36168) | > loss_gen: 2.44967 (2.36537) | > loss_kl: 2.67705 (2.64827) | > loss_feat: 8.64418 (8.34984) | > loss_mel: 17.89335 (17.90739) | > loss_duration: 1.68305 (1.69882) | > loss_1: 33.34731 (32.96969)  --> STEP: 108 | > loss_disc: 2.33536 (2.36144) | > loss_disc_real_0: 0.11274 (0.11349) | > loss_disc_real_1: 0.20759 (0.21662) | > loss_disc_real_2: 0.19448 (0.20995) | > loss_disc_real_3: 0.22812 (0.23196) | > loss_disc_real_4: 0.19713 (0.21760) | > loss_disc_real_5: 0.23348 (0.21925) | > loss_0: 2.33536 (2.36144) | > loss_gen: 2.35182 (2.36525) | > loss_kl: 2.62147 (2.64802) | > loss_feat: 8.54721 (8.35166) | > loss_mel: 18.16168 (17.90975) | > loss_duration: 1.71183 (1.69894) | > loss_1: 33.39402 (32.97362)  --> STEP: 109 | > loss_disc: 2.32116 (2.36107) | > loss_disc_real_0: 0.10080 (0.11337) | > loss_disc_real_1: 0.21692 (0.21662) | > loss_disc_real_2: 0.20941 (0.20994) | > loss_disc_real_3: 0.22632 (0.23191) | > loss_disc_real_4: 0.21137 (0.21755) | > loss_disc_real_5: 0.21308 (0.21920) | > loss_0: 2.32116 (2.36107) | > loss_gen: 2.38037 (2.36539) | > loss_kl: 2.61221 (2.64769) | > loss_feat: 8.33107 (8.35148) | > loss_mel: 17.91278 (17.90977) | > loss_duration: 1.68758 (1.69884) | > loss_1: 32.92401 (32.97316)  --> STEP: 110 | > loss_disc: 2.37729 (2.36121) | > loss_disc_real_0: 0.10034 (0.11325) | > loss_disc_real_1: 0.22313 (0.21668) | > loss_disc_real_2: 0.21057 (0.20995) | > loss_disc_real_3: 0.23761 (0.23196) | > loss_disc_real_4: 0.23502 (0.21771) | > loss_disc_real_5: 0.22486 (0.21925) | > loss_0: 2.37729 (2.36121) | > loss_gen: 2.37556 (2.36548) | > loss_kl: 2.58563 (2.64713) | > loss_feat: 7.88515 (8.34724) | > loss_mel: 17.85772 (17.90930) | > loss_duration: 1.70697 (1.69891) | > loss_1: 32.41103 (32.96805)  --> STEP: 111 | > loss_disc: 2.31912 (2.36084) | > loss_disc_real_0: 0.09849 (0.11312) | > loss_disc_real_1: 0.21226 (0.21664) | > loss_disc_real_2: 0.21305 (0.20997) | > loss_disc_real_3: 0.23453 (0.23199) | > loss_disc_real_4: 0.21825 (0.21771) | > loss_disc_real_5: 0.23168 (0.21936) | > loss_0: 2.31912 (2.36084) | > loss_gen: 2.43019 (2.36606) | > loss_kl: 2.59679 (2.64668) | > loss_feat: 8.64904 (8.34995) | > loss_mel: 18.14532 (17.91143) | > loss_duration: 1.67481 (1.69869) | > loss_1: 33.49615 (32.97281)  --> STEP: 112 | > loss_disc: 2.36713 (2.36089) | > loss_disc_real_0: 0.10748 (0.11307) | > loss_disc_real_1: 0.21009 (0.21658) | > loss_disc_real_2: 0.21092 (0.20998) | > loss_disc_real_3: 0.23440 (0.23201) | > loss_disc_real_4: 0.21745 (0.21771) | > loss_disc_real_5: 0.23193 (0.21947) | > loss_0: 2.36713 (2.36089) | > loss_gen: 2.35311 (2.36595) | > loss_kl: 2.65003 (2.64671) | > loss_feat: 8.39114 (8.35032) | > loss_mel: 18.27296 (17.91466) | > loss_duration: 1.72953 (1.69897) | > loss_1: 33.39676 (32.97659)  --> STEP: 113 | > loss_disc: 2.38170 (2.36108) | > loss_disc_real_0: 0.11886 (0.11312) | > loss_disc_real_1: 0.21576 (0.21658) | > loss_disc_real_2: 0.22867 (0.21015) | > loss_disc_real_3: 0.23748 (0.23206) | > loss_disc_real_4: 0.22285 (0.21775) | > loss_disc_real_5: 0.23064 (0.21957) | > loss_0: 2.38170 (2.36108) | > loss_gen: 2.39342 (2.36619) | > loss_kl: 2.62135 (2.64648) | > loss_feat: 7.92987 (8.34660) | > loss_mel: 17.72646 (17.91299) | > loss_duration: 1.70862 (1.69905) | > loss_1: 32.37970 (32.97131)  --> STEP: 114 | > loss_disc: 2.31232 (2.36065) | > loss_disc_real_0: 0.10051 (0.11301) | > loss_disc_real_1: 0.21121 (0.21653) | > loss_disc_real_2: 0.21672 (0.21021) | > loss_disc_real_3: 0.22492 (0.23199) | > loss_disc_real_4: 0.21961 (0.21777) | > loss_disc_real_5: 0.22092 (0.21958) | > loss_0: 2.31232 (2.36065) | > loss_gen: 2.41346 (2.36660) | > loss_kl: 2.62541 (2.64630) | > loss_feat: 8.70919 (8.34978) | > loss_mel: 18.01520 (17.91389) | > loss_duration: 1.66154 (1.69872) | > loss_1: 33.42480 (32.97529)  --> STEP: 115 | > loss_disc: 2.40058 (2.36100) | > loss_disc_real_0: 0.12673 (0.11313) | > loss_disc_real_1: 0.21873 (0.21655) | > loss_disc_real_2: 0.19706 (0.21009) | > loss_disc_real_3: 0.23007 (0.23198) | > loss_disc_real_4: 0.22697 (0.21785) | > loss_disc_real_5: 0.21179 (0.21951) | > loss_0: 2.40058 (2.36100) | > loss_gen: 2.33477 (2.36633) | > loss_kl: 2.68245 (2.64661) | > loss_feat: 8.69278 (8.35276) | > loss_mel: 17.61933 (17.91133) | > loss_duration: 1.70048 (1.69874) | > loss_1: 33.02981 (32.97576)  --> STEP: 116 | > loss_disc: 2.35072 (2.36091) | > loss_disc_real_0: 0.12642 (0.11325) | > loss_disc_real_1: 0.22117 (0.21659) | > loss_disc_real_2: 0.21141 (0.21010) | > loss_disc_real_3: 0.23464 (0.23200) | > loss_disc_real_4: 0.21916 (0.21786) | > loss_disc_real_5: 0.20905 (0.21942) | > loss_0: 2.35072 (2.36091) | > loss_gen: 2.40746 (2.36668) | > loss_kl: 2.61115 (2.64630) | > loss_feat: 8.48528 (8.35391) | > loss_mel: 18.09705 (17.91293) | > loss_duration: 1.75170 (1.69920) | > loss_1: 33.35265 (32.97901)  --> STEP: 117 | > loss_disc: 2.33477 (2.36068) | > loss_disc_real_0: 0.11723 (0.11328) | > loss_disc_real_1: 0.21341 (0.21656) | > loss_disc_real_2: 0.21767 (0.21017) | > loss_disc_real_3: 0.21298 (0.23184) | > loss_disc_real_4: 0.20875 (0.21778) | > loss_disc_real_5: 0.20600 (0.21931) | > loss_0: 2.33477 (2.36068) | > loss_gen: 2.35923 (2.36662) | > loss_kl: 2.72941 (2.64701) | > loss_feat: 8.24822 (8.35300) | > loss_mel: 17.53413 (17.90969) | > loss_duration: 1.69706 (1.69918) | > loss_1: 32.56804 (32.97550)  --> STEP: 118 | > loss_disc: 2.39023 (2.36093) | > loss_disc_real_0: 0.10510 (0.11321) | > loss_disc_real_1: 0.21259 (0.21653) | > loss_disc_real_2: 0.21897 (0.21024) | > loss_disc_real_3: 0.22738 (0.23180) | > loss_disc_real_4: 0.23615 (0.21794) | > loss_disc_real_5: 0.21091 (0.21924) | > loss_0: 2.39023 (2.36093) | > loss_gen: 2.30429 (2.36609) | > loss_kl: 2.62374 (2.64682) | > loss_feat: 8.30055 (8.35256) | > loss_mel: 17.47328 (17.90600) | > loss_duration: 1.71738 (1.69933) | > loss_1: 32.41925 (32.97079)  --> STEP: 119 | > loss_disc: 2.33173 (2.36069) | > loss_disc_real_0: 0.10243 (0.11312) | > loss_disc_real_1: 0.22302 (0.21658) | > loss_disc_real_2: 0.21773 (0.21030) | > loss_disc_real_3: 0.21910 (0.23169) | > loss_disc_real_4: 0.21047 (0.21788) | > loss_disc_real_5: 0.19680 (0.21905) | > loss_0: 2.33173 (2.36069) | > loss_gen: 2.33270 (2.36581) | > loss_kl: 2.55355 (2.64603) | > loss_feat: 7.84159 (8.34827) | > loss_mel: 17.18362 (17.89993) | > loss_duration: 1.68284 (1.69919) | > loss_1: 31.59430 (32.95922)  --> STEP: 120 | > loss_disc: 2.34979 (2.36060) | > loss_disc_real_0: 0.11659 (0.11315) | > loss_disc_real_1: 0.21176 (0.21654) | > loss_disc_real_2: 0.20329 (0.21025) | > loss_disc_real_3: 0.23096 (0.23169) | > loss_disc_real_4: 0.21734 (0.21787) | > loss_disc_real_5: 0.22771 (0.21912) | > loss_0: 2.34979 (2.36060) | > loss_gen: 2.37127 (2.36585) | > loss_kl: 2.61678 (2.64579) | > loss_feat: 8.45321 (8.34914) | > loss_mel: 18.49740 (17.90491) | > loss_duration: 1.63788 (1.69868) | > loss_1: 33.57653 (32.96437)  --> STEP: 121 | > loss_disc: 2.39705 (2.36090) | > loss_disc_real_0: 0.10910 (0.11312) | > loss_disc_real_1: 0.21106 (0.21650) | > loss_disc_real_2: 0.20912 (0.21024) | > loss_disc_real_3: 0.23711 (0.23173) | > loss_disc_real_4: 0.21670 (0.21786) | > loss_disc_real_5: 0.21587 (0.21909) | > loss_0: 2.39705 (2.36090) | > loss_gen: 2.28512 (2.36519) | > loss_kl: 2.64201 (2.64576) | > loss_feat: 8.90131 (8.35370) | > loss_mel: 18.44018 (17.90933) | > loss_duration: 1.69829 (1.69868) | > loss_1: 33.96691 (32.97265)  --> STEP: 122 | > loss_disc: 2.44553 (2.36159) | > loss_disc_real_0: 0.11984 (0.11317) | > loss_disc_real_1: 0.22064 (0.21653) | > loss_disc_real_2: 0.21095 (0.21024) | > loss_disc_real_3: 0.24710 (0.23186) | > loss_disc_real_4: 0.23750 (0.21802) | > loss_disc_real_5: 0.25115 (0.21936) | > loss_0: 2.44553 (2.36159) | > loss_gen: 2.31719 (2.36479) | > loss_kl: 2.70619 (2.64625) | > loss_feat: 7.85183 (8.34959) | > loss_mel: 17.39641 (17.90512) | > loss_duration: 1.71728 (1.69883) | > loss_1: 31.98889 (32.96459)  --> STEP: 123 | > loss_disc: 2.37028 (2.36166) | > loss_disc_real_0: 0.11161 (0.11316) | > loss_disc_real_1: 0.21423 (0.21651) | > loss_disc_real_2: 0.21219 (0.21026) | > loss_disc_real_3: 0.24224 (0.23194) | > loss_disc_real_4: 0.20941 (0.21795) | > loss_disc_real_5: 0.22787 (0.21943) | > loss_0: 2.37028 (2.36166) | > loss_gen: 2.37048 (2.36484) | > loss_kl: 2.68749 (2.64659) | > loss_feat: 8.61920 (8.35178) | > loss_mel: 18.10316 (17.90674) | > loss_duration: 1.72357 (1.69903) | > loss_1: 33.50391 (32.96897)  --> STEP: 124 | > loss_disc: 2.36911 (2.36172) | > loss_disc_real_0: 0.12746 (0.11327) | > loss_disc_real_1: 0.21231 (0.21648) | > loss_disc_real_2: 0.20023 (0.21018) | > loss_disc_real_3: 0.24369 (0.23204) | > loss_disc_real_4: 0.21593 (0.21794) | > loss_disc_real_5: 0.22365 (0.21946) | > loss_0: 2.36911 (2.36172) | > loss_gen: 2.38650 (2.36502) | > loss_kl: 2.76659 (2.64756) | > loss_feat: 8.60749 (8.35384) | > loss_mel: 18.11514 (17.90842) | > loss_duration: 1.75046 (1.69945) | > loss_1: 33.62617 (32.97427)  --> STEP: 125 | > loss_disc: 2.30644 (2.36128) | > loss_disc_real_0: 0.11043 (0.11325) | > loss_disc_real_1: 0.21997 (0.21651) | > loss_disc_real_2: 0.21646 (0.21023) | > loss_disc_real_3: 0.21840 (0.23193) | > loss_disc_real_4: 0.21668 (0.21793) | > loss_disc_real_5: 0.18928 (0.21922) | > loss_0: 2.30644 (2.36128) | > loss_gen: 2.41343 (2.36540) | > loss_kl: 2.67180 (2.64775) | > loss_feat: 8.52017 (8.35518) | > loss_mel: 18.29382 (17.91150) | > loss_duration: 1.67919 (1.69929) | > loss_1: 33.57841 (32.97911)  --> STEP: 126 | > loss_disc: 2.38186 (2.36144) | > loss_disc_real_0: 0.12035 (0.11331) | > loss_disc_real_1: 0.21515 (0.21650) | > loss_disc_real_2: 0.20892 (0.21022) | > loss_disc_real_3: 0.23584 (0.23196) | > loss_disc_real_4: 0.21126 (0.21787) | > loss_disc_real_5: 0.22937 (0.21930) | > loss_0: 2.38186 (2.36144) | > loss_gen: 2.35357 (2.36531) | > loss_kl: 2.65282 (2.64779) | > loss_feat: 8.62557 (8.35732) | > loss_mel: 17.95673 (17.91186) | > loss_duration: 1.68882 (1.69920) | > loss_1: 33.27751 (32.98148)  --> STEP: 127 | > loss_disc: 2.36164 (2.36145) | > loss_disc_real_0: 0.10396 (0.11323) | > loss_disc_real_1: 0.23091 (0.21661) | > loss_disc_real_2: 0.22142 (0.21031) | > loss_disc_real_3: 0.24025 (0.23202) | > loss_disc_real_4: 0.21901 (0.21788) | > loss_disc_real_5: 0.20828 (0.21921) | > loss_0: 2.36164 (2.36145) | > loss_gen: 2.36873 (2.36534) | > loss_kl: 2.44371 (2.64618) | > loss_feat: 7.97989 (8.35435) | > loss_mel: 17.61568 (17.90953) | > loss_duration: 1.68659 (1.69910) | > loss_1: 32.09461 (32.97449)  --> STEP: 128 | > loss_disc: 2.37430 (2.36155) | > loss_disc_real_0: 0.09546 (0.11309) | > loss_disc_real_1: 0.20870 (0.21655) | > loss_disc_real_2: 0.20078 (0.21023) | > loss_disc_real_3: 0.23808 (0.23207) | > loss_disc_real_4: 0.20466 (0.21778) | > loss_disc_real_5: 0.22743 (0.21928) | > loss_0: 2.37430 (2.36155) | > loss_gen: 2.31302 (2.36493) | > loss_kl: 2.50982 (2.64512) | > loss_feat: 8.76691 (8.35757) | > loss_mel: 18.19592 (17.91176) | > loss_duration: 1.71670 (1.69924) | > loss_1: 33.50237 (32.97862)  --> STEP: 129 | > loss_disc: 2.36746 (2.36159) | > loss_disc_real_0: 0.11875 (0.11314) | > loss_disc_real_1: 0.20676 (0.21647) | > loss_disc_real_2: 0.20050 (0.21016) | > loss_disc_real_3: 0.22415 (0.23201) | > loss_disc_real_4: 0.21006 (0.21772) | > loss_disc_real_5: 0.21871 (0.21927) | > loss_0: 2.36746 (2.36159) | > loss_gen: 2.32289 (2.36460) | > loss_kl: 2.66005 (2.64523) | > loss_feat: 8.27737 (8.35695) | > loss_mel: 17.97866 (17.91228) | > loss_duration: 1.65234 (1.69888) | > loss_1: 32.89131 (32.97794)  --> STEP: 130 | > loss_disc: 2.36193 (2.36159) | > loss_disc_real_0: 0.08953 (0.11296) | > loss_disc_real_1: 0.22359 (0.21653) | > loss_disc_real_2: 0.20840 (0.21014) | > loss_disc_real_3: 0.24096 (0.23208) | > loss_disc_real_4: 0.20515 (0.21762) | > loss_disc_real_5: 0.21885 (0.21927) | > loss_0: 2.36193 (2.36159) | > loss_gen: 2.36929 (2.36464) | > loss_kl: 2.59252 (2.64483) | > loss_feat: 8.94610 (8.36148) | > loss_mel: 18.26984 (17.91503) | > loss_duration: 1.73051 (1.69912) | > loss_1: 33.90825 (32.98510)  --> STEP: 131 | > loss_disc: 2.31460 (2.36124) | > loss_disc_real_0: 0.10875 (0.11292) | > loss_disc_real_1: 0.21645 (0.21653) | > loss_disc_real_2: 0.21173 (0.21015) | > loss_disc_real_3: 0.22731 (0.23204) | > loss_disc_real_4: 0.20625 (0.21754) | > loss_disc_real_5: 0.20593 (0.21917) | > loss_0: 2.31460 (2.36124) | > loss_gen: 2.38302 (2.36478) | > loss_kl: 2.50160 (2.64374) | > loss_feat: 8.69231 (8.36401) | > loss_mel: 18.21188 (17.91730) | > loss_duration: 1.69576 (1.69910) | > loss_1: 33.48457 (32.98891)  --> STEP: 132 | > loss_disc: 2.38600 (2.36142) | > loss_disc_real_0: 0.09849 (0.11281) | > loss_disc_real_1: 0.21642 (0.21653) | > loss_disc_real_2: 0.19591 (0.21005) | > loss_disc_real_3: 0.23319 (0.23205) | > loss_disc_real_4: 0.21334 (0.21750) | > loss_disc_real_5: 0.22054 (0.21918) | > loss_0: 2.38600 (2.36142) | > loss_gen: 2.27434 (2.36409) | > loss_kl: 2.64258 (2.64373) | > loss_feat: 8.88280 (8.36794) | > loss_mel: 18.09337 (17.91863) | > loss_duration: 1.70036 (1.69910) | > loss_1: 33.59346 (32.99349)  --> STEP: 133 | > loss_disc: 2.37551 (2.36153) | > loss_disc_real_0: 0.10988 (0.11279) | > loss_disc_real_1: 0.22266 (0.21657) | > loss_disc_real_2: 0.21377 (0.21007) | > loss_disc_real_3: 0.24009 (0.23211) | > loss_disc_real_4: 0.22230 (0.21754) | > loss_disc_real_5: 0.22773 (0.21924) | > loss_0: 2.37551 (2.36153) | > loss_gen: 2.39100 (2.36429) | > loss_kl: 2.66514 (2.64389) | > loss_feat: 8.17821 (8.36651) | > loss_mel: 17.73472 (17.91725) | > loss_duration: 1.71190 (1.69920) | > loss_1: 32.68097 (32.99114)  --> STEP: 134 | > loss_disc: 2.38009 (2.36167) | > loss_disc_real_0: 0.11192 (0.11279) | > loss_disc_real_1: 0.21706 (0.21657) | > loss_disc_real_2: 0.21095 (0.21008) | > loss_disc_real_3: 0.23590 (0.23214) | > loss_disc_real_4: 0.23221 (0.21765) | > loss_disc_real_5: 0.21753 (0.21923) | > loss_0: 2.38009 (2.36167) | > loss_gen: 2.35624 (2.36423) | > loss_kl: 2.69012 (2.64423) | > loss_feat: 8.40519 (8.36680) | > loss_mel: 17.85452 (17.91678) | > loss_duration: 1.67800 (1.69904) | > loss_1: 32.98407 (32.99109)  --> STEP: 135 | > loss_disc: 2.38430 (2.36184) | > loss_disc_real_0: 0.11501 (0.11280) | > loss_disc_real_1: 0.22096 (0.21661) | > loss_disc_real_2: 0.21553 (0.21012) | > loss_disc_real_3: 0.23643 (0.23217) | > loss_disc_real_4: 0.21818 (0.21765) | > loss_disc_real_5: 0.20862 (0.21915) | > loss_0: 2.38430 (2.36184) | > loss_gen: 2.34058 (2.36406) | > loss_kl: 2.68478 (2.64453) | > loss_feat: 8.73459 (8.36953) | > loss_mel: 17.79057 (17.91585) | > loss_duration: 1.67341 (1.69885) | > loss_1: 33.22392 (32.99281)  --> STEP: 136 | > loss_disc: 2.37715 (2.36195) | > loss_disc_real_0: 0.12514 (0.11289) | > loss_disc_real_1: 0.22442 (0.21666) | > loss_disc_real_2: 0.20868 (0.21011) | > loss_disc_real_3: 0.24232 (0.23225) | > loss_disc_real_4: 0.22167 (0.21768) | > loss_disc_real_5: 0.22609 (0.21920) | > loss_0: 2.37715 (2.36195) | > loss_gen: 2.37045 (2.36411) | > loss_kl: 2.49433 (2.64343) | > loss_feat: 8.37480 (8.36956) | > loss_mel: 17.59488 (17.91349) | > loss_duration: 1.71981 (1.69901) | > loss_1: 32.55427 (32.98959)  --> STEP: 137 | > loss_disc: 2.31123 (2.36158) | > loss_disc_real_0: 0.10356 (0.11283) | > loss_disc_real_1: 0.19947 (0.21654) | > loss_disc_real_2: 0.19859 (0.21003) | > loss_disc_real_3: 0.22501 (0.23219) | > loss_disc_real_4: 0.20822 (0.21761) | > loss_disc_real_5: 0.19766 (0.21904) | > loss_0: 2.31123 (2.36158) | > loss_gen: 2.33880 (2.36392) | > loss_kl: 2.63298 (2.64335) | > loss_feat: 8.88830 (8.37335) | > loss_mel: 18.00558 (17.91416) | > loss_duration: 1.70075 (1.69902) | > loss_1: 33.56642 (32.99379)  --> STEP: 138 | > loss_disc: 2.33326 (2.36137) | > loss_disc_real_0: 0.10869 (0.11280) | > loss_disc_real_1: 0.21306 (0.21651) | > loss_disc_real_2: 0.20456 (0.20999) | > loss_disc_real_3: 0.22019 (0.23211) | > loss_disc_real_4: 0.21106 (0.21757) | > loss_disc_real_5: 0.18991 (0.21883) | > loss_0: 2.33326 (2.36137) | > loss_gen: 2.32515 (2.36364) | > loss_kl: 2.84480 (2.64481) | > loss_feat: 8.63857 (8.37527) | > loss_mel: 18.34643 (17.91729) | > loss_duration: 1.68550 (1.69892) | > loss_1: 33.84046 (32.99993)  --> STEP: 139 | > loss_disc: 2.35209 (2.36131) | > loss_disc_real_0: 0.12233 (0.11286) | > loss_disc_real_1: 0.20882 (0.21646) | > loss_disc_real_2: 0.21116 (0.21000) | > loss_disc_real_3: 0.23382 (0.23212) | > loss_disc_real_4: 0.21424 (0.21754) | > loss_disc_real_5: 0.21456 (0.21880) | > loss_0: 2.35209 (2.36131) | > loss_gen: 2.35614 (2.36359) | > loss_kl: 2.80909 (2.64599) | > loss_feat: 8.13070 (8.37351) | > loss_mel: 17.55989 (17.91472) | > loss_duration: 1.66309 (1.69866) | > loss_1: 32.51890 (32.99648)  --> STEP: 140 | > loss_disc: 2.34057 (2.36116) | > loss_disc_real_0: 0.11705 (0.11289) | > loss_disc_real_1: 0.21510 (0.21645) | > loss_disc_real_2: 0.20421 (0.20995) | > loss_disc_real_3: 0.24098 (0.23218) | > loss_disc_real_4: 0.22451 (0.21759) | > loss_disc_real_5: 0.22209 (0.21883) | > loss_0: 2.34057 (2.36116) | > loss_gen: 2.43168 (2.36407) | > loss_kl: 2.57426 (2.64548) | > loss_feat: 8.43817 (8.37397) | > loss_mel: 18.00603 (17.91537) | > loss_duration: 1.74209 (1.69897) | > loss_1: 33.19224 (32.99788)  --> STEP: 141 | > loss_disc: 2.40199 (2.36145) | > loss_disc_real_0: 0.11574 (0.11291) | > loss_disc_real_1: 0.21557 (0.21644) | > loss_disc_real_2: 0.22195 (0.21004) | > loss_disc_real_3: 0.24378 (0.23226) | > loss_disc_real_4: 0.23216 (0.21770) | > loss_disc_real_5: 0.23603 (0.21895) | > loss_0: 2.40199 (2.36145) | > loss_gen: 2.36051 (2.36405) | > loss_kl: 2.64649 (2.64549) | > loss_feat: 7.82744 (8.37010) | > loss_mel: 17.80614 (17.91460) | > loss_duration: 1.69654 (1.69896) | > loss_1: 32.33711 (32.99319)  --> STEP: 142 | > loss_disc: 2.36704 (2.36149) | > loss_disc_real_0: 0.10689 (0.11287) | > loss_disc_real_1: 0.21776 (0.21645) | > loss_disc_real_2: 0.21161 (0.21005) | > loss_disc_real_3: 0.23187 (0.23226) | > loss_disc_real_4: 0.22443 (0.21774) | > loss_disc_real_5: 0.22073 (0.21896) | > loss_0: 2.36704 (2.36149) | > loss_gen: 2.37287 (2.36411) | > loss_kl: 2.61261 (2.64526) | > loss_feat: 8.31693 (8.36972) | > loss_mel: 18.19422 (17.91657) | > loss_duration: 1.68713 (1.69887) | > loss_1: 33.18377 (32.99453)  --> STEP: 143 | > loss_disc: 2.39667 (2.36173) | > loss_disc_real_0: 0.10526 (0.11282) | > loss_disc_real_1: 0.22679 (0.21652) | > loss_disc_real_2: 0.21334 (0.21007) | > loss_disc_real_3: 0.23933 (0.23231) | > loss_disc_real_4: 0.23607 (0.21787) | > loss_disc_real_5: 0.21178 (0.21891) | > loss_0: 2.39667 (2.36173) | > loss_gen: 2.34757 (2.36399) | > loss_kl: 2.60837 (2.64500) | > loss_feat: 8.51925 (8.37077) | > loss_mel: 17.97242 (17.91696) | > loss_duration: 1.71652 (1.69900) | > loss_1: 33.16413 (32.99572)  --> STEP: 144 | > loss_disc: 2.41679 (2.36211) | > loss_disc_real_0: 0.11641 (0.11284) | > loss_disc_real_1: 0.22346 (0.21657) | > loss_disc_real_2: 0.21860 (0.21013) | > loss_disc_real_3: 0.25077 (0.23244) | > loss_disc_real_4: 0.23863 (0.21802) | > loss_disc_real_5: 0.22975 (0.21899) | > loss_0: 2.41679 (2.36211) | > loss_gen: 2.39479 (2.36421) | > loss_kl: 2.61724 (2.64481) | > loss_feat: 8.57432 (8.37218) | > loss_mel: 17.86289 (17.91658) | > loss_duration: 1.70833 (1.69906) | > loss_1: 33.15757 (32.99684)  --> STEP: 145 | > loss_disc: 2.34007 (2.36196) | > loss_disc_real_0: 0.07945 (0.11261) | > loss_disc_real_1: 0.21558 (0.21657) | > loss_disc_real_2: 0.20106 (0.21007) | > loss_disc_real_3: 0.22183 (0.23237) | > loss_disc_real_4: 0.18705 (0.21780) | > loss_disc_real_5: 0.20523 (0.21889) | > loss_0: 2.34007 (2.36196) | > loss_gen: 2.25601 (2.36346) | > loss_kl: 2.63213 (2.64472) | > loss_feat: 8.99303 (8.37646) | > loss_mel: 18.38371 (17.91981) | > loss_duration: 1.71177 (1.69915) | > loss_1: 33.97666 (33.00360)  --> STEP: 146 | > loss_disc: 2.30789 (2.36159) | > loss_disc_real_0: 0.08851 (0.11245) | > loss_disc_real_1: 0.21037 (0.21652) | > loss_disc_real_2: 0.19978 (0.21000) | > loss_disc_real_3: 0.22795 (0.23234) | > loss_disc_real_4: 0.20710 (0.21773) | > loss_disc_real_5: 0.20811 (0.21882) | > loss_0: 2.30789 (2.36159) | > loss_gen: 2.39612 (2.36369) | > loss_kl: 2.62993 (2.64462) | > loss_feat: 9.30852 (8.38285) | > loss_mel: 18.50019 (17.92378) | > loss_duration: 1.69529 (1.69912) | > loss_1: 34.53005 (33.01405)  --> STEP: 147 | > loss_disc: 2.37614 (2.36169) | > loss_disc_real_0: 0.12577 (0.11254) | > loss_disc_real_1: 0.21540 (0.21652) | > loss_disc_real_2: 0.19291 (0.20988) | > loss_disc_real_3: 0.24035 (0.23239) | > loss_disc_real_4: 0.21597 (0.21772) | > loss_disc_real_5: 0.21884 (0.21882) | > loss_0: 2.37614 (2.36169) | > loss_gen: 2.31999 (2.36339) | > loss_kl: 2.73585 (2.64524) | > loss_feat: 8.12467 (8.38109) | > loss_mel: 17.87382 (17.92344) | > loss_duration: 1.70275 (1.69915) | > loss_1: 32.75708 (33.01230)  --> STEP: 148 | > loss_disc: 2.43251 (2.36217) | > loss_disc_real_0: 0.11203 (0.11253) | > loss_disc_real_1: 0.22075 (0.21654) | > loss_disc_real_2: 0.20870 (0.20988) | > loss_disc_real_3: 0.24200 (0.23246) | > loss_disc_real_4: 0.21209 (0.21768) | > loss_disc_real_5: 0.23341 (0.21892) | > loss_0: 2.43251 (2.36217) | > loss_gen: 2.29242 (2.36291) | > loss_kl: 2.60091 (2.64494) | > loss_feat: 8.18753 (8.37978) | > loss_mel: 17.87490 (17.92311) | > loss_duration: 1.71706 (1.69927) | > loss_1: 32.67282 (33.01001)  --> STEP: 149 | > loss_disc: 2.30885 (2.36181) | > loss_disc_real_0: 0.11472 (0.11255) | > loss_disc_real_1: 0.21713 (0.21655) | > loss_disc_real_2: 0.21108 (0.20988) | > loss_disc_real_3: 0.22926 (0.23243) | > loss_disc_real_4: 0.20990 (0.21763) | > loss_disc_real_5: 0.20434 (0.21882) | > loss_0: 2.30885 (2.36181) | > loss_gen: 2.43666 (2.36340) | > loss_kl: 2.59819 (2.64463) | > loss_feat: 8.38688 (8.37983) | > loss_mel: 17.43953 (17.91987) | > loss_duration: 1.71687 (1.69939) | > loss_1: 32.57812 (33.00711)  --> STEP: 150 | > loss_disc: 2.33543 (2.36164) | > loss_disc_real_0: 0.12734 (0.11265) | > loss_disc_real_1: 0.21556 (0.21654) | > loss_disc_real_2: 0.21308 (0.20991) | > loss_disc_real_3: 0.23057 (0.23242) | > loss_disc_real_4: 0.21802 (0.21763) | > loss_disc_real_5: 0.22538 (0.21886) | > loss_0: 2.33543 (2.36164) | > loss_gen: 2.40261 (2.36366) | > loss_kl: 2.63293 (2.64455) | > loss_feat: 8.43172 (8.38018) | > loss_mel: 18.04967 (17.92073) | > loss_duration: 1.71193 (1.69947) | > loss_1: 33.22887 (33.00859)  --> STEP: 151 | > loss_disc: 2.35380 (2.36158) | > loss_disc_real_0: 0.10866 (0.11262) | > loss_disc_real_1: 0.21507 (0.21653) | > loss_disc_real_2: 0.19181 (0.20979) | > loss_disc_real_3: 0.23115 (0.23241) | > loss_disc_real_4: 0.21806 (0.21763) | > loss_disc_real_5: 0.21390 (0.21883) | > loss_0: 2.35380 (2.36158) | > loss_gen: 2.32118 (2.36338) | > loss_kl: 2.58509 (2.64415) | > loss_feat: 8.34169 (8.37992) | > loss_mel: 17.75010 (17.91960) | > loss_duration: 1.70279 (1.69949) | > loss_1: 32.70085 (33.00655)  --> STEP: 152 | > loss_disc: 2.31289 (2.36126) | > loss_disc_real_0: 0.10263 (0.11256) | > loss_disc_real_1: 0.22084 (0.21656) | > loss_disc_real_2: 0.21543 (0.20982) | > loss_disc_real_3: 0.23194 (0.23241) | > loss_disc_real_4: 0.20937 (0.21758) | > loss_disc_real_5: 0.22117 (0.21884) | > loss_0: 2.31289 (2.36126) | > loss_gen: 2.42276 (2.36377) | > loss_kl: 2.63426 (2.64409) | > loss_feat: 8.80876 (8.38274) | > loss_mel: 17.98882 (17.92006) | > loss_duration: 1.66513 (1.69927) | > loss_1: 33.51972 (33.00993)  --> STEP: 153 | > loss_disc: 2.37405 (2.36135) | > loss_disc_real_0: 0.12371 (0.11263) | > loss_disc_real_1: 0.21428 (0.21655) | > loss_disc_real_2: 0.21344 (0.20985) | > loss_disc_real_3: 0.23125 (0.23240) | > loss_disc_real_4: 0.20853 (0.21752) | > loss_disc_real_5: 0.23310 (0.21894) | > loss_0: 2.37405 (2.36135) | > loss_gen: 2.36491 (2.36378) | > loss_kl: 2.84127 (2.64538) | > loss_feat: 8.51817 (8.38363) | > loss_mel: 18.17647 (17.92173) | > loss_duration: 1.68218 (1.69915) | > loss_1: 33.58300 (33.01367)  --> STEP: 154 | > loss_disc: 2.33854 (2.36120) | > loss_disc_real_0: 0.08346 (0.11244) | > loss_disc_real_1: 0.18231 (0.21632) | > loss_disc_real_2: 0.21170 (0.20986) | > loss_disc_real_3: 0.24042 (0.23245) | > loss_disc_real_4: 0.21688 (0.21751) | > loss_disc_real_5: 0.21863 (0.21894) | > loss_0: 2.33854 (2.36120) | > loss_gen: 2.36885 (2.36381) | > loss_kl: 2.46031 (2.64418) | > loss_feat: 9.09860 (8.38827) | > loss_mel: 18.62453 (17.92629) | > loss_duration: 1.69775 (1.69915) | > loss_1: 34.25003 (33.02170) --> EVAL PERFORMANCE | > avg_loader_time: 0.03787 (+0.00000) | > avg_loss_disc: 2.36120 (+0.00000) | > avg_loss_disc_real_0: 0.11244 (+0.00000) | > avg_loss_disc_real_1: 0.21632 (+0.00000) | > avg_loss_disc_real_2: 0.20986 (+0.00000) | > avg_loss_disc_real_3: 0.23245 (+0.00000) | > avg_loss_disc_real_4: 0.21751 (+0.00000) | > avg_loss_disc_real_5: 0.21894 (+0.00000) | > avg_loss_0: 2.36120 (+0.00000) | > avg_loss_gen: 2.36381 (+0.00000) | > avg_loss_kl: 2.64418 (+0.00000) | > avg_loss_feat: 8.38827 (+0.00000) | > avg_loss_mel: 17.92629 (+0.00000) | > avg_loss_duration: 1.69915 (+0.00000) | > avg_loss_1: 33.02170 (+0.00000) > BEST MODEL : ./checkpoints/yourtts_multilingual/yourtts-du_en_fr_ge_it_pl_ptbr_sp-November-08-2022_12+19PM-0cbaa0f6/best_model_965288.pth  > EPOCH: 1/1000 --> ./checkpoints/yourtts_multilingual/yourtts-du_en_fr_ge_it_pl_ptbr_sp-November-08-2022_12+19PM-0cbaa0f6  > TRAINING (2022-11-08 21:38:24)   --> STEP: 12/15287 -- GLOBAL_STEP: 965300 | > loss_disc: 2.26686 (2.29428) | > loss_disc_real_0: 0.10225 (0.12681) | > loss_disc_real_1: 0.22173 (0.21754) | > loss_disc_real_2: 0.20989 (0.21454) | > loss_disc_real_3: 0.22484 (0.21731) | > loss_disc_real_4: 0.21377 (0.20932) | > loss_disc_real_5: 0.21466 (0.20321) | > loss_0: 2.26686 (2.29428) | > grad_norm_0: 39.96740 (18.93818) | > loss_gen: 2.44859 (2.53986) | > loss_kl: 2.67080 (2.69271) | > loss_feat: 8.57551 (8.65615) | > loss_mel: 17.74405 (17.69121) | > loss_duration: 1.73701 (1.70652) | > loss_1: 33.17597 (33.28645) | > grad_norm_1: 156.60741 (148.14664) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04230 (2.03330) | > loader_time: 0.04180 (0.04234)  --> STEP: 37/15287 -- GLOBAL_STEP: 965325 | > loss_disc: 2.35206 (2.29784) | > loss_disc_real_0: 0.12287 (0.11869) | > loss_disc_real_1: 0.22635 (0.21202) | > loss_disc_real_2: 0.16179 (0.21070) | > loss_disc_real_3: 0.23510 (0.21792) | > loss_disc_real_4: 0.18080 (0.21444) | > loss_disc_real_5: 0.19997 (0.20841) | > loss_0: 2.35206 (2.29784) | > grad_norm_0: 40.29798 (18.50195) | > loss_gen: 2.41208 (2.55226) | > loss_kl: 2.60505 (2.67829) | > loss_feat: 8.67519 (8.73928) | > loss_mel: 18.23297 (17.67956) | > loss_duration: 1.69254 (1.70127) | > loss_1: 33.61783 (33.35066) | > grad_norm_1: 144.12363 (158.26161) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13970 (2.05707) | > loader_time: 0.04280 (0.04054)  --> STEP: 62/15287 -- GLOBAL_STEP: 965350 | > loss_disc: 2.42278 (2.31313) | > loss_disc_real_0: 0.11708 (0.12169) | > loss_disc_real_1: 0.22027 (0.21263) | > loss_disc_real_2: 0.22709 (0.21328) | > loss_disc_real_3: 0.23308 (0.21901) | > loss_disc_real_4: 0.20324 (0.21459) | > loss_disc_real_5: 0.23034 (0.20930) | > loss_0: 2.42278 (2.31313) | > grad_norm_0: 9.64371 (18.00874) | > loss_gen: 2.65478 (2.57046) | > loss_kl: 2.57081 (2.67523) | > loss_feat: 8.99615 (8.74470) | > loss_mel: 18.19538 (17.74690) | > loss_duration: 1.72888 (1.70706) | > loss_1: 34.14599 (33.44436) | > grad_norm_1: 128.10886 (149.16896) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97120 (2.02973) | > loader_time: 0.03310 (0.03917)  --> STEP: 87/15287 -- GLOBAL_STEP: 965375 | > loss_disc: 2.42880 (2.32796) | > loss_disc_real_0: 0.10896 (0.12534) | > loss_disc_real_1: 0.24101 (0.21498) | > loss_disc_real_2: 0.24312 (0.21617) | > loss_disc_real_3: 0.24439 (0.21834) | > loss_disc_real_4: 0.23242 (0.21462) | > loss_disc_real_5: 0.22834 (0.21011) | > loss_0: 2.42880 (2.32796) | > grad_norm_0: 8.58678 (16.87262) | > loss_gen: 2.52216 (2.55735) | > loss_kl: 2.60238 (2.67158) | > loss_feat: 8.50686 (8.69255) | > loss_mel: 17.21443 (17.75214) | > loss_duration: 1.74466 (1.70591) | > loss_1: 32.59050 (33.37955) | > grad_norm_1: 61.81601 (128.62213) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.74740 (2.03757) | > loader_time: 0.03730 (0.03863)  --> STEP: 112/15287 -- GLOBAL_STEP: 965400 | > loss_disc: 2.34007 (2.33276) | > loss_disc_real_0: 0.14811 (0.12795) | > loss_disc_real_1: 0.17916 (0.21431) | > loss_disc_real_2: 0.20530 (0.21646) | > loss_disc_real_3: 0.22783 (0.21871) | > loss_disc_real_4: 0.21951 (0.21432) | > loss_disc_real_5: 0.18778 (0.21109) | > loss_0: 2.34007 (2.33276) | > grad_norm_0: 19.40116 (15.95947) | > loss_gen: 2.54982 (2.56293) | > loss_kl: 2.55816 (2.66320) | > loss_feat: 8.10669 (8.69099) | > loss_mel: 17.85958 (17.78978) | > loss_duration: 1.69892 (1.70687) | > loss_1: 32.77318 (33.41380) | > grad_norm_1: 154.40497 (124.24004) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.85270 (2.10797) | > loader_time: 0.03590 (0.03815)  --> STEP: 137/15287 -- GLOBAL_STEP: 965425 | > loss_disc: 2.33027 (2.32509) | > loss_disc_real_0: 0.11636 (0.12629) | > loss_disc_real_1: 0.22762 (0.21271) | > loss_disc_real_2: 0.24517 (0.21533) | > loss_disc_real_3: 0.21063 (0.21812) | > loss_disc_real_4: 0.22753 (0.21355) | > loss_disc_real_5: 0.22148 (0.21080) | > loss_0: 2.33027 (2.32509) | > grad_norm_0: 7.65302 (16.02738) | > loss_gen: 2.55346 (2.56333) | > loss_kl: 2.55649 (2.65808) | > loss_feat: 8.41613 (8.69147) | > loss_mel: 17.39790 (17.79541) | > loss_duration: 1.73001 (1.70637) | > loss_1: 32.65400 (33.41467) | > grad_norm_1: 110.23588 (127.35735) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34070 (2.13711) | > loader_time: 0.03740 (0.03797)  --> STEP: 162/15287 -- GLOBAL_STEP: 965450 | > loss_disc: 2.33393 (2.32104) | > loss_disc_real_0: 0.18398 (0.12598) | > loss_disc_real_1: 0.22047 (0.21205) | > loss_disc_real_2: 0.17582 (0.21393) | > loss_disc_real_3: 0.20783 (0.21741) | > loss_disc_real_4: 0.22052 (0.21376) | > loss_disc_real_5: 0.21593 (0.21112) | > loss_0: 2.33393 (2.32104) | > grad_norm_0: 15.59783 (16.06073) | > loss_gen: 2.55414 (2.56205) | > loss_kl: 2.76649 (2.65165) | > loss_feat: 8.63965 (8.70827) | > loss_mel: 17.84393 (17.80207) | > loss_duration: 1.72678 (1.70725) | > loss_1: 33.53099 (33.43130) | > grad_norm_1: 115.85020 (125.81878) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88920 (2.15639) | > loader_time: 0.03070 (0.03777)  --> STEP: 187/15287 -- GLOBAL_STEP: 965475 | > loss_disc: 2.25841 (2.31879) | > loss_disc_real_0: 0.09789 (0.12409) | > loss_disc_real_1: 0.23963 (0.21149) | > loss_disc_real_2: 0.23172 (0.21385) | > loss_disc_real_3: 0.24208 (0.21831) | > loss_disc_real_4: 0.18372 (0.21353) | > loss_disc_real_5: 0.20294 (0.21210) | > loss_0: 2.25841 (2.31879) | > grad_norm_0: 26.68189 (16.07801) | > loss_gen: 2.60778 (2.56121) | > loss_kl: 2.56792 (2.65041) | > loss_feat: 9.14212 (8.70927) | > loss_mel: 17.75117 (17.80026) | > loss_duration: 1.67763 (1.70659) | > loss_1: 33.74661 (33.42776) | > grad_norm_1: 165.01312 (125.18103) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28710 (2.17936) | > loader_time: 0.03630 (0.03819)  --> STEP: 212/15287 -- GLOBAL_STEP: 965500 | > loss_disc: 2.33208 (2.31556) | > loss_disc_real_0: 0.12812 (0.12378) | > loss_disc_real_1: 0.23412 (0.21162) | > loss_disc_real_2: 0.21499 (0.21356) | > loss_disc_real_3: 0.20767 (0.21836) | > loss_disc_real_4: 0.21172 (0.21365) | > loss_disc_real_5: 0.20857 (0.21207) | > loss_0: 2.33208 (2.31556) | > grad_norm_0: 28.81917 (16.09123) | > loss_gen: 2.43380 (2.56496) | > loss_kl: 2.74662 (2.64981) | > loss_feat: 8.94489 (8.72983) | > loss_mel: 17.89087 (17.80029) | > loss_duration: 1.64989 (1.70464) | > loss_1: 33.66608 (33.44955) | > grad_norm_1: 149.66281 (128.47813) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25330 (2.20282) | > loader_time: 0.03450 (0.03805)  --> STEP: 237/15287 -- GLOBAL_STEP: 965525 | > loss_disc: 2.27229 (2.31216) | > loss_disc_real_0: 0.09966 (0.12254) | > loss_disc_real_1: 0.19844 (0.21160) | > loss_disc_real_2: 0.20845 (0.21358) | > loss_disc_real_3: 0.16317 (0.21779) | > loss_disc_real_4: 0.20501 (0.21316) | > loss_disc_real_5: 0.22988 (0.21223) | > loss_0: 2.27229 (2.31216) | > grad_norm_0: 17.72246 (15.82810) | > loss_gen: 2.58224 (2.56869) | > loss_kl: 2.55257 (2.64614) | > loss_feat: 8.85408 (8.75501) | > loss_mel: 18.18316 (17.80257) | > loss_duration: 1.72462 (1.70365) | > loss_1: 33.89666 (33.47609) | > grad_norm_1: 140.38969 (130.30792) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15660 (2.20311) | > loader_time: 0.03790 (0.03798)  --> STEP: 262/15287 -- GLOBAL_STEP: 965550 | > loss_disc: 2.34675 (2.31411) | > loss_disc_real_0: 0.17681 (0.12252) | > loss_disc_real_1: 0.23819 (0.21144) | > loss_disc_real_2: 0.21371 (0.21400) | > loss_disc_real_3: 0.21535 (0.21794) | > loss_disc_real_4: 0.24662 (0.21351) | > loss_disc_real_5: 0.23053 (0.21242) | > loss_0: 2.34675 (2.31411) | > grad_norm_0: 21.37479 (15.88105) | > loss_gen: 2.69530 (2.56490) | > loss_kl: 2.72075 (2.64897) | > loss_feat: 8.94061 (8.74455) | > loss_mel: 17.87959 (17.80111) | > loss_duration: 1.71532 (1.70306) | > loss_1: 33.95156 (33.46262) | > grad_norm_1: 53.91967 (131.25613) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58220 (2.20383) | > loader_time: 0.03600 (0.03777)  --> STEP: 287/15287 -- GLOBAL_STEP: 965575 | > loss_disc: 2.33082 (2.31369) | > loss_disc_real_0: 0.10383 (0.12268) | > loss_disc_real_1: 0.25377 (0.21141) | > loss_disc_real_2: 0.21858 (0.21416) | > loss_disc_real_3: 0.22879 (0.21777) | > loss_disc_real_4: 0.24897 (0.21366) | > loss_disc_real_5: 0.21092 (0.21256) | > loss_0: 2.33082 (2.31369) | > grad_norm_0: 8.27789 (15.52343) | > loss_gen: 2.60832 (2.56471) | > loss_kl: 2.61790 (2.65212) | > loss_feat: 8.53534 (8.74802) | > loss_mel: 17.78451 (17.80595) | > loss_duration: 1.67963 (1.70347) | > loss_1: 33.22570 (33.47430) | > grad_norm_1: 134.95087 (127.93118) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40400 (2.20636) | > loader_time: 0.03800 (0.03758)  --> STEP: 312/15287 -- GLOBAL_STEP: 965600 | > loss_disc: 2.31374 (2.31277) | > loss_disc_real_0: 0.11406 (0.12294) | > loss_disc_real_1: 0.19032 (0.21143) | > loss_disc_real_2: 0.21409 (0.21450) | > loss_disc_real_3: 0.20203 (0.21771) | > loss_disc_real_4: 0.20621 (0.21322) | > loss_disc_real_5: 0.17917 (0.21189) | > loss_0: 2.31374 (2.31277) | > grad_norm_0: 12.20735 (15.43757) | > loss_gen: 2.42144 (2.56569) | > loss_kl: 2.59638 (2.65382) | > loss_feat: 8.44106 (8.74053) | > loss_mel: 17.15579 (17.80840) | > loss_duration: 1.67841 (1.70345) | > loss_1: 32.29308 (33.47190) | > grad_norm_1: 176.15419 (126.26302) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.68390 (2.21069) | > loader_time: 0.03260 (0.03752)  --> STEP: 337/15287 -- GLOBAL_STEP: 965625 | > loss_disc: 2.25232 (2.31202) | > loss_disc_real_0: 0.09144 (0.12242) | > loss_disc_real_1: 0.19333 (0.21146) | > loss_disc_real_2: 0.23690 (0.21455) | > loss_disc_real_3: 0.20917 (0.21746) | > loss_disc_real_4: 0.21541 (0.21320) | > loss_disc_real_5: 0.20044 (0.21202) | > loss_0: 2.25232 (2.31202) | > grad_norm_0: 6.59757 (15.33476) | > loss_gen: 2.75873 (2.56663) | > loss_kl: 2.68341 (2.65372) | > loss_feat: 9.23735 (8.74680) | > loss_mel: 17.52082 (17.81326) | > loss_duration: 1.73433 (1.70416) | > loss_1: 33.93464 (33.48460) | > grad_norm_1: 189.25043 (126.69652) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13770 (2.20931) | > loader_time: 0.03250 (0.03742)  --> STEP: 362/15287 -- GLOBAL_STEP: 965650 | > loss_disc: 2.24791 (2.31274) | > loss_disc_real_0: 0.07067 (0.12258) | > loss_disc_real_1: 0.20223 (0.21135) | > loss_disc_real_2: 0.19714 (0.21475) | > loss_disc_real_3: 0.22551 (0.21769) | > loss_disc_real_4: 0.20809 (0.21363) | > loss_disc_real_5: 0.19084 (0.21270) | > loss_0: 2.24791 (2.31274) | > grad_norm_0: 14.82477 (15.60702) | > loss_gen: 2.54195 (2.56860) | > loss_kl: 2.63267 (2.65378) | > loss_feat: 8.87548 (8.75064) | > loss_mel: 17.58787 (17.81194) | > loss_duration: 1.68588 (1.70437) | > loss_1: 33.32384 (33.48937) | > grad_norm_1: 183.29535 (127.08493) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13550 (2.21306) | > loader_time: 0.03600 (0.03730)  --> STEP: 387/15287 -- GLOBAL_STEP: 965675 | > loss_disc: 2.27279 (2.31080) | > loss_disc_real_0: 0.14185 (0.12232) | > loss_disc_real_1: 0.21648 (0.21128) | > loss_disc_real_2: 0.22464 (0.21483) | > loss_disc_real_3: 0.20959 (0.21753) | > loss_disc_real_4: 0.21372 (0.21348) | > loss_disc_real_5: 0.21898 (0.21272) | > loss_0: 2.27279 (2.31080) | > grad_norm_0: 12.88673 (15.78930) | > loss_gen: 2.50266 (2.56855) | > loss_kl: 2.62273 (2.65503) | > loss_feat: 8.82321 (8.74954) | > loss_mel: 17.61299 (17.81154) | > loss_duration: 1.69508 (1.70489) | > loss_1: 33.25667 (33.48958) | > grad_norm_1: 136.44121 (127.96452) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33520 (2.21764) | > loader_time: 0.03400 (0.03710)  --> STEP: 412/15287 -- GLOBAL_STEP: 965700 | > loss_disc: 2.30624 (2.31009) | > loss_disc_real_0: 0.14675 (0.12214) | > loss_disc_real_1: 0.19842 (0.21085) | > loss_disc_real_2: 0.18747 (0.21436) | > loss_disc_real_3: 0.19367 (0.21715) | > loss_disc_real_4: 0.21837 (0.21339) | > loss_disc_real_5: 0.21220 (0.21279) | > loss_0: 2.30624 (2.31009) | > grad_norm_0: 16.39517 (16.04383) | > loss_gen: 2.37286 (2.56715) | > loss_kl: 2.57569 (2.65668) | > loss_feat: 8.22543 (8.75074) | > loss_mel: 17.63733 (17.80547) | > loss_duration: 1.72202 (1.70510) | > loss_1: 32.53334 (33.48516) | > grad_norm_1: 93.22680 (128.47237) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17100 (2.21423) | > loader_time: 0.03840 (0.03694)  --> STEP: 437/15287 -- GLOBAL_STEP: 965725 | > loss_disc: 2.26775 (2.30980) | > loss_disc_real_0: 0.11813 (0.12211) | > loss_disc_real_1: 0.18252 (0.21085) | > loss_disc_real_2: 0.19551 (0.21419) | > loss_disc_real_3: 0.20419 (0.21735) | > loss_disc_real_4: 0.19847 (0.21320) | > loss_disc_real_5: 0.19999 (0.21247) | > loss_0: 2.26775 (2.30980) | > grad_norm_0: 9.70803 (16.15542) | > loss_gen: 2.44942 (2.56667) | > loss_kl: 2.72743 (2.65594) | > loss_feat: 8.64249 (8.75144) | > loss_mel: 17.81133 (17.80117) | > loss_duration: 1.65713 (1.70530) | > loss_1: 33.28780 (33.48056) | > grad_norm_1: 115.15688 (128.65141) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.12950 (2.20864) | > loader_time: 0.03250 (0.03694)  --> STEP: 462/15287 -- GLOBAL_STEP: 965750 | > loss_disc: 2.31846 (2.31212) | > loss_disc_real_0: 0.14996 (0.12207) | > loss_disc_real_1: 0.20319 (0.21104) | > loss_disc_real_2: 0.22664 (0.21458) | > loss_disc_real_3: 0.18870 (0.21790) | > loss_disc_real_4: 0.20138 (0.21367) | > loss_disc_real_5: 0.18570 (0.21250) | > loss_0: 2.31846 (2.31212) | > grad_norm_0: 21.26909 (16.27462) | > loss_gen: 2.52172 (2.56727) | > loss_kl: 2.68147 (2.65735) | > loss_feat: 8.89769 (8.75136) | > loss_mel: 17.70186 (17.81038) | > loss_duration: 1.67139 (1.70572) | > loss_1: 33.47413 (33.49213) | > grad_norm_1: 161.89912 (129.38655) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15170 (2.19628) | > loader_time: 0.03340 (0.03692)  --> STEP: 487/15287 -- GLOBAL_STEP: 965775 | > loss_disc: 2.33654 (2.31195) | > loss_disc_real_0: 0.11173 (0.12288) | > loss_disc_real_1: 0.21092 (0.21089) | > loss_disc_real_2: 0.23530 (0.21467) | > loss_disc_real_3: 0.21577 (0.21773) | > loss_disc_real_4: 0.23175 (0.21375) | > loss_disc_real_5: 0.20290 (0.21236) | > loss_0: 2.33654 (2.31195) | > grad_norm_0: 20.02240 (16.42083) | > loss_gen: 2.47067 (2.56787) | > loss_kl: 2.72291 (2.65684) | > loss_feat: 8.74103 (8.74712) | > loss_mel: 17.89610 (17.81065) | > loss_duration: 1.72532 (1.70615) | > loss_1: 33.55603 (33.48867) | > grad_norm_1: 187.86644 (130.13043) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.69810 (2.18655) | > loader_time: 0.05010 (0.03690)  --> STEP: 512/15287 -- GLOBAL_STEP: 965800 | > loss_disc: 2.32553 (2.31179) | > loss_disc_real_0: 0.13347 (0.12279) | > loss_disc_real_1: 0.17284 (0.21069) | > loss_disc_real_2: 0.21315 (0.21473) | > loss_disc_real_3: 0.20009 (0.21752) | > loss_disc_real_4: 0.20802 (0.21369) | > loss_disc_real_5: 0.18619 (0.21226) | > loss_0: 2.32553 (2.31179) | > grad_norm_0: 16.62630 (16.42769) | > loss_gen: 2.46441 (2.56612) | > loss_kl: 2.69251 (2.65484) | > loss_feat: 9.12370 (8.74525) | > loss_mel: 18.58838 (17.81610) | > loss_duration: 1.71507 (1.70638) | > loss_1: 34.58406 (33.48872) | > grad_norm_1: 181.51897 (130.55399) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95010 (2.18228) | > loader_time: 0.03390 (0.03691)  --> STEP: 537/15287 -- GLOBAL_STEP: 965825 | > loss_disc: 2.37192 (2.31287) | > loss_disc_real_0: 0.07735 (0.12311) | > loss_disc_real_1: 0.14916 (0.21084) | > loss_disc_real_2: 0.14732 (0.21493) | > loss_disc_real_3: 0.22342 (0.21724) | > loss_disc_real_4: 0.20456 (0.21340) | > loss_disc_real_5: 0.17333 (0.21199) | > loss_0: 2.37192 (2.31287) | > grad_norm_0: 7.56024 (16.40949) | > loss_gen: 3.08281 (2.56650) | > loss_kl: 2.62935 (2.65618) | > loss_feat: 9.48516 (8.74497) | > loss_mel: 18.76588 (17.82180) | > loss_duration: 1.65716 (1.70645) | > loss_1: 35.62037 (33.49593) | > grad_norm_1: 35.13970 (130.46465) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.79480 (2.17866) | > loader_time: 0.03410 (0.03689)  --> STEP: 562/15287 -- GLOBAL_STEP: 965850 | > loss_disc: 2.34770 (2.31369) | > loss_disc_real_0: 0.14438 (0.12392) | > loss_disc_real_1: 0.18668 (0.21108) | > loss_disc_real_2: 0.25560 (0.21531) | > loss_disc_real_3: 0.21148 (0.21729) | > loss_disc_real_4: 0.21786 (0.21359) | > loss_disc_real_5: 0.21141 (0.21213) | > loss_0: 2.34770 (2.31369) | > grad_norm_0: 17.72546 (16.27214) | > loss_gen: 2.62525 (2.56919) | > loss_kl: 2.70504 (2.65746) | > loss_feat: 8.48577 (8.74413) | > loss_mel: 17.91360 (17.82887) | > loss_duration: 1.71782 (1.70656) | > loss_1: 33.44749 (33.50624) | > grad_norm_1: 135.65105 (129.60178) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17780 (2.17220) | > loader_time: 0.03620 (0.03682)  --> STEP: 587/15287 -- GLOBAL_STEP: 965875 | > loss_disc: 2.34307 (2.31417) | > loss_disc_real_0: 0.11682 (0.12396) | > loss_disc_real_1: 0.19583 (0.21108) | > loss_disc_real_2: 0.20731 (0.21558) | > loss_disc_real_3: 0.21157 (0.21738) | > loss_disc_real_4: 0.21667 (0.21370) | > loss_disc_real_5: 0.21063 (0.21217) | > loss_0: 2.34307 (2.31417) | > grad_norm_0: 15.40058 (16.31916) | > loss_gen: 2.42742 (2.56848) | > loss_kl: 2.53836 (2.65663) | > loss_feat: 8.53348 (8.74415) | > loss_mel: 17.52620 (17.82840) | > loss_duration: 1.68264 (1.70654) | > loss_1: 32.70810 (33.50423) | > grad_norm_1: 153.38783 (130.08275) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03380 (2.19141) | > loader_time: 0.04370 (0.03683)  --> STEP: 612/15287 -- GLOBAL_STEP: 965900 | > loss_disc: 2.37604 (2.31457) | > loss_disc_real_0: 0.14777 (0.12404) | > loss_disc_real_1: 0.24948 (0.21114) | > loss_disc_real_2: 0.20515 (0.21564) | > loss_disc_real_3: 0.23431 (0.21757) | > loss_disc_real_4: 0.23849 (0.21375) | > loss_disc_real_5: 0.19800 (0.21226) | > loss_0: 2.37604 (2.31457) | > grad_norm_0: 20.52303 (16.13366) | > loss_gen: 2.52800 (2.56931) | > loss_kl: 2.59937 (2.65603) | > loss_feat: 8.80600 (8.74187) | > loss_mel: 18.11962 (17.82976) | > loss_duration: 1.68376 (1.70626) | > loss_1: 33.73675 (33.50325) | > grad_norm_1: 107.05197 (128.38159) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43960 (2.19996) | > loader_time: 0.03830 (0.03682)  --> STEP: 637/15287 -- GLOBAL_STEP: 965925 | > loss_disc: 2.30730 (2.31638) | > loss_disc_real_0: 0.10446 (0.12433) | > loss_disc_real_1: 0.21822 (0.21150) | > loss_disc_real_2: 0.19018 (0.21576) | > loss_disc_real_3: 0.21370 (0.21770) | > loss_disc_real_4: 0.19436 (0.21387) | > loss_disc_real_5: 0.21668 (0.21234) | > loss_0: 2.30730 (2.31638) | > grad_norm_0: 7.00864 (15.98402) | > loss_gen: 2.49541 (2.56837) | > loss_kl: 2.59759 (2.65590) | > loss_feat: 8.82937 (8.74094) | > loss_mel: 17.72869 (17.83585) | > loss_duration: 1.71854 (1.70662) | > loss_1: 33.36961 (33.50772) | > grad_norm_1: 84.48645 (126.52169) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56770 (2.20352) | > loader_time: 0.03760 (0.03688)  --> STEP: 662/15287 -- GLOBAL_STEP: 965950 | > loss_disc: 2.30550 (2.31687) | > loss_disc_real_0: 0.14366 (0.12434) | > loss_disc_real_1: 0.20742 (0.21140) | > loss_disc_real_2: 0.22212 (0.21585) | > loss_disc_real_3: 0.25768 (0.21779) | > loss_disc_real_4: 0.23244 (0.21398) | > loss_disc_real_5: 0.20954 (0.21244) | > loss_0: 2.30550 (2.31687) | > grad_norm_0: 6.76220 (15.88322) | > loss_gen: 2.51285 (2.56791) | > loss_kl: 2.66850 (2.65613) | > loss_feat: 8.64598 (8.73706) | > loss_mel: 17.47222 (17.83774) | > loss_duration: 1.69813 (1.70684) | > loss_1: 32.99767 (33.50571) | > grad_norm_1: 49.44468 (124.97680) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01710 (2.20085) | > loader_time: 0.03580 (0.03695)  --> STEP: 687/15287 -- GLOBAL_STEP: 965975 | > loss_disc: 2.37668 (2.31692) | > loss_disc_real_0: 0.09075 (0.12427) | > loss_disc_real_1: 0.20903 (0.21146) | > loss_disc_real_2: 0.22335 (0.21601) | > loss_disc_real_3: 0.25988 (0.21771) | > loss_disc_real_4: 0.23504 (0.21396) | > loss_disc_real_5: 0.22155 (0.21254) | > loss_0: 2.37668 (2.31692) | > grad_norm_0: 15.58338 (15.73210) | > loss_gen: 2.40700 (2.56879) | > loss_kl: 2.65103 (2.65612) | > loss_feat: 8.45025 (8.73511) | > loss_mel: 17.31465 (17.83949) | > loss_duration: 1.64183 (1.70702) | > loss_1: 32.46475 (33.50657) | > grad_norm_1: 60.81159 (124.42695) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19410 (2.19212) | > loader_time: 0.03750 (0.03698)  --> STEP: 712/15287 -- GLOBAL_STEP: 966000 | > loss_disc: 2.29718 (2.31707) | > loss_disc_real_0: 0.09479 (0.12416) | > loss_disc_real_1: 0.24623 (0.21162) | > loss_disc_real_2: 0.25043 (0.21595) | > loss_disc_real_3: 0.19817 (0.21764) | > loss_disc_real_4: 0.21897 (0.21413) | > loss_disc_real_5: 0.18567 (0.21254) | > loss_0: 2.29718 (2.31707) | > grad_norm_0: 18.63864 (15.75443) | > loss_gen: 2.64151 (2.56811) | > loss_kl: 2.77901 (2.65557) | > loss_feat: 8.48585 (8.73312) | > loss_mel: 17.86329 (17.83729) | > loss_duration: 1.68214 (1.70708) | > loss_1: 33.45181 (33.50121) | > grad_norm_1: 48.53092 (123.93986) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.59900 (2.18628) | > loader_time: 0.04500 (0.03701)  --> STEP: 737/15287 -- GLOBAL_STEP: 966025 | > loss_disc: 2.30917 (2.31714) | > loss_disc_real_0: 0.13615 (0.12441) | > loss_disc_real_1: 0.21210 (0.21171) | > loss_disc_real_2: 0.20999 (0.21596) | > loss_disc_real_3: 0.20312 (0.21772) | > loss_disc_real_4: 0.21517 (0.21413) | > loss_disc_real_5: 0.19832 (0.21261) | > loss_0: 2.30917 (2.31714) | > grad_norm_0: 16.66073 (15.64861) | > loss_gen: 2.62293 (2.56909) | > loss_kl: 2.70098 (2.65496) | > loss_feat: 8.70821 (8.73080) | > loss_mel: 17.95883 (17.83643) | > loss_duration: 1.71848 (1.70716) | > loss_1: 33.70943 (33.49847) | > grad_norm_1: 92.21629 (123.56363) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01370 (2.17987) | > loader_time: 0.03770 (0.03701)  --> STEP: 762/15287 -- GLOBAL_STEP: 966050 | > loss_disc: 2.39238 (2.31729) | > loss_disc_real_0: 0.20597 (0.12474) | > loss_disc_real_1: 0.16730 (0.21155) | > loss_disc_real_2: 0.18663 (0.21579) | > loss_disc_real_3: 0.28669 (0.21791) | > loss_disc_real_4: 0.23777 (0.21426) | > loss_disc_real_5: 0.25513 (0.21278) | > loss_0: 2.39238 (2.31729) | > grad_norm_0: 51.83699 (15.74667) | > loss_gen: 2.79551 (2.57052) | > loss_kl: 2.63033 (2.65506) | > loss_feat: 8.82487 (8.72640) | > loss_mel: 17.52630 (17.83236) | > loss_duration: 1.71147 (1.70684) | > loss_1: 33.48847 (33.49120) | > grad_norm_1: 148.36281 (123.81450) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.77930 (2.17437) | > loader_time: 0.03200 (0.03701)  --> STEP: 787/15287 -- GLOBAL_STEP: 966075 | > loss_disc: 2.24968 (2.31720) | > loss_disc_real_0: 0.13960 (0.12482) | > loss_disc_real_1: 0.20415 (0.21142) | > loss_disc_real_2: 0.21974 (0.21573) | > loss_disc_real_3: 0.16273 (0.21817) | > loss_disc_real_4: 0.17852 (0.21421) | > loss_disc_real_5: 0.24349 (0.21285) | > loss_0: 2.24968 (2.31720) | > grad_norm_0: 22.09803 (15.66907) | > loss_gen: 2.53768 (2.57016) | > loss_kl: 2.63045 (2.65581) | > loss_feat: 8.69001 (8.72386) | > loss_mel: 18.19713 (17.82943) | > loss_duration: 1.73200 (1.70677) | > loss_1: 33.78727 (33.48605) | > grad_norm_1: 105.21194 (122.89083) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96740 (2.16851) | > loader_time: 0.03290 (0.03698)  --> STEP: 812/15287 -- GLOBAL_STEP: 966100 | > loss_disc: 2.33335 (2.31629) | > loss_disc_real_0: 0.17930 (0.12468) | > loss_disc_real_1: 0.20129 (0.21130) | > loss_disc_real_2: 0.21205 (0.21564) | > loss_disc_real_3: 0.21380 (0.21823) | > loss_disc_real_4: 0.19114 (0.21419) | > loss_disc_real_5: 0.21403 (0.21281) | > loss_0: 2.33335 (2.31629) | > grad_norm_0: 15.37113 (15.56760) | > loss_gen: 2.65470 (2.57038) | > loss_kl: 2.76660 (2.65548) | > loss_feat: 8.85632 (8.72480) | > loss_mel: 18.31231 (17.82911) | > loss_duration: 1.67194 (1.70667) | > loss_1: 34.26187 (33.48648) | > grad_norm_1: 80.92580 (122.09212) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01170 (2.16259) | > loader_time: 0.03360 (0.03694)  --> STEP: 837/15287 -- GLOBAL_STEP: 966125 | > loss_disc: 2.30260 (2.31550) | > loss_disc_real_0: 0.12171 (0.12476) | > loss_disc_real_1: 0.21341 (0.21115) | > loss_disc_real_2: 0.24772 (0.21552) | > loss_disc_real_3: 0.23070 (0.21810) | > loss_disc_real_4: 0.25753 (0.21414) | > loss_disc_real_5: 0.20252 (0.21281) | > loss_0: 2.30260 (2.31550) | > grad_norm_0: 17.01766 (15.51796) | > loss_gen: 2.65991 (2.57101) | > loss_kl: 2.49167 (2.65563) | > loss_feat: 8.30527 (8.72835) | > loss_mel: 17.49906 (17.82672) | > loss_duration: 1.69911 (1.70661) | > loss_1: 32.65501 (33.48835) | > grad_norm_1: 98.41331 (122.02814) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99560 (2.15710) | > loader_time: 0.03960 (0.03694)  --> STEP: 862/15287 -- GLOBAL_STEP: 966150 | > loss_disc: 2.35678 (2.31439) | > loss_disc_real_0: 0.11870 (0.12451) | > loss_disc_real_1: 0.19654 (0.21092) | > loss_disc_real_2: 0.20833 (0.21543) | > loss_disc_real_3: 0.21304 (0.21803) | > loss_disc_real_4: 0.19446 (0.21410) | > loss_disc_real_5: 0.23057 (0.21293) | > loss_0: 2.35678 (2.31439) | > grad_norm_0: 15.32514 (15.51489) | > loss_gen: 2.56227 (2.57133) | > loss_kl: 2.59391 (2.65520) | > loss_feat: 8.58486 (8.73353) | > loss_mel: 17.21471 (17.82477) | > loss_duration: 1.73778 (1.70663) | > loss_1: 32.69353 (33.49149) | > grad_norm_1: 156.52028 (122.51867) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04430 (2.15168) | > loader_time: 0.03610 (0.03690)  --> STEP: 887/15287 -- GLOBAL_STEP: 966175 | > loss_disc: 2.27235 (2.31426) | > loss_disc_real_0: 0.06950 (0.12464) | > loss_disc_real_1: 0.20701 (0.21079) | > loss_disc_real_2: 0.20582 (0.21525) | > loss_disc_real_3: 0.22499 (0.21800) | > loss_disc_real_4: 0.20051 (0.21407) | > loss_disc_real_5: 0.20130 (0.21297) | > loss_0: 2.27235 (2.31426) | > grad_norm_0: 17.76957 (15.54148) | > loss_gen: 2.51472 (2.57037) | > loss_kl: 2.60080 (2.65550) | > loss_feat: 8.45063 (8.73040) | > loss_mel: 17.81267 (17.82054) | > loss_duration: 1.69194 (1.70674) | > loss_1: 33.07076 (33.48357) | > grad_norm_1: 185.59254 (122.87856) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94500 (2.14592) | > loader_time: 0.03260 (0.03687)  --> STEP: 912/15287 -- GLOBAL_STEP: 966200 | > loss_disc: 2.27705 (2.31309) | > loss_disc_real_0: 0.13788 (0.12443) | > loss_disc_real_1: 0.18880 (0.21067) | > loss_disc_real_2: 0.19627 (0.21510) | > loss_disc_real_3: 0.24326 (0.21795) | > loss_disc_real_4: 0.22201 (0.21400) | > loss_disc_real_5: 0.20371 (0.21289) | > loss_0: 2.27705 (2.31309) | > grad_norm_0: 7.80535 (15.47379) | > loss_gen: 2.52272 (2.57059) | > loss_kl: 2.67977 (2.65602) | > loss_feat: 8.94789 (8.73206) | > loss_mel: 18.02901 (17.82164) | > loss_duration: 1.72138 (1.70661) | > loss_1: 33.90077 (33.48694) | > grad_norm_1: 119.02565 (123.09609) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96410 (2.14151) | > loader_time: 0.03590 (0.03685)  --> STEP: 937/15287 -- GLOBAL_STEP: 966225 | > loss_disc: 2.29556 (2.31213) | > loss_disc_real_0: 0.10183 (0.12409) | > loss_disc_real_1: 0.21805 (0.21064) | > loss_disc_real_2: 0.24134 (0.21503) | > loss_disc_real_3: 0.20457 (0.21786) | > loss_disc_real_4: 0.21395 (0.21400) | > loss_disc_real_5: 0.21475 (0.21292) | > loss_0: 2.29556 (2.31213) | > grad_norm_0: 11.74831 (15.50652) | > loss_gen: 2.55492 (2.57069) | > loss_kl: 2.67073 (2.65676) | > loss_feat: 8.66337 (8.73585) | > loss_mel: 17.60888 (17.81873) | > loss_duration: 1.69397 (1.70656) | > loss_1: 33.19186 (33.48860) | > grad_norm_1: 49.71108 (123.15684) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15440 (2.13776) | > loader_time: 0.04020 (0.03688)  --> STEP: 962/15287 -- GLOBAL_STEP: 966250 | > loss_disc: 2.26197 (2.31117) | > loss_disc_real_0: 0.15575 (0.12390) | > loss_disc_real_1: 0.20393 (0.21048) | > loss_disc_real_2: 0.25267 (0.21492) | > loss_disc_real_3: 0.20012 (0.21771) | > loss_disc_real_4: 0.25325 (0.21399) | > loss_disc_real_5: 0.19398 (0.21269) | > loss_0: 2.26197 (2.31117) | > grad_norm_0: 26.51636 (15.57089) | > loss_gen: 2.67133 (2.57069) | > loss_kl: 2.67603 (2.65637) | > loss_feat: 8.64824 (8.74001) | > loss_mel: 17.59292 (17.81661) | > loss_duration: 1.71908 (1.70654) | > loss_1: 33.30759 (33.49024) | > grad_norm_1: 161.95743 (123.95218) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04690 (2.13399) | > loader_time: 0.03940 (0.03688)  --> STEP: 987/15287 -- GLOBAL_STEP: 966275 | > loss_disc: 2.25958 (2.31061) | > loss_disc_real_0: 0.11167 (0.12375) | > loss_disc_real_1: 0.20735 (0.21052) | > loss_disc_real_2: 0.22485 (0.21502) | > loss_disc_real_3: 0.24842 (0.21781) | > loss_disc_real_4: 0.24509 (0.21417) | > loss_disc_real_5: 0.22159 (0.21276) | > loss_0: 2.25958 (2.31061) | > grad_norm_0: 21.02534 (15.56801) | > loss_gen: 2.62744 (2.57174) | > loss_kl: 2.71869 (2.65588) | > loss_feat: 8.61644 (8.74235) | > loss_mel: 17.73740 (17.81457) | > loss_duration: 1.74340 (1.70664) | > loss_1: 33.44337 (33.49121) | > grad_norm_1: 171.45490 (124.59320) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86260 (2.13237) | > loader_time: 0.07210 (0.03692)  --> STEP: 1012/15287 -- GLOBAL_STEP: 966300 | > loss_disc: 2.31885 (2.31059) | > loss_disc_real_0: 0.10670 (0.12358) | > loss_disc_real_1: 0.21626 (0.21054) | > loss_disc_real_2: 0.21054 (0.21502) | > loss_disc_real_3: 0.20019 (0.21777) | > loss_disc_real_4: 0.19055 (0.21424) | > loss_disc_real_5: 0.20578 (0.21269) | > loss_0: 2.31885 (2.31059) | > grad_norm_0: 17.09282 (15.52437) | > loss_gen: 2.42654 (2.57136) | > loss_kl: 2.60088 (2.65579) | > loss_feat: 8.49280 (8.74201) | > loss_mel: 17.52097 (17.81241) | > loss_duration: 1.67701 (1.70674) | > loss_1: 32.71819 (33.48834) | > grad_norm_1: 160.33220 (124.82561) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00010 (2.13040) | > loader_time: 0.03680 (0.03694)  --> STEP: 1037/15287 -- GLOBAL_STEP: 966325 | > loss_disc: 2.36355 (2.31019) | > loss_disc_real_0: 0.13081 (0.12352) | > loss_disc_real_1: 0.21645 (0.21044) | > loss_disc_real_2: 0.21486 (0.21495) | > loss_disc_real_3: 0.21221 (0.21766) | > loss_disc_real_4: 0.20798 (0.21415) | > loss_disc_real_5: 0.19054 (0.21266) | > loss_0: 2.36355 (2.31019) | > grad_norm_0: 15.85819 (15.52048) | > loss_gen: 2.63684 (2.57165) | > loss_kl: 2.72307 (2.65658) | > loss_feat: 9.15355 (8.74668) | > loss_mel: 17.77433 (17.81445) | > loss_duration: 1.71423 (1.70677) | > loss_1: 34.00201 (33.49618) | > grad_norm_1: 131.57066 (125.30977) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.79950 (2.12824) | > loader_time: 0.03590 (0.03696)  --> STEP: 1062/15287 -- GLOBAL_STEP: 966350 | > loss_disc: 2.38275 (2.31015) | > loss_disc_real_0: 0.14458 (0.12331) | > loss_disc_real_1: 0.20643 (0.21040) | > loss_disc_real_2: 0.21308 (0.21487) | > loss_disc_real_3: 0.24461 (0.21765) | > loss_disc_real_4: 0.24033 (0.21410) | > loss_disc_real_5: 0.23865 (0.21267) | > loss_0: 2.38275 (2.31015) | > grad_norm_0: 19.93305 (15.55259) | > loss_gen: 2.63492 (2.57133) | > loss_kl: 2.86016 (2.65636) | > loss_feat: 8.37411 (8.74563) | > loss_mel: 17.96437 (17.81034) | > loss_duration: 1.69916 (1.70686) | > loss_1: 33.53273 (33.49055) | > grad_norm_1: 58.55326 (126.09298) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.80730 (2.12572) | > loader_time: 0.04340 (0.03698)  --> STEP: 1087/15287 -- GLOBAL_STEP: 966375 | > loss_disc: 2.28925 (2.31003) | > loss_disc_real_0: 0.16762 (0.12334) | > loss_disc_real_1: 0.21059 (0.21036) | > loss_disc_real_2: 0.25275 (0.21492) | > loss_disc_real_3: 0.22801 (0.21765) | > loss_disc_real_4: 0.24242 (0.21415) | > loss_disc_real_5: 0.21842 (0.21270) | > loss_0: 2.28925 (2.31003) | > grad_norm_0: 25.46821 (15.57622) | > loss_gen: 2.90926 (2.57155) | > loss_kl: 2.63673 (2.65616) | > loss_feat: 8.55533 (8.74562) | > loss_mel: 17.42926 (17.80972) | > loss_duration: 1.74183 (1.70692) | > loss_1: 33.27240 (33.49001) | > grad_norm_1: 80.20901 (125.92469) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95220 (2.12161) | > loader_time: 0.03230 (0.03699)  --> STEP: 1112/15287 -- GLOBAL_STEP: 966400 | > loss_disc: 2.24604 (2.31042) | > loss_disc_real_0: 0.09000 (0.12345) | > loss_disc_real_1: 0.20650 (0.21048) | > loss_disc_real_2: 0.18366 (0.21494) | > loss_disc_real_3: 0.18595 (0.21758) | > loss_disc_real_4: 0.17982 (0.21411) | > loss_disc_real_5: 0.17027 (0.21267) | > loss_0: 2.24604 (2.31042) | > grad_norm_0: 16.85663 (15.50690) | > loss_gen: 2.49950 (2.57080) | > loss_kl: 2.57401 (2.65625) | > loss_feat: 8.82332 (8.74079) | > loss_mel: 17.76274 (17.80826) | > loss_duration: 1.71278 (1.70709) | > loss_1: 33.37235 (33.48324) | > grad_norm_1: 163.50024 (124.93983) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99090 (2.11961) | > loader_time: 0.03240 (0.03699)  --> STEP: 1137/15287 -- GLOBAL_STEP: 966425 | > loss_disc: 2.33125 (2.30978) | > loss_disc_real_0: 0.09933 (0.12334) | > loss_disc_real_1: 0.22694 (0.21050) | > loss_disc_real_2: 0.21934 (0.21493) | > loss_disc_real_3: 0.20949 (0.21748) | > loss_disc_real_4: 0.20328 (0.21407) | > loss_disc_real_5: 0.21795 (0.21268) | > loss_0: 2.33125 (2.30978) | > grad_norm_0: 12.33436 (15.47382) | > loss_gen: 2.63763 (2.57263) | > loss_kl: 2.72379 (2.65584) | > loss_feat: 9.09554 (8.74297) | > loss_mel: 17.66124 (17.80754) | > loss_duration: 1.68094 (1.70713) | > loss_1: 33.79914 (33.48615) | > grad_norm_1: 189.24873 (125.37860) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16650 (2.11744) | > loader_time: 0.03690 (0.03696)  --> STEP: 1162/15287 -- GLOBAL_STEP: 966450 | > loss_disc: 2.31227 (2.31051) | > loss_disc_real_0: 0.12901 (0.12322) | > loss_disc_real_1: 0.22683 (0.21073) | > loss_disc_real_2: 0.22102 (0.21507) | > loss_disc_real_3: 0.21129 (0.21781) | > loss_disc_real_4: 0.19674 (0.21430) | > loss_disc_real_5: 0.22168 (0.21278) | > loss_0: 2.31227 (2.31051) | > grad_norm_0: 7.80542 (15.45455) | > loss_gen: 2.53373 (2.57334) | > loss_kl: 2.59885 (2.65468) | > loss_feat: 8.84686 (8.74347) | > loss_mel: 18.01631 (17.80931) | > loss_duration: 1.71039 (1.70705) | > loss_1: 33.70613 (33.48791) | > grad_norm_1: 151.86288 (125.76855) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98610 (2.11507) | > loader_time: 0.03170 (0.03696)  --> STEP: 1187/15287 -- GLOBAL_STEP: 966475 | > loss_disc: 2.33198 (2.31003) | > loss_disc_real_0: 0.11502 (0.12297) | > loss_disc_real_1: 0.22240 (0.21070) | > loss_disc_real_2: 0.20937 (0.21506) | > loss_disc_real_3: 0.21969 (0.21779) | > loss_disc_real_4: 0.21660 (0.21419) | > loss_disc_real_5: 0.21165 (0.21275) | > loss_0: 2.33198 (2.31003) | > grad_norm_0: 7.73173 (15.48058) | > loss_gen: 2.65844 (2.57285) | > loss_kl: 2.68313 (2.65478) | > loss_feat: 8.80596 (8.74386) | > loss_mel: 17.84114 (17.80962) | > loss_duration: 1.69438 (1.70721) | > loss_1: 33.68305 (33.48838) | > grad_norm_1: 131.91479 (126.00642) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.74330 (2.11111) | > loader_time: 0.03240 (0.03698)  --> STEP: 1212/15287 -- GLOBAL_STEP: 966500 | > loss_disc: 2.21642 (2.30992) | > loss_disc_real_0: 0.11293 (0.12283) | > loss_disc_real_1: 0.20898 (0.21078) | > loss_disc_real_2: 0.22024 (0.21512) | > loss_disc_real_3: 0.20195 (0.21784) | > loss_disc_real_4: 0.21463 (0.21418) | > loss_disc_real_5: 0.18793 (0.21274) | > loss_0: 2.21642 (2.30992) | > grad_norm_0: 6.94125 (15.51748) | > loss_gen: 2.47368 (2.57281) | > loss_kl: 2.60038 (2.65417) | > loss_feat: 8.70754 (8.74484) | > loss_mel: 17.60992 (17.80906) | > loss_duration: 1.71843 (1.70725) | > loss_1: 33.10995 (33.48819) | > grad_norm_1: 69.66362 (126.51099) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.78570 (2.10670) | > loader_time: 0.03440 (0.03695)  --> STEP: 1237/15287 -- GLOBAL_STEP: 966525 | > loss_disc: 2.31297 (2.30957) | > loss_disc_real_0: 0.07711 (0.12282) | > loss_disc_real_1: 0.21548 (0.21063) | > loss_disc_real_2: 0.20350 (0.21509) | > loss_disc_real_3: 0.17852 (0.21763) | > loss_disc_real_4: 0.19069 (0.21398) | > loss_disc_real_5: 0.18434 (0.21253) | > loss_0: 2.31297 (2.30957) | > grad_norm_0: 22.00056 (15.55491) | > loss_gen: 2.42635 (2.57212) | > loss_kl: 2.79653 (2.65421) | > loss_feat: 9.03572 (8.74416) | > loss_mel: 18.30854 (17.80610) | > loss_duration: 1.67170 (1.70711) | > loss_1: 34.23885 (33.48375) | > grad_norm_1: 81.91164 (126.96521) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01470 (2.10394) | > loader_time: 0.03200 (0.03692)  --> STEP: 1262/15287 -- GLOBAL_STEP: 966550 | > loss_disc: 2.37294 (2.30922) | > loss_disc_real_0: 0.11295 (0.12261) | > loss_disc_real_1: 0.27827 (0.21069) | > loss_disc_real_2: 0.25069 (0.21513) | > loss_disc_real_3: 0.25248 (0.21760) | > loss_disc_real_4: 0.23945 (0.21393) | > loss_disc_real_5: 0.18952 (0.21244) | > loss_0: 2.37294 (2.30922) | > grad_norm_0: 15.14613 (15.46145) | > loss_gen: 2.53376 (2.57311) | > loss_kl: 2.68849 (2.65483) | > loss_feat: 8.69064 (8.74803) | > loss_mel: 18.14577 (17.80678) | > loss_duration: 1.69188 (1.70702) | > loss_1: 33.75056 (33.48981) | > grad_norm_1: 152.28761 (127.07365) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04940 (2.10037) | > loader_time: 0.03410 (0.03688)  --> STEP: 1287/15287 -- GLOBAL_STEP: 966575 | > loss_disc: 2.29183 (2.30920) | > loss_disc_real_0: 0.10566 (0.12260) | > loss_disc_real_1: 0.24067 (0.21070) | > loss_disc_real_2: 0.23433 (0.21511) | > loss_disc_real_3: 0.24282 (0.21760) | > loss_disc_real_4: 0.26741 (0.21395) | > loss_disc_real_5: 0.20776 (0.21241) | > loss_0: 2.29183 (2.30920) | > grad_norm_0: 9.60295 (15.47028) | > loss_gen: 2.50322 (2.57264) | > loss_kl: 2.50616 (2.65446) | > loss_feat: 8.64202 (8.74677) | > loss_mel: 18.10118 (17.80557) | > loss_duration: 1.69246 (1.70700) | > loss_1: 33.44504 (33.48647) | > grad_norm_1: 174.59598 (127.28864) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90270 (2.09750) | > loader_time: 0.03380 (0.03685)  --> STEP: 1312/15287 -- GLOBAL_STEP: 966600 | > loss_disc: 2.29548 (2.30870) | > loss_disc_real_0: 0.09076 (0.12239) | > loss_disc_real_1: 0.19973 (0.21068) | > loss_disc_real_2: 0.21399 (0.21505) | > loss_disc_real_3: 0.20277 (0.21759) | > loss_disc_real_4: 0.22227 (0.21386) | > loss_disc_real_5: 0.19815 (0.21241) | > loss_0: 2.29548 (2.30870) | > grad_norm_0: 12.95916 (15.45712) | > loss_gen: 2.70776 (2.57313) | > loss_kl: 2.74148 (2.65453) | > loss_feat: 9.30817 (8.74952) | > loss_mel: 18.05007 (17.80453) | > loss_duration: 1.71324 (1.70700) | > loss_1: 34.52072 (33.48875) | > grad_norm_1: 174.08055 (127.63438) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.77040 (2.09478) | > loader_time: 0.03420 (0.03681)  --> STEP: 1337/15287 -- GLOBAL_STEP: 966625 | > loss_disc: 2.17830 (2.30885) | > loss_disc_real_0: 0.10711 (0.12240) | > loss_disc_real_1: 0.18825 (0.21082) | > loss_disc_real_2: 0.19322 (0.21518) | > loss_disc_real_3: 0.20590 (0.21766) | > loss_disc_real_4: 0.19544 (0.21388) | > loss_disc_real_5: 0.17013 (0.21231) | > loss_0: 2.17830 (2.30885) | > grad_norm_0: 7.36930 (15.49120) | > loss_gen: 2.71567 (2.57329) | > loss_kl: 2.56169 (2.65468) | > loss_feat: 9.64211 (8.75190) | > loss_mel: 17.47378 (17.80562) | > loss_duration: 1.74606 (1.70703) | > loss_1: 34.13931 (33.49255) | > grad_norm_1: 164.10129 (127.92963) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99160 (2.09137) | > loader_time: 0.03440 (0.03678)  --> STEP: 1362/15287 -- GLOBAL_STEP: 966650 | > loss_disc: 2.25680 (2.30906) | > loss_disc_real_0: 0.12360 (0.12238) | > loss_disc_real_1: 0.21708 (0.21088) | > loss_disc_real_2: 0.19238 (0.21514) | > loss_disc_real_3: 0.17803 (0.21768) | > loss_disc_real_4: 0.17844 (0.21385) | > loss_disc_real_5: 0.17892 (0.21229) | > loss_0: 2.25680 (2.30906) | > grad_norm_0: 15.68117 (15.52563) | > loss_gen: 2.58581 (2.57331) | > loss_kl: 2.65993 (2.65459) | > loss_feat: 9.36532 (8.75373) | > loss_mel: 18.28575 (17.80434) | > loss_duration: 1.70593 (1.70690) | > loss_1: 34.60275 (33.49290) | > grad_norm_1: 116.01458 (128.18654) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.77030 (2.08824) | > loader_time: 0.03360 (0.03675)  --> STEP: 1387/15287 -- GLOBAL_STEP: 966675 | > loss_disc: 2.26092 (2.30932) | > loss_disc_real_0: 0.10294 (0.12231) | > loss_disc_real_1: 0.18668 (0.21087) | > loss_disc_real_2: 0.20519 (0.21512) | > loss_disc_real_3: 0.21299 (0.21767) | > loss_disc_real_4: 0.19434 (0.21378) | > loss_disc_real_5: 0.17338 (0.21229) | > loss_0: 2.26092 (2.30932) | > grad_norm_0: 20.12914 (15.53699) | > loss_gen: 2.53245 (2.57259) | > loss_kl: 2.57123 (2.65492) | > loss_feat: 9.22365 (8.75256) | > loss_mel: 18.09091 (17.80325) | > loss_duration: 1.70046 (1.70665) | > loss_1: 34.11870 (33.48998) | > grad_norm_1: 230.24721 (128.26224) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18810 (2.08606) | > loader_time: 0.03300 (0.03671)  --> STEP: 1412/15287 -- GLOBAL_STEP: 966700 | > loss_disc: 2.34236 (2.30925) | > loss_disc_real_0: 0.13679 (0.12228) | > loss_disc_real_1: 0.21731 (0.21091) | > loss_disc_real_2: 0.22510 (0.21515) | > loss_disc_real_3: 0.19231 (0.21762) | > loss_disc_real_4: 0.20725 (0.21378) | > loss_disc_real_5: 0.20553 (0.21226) | > loss_0: 2.34236 (2.30925) | > grad_norm_0: 9.11915 (15.53584) | > loss_gen: 2.57240 (2.57253) | > loss_kl: 2.69635 (2.65529) | > loss_feat: 8.94657 (8.75262) | > loss_mel: 17.62122 (17.80131) | > loss_duration: 1.70450 (1.70644) | > loss_1: 33.54105 (33.48820) | > grad_norm_1: 46.81473 (128.59541) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96860 (2.08491) | > loader_time: 0.02940 (0.03668)  --> STEP: 1437/15287 -- GLOBAL_STEP: 966725 | > loss_disc: 2.43027 (2.30924) | > loss_disc_real_0: 0.19758 (0.12224) | > loss_disc_real_1: 0.21524 (0.21088) | > loss_disc_real_2: 0.20309 (0.21510) | > loss_disc_real_3: 0.21270 (0.21753) | > loss_disc_real_4: 0.21739 (0.21377) | > loss_disc_real_5: 0.21604 (0.21229) | > loss_0: 2.43027 (2.30924) | > grad_norm_0: 15.34418 (15.53431) | > loss_gen: 2.55741 (2.57253) | > loss_kl: 2.64211 (2.65633) | > loss_feat: 8.15286 (8.75342) | > loss_mel: 17.63572 (17.80152) | > loss_duration: 1.70796 (1.70660) | > loss_1: 32.69607 (33.49043) | > grad_norm_1: 122.83636 (128.64804) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08790 (2.08203) | > loader_time: 0.03350 (0.03664)  --> STEP: 1462/15287 -- GLOBAL_STEP: 966750 | > loss_disc: 2.29888 (2.30952) | > loss_disc_real_0: 0.13015 (0.12231) | > loss_disc_real_1: 0.21050 (0.21090) | > loss_disc_real_2: 0.23011 (0.21512) | > loss_disc_real_3: 0.22048 (0.21752) | > loss_disc_real_4: 0.20271 (0.21374) | > loss_disc_real_5: 0.20211 (0.21228) | > loss_0: 2.29888 (2.30952) | > grad_norm_0: 19.37451 (15.52247) | > loss_gen: 2.62168 (2.57177) | > loss_kl: 2.69839 (2.65664) | > loss_feat: 8.69143 (8.75110) | > loss_mel: 17.64354 (17.80149) | > loss_duration: 1.65260 (1.70682) | > loss_1: 33.30764 (33.48785) | > grad_norm_1: 146.43768 (128.58710) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98200 (2.08017) | > loader_time: 0.04060 (0.03660)  --> STEP: 1487/15287 -- GLOBAL_STEP: 966775 | > loss_disc: 2.30685 (2.30999) | > loss_disc_real_0: 0.10796 (0.12226) | > loss_disc_real_1: 0.22311 (0.21101) | > loss_disc_real_2: 0.23293 (0.21526) | > loss_disc_real_3: 0.22483 (0.21753) | > loss_disc_real_4: 0.17096 (0.21361) | > loss_disc_real_5: 0.20801 (0.21229) | > loss_0: 2.30685 (2.30999) | > grad_norm_0: 15.73425 (15.51630) | > loss_gen: 2.56825 (2.57174) | > loss_kl: 2.61438 (2.65672) | > loss_feat: 8.63690 (8.75013) | > loss_mel: 17.92362 (17.80496) | > loss_duration: 1.69949 (1.70687) | > loss_1: 33.44265 (33.49044) | > grad_norm_1: 151.87520 (128.69092) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.74820 (2.07875) | > loader_time: 0.03220 (0.03658)  --> STEP: 1512/15287 -- GLOBAL_STEP: 966800 | > loss_disc: 2.33162 (2.30999) | > loss_disc_real_0: 0.12030 (0.12222) | > loss_disc_real_1: 0.20492 (0.21098) | > loss_disc_real_2: 0.20866 (0.21518) | > loss_disc_real_3: 0.19986 (0.21747) | > loss_disc_real_4: 0.18715 (0.21354) | > loss_disc_real_5: 0.20988 (0.21233) | > loss_0: 2.33162 (2.30999) | > grad_norm_0: 20.12097 (15.52193) | > loss_gen: 2.56535 (2.57147) | > loss_kl: 2.60340 (2.65586) | > loss_feat: 8.75310 (8.75082) | > loss_mel: 18.02059 (17.80451) | > loss_duration: 1.70856 (1.70682) | > loss_1: 33.65099 (33.48948) | > grad_norm_1: 165.53578 (128.99329) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08110 (2.07697) | > loader_time: 0.03040 (0.03655)  --> STEP: 1537/15287 -- GLOBAL_STEP: 966825 | > loss_disc: 2.23458 (2.30957) | > loss_disc_real_0: 0.09813 (0.12216) | > loss_disc_real_1: 0.21349 (0.21104) | > loss_disc_real_2: 0.20488 (0.21508) | > loss_disc_real_3: 0.21387 (0.21742) | > loss_disc_real_4: 0.24147 (0.21353) | > loss_disc_real_5: 0.22000 (0.21236) | > loss_0: 2.23458 (2.30957) | > grad_norm_0: 28.00873 (15.57389) | > loss_gen: 2.62237 (2.57180) | > loss_kl: 2.47900 (2.65512) | > loss_feat: 8.83626 (8.75277) | > loss_mel: 17.79991 (17.80330) | > loss_duration: 1.68588 (1.70681) | > loss_1: 33.42342 (33.48983) | > grad_norm_1: 268.32327 (129.40247) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95100 (2.07613) | > loader_time: 0.04030 (0.03657)  --> STEP: 1562/15287 -- GLOBAL_STEP: 966850 | > loss_disc: 2.20780 (2.30873) | > loss_disc_real_0: 0.08467 (0.12195) | > loss_disc_real_1: 0.20723 (0.21090) | > loss_disc_real_2: 0.20255 (0.21505) | > loss_disc_real_3: 0.19825 (0.21742) | > loss_disc_real_4: 0.18607 (0.21353) | > loss_disc_real_5: 0.18987 (0.21243) | > loss_0: 2.20780 (2.30873) | > grad_norm_0: 18.87028 (15.64266) | > loss_gen: 2.69057 (2.57255) | > loss_kl: 2.50475 (2.65488) | > loss_feat: 9.19803 (8.75512) | > loss_mel: 17.87481 (17.80183) | > loss_duration: 1.70957 (1.70683) | > loss_1: 33.97772 (33.49122) | > grad_norm_1: 239.40872 (130.30139) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98080 (2.07345) | > loader_time: 0.03980 (0.03656)  --> STEP: 1587/15287 -- GLOBAL_STEP: 966875 | > loss_disc: 2.29001 (2.30847) | > loss_disc_real_0: 0.08871 (0.12188) | > loss_disc_real_1: 0.23396 (0.21088) | > loss_disc_real_2: 0.22150 (0.21502) | > loss_disc_real_3: 0.23302 (0.21739) | > loss_disc_real_4: 0.25898 (0.21353) | > loss_disc_real_5: 0.19671 (0.21242) | > loss_0: 2.29001 (2.30847) | > grad_norm_0: 19.70009 (15.56733) | > loss_gen: 2.71255 (2.57296) | > loss_kl: 2.61217 (2.65545) | > loss_feat: 9.06562 (8.75735) | > loss_mel: 18.23536 (17.80185) | > loss_duration: 1.73397 (1.70682) | > loss_1: 34.35966 (33.49445) | > grad_norm_1: 126.12949 (129.60324) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.75770 (2.07176) | > loader_time: 0.03280 (0.03653)  --> STEP: 1612/15287 -- GLOBAL_STEP: 966900 | > loss_disc: 2.31323 (2.30893) | > loss_disc_real_0: 0.10231 (0.12196) | > loss_disc_real_1: 0.22127 (0.21088) | > loss_disc_real_2: 0.23688 (0.21504) | > loss_disc_real_3: 0.23493 (0.21740) | > loss_disc_real_4: 0.25005 (0.21356) | > loss_disc_real_5: 0.21614 (0.21241) | > loss_0: 2.31323 (2.30893) | > grad_norm_0: 11.08220 (15.52434) | > loss_gen: 2.49908 (2.57259) | > loss_kl: 2.64052 (2.65606) | > loss_feat: 8.31303 (8.75826) | > loss_mel: 17.37193 (17.80348) | > loss_duration: 1.76911 (1.70686) | > loss_1: 32.59367 (33.49728) | > grad_norm_1: 78.65025 (129.29823) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.78570 (2.07012) | > loader_time: 0.03620 (0.03652)  --> STEP: 1637/15287 -- GLOBAL_STEP: 966925 | > loss_disc: 2.28673 (2.30888) | > loss_disc_real_0: 0.09865 (0.12194) | > loss_disc_real_1: 0.19026 (0.21083) | > loss_disc_real_2: 0.19072 (0.21501) | > loss_disc_real_3: 0.16631 (0.21736) | > loss_disc_real_4: 0.20536 (0.21356) | > loss_disc_real_5: 0.23038 (0.21240) | > loss_0: 2.28673 (2.30888) | > grad_norm_0: 20.51159 (15.57240) | > loss_gen: 2.48591 (2.57210) | > loss_kl: 2.73449 (2.65540) | > loss_feat: 9.49927 (8.75907) | > loss_mel: 18.28146 (17.80319) | > loss_duration: 1.68474 (1.70675) | > loss_1: 34.68587 (33.49655) | > grad_norm_1: 126.59205 (129.51540) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37610 (2.06874) | > loader_time: 0.03700 (0.03650)  --> STEP: 1662/15287 -- GLOBAL_STEP: 966950 | > loss_disc: 2.26537 (2.30828) | > loss_disc_real_0: 0.11815 (0.12180) | > loss_disc_real_1: 0.19223 (0.21076) | > loss_disc_real_2: 0.19424 (0.21501) | > loss_disc_real_3: 0.19420 (0.21730) | > loss_disc_real_4: 0.19776 (0.21356) | > loss_disc_real_5: 0.19412 (0.21229) | > loss_0: 2.26537 (2.30828) | > grad_norm_0: 5.93504 (15.58502) | > loss_gen: 2.79092 (2.57239) | > loss_kl: 2.77856 (2.65526) | > loss_feat: 8.69827 (8.76114) | > loss_mel: 17.56073 (17.80300) | > loss_duration: 1.71680 (1.70667) | > loss_1: 33.54528 (33.49849) | > grad_norm_1: 149.60756 (129.72766) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00070 (2.06702) | > loader_time: 0.03860 (0.03649)  --> STEP: 1687/15287 -- GLOBAL_STEP: 966975 | > loss_disc: 2.23159 (2.30797) | > loss_disc_real_0: 0.10420 (0.12166) | > loss_disc_real_1: 0.21239 (0.21083) | > loss_disc_real_2: 0.21757 (0.21505) | > loss_disc_real_3: 0.20602 (0.21729) | > loss_disc_real_4: 0.19829 (0.21355) | > loss_disc_real_5: 0.19518 (0.21228) | > loss_0: 2.23159 (2.30797) | > grad_norm_0: 18.55214 (15.60487) | > loss_gen: 2.72536 (2.57278) | > loss_kl: 2.67103 (2.65571) | > loss_feat: 9.22125 (8.76389) | > loss_mel: 17.75535 (17.80442) | > loss_duration: 1.68292 (1.70680) | > loss_1: 34.05592 (33.50362) | > grad_norm_1: 199.12990 (129.96364) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92720 (2.06496) | > loader_time: 0.03060 (0.03646)  --> STEP: 1712/15287 -- GLOBAL_STEP: 967000 | > loss_disc: 2.24766 (2.30757) | > loss_disc_real_0: 0.10240 (0.12158) | > loss_disc_real_1: 0.21138 (0.21077) | > loss_disc_real_2: 0.25170 (0.21498) | > loss_disc_real_3: 0.19423 (0.21719) | > loss_disc_real_4: 0.18917 (0.21349) | > loss_disc_real_5: 0.20688 (0.21225) | > loss_0: 2.24766 (2.30757) | > grad_norm_0: 22.74345 (15.62900) | > loss_gen: 2.54948 (2.57274) | > loss_kl: 2.66429 (2.65552) | > loss_feat: 8.98598 (8.76649) | > loss_mel: 17.99616 (17.80489) | > loss_duration: 1.70187 (1.70678) | > loss_1: 33.89778 (33.50645) | > grad_norm_1: 211.17361 (130.26144) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02300 (2.06363) | > loader_time: 0.03310 (0.03644)  --> STEP: 1737/15287 -- GLOBAL_STEP: 967025 | > loss_disc: 2.30579 (2.30751) | > loss_disc_real_0: 0.10857 (0.12162) | > loss_disc_real_1: 0.22122 (0.21084) | > loss_disc_real_2: 0.20825 (0.21507) | > loss_disc_real_3: 0.21062 (0.21722) | > loss_disc_real_4: 0.20253 (0.21346) | > loss_disc_real_5: 0.22635 (0.21226) | > loss_0: 2.30579 (2.30751) | > grad_norm_0: 35.92378 (15.65447) | > loss_gen: 2.49375 (2.57327) | > loss_kl: 2.60939 (2.65550) | > loss_feat: 8.93458 (8.76917) | > loss_mel: 17.66185 (17.80695) | > loss_duration: 1.72997 (1.70682) | > loss_1: 33.42955 (33.51174) | > grad_norm_1: 209.88907 (130.66917) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11160 (2.06207) | > loader_time: 0.03700 (0.03644)  --> STEP: 1762/15287 -- GLOBAL_STEP: 967050 | > loss_disc: 2.37668 (2.30757) | > loss_disc_real_0: 0.09924 (0.12158) | > loss_disc_real_1: 0.20492 (0.21082) | > loss_disc_real_2: 0.21997 (0.21501) | > loss_disc_real_3: 0.22006 (0.21716) | > loss_disc_real_4: 0.20972 (0.21349) | > loss_disc_real_5: 0.20918 (0.21226) | > loss_0: 2.37668 (2.30757) | > grad_norm_0: 9.12049 (15.71762) | > loss_gen: 2.58128 (2.57269) | > loss_kl: 2.59686 (2.65519) | > loss_feat: 9.07060 (8.76798) | > loss_mel: 17.74554 (17.80656) | > loss_duration: 1.68865 (1.70678) | > loss_1: 33.68293 (33.50922) | > grad_norm_1: 188.71950 (131.11951) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26620 (2.06066) | > loader_time: 0.04310 (0.03641)  --> STEP: 1787/15287 -- GLOBAL_STEP: 967075 | > loss_disc: 2.39964 (2.30744) | > loss_disc_real_0: 0.07754 (0.12150) | > loss_disc_real_1: 0.21346 (0.21079) | > loss_disc_real_2: 0.18305 (0.21494) | > loss_disc_real_3: 0.23570 (0.21716) | > loss_disc_real_4: 0.22495 (0.21354) | > loss_disc_real_5: 0.23215 (0.21226) | > loss_0: 2.39964 (2.30744) | > grad_norm_0: 21.84609 (15.74151) | > loss_gen: 2.42124 (2.57252) | > loss_kl: 2.76667 (2.65520) | > loss_feat: 8.49410 (8.76866) | > loss_mel: 18.36411 (17.80619) | > loss_duration: 1.68629 (1.70677) | > loss_1: 33.73241 (33.50935) | > grad_norm_1: 101.50667 (131.19447) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90390 (2.05932) | > loader_time: 0.03230 (0.03641)  --> STEP: 1812/15287 -- GLOBAL_STEP: 967100 | > loss_disc: 2.26272 (2.30767) | > loss_disc_real_0: 0.10421 (0.12170) | > loss_disc_real_1: 0.17165 (0.21079) | > loss_disc_real_2: 0.18438 (0.21496) | > loss_disc_real_3: 0.20367 (0.21719) | > loss_disc_real_4: 0.18676 (0.21360) | > loss_disc_real_5: 0.19464 (0.21231) | > loss_0: 2.26272 (2.30767) | > grad_norm_0: 7.35657 (15.73888) | > loss_gen: 2.95531 (2.57335) | > loss_kl: 2.64469 (2.65514) | > loss_feat: 9.55854 (8.76918) | > loss_mel: 18.23840 (17.80766) | > loss_duration: 1.74041 (1.70673) | > loss_1: 35.13736 (33.51207) | > grad_norm_1: 148.85741 (131.01508) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94980 (2.05756) | > loader_time: 0.03290 (0.03640)  --> STEP: 1837/15287 -- GLOBAL_STEP: 967125 | > loss_disc: 2.27948 (2.30796) | > loss_disc_real_0: 0.14124 (0.12166) | > loss_disc_real_1: 0.24947 (0.21096) | > loss_disc_real_2: 0.22606 (0.21520) | > loss_disc_real_3: 0.22167 (0.21726) | > loss_disc_real_4: 0.24957 (0.21368) | > loss_disc_real_5: 0.24282 (0.21229) | > loss_0: 2.27948 (2.30796) | > grad_norm_0: 24.87654 (15.75132) | > loss_gen: 2.75285 (2.57366) | > loss_kl: 2.43113 (2.65481) | > loss_feat: 8.94249 (8.76729) | > loss_mel: 18.23670 (17.80762) | > loss_duration: 1.69624 (1.70665) | > loss_1: 34.05942 (33.51004) | > grad_norm_1: 123.39899 (131.35081) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98390 (2.05673) | > loader_time: 0.03090 (0.03640)  --> STEP: 1862/15287 -- GLOBAL_STEP: 967150 | > loss_disc: 2.36020 (2.30819) | > loss_disc_real_0: 0.13445 (0.12177) | > loss_disc_real_1: 0.22144 (0.21096) | > loss_disc_real_2: 0.23391 (0.21522) | > loss_disc_real_3: 0.21874 (0.21727) | > loss_disc_real_4: 0.24464 (0.21367) | > loss_disc_real_5: 0.21370 (0.21232) | > loss_0: 2.36020 (2.30819) | > grad_norm_0: 21.64342 (15.80286) | > loss_gen: 2.37030 (2.57324) | > loss_kl: 2.73207 (2.65423) | > loss_feat: 8.65853 (8.76579) | > loss_mel: 17.81451 (17.80580) | > loss_duration: 1.65950 (1.70661) | > loss_1: 33.23491 (33.50566) | > grad_norm_1: 204.29532 (131.40027) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92060 (2.05518) | > loader_time: 0.03400 (0.03639)  --> STEP: 1887/15287 -- GLOBAL_STEP: 967175 | > loss_disc: 2.27496 (2.30813) | > loss_disc_real_0: 0.14539 (0.12182) | > loss_disc_real_1: 0.19357 (0.21094) | > loss_disc_real_2: 0.21628 (0.21520) | > loss_disc_real_3: 0.22796 (0.21725) | > loss_disc_real_4: 0.22705 (0.21366) | > loss_disc_real_5: 0.18512 (0.21228) | > loss_0: 2.27496 (2.30813) | > grad_norm_0: 22.22193 (15.81145) | > loss_gen: 2.44150 (2.57342) | > loss_kl: 2.67498 (2.65453) | > loss_feat: 8.64230 (8.76673) | > loss_mel: 18.24555 (17.80721) | > loss_duration: 1.70976 (1.70659) | > loss_1: 33.71410 (33.50849) | > grad_norm_1: 171.01839 (131.75232) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.75310 (2.05308) | > loader_time: 0.03370 (0.03637)  --> STEP: 1912/15287 -- GLOBAL_STEP: 967200 | > loss_disc: 2.36446 (2.30828) | > loss_disc_real_0: 0.10213 (0.12181) | > loss_disc_real_1: 0.19230 (0.21093) | > loss_disc_real_2: 0.18801 (0.21519) | > loss_disc_real_3: 0.22551 (0.21732) | > loss_disc_real_4: 0.20846 (0.21369) | > loss_disc_real_5: 0.19429 (0.21228) | > loss_0: 2.36446 (2.30828) | > grad_norm_0: 6.77203 (15.76700) | > loss_gen: 2.61626 (2.57316) | > loss_kl: 2.58462 (2.65515) | > loss_feat: 8.48304 (8.76563) | > loss_mel: 17.54573 (17.80715) | > loss_duration: 1.71550 (1.70663) | > loss_1: 32.94515 (33.50773) | > grad_norm_1: 102.83555 (131.49054) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87580 (2.05168) | > loader_time: 0.03660 (0.03636)  --> STEP: 1937/15287 -- GLOBAL_STEP: 967225 | > loss_disc: 2.28662 (2.30830) | > loss_disc_real_0: 0.11785 (0.12186) | > loss_disc_real_1: 0.23026 (0.21098) | > loss_disc_real_2: 0.21040 (0.21519) | > loss_disc_real_3: 0.19785 (0.21735) | > loss_disc_real_4: 0.18130 (0.21368) | > loss_disc_real_5: 0.24329 (0.21229) | > loss_0: 2.28662 (2.30830) | > grad_norm_0: 16.45171 (15.73572) | > loss_gen: 2.62673 (2.57350) | > loss_kl: 2.76799 (2.65546) | > loss_feat: 9.13136 (8.76535) | > loss_mel: 17.93714 (17.80679) | > loss_duration: 1.75833 (1.70667) | > loss_1: 34.22155 (33.50778) | > grad_norm_1: 178.16412 (131.59456) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.72760 (2.04988) | > loader_time: 0.02970 (0.03633)  --> STEP: 1962/15287 -- GLOBAL_STEP: 967250 | > loss_disc: 2.27819 (2.30832) | > loss_disc_real_0: 0.10593 (0.12188) | > loss_disc_real_1: 0.21951 (0.21097) | > loss_disc_real_2: 0.22230 (0.21517) | > loss_disc_real_3: 0.21747 (0.21736) | > loss_disc_real_4: 0.22699 (0.21368) | > loss_disc_real_5: 0.22379 (0.21231) | > loss_0: 2.27819 (2.30832) | > grad_norm_0: 23.09074 (15.75257) | > loss_gen: 2.50438 (2.57319) | > loss_kl: 2.53771 (2.65546) | > loss_feat: 8.10811 (8.76429) | > loss_mel: 17.34855 (17.80658) | > loss_duration: 1.70169 (1.70657) | > loss_1: 32.20044 (33.50610) | > grad_norm_1: 182.05058 (131.78127) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98530 (2.04937) | > loader_time: 0.03450 (0.03631)  --> STEP: 1987/15287 -- GLOBAL_STEP: 967275 | > loss_disc: 2.29015 (2.30794) | > loss_disc_real_0: 0.13056 (0.12180) | > loss_disc_real_1: 0.18086 (0.21094) | > loss_disc_real_2: 0.18574 (0.21519) | > loss_disc_real_3: 0.18883 (0.21738) | > loss_disc_real_4: 0.18645 (0.21369) | > loss_disc_real_5: 0.23024 (0.21230) | > loss_0: 2.29015 (2.30794) | > grad_norm_0: 7.32346 (15.73268) | > loss_gen: 2.50468 (2.57343) | > loss_kl: 2.50120 (2.65542) | > loss_feat: 8.42718 (8.76423) | > loss_mel: 17.27645 (17.80495) | > loss_duration: 1.70663 (1.70654) | > loss_1: 32.41614 (33.50458) | > grad_norm_1: 158.10629 (131.84856) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94980 (2.04817) | > loader_time: 0.03320 (0.03630)  --> STEP: 2012/15287 -- GLOBAL_STEP: 967300 | > loss_disc: 2.32481 (2.30772) | > loss_disc_real_0: 0.15714 (0.12175) | > loss_disc_real_1: 0.20268 (0.21093) | > loss_disc_real_2: 0.21687 (0.21520) | > loss_disc_real_3: 0.20935 (0.21741) | > loss_disc_real_4: 0.24177 (0.21368) | > loss_disc_real_5: 0.21560 (0.21233) | > loss_0: 2.32481 (2.30772) | > grad_norm_0: 10.92182 (15.71193) | > loss_gen: 2.47140 (2.57357) | > loss_kl: 2.61159 (2.65596) | > loss_feat: 8.44019 (8.76529) | > loss_mel: 17.36490 (17.80497) | > loss_duration: 1.70494 (1.70640) | > loss_1: 32.59301 (33.50620) | > grad_norm_1: 93.24260 (131.90216) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.88430 (2.04878) | > loader_time: 0.04810 (0.03631)  --> STEP: 2037/15287 -- GLOBAL_STEP: 967325 | > loss_disc: 2.24994 (2.30764) | > loss_disc_real_0: 0.11506 (0.12169) | > loss_disc_real_1: 0.17427 (0.21091) | > loss_disc_real_2: 0.19840 (0.21519) | > loss_disc_real_3: 0.19725 (0.21739) | > loss_disc_real_4: 0.21333 (0.21370) | > loss_disc_real_5: 0.20093 (0.21233) | > loss_0: 2.24994 (2.30764) | > grad_norm_0: 14.38684 (15.70441) | > loss_gen: 2.55512 (2.57367) | > loss_kl: 2.65202 (2.65604) | > loss_feat: 8.79195 (8.76653) | > loss_mel: 18.08042 (17.80528) | > loss_duration: 1.72776 (1.70645) | > loss_1: 33.80728 (33.50796) | > grad_norm_1: 180.09270 (132.15976) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.82050 (2.04812) | > loader_time: 0.03790 (0.03631)  --> STEP: 2062/15287 -- GLOBAL_STEP: 967350 | > loss_disc: 2.30479 (2.30752) | > loss_disc_real_0: 0.11667 (0.12168) | > loss_disc_real_1: 0.21413 (0.21086) | > loss_disc_real_2: 0.22544 (0.21520) | > loss_disc_real_3: 0.21044 (0.21738) | > loss_disc_real_4: 0.20324 (0.21365) | > loss_disc_real_5: 0.24529 (0.21234) | > loss_0: 2.30479 (2.30752) | > grad_norm_0: 18.69699 (15.73021) | > loss_gen: 2.43255 (2.57360) | > loss_kl: 2.69163 (2.65636) | > loss_feat: 8.71891 (8.76732) | > loss_mel: 17.75253 (17.80524) | > loss_duration: 1.71132 (1.70645) | > loss_1: 33.30694 (33.50898) | > grad_norm_1: 141.05423 (132.37360) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96620 (2.04702) | > loader_time: 0.03540 (0.03631)  --> STEP: 2087/15287 -- GLOBAL_STEP: 967375 | > loss_disc: 2.35349 (2.30733) | > loss_disc_real_0: 0.20453 (0.12160) | > loss_disc_real_1: 0.25028 (0.21086) | > loss_disc_real_2: 0.21460 (0.21518) | > loss_disc_real_3: 0.20432 (0.21738) | > loss_disc_real_4: 0.18647 (0.21360) | > loss_disc_real_5: 0.20041 (0.21229) | > loss_0: 2.35349 (2.30733) | > grad_norm_0: 11.33942 (15.71859) | > loss_gen: 2.34464 (2.57371) | > loss_kl: 2.59063 (2.65682) | > loss_feat: 8.17848 (8.76868) | > loss_mel: 17.27908 (17.80582) | > loss_duration: 1.65986 (1.70642) | > loss_1: 32.05269 (33.51147) | > grad_norm_1: 148.94984 (132.58351) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98310 (2.04551) | > loader_time: 0.03760 (0.03630)  --> STEP: 2112/15287 -- GLOBAL_STEP: 967400 | > loss_disc: 2.22687 (2.30751) | > loss_disc_real_0: 0.08732 (0.12153) | > loss_disc_real_1: 0.23842 (0.21077) | > loss_disc_real_2: 0.25953 (0.21514) | > loss_disc_real_3: 0.20967 (0.21735) | > loss_disc_real_4: 0.21259 (0.21358) | > loss_disc_real_5: 0.19583 (0.21227) | > loss_0: 2.22687 (2.30751) | > grad_norm_0: 11.30873 (15.74388) | > loss_gen: 2.72064 (2.57285) | > loss_kl: 2.61555 (2.65722) | > loss_feat: 9.21094 (8.76702) | > loss_mel: 17.67790 (17.80556) | > loss_duration: 1.72556 (1.70642) | > loss_1: 33.95058 (33.50908) | > grad_norm_1: 180.38753 (132.80215) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88330 (2.04474) | > loader_time: 0.03470 (0.03630)  --> STEP: 2137/15287 -- GLOBAL_STEP: 967425 | > loss_disc: 2.42539 (2.30739) | > loss_disc_real_0: 0.12346 (0.12150) | > loss_disc_real_1: 0.21439 (0.21078) | > loss_disc_real_2: 0.22446 (0.21508) | > loss_disc_real_3: 0.24062 (0.21739) | > loss_disc_real_4: 0.22746 (0.21360) | > loss_disc_real_5: 0.21599 (0.21223) | > loss_0: 2.42539 (2.30739) | > grad_norm_0: 12.85544 (15.75176) | > loss_gen: 2.52646 (2.57321) | > loss_kl: 2.72964 (2.65761) | > loss_feat: 8.55221 (8.76847) | > loss_mel: 17.43431 (17.80512) | > loss_duration: 1.65557 (1.70642) | > loss_1: 32.89818 (33.51083) | > grad_norm_1: 175.13235 (132.91774) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96940 (2.04297) | > loader_time: 0.03440 (0.03628)  --> STEP: 2162/15287 -- GLOBAL_STEP: 967450 | > loss_disc: 2.33191 (2.30744) | > loss_disc_real_0: 0.14197 (0.12152) | > loss_disc_real_1: 0.17730 (0.21080) | > loss_disc_real_2: 0.21795 (0.21507) | > loss_disc_real_3: 0.22393 (0.21734) | > loss_disc_real_4: 0.21679 (0.21357) | > loss_disc_real_5: 0.19443 (0.21221) | > loss_0: 2.33191 (2.30744) | > grad_norm_0: 18.79682 (15.82071) | > loss_gen: 2.52644 (2.57276) | > loss_kl: 2.85497 (2.65754) | > loss_feat: 8.97449 (8.76743) | > loss_mel: 18.05778 (17.80482) | > loss_duration: 1.68401 (1.70636) | > loss_1: 34.09769 (33.50892) | > grad_norm_1: 74.91503 (133.34618) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.74360 (2.04161) | > loader_time: 0.02960 (0.03626)  --> STEP: 2187/15287 -- GLOBAL_STEP: 967475 | > loss_disc: 2.35390 (2.30722) | > loss_disc_real_0: 0.13822 (0.12152) | > loss_disc_real_1: 0.21391 (0.21073) | > loss_disc_real_2: 0.22335 (0.21505) | > loss_disc_real_3: 0.22763 (0.21731) | > loss_disc_real_4: 0.20248 (0.21358) | > loss_disc_real_5: 0.21166 (0.21218) | > loss_0: 2.35390 (2.30722) | > grad_norm_0: 13.74346 (15.82193) | > loss_gen: 2.51326 (2.57294) | > loss_kl: 2.75467 (2.65739) | > loss_feat: 8.39284 (8.76728) | > loss_mel: 17.76604 (17.80375) | > loss_duration: 1.67247 (1.70635) | > loss_1: 33.09927 (33.50773) | > grad_norm_1: 63.98735 (133.58441) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11030 (2.04059) | > loader_time: 0.03850 (0.03625)  --> STEP: 2212/15287 -- GLOBAL_STEP: 967500 | > loss_disc: 2.39134 (2.30757) | > loss_disc_real_0: 0.14879 (0.12161) | > loss_disc_real_1: 0.23354 (0.21076) | > loss_disc_real_2: 0.22525 (0.21508) | > loss_disc_real_3: 0.21206 (0.21736) | > loss_disc_real_4: 0.19445 (0.21362) | > loss_disc_real_5: 0.21899 (0.21215) | > loss_0: 2.39134 (2.30757) | > grad_norm_0: 7.87038 (15.82141) | > loss_gen: 2.59198 (2.57303) | > loss_kl: 2.59948 (2.65749) | > loss_feat: 8.19241 (8.76627) | > loss_mel: 17.62840 (17.80380) | > loss_duration: 1.71872 (1.70639) | > loss_1: 32.73100 (33.50699) | > grad_norm_1: 66.71936 (133.46509) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88430 (2.04012) | > loader_time: 0.03310 (0.03625)  --> STEP: 2237/15287 -- GLOBAL_STEP: 967525 | > loss_disc: 2.47867 (2.30788) | > loss_disc_real_0: 0.12479 (0.12163) | > loss_disc_real_1: 0.24982 (0.21077) | > loss_disc_real_2: 0.22522 (0.21517) | > loss_disc_real_3: 0.24168 (0.21737) | > loss_disc_real_4: 0.22073 (0.21370) | > loss_disc_real_5: 0.24286 (0.21219) | > loss_0: 2.47867 (2.30788) | > grad_norm_0: 36.64561 (15.83832) | > loss_gen: 2.37531 (2.57313) | > loss_kl: 2.53578 (2.65747) | > loss_feat: 8.28111 (8.76595) | > loss_mel: 17.78616 (17.80394) | > loss_duration: 1.69100 (1.70633) | > loss_1: 32.66935 (33.50681) | > grad_norm_1: 137.80766 (133.51744) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07010 (2.03915) | > loader_time: 0.03350 (0.03625)  --> STEP: 2262/15287 -- GLOBAL_STEP: 967550 | > loss_disc: 2.28591 (2.30809) | > loss_disc_real_0: 0.09647 (0.12162) | > loss_disc_real_1: 0.19773 (0.21079) | > loss_disc_real_2: 0.21181 (0.21517) | > loss_disc_real_3: 0.22874 (0.21740) | > loss_disc_real_4: 0.21048 (0.21368) | > loss_disc_real_5: 0.21872 (0.21217) | > loss_0: 2.28591 (2.30809) | > grad_norm_0: 11.36164 (15.85652) | > loss_gen: 2.65081 (2.57277) | > loss_kl: 2.67812 (2.65793) | > loss_feat: 8.58497 (8.76517) | > loss_mel: 17.46687 (17.80434) | > loss_duration: 1.75902 (1.70634) | > loss_1: 33.13978 (33.50655) | > grad_norm_1: 173.39177 (133.61655) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.75970 (2.03870) | > loader_time: 0.03460 (0.03625)  --> STEP: 2287/15287 -- GLOBAL_STEP: 967575 | > loss_disc: 2.33200 (2.30824) | > loss_disc_real_0: 0.17104 (0.12157) | > loss_disc_real_1: 0.22893 (0.21081) | > loss_disc_real_2: 0.21007 (0.21520) | > loss_disc_real_3: 0.20884 (0.21737) | > loss_disc_real_4: 0.22226 (0.21367) | > loss_disc_real_5: 0.20024 (0.21215) | > loss_0: 2.33200 (2.30824) | > grad_norm_0: 14.35044 (15.86299) | > loss_gen: 2.52096 (2.57249) | > loss_kl: 2.48619 (2.65759) | > loss_feat: 8.71544 (8.76552) | > loss_mel: 17.87517 (17.80597) | > loss_duration: 1.70746 (1.70634) | > loss_1: 33.30522 (33.50790) | > grad_norm_1: 144.98932 (133.64320) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95150 (2.03937) | > loader_time: 0.03400 (0.03625)  --> STEP: 2312/15287 -- GLOBAL_STEP: 967600 | > loss_disc: 2.30737 (2.30914) | > loss_disc_real_0: 0.12479 (0.12242) | > loss_disc_real_1: 0.22791 (0.21083) | > loss_disc_real_2: 0.23750 (0.21522) | > loss_disc_real_3: 0.22659 (0.21734) | > loss_disc_real_4: 0.20249 (0.21368) | > loss_disc_real_5: 0.21470 (0.21221) | > loss_0: 2.30737 (2.30914) | > grad_norm_0: 13.26973 (15.92762) | > loss_gen: 2.59701 (2.57231) | > loss_kl: 2.59846 (2.65762) | > loss_feat: 8.48640 (8.76541) | > loss_mel: 17.62704 (17.80568) | > loss_duration: 1.71419 (1.70622) | > loss_1: 33.02311 (33.50724) | > grad_norm_1: 138.51218 (133.84384) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14850 (2.03842) | > loader_time: 0.03330 (0.03626)  --> STEP: 2337/15287 -- GLOBAL_STEP: 967625 | > loss_disc: 2.23905 (2.30908) | > loss_disc_real_0: 0.10036 (0.12234) | > loss_disc_real_1: 0.20871 (0.21079) | > loss_disc_real_2: 0.20453 (0.21523) | > loss_disc_real_3: 0.22159 (0.21738) | > loss_disc_real_4: 0.18108 (0.21371) | > loss_disc_real_5: 0.22086 (0.21223) | > loss_0: 2.23905 (2.30908) | > grad_norm_0: 23.29703 (15.97596) | > loss_gen: 2.52941 (2.57209) | > loss_kl: 2.80097 (2.65719) | > loss_feat: 8.95812 (8.76553) | > loss_mel: 17.90453 (17.80408) | > loss_duration: 1.68502 (1.70615) | > loss_1: 33.87804 (33.50502) | > grad_norm_1: 250.44911 (134.13034) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.45680 (2.03736) | > loader_time: 0.03710 (0.03625)  --> STEP: 2362/15287 -- GLOBAL_STEP: 967650 | > loss_disc: 2.29117 (2.30872) | > loss_disc_real_0: 0.11202 (0.12231) | > loss_disc_real_1: 0.18915 (0.21077) | > loss_disc_real_2: 0.17671 (0.21519) | > loss_disc_real_3: 0.21432 (0.21738) | > loss_disc_real_4: 0.21373 (0.21373) | > loss_disc_real_5: 0.22339 (0.21216) | > loss_0: 2.29117 (2.30872) | > grad_norm_0: 20.67133 (15.98532) | > loss_gen: 2.44065 (2.57218) | > loss_kl: 2.69276 (2.65720) | > loss_feat: 9.29319 (8.76635) | > loss_mel: 17.69773 (17.80332) | > loss_duration: 1.71457 (1.70615) | > loss_1: 33.83890 (33.50518) | > grad_norm_1: 120.48059 (134.47520) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30280 (2.03672) | > loader_time: 0.03780 (0.03625)  --> STEP: 2387/15287 -- GLOBAL_STEP: 967675 | > loss_disc: 2.27264 (2.30856) | > loss_disc_real_0: 0.11844 (0.12223) | > loss_disc_real_1: 0.19816 (0.21077) | > loss_disc_real_2: 0.20855 (0.21516) | > loss_disc_real_3: 0.20502 (0.21731) | > loss_disc_real_4: 0.22248 (0.21369) | > loss_disc_real_5: 0.20942 (0.21215) | > loss_0: 2.27264 (2.30856) | > grad_norm_0: 8.51489 (16.00220) | > loss_gen: 2.55126 (2.57220) | > loss_kl: 2.59773 (2.65706) | > loss_feat: 9.14020 (8.76690) | > loss_mel: 18.33657 (17.80321) | > loss_duration: 1.67063 (1.70603) | > loss_1: 34.29639 (33.50541) | > grad_norm_1: 130.08432 (134.52180) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96820 (2.03650) | > loader_time: 0.03250 (0.03625)  --> STEP: 2412/15287 -- GLOBAL_STEP: 967700 | > loss_disc: 2.47868 (2.30899) | > loss_disc_real_0: 0.15587 (0.12221) | > loss_disc_real_1: 0.20344 (0.21075) | > loss_disc_real_2: 0.18830 (0.21513) | > loss_disc_real_3: 0.21152 (0.21733) | > loss_disc_real_4: 0.19918 (0.21366) | > loss_disc_real_5: 0.18645 (0.21216) | > loss_0: 2.47868 (2.30899) | > grad_norm_0: 10.82288 (15.97754) | > loss_gen: 2.71805 (2.57221) | > loss_kl: 2.67191 (2.65703) | > loss_feat: 8.98865 (8.76637) | > loss_mel: 18.14814 (17.80258) | > loss_duration: 1.73169 (1.70596) | > loss_1: 34.25845 (33.50416) | > grad_norm_1: 83.63571 (134.56091) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16240 (2.03637) | > loader_time: 0.04310 (0.03625)  --> STEP: 2437/15287 -- GLOBAL_STEP: 967725 | > loss_disc: 3.20986 (2.30898) | > loss_disc_real_0: 0.16566 (0.12226) | > loss_disc_real_1: 0.26066 (0.21081) | > loss_disc_real_2: 0.31802 (0.21522) | > loss_disc_real_3: 0.40452 (0.21742) | > loss_disc_real_4: 0.35048 (0.21376) | > loss_disc_real_5: 0.25112 (0.21207) | > loss_0: 3.20986 (2.30898) | > grad_norm_0: 41.21005 (16.07522) | > loss_gen: 2.24975 (2.57688) | > loss_kl: 2.66361 (2.65720) | > loss_feat: 7.74935 (8.77515) | > loss_mel: 17.37589 (17.80700) | > loss_duration: 1.67254 (1.70598) | > loss_1: 31.71114 (33.52225) | > grad_norm_1: 43.18286 (136.42203) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93760 (2.03522) | > loader_time: 0.03020 (0.03623)  --> STEP: 2462/15287 -- GLOBAL_STEP: 967750 | > loss_disc: 2.39300 (2.31059) | > loss_disc_real_0: 0.12252 (0.12219) | > loss_disc_real_1: 0.20618 (0.21093) | > loss_disc_real_2: 0.23362 (0.21532) | > loss_disc_real_3: 0.21508 (0.21779) | > loss_disc_real_4: 0.20017 (0.21395) | > loss_disc_real_5: 0.22590 (0.21224) | > loss_0: 2.39300 (2.31059) | > grad_norm_0: 32.18729 (16.18596) | > loss_gen: 2.40668 (2.57756) | > loss_kl: 2.61113 (2.65690) | > loss_feat: 7.95168 (8.77514) | > loss_mel: 17.62324 (17.80923) | > loss_duration: 1.72511 (1.70593) | > loss_1: 32.31784 (33.52480) | > grad_norm_1: 228.13441 (137.45238) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.73250 (2.03555) | > loader_time: 0.03730 (0.03623)  --> STEP: 2487/15287 -- GLOBAL_STEP: 967775 | > loss_disc: 2.35515 (2.31119) | > loss_disc_real_0: 0.15070 (0.12238) | > loss_disc_real_1: 0.19351 (0.21090) | > loss_disc_real_2: 0.19530 (0.21534) | > loss_disc_real_3: 0.19707 (0.21780) | > loss_disc_real_4: 0.22936 (0.21399) | > loss_disc_real_5: 0.21184 (0.21241) | > loss_0: 2.35515 (2.31119) | > grad_norm_0: 15.78006 (16.37886) | > loss_gen: 2.39286 (2.57652) | > loss_kl: 2.66613 (2.65608) | > loss_feat: 8.19698 (8.77008) | > loss_mel: 17.59214 (17.80752) | > loss_duration: 1.65023 (1.70589) | > loss_1: 32.49833 (33.51609) | > grad_norm_1: 128.83728 (138.12949) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01560 (2.03508) | > loader_time: 0.03570 (0.03623)  --> STEP: 2512/15287 -- GLOBAL_STEP: 967800 | > loss_disc: 2.29783 (2.31127) | > loss_disc_real_0: 0.14514 (0.12241) | > loss_disc_real_1: 0.22001 (0.21087) | > loss_disc_real_2: 0.21296 (0.21535) | > loss_disc_real_3: 0.19838 (0.21779) | > loss_disc_real_4: 0.16540 (0.21394) | > loss_disc_real_5: 0.16807 (0.21251) | > loss_0: 2.29783 (2.31127) | > grad_norm_0: 17.17321 (16.45060) | > loss_gen: 2.42628 (2.57611) | > loss_kl: 2.71183 (2.65616) | > loss_feat: 8.72759 (8.76907) | > loss_mel: 17.75291 (17.80568) | > loss_duration: 1.68714 (1.70595) | > loss_1: 33.30576 (33.51300) | > grad_norm_1: 136.38293 (138.57454) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03870 (2.03406) | > loader_time: 0.03640 (0.03626)  --> STEP: 2537/15287 -- GLOBAL_STEP: 967825 | > loss_disc: 2.24306 (2.31154) | > loss_disc_real_0: 0.07751 (0.12244) | > loss_disc_real_1: 0.20237 (0.21089) | > loss_disc_real_2: 0.21631 (0.21538) | > loss_disc_real_3: 0.24646 (0.21781) | > loss_disc_real_4: 0.21278 (0.21399) | > loss_disc_real_5: 0.20185 (0.21257) | > loss_0: 2.24306 (2.31154) | > grad_norm_0: 17.31486 (16.48884) | > loss_gen: 2.48979 (2.57589) | > loss_kl: 2.66241 (2.65628) | > loss_feat: 9.50178 (8.76834) | > loss_mel: 18.12368 (17.80607) | > loss_duration: 1.72296 (1.70600) | > loss_1: 34.50063 (33.51262) | > grad_norm_1: 224.90770 (138.76518) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.72760 (2.03335) | > loader_time: 0.03530 (0.03625)  --> STEP: 2562/15287 -- GLOBAL_STEP: 967850 | > loss_disc: 2.27952 (2.31188) | > loss_disc_real_0: 0.11211 (0.12240) | > loss_disc_real_1: 0.16176 (0.21090) | > loss_disc_real_2: 0.26493 (0.21542) | > loss_disc_real_3: 0.22734 (0.21786) | > loss_disc_real_4: 0.23418 (0.21404) | > loss_disc_real_5: 0.22296 (0.21263) | > loss_0: 2.27952 (2.31188) | > grad_norm_0: 14.42381 (16.50369) | > loss_gen: 2.68642 (2.57576) | > loss_kl: 2.54439 (2.65623) | > loss_feat: 9.01858 (8.76723) | > loss_mel: 18.09323 (17.80712) | > loss_duration: 1.70884 (1.70600) | > loss_1: 34.05146 (33.51236) | > grad_norm_1: 60.63536 (138.89333) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96470 (2.03315) | > loader_time: 0.03380 (0.03626)  --> STEP: 2587/15287 -- GLOBAL_STEP: 967875 | > loss_disc: 2.33146 (2.31212) | > loss_disc_real_0: 0.11485 (0.12232) | > loss_disc_real_1: 0.18350 (0.21092) | > loss_disc_real_2: 0.19790 (0.21541) | > loss_disc_real_3: 0.23642 (0.21785) | > loss_disc_real_4: 0.20949 (0.21406) | > loss_disc_real_5: 0.19590 (0.21263) | > loss_0: 2.33146 (2.31212) | > grad_norm_0: 25.02152 (16.51645) | > loss_gen: 2.42229 (2.57546) | > loss_kl: 2.50040 (2.65627) | > loss_feat: 8.72395 (8.76691) | > loss_mel: 17.76081 (17.80702) | > loss_duration: 1.69892 (1.70608) | > loss_1: 33.10637 (33.51177) | > grad_norm_1: 95.66365 (139.28648) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18120 (2.03268) | > loader_time: 0.02970 (0.03625)  --> STEP: 2612/15287 -- GLOBAL_STEP: 967900 | > loss_disc: 2.31533 (2.31247) | > loss_disc_real_0: 0.08916 (0.12234) | > loss_disc_real_1: 0.19757 (0.21098) | > loss_disc_real_2: 0.21004 (0.21538) | > loss_disc_real_3: 0.20594 (0.21788) | > loss_disc_real_4: 0.20824 (0.21410) | > loss_disc_real_5: 0.21526 (0.21263) | > loss_0: 2.31533 (2.31247) | > grad_norm_0: 12.28255 (16.58426) | > loss_gen: 2.56404 (2.57512) | > loss_kl: 2.87072 (2.65624) | > loss_feat: 9.26456 (8.76533) | > loss_mel: 17.84414 (17.80621) | > loss_duration: 1.69095 (1.70605) | > loss_1: 34.23440 (33.50897) | > grad_norm_1: 216.45885 (139.50713) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05580 (2.03233) | > loader_time: 0.03090 (0.03625)  --> STEP: 2637/15287 -- GLOBAL_STEP: 967925 | > loss_disc: 2.27548 (2.31277) | > loss_disc_real_0: 0.13910 (0.12236) | > loss_disc_real_1: 0.19033 (0.21106) | > loss_disc_real_2: 0.20430 (0.21540) | > loss_disc_real_3: 0.22194 (0.21790) | > loss_disc_real_4: 0.18881 (0.21410) | > loss_disc_real_5: 0.20055 (0.21265) | > loss_0: 2.27548 (2.31277) | > grad_norm_0: 16.93987 (16.62169) | > loss_gen: 2.58148 (2.57472) | > loss_kl: 2.60002 (2.65640) | > loss_feat: 8.62026 (8.76338) | > loss_mel: 18.09958 (17.80586) | > loss_duration: 1.69905 (1.70609) | > loss_1: 33.60039 (33.50647) | > grad_norm_1: 241.90097 (139.76584) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00430 (2.03238) | > loader_time: 0.03760 (0.03624)  --> STEP: 2662/15287 -- GLOBAL_STEP: 967950 | > loss_disc: 2.27095 (2.31278) | > loss_disc_real_0: 0.12498 (0.12233) | > loss_disc_real_1: 0.23037 (0.21107) | > loss_disc_real_2: 0.23435 (0.21538) | > loss_disc_real_3: 0.21366 (0.21788) | > loss_disc_real_4: 0.20742 (0.21409) | > loss_disc_real_5: 0.17726 (0.21257) | > loss_0: 2.27095 (2.31278) | > grad_norm_0: 30.50921 (16.64623) | > loss_gen: 2.53340 (2.57436) | > loss_kl: 2.70143 (2.65644) | > loss_feat: 8.22221 (8.76313) | > loss_mel: 17.49146 (17.80585) | > loss_duration: 1.70061 (1.70616) | > loss_1: 32.64911 (33.50596) | > grad_norm_1: 166.33054 (140.03654) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03330 (2.03217) | > loader_time: 0.04360 (0.03624)  --> STEP: 2687/15287 -- GLOBAL_STEP: 967975 | > loss_disc: 2.25308 (2.31269) | > loss_disc_real_0: 0.09607 (0.12229) | > loss_disc_real_1: 0.18795 (0.21106) | > loss_disc_real_2: 0.20630 (0.21533) | > loss_disc_real_3: 0.18432 (0.21790) | > loss_disc_real_4: 0.17538 (0.21407) | > loss_disc_real_5: 0.18157 (0.21253) | > loss_0: 2.25308 (2.31269) | > grad_norm_0: 11.73774 (16.65208) | > loss_gen: 2.71746 (2.57426) | > loss_kl: 2.71354 (2.65650) | > loss_feat: 9.47630 (8.76334) | > loss_mel: 17.85317 (17.80628) | > loss_duration: 1.72495 (1.70620) | > loss_1: 34.48543 (33.50661) | > grad_norm_1: 150.60712 (140.27492) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20500 (2.03214) | > loader_time: 0.03640 (0.03625)  --> STEP: 2712/15287 -- GLOBAL_STEP: 968000 | > loss_disc: 2.38472 (2.31269) | > loss_disc_real_0: 0.18416 (0.12236) | > loss_disc_real_1: 0.18448 (0.21101) | > loss_disc_real_2: 0.20012 (0.21528) | > loss_disc_real_3: 0.22494 (0.21794) | > loss_disc_real_4: 0.23549 (0.21412) | > loss_disc_real_5: 0.22088 (0.21252) | > loss_0: 2.38472 (2.31269) | > grad_norm_0: 9.05757 (16.65641) | > loss_gen: 2.22127 (2.57429) | > loss_kl: 2.70031 (2.65644) | > loss_feat: 8.82734 (8.76399) | > loss_mel: 18.02755 (17.80746) | > loss_duration: 1.75173 (1.70639) | > loss_1: 33.52820 (33.50861) | > grad_norm_1: 88.00697 (140.28812) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14560 (2.03250) | > loader_time: 0.03640 (0.03624)  --> STEP: 2737/15287 -- GLOBAL_STEP: 968025 | > loss_disc: 2.29148 (2.31279) | > loss_disc_real_0: 0.09237 (0.12237) | > loss_disc_real_1: 0.17763 (0.21100) | > loss_disc_real_2: 0.20563 (0.21527) | > loss_disc_real_3: 0.24853 (0.21796) | > loss_disc_real_4: 0.19785 (0.21409) | > loss_disc_real_5: 0.18408 (0.21244) | > loss_0: 2.29148 (2.31279) | > grad_norm_0: 20.39735 (16.64848) | > loss_gen: 2.42586 (2.57417) | > loss_kl: 2.53243 (2.65665) | > loss_feat: 8.65946 (8.76370) | > loss_mel: 18.25853 (17.80938) | > loss_duration: 1.71272 (1.70652) | > loss_1: 33.58901 (33.51046) | > grad_norm_1: 170.13234 (140.04643) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.75310 (2.03299) | > loader_time: 0.03820 (0.03624)  --> STEP: 2762/15287 -- GLOBAL_STEP: 968050 | > loss_disc: 2.36685 (2.31299) | > loss_disc_real_0: 0.13750 (0.12245) | > loss_disc_real_1: 0.22186 (0.21102) | > loss_disc_real_2: 0.23745 (0.21526) | > loss_disc_real_3: 0.23614 (0.21799) | > loss_disc_real_4: 0.22771 (0.21413) | > loss_disc_real_5: 0.25444 (0.21247) | > loss_0: 2.36685 (2.31299) | > grad_norm_0: 14.89266 (16.62173) | > loss_gen: 2.54449 (2.57419) | > loss_kl: 2.64543 (2.65660) | > loss_feat: 8.55602 (8.76331) | > loss_mel: 17.67224 (17.80971) | > loss_duration: 1.71059 (1.70658) | > loss_1: 33.12878 (33.51043) | > grad_norm_1: 79.34386 (139.64708) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27900 (2.03381) | > loader_time: 0.03310 (0.03624)  --> STEP: 2787/15287 -- GLOBAL_STEP: 968075 | > loss_disc: 2.34089 (2.31309) | > loss_disc_real_0: 0.13299 (0.12244) | > loss_disc_real_1: 0.20924 (0.21106) | > loss_disc_real_2: 0.21718 (0.21527) | > loss_disc_real_3: 0.21232 (0.21800) | > loss_disc_real_4: 0.19333 (0.21413) | > loss_disc_real_5: 0.21637 (0.21253) | > loss_0: 2.34089 (2.31309) | > grad_norm_0: 22.76526 (16.61627) | > loss_gen: 2.54806 (2.57430) | > loss_kl: 2.60118 (2.65630) | > loss_feat: 8.60029 (8.76254) | > loss_mel: 18.12421 (17.81071) | > loss_duration: 1.68780 (1.70655) | > loss_1: 33.56155 (33.51044) | > grad_norm_1: 69.99149 (139.63406) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25050 (2.03499) | > loader_time: 0.03420 (0.03623)  --> STEP: 2812/15287 -- GLOBAL_STEP: 968100 | > loss_disc: 2.37584 (2.31293) | > loss_disc_real_0: 0.10776 (0.12242) | > loss_disc_real_1: 0.20312 (0.21107) | > loss_disc_real_2: 0.19292 (0.21526) | > loss_disc_real_3: 0.23376 (0.21803) | > loss_disc_real_4: 0.20026 (0.21412) | > loss_disc_real_5: 0.23331 (0.21249) | > loss_0: 2.37584 (2.31293) | > grad_norm_0: 23.08455 (16.60408) | > loss_gen: 2.37747 (2.57433) | > loss_kl: 2.66911 (2.65611) | > loss_feat: 8.32052 (8.76188) | > loss_mel: 17.72528 (17.81019) | > loss_duration: 1.66520 (1.70650) | > loss_1: 32.75758 (33.50904) | > grad_norm_1: 209.82344 (139.57425) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34740 (2.03622) | > loader_time: 0.03710 (0.03621)  --> STEP: 2837/15287 -- GLOBAL_STEP: 968125 | > loss_disc: 2.35803 (2.31276) | > loss_disc_real_0: 0.14832 (0.12236) | > loss_disc_real_1: 0.19435 (0.21106) | > loss_disc_real_2: 0.22032 (0.21525) | > loss_disc_real_3: 0.23364 (0.21803) | > loss_disc_real_4: 0.21107 (0.21412) | > loss_disc_real_5: 0.22597 (0.21250) | > loss_0: 2.35803 (2.31276) | > grad_norm_0: 25.42144 (16.58222) | > loss_gen: 2.42502 (2.57446) | > loss_kl: 2.68656 (2.65593) | > loss_feat: 8.80131 (8.76277) | > loss_mel: 17.50554 (17.80912) | > loss_duration: 1.70006 (1.70651) | > loss_1: 33.11851 (33.50882) | > grad_norm_1: 70.51957 (139.44789) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36400 (2.03704) | > loader_time: 0.03460 (0.03619)  --> STEP: 2862/15287 -- GLOBAL_STEP: 968150 | > loss_disc: 2.29483 (2.31271) | > loss_disc_real_0: 0.13557 (0.12248) | > loss_disc_real_1: 0.19034 (0.21101) | > loss_disc_real_2: 0.21338 (0.21523) | > loss_disc_real_3: 0.23176 (0.21800) | > loss_disc_real_4: 0.21710 (0.21408) | > loss_disc_real_5: 0.20799 (0.21251) | > loss_0: 2.29483 (2.31271) | > grad_norm_0: 12.07059 (16.65213) | > loss_gen: 2.56212 (2.57446) | > loss_kl: 2.74677 (2.65593) | > loss_feat: 8.59837 (8.76116) | > loss_mel: 17.63317 (17.80742) | > loss_duration: 1.71716 (1.70653) | > loss_1: 33.25759 (33.50553) | > grad_norm_1: 182.16396 (139.51241) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17600 (2.03891) | > loader_time: 0.03320 (0.03620)  --> STEP: 2887/15287 -- GLOBAL_STEP: 968175 | > loss_disc: 2.23048 (2.31263) | > loss_disc_real_0: 0.09239 (0.12243) | > loss_disc_real_1: 0.20765 (0.21101) | > loss_disc_real_2: 0.20435 (0.21526) | > loss_disc_real_3: 0.19984 (0.21802) | > loss_disc_real_4: 0.19949 (0.21412) | > loss_disc_real_5: 0.22367 (0.21250) | > loss_0: 2.23048 (2.31263) | > grad_norm_0: 26.16198 (16.66558) | > loss_gen: 2.52955 (2.57445) | > loss_kl: 2.80482 (2.65611) | > loss_feat: 8.92451 (8.76049) | > loss_mel: 18.18494 (17.80590) | > loss_duration: 1.67847 (1.70643) | > loss_1: 34.12228 (33.50341) | > grad_norm_1: 169.75607 (139.67961) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15120 (2.03970) | > loader_time: 0.03210 (0.03618)  --> STEP: 2912/15287 -- GLOBAL_STEP: 968200 | > loss_disc: 2.34483 (2.31255) | > loss_disc_real_0: 0.14496 (0.12239) | > loss_disc_real_1: 0.20024 (0.21099) | > loss_disc_real_2: 0.22123 (0.21524) | > loss_disc_real_3: 0.21611 (0.21800) | > loss_disc_real_4: 0.22875 (0.21408) | > loss_disc_real_5: 0.20733 (0.21251) | > loss_0: 2.34483 (2.31255) | > grad_norm_0: 49.19837 (16.70929) | > loss_gen: 2.45443 (2.57440) | > loss_kl: 2.48879 (2.65586) | > loss_feat: 8.18212 (8.76039) | > loss_mel: 17.27656 (17.80474) | > loss_duration: 1.73983 (1.70643) | > loss_1: 32.14172 (33.50186) | > grad_norm_1: 176.73996 (140.01520) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21470 (2.04115) | > loader_time: 0.03270 (0.03619)  --> STEP: 2937/15287 -- GLOBAL_STEP: 968225 | > loss_disc: 2.32144 (2.31225) | > loss_disc_real_0: 0.12780 (0.12228) | > loss_disc_real_1: 0.23372 (0.21095) | > loss_disc_real_2: 0.21959 (0.21521) | > loss_disc_real_3: 0.21763 (0.21800) | > loss_disc_real_4: 0.20435 (0.21406) | > loss_disc_real_5: 0.20569 (0.21251) | > loss_0: 2.32144 (2.31225) | > grad_norm_0: 13.32811 (16.72317) | > loss_gen: 2.52872 (2.57435) | > loss_kl: 2.50241 (2.65579) | > loss_feat: 8.28328 (8.76062) | > loss_mel: 16.83766 (17.80260) | > loss_duration: 1.70585 (1.70645) | > loss_1: 31.85793 (33.49987) | > grad_norm_1: 84.98059 (140.12259) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16320 (2.04198) | > loader_time: 0.03330 (0.03618)  --> STEP: 2962/15287 -- GLOBAL_STEP: 968250 | > loss_disc: 2.30363 (2.31232) | > loss_disc_real_0: 0.09512 (0.12222) | > loss_disc_real_1: 0.18605 (0.21098) | > loss_disc_real_2: 0.19556 (0.21522) | > loss_disc_real_3: 0.23693 (0.21806) | > loss_disc_real_4: 0.24816 (0.21410) | > loss_disc_real_5: 0.19938 (0.21250) | > loss_0: 2.30363 (2.31232) | > grad_norm_0: 8.36825 (16.67917) | > loss_gen: 2.58369 (2.57433) | > loss_kl: 2.78550 (2.65609) | > loss_feat: 8.97777 (8.76066) | > loss_mel: 18.08673 (17.80217) | > loss_duration: 1.64957 (1.70650) | > loss_1: 34.08327 (33.49979) | > grad_norm_1: 172.35640 (140.02811) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07940 (2.04275) | > loader_time: 0.03990 (0.03619)  --> STEP: 2987/15287 -- GLOBAL_STEP: 968275 | > loss_disc: 2.37861 (2.31262) | > loss_disc_real_0: 0.09805 (0.12227) | > loss_disc_real_1: 0.20680 (0.21095) | > loss_disc_real_2: 0.19958 (0.21524) | > loss_disc_real_3: 0.20512 (0.21807) | > loss_disc_real_4: 0.20898 (0.21407) | > loss_disc_real_5: 0.22682 (0.21253) | > loss_0: 2.37861 (2.31262) | > grad_norm_0: 19.83179 (16.71279) | > loss_gen: 2.39178 (2.57374) | > loss_kl: 2.66695 (2.65609) | > loss_feat: 8.67401 (8.75876) | > loss_mel: 18.54440 (17.80182) | > loss_duration: 1.69452 (1.70655) | > loss_1: 33.97167 (33.49701) | > grad_norm_1: 205.08504 (139.99023) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15590 (2.04355) | > loader_time: 0.03670 (0.03616)  --> STEP: 3012/15287 -- GLOBAL_STEP: 968300 | > loss_disc: 2.30655 (2.31238) | > loss_disc_real_0: 0.07306 (0.12224) | > loss_disc_real_1: 0.20713 (0.21092) | > loss_disc_real_2: 0.20573 (0.21523) | > loss_disc_real_3: 0.23599 (0.21804) | > loss_disc_real_4: 0.20466 (0.21406) | > loss_disc_real_5: 0.22957 (0.21250) | > loss_0: 2.30655 (2.31238) | > grad_norm_0: 21.17511 (16.71216) | > loss_gen: 2.55440 (2.57378) | > loss_kl: 2.57933 (2.65617) | > loss_feat: 9.02414 (8.75988) | > loss_mel: 17.67248 (17.80213) | > loss_duration: 1.71680 (1.70657) | > loss_1: 33.54716 (33.49857) | > grad_norm_1: 205.34325 (140.18066) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20970 (2.04467) | > loader_time: 0.03360 (0.03615)  --> STEP: 3037/15287 -- GLOBAL_STEP: 968325 | > loss_disc: 2.28663 (2.31253) | > loss_disc_real_0: 0.14981 (0.12230) | > loss_disc_real_1: 0.21959 (0.21092) | > loss_disc_real_2: 0.25005 (0.21527) | > loss_disc_real_3: 0.22851 (0.21806) | > loss_disc_real_4: 0.20532 (0.21406) | > loss_disc_real_5: 0.20583 (0.21250) | > loss_0: 2.28663 (2.31253) | > grad_norm_0: 24.55716 (16.71497) | > loss_gen: 2.64732 (2.57376) | > loss_kl: 2.67534 (2.65621) | > loss_feat: 8.54478 (8.75920) | > loss_mel: 18.29311 (17.80235) | > loss_duration: 1.75331 (1.70663) | > loss_1: 33.91385 (33.49818) | > grad_norm_1: 178.06671 (140.15919) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19910 (2.04571) | > loader_time: 0.03420 (0.03615)  --> STEP: 3062/15287 -- GLOBAL_STEP: 968350 | > loss_disc: 2.38280 (2.31268) | > loss_disc_real_0: 0.11596 (0.12235) | > loss_disc_real_1: 0.22213 (0.21091) | > loss_disc_real_2: 0.23657 (0.21528) | > loss_disc_real_3: 0.22862 (0.21806) | > loss_disc_real_4: 0.22773 (0.21407) | > loss_disc_real_5: 0.17031 (0.21247) | > loss_0: 2.38280 (2.31268) | > grad_norm_0: 5.78077 (16.70270) | > loss_gen: 2.80912 (2.57366) | > loss_kl: 2.61039 (2.65654) | > loss_feat: 8.95121 (8.76012) | > loss_mel: 17.68257 (17.80273) | > loss_duration: 1.75870 (1.70667) | > loss_1: 33.81199 (33.49976) | > grad_norm_1: 142.94769 (140.16206) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35890 (2.04638) | > loader_time: 0.03260 (0.03616)  --> STEP: 3087/15287 -- GLOBAL_STEP: 968375 | > loss_disc: 2.35641 (2.31277) | > loss_disc_real_0: 0.16439 (0.12247) | > loss_disc_real_1: 0.20076 (0.21093) | > loss_disc_real_2: 0.22220 (0.21526) | > loss_disc_real_3: 0.21921 (0.21805) | > loss_disc_real_4: 0.21969 (0.21407) | > loss_disc_real_5: 0.21871 (0.21250) | > loss_0: 2.35641 (2.31277) | > grad_norm_0: 16.01619 (16.69216) | > loss_gen: 2.65173 (2.57367) | > loss_kl: 2.78361 (2.65680) | > loss_feat: 8.58265 (8.75928) | > loss_mel: 18.00148 (17.80291) | > loss_duration: 1.68959 (1.70667) | > loss_1: 33.70906 (33.49936) | > grad_norm_1: 51.91637 (139.95558) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20520 (2.04709) | > loader_time: 0.03100 (0.03616)  --> STEP: 3112/15287 -- GLOBAL_STEP: 968400 | > loss_disc: 2.40048 (2.31284) | > loss_disc_real_0: 0.15411 (0.12252) | > loss_disc_real_1: 0.20558 (0.21092) | > loss_disc_real_2: 0.21674 (0.21528) | > loss_disc_real_3: 0.26328 (0.21803) | > loss_disc_real_4: 0.22917 (0.21410) | > loss_disc_real_5: 0.25413 (0.21250) | > loss_0: 2.40048 (2.31284) | > grad_norm_0: 12.69748 (16.67974) | > loss_gen: 2.51935 (2.57363) | > loss_kl: 2.66486 (2.65680) | > loss_feat: 8.76579 (8.75921) | > loss_mel: 17.84505 (17.80392) | > loss_duration: 1.69748 (1.70674) | > loss_1: 33.49252 (33.50034) | > grad_norm_1: 73.34900 (139.95282) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34570 (2.04789) | > loader_time: 0.03390 (0.03614)  --> STEP: 3137/15287 -- GLOBAL_STEP: 968425 | > loss_disc: 2.26999 (2.31273) | > loss_disc_real_0: 0.13833 (0.12248) | > loss_disc_real_1: 0.23768 (0.21094) | > loss_disc_real_2: 0.21462 (0.21529) | > loss_disc_real_3: 0.21890 (0.21804) | > loss_disc_real_4: 0.18464 (0.21407) | > loss_disc_real_5: 0.21599 (0.21248) | > loss_0: 2.26999 (2.31273) | > grad_norm_0: 32.42613 (16.66115) | > loss_gen: 2.72413 (2.57368) | > loss_kl: 2.66188 (2.65713) | > loss_feat: 8.86257 (8.76019) | > loss_mel: 18.12436 (17.80403) | > loss_duration: 1.71597 (1.70683) | > loss_1: 34.08890 (33.50188) | > grad_norm_1: 81.32175 (139.90865) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.75030 (2.04912) | > loader_time: 0.03650 (0.03615)  --> STEP: 3162/15287 -- GLOBAL_STEP: 968450 | > loss_disc: 2.30019 (2.31272) | > loss_disc_real_0: 0.09284 (0.12248) | > loss_disc_real_1: 0.23253 (0.21090) | > loss_disc_real_2: 0.22912 (0.21535) | > loss_disc_real_3: 0.22342 (0.21805) | > loss_disc_real_4: 0.22137 (0.21401) | > loss_disc_real_5: 0.21980 (0.21251) | > loss_0: 2.30019 (2.31272) | > grad_norm_0: 6.58551 (16.66740) | > loss_gen: 2.63542 (2.57366) | > loss_kl: 2.57689 (2.65738) | > loss_feat: 8.52165 (8.76073) | > loss_mel: 17.40435 (17.80412) | > loss_duration: 1.77167 (1.70687) | > loss_1: 32.90999 (33.50277) | > grad_norm_1: 90.56813 (139.82521) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91800 (2.05012) | > loader_time: 0.03940 (0.03614)  --> STEP: 3187/15287 -- GLOBAL_STEP: 968475 | > loss_disc: 2.40132 (2.31274) | > loss_disc_real_0: 0.09554 (0.12249) | > loss_disc_real_1: 0.22770 (0.21087) | > loss_disc_real_2: 0.23585 (0.21534) | > loss_disc_real_3: 0.20008 (0.21803) | > loss_disc_real_4: 0.20760 (0.21399) | > loss_disc_real_5: 0.21245 (0.21249) | > loss_0: 2.40132 (2.31274) | > grad_norm_0: 12.08106 (16.65126) | > loss_gen: 2.53088 (2.57371) | > loss_kl: 2.67741 (2.65738) | > loss_feat: 8.39358 (8.76120) | > loss_mel: 18.41210 (17.80317) | > loss_duration: 1.71732 (1.70691) | > loss_1: 33.73129 (33.50238) | > grad_norm_1: 178.70354 (139.74069) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27910 (2.05176) | > loader_time: 0.03520 (0.03613)  --> STEP: 3212/15287 -- GLOBAL_STEP: 968500 | > loss_disc: 2.41231 (2.31297) | > loss_disc_real_0: 0.11846 (0.12252) | > loss_disc_real_1: 0.19283 (0.21090) | > loss_disc_real_2: 0.22075 (0.21537) | > loss_disc_real_3: 0.25874 (0.21805) | > loss_disc_real_4: 0.23185 (0.21400) | > loss_disc_real_5: 0.22707 (0.21249) | > loss_0: 2.41231 (2.31297) | > grad_norm_0: 9.66149 (16.61075) | > loss_gen: 2.50614 (2.57353) | > loss_kl: 2.87456 (2.65743) | > loss_feat: 7.84274 (8.76012) | > loss_mel: 18.13810 (17.80370) | > loss_duration: 1.69134 (1.70697) | > loss_1: 33.05289 (33.50175) | > grad_norm_1: 200.23671 (139.49745) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43050 (2.05325) | > loader_time: 0.03710 (0.03612)  --> STEP: 3237/15287 -- GLOBAL_STEP: 968525 | > loss_disc: 2.30091 (2.31306) | > loss_disc_real_0: 0.10812 (0.12255) | > loss_disc_real_1: 0.21263 (0.21097) | > loss_disc_real_2: 0.22118 (0.21539) | > loss_disc_real_3: 0.23112 (0.21808) | > loss_disc_real_4: 0.20165 (0.21400) | > loss_disc_real_5: 0.19491 (0.21249) | > loss_0: 2.30091 (2.31306) | > grad_norm_0: 9.37470 (16.61564) | > loss_gen: 2.53962 (2.57374) | > loss_kl: 2.72798 (2.65728) | > loss_feat: 9.04198 (8.75938) | > loss_mel: 17.54257 (17.80416) | > loss_duration: 1.72231 (1.70705) | > loss_1: 33.57445 (33.50161) | > grad_norm_1: 117.73623 (139.30302) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.57840 (2.05457) | > loader_time: 0.03280 (0.03612)  --> STEP: 3262/15287 -- GLOBAL_STEP: 968550 | > loss_disc: 2.27149 (2.31289) | > loss_disc_real_0: 0.11392 (0.12249) | > loss_disc_real_1: 0.19138 (0.21096) | > loss_disc_real_2: 0.22147 (0.21538) | > loss_disc_real_3: 0.19522 (0.21805) | > loss_disc_real_4: 0.18794 (0.21398) | > loss_disc_real_5: 0.20782 (0.21248) | > loss_0: 2.27149 (2.31289) | > grad_norm_0: 5.41422 (16.60095) | > loss_gen: 2.82459 (2.57381) | > loss_kl: 2.62269 (2.65739) | > loss_feat: 8.65452 (8.75971) | > loss_mel: 17.73334 (17.80415) | > loss_duration: 1.71049 (1.70706) | > loss_1: 33.54562 (33.50211) | > grad_norm_1: 139.19765 (139.38800) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33030 (2.05589) | > loader_time: 0.03730 (0.03611)  --> STEP: 3287/15287 -- GLOBAL_STEP: 968575 | > loss_disc: 2.30568 (2.31299) | > loss_disc_real_0: 0.12081 (0.12252) | > loss_disc_real_1: 0.19420 (0.21095) | > loss_disc_real_2: 0.19996 (0.21535) | > loss_disc_real_3: 0.22769 (0.21806) | > loss_disc_real_4: 0.20589 (0.21400) | > loss_disc_real_5: 0.21673 (0.21253) | > loss_0: 2.30568 (2.31299) | > grad_norm_0: 10.81713 (16.62196) | > loss_gen: 2.38135 (2.57341) | > loss_kl: 2.72597 (2.65736) | > loss_feat: 8.68670 (8.75921) | > loss_mel: 17.57973 (17.80379) | > loss_duration: 1.73390 (1.70714) | > loss_1: 33.10764 (33.50090) | > grad_norm_1: 144.12234 (139.33525) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27800 (2.05708) | > loader_time: 0.03280 (0.03611)  --> STEP: 3312/15287 -- GLOBAL_STEP: 968600 | > loss_disc: 2.37827 (2.31276) | > loss_disc_real_0: 0.15491 (0.12251) | > loss_disc_real_1: 0.16862 (0.21091) | > loss_disc_real_2: 0.23015 (0.21530) | > loss_disc_real_3: 0.20892 (0.21801) | > loss_disc_real_4: 0.20968 (0.21397) | > loss_disc_real_5: 0.27158 (0.21249) | > loss_0: 2.37827 (2.31276) | > grad_norm_0: 24.69788 (16.61553) | > loss_gen: 2.38721 (2.57335) | > loss_kl: 2.68412 (2.65734) | > loss_feat: 8.52389 (8.75993) | > loss_mel: 17.67098 (17.80364) | > loss_duration: 1.70477 (1.70721) | > loss_1: 32.97097 (33.50146) | > grad_norm_1: 146.39095 (139.30655) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08150 (2.05783) | > loader_time: 0.03120 (0.03611)  --> STEP: 3337/15287 -- GLOBAL_STEP: 968625 | > loss_disc: 2.29910 (2.31264) | > loss_disc_real_0: 0.09547 (0.12243) | > loss_disc_real_1: 0.22822 (0.21088) | > loss_disc_real_2: 0.26240 (0.21530) | > loss_disc_real_3: 0.27024 (0.21804) | > loss_disc_real_4: 0.24589 (0.21395) | > loss_disc_real_5: 0.22406 (0.21246) | > loss_0: 2.29910 (2.31264) | > grad_norm_0: 14.49510 (16.60677) | > loss_gen: 2.61866 (2.57318) | > loss_kl: 2.66376 (2.65713) | > loss_feat: 8.29550 (8.75943) | > loss_mel: 17.70569 (17.80278) | > loss_duration: 1.68058 (1.70717) | > loss_1: 32.96418 (33.49969) | > grad_norm_1: 177.14325 (139.47795) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40820 (2.05856) | > loader_time: 0.03660 (0.03610)  --> STEP: 3362/15287 -- GLOBAL_STEP: 968650 | > loss_disc: 2.28577 (2.31240) | > loss_disc_real_0: 0.11102 (0.12238) | > loss_disc_real_1: 0.20458 (0.21090) | > loss_disc_real_2: 0.23208 (0.21531) | > loss_disc_real_3: 0.23785 (0.21806) | > loss_disc_real_4: 0.21028 (0.21398) | > loss_disc_real_5: 0.17365 (0.21241) | > loss_0: 2.28577 (2.31240) | > grad_norm_0: 27.83929 (16.60924) | > loss_gen: 2.51326 (2.57343) | > loss_kl: 2.81180 (2.65697) | > loss_feat: 9.20168 (8.75962) | > loss_mel: 18.14903 (17.80245) | > loss_duration: 1.71713 (1.70717) | > loss_1: 34.39290 (33.49964) | > grad_norm_1: 206.52747 (139.57513) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22030 (2.05947) | > loader_time: 0.03040 (0.03610)  --> STEP: 3387/15287 -- GLOBAL_STEP: 968675 | > loss_disc: 2.28790 (2.31229) | > loss_disc_real_0: 0.09532 (0.12235) | > loss_disc_real_1: 0.17704 (0.21089) | > loss_disc_real_2: 0.19389 (0.21534) | > loss_disc_real_3: 0.23076 (0.21807) | > loss_disc_real_4: 0.21293 (0.21398) | > loss_disc_real_5: 0.17519 (0.21244) | > loss_0: 2.28790 (2.31229) | > grad_norm_0: 14.55680 (16.62604) | > loss_gen: 2.46136 (2.57348) | > loss_kl: 2.56823 (2.65724) | > loss_feat: 8.32304 (8.75910) | > loss_mel: 17.25437 (17.80262) | > loss_duration: 1.69112 (1.70718) | > loss_1: 32.29811 (33.49960) | > grad_norm_1: 118.66628 (139.63843) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86600 (2.06015) | > loader_time: 0.03570 (0.03610)  --> STEP: 3412/15287 -- GLOBAL_STEP: 968700 | > loss_disc: 2.25962 (2.31228) | > loss_disc_real_0: 0.09790 (0.12249) | > loss_disc_real_1: 0.21005 (0.21096) | > loss_disc_real_2: 0.22799 (0.21536) | > loss_disc_real_3: 0.20687 (0.21806) | > loss_disc_real_4: 0.19692 (0.21397) | > loss_disc_real_5: 0.18154 (0.21243) | > loss_0: 2.25962 (2.31228) | > grad_norm_0: 16.78959 (16.63059) | > loss_gen: 2.52687 (2.57360) | > loss_kl: 2.60835 (2.65726) | > loss_feat: 8.31570 (8.75917) | > loss_mel: 17.76178 (17.80285) | > loss_duration: 1.69930 (1.70718) | > loss_1: 32.91199 (33.50007) | > grad_norm_1: 160.16673 (139.75853) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29820 (2.06103) | > loader_time: 0.03380 (0.03609)  --> STEP: 3437/15287 -- GLOBAL_STEP: 968725 | > loss_disc: 2.27239 (2.31219) | > loss_disc_real_0: 0.09016 (0.12246) | > loss_disc_real_1: 0.21692 (0.21097) | > loss_disc_real_2: 0.19663 (0.21539) | > loss_disc_real_3: 0.20327 (0.21807) | > loss_disc_real_4: 0.19299 (0.21395) | > loss_disc_real_5: 0.20792 (0.21245) | > loss_0: 2.27239 (2.31219) | > grad_norm_0: 6.13252 (16.62314) | > loss_gen: 2.81157 (2.57369) | > loss_kl: 2.70899 (2.65714) | > loss_feat: 9.01639 (8.75941) | > loss_mel: 17.73710 (17.80210) | > loss_duration: 1.65592 (1.70719) | > loss_1: 33.92996 (33.49952) | > grad_norm_1: 151.11739 (139.83310) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39280 (2.06201) | > loader_time: 0.03710 (0.03609)  --> STEP: 3462/15287 -- GLOBAL_STEP: 968750 | > loss_disc: 2.31049 (2.31213) | > loss_disc_real_0: 0.09046 (0.12244) | > loss_disc_real_1: 0.21775 (0.21095) | > loss_disc_real_2: 0.23034 (0.21538) | > loss_disc_real_3: 0.23284 (0.21808) | > loss_disc_real_4: 0.21103 (0.21393) | > loss_disc_real_5: 0.22500 (0.21245) | > loss_0: 2.31049 (2.31213) | > grad_norm_0: 17.12035 (16.62821) | > loss_gen: 2.70555 (2.57367) | > loss_kl: 2.69217 (2.65718) | > loss_feat: 8.74515 (8.75979) | > loss_mel: 17.80959 (17.80136) | > loss_duration: 1.71868 (1.70720) | > loss_1: 33.67115 (33.49919) | > grad_norm_1: 200.97748 (139.81421) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17530 (2.06240) | > loader_time: 0.03610 (0.03608)  --> STEP: 3487/15287 -- GLOBAL_STEP: 968775 | > loss_disc: 2.25398 (2.31228) | > loss_disc_real_0: 0.16089 (0.12248) | > loss_disc_real_1: 0.20548 (0.21096) | > loss_disc_real_2: 0.18773 (0.21540) | > loss_disc_real_3: 0.21612 (0.21809) | > loss_disc_real_4: 0.20717 (0.21394) | > loss_disc_real_5: 0.19023 (0.21245) | > loss_0: 2.25398 (2.31228) | > grad_norm_0: 32.71735 (16.66400) | > loss_gen: 2.67552 (2.57356) | > loss_kl: 2.59579 (2.65699) | > loss_feat: 9.03618 (8.75950) | > loss_mel: 18.11436 (17.80130) | > loss_duration: 1.71959 (1.70715) | > loss_1: 34.14145 (33.49850) | > grad_norm_1: 162.19933 (139.87735) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35800 (2.06358) | > loader_time: 0.03190 (0.03607)  --> STEP: 3512/15287 -- GLOBAL_STEP: 968800 | > loss_disc: 2.29582 (2.31220) | > loss_disc_real_0: 0.15606 (0.12249) | > loss_disc_real_1: 0.22338 (0.21096) | > loss_disc_real_2: 0.19927 (0.21539) | > loss_disc_real_3: 0.24555 (0.21808) | > loss_disc_real_4: 0.20515 (0.21393) | > loss_disc_real_5: 0.21815 (0.21244) | > loss_0: 2.29582 (2.31220) | > grad_norm_0: 25.94917 (16.67737) | > loss_gen: 2.73325 (2.57351) | > loss_kl: 2.61171 (2.65671) | > loss_feat: 9.13151 (8.75963) | > loss_mel: 18.15512 (17.80092) | > loss_duration: 1.70073 (1.70718) | > loss_1: 34.33231 (33.49795) | > grad_norm_1: 164.25990 (139.84373) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44950 (2.06495) | > loader_time: 0.03530 (0.03606)  --> STEP: 3537/15287 -- GLOBAL_STEP: 968825 | > loss_disc: 2.30325 (2.31222) | > loss_disc_real_0: 0.10790 (0.12253) | > loss_disc_real_1: 0.20119 (0.21094) | > loss_disc_real_2: 0.22550 (0.21540) | > loss_disc_real_3: 0.22836 (0.21810) | > loss_disc_real_4: 0.22659 (0.21393) | > loss_disc_real_5: 0.21864 (0.21245) | > loss_0: 2.30325 (2.31222) | > grad_norm_0: 14.13127 (16.69137) | > loss_gen: 2.40185 (2.57342) | > loss_kl: 2.57849 (2.65693) | > loss_feat: 8.59211 (8.75953) | > loss_mel: 18.05527 (17.80185) | > loss_duration: 1.73221 (1.70718) | > loss_1: 33.35992 (33.49892) | > grad_norm_1: 64.48593 (139.71388) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04300 (2.06569) | > loader_time: 0.03280 (0.03604)  --> STEP: 3562/15287 -- GLOBAL_STEP: 968850 | > loss_disc: 2.28118 (2.31205) | > loss_disc_real_0: 0.07812 (0.12247) | > loss_disc_real_1: 0.18478 (0.21094) | > loss_disc_real_2: 0.17913 (0.21541) | > loss_disc_real_3: 0.19640 (0.21809) | > loss_disc_real_4: 0.19844 (0.21390) | > loss_disc_real_5: 0.17850 (0.21242) | > loss_0: 2.28118 (2.31205) | > grad_norm_0: 17.63618 (16.69302) | > loss_gen: 2.56614 (2.57357) | > loss_kl: 2.78226 (2.65711) | > loss_feat: 9.24421 (8.75994) | > loss_mel: 18.12382 (17.80165) | > loss_duration: 1.70119 (1.70709) | > loss_1: 34.41762 (33.49938) | > grad_norm_1: 115.85519 (139.75848) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94860 (2.06712) | > loader_time: 0.03340 (0.03604)  --> STEP: 3587/15287 -- GLOBAL_STEP: 968875 | > loss_disc: 2.28257 (2.31201) | > loss_disc_real_0: 0.11597 (0.12242) | > loss_disc_real_1: 0.23071 (0.21096) | > loss_disc_real_2: 0.21092 (0.21543) | > loss_disc_real_3: 0.18009 (0.21813) | > loss_disc_real_4: 0.20478 (0.21388) | > loss_disc_real_5: 0.20499 (0.21244) | > loss_0: 2.28257 (2.31201) | > grad_norm_0: 14.13972 (16.69176) | > loss_gen: 2.46811 (2.57352) | > loss_kl: 2.59252 (2.65722) | > loss_feat: 8.64170 (8.75956) | > loss_mel: 17.97717 (17.80146) | > loss_duration: 1.71649 (1.70701) | > loss_1: 33.39598 (33.49881) | > grad_norm_1: 167.38693 (139.90161) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21410 (2.06917) | > loader_time: 0.03280 (0.03601)  --> STEP: 3612/15287 -- GLOBAL_STEP: 968900 | > loss_disc: 2.26466 (2.31207) | > loss_disc_real_0: 0.14086 (0.12245) | > loss_disc_real_1: 0.23476 (0.21101) | > loss_disc_real_2: 0.21171 (0.21542) | > loss_disc_real_3: 0.19605 (0.21814) | > loss_disc_real_4: 0.16691 (0.21388) | > loss_disc_real_5: 0.22676 (0.21243) | > loss_0: 2.26466 (2.31207) | > grad_norm_0: 26.79484 (16.70422) | > loss_gen: 2.67819 (2.57354) | > loss_kl: 2.76100 (2.65727) | > loss_feat: 9.15260 (8.75939) | > loss_mel: 18.09636 (17.80087) | > loss_duration: 1.69963 (1.70692) | > loss_1: 34.38778 (33.49803) | > grad_norm_1: 158.78050 (139.97548) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10100 (2.07097) | > loader_time: 0.03190 (0.03599)  --> STEP: 3637/15287 -- GLOBAL_STEP: 968925 | > loss_disc: 2.30302 (2.31198) | > loss_disc_real_0: 0.12445 (0.12246) | > loss_disc_real_1: 0.20669 (0.21101) | > loss_disc_real_2: 0.22190 (0.21535) | > loss_disc_real_3: 0.21290 (0.21812) | > loss_disc_real_4: 0.21395 (0.21385) | > loss_disc_real_5: 0.21804 (0.21239) | > loss_0: 2.30302 (2.31198) | > grad_norm_0: 19.01544 (16.69096) | > loss_gen: 2.63687 (2.57344) | > loss_kl: 2.66855 (2.65726) | > loss_feat: 8.39607 (8.76009) | > loss_mel: 17.77982 (17.80085) | > loss_duration: 1.71036 (1.70695) | > loss_1: 33.19166 (33.49864) | > grad_norm_1: 140.60811 (139.90654) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89550 (2.07266) | > loader_time: 0.03450 (0.03599)  --> STEP: 3662/15287 -- GLOBAL_STEP: 968950 | > loss_disc: 2.31417 (2.31216) | > loss_disc_real_0: 0.09791 (0.12250) | > loss_disc_real_1: 0.19202 (0.21103) | > loss_disc_real_2: 0.21457 (0.21539) | > loss_disc_real_3: 0.21218 (0.21808) | > loss_disc_real_4: 0.20853 (0.21381) | > loss_disc_real_5: 0.21875 (0.21245) | > loss_0: 2.31417 (2.31216) | > grad_norm_0: 14.41068 (16.74980) | > loss_gen: 2.57497 (2.57310) | > loss_kl: 2.62100 (2.65730) | > loss_feat: 8.32429 (8.75929) | > loss_mel: 17.63000 (17.80044) | > loss_duration: 1.67350 (1.70692) | > loss_1: 32.82375 (33.49710) | > grad_norm_1: 122.87549 (139.96404) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.45290 (2.07466) | > loader_time: 0.03240 (0.03598)  --> STEP: 3687/15287 -- GLOBAL_STEP: 968975 | > loss_disc: 2.30212 (2.31204) | > loss_disc_real_0: 0.11427 (0.12247) | > loss_disc_real_1: 0.21125 (0.21104) | > loss_disc_real_2: 0.20201 (0.21539) | > loss_disc_real_3: 0.22151 (0.21809) | > loss_disc_real_4: 0.20256 (0.21381) | > loss_disc_real_5: 0.18846 (0.21241) | > loss_0: 2.30212 (2.31204) | > grad_norm_0: 10.58066 (16.75092) | > loss_gen: 2.68168 (2.57331) | > loss_kl: 2.66051 (2.65702) | > loss_feat: 9.07691 (8.75921) | > loss_mel: 18.48368 (17.80019) | > loss_duration: 1.71106 (1.70686) | > loss_1: 34.61385 (33.49664) | > grad_norm_1: 128.52261 (140.04770) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33600 (2.07614) | > loader_time: 0.03400 (0.03598)  --> STEP: 3712/15287 -- GLOBAL_STEP: 969000 | > loss_disc: 2.42445 (2.31227) | > loss_disc_real_0: 0.17458 (0.12254) | > loss_disc_real_1: 0.23230 (0.21106) | > loss_disc_real_2: 0.23205 (0.21543) | > loss_disc_real_3: 0.22415 (0.21813) | > loss_disc_real_4: 0.20526 (0.21383) | > loss_disc_real_5: 0.21738 (0.21239) | > loss_0: 2.42445 (2.31227) | > grad_norm_0: 21.40886 (16.75380) | > loss_gen: 2.53119 (2.57335) | > loss_kl: 2.61363 (2.65710) | > loss_feat: 7.76227 (8.75876) | > loss_mel: 16.99219 (17.80037) | > loss_duration: 1.69247 (1.70681) | > loss_1: 31.59174 (33.49643) | > grad_norm_1: 86.36462 (140.15605) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25870 (2.07677) | > loader_time: 0.03350 (0.03597)  --> STEP: 3737/15287 -- GLOBAL_STEP: 969025 | > loss_disc: 2.30083 (2.31222) | > loss_disc_real_0: 0.13150 (0.12253) | > loss_disc_real_1: 0.17346 (0.21107) | > loss_disc_real_2: 0.17732 (0.21542) | > loss_disc_real_3: 0.19999 (0.21815) | > loss_disc_real_4: 0.22492 (0.21383) | > loss_disc_real_5: 0.17699 (0.21237) | > loss_0: 2.30083 (2.31222) | > grad_norm_0: 16.85377 (16.74635) | > loss_gen: 2.49418 (2.57325) | > loss_kl: 2.57981 (2.65678) | > loss_feat: 8.80514 (8.75890) | > loss_mel: 17.79605 (17.80044) | > loss_duration: 1.73180 (1.70685) | > loss_1: 33.40697 (33.49626) | > grad_norm_1: 85.74747 (140.11110) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24610 (2.07793) | > loader_time: 0.03260 (0.03597)  --> STEP: 3762/15287 -- GLOBAL_STEP: 969050 | > loss_disc: 2.29054 (2.31212) | > loss_disc_real_0: 0.12423 (0.12251) | > loss_disc_real_1: 0.19419 (0.21106) | > loss_disc_real_2: 0.22359 (0.21537) | > loss_disc_real_3: 0.20954 (0.21811) | > loss_disc_real_4: 0.20961 (0.21384) | > loss_disc_real_5: 0.20305 (0.21232) | > loss_0: 2.29054 (2.31212) | > grad_norm_0: 28.86132 (16.75317) | > loss_gen: 2.48460 (2.57323) | > loss_kl: 2.63569 (2.65662) | > loss_feat: 8.70186 (8.75881) | > loss_mel: 17.53254 (17.79961) | > loss_duration: 1.72942 (1.70682) | > loss_1: 33.08412 (33.49512) | > grad_norm_1: 180.12260 (140.21927) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13640 (2.07922) | > loader_time: 0.03230 (0.03596)  --> STEP: 3787/15287 -- GLOBAL_STEP: 969075 | > loss_disc: 2.26835 (2.31194) | > loss_disc_real_0: 0.10761 (0.12247) | > loss_disc_real_1: 0.21383 (0.21105) | > loss_disc_real_2: 0.23408 (0.21536) | > loss_disc_real_3: 0.24443 (0.21810) | > loss_disc_real_4: 0.22142 (0.21382) | > loss_disc_real_5: 0.18088 (0.21228) | > loss_0: 2.26835 (2.31194) | > grad_norm_0: 26.44842 (16.75285) | > loss_gen: 2.58319 (2.57324) | > loss_kl: 2.68819 (2.65656) | > loss_feat: 9.25622 (8.75945) | > loss_mel: 18.01773 (17.79975) | > loss_duration: 1.69559 (1.70679) | > loss_1: 34.24091 (33.49581) | > grad_norm_1: 131.03584 (140.25345) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24070 (2.08072) | > loader_time: 0.03690 (0.03596)  --> STEP: 3812/15287 -- GLOBAL_STEP: 969100 | > loss_disc: 2.25060 (2.31195) | > loss_disc_real_0: 0.10782 (0.12248) | > loss_disc_real_1: 0.20852 (0.21106) | > loss_disc_real_2: 0.23248 (0.21539) | > loss_disc_real_3: 0.19005 (0.21810) | > loss_disc_real_4: 0.20790 (0.21381) | > loss_disc_real_5: 0.23187 (0.21227) | > loss_0: 2.25060 (2.31195) | > grad_norm_0: 10.50679 (16.73687) | > loss_gen: 2.55533 (2.57333) | > loss_kl: 2.61797 (2.65672) | > loss_feat: 9.14746 (8.75942) | > loss_mel: 18.04811 (17.79996) | > loss_duration: 1.70602 (1.70679) | > loss_1: 34.07490 (33.49624) | > grad_norm_1: 86.30235 (140.27214) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.51830 (2.08314) | > loader_time: 0.03280 (0.03595)  --> STEP: 3837/15287 -- GLOBAL_STEP: 969125 | > loss_disc: 2.30459 (2.31210) | > loss_disc_real_0: 0.10276 (0.12247) | > loss_disc_real_1: 0.22173 (0.21105) | > loss_disc_real_2: 0.22802 (0.21537) | > loss_disc_real_3: 0.21446 (0.21806) | > loss_disc_real_4: 0.18694 (0.21380) | > loss_disc_real_5: 0.21797 (0.21222) | > loss_0: 2.30459 (2.31210) | > grad_norm_0: 14.02715 (16.74957) | > loss_gen: 2.47047 (2.57291) | > loss_kl: 2.71748 (2.65693) | > loss_feat: 9.30504 (8.75821) | > loss_mel: 18.26132 (17.79989) | > loss_duration: 1.74641 (1.70679) | > loss_1: 34.50072 (33.49476) | > grad_norm_1: 143.42973 (140.32654) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91830 (2.08367) | > loader_time: 0.03140 (0.03595)  --> STEP: 3862/15287 -- GLOBAL_STEP: 969150 | > loss_disc: 2.27795 (2.31202) | > loss_disc_real_0: 0.08416 (0.12243) | > loss_disc_real_1: 0.21686 (0.21103) | > loss_disc_real_2: 0.19955 (0.21537) | > loss_disc_real_3: 0.23426 (0.21806) | > loss_disc_real_4: 0.20692 (0.21379) | > loss_disc_real_5: 0.22945 (0.21225) | > loss_0: 2.27795 (2.31202) | > grad_norm_0: 23.04989 (16.76620) | > loss_gen: 2.47731 (2.57281) | > loss_kl: 2.55648 (2.65685) | > loss_feat: 9.29703 (8.75765) | > loss_mel: 17.83816 (17.79903) | > loss_duration: 1.71531 (1.70680) | > loss_1: 33.88429 (33.49316) | > grad_norm_1: 204.66060 (140.46431) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58360 (2.08533) | > loader_time: 0.03580 (0.03593)  --> STEP: 3887/15287 -- GLOBAL_STEP: 969175 | > loss_disc: 2.38518 (2.31199) | > loss_disc_real_0: 0.15043 (0.12244) | > loss_disc_real_1: 0.20155 (0.21101) | > loss_disc_real_2: 0.19012 (0.21535) | > loss_disc_real_3: 0.17333 (0.21803) | > loss_disc_real_4: 0.19924 (0.21378) | > loss_disc_real_5: 0.20952 (0.21227) | > loss_0: 2.38518 (2.31199) | > grad_norm_0: 28.86756 (16.75761) | > loss_gen: 2.48246 (2.57271) | > loss_kl: 2.59482 (2.65664) | > loss_feat: 8.67085 (8.75724) | > loss_mel: 18.18863 (17.79779) | > loss_duration: 1.69051 (1.70678) | > loss_1: 33.62727 (33.49118) | > grad_norm_1: 119.25099 (140.37712) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93640 (2.08654) | > loader_time: 0.04820 (0.03593)  --> STEP: 3912/15287 -- GLOBAL_STEP: 969200 | > loss_disc: 2.23464 (2.31204) | > loss_disc_real_0: 0.13321 (0.12245) | > loss_disc_real_1: 0.20296 (0.21102) | > loss_disc_real_2: 0.16442 (0.21538) | > loss_disc_real_3: 0.20132 (0.21807) | > loss_disc_real_4: 0.16798 (0.21381) | > loss_disc_real_5: 0.17841 (0.21226) | > loss_0: 2.23464 (2.31204) | > grad_norm_0: 34.53076 (16.78696) | > loss_gen: 2.46457 (2.57277) | > loss_kl: 2.62584 (2.65675) | > loss_feat: 8.68039 (8.75636) | > loss_mel: 17.79985 (17.79771) | > loss_duration: 1.74295 (1.70682) | > loss_1: 33.31359 (33.49045) | > grad_norm_1: 218.78407 (140.46877) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.57570 (2.08841) | > loader_time: 0.03270 (0.03593)  --> STEP: 3937/15287 -- GLOBAL_STEP: 969225 | > loss_disc: 2.19608 (2.31200) | > loss_disc_real_0: 0.11114 (0.12244) | > loss_disc_real_1: 0.18911 (0.21102) | > loss_disc_real_2: 0.21244 (0.21535) | > loss_disc_real_3: 0.17197 (0.21806) | > loss_disc_real_4: 0.20311 (0.21377) | > loss_disc_real_5: 0.16383 (0.21222) | > loss_0: 2.19608 (2.31200) | > grad_norm_0: 16.48093 (16.78204) | > loss_gen: 2.69511 (2.57272) | > loss_kl: 2.67602 (2.65670) | > loss_feat: 9.45823 (8.75650) | > loss_mel: 17.88011 (17.79749) | > loss_duration: 1.69935 (1.70674) | > loss_1: 34.40882 (33.49018) | > grad_norm_1: 128.47511 (140.36427) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 6.00120 (2.09089) | > loader_time: 0.03700 (0.03593)  --> STEP: 3962/15287 -- GLOBAL_STEP: 969250 | > loss_disc: 2.27564 (2.31202) | > loss_disc_real_0: 0.10639 (0.12243) | > loss_disc_real_1: 0.19299 (0.21101) | > loss_disc_real_2: 0.19495 (0.21536) | > loss_disc_real_3: 0.20028 (0.21806) | > loss_disc_real_4: 0.18975 (0.21378) | > loss_disc_real_5: 0.21566 (0.21223) | > loss_0: 2.27564 (2.31202) | > grad_norm_0: 14.88669 (16.77784) | > loss_gen: 2.49352 (2.57266) | > loss_kl: 2.70069 (2.65688) | > loss_feat: 8.77276 (8.75615) | > loss_mel: 17.41030 (17.79761) | > loss_duration: 1.65599 (1.70667) | > loss_1: 33.03325 (33.48999) | > grad_norm_1: 194.63805 (140.40105) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25870 (2.09204) | > loader_time: 0.03710 (0.03592)  --> STEP: 3987/15287 -- GLOBAL_STEP: 969275 | > loss_disc: 2.32530 (2.31185) | > loss_disc_real_0: 0.13218 (0.12239) | > loss_disc_real_1: 0.20595 (0.21097) | > loss_disc_real_2: 0.23702 (0.21535) | > loss_disc_real_3: 0.19888 (0.21805) | > loss_disc_real_4: 0.20014 (0.21375) | > loss_disc_real_5: 0.21674 (0.21224) | > loss_0: 2.32530 (2.31185) | > grad_norm_0: 39.18192 (16.77826) | > loss_gen: 2.57209 (2.57292) | > loss_kl: 2.61152 (2.65678) | > loss_feat: 8.76705 (8.75688) | > loss_mel: 17.95735 (17.79773) | > loss_duration: 1.69188 (1.70666) | > loss_1: 33.59988 (33.49102) | > grad_norm_1: 218.06973 (140.47717) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89050 (2.09353) | > loader_time: 0.03230 (0.03591)  --> STEP: 4012/15287 -- GLOBAL_STEP: 969300 | > loss_disc: 2.33124 (2.31199) | > loss_disc_real_0: 0.09218 (0.12239) | > loss_disc_real_1: 0.23115 (0.21100) | > loss_disc_real_2: 0.22003 (0.21537) | > loss_disc_real_3: 0.23558 (0.21807) | > loss_disc_real_4: 0.21153 (0.21376) | > loss_disc_real_5: 0.20804 (0.21222) | > loss_0: 2.33124 (2.31199) | > grad_norm_0: 20.22929 (16.81773) | > loss_gen: 2.52764 (2.57274) | > loss_kl: 2.66936 (2.65714) | > loss_feat: 8.61021 (8.75694) | > loss_mel: 18.04142 (17.79812) | > loss_duration: 1.67827 (1.70665) | > loss_1: 33.52689 (33.49164) | > grad_norm_1: 139.34633 (140.70316) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29870 (2.09473) | > loader_time: 0.03490 (0.03590)  --> STEP: 4037/15287 -- GLOBAL_STEP: 969325 | > loss_disc: 2.39360 (2.31213) | > loss_disc_real_0: 0.13995 (0.12244) | > loss_disc_real_1: 0.22400 (0.21104) | > loss_disc_real_2: 0.22247 (0.21540) | > loss_disc_real_3: 0.23366 (0.21807) | > loss_disc_real_4: 0.22564 (0.21377) | > loss_disc_real_5: 0.22267 (0.21218) | > loss_0: 2.39360 (2.31213) | > grad_norm_0: 16.15243 (16.82425) | > loss_gen: 2.50871 (2.57278) | > loss_kl: 2.55357 (2.65724) | > loss_feat: 8.34723 (8.75660) | > loss_mel: 17.72352 (17.79781) | > loss_duration: 1.75639 (1.70664) | > loss_1: 32.88942 (33.49112) | > grad_norm_1: 166.54865 (140.80756) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21610 (2.09638) | > loader_time: 0.03190 (0.03589)  --> STEP: 4062/15287 -- GLOBAL_STEP: 969350 | > loss_disc: 2.31486 (2.31208) | > loss_disc_real_0: 0.11179 (0.12241) | > loss_disc_real_1: 0.21616 (0.21104) | > loss_disc_real_2: 0.21770 (0.21540) | > loss_disc_real_3: 0.22778 (0.21806) | > loss_disc_real_4: 0.22133 (0.21377) | > loss_disc_real_5: 0.20568 (0.21220) | > loss_0: 2.31486 (2.31208) | > grad_norm_0: 16.28594 (16.82088) | > loss_gen: 2.41849 (2.57271) | > loss_kl: 2.73859 (2.65734) | > loss_feat: 9.19592 (8.75657) | > loss_mel: 17.75275 (17.79763) | > loss_duration: 1.71007 (1.70664) | > loss_1: 33.81583 (33.49094) | > grad_norm_1: 174.77551 (140.83266) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22800 (2.09815) | > loader_time: 0.04010 (0.03589)  --> STEP: 4087/15287 -- GLOBAL_STEP: 969375 | > loss_disc: 2.34306 (2.31219) | > loss_disc_real_0: 0.12452 (0.12241) | > loss_disc_real_1: 0.23638 (0.21104) | > loss_disc_real_2: 0.20309 (0.21544) | > loss_disc_real_3: 0.22384 (0.21812) | > loss_disc_real_4: 0.22471 (0.21377) | > loss_disc_real_5: 0.23888 (0.21221) | > loss_0: 2.34306 (2.31219) | > grad_norm_0: 6.90009 (16.81852) | > loss_gen: 2.56552 (2.57269) | > loss_kl: 2.65661 (2.65747) | > loss_feat: 8.68467 (8.75616) | > loss_mel: 17.66041 (17.79787) | > loss_duration: 1.67122 (1.70662) | > loss_1: 33.23843 (33.49085) | > grad_norm_1: 146.60446 (140.80637) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24570 (2.09953) | > loader_time: 0.03950 (0.03591)  --> STEP: 4112/15287 -- GLOBAL_STEP: 969400 | > loss_disc: 2.22817 (2.31191) | > loss_disc_real_0: 0.11422 (0.12235) | > loss_disc_real_1: 0.18470 (0.21098) | > loss_disc_real_2: 0.19670 (0.21540) | > loss_disc_real_3: 0.18967 (0.21810) | > loss_disc_real_4: 0.19065 (0.21376) | > loss_disc_real_5: 0.19280 (0.21218) | > loss_0: 2.22817 (2.31191) | > grad_norm_0: 5.54113 (16.84086) | > loss_gen: 2.79746 (2.57278) | > loss_kl: 2.75356 (2.65760) | > loss_feat: 9.68086 (8.75687) | > loss_mel: 17.82257 (17.79760) | > loss_duration: 1.69181 (1.70659) | > loss_1: 34.74626 (33.49147) | > grad_norm_1: 178.45763 (141.02603) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13860 (2.10001) | > loader_time: 0.03280 (0.03589)  --> STEP: 4137/15287 -- GLOBAL_STEP: 969425 | > loss_disc: 2.30497 (2.31186) | > loss_disc_real_0: 0.11623 (0.12231) | > loss_disc_real_1: 0.18776 (0.21100) | > loss_disc_real_2: 0.21301 (0.21544) | > loss_disc_real_3: 0.21381 (0.21813) | > loss_disc_real_4: 0.21958 (0.21377) | > loss_disc_real_5: 0.22762 (0.21221) | > loss_0: 2.30497 (2.31186) | > grad_norm_0: 32.19227 (16.85720) | > loss_gen: 2.63529 (2.57290) | > loss_kl: 2.65869 (2.65776) | > loss_feat: 8.84693 (8.75663) | > loss_mel: 18.00133 (17.79709) | > loss_duration: 1.69640 (1.70661) | > loss_1: 33.83864 (33.49104) | > grad_norm_1: 197.95100 (141.13399) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21740 (2.10056) | > loader_time: 0.03390 (0.03589)  --> STEP: 4162/15287 -- GLOBAL_STEP: 969450 | > loss_disc: 2.35674 (2.31180) | > loss_disc_real_0: 0.11614 (0.12231) | > loss_disc_real_1: 0.21629 (0.21099) | > loss_disc_real_2: 0.21648 (0.21543) | > loss_disc_real_3: 0.23032 (0.21813) | > loss_disc_real_4: 0.20505 (0.21376) | > loss_disc_real_5: 0.22016 (0.21219) | > loss_0: 2.35674 (2.31180) | > grad_norm_0: 28.48762 (16.85852) | > loss_gen: 2.43174 (2.57284) | > loss_kl: 2.66725 (2.65790) | > loss_feat: 8.33984 (8.75665) | > loss_mel: 17.49115 (17.79686) | > loss_duration: 1.67565 (1.70661) | > loss_1: 32.60562 (33.49089) | > grad_norm_1: 189.30843 (141.19708) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.54930 (2.10077) | > loader_time: 0.03210 (0.03588)  --> STEP: 4187/15287 -- GLOBAL_STEP: 969475 | > loss_disc: 2.32925 (2.31175) | > loss_disc_real_0: 0.10292 (0.12228) | > loss_disc_real_1: 0.19453 (0.21100) | > loss_disc_real_2: 0.21317 (0.21544) | > loss_disc_real_3: 0.23699 (0.21811) | > loss_disc_real_4: 0.21267 (0.21375) | > loss_disc_real_5: 0.23529 (0.21220) | > loss_0: 2.32925 (2.31175) | > grad_norm_0: 19.01300 (16.85975) | > loss_gen: 2.42471 (2.57273) | > loss_kl: 2.60508 (2.65793) | > loss_feat: 8.32910 (8.75659) | > loss_mel: 17.23177 (17.79614) | > loss_duration: 1.71958 (1.70663) | > loss_1: 32.31025 (33.49006) | > grad_norm_1: 136.04596 (141.24748) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02040 (2.10216) | > loader_time: 0.03210 (0.03587)  --> STEP: 4212/15287 -- GLOBAL_STEP: 969500 | > loss_disc: 2.27188 (2.31170) | > loss_disc_real_0: 0.07848 (0.12226) | > loss_disc_real_1: 0.21840 (0.21100) | > loss_disc_real_2: 0.17222 (0.21542) | > loss_disc_real_3: 0.17775 (0.21811) | > loss_disc_real_4: 0.18266 (0.21372) | > loss_disc_real_5: 0.17208 (0.21219) | > loss_0: 2.27188 (2.31170) | > grad_norm_0: 10.17866 (16.84282) | > loss_gen: 2.51712 (2.57264) | > loss_kl: 2.61559 (2.65792) | > loss_feat: 8.48764 (8.75652) | > loss_mel: 17.36595 (17.79562) | > loss_duration: 1.71410 (1.70668) | > loss_1: 32.70040 (33.48941) | > grad_norm_1: 100.61615 (141.17854) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56840 (2.10332) | > loader_time: 0.03110 (0.03586)  --> STEP: 4237/15287 -- GLOBAL_STEP: 969525 | > loss_disc: 2.42722 (2.31200) | > loss_disc_real_0: 0.12925 (0.12229) | > loss_disc_real_1: 0.19994 (0.21100) | > loss_disc_real_2: 0.20854 (0.21545) | > loss_disc_real_3: 0.23084 (0.21813) | > loss_disc_real_4: 0.23061 (0.21370) | > loss_disc_real_5: 0.23325 (0.21219) | > loss_0: 2.42722 (2.31200) | > grad_norm_0: 18.55306 (16.83860) | > loss_gen: 2.56651 (2.57253) | > loss_kl: 2.69697 (2.65789) | > loss_feat: 8.48108 (8.75571) | > loss_mel: 17.49995 (17.79578) | > loss_duration: 1.71272 (1.70667) | > loss_1: 32.95724 (33.48860) | > grad_norm_1: 149.57297 (141.14951) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29750 (2.10476) | > loader_time: 0.03240 (0.03585)  --> STEP: 4262/15287 -- GLOBAL_STEP: 969550 | > loss_disc: 2.31396 (2.31210) | > loss_disc_real_0: 0.12077 (0.12230) | > loss_disc_real_1: 0.20529 (0.21102) | > loss_disc_real_2: 0.19396 (0.21546) | > loss_disc_real_3: 0.21755 (0.21813) | > loss_disc_real_4: 0.23677 (0.21373) | > loss_disc_real_5: 0.22612 (0.21220) | > loss_0: 2.31396 (2.31210) | > grad_norm_0: 20.38601 (16.83619) | > loss_gen: 2.57950 (2.57240) | > loss_kl: 2.71868 (2.65790) | > loss_feat: 8.83307 (8.75525) | > loss_mel: 17.83022 (17.79528) | > loss_duration: 1.69801 (1.70666) | > loss_1: 33.65948 (33.48751) | > grad_norm_1: 164.49481 (141.11407) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25560 (2.10634) | > loader_time: 0.03250 (0.03584)  --> STEP: 4287/15287 -- GLOBAL_STEP: 969575 | > loss_disc: 2.31565 (2.31205) | > loss_disc_real_0: 0.16290 (0.12227) | > loss_disc_real_1: 0.21102 (0.21103) | > loss_disc_real_2: 0.20522 (0.21546) | > loss_disc_real_3: 0.20733 (0.21811) | > loss_disc_real_4: 0.22166 (0.21374) | > loss_disc_real_5: 0.21666 (0.21219) | > loss_0: 2.31565 (2.31205) | > grad_norm_0: 37.55739 (16.82819) | > loss_gen: 2.55597 (2.57237) | > loss_kl: 2.73829 (2.65772) | > loss_feat: 9.00423 (8.75502) | > loss_mel: 17.95397 (17.79540) | > loss_duration: 1.70769 (1.70665) | > loss_1: 33.96015 (33.48716) | > grad_norm_1: 151.67052 (141.09883) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03860 (2.10714) | > loader_time: 0.03920 (0.03585)  --> STEP: 4312/15287 -- GLOBAL_STEP: 969600 | > loss_disc: 2.28313 (2.31216) | > loss_disc_real_0: 0.17747 (0.12231) | > loss_disc_real_1: 0.20730 (0.21104) | > loss_disc_real_2: 0.19727 (0.21546) | > loss_disc_real_3: 0.22529 (0.21810) | > loss_disc_real_4: 0.25169 (0.21375) | > loss_disc_real_5: 0.22924 (0.21219) | > loss_0: 2.28313 (2.31216) | > grad_norm_0: 16.08434 (16.84008) | > loss_gen: 2.61632 (2.57231) | > loss_kl: 2.76361 (2.65768) | > loss_feat: 9.02883 (8.75490) | > loss_mel: 18.50010 (17.79574) | > loss_duration: 1.70014 (1.70667) | > loss_1: 34.60900 (33.48732) | > grad_norm_1: 185.25389 (141.09140) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.48550 (2.10833) | > loader_time: 0.03670 (0.03586)  --> STEP: 4337/15287 -- GLOBAL_STEP: 969625 | > loss_disc: 2.32978 (2.31214) | > loss_disc_real_0: 0.12694 (0.12227) | > loss_disc_real_1: 0.22458 (0.21104) | > loss_disc_real_2: 0.20331 (0.21545) | > loss_disc_real_3: 0.20479 (0.21809) | > loss_disc_real_4: 0.20409 (0.21373) | > loss_disc_real_5: 0.21659 (0.21219) | > loss_0: 2.32978 (2.31214) | > grad_norm_0: 9.69304 (16.84780) | > loss_gen: 2.48591 (2.57223) | > loss_kl: 2.55247 (2.65776) | > loss_feat: 8.41754 (8.75468) | > loss_mel: 18.13816 (17.79623) | > loss_duration: 1.74262 (1.70665) | > loss_1: 33.33670 (33.48755) | > grad_norm_1: 97.19356 (141.23843) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52180 (2.11047) | > loader_time: 0.03380 (0.03586)  --> STEP: 4362/15287 -- GLOBAL_STEP: 969650 | > loss_disc: 2.35060 (2.31200) | > loss_disc_real_0: 0.13918 (0.12223) | > loss_disc_real_1: 0.21231 (0.21103) | > loss_disc_real_2: 0.20726 (0.21545) | > loss_disc_real_3: 0.23019 (0.21810) | > loss_disc_real_4: 0.20925 (0.21374) | > loss_disc_real_5: 0.21331 (0.21219) | > loss_0: 2.35060 (2.31200) | > grad_norm_0: 7.46923 (16.83566) | > loss_gen: 2.46434 (2.57224) | > loss_kl: 2.67388 (2.65775) | > loss_feat: 8.25132 (8.75470) | > loss_mel: 17.39457 (17.79649) | > loss_duration: 1.71187 (1.70666) | > loss_1: 32.49598 (33.48785) | > grad_norm_1: 104.01897 (141.19778) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08890 (2.11181) | > loader_time: 0.03500 (0.03587)  --> STEP: 4387/15287 -- GLOBAL_STEP: 969675 | > loss_disc: 2.30398 (2.31198) | > loss_disc_real_0: 0.10163 (0.12222) | > loss_disc_real_1: 0.21550 (0.21101) | > loss_disc_real_2: 0.22505 (0.21547) | > loss_disc_real_3: 0.23776 (0.21808) | > loss_disc_real_4: 0.21659 (0.21375) | > loss_disc_real_5: 0.21339 (0.21219) | > loss_0: 2.30398 (2.31198) | > grad_norm_0: 10.96500 (16.82789) | > loss_gen: 2.63326 (2.57219) | > loss_kl: 2.63501 (2.65763) | > loss_feat: 8.94332 (8.75406) | > loss_mel: 18.06117 (17.79671) | > loss_duration: 1.70813 (1.70668) | > loss_1: 33.98089 (33.48727) | > grad_norm_1: 179.75465 (141.21284) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40640 (2.11199) | > loader_time: 0.04370 (0.03588)  --> STEP: 4412/15287 -- GLOBAL_STEP: 969700 | > loss_disc: 2.23709 (2.31208) | > loss_disc_real_0: 0.10471 (0.12224) | > loss_disc_real_1: 0.22383 (0.21101) | > loss_disc_real_2: 0.21238 (0.21548) | > loss_disc_real_3: 0.20257 (0.21811) | > loss_disc_real_4: 0.19720 (0.21375) | > loss_disc_real_5: 0.22337 (0.21222) | > loss_0: 2.23709 (2.31208) | > grad_norm_0: 7.57219 (16.80526) | > loss_gen: 2.67686 (2.57217) | > loss_kl: 2.69251 (2.65784) | > loss_feat: 8.87511 (8.75342) | > loss_mel: 17.72737 (17.79629) | > loss_duration: 1.73388 (1.70668) | > loss_1: 33.70573 (33.48639) | > grad_norm_1: 117.14592 (141.01355) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92420 (2.11320) | > loader_time: 0.04110 (0.03588)  --> STEP: 4437/15287 -- GLOBAL_STEP: 969725 | > loss_disc: 2.30347 (2.31213) | > loss_disc_real_0: 0.09354 (0.12222) | > loss_disc_real_1: 0.22680 (0.21101) | > loss_disc_real_2: 0.25530 (0.21549) | > loss_disc_real_3: 0.23710 (0.21810) | > loss_disc_real_4: 0.22888 (0.21376) | > loss_disc_real_5: 0.18968 (0.21219) | > loss_0: 2.30347 (2.31213) | > grad_norm_0: 20.32025 (16.79457) | > loss_gen: 2.56604 (2.57199) | > loss_kl: 2.65709 (2.65794) | > loss_feat: 8.74609 (8.75353) | > loss_mel: 17.78681 (17.79692) | > loss_duration: 1.69780 (1.70668) | > loss_1: 33.45383 (33.48704) | > grad_norm_1: 155.75851 (140.91045) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95760 (2.11415) | > loader_time: 0.03840 (0.03590)  --> STEP: 4462/15287 -- GLOBAL_STEP: 969750 | > loss_disc: 2.25202 (2.31209) | > loss_disc_real_0: 0.10931 (0.12227) | > loss_disc_real_1: 0.17167 (0.21094) | > loss_disc_real_2: 0.19004 (0.21546) | > loss_disc_real_3: 0.21909 (0.21811) | > loss_disc_real_4: 0.20193 (0.21375) | > loss_disc_real_5: 0.21400 (0.21220) | > loss_0: 2.25202 (2.31209) | > grad_norm_0: 21.83989 (16.80613) | > loss_gen: 2.53902 (2.57192) | > loss_kl: 2.62580 (2.65795) | > loss_feat: 8.38192 (8.75346) | > loss_mel: 17.44988 (17.79673) | > loss_duration: 1.71786 (1.70670) | > loss_1: 32.71448 (33.48672) | > grad_norm_1: 82.22739 (140.89523) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.79220 (2.11430) | > loader_time: 0.04270 (0.03593)  --> STEP: 4487/15287 -- GLOBAL_STEP: 969775 | > loss_disc: 2.27622 (2.31208) | > loss_disc_real_0: 0.15693 (0.12228) | > loss_disc_real_1: 0.20915 (0.21097) | > loss_disc_real_2: 0.19093 (0.21548) | > loss_disc_real_3: 0.21450 (0.21810) | > loss_disc_real_4: 0.19304 (0.21377) | > loss_disc_real_5: 0.21566 (0.21220) | > loss_0: 2.27622 (2.31208) | > grad_norm_0: 9.11455 (16.79383) | > loss_gen: 2.59890 (2.57213) | > loss_kl: 2.49215 (2.65795) | > loss_feat: 8.28856 (8.75364) | > loss_mel: 17.37208 (17.79669) | > loss_duration: 1.72777 (1.70667) | > loss_1: 32.47945 (33.48706) | > grad_norm_1: 172.91074 (140.81683) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18200 (2.11446) | > loader_time: 0.03740 (0.03596)  --> STEP: 4512/15287 -- GLOBAL_STEP: 969800 | > loss_disc: 2.33594 (2.31220) | > loss_disc_real_0: 0.11072 (0.12227) | > loss_disc_real_1: 0.23977 (0.21100) | > loss_disc_real_2: 0.21542 (0.21550) | > loss_disc_real_3: 0.22465 (0.21811) | > loss_disc_real_4: 0.24141 (0.21375) | > loss_disc_real_5: 0.20348 (0.21221) | > loss_0: 2.33594 (2.31220) | > grad_norm_0: 21.20122 (16.78720) | > loss_gen: 2.50374 (2.57206) | > loss_kl: 2.75771 (2.65793) | > loss_feat: 9.25007 (8.75298) | > loss_mel: 18.20580 (17.79669) | > loss_duration: 1.71512 (1.70669) | > loss_1: 34.43243 (33.48633) | > grad_norm_1: 146.13293 (140.76685) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72030 (2.11491) | > loader_time: 0.04290 (0.03599)  --> STEP: 4537/15287 -- GLOBAL_STEP: 969825 | > loss_disc: 2.34158 (2.31213) | > loss_disc_real_0: 0.12695 (0.12225) | > loss_disc_real_1: 0.22693 (0.21099) | > loss_disc_real_2: 0.21993 (0.21549) | > loss_disc_real_3: 0.22584 (0.21810) | > loss_disc_real_4: 0.19663 (0.21372) | > loss_disc_real_5: 0.20918 (0.21222) | > loss_0: 2.34158 (2.31213) | > grad_norm_0: 29.33451 (16.80371) | > loss_gen: 2.41472 (2.57196) | > loss_kl: 2.64306 (2.65801) | > loss_feat: 9.31976 (8.75256) | > loss_mel: 18.21282 (17.79605) | > loss_duration: 1.72407 (1.70670) | > loss_1: 34.31442 (33.48524) | > grad_norm_1: 79.14582 (140.78482) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29230 (2.11624) | > loader_time: 0.03400 (0.03600)  --> STEP: 4562/15287 -- GLOBAL_STEP: 969850 | > loss_disc: 2.28549 (2.31205) | > loss_disc_real_0: 0.10280 (0.12224) | > loss_disc_real_1: 0.24688 (0.21100) | > loss_disc_real_2: 0.21836 (0.21549) | > loss_disc_real_3: 0.24066 (0.21810) | > loss_disc_real_4: 0.20979 (0.21372) | > loss_disc_real_5: 0.21420 (0.21222) | > loss_0: 2.28549 (2.31205) | > grad_norm_0: 22.51757 (16.79505) | > loss_gen: 2.73125 (2.57217) | > loss_kl: 2.54209 (2.65772) | > loss_feat: 8.85579 (8.75293) | > loss_mel: 17.71268 (17.79628) | > loss_duration: 1.71415 (1.70673) | > loss_1: 33.55595 (33.48580) | > grad_norm_1: 179.77866 (140.73047) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36050 (2.11772) | > loader_time: 0.03610 (0.03599)  --> STEP: 4587/15287 -- GLOBAL_STEP: 969875 | > loss_disc: 2.33653 (2.31204) | > loss_disc_real_0: 0.12562 (0.12223) | > loss_disc_real_1: 0.21663 (0.21103) | > loss_disc_real_2: 0.21135 (0.21550) | > loss_disc_real_3: 0.23880 (0.21811) | > loss_disc_real_4: 0.20648 (0.21373) | > loss_disc_real_5: 0.22795 (0.21222) | > loss_0: 2.33653 (2.31204) | > grad_norm_0: 31.14228 (16.80144) | > loss_gen: 2.53145 (2.57209) | > loss_kl: 2.69186 (2.65776) | > loss_feat: 8.76789 (8.75215) | > loss_mel: 17.79891 (17.79588) | > loss_duration: 1.70346 (1.70670) | > loss_1: 33.49356 (33.48455) | > grad_norm_1: 136.10495 (140.75401) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41080 (2.11975) | > loader_time: 0.03570 (0.03598)  --> STEP: 4612/15287 -- GLOBAL_STEP: 969900 | > loss_disc: 2.31605 (2.31204) | > loss_disc_real_0: 0.12032 (0.12221) | > loss_disc_real_1: 0.20384 (0.21101) | > loss_disc_real_2: 0.22911 (0.21550) | > loss_disc_real_3: 0.21584 (0.21811) | > loss_disc_real_4: 0.21154 (0.21373) | > loss_disc_real_5: 0.23365 (0.21225) | > loss_0: 2.31605 (2.31204) | > grad_norm_0: 7.78407 (16.78984) | > loss_gen: 2.58656 (2.57208) | > loss_kl: 2.66097 (2.65782) | > loss_feat: 9.04027 (8.75227) | > loss_mel: 18.44510 (17.79594) | > loss_duration: 1.78603 (1.70671) | > loss_1: 34.51893 (33.48478) | > grad_norm_1: 53.23182 (140.69594) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85430 (2.12087) | > loader_time: 0.03390 (0.03598)  --> STEP: 4637/15287 -- GLOBAL_STEP: 969925 | > loss_disc: 2.34334 (2.31209) | > loss_disc_real_0: 0.12947 (0.12220) | > loss_disc_real_1: 0.20432 (0.21101) | > loss_disc_real_2: 0.21120 (0.21549) | > loss_disc_real_3: 0.20071 (0.21812) | > loss_disc_real_4: 0.22903 (0.21374) | > loss_disc_real_5: 0.22361 (0.21224) | > loss_0: 2.34334 (2.31209) | > grad_norm_0: 13.39769 (16.78293) | > loss_gen: 2.48361 (2.57198) | > loss_kl: 2.65924 (2.65785) | > loss_feat: 8.76642 (8.75193) | > loss_mel: 18.10858 (17.79638) | > loss_duration: 1.70351 (1.70669) | > loss_1: 33.72136 (33.48478) | > grad_norm_1: 119.68583 (140.66832) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26710 (2.12155) | > loader_time: 0.03270 (0.03597)  --> STEP: 4662/15287 -- GLOBAL_STEP: 969950 | > loss_disc: 2.32730 (2.31203) | > loss_disc_real_0: 0.13585 (0.12220) | > loss_disc_real_1: 0.19778 (0.21100) | > loss_disc_real_2: 0.23178 (0.21553) | > loss_disc_real_3: 0.22597 (0.21813) | > loss_disc_real_4: 0.22737 (0.21377) | > loss_disc_real_5: 0.18944 (0.21223) | > loss_0: 2.32730 (2.31203) | > grad_norm_0: 10.92565 (16.78328) | > loss_gen: 2.49469 (2.57218) | > loss_kl: 2.69343 (2.65766) | > loss_feat: 8.85501 (8.75200) | > loss_mel: 17.97266 (17.79585) | > loss_duration: 1.67863 (1.70665) | > loss_1: 33.69443 (33.48429) | > grad_norm_1: 120.33949 (140.63614) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.45440 (2.12239) | > loader_time: 0.03520 (0.03596)  --> STEP: 4687/15287 -- GLOBAL_STEP: 969975 | > loss_disc: 2.27518 (2.31209) | > loss_disc_real_0: 0.12029 (0.12223) | > loss_disc_real_1: 0.21287 (0.21102) | > loss_disc_real_2: 0.20514 (0.21552) | > loss_disc_real_3: 0.19517 (0.21811) | > loss_disc_real_4: 0.19550 (0.21377) | > loss_disc_real_5: 0.19036 (0.21223) | > loss_0: 2.27518 (2.31209) | > grad_norm_0: 18.65342 (16.77389) | > loss_gen: 2.65635 (2.57211) | > loss_kl: 2.81623 (2.65770) | > loss_feat: 8.88752 (8.75160) | > loss_mel: 18.32785 (17.79635) | > loss_duration: 1.68240 (1.70664) | > loss_1: 34.37035 (33.48438) | > grad_norm_1: 179.49751 (140.48514) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99570 (2.12416) | > loader_time: 0.03470 (0.03596)  --> STEP: 4712/15287 -- GLOBAL_STEP: 970000 | > loss_disc: 2.39221 (2.31197) | > loss_disc_real_0: 0.11282 (0.12221) | > loss_disc_real_1: 0.17885 (0.21098) | > loss_disc_real_2: 0.20485 (0.21551) | > loss_disc_real_3: 0.20711 (0.21808) | > loss_disc_real_4: 0.18703 (0.21375) | > loss_disc_real_5: 0.20744 (0.21223) | > loss_0: 2.39221 (2.31197) | > grad_norm_0: 29.16701 (16.77027) | > loss_gen: 2.33075 (2.57209) | > loss_kl: 2.58603 (2.65746) | > loss_feat: 8.51560 (8.75202) | > loss_mel: 18.18768 (17.79610) | > loss_duration: 1.66377 (1.70663) | > loss_1: 33.28382 (33.48429) | > grad_norm_1: 152.08746 (140.44528) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.57720 (2.12544) | > loader_time: 0.03410 (0.03595) > CHECKPOINT : ./checkpoints/yourtts_multilingual/yourtts-du_en_fr_ge_it_pl_ptbr_sp-November-08-2022_12+19PM-0cbaa0f6/checkpoint_970000.pth  --> STEP: 4737/15287 -- GLOBAL_STEP: 970025 | > loss_disc: 2.30147 (2.31189) | > loss_disc_real_0: 0.11697 (0.12216) | > loss_disc_real_1: 0.22281 (0.21098) | > loss_disc_real_2: 0.21295 (0.21549) | > loss_disc_real_3: 0.22528 (0.21808) | > loss_disc_real_4: 0.24395 (0.21377) | > loss_disc_real_5: 0.22572 (0.21223) | > loss_0: 2.30147 (2.31189) | > grad_norm_0: 28.81334 (16.76578) | > loss_gen: 2.59144 (2.57214) | > loss_kl: 2.55271 (2.65738) | > loss_feat: 9.04105 (8.75169) | > loss_mel: 18.04416 (17.79528) | > loss_duration: 1.71669 (1.70662) | > loss_1: 33.94605 (33.48308) | > grad_norm_1: 146.67435 (140.49734) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58680 (2.12670) | > loader_time: 0.03140 (0.03595)  --> STEP: 4762/15287 -- GLOBAL_STEP: 970050 | > loss_disc: 2.28892 (2.31187) | > loss_disc_real_0: 0.13711 (0.12215) | > loss_disc_real_1: 0.20085 (0.21097) | > loss_disc_real_2: 0.22725 (0.21549) | > loss_disc_real_3: 0.22613 (0.21806) | > loss_disc_real_4: 0.22961 (0.21377) | > loss_disc_real_5: 0.20898 (0.21223) | > loss_0: 2.28892 (2.31187) | > grad_norm_0: 25.73503 (16.78479) | > loss_gen: 2.61429 (2.57200) | > loss_kl: 2.58332 (2.65741) | > loss_feat: 8.74058 (8.75163) | > loss_mel: 17.59090 (17.79546) | > loss_duration: 1.69219 (1.70662) | > loss_1: 33.22129 (33.48307) | > grad_norm_1: 194.09270 (140.52716) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92880 (2.12775) | > loader_time: 0.03510 (0.03594)  --> STEP: 4787/15287 -- GLOBAL_STEP: 970075 | > loss_disc: 2.32719 (2.31194) | > loss_disc_real_0: 0.09558 (0.12216) | > loss_disc_real_1: 0.22118 (0.21099) | > loss_disc_real_2: 0.19234 (0.21549) | > loss_disc_real_3: 0.18659 (0.21806) | > loss_disc_real_4: 0.19113 (0.21377) | > loss_disc_real_5: 0.22060 (0.21224) | > loss_0: 2.32719 (2.31194) | > grad_norm_0: 9.62624 (16.77963) | > loss_gen: 2.73246 (2.57192) | > loss_kl: 2.67116 (2.65733) | > loss_feat: 8.75597 (8.75123) | > loss_mel: 17.91909 (17.79544) | > loss_duration: 1.68303 (1.70662) | > loss_1: 33.76171 (33.48251) | > grad_norm_1: 72.76330 (140.52780) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.53190 (2.12921) | > loader_time: 0.03680 (0.03593)  --> STEP: 4812/15287 -- GLOBAL_STEP: 970100 | > loss_disc: 2.36150 (2.31199) | > loss_disc_real_0: 0.18003 (0.12217) | > loss_disc_real_1: 0.21589 (0.21101) | > loss_disc_real_2: 0.23837 (0.21550) | > loss_disc_real_3: 0.25269 (0.21807) | > loss_disc_real_4: 0.23370 (0.21377) | > loss_disc_real_5: 0.22911 (0.21224) | > loss_0: 2.36150 (2.31199) | > grad_norm_0: 16.82759 (16.75483) | > loss_gen: 2.61823 (2.57200) | > loss_kl: 2.58439 (2.65724) | > loss_feat: 8.58641 (8.75107) | > loss_mel: 17.64798 (17.79556) | > loss_duration: 1.63446 (1.70662) | > loss_1: 33.07147 (33.48247) | > grad_norm_1: 123.28035 (140.31981) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87530 (2.13049) | > loader_time: 0.04850 (0.03593)  --> STEP: 4837/15287 -- GLOBAL_STEP: 970125 | > loss_disc: 2.29643 (2.31208) | > loss_disc_real_0: 0.09822 (0.12214) | > loss_disc_real_1: 0.19598 (0.21103) | > loss_disc_real_2: 0.20183 (0.21551) | > loss_disc_real_3: 0.19583 (0.21809) | > loss_disc_real_4: 0.18505 (0.21378) | > loss_disc_real_5: 0.19064 (0.21221) | > loss_0: 2.29643 (2.31208) | > grad_norm_0: 17.30808 (16.75185) | > loss_gen: 2.45613 (2.57176) | > loss_kl: 2.67765 (2.65717) | > loss_feat: 8.29823 (8.75061) | > loss_mel: 17.50811 (17.79559) | > loss_duration: 1.69121 (1.70655) | > loss_1: 32.63134 (33.48168) | > grad_norm_1: 172.76782 (140.18307) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23920 (2.13243) | > loader_time: 0.03270 (0.03593)  --> STEP: 4862/15287 -- GLOBAL_STEP: 970150 | > loss_disc: 2.34501 (2.31226) | > loss_disc_real_0: 0.12296 (0.12214) | > loss_disc_real_1: 0.21171 (0.21103) | > loss_disc_real_2: 0.24501 (0.21550) | > loss_disc_real_3: 0.27335 (0.21810) | > loss_disc_real_4: 0.22899 (0.21380) | > loss_disc_real_5: 0.21129 (0.21224) | > loss_0: 2.34501 (2.31226) | > grad_norm_0: 10.22443 (16.74412) | > loss_gen: 2.73113 (2.57171) | > loss_kl: 2.74905 (2.65720) | > loss_feat: 8.44394 (8.75010) | > loss_mel: 18.18028 (17.79621) | > loss_duration: 1.70011 (1.70656) | > loss_1: 33.80452 (33.48176) | > grad_norm_1: 108.77644 (140.20799) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44490 (2.13316) | > loader_time: 0.03460 (0.03592)  --> STEP: 4887/15287 -- GLOBAL_STEP: 970175 | > loss_disc: 2.31726 (2.31242) | > loss_disc_real_0: 0.10959 (0.12218) | > loss_disc_real_1: 0.19388 (0.21103) | > loss_disc_real_2: 0.19561 (0.21551) | > loss_disc_real_3: 0.22729 (0.21812) | > loss_disc_real_4: 0.19977 (0.21381) | > loss_disc_real_5: 0.20581 (0.21229) | > loss_0: 2.31726 (2.31242) | > grad_norm_0: 14.16228 (16.73392) | > loss_gen: 2.39302 (2.57156) | > loss_kl: 2.75727 (2.65719) | > loss_feat: 8.58090 (8.74918) | > loss_mel: 18.15917 (17.79688) | > loss_duration: 1.72670 (1.70660) | > loss_1: 33.61706 (33.48138) | > grad_norm_1: 53.09307 (139.97643) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99500 (2.13384) | > loader_time: 0.03670 (0.03593)  --> STEP: 4912/15287 -- GLOBAL_STEP: 970200 | > loss_disc: 2.34725 (2.31240) | > loss_disc_real_0: 0.11946 (0.12219) | > loss_disc_real_1: 0.21621 (0.21104) | > loss_disc_real_2: 0.21949 (0.21551) | > loss_disc_real_3: 0.22623 (0.21814) | > loss_disc_real_4: 0.24106 (0.21381) | > loss_disc_real_5: 0.22270 (0.21228) | > loss_0: 2.34725 (2.31240) | > grad_norm_0: 18.65702 (16.71374) | > loss_gen: 2.40200 (2.57172) | > loss_kl: 2.67416 (2.65728) | > loss_feat: 8.45989 (8.74927) | > loss_mel: 17.47905 (17.79736) | > loss_duration: 1.65817 (1.70659) | > loss_1: 32.67326 (33.48221) | > grad_norm_1: 190.65199 (139.79443) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02490 (2.13502) | > loader_time: 0.03190 (0.03592)  --> STEP: 4937/15287 -- GLOBAL_STEP: 970225 | > loss_disc: 2.23748 (2.31258) | > loss_disc_real_0: 0.14229 (0.12221) | > loss_disc_real_1: 0.18702 (0.21105) | > loss_disc_real_2: 0.19519 (0.21552) | > loss_disc_real_3: 0.20700 (0.21814) | > loss_disc_real_4: 0.21902 (0.21382) | > loss_disc_real_5: 0.19988 (0.21229) | > loss_0: 2.23748 (2.31258) | > grad_norm_0: 13.25694 (16.68293) | > loss_gen: 2.70006 (2.57158) | > loss_kl: 2.61025 (2.65748) | > loss_feat: 8.73773 (8.74851) | > loss_mel: 17.49793 (17.79736) | > loss_duration: 1.69387 (1.70663) | > loss_1: 33.23985 (33.48154) | > grad_norm_1: 97.75156 (139.55382) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.62040 (2.13617) | > loader_time: 0.04310 (0.03592)  --> STEP: 4962/15287 -- GLOBAL_STEP: 970250 | > loss_disc: 2.28013 (2.31262) | > loss_disc_real_0: 0.10233 (0.12221) | > loss_disc_real_1: 0.22622 (0.21106) | > loss_disc_real_2: 0.22275 (0.21555) | > loss_disc_real_3: 0.25587 (0.21815) | > loss_disc_real_4: 0.24400 (0.21383) | > loss_disc_real_5: 0.21695 (0.21231) | > loss_0: 2.28013 (2.31262) | > grad_norm_0: 10.14067 (16.66982) | > loss_gen: 2.52010 (2.57150) | > loss_kl: 2.75169 (2.65738) | > loss_feat: 8.59728 (8.74844) | > loss_mel: 18.11296 (17.79760) | > loss_duration: 1.72571 (1.70665) | > loss_1: 33.70775 (33.48156) | > grad_norm_1: 167.67851 (139.52516) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.61250 (2.13746) | > loader_time: 0.03370 (0.03592)  --> STEP: 4987/15287 -- GLOBAL_STEP: 970275 | > loss_disc: 2.23720 (2.31262) | > loss_disc_real_0: 0.11810 (0.12218) | > loss_disc_real_1: 0.22518 (0.21105) | > loss_disc_real_2: 0.20332 (0.21554) | > loss_disc_real_3: 0.21678 (0.21812) | > loss_disc_real_4: 0.19287 (0.21379) | > loss_disc_real_5: 0.21112 (0.21232) | > loss_0: 2.23720 (2.31262) | > grad_norm_0: 6.83607 (16.66475) | > loss_gen: 2.61710 (2.57133) | > loss_kl: 2.51593 (2.65746) | > loss_feat: 8.87527 (8.74880) | > loss_mel: 18.02599 (17.79744) | > loss_duration: 1.72561 (1.70664) | > loss_1: 33.75990 (33.48164) | > grad_norm_1: 199.03693 (139.49094) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58770 (2.13859) | > loader_time: 0.03630 (0.03593)  --> STEP: 5012/15287 -- GLOBAL_STEP: 970300 | > loss_disc: 2.38031 (2.31248) | > loss_disc_real_0: 0.12774 (0.12213) | > loss_disc_real_1: 0.20196 (0.21104) | > loss_disc_real_2: 0.21923 (0.21557) | > loss_disc_real_3: 0.21141 (0.21814) | > loss_disc_real_4: 0.21537 (0.21380) | > loss_disc_real_5: 0.21930 (0.21234) | > loss_0: 2.38031 (2.31248) | > grad_norm_0: 17.57985 (16.66859) | > loss_gen: 2.38766 (2.57146) | > loss_kl: 2.69692 (2.65735) | > loss_feat: 8.23601 (8.74937) | > loss_mel: 17.68658 (17.79671) | > loss_duration: 1.72321 (1.70666) | > loss_1: 32.73038 (33.48153) | > grad_norm_1: 241.91922 (139.63734) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95580 (2.13935) | > loader_time: 0.03290 (0.03593)  --> STEP: 5037/15287 -- GLOBAL_STEP: 970325 | > loss_disc: 2.30300 (2.31231) | > loss_disc_real_0: 0.15793 (0.12210) | > loss_disc_real_1: 0.20379 (0.21103) | > loss_disc_real_2: 0.22646 (0.21557) | > loss_disc_real_3: 0.21128 (0.21812) | > loss_disc_real_4: 0.21173 (0.21379) | > loss_disc_real_5: 0.19730 (0.21233) | > loss_0: 2.30300 (2.31231) | > grad_norm_0: 11.89990 (16.67400) | > loss_gen: 2.58813 (2.57144) | > loss_kl: 2.93373 (2.65728) | > loss_feat: 9.22796 (8.74979) | > loss_mel: 17.95296 (17.79622) | > loss_duration: 1.72301 (1.70669) | > loss_1: 34.42579 (33.48140) | > grad_norm_1: 175.81146 (139.70067) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29400 (2.14012) | > loader_time: 0.03830 (0.03592)  --> STEP: 5062/15287 -- GLOBAL_STEP: 970350 | > loss_disc: 2.21001 (2.31216) | > loss_disc_real_0: 0.14617 (0.12209) | > loss_disc_real_1: 0.20603 (0.21099) | > loss_disc_real_2: 0.22516 (0.21553) | > loss_disc_real_3: 0.17878 (0.21812) | > loss_disc_real_4: 0.20195 (0.21376) | > loss_disc_real_5: 0.18490 (0.21234) | > loss_0: 2.21001 (2.31216) | > grad_norm_0: 15.12827 (16.68579) | > loss_gen: 2.50903 (2.57134) | > loss_kl: 2.64619 (2.65721) | > loss_feat: 8.71620 (8.74949) | > loss_mel: 17.85164 (17.79534) | > loss_duration: 1.73135 (1.70666) | > loss_1: 33.45441 (33.48003) | > grad_norm_1: 118.53483 (139.78517) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43330 (2.14107) | > loader_time: 0.03210 (0.03592)  --> STEP: 5087/15287 -- GLOBAL_STEP: 970375 | > loss_disc: 2.29907 (2.31204) | > loss_disc_real_0: 0.11775 (0.12204) | > loss_disc_real_1: 0.20068 (0.21094) | > loss_disc_real_2: 0.22285 (0.21550) | > loss_disc_real_3: 0.20794 (0.21811) | > loss_disc_real_4: 0.21578 (0.21376) | > loss_disc_real_5: 0.19129 (0.21234) | > loss_0: 2.29907 (2.31204) | > grad_norm_0: 17.45412 (16.69660) | > loss_gen: 2.53033 (2.57115) | > loss_kl: 2.66683 (2.65735) | > loss_feat: 9.18679 (8.74982) | > loss_mel: 18.03660 (17.79480) | > loss_duration: 1.73421 (1.70666) | > loss_1: 34.15475 (33.47977) | > grad_norm_1: 233.16307 (139.96077) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92770 (2.14168) | > loader_time: 0.03050 (0.03590)  --> STEP: 5112/15287 -- GLOBAL_STEP: 970400 | > loss_disc: 2.33777 (2.31200) | > loss_disc_real_0: 0.13254 (0.12202) | > loss_disc_real_1: 0.23242 (0.21094) | > loss_disc_real_2: 0.22930 (0.21549) | > loss_disc_real_3: 0.18751 (0.21811) | > loss_disc_real_4: 0.18786 (0.21375) | > loss_disc_real_5: 0.18757 (0.21236) | > loss_0: 2.33777 (2.31200) | > grad_norm_0: 4.96949 (16.67874) | > loss_gen: 2.52625 (2.57105) | > loss_kl: 2.62864 (2.65719) | > loss_feat: 8.42283 (8.75007) | > loss_mel: 17.76610 (17.79452) | > loss_duration: 1.72464 (1.70671) | > loss_1: 33.06846 (33.47952) | > grad_norm_1: 69.56073 (139.91211) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.64540 (2.14281) | > loader_time: 0.03830 (0.03590)  --> STEP: 5137/15287 -- GLOBAL_STEP: 970425 | > loss_disc: 2.27461 (2.31207) | > loss_disc_real_0: 0.10582 (0.12206) | > loss_disc_real_1: 0.23641 (0.21095) | > loss_disc_real_2: 0.25052 (0.21550) | > loss_disc_real_3: 0.22713 (0.21814) | > loss_disc_real_4: 0.21197 (0.21378) | > loss_disc_real_5: 0.25467 (0.21238) | > loss_0: 2.27461 (2.31207) | > grad_norm_0: 15.72084 (16.68284) | > loss_gen: 2.66062 (2.57120) | > loss_kl: 2.70490 (2.65731) | > loss_feat: 9.02033 (8.75031) | > loss_mel: 17.39944 (17.79449) | > loss_duration: 1.72321 (1.70673) | > loss_1: 33.50851 (33.48003) | > grad_norm_1: 91.16597 (139.91017) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40350 (2.14361) | > loader_time: 0.03410 (0.03590)  --> STEP: 5162/15287 -- GLOBAL_STEP: 970450 | > loss_disc: 2.32949 (2.31212) | > loss_disc_real_0: 0.11132 (0.12204) | > loss_disc_real_1: 0.20799 (0.21095) | > loss_disc_real_2: 0.22533 (0.21551) | > loss_disc_real_3: 0.21870 (0.21814) | > loss_disc_real_4: 0.22303 (0.21378) | > loss_disc_real_5: 0.23586 (0.21239) | > loss_0: 2.32949 (2.31212) | > grad_norm_0: 14.64951 (16.68633) | > loss_gen: 2.55626 (2.57098) | > loss_kl: 2.62622 (2.65723) | > loss_feat: 8.40329 (8.74977) | > loss_mel: 17.68117 (17.79424) | > loss_duration: 1.73404 (1.70669) | > loss_1: 33.00098 (33.47888) | > grad_norm_1: 176.58292 (139.94835) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42000 (2.14486) | > loader_time: 0.03450 (0.03589)  --> STEP: 5187/15287 -- GLOBAL_STEP: 970475 | > loss_disc: 2.35007 (2.31216) | > loss_disc_real_0: 0.10846 (0.12201) | > loss_disc_real_1: 0.21399 (0.21097) | > loss_disc_real_2: 0.20844 (0.21550) | > loss_disc_real_3: 0.19129 (0.21814) | > loss_disc_real_4: 0.20267 (0.21378) | > loss_disc_real_5: 0.23385 (0.21240) | > loss_0: 2.35007 (2.31216) | > grad_norm_0: 21.43044 (16.67472) | > loss_gen: 2.56361 (2.57086) | > loss_kl: 2.71963 (2.65726) | > loss_feat: 9.25432 (8.74952) | > loss_mel: 17.95256 (17.79394) | > loss_duration: 1.73181 (1.70667) | > loss_1: 34.22194 (33.47823) | > grad_norm_1: 82.41878 (139.96419) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95550 (2.14551) | > loader_time: 0.03320 (0.03588)  --> STEP: 5212/15287 -- GLOBAL_STEP: 970500 | > loss_disc: 2.30418 (2.31224) | > loss_disc_real_0: 0.07404 (0.12202) | > loss_disc_real_1: 0.20943 (0.21099) | > loss_disc_real_2: 0.21429 (0.21555) | > loss_disc_real_3: 0.18127 (0.21813) | > loss_disc_real_4: 0.20236 (0.21380) | > loss_disc_real_5: 0.19927 (0.21243) | > loss_0: 2.30418 (2.31224) | > grad_norm_0: 22.67361 (16.68580) | > loss_gen: 2.30278 (2.57072) | > loss_kl: 2.72005 (2.65750) | > loss_feat: 8.62163 (8.74924) | > loss_mel: 18.22605 (17.79448) | > loss_duration: 1.72602 (1.70663) | > loss_1: 33.59653 (33.47855) | > grad_norm_1: 200.71573 (139.94926) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32540 (2.14685) | > loader_time: 0.03540 (0.03587)  --> STEP: 5237/15287 -- GLOBAL_STEP: 970525 | > loss_disc: 2.44360 (2.31233) | > loss_disc_real_0: 0.17213 (0.12205) | > loss_disc_real_1: 0.21384 (0.21099) | > loss_disc_real_2: 0.24921 (0.21557) | > loss_disc_real_3: 0.24662 (0.21815) | > loss_disc_real_4: 0.25593 (0.21381) | > loss_disc_real_5: 0.19061 (0.21244) | > loss_0: 2.44360 (2.31233) | > grad_norm_0: 9.51470 (16.67538) | > loss_gen: 2.47276 (2.57076) | > loss_kl: 2.61796 (2.65769) | > loss_feat: 8.04467 (8.74900) | > loss_mel: 17.36635 (17.79421) | > loss_duration: 1.68590 (1.70663) | > loss_1: 32.18764 (33.47825) | > grad_norm_1: 89.40949 (139.81216) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25540 (2.14802) | > loader_time: 0.03440 (0.03586)  --> STEP: 5262/15287 -- GLOBAL_STEP: 970550 | > loss_disc: 2.28831 (2.31243) | > loss_disc_real_0: 0.16209 (0.12209) | > loss_disc_real_1: 0.19478 (0.21098) | > loss_disc_real_2: 0.20488 (0.21557) | > loss_disc_real_3: 0.20793 (0.21816) | > loss_disc_real_4: 0.19730 (0.21382) | > loss_disc_real_5: 0.20959 (0.21246) | > loss_0: 2.28831 (2.31243) | > grad_norm_0: 17.51117 (16.66371) | > loss_gen: 2.50533 (2.57066) | > loss_kl: 2.65600 (2.65779) | > loss_feat: 8.39906 (8.74801) | > loss_mel: 17.80844 (17.79391) | > loss_duration: 1.70531 (1.70666) | > loss_1: 33.07414 (33.47699) | > grad_norm_1: 164.08833 (139.57793) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.45950 (2.14926) | > loader_time: 0.03190 (0.03585)  --> STEP: 5287/15287 -- GLOBAL_STEP: 970575 | > loss_disc: 2.32149 (2.31236) | > loss_disc_real_0: 0.15219 (0.12207) | > loss_disc_real_1: 0.23636 (0.21099) | > loss_disc_real_2: 0.21422 (0.21554) | > loss_disc_real_3: 0.25382 (0.21817) | > loss_disc_real_4: 0.17543 (0.21381) | > loss_disc_real_5: 0.21782 (0.21246) | > loss_0: 2.32149 (2.31236) | > grad_norm_0: 12.20364 (16.65704) | > loss_gen: 2.53792 (2.57077) | > loss_kl: 2.65945 (2.65794) | > loss_feat: 8.62508 (8.74879) | > loss_mel: 17.52575 (17.79407) | > loss_duration: 1.72409 (1.70672) | > loss_1: 33.07230 (33.47828) | > grad_norm_1: 154.93326 (139.59302) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40860 (2.15009) | > loader_time: 0.03190 (0.03584)  --> STEP: 5312/15287 -- GLOBAL_STEP: 970600 | > loss_disc: 2.33228 (2.31245) | > loss_disc_real_0: 0.08006 (0.12217) | > loss_disc_real_1: 0.19291 (0.21100) | > loss_disc_real_2: 0.20439 (0.21554) | > loss_disc_real_3: 0.25060 (0.21815) | > loss_disc_real_4: 0.23241 (0.21379) | > loss_disc_real_5: 0.20549 (0.21246) | > loss_0: 2.33228 (2.31245) | > grad_norm_0: 9.08356 (16.65490) | > loss_gen: 2.60764 (2.57075) | > loss_kl: 2.56992 (2.65804) | > loss_feat: 8.66649 (8.74860) | > loss_mel: 17.82176 (17.79472) | > loss_duration: 1.76332 (1.70678) | > loss_1: 33.42914 (33.47886) | > grad_norm_1: 118.00918 (139.43124) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17600 (2.15025) | > loader_time: 0.03120 (0.03584)  --> STEP: 5337/15287 -- GLOBAL_STEP: 970625 | > loss_disc: 2.28998 (2.31240) | > loss_disc_real_0: 0.10211 (0.12217) | > loss_disc_real_1: 0.21071 (0.21100) | > loss_disc_real_2: 0.20356 (0.21554) | > loss_disc_real_3: 0.23961 (0.21816) | > loss_disc_real_4: 0.22950 (0.21379) | > loss_disc_real_5: 0.24110 (0.21247) | > loss_0: 2.28998 (2.31240) | > grad_norm_0: 11.74422 (16.63989) | > loss_gen: 2.63146 (2.57076) | > loss_kl: 2.64224 (2.65810) | > loss_feat: 8.81166 (8.74813) | > loss_mel: 17.55867 (17.79442) | > loss_duration: 1.67793 (1.70675) | > loss_1: 33.32197 (33.47814) | > grad_norm_1: 160.00206 (139.33388) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.68680 (2.15134) | > loader_time: 0.03210 (0.03583)  --> STEP: 5362/15287 -- GLOBAL_STEP: 970650 | > loss_disc: 2.31217 (2.31248) | > loss_disc_real_0: 0.12783 (0.12216) | > loss_disc_real_1: 0.20873 (0.21101) | > loss_disc_real_2: 0.19136 (0.21555) | > loss_disc_real_3: 0.21118 (0.21817) | > loss_disc_real_4: 0.22744 (0.21380) | > loss_disc_real_5: 0.21317 (0.21246) | > loss_0: 2.31217 (2.31248) | > grad_norm_0: 10.71762 (16.63813) | > loss_gen: 2.53080 (2.57060) | > loss_kl: 2.58100 (2.65799) | > loss_feat: 8.34065 (8.74781) | > loss_mel: 17.43843 (17.79481) | > loss_duration: 1.72746 (1.70678) | > loss_1: 32.61834 (33.47797) | > grad_norm_1: 116.30015 (139.27921) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.71210 (2.15203) | > loader_time: 0.03340 (0.03584)  --> STEP: 5387/15287 -- GLOBAL_STEP: 970675 | > loss_disc: 2.30786 (2.31260) | > loss_disc_real_0: 0.09375 (0.12216) | > loss_disc_real_1: 0.18046 (0.21101) | > loss_disc_real_2: 0.22393 (0.21555) | > loss_disc_real_3: 0.21902 (0.21819) | > loss_disc_real_4: 0.21872 (0.21382) | > loss_disc_real_5: 0.20239 (0.21247) | > loss_0: 2.30786 (2.31260) | > grad_norm_0: 17.77536 (16.62842) | > loss_gen: 2.52051 (2.57039) | > loss_kl: 2.67009 (2.65802) | > loss_feat: 8.52575 (8.74718) | > loss_mel: 17.71180 (17.79453) | > loss_duration: 1.71469 (1.70677) | > loss_1: 33.14284 (33.47688) | > grad_norm_1: 158.93712 (139.22479) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96660 (2.15285) | > loader_time: 0.03430 (0.03583)  --> STEP: 5412/15287 -- GLOBAL_STEP: 970700 | > loss_disc: 2.31236 (2.31269) | > loss_disc_real_0: 0.17046 (0.12216) | > loss_disc_real_1: 0.19931 (0.21102) | > loss_disc_real_2: 0.25849 (0.21555) | > loss_disc_real_3: 0.21831 (0.21820) | > loss_disc_real_4: 0.25609 (0.21383) | > loss_disc_real_5: 0.23320 (0.21249) | > loss_0: 2.31236 (2.31269) | > grad_norm_0: 12.86041 (16.60866) | > loss_gen: 2.69921 (2.57041) | > loss_kl: 2.77062 (2.65794) | > loss_feat: 8.73287 (8.74705) | > loss_mel: 18.25060 (17.79477) | > loss_duration: 1.68415 (1.70677) | > loss_1: 34.13744 (33.47692) | > grad_norm_1: 52.69287 (139.04652) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42080 (2.15378) | > loader_time: 0.03240 (0.03582)  --> STEP: 5437/15287 -- GLOBAL_STEP: 970725 | > loss_disc: 2.33216 (2.31270) | > loss_disc_real_0: 0.11918 (0.12212) | > loss_disc_real_1: 0.19745 (0.21104) | > loss_disc_real_2: 0.20301 (0.21556) | > loss_disc_real_3: 0.22614 (0.21818) | > loss_disc_real_4: 0.23031 (0.21385) | > loss_disc_real_5: 0.23520 (0.21249) | > loss_0: 2.33216 (2.31270) | > grad_norm_0: 16.72293 (16.59367) | > loss_gen: 2.58142 (2.57044) | > loss_kl: 2.60180 (2.65805) | > loss_feat: 8.09350 (8.74683) | > loss_mel: 17.77570 (17.79446) | > loss_duration: 1.66647 (1.70676) | > loss_1: 32.71889 (33.47652) | > grad_norm_1: 106.54395 (139.01424) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32940 (2.15424) | > loader_time: 0.03230 (0.03582)  --> STEP: 5462/15287 -- GLOBAL_STEP: 970750 | > loss_disc: 2.29158 (2.31280) | > loss_disc_real_0: 0.09095 (0.12210) | > loss_disc_real_1: 0.19088 (0.21108) | > loss_disc_real_2: 0.20828 (0.21557) | > loss_disc_real_3: 0.20542 (0.21818) | > loss_disc_real_4: 0.19207 (0.21386) | > loss_disc_real_5: 0.22377 (0.21250) | > loss_0: 2.29158 (2.31280) | > grad_norm_0: 9.39272 (16.60016) | > loss_gen: 2.70853 (2.57025) | > loss_kl: 2.65227 (2.65806) | > loss_feat: 8.41196 (8.74631) | > loss_mel: 17.24823 (17.79499) | > loss_duration: 1.71486 (1.70675) | > loss_1: 32.73584 (33.47635) | > grad_norm_1: 124.99326 (138.98871) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.74210 (2.15487) | > loader_time: 0.04130 (0.03581)  --> STEP: 5487/15287 -- GLOBAL_STEP: 970775 | > loss_disc: 2.23085 (2.31282) | > loss_disc_real_0: 0.08001 (0.12207) | > loss_disc_real_1: 0.22916 (0.21108) | > loss_disc_real_2: 0.21932 (0.21557) | > loss_disc_real_3: 0.21157 (0.21819) | > loss_disc_real_4: 0.20947 (0.21386) | > loss_disc_real_5: 0.20091 (0.21250) | > loss_0: 2.23085 (2.31282) | > grad_norm_0: 16.41423 (16.59199) | > loss_gen: 2.67481 (2.57016) | > loss_kl: 2.67562 (2.65792) | > loss_feat: 9.26579 (8.74617) | > loss_mel: 18.38566 (17.79489) | > loss_duration: 1.69758 (1.70674) | > loss_1: 34.69945 (33.47589) | > grad_norm_1: 241.99007 (138.99568) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.65320 (2.15553) | > loader_time: 0.03680 (0.03581)  --> STEP: 5512/15287 -- GLOBAL_STEP: 970800 | > loss_disc: 2.28277 (2.31282) | > loss_disc_real_0: 0.11735 (0.12209) | > loss_disc_real_1: 0.24663 (0.21110) | > loss_disc_real_2: 0.23212 (0.21558) | > loss_disc_real_3: 0.19939 (0.21817) | > loss_disc_real_4: 0.21877 (0.21387) | > loss_disc_real_5: 0.21534 (0.21249) | > loss_0: 2.28277 (2.31282) | > grad_norm_0: 26.64162 (16.58175) | > loss_gen: 2.57346 (2.57014) | > loss_kl: 2.54536 (2.65769) | > loss_feat: 8.16557 (8.74539) | > loss_mel: 17.51994 (17.79427) | > loss_duration: 1.70342 (1.70674) | > loss_1: 32.50774 (33.47424) | > grad_norm_1: 167.78853 (139.00319) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20280 (2.15623) | > loader_time: 0.03190 (0.03581)  --> STEP: 5537/15287 -- GLOBAL_STEP: 970825 | > loss_disc: 2.32150 (2.31269) | > loss_disc_real_0: 0.13252 (0.12207) | > loss_disc_real_1: 0.23984 (0.21108) | > loss_disc_real_2: 0.24207 (0.21557) | > loss_disc_real_3: 0.23176 (0.21817) | > loss_disc_real_4: 0.20660 (0.21386) | > loss_disc_real_5: 0.20212 (0.21248) | > loss_0: 2.32150 (2.31269) | > grad_norm_0: 13.18822 (16.58238) | > loss_gen: 2.57531 (2.57010) | > loss_kl: 2.66260 (2.65755) | > loss_feat: 8.77088 (8.74490) | > loss_mel: 17.82754 (17.79396) | > loss_duration: 1.71701 (1.70672) | > loss_1: 33.55334 (33.47322) | > grad_norm_1: 95.28036 (138.99376) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93350 (2.15677) | > loader_time: 0.03100 (0.03579)  --> STEP: 5562/15287 -- GLOBAL_STEP: 970850 | > loss_disc: 2.33198 (2.31267) | > loss_disc_real_0: 0.11771 (0.12206) | > loss_disc_real_1: 0.22334 (0.21109) | > loss_disc_real_2: 0.20576 (0.21556) | > loss_disc_real_3: 0.21864 (0.21816) | > loss_disc_real_4: 0.23081 (0.21387) | > loss_disc_real_5: 0.20196 (0.21249) | > loss_0: 2.33198 (2.31267) | > grad_norm_0: 14.89773 (16.57917) | > loss_gen: 2.41120 (2.57004) | > loss_kl: 2.60180 (2.65761) | > loss_feat: 8.34455 (8.74440) | > loss_mel: 17.74226 (17.79358) | > loss_duration: 1.72640 (1.70675) | > loss_1: 32.82620 (33.47238) | > grad_norm_1: 156.32944 (138.96375) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27840 (2.15739) | > loader_time: 0.03200 (0.03578)  --> STEP: 5587/15287 -- GLOBAL_STEP: 970875 | > loss_disc: 2.26507 (2.31275) | > loss_disc_real_0: 0.09990 (0.12212) | > loss_disc_real_1: 0.20851 (0.21112) | > loss_disc_real_2: 0.20793 (0.21557) | > loss_disc_real_3: 0.19522 (0.21817) | > loss_disc_real_4: 0.21641 (0.21389) | > loss_disc_real_5: 0.19688 (0.21252) | > loss_0: 2.26507 (2.31275) | > grad_norm_0: 4.79213 (16.57112) | > loss_gen: 3.00250 (2.57019) | > loss_kl: 2.70233 (2.65766) | > loss_feat: 9.38375 (8.74447) | > loss_mel: 18.07746 (17.79346) | > loss_duration: 1.68372 (1.70674) | > loss_1: 34.84975 (33.47251) | > grad_norm_1: 85.10508 (138.86014) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.66770 (2.15786) | > loader_time: 0.03970 (0.03578)  --> STEP: 5612/15287 -- GLOBAL_STEP: 970900 | > loss_disc: 2.26285 (2.31282) | > loss_disc_real_0: 0.10128 (0.12216) | > loss_disc_real_1: 0.22154 (0.21111) | > loss_disc_real_2: 0.25741 (0.21561) | > loss_disc_real_3: 0.21653 (0.21818) | > loss_disc_real_4: 0.23914 (0.21389) | > loss_disc_real_5: 0.23120 (0.21254) | > loss_0: 2.26285 (2.31282) | > grad_norm_0: 13.30820 (16.56050) | > loss_gen: 2.72617 (2.57025) | > loss_kl: 2.58007 (2.65755) | > loss_feat: 9.16074 (8.74436) | > loss_mel: 18.14176 (17.79351) | > loss_duration: 1.70209 (1.70674) | > loss_1: 34.31084 (33.47243) | > grad_norm_1: 150.35005 (138.76460) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33120 (2.15804) | > loader_time: 0.03040 (0.03578)  --> STEP: 5637/15287 -- GLOBAL_STEP: 970925 | > loss_disc: 2.30330 (2.31292) | > loss_disc_real_0: 0.11183 (0.12215) | > loss_disc_real_1: 0.19207 (0.21113) | > loss_disc_real_2: 0.18176 (0.21561) | > loss_disc_real_3: 0.21369 (0.21818) | > loss_disc_real_4: 0.20921 (0.21394) | > loss_disc_real_5: 0.20271 (0.21255) | > loss_0: 2.30330 (2.31292) | > grad_norm_0: 24.67531 (16.55611) | > loss_gen: 2.48723 (2.57018) | > loss_kl: 2.78367 (2.65763) | > loss_feat: 9.42979 (8.74395) | > loss_mel: 18.32231 (17.79343) | > loss_duration: 1.72551 (1.70675) | > loss_1: 34.74850 (33.47195) | > grad_norm_1: 142.42638 (138.71048) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86360 (2.15859) | > loader_time: 0.03190 (0.03577)  --> STEP: 5662/15287 -- GLOBAL_STEP: 970950 | > loss_disc: 2.31032 (2.31300) | > loss_disc_real_0: 0.15261 (0.12218) | > loss_disc_real_1: 0.21918 (0.21112) | > loss_disc_real_2: 0.21744 (0.21563) | > loss_disc_real_3: 0.21358 (0.21821) | > loss_disc_real_4: 0.21655 (0.21395) | > loss_disc_real_5: 0.20568 (0.21257) | > loss_0: 2.31032 (2.31300) | > grad_norm_0: 18.48335 (16.56254) | > loss_gen: 2.48818 (2.57003) | > loss_kl: 2.63681 (2.65754) | > loss_feat: 8.91317 (8.74348) | > loss_mel: 17.85065 (17.79338) | > loss_duration: 1.69162 (1.70675) | > loss_1: 33.58043 (33.47116) | > grad_norm_1: 247.28993 (138.78783) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15820 (2.15938) | > loader_time: 0.03310 (0.03576)  --> STEP: 5687/15287 -- GLOBAL_STEP: 970975 | > loss_disc: 2.37293 (2.31299) | > loss_disc_real_0: 0.15708 (0.12220) | > loss_disc_real_1: 0.20245 (0.21112) | > loss_disc_real_2: 0.21042 (0.21562) | > loss_disc_real_3: 0.21305 (0.21820) | > loss_disc_real_4: 0.19473 (0.21395) | > loss_disc_real_5: 0.22907 (0.21259) | > loss_0: 2.37293 (2.31299) | > grad_norm_0: 38.80246 (16.57257) | > loss_gen: 2.36151 (2.57002) | > loss_kl: 2.60513 (2.65766) | > loss_feat: 8.78042 (8.74344) | > loss_mel: 17.87997 (17.79331) | > loss_duration: 1.71718 (1.70678) | > loss_1: 33.34422 (33.47122) | > grad_norm_1: 165.07759 (138.83307) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32850 (2.16002) | > loader_time: 0.03500 (0.03576)  --> STEP: 5712/15287 -- GLOBAL_STEP: 971000 | > loss_disc: 2.24247 (2.31291) | > loss_disc_real_0: 0.11268 (0.12217) | > loss_disc_real_1: 0.19967 (0.21110) | > loss_disc_real_2: 0.21156 (0.21561) | > loss_disc_real_3: 0.18837 (0.21819) | > loss_disc_real_4: 0.17704 (0.21396) | > loss_disc_real_5: 0.20336 (0.21260) | > loss_0: 2.24247 (2.31291) | > grad_norm_0: 14.43016 (16.58165) | > loss_gen: 2.45548 (2.56997) | > loss_kl: 2.50662 (2.65744) | > loss_feat: 8.72216 (8.74346) | > loss_mel: 17.25681 (17.79301) | > loss_duration: 1.71707 (1.70681) | > loss_1: 32.65813 (33.47069) | > grad_norm_1: 139.62904 (138.86116) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19320 (2.16034) | > loader_time: 0.03210 (0.03575)  --> STEP: 5737/15287 -- GLOBAL_STEP: 971025 | > loss_disc: 2.28649 (2.31290) | > loss_disc_real_0: 0.13522 (0.12218) | > loss_disc_real_1: 0.19328 (0.21109) | > loss_disc_real_2: 0.20486 (0.21559) | > loss_disc_real_3: 0.17879 (0.21818) | > loss_disc_real_4: 0.19280 (0.21396) | > loss_disc_real_5: 0.22466 (0.21257) | > loss_0: 2.28649 (2.31290) | > grad_norm_0: 29.78526 (16.59731) | > loss_gen: 2.40007 (2.56993) | > loss_kl: 2.55063 (2.65731) | > loss_feat: 8.66988 (8.74361) | > loss_mel: 17.38708 (17.79228) | > loss_duration: 1.68968 (1.70682) | > loss_1: 32.69735 (33.46996) | > grad_norm_1: 252.28227 (138.97688) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38460 (2.16080) | > loader_time: 0.03160 (0.03576)  --> STEP: 5762/15287 -- GLOBAL_STEP: 971050 | > loss_disc: 2.36654 (2.31283) | > loss_disc_real_0: 0.11054 (0.12216) | > loss_disc_real_1: 0.20688 (0.21107) | > loss_disc_real_2: 0.22414 (0.21557) | > loss_disc_real_3: 0.22597 (0.21817) | > loss_disc_real_4: 0.20973 (0.21394) | > loss_disc_real_5: 0.22497 (0.21256) | > loss_0: 2.36654 (2.31283) | > grad_norm_0: 10.45509 (16.60944) | > loss_gen: 2.55349 (2.56979) | > loss_kl: 2.66327 (2.65732) | > loss_feat: 8.08882 (8.74333) | > loss_mel: 17.26869 (17.79166) | > loss_duration: 1.66099 (1.70683) | > loss_1: 32.23526 (33.46894) | > grad_norm_1: 186.16664 (139.06538) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56490 (2.16121) | > loader_time: 0.03770 (0.03576)  --> STEP: 5787/15287 -- GLOBAL_STEP: 971075 | > loss_disc: 2.24638 (2.31278) | > loss_disc_real_0: 0.10510 (0.12216) | > loss_disc_real_1: 0.20430 (0.21107) | > loss_disc_real_2: 0.21379 (0.21558) | > loss_disc_real_3: 0.19095 (0.21815) | > loss_disc_real_4: 0.19348 (0.21393) | > loss_disc_real_5: 0.19686 (0.21257) | > loss_0: 2.24638 (2.31278) | > grad_norm_0: 12.92281 (16.60559) | > loss_gen: 2.58008 (2.56980) | > loss_kl: 2.62145 (2.65736) | > loss_feat: 8.93155 (8.74394) | > loss_mel: 17.80683 (17.79208) | > loss_duration: 1.74586 (1.70687) | > loss_1: 33.68577 (33.47005) | > grad_norm_1: 151.77783 (139.05736) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.70330 (2.16144) | > loader_time: 0.03550 (0.03575)  --> STEP: 5812/15287 -- GLOBAL_STEP: 971100 | > loss_disc: 2.30048 (2.31269) | > loss_disc_real_0: 0.09831 (0.12212) | > loss_disc_real_1: 0.19840 (0.21108) | > loss_disc_real_2: 0.18249 (0.21558) | > loss_disc_real_3: 0.22835 (0.21814) | > loss_disc_real_4: 0.20194 (0.21393) | > loss_disc_real_5: 0.25269 (0.21257) | > loss_0: 2.30048 (2.31269) | > grad_norm_0: 20.78300 (16.59955) | > loss_gen: 2.45483 (2.56982) | > loss_kl: 2.60359 (2.65727) | > loss_feat: 8.51383 (8.74445) | > loss_mel: 17.84464 (17.79218) | > loss_duration: 1.72357 (1.70687) | > loss_1: 33.14045 (33.47058) | > grad_norm_1: 88.42407 (139.03688) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32680 (2.16164) | > loader_time: 0.02990 (0.03575)  --> STEP: 5837/15287 -- GLOBAL_STEP: 971125 | > loss_disc: 2.33171 (2.31269) | > loss_disc_real_0: 0.10085 (0.12211) | > loss_disc_real_1: 0.18307 (0.21106) | > loss_disc_real_2: 0.24213 (0.21555) | > loss_disc_real_3: 0.27746 (0.21817) | > loss_disc_real_4: 0.21807 (0.21393) | > loss_disc_real_5: 0.22456 (0.21257) | > loss_0: 2.33171 (2.31269) | > grad_norm_0: 8.96024 (16.59386) | > loss_gen: 2.62199 (2.56980) | > loss_kl: 2.72941 (2.65742) | > loss_feat: 8.54362 (8.74446) | > loss_mel: 17.41995 (17.79227) | > loss_duration: 1.68633 (1.70687) | > loss_1: 33.00130 (33.47081) | > grad_norm_1: 95.00755 (138.99217) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.50850 (2.16259) | > loader_time: 0.03040 (0.03575)  --> STEP: 5862/15287 -- GLOBAL_STEP: 971150 | > loss_disc: 2.25115 (2.31282) | > loss_disc_real_0: 0.10449 (0.12214) | > loss_disc_real_1: 0.19266 (0.21109) | > loss_disc_real_2: 0.19243 (0.21556) | > loss_disc_real_3: 0.20078 (0.21818) | > loss_disc_real_4: 0.18667 (0.21393) | > loss_disc_real_5: 0.21744 (0.21257) | > loss_0: 2.25115 (2.31282) | > grad_norm_0: 11.06778 (16.59533) | > loss_gen: 2.62827 (2.56966) | > loss_kl: 2.71628 (2.65733) | > loss_feat: 8.97048 (8.74402) | > loss_mel: 18.11733 (17.79232) | > loss_duration: 1.70323 (1.70685) | > loss_1: 34.13558 (33.47017) | > grad_norm_1: 169.00632 (138.97910) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04350 (2.16376) | > loader_time: 0.03330 (0.03574)  --> STEP: 5887/15287 -- GLOBAL_STEP: 971175 | > loss_disc: 2.36625 (2.31292) | > loss_disc_real_0: 0.18055 (0.12216) | > loss_disc_real_1: 0.16661 (0.21111) | > loss_disc_real_2: 0.16557 (0.21556) | > loss_disc_real_3: 0.20786 (0.21819) | > loss_disc_real_4: 0.23878 (0.21395) | > loss_disc_real_5: 0.14298 (0.21259) | > loss_0: 2.36625 (2.31292) | > grad_norm_0: 23.70344 (16.59445) | > loss_gen: 2.37332 (2.56988) | > loss_kl: 2.55863 (2.65723) | > loss_feat: 7.88463 (8.74463) | > loss_mel: 17.65032 (17.79281) | > loss_duration: 1.68120 (1.70683) | > loss_1: 32.14811 (33.47136) | > grad_norm_1: 131.23019 (139.02055) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.59060 (2.16457) | > loader_time: 0.03430 (0.03574)  --> STEP: 5912/15287 -- GLOBAL_STEP: 971200 | > loss_disc: 2.23717 (2.31292) | > loss_disc_real_0: 0.10578 (0.12213) | > loss_disc_real_1: 0.20205 (0.21111) | > loss_disc_real_2: 0.18009 (0.21556) | > loss_disc_real_3: 0.19594 (0.21820) | > loss_disc_real_4: 0.18375 (0.21396) | > loss_disc_real_5: 0.19597 (0.21258) | > loss_0: 2.23717 (2.31292) | > grad_norm_0: 16.80281 (16.61008) | > loss_gen: 2.45780 (2.56968) | > loss_kl: 2.75793 (2.65712) | > loss_feat: 9.40808 (8.74407) | > loss_mel: 17.05627 (17.79191) | > loss_duration: 1.68572 (1.70681) | > loss_1: 33.36578 (33.46959) | > grad_norm_1: 176.20009 (139.09950) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.89650 (2.16513) | > loader_time: 0.03720 (0.03575)  --> STEP: 5937/15287 -- GLOBAL_STEP: 971225 | > loss_disc: 2.36929 (2.31282) | > loss_disc_real_0: 0.12286 (0.12211) | > loss_disc_real_1: 0.22019 (0.21111) | > loss_disc_real_2: 0.22420 (0.21557) | > loss_disc_real_3: 0.23028 (0.21819) | > loss_disc_real_4: 0.23501 (0.21394) | > loss_disc_real_5: 0.21830 (0.21259) | > loss_0: 2.36929 (2.31282) | > grad_norm_0: 9.96220 (16.63376) | > loss_gen: 2.44283 (2.56973) | > loss_kl: 2.63701 (2.65702) | > loss_feat: 8.37213 (8.74415) | > loss_mel: 17.51439 (17.79122) | > loss_duration: 1.72761 (1.70680) | > loss_1: 32.69397 (33.46889) | > grad_norm_1: 160.36342 (139.27667) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30020 (2.16576) | > loader_time: 0.03200 (0.03574)  --> STEP: 5962/15287 -- GLOBAL_STEP: 971250 | > loss_disc: 2.31174 (2.31276) | > loss_disc_real_0: 0.11203 (0.12209) | > loss_disc_real_1: 0.18071 (0.21110) | > loss_disc_real_2: 0.22689 (0.21556) | > loss_disc_real_3: 0.24105 (0.21818) | > loss_disc_real_4: 0.22611 (0.21393) | > loss_disc_real_5: 0.25806 (0.21259) | > loss_0: 2.31174 (2.31276) | > grad_norm_0: 22.40508 (16.64329) | > loss_gen: 2.47238 (2.56967) | > loss_kl: 2.74447 (2.65721) | > loss_feat: 8.81167 (8.74430) | > loss_mel: 17.48658 (17.79135) | > loss_duration: 1.71662 (1.70680) | > loss_1: 33.23172 (33.46931) | > grad_norm_1: 166.52324 (139.40115) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89430 (2.16604) | > loader_time: 0.03120 (0.03572)  --> STEP: 5987/15287 -- GLOBAL_STEP: 971275 | > loss_disc: 2.35824 (2.31273) | > loss_disc_real_0: 0.10986 (0.12206) | > loss_disc_real_1: 0.21149 (0.21109) | > loss_disc_real_2: 0.21782 (0.21555) | > loss_disc_real_3: 0.26485 (0.21819) | > loss_disc_real_4: 0.22348 (0.21392) | > loss_disc_real_5: 0.24174 (0.21260) | > loss_0: 2.35824 (2.31273) | > grad_norm_0: 16.43968 (16.64108) | > loss_gen: 2.50779 (2.56974) | > loss_kl: 2.62689 (2.65733) | > loss_feat: 8.33067 (8.74464) | > loss_mel: 17.96355 (17.79192) | > loss_duration: 1.75412 (1.70679) | > loss_1: 33.18303 (33.47038) | > grad_norm_1: 87.22874 (139.48430) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92330 (2.16659) | > loader_time: 0.03010 (0.03572)  --> STEP: 6012/15287 -- GLOBAL_STEP: 971300 | > loss_disc: 2.32161 (2.31277) | > loss_disc_real_0: 0.12540 (0.12204) | > loss_disc_real_1: 0.21734 (0.21108) | > loss_disc_real_2: 0.21676 (0.21554) | > loss_disc_real_3: 0.20686 (0.21820) | > loss_disc_real_4: 0.22545 (0.21391) | > loss_disc_real_5: 0.18901 (0.21261) | > loss_0: 2.32161 (2.31277) | > grad_norm_0: 8.03511 (16.66533) | > loss_gen: 2.52151 (2.56958) | > loss_kl: 2.58748 (2.65758) | > loss_feat: 8.29468 (8.74417) | > loss_mel: 17.57970 (17.79179) | > loss_duration: 1.75316 (1.70680) | > loss_1: 32.73653 (33.46988) | > grad_norm_1: 121.86000 (139.56851) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05600 (2.16727) | > loader_time: 0.03840 (0.03572)  --> STEP: 6037/15287 -- GLOBAL_STEP: 971325 | > loss_disc: 2.30678 (2.31277) | > loss_disc_real_0: 0.11332 (0.12204) | > loss_disc_real_1: 0.22118 (0.21107) | > loss_disc_real_2: 0.23029 (0.21554) | > loss_disc_real_3: 0.22706 (0.21818) | > loss_disc_real_4: 0.24529 (0.21391) | > loss_disc_real_5: 0.22252 (0.21262) | > loss_0: 2.30678 (2.31277) | > grad_norm_0: 8.55769 (16.65761) | > loss_gen: 2.54775 (2.56953) | > loss_kl: 2.68694 (2.65757) | > loss_feat: 8.53793 (8.74454) | > loss_mel: 17.58937 (17.79157) | > loss_duration: 1.70934 (1.70684) | > loss_1: 33.07133 (33.47000) | > grad_norm_1: 193.24068 (139.58476) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40220 (2.16813) | > loader_time: 0.03250 (0.03572)  --> STEP: 6062/15287 -- GLOBAL_STEP: 971350 | > loss_disc: 2.33076 (2.31293) | > loss_disc_real_0: 0.08090 (0.12206) | > loss_disc_real_1: 0.19071 (0.21107) | > loss_disc_real_2: 0.23322 (0.21553) | > loss_disc_real_3: 0.19688 (0.21819) | > loss_disc_real_4: 0.22551 (0.21391) | > loss_disc_real_5: 0.23365 (0.21262) | > loss_0: 2.33076 (2.31293) | > grad_norm_0: 14.66012 (16.65971) | > loss_gen: 2.55734 (2.56937) | > loss_kl: 2.71266 (2.65772) | > loss_feat: 8.97112 (8.74470) | > loss_mel: 17.98153 (17.79160) | > loss_duration: 1.65669 (1.70686) | > loss_1: 33.87934 (33.47019) | > grad_norm_1: 155.47025 (139.62024) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43250 (2.16915) | > loader_time: 0.03670 (0.03572)  --> STEP: 6087/15287 -- GLOBAL_STEP: 971375 | > loss_disc: 2.44876 (2.31294) | > loss_disc_real_0: 0.12494 (0.12205) | > loss_disc_real_1: 0.20828 (0.21106) | > loss_disc_real_2: 0.20511 (0.21553) | > loss_disc_real_3: 0.20963 (0.21819) | > loss_disc_real_4: 0.22580 (0.21390) | > loss_disc_real_5: 0.23331 (0.21264) | > loss_0: 2.44876 (2.31294) | > grad_norm_0: 26.48020 (16.65544) | > loss_gen: 2.44816 (2.56944) | > loss_kl: 2.69842 (2.65771) | > loss_feat: 8.62786 (8.74505) | > loss_mel: 17.79189 (17.79180) | > loss_duration: 1.70841 (1.70684) | > loss_1: 33.27474 (33.47079) | > grad_norm_1: 205.09135 (139.65742) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56110 (2.17002) | > loader_time: 0.03450 (0.03572)  --> STEP: 6112/15287 -- GLOBAL_STEP: 971400 | > loss_disc: 2.33265 (2.31296) | > loss_disc_real_0: 0.13592 (0.12205) | > loss_disc_real_1: 0.21085 (0.21108) | > loss_disc_real_2: 0.22075 (0.21553) | > loss_disc_real_3: 0.20874 (0.21819) | > loss_disc_real_4: 0.19992 (0.21390) | > loss_disc_real_5: 0.23661 (0.21265) | > loss_0: 2.33265 (2.31296) | > grad_norm_0: 18.51251 (16.66772) | > loss_gen: 2.45313 (2.56936) | > loss_kl: 2.55427 (2.65749) | > loss_feat: 8.53937 (8.74442) | > loss_mel: 17.31391 (17.79150) | > loss_duration: 1.67105 (1.70681) | > loss_1: 32.53173 (33.46955) | > grad_norm_1: 118.46478 (139.72038) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.59180 (2.17076) | > loader_time: 0.03810 (0.03571)  --> STEP: 6137/15287 -- GLOBAL_STEP: 971425 | > loss_disc: 2.28491 (2.31290) | > loss_disc_real_0: 0.08244 (0.12204) | > loss_disc_real_1: 0.21284 (0.21107) | > loss_disc_real_2: 0.21534 (0.21555) | > loss_disc_real_3: 0.20922 (0.21818) | > loss_disc_real_4: 0.19879 (0.21390) | > loss_disc_real_5: 0.22109 (0.21266) | > loss_0: 2.28491 (2.31290) | > grad_norm_0: 28.10614 (16.68355) | > loss_gen: 2.53419 (2.56938) | > loss_kl: 2.64863 (2.65746) | > loss_feat: 8.58773 (8.74443) | > loss_mel: 17.57545 (17.79134) | > loss_duration: 1.71184 (1.70686) | > loss_1: 33.05784 (33.46946) | > grad_norm_1: 176.66180 (139.87276) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99890 (2.17119) | > loader_time: 0.03510 (0.03572)  --> STEP: 6162/15287 -- GLOBAL_STEP: 971450 | > loss_disc: 2.37373 (2.31293) | > loss_disc_real_0: 0.11997 (0.12205) | > loss_disc_real_1: 0.25522 (0.21111) | > loss_disc_real_2: 0.24162 (0.21556) | > loss_disc_real_3: 0.21870 (0.21819) | > loss_disc_real_4: 0.23121 (0.21393) | > loss_disc_real_5: 0.23612 (0.21265) | > loss_0: 2.37373 (2.31293) | > grad_norm_0: 15.42282 (16.68867) | > loss_gen: 2.39021 (2.56944) | > loss_kl: 2.73547 (2.65753) | > loss_feat: 7.91355 (8.74415) | > loss_mel: 17.39095 (17.79111) | > loss_duration: 1.67454 (1.70687) | > loss_1: 32.10471 (33.46908) | > grad_norm_1: 155.80121 (139.91687) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.49210 (2.17216) | > loader_time: 0.03630 (0.03572)  --> STEP: 6187/15287 -- GLOBAL_STEP: 971475 | > loss_disc: 2.30118 (2.31292) | > loss_disc_real_0: 0.10149 (0.12205) | > loss_disc_real_1: 0.23122 (0.21110) | > loss_disc_real_2: 0.20675 (0.21554) | > loss_disc_real_3: 0.19887 (0.21817) | > loss_disc_real_4: 0.18708 (0.21392) | > loss_disc_real_5: 0.25217 (0.21266) | > loss_0: 2.30118 (2.31292) | > grad_norm_0: 6.90401 (16.68401) | > loss_gen: 2.66081 (2.56936) | > loss_kl: 2.82443 (2.65761) | > loss_feat: 8.85848 (8.74391) | > loss_mel: 18.35155 (17.79108) | > loss_duration: 1.67246 (1.70684) | > loss_1: 34.36774 (33.46877) | > grad_norm_1: 91.51466 (139.90704) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24890 (2.17266) | > loader_time: 0.04320 (0.03585)  --> STEP: 6212/15287 -- GLOBAL_STEP: 971500 | > loss_disc: 2.34291 (2.31294) | > loss_disc_real_0: 0.07731 (0.12203) | > loss_disc_real_1: 0.19967 (0.21108) | > loss_disc_real_2: 0.20211 (0.21555) | > loss_disc_real_3: 0.22160 (0.21818) | > loss_disc_real_4: 0.23192 (0.21393) | > loss_disc_real_5: 0.19625 (0.21265) | > loss_0: 2.34291 (2.31294) | > grad_norm_0: 17.17505 (16.67486) | > loss_gen: 2.53605 (2.56938) | > loss_kl: 2.61407 (2.65747) | > loss_feat: 8.68707 (8.74406) | > loss_mel: 17.40582 (17.79148) | > loss_duration: 1.72578 (1.70686) | > loss_1: 32.96879 (33.46923) | > grad_norm_1: 194.05197 (139.96457) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01610 (2.17273) | > loader_time: 0.04400 (0.03585)  --> STEP: 6237/15287 -- GLOBAL_STEP: 971525 | > loss_disc: 2.26353 (2.31307) | > loss_disc_real_0: 0.09646 (0.12205) | > loss_disc_real_1: 0.17955 (0.21110) | > loss_disc_real_2: 0.19585 (0.21554) | > loss_disc_real_3: 0.18216 (0.21817) | > loss_disc_real_4: 0.25241 (0.21393) | > loss_disc_real_5: 0.18734 (0.21265) | > loss_0: 2.26353 (2.31307) | > grad_norm_0: 28.95157 (16.67898) | > loss_gen: 2.63876 (2.56922) | > loss_kl: 2.72023 (2.65744) | > loss_feat: 9.14462 (8.74347) | > loss_mel: 18.06792 (17.79159) | > loss_duration: 1.67503 (1.70685) | > loss_1: 34.24656 (33.46856) | > grad_norm_1: 222.79654 (139.98511) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20610 (2.17329) | > loader_time: 0.03060 (0.03585)  --> STEP: 6262/15287 -- GLOBAL_STEP: 971550 | > loss_disc: 2.33637 (2.31312) | > loss_disc_real_0: 0.11701 (0.12206) | > loss_disc_real_1: 0.20648 (0.21110) | > loss_disc_real_2: 0.23338 (0.21554) | > loss_disc_real_3: 0.22493 (0.21817) | > loss_disc_real_4: 0.21120 (0.21392) | > loss_disc_real_5: 0.21468 (0.21267) | > loss_0: 2.33637 (2.31312) | > grad_norm_0: 16.60756 (16.69285) | > loss_gen: 2.50303 (2.56908) | > loss_kl: 2.63494 (2.65742) | > loss_feat: 8.70765 (8.74321) | > loss_mel: 17.15409 (17.79078) | > loss_duration: 1.73092 (1.70688) | > loss_1: 32.73064 (33.46735) | > grad_norm_1: 161.35081 (140.11021) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09000 (2.17356) | > loader_time: 0.03580 (0.03584)  --> STEP: 6287/15287 -- GLOBAL_STEP: 971575 | > loss_disc: 2.35450 (2.31302) | > loss_disc_real_0: 0.12356 (0.12202) | > loss_disc_real_1: 0.19779 (0.21110) | > loss_disc_real_2: 0.19317 (0.21554) | > loss_disc_real_3: 0.22059 (0.21817) | > loss_disc_real_4: 0.21704 (0.21392) | > loss_disc_real_5: 0.23847 (0.21267) | > loss_0: 2.35450 (2.31302) | > grad_norm_0: 20.07385 (16.68463) | > loss_gen: 2.46535 (2.56905) | > loss_kl: 2.73508 (2.65735) | > loss_feat: 8.58948 (8.74321) | > loss_mel: 18.29373 (17.79060) | > loss_duration: 1.74840 (1.70686) | > loss_1: 33.83205 (33.46704) | > grad_norm_1: 138.85637 (140.14400) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91610 (2.17405) | > loader_time: 0.03120 (0.03584)  --> STEP: 6312/15287 -- GLOBAL_STEP: 971600 | > loss_disc: 2.30106 (2.31302) | > loss_disc_real_0: 0.10714 (0.12200) | > loss_disc_real_1: 0.22630 (0.21112) | > loss_disc_real_2: 0.20762 (0.21556) | > loss_disc_real_3: 0.23537 (0.21818) | > loss_disc_real_4: 0.21900 (0.21394) | > loss_disc_real_5: 0.23477 (0.21266) | > loss_0: 2.30106 (2.31302) | > grad_norm_0: 19.68476 (16.69516) | > loss_gen: 2.44814 (2.56911) | > loss_kl: 2.55567 (2.65731) | > loss_feat: 8.29783 (8.74346) | > loss_mel: 17.71955 (17.79103) | > loss_duration: 1.73037 (1.70686) | > loss_1: 32.75156 (33.46773) | > grad_norm_1: 128.16458 (140.22212) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.61840 (2.17456) | > loader_time: 0.03620 (0.03583)  --> STEP: 6337/15287 -- GLOBAL_STEP: 971625 | > loss_disc: 2.27261 (2.31304) | > loss_disc_real_0: 0.09098 (0.12200) | > loss_disc_real_1: 0.21136 (0.21113) | > loss_disc_real_2: 0.21397 (0.21556) | > loss_disc_real_3: 0.22199 (0.21818) | > loss_disc_real_4: 0.20011 (0.21394) | > loss_disc_real_5: 0.17614 (0.21266) | > loss_0: 2.27261 (2.31304) | > grad_norm_0: 6.04715 (16.67276) | > loss_gen: 2.95601 (2.56914) | > loss_kl: 2.61159 (2.65743) | > loss_feat: 8.97106 (8.74325) | > loss_mel: 17.88290 (17.79122) | > loss_duration: 1.73562 (1.70685) | > loss_1: 34.15718 (33.46786) | > grad_norm_1: 188.34842 (140.10736) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21230 (2.17521) | > loader_time: 0.03600 (0.03582)  --> STEP: 6362/15287 -- GLOBAL_STEP: 971650 | > loss_disc: 2.36669 (2.31309) | > loss_disc_real_0: 0.12261 (0.12200) | > loss_disc_real_1: 0.22791 (0.21113) | > loss_disc_real_2: 0.22210 (0.21556) | > loss_disc_real_3: 0.21476 (0.21819) | > loss_disc_real_4: 0.19989 (0.21395) | > loss_disc_real_5: 0.22896 (0.21269) | > loss_0: 2.36669 (2.31309) | > grad_norm_0: 11.00622 (16.67634) | > loss_gen: 2.63561 (2.56911) | > loss_kl: 2.64427 (2.65739) | > loss_feat: 7.86505 (8.74304) | > loss_mel: 18.20660 (17.79150) | > loss_duration: 1.66782 (1.70687) | > loss_1: 33.01935 (33.46788) | > grad_norm_1: 166.81612 (140.11600) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44500 (2.17590) | > loader_time: 0.03110 (0.03581)  --> STEP: 6387/15287 -- GLOBAL_STEP: 971675 | > loss_disc: 2.28586 (2.31311) | > loss_disc_real_0: 0.13212 (0.12199) | > loss_disc_real_1: 0.19649 (0.21114) | > loss_disc_real_2: 0.21404 (0.21555) | > loss_disc_real_3: 0.22235 (0.21821) | > loss_disc_real_4: 0.21604 (0.21397) | > loss_disc_real_5: 0.23040 (0.21269) | > loss_0: 2.28586 (2.31311) | > grad_norm_0: 14.95766 (16.66833) | > loss_gen: 2.59616 (2.56902) | > loss_kl: 2.72353 (2.65743) | > loss_feat: 9.22319 (8.74253) | > loss_mel: 18.67832 (17.79123) | > loss_duration: 1.70294 (1.70689) | > loss_1: 34.92413 (33.46708) | > grad_norm_1: 184.96581 (140.04065) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.60490 (2.17707) | > loader_time: 0.03830 (0.03581)  --> STEP: 6412/15287 -- GLOBAL_STEP: 971700 | > loss_disc: 2.30911 (2.31320) | > loss_disc_real_0: 0.10207 (0.12201) | > loss_disc_real_1: 0.17111 (0.21119) | > loss_disc_real_2: 0.21579 (0.21555) | > loss_disc_real_3: 0.22507 (0.21822) | > loss_disc_real_4: 0.21369 (0.21400) | > loss_disc_real_5: 0.20344 (0.21269) | > loss_0: 2.30911 (2.31320) | > grad_norm_0: 11.86308 (16.66987) | > loss_gen: 2.44637 (2.56893) | > loss_kl: 2.54244 (2.65734) | > loss_feat: 8.34004 (8.74210) | > loss_mel: 17.29419 (17.79112) | > loss_duration: 1.66976 (1.70688) | > loss_1: 32.29280 (33.46634) | > grad_norm_1: 111.05476 (139.94809) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01190 (2.17792) | > loader_time: 0.03290 (0.03582)  --> STEP: 6437/15287 -- GLOBAL_STEP: 971725 | > loss_disc: 2.29924 (2.31318) | > loss_disc_real_0: 0.11289 (0.12200) | > loss_disc_real_1: 0.20822 (0.21119) | > loss_disc_real_2: 0.21649 (0.21555) | > loss_disc_real_3: 0.22615 (0.21822) | > loss_disc_real_4: 0.21096 (0.21400) | > loss_disc_real_5: 0.20705 (0.21268) | > loss_0: 2.29924 (2.31318) | > grad_norm_0: 7.07131 (16.65899) | > loss_gen: 2.58293 (2.56897) | > loss_kl: 2.70883 (2.65741) | > loss_feat: 8.18213 (8.74222) | > loss_mel: 17.24166 (17.79157) | > loss_duration: 1.67486 (1.70684) | > loss_1: 32.39040 (33.46698) | > grad_norm_1: 96.27224 (139.86584) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91660 (2.17861) | > loader_time: 0.03410 (0.03581)  --> STEP: 6462/15287 -- GLOBAL_STEP: 971750 | > loss_disc: 2.34018 (2.31317) | > loss_disc_real_0: 0.12104 (0.12200) | > loss_disc_real_1: 0.21032 (0.21118) | > loss_disc_real_2: 0.22598 (0.21554) | > loss_disc_real_3: 0.23127 (0.21821) | > loss_disc_real_4: 0.21010 (0.21401) | > loss_disc_real_5: 0.20485 (0.21271) | > loss_0: 2.34018 (2.31317) | > grad_norm_0: 10.95115 (16.65862) | > loss_gen: 2.69808 (2.56903) | > loss_kl: 2.64201 (2.65736) | > loss_feat: 8.63359 (8.74219) | > loss_mel: 18.01830 (17.79198) | > loss_duration: 1.74897 (1.70684) | > loss_1: 33.74095 (33.46736) | > grad_norm_1: 109.88822 (139.85320) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91410 (2.17912) | > loader_time: 0.03700 (0.03581)  --> STEP: 6487/15287 -- GLOBAL_STEP: 971775 | > loss_disc: 2.30975 (2.31313) | > loss_disc_real_0: 0.12290 (0.12198) | > loss_disc_real_1: 0.21673 (0.21118) | > loss_disc_real_2: 0.21597 (0.21553) | > loss_disc_real_3: 0.21607 (0.21821) | > loss_disc_real_4: 0.20988 (0.21400) | > loss_disc_real_5: 0.20917 (0.21273) | > loss_0: 2.30975 (2.31313) | > grad_norm_0: 27.21294 (16.66528) | > loss_gen: 2.50603 (2.56912) | > loss_kl: 2.67523 (2.65740) | > loss_feat: 8.84613 (8.74250) | > loss_mel: 17.52239 (17.79207) | > loss_duration: 1.74252 (1.70685) | > loss_1: 33.29230 (33.46790) | > grad_norm_1: 54.05527 (139.87361) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05680 (2.17964) | > loader_time: 0.03100 (0.03581)  --> STEP: 6512/15287 -- GLOBAL_STEP: 971800 | > loss_disc: 2.36248 (2.31315) | > loss_disc_real_0: 0.12183 (0.12197) | > loss_disc_real_1: 0.22744 (0.21119) | > loss_disc_real_2: 0.22993 (0.21554) | > loss_disc_real_3: 0.21957 (0.21821) | > loss_disc_real_4: 0.22114 (0.21401) | > loss_disc_real_5: 0.22280 (0.21274) | > loss_0: 2.36248 (2.31315) | > grad_norm_0: 14.60466 (16.67575) | > loss_gen: 2.70512 (2.56913) | > loss_kl: 2.67078 (2.65754) | > loss_feat: 9.18980 (8.74279) | > loss_mel: 18.01027 (17.79234) | > loss_duration: 1.67847 (1.70684) | > loss_1: 34.25443 (33.46859) | > grad_norm_1: 174.27017 (139.87491) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96390 (2.18025) | > loader_time: 0.03210 (0.03580)  --> STEP: 6537/15287 -- GLOBAL_STEP: 971825 | > loss_disc: 2.38360 (2.31319) | > loss_disc_real_0: 0.21636 (0.12199) | > loss_disc_real_1: 0.22990 (0.21121) | > loss_disc_real_2: 0.19458 (0.21555) | > loss_disc_real_3: 0.24346 (0.21820) | > loss_disc_real_4: 0.21168 (0.21401) | > loss_disc_real_5: 0.23133 (0.21274) | > loss_0: 2.38360 (2.31319) | > grad_norm_0: 39.38942 (16.66837) | > loss_gen: 2.65392 (2.56912) | > loss_kl: 2.54816 (2.65751) | > loss_feat: 8.83468 (8.74292) | > loss_mel: 17.60833 (17.79237) | > loss_duration: 1.68612 (1.70679) | > loss_1: 33.33121 (33.46865) | > grad_norm_1: 88.33444 (139.91370) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26330 (2.18035) | > loader_time: 0.03220 (0.03580)  --> STEP: 6562/15287 -- GLOBAL_STEP: 971850 | > loss_disc: 2.35049 (2.31338) | > loss_disc_real_0: 0.14609 (0.12199) | > loss_disc_real_1: 0.20476 (0.21124) | > loss_disc_real_2: 0.21637 (0.21556) | > loss_disc_real_3: 0.19509 (0.21820) | > loss_disc_real_4: 0.20430 (0.21405) | > loss_disc_real_5: 0.21747 (0.21276) | > loss_0: 2.35049 (2.31338) | > grad_norm_0: 18.67744 (16.69413) | > loss_gen: 2.45540 (2.56896) | > loss_kl: 2.74769 (2.65763) | > loss_feat: 8.07430 (8.74270) | > loss_mel: 17.57249 (17.79235) | > loss_duration: 1.65663 (1.70673) | > loss_1: 32.50651 (33.46833) | > grad_norm_1: 163.17378 (139.97702) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.45350 (2.18086) | > loader_time: 0.03410 (0.03580)  --> STEP: 6587/15287 -- GLOBAL_STEP: 971875 | > loss_disc: 2.30060 (2.31340) | > loss_disc_real_0: 0.18092 (0.12198) | > loss_disc_real_1: 0.21699 (0.21126) | > loss_disc_real_2: 0.22215 (0.21557) | > loss_disc_real_3: 0.20341 (0.21823) | > loss_disc_real_4: 0.20248 (0.21407) | > loss_disc_real_5: 0.19535 (0.21275) | > loss_0: 2.30060 (2.31340) | > grad_norm_0: 11.78413 (16.71025) | > loss_gen: 2.41371 (2.56894) | > loss_kl: 2.58424 (2.65749) | > loss_feat: 8.10954 (8.74179) | > loss_mel: 18.27012 (17.79214) | > loss_duration: 1.69579 (1.70669) | > loss_1: 33.07340 (33.46700) | > grad_norm_1: 74.38171 (140.06866) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34030 (2.18161) | > loader_time: 0.03140 (0.03580)  --> STEP: 6612/15287 -- GLOBAL_STEP: 971900 | > loss_disc: 2.37644 (2.31334) | > loss_disc_real_0: 0.12613 (0.12197) | > loss_disc_real_1: 0.21080 (0.21125) | > loss_disc_real_2: 0.21501 (0.21556) | > loss_disc_real_3: 0.22994 (0.21822) | > loss_disc_real_4: 0.21684 (0.21406) | > loss_disc_real_5: 0.20034 (0.21275) | > loss_0: 2.37644 (2.31334) | > grad_norm_0: 16.51709 (16.71458) | > loss_gen: 2.53246 (2.56892) | > loss_kl: 2.78245 (2.65756) | > loss_feat: 8.73338 (8.74227) | > loss_mel: 18.49694 (17.79246) | > loss_duration: 1.67785 (1.70666) | > loss_1: 34.22308 (33.46784) | > grad_norm_1: 164.95038 (140.13660) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55500 (2.18199) | > loader_time: 0.03220 (0.03580)  --> STEP: 6637/15287 -- GLOBAL_STEP: 971925 | > loss_disc: 2.39540 (2.31335) | > loss_disc_real_0: 0.14488 (0.12195) | > loss_disc_real_1: 0.19780 (0.21123) | > loss_disc_real_2: 0.20724 (0.21554) | > loss_disc_real_3: 0.21225 (0.21821) | > loss_disc_real_4: 0.22976 (0.21407) | > loss_disc_real_5: 0.22771 (0.21275) | > loss_0: 2.39540 (2.31335) | > grad_norm_0: 8.78374 (16.71235) | > loss_gen: 2.31326 (2.56884) | > loss_kl: 2.70648 (2.65743) | > loss_feat: 8.01597 (8.74243) | > loss_mel: 18.02359 (17.79291) | > loss_duration: 1.70830 (1.70665) | > loss_1: 32.76760 (33.46822) | > grad_norm_1: 78.33246 (140.18289) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.70110 (2.18248) | > loader_time: 0.04380 (0.03580)  --> STEP: 6662/15287 -- GLOBAL_STEP: 971950 | > loss_disc: 2.36103 (2.31347) | > loss_disc_real_0: 0.11606 (0.12201) | > loss_disc_real_1: 0.22902 (0.21123) | > loss_disc_real_2: 0.21566 (0.21555) | > loss_disc_real_3: 0.24057 (0.21823) | > loss_disc_real_4: 0.24239 (0.21408) | > loss_disc_real_5: 0.22768 (0.21275) | > loss_0: 2.36103 (2.31347) | > grad_norm_0: 14.81456 (16.70492) | > loss_gen: 2.50384 (2.56883) | > loss_kl: 2.63069 (2.65742) | > loss_feat: 8.89298 (8.74203) | > loss_mel: 18.11600 (17.79335) | > loss_duration: 1.68555 (1.70664) | > loss_1: 33.82906 (33.46823) | > grad_norm_1: 207.01987 (140.04240) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31300 (2.18273) | > loader_time: 0.03210 (0.03580)  --> STEP: 6687/15287 -- GLOBAL_STEP: 971975 | > loss_disc: 2.37199 (2.31352) | > loss_disc_real_0: 0.10693 (0.12202) | > loss_disc_real_1: 0.21967 (0.21124) | > loss_disc_real_2: 0.22274 (0.21555) | > loss_disc_real_3: 0.23556 (0.21823) | > loss_disc_real_4: 0.23030 (0.21408) | > loss_disc_real_5: 0.22016 (0.21273) | > loss_0: 2.37199 (2.31352) | > grad_norm_0: 20.25383 (16.69986) | > loss_gen: 2.38312 (2.56882) | > loss_kl: 2.72723 (2.65739) | > loss_feat: 8.39189 (8.74181) | > loss_mel: 17.22275 (17.79313) | > loss_duration: 1.68107 (1.70666) | > loss_1: 32.40605 (33.46777) | > grad_norm_1: 175.08374 (140.06905) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43470 (2.18337) | > loader_time: 0.05120 (0.03579)  --> STEP: 6712/15287 -- GLOBAL_STEP: 972000 | > loss_disc: 2.40512 (2.31354) | > loss_disc_real_0: 0.09193 (0.12199) | > loss_disc_real_1: 0.21128 (0.21125) | > loss_disc_real_2: 0.23879 (0.21556) | > loss_disc_real_3: 0.22932 (0.21824) | > loss_disc_real_4: 0.26315 (0.21411) | > loss_disc_real_5: 0.25080 (0.21274) | > loss_0: 2.40512 (2.31354) | > grad_norm_0: 19.27024 (16.69965) | > loss_gen: 2.46503 (2.56878) | > loss_kl: 2.70319 (2.65742) | > loss_feat: 8.23725 (8.74175) | > loss_mel: 17.54179 (17.79325) | > loss_duration: 1.69755 (1.70666) | > loss_1: 32.64480 (33.46782) | > grad_norm_1: 186.48915 (140.08073) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56050 (2.18431) | > loader_time: 0.03710 (0.03579)  --> STEP: 6737/15287 -- GLOBAL_STEP: 972025 | > loss_disc: 2.32540 (2.31365) | > loss_disc_real_0: 0.10406 (0.12204) | > loss_disc_real_1: 0.20721 (0.21126) | > loss_disc_real_2: 0.22980 (0.21558) | > loss_disc_real_3: 0.21198 (0.21824) | > loss_disc_real_4: 0.21505 (0.21410) | > loss_disc_real_5: 0.20923 (0.21275) | > loss_0: 2.32540 (2.31365) | > grad_norm_0: 6.64397 (16.69787) | > loss_gen: 2.44261 (2.56876) | > loss_kl: 2.64745 (2.65736) | > loss_feat: 8.45306 (8.74149) | > loss_mel: 17.71777 (17.79317) | > loss_duration: 1.69938 (1.70668) | > loss_1: 32.96029 (33.46744) | > grad_norm_1: 64.73480 (140.00128) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25280 (2.18451) | > loader_time: 0.03710 (0.03580)  --> STEP: 6762/15287 -- GLOBAL_STEP: 972050 | > loss_disc: 2.29691 (2.31371) | > loss_disc_real_0: 0.09139 (0.12202) | > loss_disc_real_1: 0.17900 (0.21124) | > loss_disc_real_2: 0.21280 (0.21558) | > loss_disc_real_3: 0.26840 (0.21826) | > loss_disc_real_4: 0.23397 (0.21411) | > loss_disc_real_5: 0.24002 (0.21276) | > loss_0: 2.29691 (2.31371) | > grad_norm_0: 13.87592 (16.68671) | > loss_gen: 2.70421 (2.56870) | > loss_kl: 2.53850 (2.65742) | > loss_feat: 8.90223 (8.74141) | > loss_mel: 18.24050 (17.79318) | > loss_duration: 1.73527 (1.70668) | > loss_1: 34.12071 (33.46734) | > grad_norm_1: 171.22324 (139.87434) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.45160 (2.18508) | > loader_time: 0.03870 (0.03580)  --> STEP: 6787/15287 -- GLOBAL_STEP: 972075 | > loss_disc: 2.30780 (2.31377) | > loss_disc_real_0: 0.11463 (0.12202) | > loss_disc_real_1: 0.20921 (0.21125) | > loss_disc_real_2: 0.20473 (0.21557) | > loss_disc_real_3: 0.18186 (0.21825) | > loss_disc_real_4: 0.20327 (0.21411) | > loss_disc_real_5: 0.17933 (0.21276) | > loss_0: 2.30780 (2.31377) | > grad_norm_0: 13.20733 (16.67148) | > loss_gen: 2.46773 (2.56858) | > loss_kl: 2.58608 (2.65726) | > loss_feat: 8.52908 (8.74098) | > loss_mel: 17.49569 (17.79270) | > loss_duration: 1.71959 (1.70670) | > loss_1: 32.79816 (33.46616) | > grad_norm_1: 92.74915 (139.77135) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55460 (2.18611) | > loader_time: 0.03230 (0.03579)  --> STEP: 6812/15287 -- GLOBAL_STEP: 972100 | > loss_disc: 2.39405 (2.31389) | > loss_disc_real_0: 0.13488 (0.12203) | > loss_disc_real_1: 0.23477 (0.21125) | > loss_disc_real_2: 0.23742 (0.21558) | > loss_disc_real_3: 0.22186 (0.21826) | > loss_disc_real_4: 0.23146 (0.21411) | > loss_disc_real_5: 0.21030 (0.21276) | > loss_0: 2.39405 (2.31389) | > grad_norm_0: 9.36285 (16.66232) | > loss_gen: 2.47250 (2.56841) | > loss_kl: 2.72200 (2.65741) | > loss_feat: 8.88144 (8.74021) | > loss_mel: 17.66457 (17.79257) | > loss_duration: 1.74407 (1.70674) | > loss_1: 33.48458 (33.46529) | > grad_norm_1: 48.92983 (139.70081) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.46690 (2.18667) | > loader_time: 0.03680 (0.03580)  --> STEP: 6837/15287 -- GLOBAL_STEP: 972125 | > loss_disc: 2.33964 (2.31398) | > loss_disc_real_0: 0.15374 (0.12202) | > loss_disc_real_1: 0.21503 (0.21125) | > loss_disc_real_2: 0.20170 (0.21558) | > loss_disc_real_3: 0.21661 (0.21828) | > loss_disc_real_4: 0.22090 (0.21411) | > loss_disc_real_5: 0.19795 (0.21278) | > loss_0: 2.33964 (2.31398) | > grad_norm_0: 10.95981 (16.66804) | > loss_gen: 2.47579 (2.56834) | > loss_kl: 2.76263 (2.65744) | > loss_feat: 7.95955 (8.73997) | > loss_mel: 17.51266 (17.79292) | > loss_duration: 1.72142 (1.70672) | > loss_1: 32.43204 (33.46534) | > grad_norm_1: 102.03823 (139.71530) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27340 (2.18742) | > loader_time: 0.03100 (0.03580)  --> STEP: 6862/15287 -- GLOBAL_STEP: 972150 | > loss_disc: 2.38659 (2.31393) | > loss_disc_real_0: 0.12773 (0.12199) | > loss_disc_real_1: 0.20785 (0.21124) | > loss_disc_real_2: 0.23810 (0.21557) | > loss_disc_real_3: 0.24511 (0.21829) | > loss_disc_real_4: 0.20700 (0.21410) | > loss_disc_real_5: 0.21917 (0.21279) | > loss_0: 2.38659 (2.31393) | > grad_norm_0: 26.05823 (16.65588) | > loss_gen: 2.52990 (2.56831) | > loss_kl: 2.68911 (2.65745) | > loss_feat: 8.56666 (8.73964) | > loss_mel: 17.60903 (17.79262) | > loss_duration: 1.73926 (1.70674) | > loss_1: 33.13396 (33.46473) | > grad_norm_1: 139.89909 (139.63638) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35010 (2.18791) | > loader_time: 0.03620 (0.03580)  --> STEP: 6887/15287 -- GLOBAL_STEP: 972175 | > loss_disc: 2.32498 (2.31393) | > loss_disc_real_0: 0.14036 (0.12199) | > loss_disc_real_1: 0.20232 (0.21124) | > loss_disc_real_2: 0.20160 (0.21559) | > loss_disc_real_3: 0.24737 (0.21829) | > loss_disc_real_4: 0.18307 (0.21410) | > loss_disc_real_5: 0.21246 (0.21279) | > loss_0: 2.32498 (2.31393) | > grad_norm_0: 16.34935 (16.65647) | > loss_gen: 2.66101 (2.56830) | > loss_kl: 2.63980 (2.65737) | > loss_feat: 9.14971 (8.73985) | > loss_mel: 17.90165 (17.79272) | > loss_duration: 1.73911 (1.70677) | > loss_1: 34.09129 (33.46497) | > grad_norm_1: 160.49432 (139.63910) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28550 (2.18835) | > loader_time: 0.06210 (0.03580)  --> STEP: 6912/15287 -- GLOBAL_STEP: 972200 | > loss_disc: 2.30577 (2.31401) | > loss_disc_real_0: 0.11526 (0.12199) | > loss_disc_real_1: 0.22467 (0.21124) | > loss_disc_real_2: 0.22095 (0.21560) | > loss_disc_real_3: 0.23510 (0.21829) | > loss_disc_real_4: 0.19255 (0.21410) | > loss_disc_real_5: 0.20195 (0.21280) | > loss_0: 2.30577 (2.31401) | > grad_norm_0: 17.37857 (16.65874) | > loss_gen: 2.38489 (2.56808) | > loss_kl: 2.59585 (2.65727) | > loss_feat: 8.71950 (8.73941) | > loss_mel: 17.89091 (17.79238) | > loss_duration: 1.71886 (1.70679) | > loss_1: 33.31001 (33.46388) | > grad_norm_1: 119.25991 (139.63510) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24320 (2.18898) | > loader_time: 0.03600 (0.03580)  --> STEP: 6937/15287 -- GLOBAL_STEP: 972225 | > loss_disc: 2.33490 (2.31398) | > loss_disc_real_0: 0.14759 (0.12197) | > loss_disc_real_1: 0.20959 (0.21122) | > loss_disc_real_2: 0.20577 (0.21560) | > loss_disc_real_3: 0.21483 (0.21830) | > loss_disc_real_4: 0.20965 (0.21408) | > loss_disc_real_5: 0.21118 (0.21279) | > loss_0: 2.33490 (2.31398) | > grad_norm_0: 17.13983 (16.65716) | > loss_gen: 2.37842 (2.56799) | > loss_kl: 2.51870 (2.65721) | > loss_feat: 7.92359 (8.73898) | > loss_mel: 17.66849 (17.79188) | > loss_duration: 1.75071 (1.70680) | > loss_1: 32.23991 (33.46281) | > grad_norm_1: 153.78003 (139.60963) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00080 (2.18982) | > loader_time: 0.03090 (0.03581)  --> STEP: 6962/15287 -- GLOBAL_STEP: 972250 | > loss_disc: 2.33249 (2.31416) | > loss_disc_real_0: 0.15433 (0.12205) | > loss_disc_real_1: 0.21106 (0.21124) | > loss_disc_real_2: 0.23329 (0.21561) | > loss_disc_real_3: 0.23964 (0.21832) | > loss_disc_real_4: 0.22546 (0.21409) | > loss_disc_real_5: 0.20289 (0.21279) | > loss_0: 2.33249 (2.31416) | > grad_norm_0: 9.50167 (16.67359) | > loss_gen: 2.56271 (2.56794) | > loss_kl: 2.57327 (2.65719) | > loss_feat: 8.97910 (8.73878) | > loss_mel: 17.96083 (17.79176) | > loss_duration: 1.71688 (1.70682) | > loss_1: 33.79279 (33.46244) | > grad_norm_1: 151.57977 (139.64716) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19110 (2.19030) | > loader_time: 0.03610 (0.03581)  --> STEP: 6987/15287 -- GLOBAL_STEP: 972275 | > loss_disc: 2.31151 (2.31405) | > loss_disc_real_0: 0.09692 (0.12203) | > loss_disc_real_1: 0.19172 (0.21123) | > loss_disc_real_2: 0.20715 (0.21558) | > loss_disc_real_3: 0.20925 (0.21829) | > loss_disc_real_4: 0.22784 (0.21408) | > loss_disc_real_5: 0.22892 (0.21280) | > loss_0: 2.31151 (2.31405) | > grad_norm_0: 14.74303 (16.67612) | > loss_gen: 2.56416 (2.56783) | > loss_kl: 2.91452 (2.65712) | > loss_feat: 8.86806 (8.73873) | > loss_mel: 18.06863 (17.79142) | > loss_duration: 1.73957 (1.70686) | > loss_1: 34.15494 (33.46190) | > grad_norm_1: 113.47054 (139.66447) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99090 (2.19103) | > loader_time: 0.03880 (0.03580)  --> STEP: 7012/15287 -- GLOBAL_STEP: 972300 | > loss_disc: 2.35535 (2.31406) | > loss_disc_real_0: 0.12127 (0.12203) | > loss_disc_real_1: 0.21228 (0.21123) | > loss_disc_real_2: 0.21441 (0.21559) | > loss_disc_real_3: 0.21285 (0.21828) | > loss_disc_real_4: 0.20440 (0.21407) | > loss_disc_real_5: 0.18727 (0.21281) | > loss_0: 2.35535 (2.31406) | > grad_norm_0: 18.31380 (16.67017) | > loss_gen: 2.35863 (2.56775) | > loss_kl: 2.65546 (2.65726) | > loss_feat: 9.03944 (8.73852) | > loss_mel: 17.92641 (17.79085) | > loss_duration: 1.70997 (1.70687) | > loss_1: 33.68991 (33.46118) | > grad_norm_1: 132.67445 (139.65178) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.57850 (2.19171) | > loader_time: 0.03670 (0.03581)  --> STEP: 7037/15287 -- GLOBAL_STEP: 972325 | > loss_disc: 2.28612 (2.31403) | > loss_disc_real_0: 0.11551 (0.12202) | > loss_disc_real_1: 0.19725 (0.21124) | > loss_disc_real_2: 0.21698 (0.21558) | > loss_disc_real_3: 0.23226 (0.21827) | > loss_disc_real_4: 0.20339 (0.21407) | > loss_disc_real_5: 0.20898 (0.21280) | > loss_0: 2.28612 (2.31403) | > grad_norm_0: 6.96225 (16.66658) | > loss_gen: 2.75379 (2.56773) | > loss_kl: 2.55620 (2.65725) | > loss_feat: 8.76489 (8.73847) | > loss_mel: 17.95212 (17.79090) | > loss_duration: 1.72110 (1.70687) | > loss_1: 33.74810 (33.46116) | > grad_norm_1: 137.52383 (139.61450) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22740 (2.19241) | > loader_time: 0.03320 (0.03581)  --> STEP: 7062/15287 -- GLOBAL_STEP: 972350 | > loss_disc: 2.29727 (2.31407) | > loss_disc_real_0: 0.11011 (0.12202) | > loss_disc_real_1: 0.20513 (0.21125) | > loss_disc_real_2: 0.22266 (0.21558) | > loss_disc_real_3: 0.22659 (0.21827) | > loss_disc_real_4: 0.21175 (0.21408) | > loss_disc_real_5: 0.17905 (0.21280) | > loss_0: 2.29727 (2.31407) | > grad_norm_0: 9.72362 (16.66589) | > loss_gen: 2.67898 (2.56760) | > loss_kl: 2.72438 (2.65734) | > loss_feat: 9.19270 (8.73832) | > loss_mel: 18.09516 (17.79068) | > loss_duration: 1.69187 (1.70690) | > loss_1: 34.38308 (33.46078) | > grad_norm_1: 185.09734 (139.61322) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16360 (2.19274) | > loader_time: 0.04600 (0.03581)  --> STEP: 7087/15287 -- GLOBAL_STEP: 972375 | > loss_disc: 2.34958 (2.31409) | > loss_disc_real_0: 0.13647 (0.12200) | > loss_disc_real_1: 0.23429 (0.21124) | > loss_disc_real_2: 0.23078 (0.21558) | > loss_disc_real_3: 0.19702 (0.21825) | > loss_disc_real_4: 0.22048 (0.21409) | > loss_disc_real_5: 0.22020 (0.21281) | > loss_0: 2.34958 (2.31409) | > grad_norm_0: 7.51775 (16.66633) | > loss_gen: 2.46893 (2.56746) | > loss_kl: 2.66703 (2.65753) | > loss_feat: 8.50421 (8.73793) | > loss_mel: 17.65422 (17.79062) | > loss_duration: 1.71947 (1.70692) | > loss_1: 33.01386 (33.46041) | > grad_norm_1: 115.59372 (139.62199) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16950 (2.19281) | > loader_time: 0.03790 (0.03581)  --> STEP: 7112/15287 -- GLOBAL_STEP: 972400 | > loss_disc: 2.27481 (2.31407) | > loss_disc_real_0: 0.10268 (0.12199) | > loss_disc_real_1: 0.21193 (0.21125) | > loss_disc_real_2: 0.19937 (0.21559) | > loss_disc_real_3: 0.19582 (0.21824) | > loss_disc_real_4: 0.18688 (0.21409) | > loss_disc_real_5: 0.19130 (0.21281) | > loss_0: 2.27481 (2.31407) | > grad_norm_0: 6.92375 (16.66809) | > loss_gen: 2.62506 (2.56743) | > loss_kl: 2.55132 (2.65773) | > loss_feat: 9.03467 (8.73810) | > loss_mel: 17.96222 (17.79076) | > loss_duration: 1.71922 (1.70690) | > loss_1: 33.89249 (33.46088) | > grad_norm_1: 162.06268 (139.62828) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44780 (2.19355) | > loader_time: 0.03830 (0.03581)  --> STEP: 7137/15287 -- GLOBAL_STEP: 972425 | > loss_disc: 2.33103 (2.31415) | > loss_disc_real_0: 0.10968 (0.12199) | > loss_disc_real_1: 0.22940 (0.21127) | > loss_disc_real_2: 0.20729 (0.21560) | > loss_disc_real_3: 0.19259 (0.21825) | > loss_disc_real_4: 0.19066 (0.21408) | > loss_disc_real_5: 0.19215 (0.21281) | > loss_0: 2.33103 (2.31415) | > grad_norm_0: 14.00952 (16.65889) | > loss_gen: 2.58334 (2.56738) | > loss_kl: 2.66943 (2.65779) | > loss_feat: 9.39894 (8.73804) | > loss_mel: 17.85731 (17.79118) | > loss_duration: 1.67552 (1.70688) | > loss_1: 34.18454 (33.46123) | > grad_norm_1: 157.69342 (139.57622) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27160 (2.19392) | > loader_time: 0.03430 (0.03580)  --> STEP: 7162/15287 -- GLOBAL_STEP: 972450 | > loss_disc: 2.34193 (2.31438) | > loss_disc_real_0: 0.10429 (0.12207) | > loss_disc_real_1: 0.20427 (0.21129) | > loss_disc_real_2: 0.22859 (0.21562) | > loss_disc_real_3: 0.17434 (0.21827) | > loss_disc_real_4: 0.21358 (0.21410) | > loss_disc_real_5: 0.18443 (0.21282) | > loss_0: 2.34193 (2.31438) | > grad_norm_0: 6.30795 (16.64577) | > loss_gen: 2.55530 (2.56726) | > loss_kl: 2.73346 (2.65797) | > loss_feat: 8.53197 (8.73752) | > loss_mel: 17.32124 (17.79202) | > loss_duration: 1.68964 (1.70687) | > loss_1: 32.83160 (33.46159) | > grad_norm_1: 67.02279 (139.34943) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.59410 (2.19446) | > loader_time: 0.03350 (0.03580)  --> STEP: 7187/15287 -- GLOBAL_STEP: 972475 | > loss_disc: 2.30096 (2.31445) | > loss_disc_real_0: 0.15747 (0.12208) | > loss_disc_real_1: 0.21126 (0.21131) | > loss_disc_real_2: 0.21041 (0.21563) | > loss_disc_real_3: 0.22478 (0.21827) | > loss_disc_real_4: 0.19325 (0.21410) | > loss_disc_real_5: 0.20648 (0.21282) | > loss_0: 2.30096 (2.31445) | > grad_norm_0: 22.83465 (16.64079) | > loss_gen: 2.60531 (2.56736) | > loss_kl: 2.64463 (2.65792) | > loss_feat: 8.80197 (8.73762) | > loss_mel: 18.33430 (17.79276) | > loss_duration: 1.67032 (1.70690) | > loss_1: 34.05653 (33.46251) | > grad_norm_1: 198.66753 (139.27631) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37350 (2.19512) | > loader_time: 0.03260 (0.03581)  --> STEP: 7212/15287 -- GLOBAL_STEP: 972500 | > loss_disc: 2.28252 (2.31447) | > loss_disc_real_0: 0.13190 (0.12209) | > loss_disc_real_1: 0.20716 (0.21132) | > loss_disc_real_2: 0.19612 (0.21562) | > loss_disc_real_3: 0.20323 (0.21828) | > loss_disc_real_4: 0.21304 (0.21411) | > loss_disc_real_5: 0.22461 (0.21284) | > loss_0: 2.28252 (2.31447) | > grad_norm_0: 23.71558 (16.62301) | > loss_gen: 2.58536 (2.56745) | > loss_kl: 2.58630 (2.65791) | > loss_feat: 8.65414 (8.73772) | > loss_mel: 17.96984 (17.79297) | > loss_duration: 1.71110 (1.70692) | > loss_1: 33.50674 (33.46291) | > grad_norm_1: 163.17592 (139.17773) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38460 (2.19537) | > loader_time: 0.03380 (0.03581)  --> STEP: 7237/15287 -- GLOBAL_STEP: 972525 | > loss_disc: 2.34007 (2.31463) | > loss_disc_real_0: 0.09744 (0.12210) | > loss_disc_real_1: 0.21633 (0.21135) | > loss_disc_real_2: 0.21274 (0.21562) | > loss_disc_real_3: 0.22854 (0.21828) | > loss_disc_real_4: 0.21373 (0.21411) | > loss_disc_real_5: 0.21985 (0.21285) | > loss_0: 2.34007 (2.31463) | > grad_norm_0: 19.11587 (16.63007) | > loss_gen: 2.39792 (2.56735) | > loss_kl: 2.76152 (2.65778) | > loss_feat: 8.55710 (8.73705) | > loss_mel: 17.97620 (17.79308) | > loss_duration: 1.67519 (1.70694) | > loss_1: 33.36794 (33.46213) | > grad_norm_1: 69.38382 (139.17220) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38350 (2.19570) | > loader_time: 0.03410 (0.03581)  --> STEP: 7262/15287 -- GLOBAL_STEP: 972550 | > loss_disc: 2.40982 (2.31474) | > loss_disc_real_0: 0.17937 (0.12216) | > loss_disc_real_1: 0.21820 (0.21135) | > loss_disc_real_2: 0.25431 (0.21563) | > loss_disc_real_3: 0.23692 (0.21828) | > loss_disc_real_4: 0.21140 (0.21410) | > loss_disc_real_5: 0.21047 (0.21286) | > loss_0: 2.40982 (2.31474) | > grad_norm_0: 7.22313 (16.63142) | > loss_gen: 2.36383 (2.56724) | > loss_kl: 2.77000 (2.65771) | > loss_feat: 8.57505 (8.73652) | > loss_mel: 17.59182 (17.79323) | > loss_duration: 1.70069 (1.70694) | > loss_1: 33.00139 (33.46158) | > grad_norm_1: 64.95522 (139.04643) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41460 (2.19618) | > loader_time: 0.03010 (0.03582)  --> STEP: 7287/15287 -- GLOBAL_STEP: 972575 | > loss_disc: 2.36824 (2.31477) | > loss_disc_real_0: 0.15327 (0.12215) | > loss_disc_real_1: 0.19004 (0.21135) | > loss_disc_real_2: 0.21185 (0.21563) | > loss_disc_real_3: 0.22838 (0.21827) | > loss_disc_real_4: 0.23766 (0.21410) | > loss_disc_real_5: 0.21502 (0.21285) | > loss_0: 2.36824 (2.31477) | > grad_norm_0: 36.02989 (16.62045) | > loss_gen: 2.57046 (2.56724) | > loss_kl: 2.59771 (2.65775) | > loss_feat: 8.20362 (8.73660) | > loss_mel: 17.41926 (17.79335) | > loss_duration: 1.71280 (1.70694) | > loss_1: 32.50386 (33.46182) | > grad_norm_1: 51.90709 (138.96776) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.54220 (2.19659) | > loader_time: 0.03540 (0.03581)  --> STEP: 7312/15287 -- GLOBAL_STEP: 972600 | > loss_disc: 2.30719 (2.31483) | > loss_disc_real_0: 0.08937 (0.12217) | > loss_disc_real_1: 0.21576 (0.21134) | > loss_disc_real_2: 0.18420 (0.21562) | > loss_disc_real_3: 0.20238 (0.21830) | > loss_disc_real_4: 0.20478 (0.21409) | > loss_disc_real_5: 0.22136 (0.21286) | > loss_0: 2.30719 (2.31483) | > grad_norm_0: 16.22969 (16.62701) | > loss_gen: 2.56327 (2.56714) | > loss_kl: 2.64331 (2.65775) | > loss_feat: 9.08263 (8.73611) | > loss_mel: 18.19750 (17.79321) | > loss_duration: 1.72096 (1.70692) | > loss_1: 34.20768 (33.46109) | > grad_norm_1: 129.42365 (138.93874) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19480 (2.19727) | > loader_time: 0.03630 (0.03581)  --> STEP: 7337/15287 -- GLOBAL_STEP: 972625 | > loss_disc: 2.28541 (2.31501) | > loss_disc_real_0: 0.11106 (0.12232) | > loss_disc_real_1: 0.20227 (0.21134) | > loss_disc_real_2: 0.20164 (0.21564) | > loss_disc_real_3: 0.23028 (0.21833) | > loss_disc_real_4: 0.21467 (0.21410) | > loss_disc_real_5: 0.22176 (0.21285) | > loss_0: 2.28541 (2.31501) | > grad_norm_0: 11.37188 (16.63920) | > loss_gen: 2.58370 (2.56714) | > loss_kl: 2.63814 (2.65779) | > loss_feat: 8.77268 (8.73591) | > loss_mel: 17.64228 (17.79331) | > loss_duration: 1.69289 (1.70689) | > loss_1: 33.32968 (33.46100) | > grad_norm_1: 188.05838 (138.90005) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34010 (2.19801) | > loader_time: 0.03830 (0.03582)  --> STEP: 7362/15287 -- GLOBAL_STEP: 972650 | > loss_disc: 2.30196 (2.31495) | > loss_disc_real_0: 0.08438 (0.12230) | > loss_disc_real_1: 0.21417 (0.21134) | > loss_disc_real_2: 0.20885 (0.21563) | > loss_disc_real_3: 0.22563 (0.21833) | > loss_disc_real_4: 0.20087 (0.21409) | > loss_disc_real_5: 0.20865 (0.21287) | > loss_0: 2.30196 (2.31495) | > grad_norm_0: 7.01499 (16.63299) | > loss_gen: 2.42725 (2.56713) | > loss_kl: 2.52872 (2.65766) | > loss_feat: 8.87605 (8.73602) | > loss_mel: 17.90199 (17.79305) | > loss_duration: 1.70059 (1.70690) | > loss_1: 33.43461 (33.46073) | > grad_norm_1: 69.69665 (138.85527) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87180 (2.19837) | > loader_time: 0.03370 (0.03582)  --> STEP: 7387/15287 -- GLOBAL_STEP: 972675 | > loss_disc: 2.26007 (2.31491) | > loss_disc_real_0: 0.10067 (0.12227) | > loss_disc_real_1: 0.22093 (0.21134) | > loss_disc_real_2: 0.19790 (0.21563) | > loss_disc_real_3: 0.23907 (0.21831) | > loss_disc_real_4: 0.22800 (0.21409) | > loss_disc_real_5: 0.22552 (0.21287) | > loss_0: 2.26007 (2.31491) | > grad_norm_0: 9.77179 (16.63019) | > loss_gen: 2.63851 (2.56710) | > loss_kl: 2.66054 (2.65772) | > loss_feat: 9.05339 (8.73614) | > loss_mel: 17.73726 (17.79298) | > loss_duration: 1.71680 (1.70692) | > loss_1: 33.80650 (33.46084) | > grad_norm_1: 149.44489 (138.83078) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.78780 (2.19933) | > loader_time: 0.03590 (0.03582)  --> STEP: 7412/15287 -- GLOBAL_STEP: 972700 | > loss_disc: 2.37657 (2.31498) | > loss_disc_real_0: 0.13566 (0.12226) | > loss_disc_real_1: 0.20234 (0.21134) | > loss_disc_real_2: 0.22507 (0.21562) | > loss_disc_real_3: 0.20965 (0.21832) | > loss_disc_real_4: 0.23313 (0.21409) | > loss_disc_real_5: 0.22274 (0.21289) | > loss_0: 2.37657 (2.31498) | > grad_norm_0: 6.51223 (16.63215) | > loss_gen: 2.41660 (2.56700) | > loss_kl: 2.66192 (2.65765) | > loss_feat: 8.95890 (8.73566) | > loss_mel: 17.80031 (17.79261) | > loss_duration: 1.70978 (1.70692) | > loss_1: 33.54752 (33.45983) | > grad_norm_1: 126.25158 (138.88130) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.59510 (2.19993) | > loader_time: 0.03410 (0.03582)  --> STEP: 7437/15287 -- GLOBAL_STEP: 972725 | > loss_disc: 2.34399 (2.31498) | > loss_disc_real_0: 0.11678 (0.12224) | > loss_disc_real_1: 0.20705 (0.21135) | > loss_disc_real_2: 0.19739 (0.21562) | > loss_disc_real_3: 0.21461 (0.21831) | > loss_disc_real_4: 0.19352 (0.21405) | > loss_disc_real_5: 0.18703 (0.21288) | > loss_0: 2.34399 (2.31498) | > grad_norm_0: 5.26699 (16.63158) | > loss_gen: 2.91668 (2.56691) | > loss_kl: 2.70869 (2.65771) | > loss_feat: 8.77251 (8.73551) | > loss_mel: 18.23651 (17.79260) | > loss_duration: 1.72065 (1.70691) | > loss_1: 34.35505 (33.45964) | > grad_norm_1: 118.87241 (138.90703) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05400 (2.20045) | > loader_time: 0.03460 (0.03582)  --> STEP: 7462/15287 -- GLOBAL_STEP: 972750 | > loss_disc: 2.21958 (2.31510) | > loss_disc_real_0: 0.08423 (0.12224) | > loss_disc_real_1: 0.19330 (0.21137) | > loss_disc_real_2: 0.20599 (0.21563) | > loss_disc_real_3: 0.20955 (0.21832) | > loss_disc_real_4: 0.22098 (0.21408) | > loss_disc_real_5: 0.18965 (0.21292) | > loss_0: 2.21958 (2.31510) | > grad_norm_0: 14.30750 (16.63422) | > loss_gen: 2.55892 (2.56680) | > loss_kl: 2.58689 (2.65789) | > loss_feat: 9.32207 (8.73505) | > loss_mel: 17.84801 (17.79279) | > loss_duration: 1.72302 (1.70695) | > loss_1: 34.03892 (33.45948) | > grad_norm_1: 104.64064 (138.90140) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20270 (2.20139) | > loader_time: 0.03750 (0.03582)  --> STEP: 7487/15287 -- GLOBAL_STEP: 972775 | > loss_disc: 2.25927 (2.31509) | > loss_disc_real_0: 0.14464 (0.12224) | > loss_disc_real_1: 0.20646 (0.21136) | > loss_disc_real_2: 0.21416 (0.21563) | > loss_disc_real_3: 0.23597 (0.21833) | > loss_disc_real_4: 0.21094 (0.21409) | > loss_disc_real_5: 0.21282 (0.21293) | > loss_0: 2.25927 (2.31509) | > grad_norm_0: 29.43976 (16.65574) | > loss_gen: 2.69225 (2.56678) | > loss_kl: 2.51784 (2.65780) | > loss_feat: 8.83186 (8.73494) | > loss_mel: 17.61259 (17.79251) | > loss_duration: 1.70358 (1.70695) | > loss_1: 33.35813 (33.45897) | > grad_norm_1: 100.35455 (138.97565) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38490 (2.20163) | > loader_time: 0.03290 (0.03582)  --> STEP: 7512/15287 -- GLOBAL_STEP: 972800 | > loss_disc: 2.46096 (2.31506) | > loss_disc_real_0: 0.27327 (0.12225) | > loss_disc_real_1: 0.26624 (0.21136) | > loss_disc_real_2: 0.29551 (0.21563) | > loss_disc_real_3: 0.20392 (0.21834) | > loss_disc_real_4: 0.20326 (0.21408) | > loss_disc_real_5: 0.22705 (0.21293) | > loss_0: 2.46096 (2.31506) | > grad_norm_0: 33.25676 (16.65882) | > loss_gen: 2.83580 (2.56682) | > loss_kl: 2.72013 (2.65787) | > loss_feat: 9.69513 (8.73504) | > loss_mel: 17.66970 (17.79227) | > loss_duration: 1.78609 (1.70692) | > loss_1: 34.70683 (33.45889) | > grad_norm_1: 136.23547 (139.01308) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22150 (2.20238) | > loader_time: 0.03730 (0.03581)  --> STEP: 7537/15287 -- GLOBAL_STEP: 972825 | > loss_disc: 2.22620 (2.31501) | > loss_disc_real_0: 0.08851 (0.12226) | > loss_disc_real_1: 0.20795 (0.21137) | > loss_disc_real_2: 0.19803 (0.21563) | > loss_disc_real_3: 0.24400 (0.21835) | > loss_disc_real_4: 0.21640 (0.21408) | > loss_disc_real_5: 0.19541 (0.21292) | > loss_0: 2.22620 (2.31501) | > grad_norm_0: 16.74347 (16.66900) | > loss_gen: 2.56673 (2.56681) | > loss_kl: 2.76259 (2.65793) | > loss_feat: 9.68955 (8.73509) | > loss_mel: 17.72285 (17.79207) | > loss_duration: 1.72211 (1.70692) | > loss_1: 34.46383 (33.45882) | > grad_norm_1: 175.96321 (139.11003) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92670 (2.20235) | > loader_time: 0.03240 (0.03581)  --> STEP: 7562/15287 -- GLOBAL_STEP: 972850 | > loss_disc: 2.35431 (2.31498) | > loss_disc_real_0: 0.16006 (0.12225) | > loss_disc_real_1: 0.26016 (0.21135) | > loss_disc_real_2: 0.19630 (0.21563) | > loss_disc_real_3: 0.20483 (0.21834) | > loss_disc_real_4: 0.19162 (0.21406) | > loss_disc_real_5: 0.22232 (0.21295) | > loss_0: 2.35431 (2.31498) | > grad_norm_0: 15.84935 (16.67117) | > loss_gen: 2.52736 (2.56670) | > loss_kl: 2.63321 (2.65789) | > loss_feat: 9.02871 (8.73490) | > loss_mel: 18.06158 (17.79198) | > loss_duration: 1.66873 (1.70693) | > loss_1: 33.91959 (33.45839) | > grad_norm_1: 192.00854 (139.13206) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33320 (2.20295) | > loader_time: 0.03730 (0.03581)  --> STEP: 7587/15287 -- GLOBAL_STEP: 972875 | > loss_disc: 2.29430 (2.31495) | > loss_disc_real_0: 0.10732 (0.12222) | > loss_disc_real_1: 0.22619 (0.21137) | > loss_disc_real_2: 0.21811 (0.21564) | > loss_disc_real_3: 0.21676 (0.21833) | > loss_disc_real_4: 0.20686 (0.21406) | > loss_disc_real_5: 0.22522 (0.21294) | > loss_0: 2.29430 (2.31495) | > grad_norm_0: 6.72418 (16.66307) | > loss_gen: 2.52210 (2.56667) | > loss_kl: 2.72377 (2.65795) | > loss_feat: 8.21861 (8.73485) | > loss_mel: 17.22149 (17.79181) | > loss_duration: 1.66220 (1.70693) | > loss_1: 32.34816 (33.45821) | > grad_norm_1: 153.34245 (139.17067) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40310 (2.20328) | > loader_time: 0.03460 (0.03581)  --> STEP: 7612/15287 -- GLOBAL_STEP: 972900 | > loss_disc: 2.26995 (2.31492) | > loss_disc_real_0: 0.11797 (0.12220) | > loss_disc_real_1: 0.21352 (0.21136) | > loss_disc_real_2: 0.22121 (0.21563) | > loss_disc_real_3: 0.19411 (0.21832) | > loss_disc_real_4: 0.19355 (0.21405) | > loss_disc_real_5: 0.22071 (0.21294) | > loss_0: 2.26995 (2.31492) | > grad_norm_0: 7.97293 (16.66052) | > loss_gen: 2.75948 (2.56656) | > loss_kl: 2.65275 (2.65798) | > loss_feat: 9.20107 (8.73492) | > loss_mel: 17.51561 (17.79170) | > loss_duration: 1.74136 (1.70695) | > loss_1: 33.87027 (33.45813) | > grad_norm_1: 218.48315 (139.16866) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.75830 (2.20363) | > loader_time: 0.04200 (0.03581)  --> STEP: 7637/15287 -- GLOBAL_STEP: 972925 | > loss_disc: 2.28554 (2.31485) | > loss_disc_real_0: 0.10467 (0.12218) | > loss_disc_real_1: 0.19605 (0.21135) | > loss_disc_real_2: 0.18659 (0.21562) | > loss_disc_real_3: 0.19950 (0.21833) | > loss_disc_real_4: 0.19644 (0.21406) | > loss_disc_real_5: 0.19287 (0.21294) | > loss_0: 2.28554 (2.31485) | > grad_norm_0: 23.06766 (16.67487) | > loss_gen: 2.49899 (2.56654) | > loss_kl: 2.80695 (2.65798) | > loss_feat: 9.08564 (8.73486) | > loss_mel: 18.29851 (17.79134) | > loss_duration: 1.72682 (1.70696) | > loss_1: 34.41691 (33.45771) | > grad_norm_1: 200.84700 (139.22131) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28310 (2.20341) | > loader_time: 0.03470 (0.03581)  --> STEP: 7662/15287 -- GLOBAL_STEP: 972950 | > loss_disc: 2.26847 (2.31476) | > loss_disc_real_0: 0.07406 (0.12215) | > loss_disc_real_1: 0.19357 (0.21133) | > loss_disc_real_2: 0.21107 (0.21560) | > loss_disc_real_3: 0.21367 (0.21833) | > loss_disc_real_4: 0.20962 (0.21408) | > loss_disc_real_5: 0.20731 (0.21292) | > loss_0: 2.26847 (2.31476) | > grad_norm_0: 17.09687 (16.69065) | > loss_gen: 2.60770 (2.56652) | > loss_kl: 2.67658 (2.65808) | > loss_feat: 9.27981 (8.73508) | > loss_mel: 17.58384 (17.79133) | > loss_duration: 1.71430 (1.70696) | > loss_1: 33.86223 (33.45799) | > grad_norm_1: 225.74272 (139.33687) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31470 (2.20392) | > loader_time: 0.03790 (0.03582)  --> STEP: 7687/15287 -- GLOBAL_STEP: 972975 | > loss_disc: 2.26661 (2.31479) | > loss_disc_real_0: 0.09708 (0.12214) | > loss_disc_real_1: 0.20676 (0.21133) | > loss_disc_real_2: 0.21719 (0.21560) | > loss_disc_real_3: 0.23459 (0.21833) | > loss_disc_real_4: 0.22414 (0.21409) | > loss_disc_real_5: 0.19506 (0.21293) | > loss_0: 2.26661 (2.31479) | > grad_norm_0: 11.96580 (16.68853) | > loss_gen: 2.74343 (2.56648) | > loss_kl: 2.50611 (2.65810) | > loss_feat: 8.93395 (8.73503) | > loss_mel: 17.17161 (17.79075) | > loss_duration: 1.73967 (1.70697) | > loss_1: 33.09477 (33.45735) | > grad_norm_1: 150.74576 (139.35435) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44560 (2.20424) | > loader_time: 0.04430 (0.03581)  --> STEP: 7712/15287 -- GLOBAL_STEP: 973000 | > loss_disc: 2.28098 (2.31485) | > loss_disc_real_0: 0.08948 (0.12214) | > loss_disc_real_1: 0.22723 (0.21133) | > loss_disc_real_2: 0.21561 (0.21559) | > loss_disc_real_3: 0.22734 (0.21835) | > loss_disc_real_4: 0.17723 (0.21416) | > loss_disc_real_5: 0.21226 (0.21295) | > loss_0: 2.28098 (2.31485) | > grad_norm_0: 16.17647 (16.70470) | > loss_gen: 2.60709 (2.56654) | > loss_kl: 2.49309 (2.65820) | > loss_feat: 8.71394 (8.73494) | > loss_mel: 16.91572 (17.79098) | > loss_duration: 1.73998 (1.70697) | > loss_1: 32.46981 (33.45765) | > grad_norm_1: 182.41570 (139.45139) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40380 (2.20503) | > loader_time: 0.03140 (0.03581)  --> STEP: 7737/15287 -- GLOBAL_STEP: 973025 | > loss_disc: 2.50825 (2.31492) | > loss_disc_real_0: 0.28673 (0.12219) | > loss_disc_real_1: 0.16145 (0.21131) | > loss_disc_real_2: 0.21230 (0.21558) | > loss_disc_real_3: 0.18906 (0.21836) | > loss_disc_real_4: 0.23623 (0.21417) | > loss_disc_real_5: 0.20241 (0.21296) | > loss_0: 2.50825 (2.31492) | > grad_norm_0: 23.55475 (16.71161) | > loss_gen: 2.44820 (2.56652) | > loss_kl: 2.65864 (2.65828) | > loss_feat: 9.08088 (8.73493) | > loss_mel: 17.63060 (17.79071) | > loss_duration: 1.67809 (1.70697) | > loss_1: 33.49640 (33.45743) | > grad_norm_1: 181.57988 (139.46585) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.59200 (2.20575) | > loader_time: 0.04700 (0.03582)  --> STEP: 7762/15287 -- GLOBAL_STEP: 973050 | > loss_disc: 2.35412 (2.31500) | > loss_disc_real_0: 0.15436 (0.12222) | > loss_disc_real_1: 0.22897 (0.21132) | > loss_disc_real_2: 0.23731 (0.21556) | > loss_disc_real_3: 0.22425 (0.21836) | > loss_disc_real_4: 0.22535 (0.21418) | > loss_disc_real_5: 0.22836 (0.21296) | > loss_0: 2.35412 (2.31500) | > grad_norm_0: 17.65214 (16.71684) | > loss_gen: 2.53405 (2.56643) | > loss_kl: 2.52487 (2.65821) | > loss_feat: 8.30757 (8.73442) | > loss_mel: 17.31814 (17.79057) | > loss_duration: 1.70401 (1.70698) | > loss_1: 32.38864 (33.45663) | > grad_norm_1: 51.93005 (139.51212) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31070 (2.20584) | > loader_time: 0.04140 (0.03581)  --> STEP: 7787/15287 -- GLOBAL_STEP: 973075 | > loss_disc: 2.25839 (2.31498) | > loss_disc_real_0: 0.10701 (0.12219) | > loss_disc_real_1: 0.19014 (0.21130) | > loss_disc_real_2: 0.19864 (0.21556) | > loss_disc_real_3: 0.20616 (0.21836) | > loss_disc_real_4: 0.18913 (0.21421) | > loss_disc_real_5: 0.21891 (0.21297) | > loss_0: 2.25839 (2.31498) | > grad_norm_0: 17.82995 (16.71792) | > loss_gen: 2.58014 (2.56640) | > loss_kl: 2.81150 (2.65820) | > loss_feat: 8.52907 (8.73467) | > loss_mel: 17.88651 (17.79086) | > loss_duration: 1.74186 (1.70702) | > loss_1: 33.54908 (33.45718) | > grad_norm_1: 265.53232 (139.53716) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95480 (2.20625) | > loader_time: 0.03050 (0.03581)  --> STEP: 7812/15287 -- GLOBAL_STEP: 973100 | > loss_disc: 2.32065 (2.31502) | > loss_disc_real_0: 0.10812 (0.12219) | > loss_disc_real_1: 0.23092 (0.21130) | > loss_disc_real_2: 0.22301 (0.21557) | > loss_disc_real_3: 0.22636 (0.21838) | > loss_disc_real_4: 0.22073 (0.21423) | > loss_disc_real_5: 0.20058 (0.21299) | > loss_0: 2.32065 (2.31502) | > grad_norm_0: 13.10133 (16.72964) | > loss_gen: 2.46722 (2.56643) | > loss_kl: 2.62680 (2.65824) | > loss_feat: 8.72112 (8.73509) | > loss_mel: 18.16612 (17.79166) | > loss_duration: 1.72785 (1.70702) | > loss_1: 33.70911 (33.45846) | > grad_norm_1: 167.62518 (139.63824) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17710 (2.20624) | > loader_time: 0.03590 (0.03581)  --> STEP: 7837/15287 -- GLOBAL_STEP: 973125 | > loss_disc: 2.30705 (2.31504) | > loss_disc_real_0: 0.10257 (0.12217) | > loss_disc_real_1: 0.20896 (0.21131) | > loss_disc_real_2: 0.19702 (0.21557) | > loss_disc_real_3: 0.18424 (0.21838) | > loss_disc_real_4: 0.22920 (0.21424) | > loss_disc_real_5: 0.21628 (0.21299) | > loss_0: 2.30705 (2.31504) | > grad_norm_0: 12.25258 (16.71919) | > loss_gen: 2.61575 (2.56645) | > loss_kl: 2.59071 (2.65825) | > loss_feat: 8.59851 (8.73532) | > loss_mel: 17.51884 (17.79171) | > loss_duration: 1.69687 (1.70702) | > loss_1: 33.02068 (33.45876) | > grad_norm_1: 119.56235 (139.63803) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93490 (2.20648) | > loader_time: 0.03050 (0.03581)  --> STEP: 7862/15287 -- GLOBAL_STEP: 973150 | > loss_disc: 2.21149 (2.31509) | > loss_disc_real_0: 0.09739 (0.12218) | > loss_disc_real_1: 0.18909 (0.21130) | > loss_disc_real_2: 0.19840 (0.21557) | > loss_disc_real_3: 0.23298 (0.21839) | > loss_disc_real_4: 0.23644 (0.21426) | > loss_disc_real_5: 0.18469 (0.21299) | > loss_0: 2.21149 (2.31509) | > grad_norm_0: 22.88309 (16.73195) | > loss_gen: 2.59576 (2.56641) | > loss_kl: 2.72205 (2.65829) | > loss_feat: 9.04198 (8.73500) | > loss_mel: 18.29601 (17.79166) | > loss_duration: 1.72997 (1.70701) | > loss_1: 34.38577 (33.45839) | > grad_norm_1: 219.37234 (139.64406) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52170 (2.20671) | > loader_time: 0.03820 (0.03581)  --> STEP: 7887/15287 -- GLOBAL_STEP: 973175 | > loss_disc: 2.25080 (2.31508) | > loss_disc_real_0: 0.10353 (0.12214) | > loss_disc_real_1: 0.18574 (0.21129) | > loss_disc_real_2: 0.18454 (0.21558) | > loss_disc_real_3: 0.21301 (0.21838) | > loss_disc_real_4: 0.19350 (0.21426) | > loss_disc_real_5: 0.21363 (0.21299) | > loss_0: 2.25080 (2.31508) | > grad_norm_0: 8.90087 (16.73024) | > loss_gen: 2.68935 (2.56637) | > loss_kl: 2.54872 (2.65837) | > loss_feat: 8.48627 (8.73507) | > loss_mel: 17.62923 (17.79213) | > loss_duration: 1.69628 (1.70702) | > loss_1: 33.04985 (33.45897) | > grad_norm_1: 215.84158 (139.67938) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25770 (2.20684) | > loader_time: 0.03420 (0.03581)  --> STEP: 7912/15287 -- GLOBAL_STEP: 973200 | > loss_disc: 2.26418 (2.31508) | > loss_disc_real_0: 0.08802 (0.12214) | > loss_disc_real_1: 0.21868 (0.21127) | > loss_disc_real_2: 0.20219 (0.21556) | > loss_disc_real_3: 0.21433 (0.21839) | > loss_disc_real_4: 0.19358 (0.21427) | > loss_disc_real_5: 0.20858 (0.21299) | > loss_0: 2.26418 (2.31508) | > grad_norm_0: 21.38468 (16.73717) | > loss_gen: 2.70055 (2.56641) | > loss_kl: 2.77489 (2.65826) | > loss_feat: 8.96968 (8.73518) | > loss_mel: 18.38174 (17.79219) | > loss_duration: 1.69609 (1.70702) | > loss_1: 34.52294 (33.45908) | > grad_norm_1: 171.73163 (139.69482) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36150 (2.20697) | > loader_time: 0.03140 (0.03580)  --> STEP: 7937/15287 -- GLOBAL_STEP: 973225 | > loss_disc: 2.44718 (2.31513) | > loss_disc_real_0: 0.18166 (0.12216) | > loss_disc_real_1: 0.19710 (0.21127) | > loss_disc_real_2: 0.31524 (0.21558) | > loss_disc_real_3: 0.26447 (0.21840) | > loss_disc_real_4: 0.22078 (0.21427) | > loss_disc_real_5: 0.29663 (0.21300) | > loss_0: 2.44718 (2.31513) | > grad_norm_0: 19.24331 (16.72854) | > loss_gen: 2.74523 (2.56653) | > loss_kl: 2.65689 (2.65838) | > loss_feat: 8.10772 (8.73530) | > loss_mel: 18.02475 (17.79242) | > loss_duration: 1.73584 (1.70706) | > loss_1: 33.27044 (33.45971) | > grad_norm_1: 109.15445 (139.54608) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22490 (2.20743) | > loader_time: 0.03900 (0.03580)  --> STEP: 7962/15287 -- GLOBAL_STEP: 973250 | > loss_disc: 2.34213 (2.31534) | > loss_disc_real_0: 0.12699 (0.12216) | > loss_disc_real_1: 0.20932 (0.21128) | > loss_disc_real_2: 0.23119 (0.21557) | > loss_disc_real_3: 0.22745 (0.21841) | > loss_disc_real_4: 0.20927 (0.21430) | > loss_disc_real_5: 0.17856 (0.21303) | > loss_0: 2.34213 (2.31534) | > grad_norm_0: 17.77719 (16.71905) | > loss_gen: 2.33671 (2.56638) | > loss_kl: 2.55920 (2.65844) | > loss_feat: 8.64999 (8.73506) | > loss_mel: 18.05291 (17.79312) | > loss_duration: 1.69970 (1.70706) | > loss_1: 33.29850 (33.46007) | > grad_norm_1: 61.95001 (139.47539) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20880 (2.20767) | > loader_time: 0.03650 (0.03580)  --> STEP: 7987/15287 -- GLOBAL_STEP: 973275 | > loss_disc: 2.27412 (2.31538) | > loss_disc_real_0: 0.14321 (0.12215) | > loss_disc_real_1: 0.21303 (0.21129) | > loss_disc_real_2: 0.20871 (0.21557) | > loss_disc_real_3: 0.19693 (0.21841) | > loss_disc_real_4: 0.19579 (0.21429) | > loss_disc_real_5: 0.19511 (0.21303) | > loss_0: 2.27412 (2.31538) | > grad_norm_0: 19.65500 (16.73695) | > loss_gen: 2.43385 (2.56627) | > loss_kl: 2.57888 (2.65837) | > loss_feat: 8.14212 (8.73432) | > loss_mel: 17.76696 (17.79316) | > loss_duration: 1.69478 (1.70705) | > loss_1: 32.61658 (33.45918) | > grad_norm_1: 91.91492 (139.49782) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44760 (2.20796) | > loader_time: 0.03210 (0.03580)  --> STEP: 8012/15287 -- GLOBAL_STEP: 973300 | > loss_disc: 2.37910 (2.31536) | > loss_disc_real_0: 0.09779 (0.12215) | > loss_disc_real_1: 0.20681 (0.21128) | > loss_disc_real_2: 0.22465 (0.21556) | > loss_disc_real_3: 0.24039 (0.21840) | > loss_disc_real_4: 0.23612 (0.21429) | > loss_disc_real_5: 0.22682 (0.21303) | > loss_0: 2.37910 (2.31536) | > grad_norm_0: 9.02510 (16.73247) | > loss_gen: 2.51577 (2.56618) | > loss_kl: 2.77590 (2.65831) | > loss_feat: 8.18398 (8.73399) | > loss_mel: 17.63758 (17.79277) | > loss_duration: 1.71017 (1.70706) | > loss_1: 32.82341 (33.45832) | > grad_norm_1: 127.44643 (139.48868) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28240 (2.20822) | > loader_time: 0.03890 (0.03581)  --> STEP: 8037/15287 -- GLOBAL_STEP: 973325 | > loss_disc: 2.34093 (2.31549) | > loss_disc_real_0: 0.14473 (0.12222) | > loss_disc_real_1: 0.21148 (0.21129) | > loss_disc_real_2: 0.24107 (0.21556) | > loss_disc_real_3: 0.19086 (0.21840) | > loss_disc_real_4: 0.21636 (0.21427) | > loss_disc_real_5: 0.20228 (0.21305) | > loss_0: 2.34093 (2.31549) | > grad_norm_0: 9.11165 (16.73611) | > loss_gen: 2.55434 (2.56612) | > loss_kl: 2.64883 (2.65839) | > loss_feat: 8.51491 (8.73311) | > loss_mel: 17.87105 (17.79259) | > loss_duration: 1.69466 (1.70705) | > loss_1: 33.28380 (33.45726) | > grad_norm_1: 81.08897 (139.45628) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29800 (2.20816) | > loader_time: 0.03740 (0.03581)  --> STEP: 8062/15287 -- GLOBAL_STEP: 973350 | > loss_disc: 2.30972 (2.31551) | > loss_disc_real_0: 0.10482 (0.12223) | > loss_disc_real_1: 0.16687 (0.21130) | > loss_disc_real_2: 0.21128 (0.21555) | > loss_disc_real_3: 0.21351 (0.21840) | > loss_disc_real_4: 0.21565 (0.21427) | > loss_disc_real_5: 0.21392 (0.21305) | > loss_0: 2.30972 (2.31551) | > grad_norm_0: 14.00213 (16.73293) | > loss_gen: 2.55038 (2.56601) | > loss_kl: 2.77151 (2.65839) | > loss_feat: 8.70761 (8.73290) | > loss_mel: 18.10524 (17.79299) | > loss_duration: 1.72510 (1.70708) | > loss_1: 33.85984 (33.45737) | > grad_norm_1: 158.07275 (139.40053) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33170 (2.20835) | > loader_time: 0.03840 (0.03582)  --> STEP: 8087/15287 -- GLOBAL_STEP: 973375 | > loss_disc: 2.28690 (2.31549) | > loss_disc_real_0: 0.13047 (0.12222) | > loss_disc_real_1: 0.23110 (0.21131) | > loss_disc_real_2: 0.21316 (0.21556) | > loss_disc_real_3: 0.19414 (0.21840) | > loss_disc_real_4: 0.22482 (0.21426) | > loss_disc_real_5: 0.21024 (0.21305) | > loss_0: 2.28690 (2.31549) | > grad_norm_0: 15.05175 (16.73070) | > loss_gen: 2.52237 (2.56605) | > loss_kl: 2.65132 (2.65824) | > loss_feat: 8.66917 (8.73285) | > loss_mel: 17.50974 (17.79302) | > loss_duration: 1.75227 (1.70709) | > loss_1: 33.10488 (33.45726) | > grad_norm_1: 94.52406 (139.40286) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02060 (2.20837) | > loader_time: 0.03780 (0.03582)  --> STEP: 8112/15287 -- GLOBAL_STEP: 973400 | > loss_disc: 2.31755 (2.31552) | > loss_disc_real_0: 0.10339 (0.12221) | > loss_disc_real_1: 0.21617 (0.21129) | > loss_disc_real_2: 0.19367 (0.21555) | > loss_disc_real_3: 0.22266 (0.21841) | > loss_disc_real_4: 0.21221 (0.21425) | > loss_disc_real_5: 0.21303 (0.21308) | > loss_0: 2.31755 (2.31552) | > grad_norm_0: 8.18553 (16.73512) | > loss_gen: 2.66425 (2.56596) | > loss_kl: 2.63241 (2.65821) | > loss_feat: 8.51419 (8.73251) | > loss_mel: 17.75115 (17.79252) | > loss_duration: 1.72772 (1.70710) | > loss_1: 33.28971 (33.45629) | > grad_norm_1: 156.24350 (139.36345) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90590 (2.20839) | > loader_time: 0.03590 (0.03581)  --> STEP: 8137/15287 -- GLOBAL_STEP: 973425 | > loss_disc: 2.35556 (2.31556) | > loss_disc_real_0: 0.11163 (0.12221) | > loss_disc_real_1: 0.22093 (0.21131) | > loss_disc_real_2: 0.20850 (0.21555) | > loss_disc_real_3: 0.24449 (0.21841) | > loss_disc_real_4: 0.22914 (0.21427) | > loss_disc_real_5: 0.20171 (0.21309) | > loss_0: 2.35556 (2.31556) | > grad_norm_0: 11.79085 (16.74104) | > loss_gen: 2.46544 (2.56586) | > loss_kl: 2.79433 (2.65823) | > loss_feat: 8.46558 (8.73225) | > loss_mel: 17.50994 (17.79232) | > loss_duration: 1.73065 (1.70710) | > loss_1: 32.96595 (33.45574) | > grad_norm_1: 59.00006 (139.30055) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34860 (2.20864) | > loader_time: 0.03730 (0.03581)  --> STEP: 8162/15287 -- GLOBAL_STEP: 973450 | > loss_disc: 2.29697 (2.31560) | > loss_disc_real_0: 0.09786 (0.12224) | > loss_disc_real_1: 0.19813 (0.21131) | > loss_disc_real_2: 0.20477 (0.21556) | > loss_disc_real_3: 0.22359 (0.21840) | > loss_disc_real_4: 0.22948 (0.21427) | > loss_disc_real_5: 0.21558 (0.21308) | > loss_0: 2.29697 (2.31560) | > grad_norm_0: 12.47266 (16.72535) | > loss_gen: 2.41954 (2.56577) | > loss_kl: 2.78851 (2.65832) | > loss_feat: 8.89307 (8.73203) | > loss_mel: 17.83653 (17.79187) | > loss_duration: 1.69969 (1.70712) | > loss_1: 33.63733 (33.45508) | > grad_norm_1: 47.73125 (139.16501) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99120 (2.20880) | > loader_time: 0.03410 (0.03581)  --> STEP: 8187/15287 -- GLOBAL_STEP: 973475 | > loss_disc: 2.29408 (2.31565) | > loss_disc_real_0: 0.11202 (0.12221) | > loss_disc_real_1: 0.20971 (0.21130) | > loss_disc_real_2: 0.22023 (0.21555) | > loss_disc_real_3: 0.21270 (0.21841) | > loss_disc_real_4: 0.21973 (0.21429) | > loss_disc_real_5: 0.22632 (0.21309) | > loss_0: 2.29408 (2.31565) | > grad_norm_0: 15.02796 (16.71938) | > loss_gen: 2.63993 (2.56570) | > loss_kl: 2.68186 (2.65831) | > loss_feat: 9.25346 (8.73178) | > loss_mel: 18.24204 (17.79221) | > loss_duration: 1.70049 (1.70711) | > loss_1: 34.51779 (33.45510) | > grad_norm_1: 96.53308 (139.14003) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.61260 (2.20909) | > loader_time: 0.03600 (0.03582)  --> STEP: 8212/15287 -- GLOBAL_STEP: 973500 | > loss_disc: 2.40032 (2.31568) | > loss_disc_real_0: 0.13420 (0.12223) | > loss_disc_real_1: 0.24276 (0.21130) | > loss_disc_real_2: 0.23231 (0.21555) | > loss_disc_real_3: 0.24421 (0.21840) | > loss_disc_real_4: 0.24444 (0.21428) | > loss_disc_real_5: 0.22761 (0.21310) | > loss_0: 2.40032 (2.31568) | > grad_norm_0: 10.63204 (16.71824) | > loss_gen: 2.52839 (2.56562) | > loss_kl: 2.68718 (2.65834) | > loss_feat: 8.28126 (8.73157) | > loss_mel: 17.67738 (17.79165) | > loss_duration: 1.69919 (1.70709) | > loss_1: 32.87340 (33.45427) | > grad_norm_1: 86.58134 (139.12927) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38490 (2.20963) | > loader_time: 0.03660 (0.03582)  --> STEP: 8237/15287 -- GLOBAL_STEP: 973525 | > loss_disc: 2.41254 (2.31575) | > loss_disc_real_0: 0.14326 (0.12223) | > loss_disc_real_1: 0.22678 (0.21130) | > loss_disc_real_2: 0.27001 (0.21557) | > loss_disc_real_3: 0.25440 (0.21842) | > loss_disc_real_4: 0.24020 (0.21430) | > loss_disc_real_5: 0.21048 (0.21311) | > loss_0: 2.41254 (2.31575) | > grad_norm_0: 22.89926 (16.71693) | > loss_gen: 2.44224 (2.56566) | > loss_kl: 2.69185 (2.65831) | > loss_feat: 8.36059 (8.73133) | > loss_mel: 17.80243 (17.79150) | > loss_duration: 1.73370 (1.70708) | > loss_1: 33.03082 (33.45387) | > grad_norm_1: 173.29210 (139.08893) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.51110 (2.20984) | > loader_time: 0.03840 (0.03583)  --> STEP: 8262/15287 -- GLOBAL_STEP: 973550 | > loss_disc: 2.30854 (2.31582) | > loss_disc_real_0: 0.12460 (0.12225) | > loss_disc_real_1: 0.21230 (0.21130) | > loss_disc_real_2: 0.21699 (0.21556) | > loss_disc_real_3: 0.22302 (0.21843) | > loss_disc_real_4: 0.21681 (0.21431) | > loss_disc_real_5: 0.22655 (0.21312) | > loss_0: 2.30854 (2.31582) | > grad_norm_0: 16.39400 (16.71832) | > loss_gen: 2.57355 (2.56547) | > loss_kl: 2.71723 (2.65830) | > loss_feat: 8.30395 (8.73066) | > loss_mel: 17.55270 (17.79074) | > loss_duration: 1.73849 (1.70708) | > loss_1: 32.88591 (33.45223) | > grad_norm_1: 113.71067 (139.05612) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44320 (2.21026) | > loader_time: 0.03740 (0.03583)  --> STEP: 8287/15287 -- GLOBAL_STEP: 973575 | > loss_disc: 2.29205 (2.31580) | > loss_disc_real_0: 0.12470 (0.12225) | > loss_disc_real_1: 0.22949 (0.21131) | > loss_disc_real_2: 0.20136 (0.21556) | > loss_disc_real_3: 0.20141 (0.21844) | > loss_disc_real_4: 0.21485 (0.21431) | > loss_disc_real_5: 0.20895 (0.21312) | > loss_0: 2.29205 (2.31580) | > grad_norm_0: 12.99580 (16.70552) | > loss_gen: 2.59201 (2.56543) | > loss_kl: 2.73366 (2.65841) | > loss_feat: 8.62522 (8.73047) | > loss_mel: 18.03889 (17.79049) | > loss_duration: 1.72510 (1.70708) | > loss_1: 33.71487 (33.45185) | > grad_norm_1: 125.54842 (138.99529) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97210 (2.21045) | > loader_time: 0.03410 (0.03583)  --> STEP: 8312/15287 -- GLOBAL_STEP: 973600 | > loss_disc: 2.32568 (2.31594) | > loss_disc_real_0: 0.09525 (0.12226) | > loss_disc_real_1: 0.19955 (0.21134) | > loss_disc_real_2: 0.21553 (0.21559) | > loss_disc_real_3: 0.22407 (0.21846) | > loss_disc_real_4: 0.20676 (0.21431) | > loss_disc_real_5: 0.20762 (0.21313) | > loss_0: 2.32568 (2.31594) | > grad_norm_0: 9.47226 (16.69431) | > loss_gen: 2.61123 (2.56541) | > loss_kl: 2.65249 (2.65853) | > loss_feat: 8.52644 (8.73052) | > loss_mel: 17.37982 (17.79064) | > loss_duration: 1.71639 (1.70708) | > loss_1: 32.88638 (33.45214) | > grad_norm_1: 147.58269 (138.90663) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.53960 (2.21067) | > loader_time: 0.04100 (0.03583)  --> STEP: 8337/15287 -- GLOBAL_STEP: 973625 | > loss_disc: 2.24196 (2.31588) | > loss_disc_real_0: 0.11843 (0.12225) | > loss_disc_real_1: 0.21378 (0.21133) | > loss_disc_real_2: 0.20035 (0.21559) | > loss_disc_real_3: 0.20911 (0.21844) | > loss_disc_real_4: 0.18808 (0.21430) | > loss_disc_real_5: 0.20127 (0.21312) | > loss_0: 2.24196 (2.31588) | > grad_norm_0: 6.53346 (16.70207) | > loss_gen: 2.65604 (2.56530) | > loss_kl: 2.59883 (2.65855) | > loss_feat: 8.90664 (8.73042) | > loss_mel: 17.72712 (17.79038) | > loss_duration: 1.68822 (1.70708) | > loss_1: 33.57685 (33.45168) | > grad_norm_1: 88.61622 (138.93320) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31940 (2.21109) | > loader_time: 0.03730 (0.03582)  --> STEP: 8362/15287 -- GLOBAL_STEP: 973650 | > loss_disc: 2.34890 (2.31591) | > loss_disc_real_0: 0.10701 (0.12224) | > loss_disc_real_1: 0.20204 (0.21135) | > loss_disc_real_2: 0.20034 (0.21559) | > loss_disc_real_3: 0.22418 (0.21848) | > loss_disc_real_4: 0.27157 (0.21434) | > loss_disc_real_5: 0.20640 (0.21311) | > loss_0: 2.34890 (2.31591) | > grad_norm_0: 17.35364 (16.70267) | > loss_gen: 2.51527 (2.56537) | > loss_kl: 2.54342 (2.65854) | > loss_feat: 8.06744 (8.73031) | > loss_mel: 18.03748 (17.79015) | > loss_duration: 1.71524 (1.70708) | > loss_1: 32.87885 (33.45140) | > grad_norm_1: 142.13191 (138.91301) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30680 (2.21129) | > loader_time: 0.03440 (0.03582)  --> STEP: 8387/15287 -- GLOBAL_STEP: 973675 | > loss_disc: 2.36534 (2.31595) | > loss_disc_real_0: 0.12937 (0.12223) | > loss_disc_real_1: 0.23407 (0.21135) | > loss_disc_real_2: 0.21476 (0.21561) | > loss_disc_real_3: 0.24016 (0.21848) | > loss_disc_real_4: 0.21943 (0.21434) | > loss_disc_real_5: 0.22030 (0.21311) | > loss_0: 2.36534 (2.31595) | > grad_norm_0: 16.15477 (16.69563) | > loss_gen: 2.56224 (2.56535) | > loss_kl: 2.56712 (2.65850) | > loss_feat: 8.93305 (8.73001) | > loss_mel: 17.91085 (17.78976) | > loss_duration: 1.72402 (1.70706) | > loss_1: 33.69728 (33.45064) | > grad_norm_1: 173.93321 (138.90050) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91460 (2.21165) | > loader_time: 0.03070 (0.03582)  --> STEP: 8412/15287 -- GLOBAL_STEP: 973700 | > loss_disc: 2.33859 (2.31597) | > loss_disc_real_0: 0.10732 (0.12222) | > loss_disc_real_1: 0.21974 (0.21135) | > loss_disc_real_2: 0.22373 (0.21561) | > loss_disc_real_3: 0.22650 (0.21849) | > loss_disc_real_4: 0.20154 (0.21434) | > loss_disc_real_5: 0.19890 (0.21311) | > loss_0: 2.33859 (2.31597) | > grad_norm_0: 6.10031 (16.71414) | > loss_gen: 2.73400 (2.56524) | > loss_kl: 2.58373 (2.65845) | > loss_feat: 8.23096 (8.72944) | > loss_mel: 17.85556 (17.78990) | > loss_duration: 1.73739 (1.70705) | > loss_1: 33.14165 (33.45003) | > grad_norm_1: 85.53976 (138.95949) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.48170 (2.21186) | > loader_time: 0.03250 (0.03582)  --> STEP: 8437/15287 -- GLOBAL_STEP: 973725 | > loss_disc: 2.27351 (2.31607) | > loss_disc_real_0: 0.13139 (0.12226) | > loss_disc_real_1: 0.20921 (0.21135) | > loss_disc_real_2: 0.21266 (0.21561) | > loss_disc_real_3: 0.21828 (0.21850) | > loss_disc_real_4: 0.21085 (0.21438) | > loss_disc_real_5: 0.21728 (0.21312) | > loss_0: 2.27351 (2.31607) | > grad_norm_0: 11.34132 (16.71556) | > loss_gen: 2.49239 (2.56522) | > loss_kl: 2.60694 (2.65851) | > loss_feat: 8.76013 (8.72866) | > loss_mel: 17.51317 (17.78955) | > loss_duration: 1.69455 (1.70706) | > loss_1: 33.06718 (33.44895) | > grad_norm_1: 183.43546 (138.92674) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30270 (2.21232) | > loader_time: 0.03660 (0.03582)  --> STEP: 8462/15287 -- GLOBAL_STEP: 973750 | > loss_disc: 2.40674 (2.31618) | > loss_disc_real_0: 0.17262 (0.12231) | > loss_disc_real_1: 0.22212 (0.21136) | > loss_disc_real_2: 0.23913 (0.21561) | > loss_disc_real_3: 0.24977 (0.21849) | > loss_disc_real_4: 0.23861 (0.21437) | > loss_disc_real_5: 0.20328 (0.21313) | > loss_0: 2.40674 (2.31618) | > grad_norm_0: 7.37376 (16.72335) | > loss_gen: 2.54743 (2.56508) | > loss_kl: 2.53141 (2.65852) | > loss_feat: 8.51391 (8.72788) | > loss_mel: 17.48895 (17.78927) | > loss_duration: 1.75400 (1.70705) | > loss_1: 32.83570 (33.44776) | > grad_norm_1: 81.03738 (138.93394) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44640 (2.21291) | > loader_time: 0.03820 (0.03581)  --> STEP: 8487/15287 -- GLOBAL_STEP: 973775 | > loss_disc: 2.34235 (2.31621) | > loss_disc_real_0: 0.11027 (0.12230) | > loss_disc_real_1: 0.21666 (0.21137) | > loss_disc_real_2: 0.21970 (0.21559) | > loss_disc_real_3: 0.23889 (0.21848) | > loss_disc_real_4: 0.20860 (0.21437) | > loss_disc_real_5: 0.23105 (0.21313) | > loss_0: 2.34235 (2.31621) | > grad_norm_0: 22.17458 (16.72063) | > loss_gen: 2.42221 (2.56493) | > loss_kl: 2.70845 (2.65851) | > loss_feat: 7.99576 (8.72711) | > loss_mel: 17.59330 (17.78877) | > loss_duration: 1.70494 (1.70704) | > loss_1: 32.42467 (33.44634) | > grad_norm_1: 196.68129 (138.98352) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32190 (2.21327) | > loader_time: 0.03740 (0.03582)  --> STEP: 8512/15287 -- GLOBAL_STEP: 973800 | > loss_disc: 2.35306 (2.31622) | > loss_disc_real_0: 0.22116 (0.12235) | > loss_disc_real_1: 0.20744 (0.21136) | > loss_disc_real_2: 0.22391 (0.21559) | > loss_disc_real_3: 0.20915 (0.21847) | > loss_disc_real_4: 0.20519 (0.21437) | > loss_disc_real_5: 0.22461 (0.21314) | > loss_0: 2.35306 (2.31622) | > grad_norm_0: 27.34153 (16.72819) | > loss_gen: 2.43641 (2.56490) | > loss_kl: 2.85967 (2.65845) | > loss_feat: 8.32626 (8.72680) | > loss_mel: 17.57177 (17.78864) | > loss_duration: 1.70762 (1.70703) | > loss_1: 32.90173 (33.44579) | > grad_norm_1: 219.92004 (139.05396) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24730 (2.21360) | > loader_time: 0.03330 (0.03582)  --> STEP: 8537/15287 -- GLOBAL_STEP: 973825 | > loss_disc: 2.38735 (2.31622) | > loss_disc_real_0: 0.12167 (0.12234) | > loss_disc_real_1: 0.20171 (0.21137) | > loss_disc_real_2: 0.18849 (0.21559) | > loss_disc_real_3: 0.21439 (0.21847) | > loss_disc_real_4: 0.22351 (0.21437) | > loss_disc_real_5: 0.19313 (0.21313) | > loss_0: 2.38735 (2.31622) | > grad_norm_0: 7.30227 (16.72301) | > loss_gen: 2.65814 (2.56488) | > loss_kl: 2.66746 (2.65857) | > loss_feat: 9.05243 (8.72691) | > loss_mel: 18.10305 (17.78888) | > loss_duration: 1.70643 (1.70702) | > loss_1: 34.18751 (33.44622) | > grad_norm_1: 104.14365 (139.03131) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04210 (2.21399) | > loader_time: 0.03490 (0.03583)  --> STEP: 8562/15287 -- GLOBAL_STEP: 973850 | > loss_disc: 2.31008 (2.31621) | > loss_disc_real_0: 0.12792 (0.12235) | > loss_disc_real_1: 0.18126 (0.21138) | > loss_disc_real_2: 0.21185 (0.21559) | > loss_disc_real_3: 0.24528 (0.21847) | > loss_disc_real_4: 0.23850 (0.21437) | > loss_disc_real_5: 0.22412 (0.21313) | > loss_0: 2.31008 (2.31621) | > grad_norm_0: 14.01420 (16.71492) | > loss_gen: 2.47570 (2.56482) | > loss_kl: 2.65387 (2.65851) | > loss_feat: 8.70612 (8.72682) | > loss_mel: 17.54814 (17.78879) | > loss_duration: 1.73618 (1.70699) | > loss_1: 33.12001 (33.44592) | > grad_norm_1: 80.27936 (138.98399) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95350 (2.21438) | > loader_time: 0.03930 (0.03583)  --> STEP: 8587/15287 -- GLOBAL_STEP: 973875 | > loss_disc: 2.36033 (2.31629) | > loss_disc_real_0: 0.14817 (0.12235) | > loss_disc_real_1: 0.22030 (0.21139) | > loss_disc_real_2: 0.23652 (0.21559) | > loss_disc_real_3: 0.23625 (0.21848) | > loss_disc_real_4: 0.23854 (0.21437) | > loss_disc_real_5: 0.21641 (0.21313) | > loss_0: 2.36033 (2.31629) | > grad_norm_0: 8.67475 (16.70758) | > loss_gen: 2.72985 (2.56480) | > loss_kl: 2.76621 (2.65858) | > loss_feat: 8.76010 (8.72674) | > loss_mel: 18.47177 (17.78958) | > loss_duration: 1.68278 (1.70699) | > loss_1: 34.41070 (33.44669) | > grad_norm_1: 147.00507 (138.88023) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96020 (2.21488) | > loader_time: 0.04380 (0.03583)  --> STEP: 8612/15287 -- GLOBAL_STEP: 973900 | > loss_disc: 2.31860 (2.31650) | > loss_disc_real_0: 0.11673 (0.12238) | > loss_disc_real_1: 0.22653 (0.21140) | > loss_disc_real_2: 0.22246 (0.21559) | > loss_disc_real_3: 0.18813 (0.21850) | > loss_disc_real_4: 0.19424 (0.21438) | > loss_disc_real_5: 0.18050 (0.21316) | > loss_0: 2.31860 (2.31650) | > grad_norm_0: 6.61331 (16.70492) | > loss_gen: 2.77512 (2.56469) | > loss_kl: 2.68434 (2.65856) | > loss_feat: 8.83893 (8.72605) | > loss_mel: 18.37904 (17.78992) | > loss_duration: 1.68687 (1.70698) | > loss_1: 34.36430 (33.44620) | > grad_norm_1: 107.30048 (138.77927) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27410 (2.21535) | > loader_time: 0.03500 (0.03583)  --> STEP: 8637/15287 -- GLOBAL_STEP: 973925 | > loss_disc: 2.38219 (2.31653) | > loss_disc_real_0: 0.10897 (0.12237) | > loss_disc_real_1: 0.22496 (0.21140) | > loss_disc_real_2: 0.21912 (0.21559) | > loss_disc_real_3: 0.25777 (0.21851) | > loss_disc_real_4: 0.24194 (0.21439) | > loss_disc_real_5: 0.23010 (0.21316) | > loss_0: 2.38219 (2.31653) | > grad_norm_0: 7.95046 (16.69550) | > loss_gen: 2.68868 (2.56468) | > loss_kl: 2.65052 (2.65862) | > loss_feat: 9.07609 (8.72590) | > loss_mel: 17.95298 (17.78994) | > loss_duration: 1.68066 (1.70699) | > loss_1: 34.04893 (33.44612) | > grad_norm_1: 149.02754 (138.70644) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22640 (2.21574) | > loader_time: 0.03150 (0.03583)  --> STEP: 8662/15287 -- GLOBAL_STEP: 973950 | > loss_disc: 2.29461 (2.31648) | > loss_disc_real_0: 0.10960 (0.12236) | > loss_disc_real_1: 0.18833 (0.21139) | > loss_disc_real_2: 0.21470 (0.21559) | > loss_disc_real_3: 0.20532 (0.21850) | > loss_disc_real_4: 0.19755 (0.21438) | > loss_disc_real_5: 0.18877 (0.21314) | > loss_0: 2.29461 (2.31648) | > grad_norm_0: 5.10176 (16.70795) | > loss_gen: 2.88858 (2.56466) | > loss_kl: 2.66810 (2.65853) | > loss_feat: 9.12492 (8.72576) | > loss_mel: 17.60433 (17.79002) | > loss_duration: 1.64890 (1.70695) | > loss_1: 33.93483 (33.44592) | > grad_norm_1: 155.21049 (138.76727) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40470 (2.21637) | > loader_time: 0.03540 (0.03584)  --> STEP: 8687/15287 -- GLOBAL_STEP: 973975 | > loss_disc: 2.31017 (2.31653) | > loss_disc_real_0: 0.13289 (0.12237) | > loss_disc_real_1: 0.21879 (0.21143) | > loss_disc_real_2: 0.21883 (0.21559) | > loss_disc_real_3: 0.21794 (0.21851) | > loss_disc_real_4: 0.24535 (0.21441) | > loss_disc_real_5: 0.21307 (0.21317) | > loss_0: 2.31017 (2.31653) | > grad_norm_0: 15.18855 (16.71215) | > loss_gen: 2.43657 (2.56461) | > loss_kl: 2.81911 (2.65861) | > loss_feat: 8.40754 (8.72508) | > loss_mel: 16.98810 (17.78963) | > loss_duration: 1.68925 (1.70694) | > loss_1: 32.34058 (33.44486) | > grad_norm_1: 157.85788 (138.72899) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33930 (2.21694) | > loader_time: 0.03890 (0.03583)  --> STEP: 8712/15287 -- GLOBAL_STEP: 974000 | > loss_disc: 2.20965 (2.31644) | > loss_disc_real_0: 0.08343 (0.12236) | > loss_disc_real_1: 0.21382 (0.21142) | > loss_disc_real_2: 0.21487 (0.21558) | > loss_disc_real_3: 0.20005 (0.21851) | > loss_disc_real_4: 0.19873 (0.21441) | > loss_disc_real_5: 0.19270 (0.21317) | > loss_0: 2.20965 (2.31644) | > grad_norm_0: 14.90701 (16.71287) | > loss_gen: 2.66542 (2.56465) | > loss_kl: 2.60748 (2.65865) | > loss_feat: 8.87055 (8.72581) | > loss_mel: 17.47102 (17.78949) | > loss_duration: 1.70313 (1.70690) | > loss_1: 33.31759 (33.44546) | > grad_norm_1: 173.55322 (138.77715) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10960 (2.21701) | > loader_time: 0.04170 (0.03583)  --> STEP: 8737/15287 -- GLOBAL_STEP: 974025 | > loss_disc: 2.28793 (2.31643) | > loss_disc_real_0: 0.11907 (0.12235) | > loss_disc_real_1: 0.18369 (0.21142) | > loss_disc_real_2: 0.21144 (0.21558) | > loss_disc_real_3: 0.21338 (0.21850) | > loss_disc_real_4: 0.17760 (0.21439) | > loss_disc_real_5: 0.18792 (0.21318) | > loss_0: 2.28793 (2.31643) | > grad_norm_0: 24.67095 (16.72142) | > loss_gen: 2.46859 (2.56464) | > loss_kl: 2.71023 (2.65864) | > loss_feat: 9.45961 (8.72579) | > loss_mel: 18.18263 (17.78955) | > loss_duration: 1.71829 (1.70689) | > loss_1: 34.53934 (33.44548) | > grad_norm_1: 158.56741 (138.77661) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96770 (2.21741) | > loader_time: 0.03620 (0.03583)  --> STEP: 8762/15287 -- GLOBAL_STEP: 974050 | > loss_disc: 2.25355 (2.31630) | > loss_disc_real_0: 0.14186 (0.12233) | > loss_disc_real_1: 0.18940 (0.21139) | > loss_disc_real_2: 0.21668 (0.21557) | > loss_disc_real_3: 0.20273 (0.21850) | > loss_disc_real_4: 0.20289 (0.21438) | > loss_disc_real_5: 0.23973 (0.21318) | > loss_0: 2.25355 (2.31630) | > grad_norm_0: 26.46275 (16.73392) | > loss_gen: 2.54475 (2.56464) | > loss_kl: 2.54273 (2.65865) | > loss_feat: 8.58262 (8.72597) | > loss_mel: 17.56786 (17.78906) | > loss_duration: 1.72102 (1.70689) | > loss_1: 32.95898 (33.44517) | > grad_norm_1: 77.21333 (138.87843) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92470 (2.21752) | > loader_time: 0.03710 (0.03583)  --> STEP: 8787/15287 -- GLOBAL_STEP: 974075 | > loss_disc: 2.33887 (2.31633) | > loss_disc_real_0: 0.11020 (0.12233) | > loss_disc_real_1: 0.18551 (0.21140) | > loss_disc_real_2: 0.19004 (0.21555) | > loss_disc_real_3: 0.23493 (0.21850) | > loss_disc_real_4: 0.20058 (0.21438) | > loss_disc_real_5: 0.22823 (0.21320) | > loss_0: 2.33887 (2.31633) | > grad_norm_0: 12.11598 (16.73395) | > loss_gen: 2.62107 (2.56460) | > loss_kl: 2.57977 (2.65869) | > loss_feat: 8.20366 (8.72564) | > loss_mel: 17.40768 (17.78882) | > loss_duration: 1.69582 (1.70687) | > loss_1: 32.50799 (33.44458) | > grad_norm_1: 137.89449 (138.85754) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.50430 (2.21769) | > loader_time: 0.03230 (0.03583)  --> STEP: 8812/15287 -- GLOBAL_STEP: 974100 | > loss_disc: 2.25999 (2.31637) | > loss_disc_real_0: 0.09504 (0.12234) | > loss_disc_real_1: 0.20289 (0.21141) | > loss_disc_real_2: 0.19393 (0.21555) | > loss_disc_real_3: 0.20268 (0.21850) | > loss_disc_real_4: 0.20533 (0.21438) | > loss_disc_real_5: 0.24015 (0.21322) | > loss_0: 2.25999 (2.31637) | > grad_norm_0: 21.91899 (16.73306) | > loss_gen: 2.50079 (2.56451) | > loss_kl: 2.69748 (2.65867) | > loss_feat: 9.25710 (8.72572) | > loss_mel: 17.70398 (17.78895) | > loss_duration: 1.68297 (1.70687) | > loss_1: 33.84231 (33.44470) | > grad_norm_1: 152.30643 (138.86453) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.45300 (2.21762) | > loader_time: 0.03890 (0.03584)  --> STEP: 8837/15287 -- GLOBAL_STEP: 974125 | > loss_disc: 2.25076 (2.31633) | > loss_disc_real_0: 0.16116 (0.12234) | > loss_disc_real_1: 0.20316 (0.21139) | > loss_disc_real_2: 0.20695 (0.21555) | > loss_disc_real_3: 0.24034 (0.21849) | > loss_disc_real_4: 0.21453 (0.21437) | > loss_disc_real_5: 0.21773 (0.21321) | > loss_0: 2.25076 (2.31633) | > grad_norm_0: 25.45711 (16.73320) | > loss_gen: 2.86942 (2.56455) | > loss_kl: 2.64443 (2.65868) | > loss_feat: 9.02016 (8.72597) | > loss_mel: 17.40961 (17.78882) | > loss_duration: 1.68218 (1.70687) | > loss_1: 33.62580 (33.44488) | > grad_norm_1: 135.94801 (138.87109) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91640 (2.21802) | > loader_time: 0.03590 (0.03585)  --> STEP: 8862/15287 -- GLOBAL_STEP: 974150 | > loss_disc: 2.38967 (2.31630) | > loss_disc_real_0: 0.15596 (0.12234) | > loss_disc_real_1: 0.23325 (0.21139) | > loss_disc_real_2: 0.23254 (0.21554) | > loss_disc_real_3: 0.24070 (0.21848) | > loss_disc_real_4: 0.20956 (0.21436) | > loss_disc_real_5: 0.25855 (0.21321) | > loss_0: 2.38967 (2.31630) | > grad_norm_0: 31.91619 (16.73984) | > loss_gen: 2.50619 (2.56451) | > loss_kl: 2.65580 (2.65868) | > loss_feat: 8.44087 (8.72590) | > loss_mel: 17.77061 (17.78874) | > loss_duration: 1.68982 (1.70688) | > loss_1: 33.06331 (33.44469) | > grad_norm_1: 118.71347 (138.90012) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98760 (2.21851) | > loader_time: 0.03500 (0.03586)  --> STEP: 8887/15287 -- GLOBAL_STEP: 974175 | > loss_disc: 2.33322 (2.31628) | > loss_disc_real_0: 0.12557 (0.12232) | > loss_disc_real_1: 0.18388 (0.21139) | > loss_disc_real_2: 0.24804 (0.21555) | > loss_disc_real_3: 0.22558 (0.21849) | > loss_disc_real_4: 0.21794 (0.21435) | > loss_disc_real_5: 0.22036 (0.21321) | > loss_0: 2.33322 (2.31628) | > grad_norm_0: 23.70267 (16.74622) | > loss_gen: 2.49589 (2.56451) | > loss_kl: 2.66292 (2.65868) | > loss_feat: 8.14759 (8.72587) | > loss_mel: 17.23455 (17.78866) | > loss_duration: 1.68676 (1.70688) | > loss_1: 32.22771 (33.44458) | > grad_norm_1: 107.42635 (138.96577) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37580 (2.21856) | > loader_time: 0.03670 (0.03586)  --> STEP: 8912/15287 -- GLOBAL_STEP: 974200 | > loss_disc: 2.23782 (2.31631) | > loss_disc_real_0: 0.11081 (0.12232) | > loss_disc_real_1: 0.16640 (0.21137) | > loss_disc_real_2: 0.19727 (0.21555) | > loss_disc_real_3: 0.20192 (0.21850) | > loss_disc_real_4: 0.19149 (0.21434) | > loss_disc_real_5: 0.21468 (0.21322) | > loss_0: 2.23782 (2.31631) | > grad_norm_0: 25.60263 (16.75900) | > loss_gen: 2.49149 (2.56434) | > loss_kl: 2.56531 (2.65863) | > loss_feat: 8.41087 (8.72532) | > loss_mel: 17.12086 (17.78812) | > loss_duration: 1.70923 (1.70686) | > loss_1: 32.29776 (33.44325) | > grad_norm_1: 230.28664 (139.01526) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20760 (2.21866) | > loader_time: 0.03780 (0.03586)  --> STEP: 8937/15287 -- GLOBAL_STEP: 974225 | > loss_disc: 2.30808 (2.31631) | > loss_disc_real_0: 0.13942 (0.12232) | > loss_disc_real_1: 0.20594 (0.21137) | > loss_disc_real_2: 0.21299 (0.21555) | > loss_disc_real_3: 0.22661 (0.21849) | > loss_disc_real_4: 0.18307 (0.21432) | > loss_disc_real_5: 0.24201 (0.21323) | > loss_0: 2.30808 (2.31631) | > grad_norm_0: 21.62175 (16.75976) | > loss_gen: 2.57907 (2.56432) | > loss_kl: 2.65018 (2.65868) | > loss_feat: 9.38242 (8.72545) | > loss_mel: 17.77510 (17.78764) | > loss_duration: 1.71426 (1.70686) | > loss_1: 34.10103 (33.44292) | > grad_norm_1: 65.89034 (139.02873) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.54430 (2.21894) | > loader_time: 0.03650 (0.03586)  --> STEP: 8962/15287 -- GLOBAL_STEP: 974250 | > loss_disc: 2.39474 (2.31638) | > loss_disc_real_0: 0.09465 (0.12233) | > loss_disc_real_1: 0.21803 (0.21138) | > loss_disc_real_2: 0.20751 (0.21555) | > loss_disc_real_3: 0.22249 (0.21850) | > loss_disc_real_4: 0.20216 (0.21433) | > loss_disc_real_5: 0.22194 (0.21322) | > loss_0: 2.39474 (2.31638) | > grad_norm_0: 20.12510 (16.75682) | > loss_gen: 2.32319 (2.56417) | > loss_kl: 2.58735 (2.65869) | > loss_feat: 7.93393 (8.72491) | > loss_mel: 17.68069 (17.78748) | > loss_duration: 1.71184 (1.70688) | > loss_1: 32.23701 (33.44209) | > grad_norm_1: 157.73532 (139.04678) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29350 (2.21934) | > loader_time: 0.03980 (0.03586)  --> STEP: 8987/15287 -- GLOBAL_STEP: 974275 | > loss_disc: 2.34316 (2.31638) | > loss_disc_real_0: 0.11258 (0.12234) | > loss_disc_real_1: 0.20018 (0.21137) | > loss_disc_real_2: 0.22989 (0.21554) | > loss_disc_real_3: 0.23731 (0.21850) | > loss_disc_real_4: 0.20548 (0.21432) | > loss_disc_real_5: 0.24462 (0.21323) | > loss_0: 2.34316 (2.31638) | > grad_norm_0: 28.56769 (16.75570) | > loss_gen: 2.59631 (2.56415) | > loss_kl: 2.59600 (2.65882) | > loss_feat: 8.97433 (8.72457) | > loss_mel: 17.75232 (17.78769) | > loss_duration: 1.67631 (1.70687) | > loss_1: 33.59528 (33.44207) | > grad_norm_1: 194.16187 (139.04536) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41690 (2.22003) | > loader_time: 0.03210 (0.03586)  --> STEP: 9012/15287 -- GLOBAL_STEP: 974300 | > loss_disc: 2.20438 (2.31643) | > loss_disc_real_0: 0.10058 (0.12232) | > loss_disc_real_1: 0.21531 (0.21140) | > loss_disc_real_2: 0.22293 (0.21556) | > loss_disc_real_3: 0.21191 (0.21852) | > loss_disc_real_4: 0.19752 (0.21434) | > loss_disc_real_5: 0.21793 (0.21323) | > loss_0: 2.20438 (2.31643) | > grad_norm_0: 14.14104 (16.75162) | > loss_gen: 2.66305 (2.56420) | > loss_kl: 2.61271 (2.65871) | > loss_feat: 8.73519 (8.72407) | > loss_mel: 17.60813 (17.78771) | > loss_duration: 1.68876 (1.70686) | > loss_1: 33.30785 (33.44152) | > grad_norm_1: 186.56013 (139.05472) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01080 (2.21997) | > loader_time: 0.03930 (0.03586)  --> STEP: 9037/15287 -- GLOBAL_STEP: 974325 | > loss_disc: 2.30111 (2.31650) | > loss_disc_real_0: 0.13434 (0.12232) | > loss_disc_real_1: 0.19815 (0.21140) | > loss_disc_real_2: 0.27849 (0.21559) | > loss_disc_real_3: 0.27600 (0.21853) | > loss_disc_real_4: 0.18144 (0.21433) | > loss_disc_real_5: 0.24031 (0.21324) | > loss_0: 2.30111 (2.31650) | > grad_norm_0: 13.81739 (16.74734) | > loss_gen: 2.59754 (2.56416) | > loss_kl: 2.59272 (2.65877) | > loss_feat: 8.39267 (8.72370) | > loss_mel: 17.71457 (17.78783) | > loss_duration: 1.72636 (1.70685) | > loss_1: 33.02386 (33.44129) | > grad_norm_1: 189.75314 (139.07771) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.45610 (2.22076) | > loader_time: 0.03750 (0.03586)  --> STEP: 9062/15287 -- GLOBAL_STEP: 974350 | > loss_disc: 2.35325 (2.31652) | > loss_disc_real_0: 0.15751 (0.12232) | > loss_disc_real_1: 0.21000 (0.21140) | > loss_disc_real_2: 0.23958 (0.21559) | > loss_disc_real_3: 0.20973 (0.21855) | > loss_disc_real_4: 0.23042 (0.21433) | > loss_disc_real_5: 0.22327 (0.21324) | > loss_0: 2.35325 (2.31652) | > grad_norm_0: 13.89242 (16.75110) | > loss_gen: 2.59314 (2.56415) | > loss_kl: 2.65679 (2.65871) | > loss_feat: 8.42529 (8.72325) | > loss_mel: 17.60576 (17.78777) | > loss_duration: 1.67059 (1.70685) | > loss_1: 32.95157 (33.44071) | > grad_norm_1: 51.91667 (139.07832) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.75690 (2.22113) | > loader_time: 0.04090 (0.03587)  --> STEP: 9087/15287 -- GLOBAL_STEP: 974375 | > loss_disc: 2.25642 (2.31653) | > loss_disc_real_0: 0.16050 (0.12233) | > loss_disc_real_1: 0.19156 (0.21138) | > loss_disc_real_2: 0.19422 (0.21559) | > loss_disc_real_3: 0.23230 (0.21856) | > loss_disc_real_4: 0.21079 (0.21433) | > loss_disc_real_5: 0.22406 (0.21325) | > loss_0: 2.25642 (2.31653) | > grad_norm_0: 17.69721 (16.74369) | > loss_gen: 2.66221 (2.56419) | > loss_kl: 2.65056 (2.65875) | > loss_feat: 8.90667 (8.72362) | > loss_mel: 18.04392 (17.78771) | > loss_duration: 1.67059 (1.70684) | > loss_1: 33.93395 (33.44109) | > grad_norm_1: 208.18535 (139.03384) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98060 (2.22121) | > loader_time: 0.03390 (0.03587)  --> STEP: 9112/15287 -- GLOBAL_STEP: 974400 | > loss_disc: 2.30331 (2.31666) | > loss_disc_real_0: 0.11149 (0.12239) | > loss_disc_real_1: 0.19351 (0.21140) | > loss_disc_real_2: 0.20577 (0.21561) | > loss_disc_real_3: 0.21344 (0.21859) | > loss_disc_real_4: 0.22997 (0.21435) | > loss_disc_real_5: 0.21443 (0.21326) | > loss_0: 2.30331 (2.31666) | > grad_norm_0: 15.44145 (16.75543) | > loss_gen: 2.28528 (2.56421) | > loss_kl: 2.71122 (2.65881) | > loss_feat: 8.72126 (8.72341) | > loss_mel: 17.55366 (17.78761) | > loss_duration: 1.67615 (1.70680) | > loss_1: 32.94756 (33.44084) | > grad_norm_1: 171.66949 (139.05917) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34490 (2.22147) | > loader_time: 0.02960 (0.03586)  --> STEP: 9137/15287 -- GLOBAL_STEP: 974425 | > loss_disc: 2.13591 (2.31667) | > loss_disc_real_0: 0.10677 (0.12241) | > loss_disc_real_1: 0.20530 (0.21140) | > loss_disc_real_2: 0.19723 (0.21561) | > loss_disc_real_3: 0.17976 (0.21859) | > loss_disc_real_4: 0.18662 (0.21435) | > loss_disc_real_5: 0.19196 (0.21326) | > loss_0: 2.13591 (2.31667) | > grad_norm_0: 15.02478 (16.75339) | > loss_gen: 2.76921 (2.56422) | > loss_kl: 2.77445 (2.65880) | > loss_feat: 9.21410 (8.72336) | > loss_mel: 18.36617 (17.78775) | > loss_duration: 1.68201 (1.70679) | > loss_1: 34.80593 (33.44090) | > grad_norm_1: 190.30557 (139.07922) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04070 (2.22160) | > loader_time: 0.03430 (0.03586)  --> STEP: 9162/15287 -- GLOBAL_STEP: 974450 | > loss_disc: 2.29459 (2.31664) | > loss_disc_real_0: 0.09353 (0.12241) | > loss_disc_real_1: 0.20170 (0.21139) | > loss_disc_real_2: 0.19934 (0.21560) | > loss_disc_real_3: 0.20136 (0.21858) | > loss_disc_real_4: 0.20628 (0.21436) | > loss_disc_real_5: 0.19068 (0.21325) | > loss_0: 2.29459 (2.31664) | > grad_norm_0: 8.34525 (16.76408) | > loss_gen: 2.66356 (2.56414) | > loss_kl: 2.61638 (2.65878) | > loss_feat: 8.60938 (8.72297) | > loss_mel: 17.86845 (17.78787) | > loss_duration: 1.71167 (1.70679) | > loss_1: 33.46945 (33.44054) | > grad_norm_1: 51.03920 (139.11652) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92680 (2.22176) | > loader_time: 0.08670 (0.03587)  --> STEP: 9187/15287 -- GLOBAL_STEP: 974475 | > loss_disc: 2.37107 (2.31668) | > loss_disc_real_0: 0.13298 (0.12240) | > loss_disc_real_1: 0.20605 (0.21140) | > loss_disc_real_2: 0.21449 (0.21560) | > loss_disc_real_3: 0.22886 (0.21859) | > loss_disc_real_4: 0.28399 (0.21437) | > loss_disc_real_5: 0.22842 (0.21325) | > loss_0: 2.37107 (2.31668) | > grad_norm_0: 21.89231 (16.74888) | > loss_gen: 2.43346 (2.56406) | > loss_kl: 2.75610 (2.65907) | > loss_feat: 8.40440 (8.72271) | > loss_mel: 17.61188 (17.78808) | > loss_duration: 1.72247 (1.70678) | > loss_1: 32.92831 (33.44067) | > grad_norm_1: 149.72929 (139.06694) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34600 (2.22197) | > loader_time: 0.03540 (0.03587)  --> STEP: 9212/15287 -- GLOBAL_STEP: 974500 | > loss_disc: 2.32369 (2.31672) | > loss_disc_real_0: 0.14455 (0.12240) | > loss_disc_real_1: 0.23344 (0.21141) | > loss_disc_real_2: 0.21538 (0.21560) | > loss_disc_real_3: 0.19577 (0.21861) | > loss_disc_real_4: 0.17895 (0.21437) | > loss_disc_real_5: 0.15732 (0.21325) | > loss_0: 2.32369 (2.31672) | > grad_norm_0: 13.46076 (16.73886) | > loss_gen: 2.41832 (2.56400) | > loss_kl: 2.78143 (2.65912) | > loss_feat: 8.22389 (8.72266) | > loss_mel: 17.55235 (17.78848) | > loss_duration: 1.66134 (1.70676) | > loss_1: 32.63733 (33.44098) | > grad_norm_1: 101.61787 (139.03136) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.46720 (2.22221) | > loader_time: 0.03390 (0.03587)  --> STEP: 9237/15287 -- GLOBAL_STEP: 974525 | > loss_disc: 2.36035 (2.31677) | > loss_disc_real_0: 0.11780 (0.12240) | > loss_disc_real_1: 0.21864 (0.21140) | > loss_disc_real_2: 0.21455 (0.21560) | > loss_disc_real_3: 0.20850 (0.21861) | > loss_disc_real_4: 0.19110 (0.21438) | > loss_disc_real_5: 0.21100 (0.21326) | > loss_0: 2.36035 (2.31677) | > grad_norm_0: 4.82121 (16.73075) | > loss_gen: 2.61657 (2.56391) | > loss_kl: 2.58564 (2.65903) | > loss_feat: 7.92426 (8.72206) | > loss_mel: 17.50292 (17.78817) | > loss_duration: 1.67636 (1.70674) | > loss_1: 32.30575 (33.43988) | > grad_norm_1: 241.86876 (139.03091) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92920 (2.22246) | > loader_time: 0.03460 (0.03588)  --> STEP: 9262/15287 -- GLOBAL_STEP: 974550 | > loss_disc: 2.36267 (2.31681) | > loss_disc_real_0: 0.13714 (0.12240) | > loss_disc_real_1: 0.19640 (0.21140) | > loss_disc_real_2: 0.21265 (0.21561) | > loss_disc_real_3: 0.19572 (0.21862) | > loss_disc_real_4: 0.23248 (0.21443) | > loss_disc_real_5: 0.22900 (0.21327) | > loss_0: 2.36267 (2.31681) | > grad_norm_0: 11.29248 (16.73862) | > loss_gen: 2.58084 (2.56391) | > loss_kl: 2.61723 (2.65900) | > loss_feat: 8.70855 (8.72152) | > loss_mel: 17.64911 (17.78816) | > loss_duration: 1.67840 (1.70669) | > loss_1: 33.23412 (33.43926) | > grad_norm_1: 144.97006 (139.00648) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20570 (2.22256) | > loader_time: 0.03940 (0.03588)  --> STEP: 9287/15287 -- GLOBAL_STEP: 974575 | > loss_disc: 2.32927 (2.31680) | > loss_disc_real_0: 0.10940 (0.12239) | > loss_disc_real_1: 0.19192 (0.21142) | > loss_disc_real_2: 0.19734 (0.21560) | > loss_disc_real_3: 0.22468 (0.21865) | > loss_disc_real_4: 0.25663 (0.21444) | > loss_disc_real_5: 0.24415 (0.21328) | > loss_0: 2.32927 (2.31680) | > grad_norm_0: 16.39620 (16.74919) | > loss_gen: 2.44120 (2.56395) | > loss_kl: 2.60887 (2.65888) | > loss_feat: 8.49137 (8.72124) | > loss_mel: 17.65230 (17.78794) | > loss_duration: 1.65508 (1.70667) | > loss_1: 32.84882 (33.43864) | > grad_norm_1: 191.18118 (139.05838) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40210 (2.22255) | > loader_time: 0.03610 (0.03588)  --> STEP: 9312/15287 -- GLOBAL_STEP: 974600 | > loss_disc: 2.32622 (2.31685) | > loss_disc_real_0: 0.09754 (0.12241) | > loss_disc_real_1: 0.21832 (0.21142) | > loss_disc_real_2: 0.22384 (0.21561) | > loss_disc_real_3: 0.22128 (0.21865) | > loss_disc_real_4: 0.21677 (0.21443) | > loss_disc_real_5: 0.20408 (0.21328) | > loss_0: 2.32622 (2.31685) | > grad_norm_0: 10.64712 (16.74941) | > loss_gen: 2.49325 (2.56388) | > loss_kl: 2.65300 (2.65898) | > loss_feat: 8.21002 (8.72077) | > loss_mel: 17.54618 (17.78759) | > loss_duration: 1.69774 (1.70667) | > loss_1: 32.60019 (33.43783) | > grad_norm_1: 212.31050 (139.06540) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30530 (2.22274) | > loader_time: 0.03550 (0.03588)  --> STEP: 9337/15287 -- GLOBAL_STEP: 974625 | > loss_disc: 2.37144 (2.31692) | > loss_disc_real_0: 0.08931 (0.12242) | > loss_disc_real_1: 0.24369 (0.21142) | > loss_disc_real_2: 0.22254 (0.21561) | > loss_disc_real_3: 0.24394 (0.21867) | > loss_disc_real_4: 0.23848 (0.21445) | > loss_disc_real_5: 0.25077 (0.21329) | > loss_0: 2.37144 (2.31692) | > grad_norm_0: 28.81850 (16.75880) | > loss_gen: 2.45047 (2.56383) | > loss_kl: 2.57031 (2.65892) | > loss_feat: 7.98981 (8.72085) | > loss_mel: 17.65083 (17.78768) | > loss_duration: 1.68168 (1.70666) | > loss_1: 32.34310 (33.43790) | > grad_norm_1: 166.51271 (139.03961) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42140 (2.22289) | > loader_time: 0.03360 (0.03587)  --> STEP: 9362/15287 -- GLOBAL_STEP: 974650 | > loss_disc: 2.31512 (2.31696) | > loss_disc_real_0: 0.13369 (0.12244) | > loss_disc_real_1: 0.24147 (0.21142) | > loss_disc_real_2: 0.20140 (0.21561) | > loss_disc_real_3: 0.21669 (0.21868) | > loss_disc_real_4: 0.20009 (0.21446) | > loss_disc_real_5: 0.23626 (0.21329) | > loss_0: 2.31512 (2.31696) | > grad_norm_0: 10.14459 (16.75754) | > loss_gen: 2.54132 (2.56390) | > loss_kl: 2.59992 (2.65895) | > loss_feat: 8.80239 (8.72075) | > loss_mel: 17.98901 (17.78779) | > loss_duration: 1.69558 (1.70665) | > loss_1: 33.62821 (33.43797) | > grad_norm_1: 109.92505 (138.99091) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.63210 (2.22289) | > loader_time: 0.04070 (0.03587)  --> STEP: 9387/15287 -- GLOBAL_STEP: 974675 | > loss_disc: 2.43672 (2.31703) | > loss_disc_real_0: 0.12837 (0.12244) | > loss_disc_real_1: 0.23976 (0.21142) | > loss_disc_real_2: 0.24558 (0.21561) | > loss_disc_real_3: 0.22500 (0.21869) | > loss_disc_real_4: 0.24504 (0.21448) | > loss_disc_real_5: 0.25647 (0.21331) | > loss_0: 2.43672 (2.31703) | > grad_norm_0: 5.55454 (16.75205) | > loss_gen: 2.50697 (2.56384) | > loss_kl: 2.64683 (2.65904) | > loss_feat: 7.90954 (8.72058) | > loss_mel: 17.47990 (17.78782) | > loss_duration: 1.69380 (1.70663) | > loss_1: 32.23704 (33.43785) | > grad_norm_1: 120.54815 (138.89555) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13970 (2.22332) | > loader_time: 0.03150 (0.03587)  --> STEP: 9412/15287 -- GLOBAL_STEP: 974700 | > loss_disc: 2.23387 (2.31714) | > loss_disc_real_0: 0.11482 (0.12246) | > loss_disc_real_1: 0.20313 (0.21144) | > loss_disc_real_2: 0.20396 (0.21562) | > loss_disc_real_3: 0.22284 (0.21869) | > loss_disc_real_4: 0.20744 (0.21448) | > loss_disc_real_5: 0.17221 (0.21330) | > loss_0: 2.23387 (2.31714) | > grad_norm_0: 5.83534 (16.74282) | > loss_gen: 2.66802 (2.56375) | > loss_kl: 2.53819 (2.65908) | > loss_feat: 9.07509 (8.72025) | > loss_mel: 17.79251 (17.78798) | > loss_duration: 1.69484 (1.70662) | > loss_1: 33.76865 (33.43763) | > grad_norm_1: 150.68335 (138.78325) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14890 (2.22423) | > loader_time: 0.04040 (0.03587)  --> STEP: 9437/15287 -- GLOBAL_STEP: 974725 | > loss_disc: 2.25964 (2.31729) | > loss_disc_real_0: 0.08607 (0.12247) | > loss_disc_real_1: 0.20677 (0.21146) | > loss_disc_real_2: 0.19208 (0.21564) | > loss_disc_real_3: 0.20271 (0.21871) | > loss_disc_real_4: 0.19059 (0.21448) | > loss_disc_real_5: 0.17712 (0.21331) | > loss_0: 2.25964 (2.31729) | > grad_norm_0: 18.00511 (16.74271) | > loss_gen: 2.55133 (2.56366) | > loss_kl: 2.75796 (2.65901) | > loss_feat: 8.81653 (8.71943) | > loss_mel: 17.79462 (17.78806) | > loss_duration: 1.69826 (1.70661) | > loss_1: 33.61870 (33.43672) | > grad_norm_1: 199.23720 (138.72897) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.95390 (2.22565) | > loader_time: 0.03840 (0.03587)  --> STEP: 9462/15287 -- GLOBAL_STEP: 974750 | > loss_disc: 2.43088 (2.31742) | > loss_disc_real_0: 0.16513 (0.12248) | > loss_disc_real_1: 0.22145 (0.21148) | > loss_disc_real_2: 0.22936 (0.21565) | > loss_disc_real_3: 0.22467 (0.21872) | > loss_disc_real_4: 0.25369 (0.21449) | > loss_disc_real_5: 0.21336 (0.21332) | > loss_0: 2.43088 (2.31742) | > grad_norm_0: 8.57295 (16.74141) | > loss_gen: 2.44569 (2.56359) | > loss_kl: 2.65510 (2.65897) | > loss_feat: 8.72503 (8.71907) | > loss_mel: 17.66152 (17.78845) | > loss_duration: 1.66803 (1.70661) | > loss_1: 33.15537 (33.43663) | > grad_norm_1: 58.53153 (138.68225) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18860 (2.22626) | > loader_time: 0.04040 (0.03587)  --> STEP: 9487/15287 -- GLOBAL_STEP: 974775 | > loss_disc: 2.40088 (2.31752) | > loss_disc_real_0: 0.12926 (0.12248) | > loss_disc_real_1: 0.20309 (0.21149) | > loss_disc_real_2: 0.23666 (0.21566) | > loss_disc_real_3: 0.25441 (0.21873) | > loss_disc_real_4: 0.20734 (0.21450) | > loss_disc_real_5: 0.21945 (0.21332) | > loss_0: 2.40088 (2.31752) | > grad_norm_0: 16.68096 (16.73074) | > loss_gen: 2.62003 (2.56355) | > loss_kl: 2.61661 (2.65895) | > loss_feat: 8.82949 (8.71887) | > loss_mel: 17.37142 (17.78859) | > loss_duration: 1.73639 (1.70661) | > loss_1: 33.17394 (33.43651) | > grad_norm_1: 136.31155 (138.59474) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.74870 (2.22794) | > loader_time: 0.03250 (0.03587)  --> STEP: 9512/15287 -- GLOBAL_STEP: 974800 | > loss_disc: 2.44194 (2.31763) | > loss_disc_real_0: 0.13857 (0.12249) | > loss_disc_real_1: 0.20649 (0.21150) | > loss_disc_real_2: 0.20566 (0.21568) | > loss_disc_real_3: 0.20878 (0.21872) | > loss_disc_real_4: 0.21207 (0.21450) | > loss_disc_real_5: 0.20870 (0.21332) | > loss_0: 2.44194 (2.31763) | > grad_norm_0: 15.84502 (16.72723) | > loss_gen: 2.44457 (2.56339) | > loss_kl: 2.75276 (2.65884) | > loss_feat: 9.20279 (8.71829) | > loss_mel: 17.86023 (17.78860) | > loss_duration: 1.72580 (1.70659) | > loss_1: 33.98614 (33.43563) | > grad_norm_1: 178.68007 (138.57079) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.13330 (2.22919) | > loader_time: 0.03390 (0.03587)  --> STEP: 9537/15287 -- GLOBAL_STEP: 974825 | > loss_disc: 2.30339 (2.31757) | > loss_disc_real_0: 0.06988 (0.12247) | > loss_disc_real_1: 0.20346 (0.21149) | > loss_disc_real_2: 0.21279 (0.21568) | > loss_disc_real_3: 0.22763 (0.21872) | > loss_disc_real_4: 0.21810 (0.21450) | > loss_disc_real_5: 0.25019 (0.21332) | > loss_0: 2.30339 (2.31757) | > grad_norm_0: 13.70970 (16.71750) | > loss_gen: 2.41476 (2.56334) | > loss_kl: 2.57241 (2.65878) | > loss_feat: 8.53243 (8.71828) | > loss_mel: 17.77633 (17.78849) | > loss_duration: 1.70238 (1.70660) | > loss_1: 32.99832 (33.43543) | > grad_norm_1: 166.13130 (138.51253) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02770 (2.23032) | > loader_time: 0.03640 (0.03587)  --> STEP: 9562/15287 -- GLOBAL_STEP: 974850 | > loss_disc: 2.25659 (2.31753) | > loss_disc_real_0: 0.10548 (0.12246) | > loss_disc_real_1: 0.19328 (0.21148) | > loss_disc_real_2: 0.19526 (0.21566) | > loss_disc_real_3: 0.22906 (0.21871) | > loss_disc_real_4: 0.21977 (0.21449) | > loss_disc_real_5: 0.23591 (0.21331) | > loss_0: 2.25659 (2.31753) | > grad_norm_0: 32.69794 (16.72316) | > loss_gen: 2.57886 (2.56331) | > loss_kl: 2.61188 (2.65875) | > loss_feat: 8.74114 (8.71823) | > loss_mel: 17.93269 (17.78867) | > loss_duration: 1.71283 (1.70662) | > loss_1: 33.57741 (33.43552) | > grad_norm_1: 140.88550 (138.54671) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.60120 (2.23190) | > loader_time: 0.03590 (0.03587)  --> STEP: 9587/15287 -- GLOBAL_STEP: 974875 | > loss_disc: 2.29763 (2.31747) | > loss_disc_real_0: 0.12177 (0.12247) | > loss_disc_real_1: 0.20352 (0.21148) | > loss_disc_real_2: 0.20967 (0.21566) | > loss_disc_real_3: 0.22324 (0.21872) | > loss_disc_real_4: 0.20837 (0.21449) | > loss_disc_real_5: 0.22080 (0.21332) | > loss_0: 2.29763 (2.31747) | > grad_norm_0: 15.44220 (16.73164) | > loss_gen: 2.49168 (2.56342) | > loss_kl: 2.48004 (2.65868) | > loss_feat: 7.94325 (8.71849) | > loss_mel: 17.42790 (17.78828) | > loss_duration: 1.70442 (1.70662) | > loss_1: 32.04730 (33.43541) | > grad_norm_1: 91.17999 (138.54837) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.57970 (2.23342) | > loader_time: 0.03230 (0.03587)  --> STEP: 9612/15287 -- GLOBAL_STEP: 974900 | > loss_disc: 2.35790 (2.31742) | > loss_disc_real_0: 0.11487 (0.12246) | > loss_disc_real_1: 0.23134 (0.21148) | > loss_disc_real_2: 0.20407 (0.21564) | > loss_disc_real_3: 0.22064 (0.21871) | > loss_disc_real_4: 0.22274 (0.21448) | > loss_disc_real_5: 0.20275 (0.21334) | > loss_0: 2.35790 (2.31742) | > grad_norm_0: 36.80628 (16.73751) | > loss_gen: 2.41157 (2.56344) | > loss_kl: 2.71169 (2.65860) | > loss_feat: 8.67072 (8.71889) | > loss_mel: 17.53992 (17.78826) | > loss_duration: 1.72137 (1.70662) | > loss_1: 33.05527 (33.43576) | > grad_norm_1: 185.73976 (138.56349) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.40920 (2.23502) | > loader_time: 0.03230 (0.03586)  --> STEP: 9637/15287 -- GLOBAL_STEP: 974925 | > loss_disc: 2.28176 (2.31742) | > loss_disc_real_0: 0.09772 (0.12246) | > loss_disc_real_1: 0.21868 (0.21148) | > loss_disc_real_2: 0.21767 (0.21564) | > loss_disc_real_3: 0.23786 (0.21871) | > loss_disc_real_4: 0.21580 (0.21448) | > loss_disc_real_5: 0.21230 (0.21335) | > loss_0: 2.28176 (2.31742) | > grad_norm_0: 17.68828 (16.74243) | > loss_gen: 2.49821 (2.56341) | > loss_kl: 2.71609 (2.65859) | > loss_feat: 8.31160 (8.71869) | > loss_mel: 17.29558 (17.78809) | > loss_duration: 1.69419 (1.70661) | > loss_1: 32.51567 (33.43534) | > grad_norm_1: 87.63413 (138.57411) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.64640 (2.23637) | > loader_time: 0.03800 (0.03586)  --> STEP: 9662/15287 -- GLOBAL_STEP: 974950 | > loss_disc: 2.35600 (2.31738) | > loss_disc_real_0: 0.11108 (0.12244) | > loss_disc_real_1: 0.20741 (0.21147) | > loss_disc_real_2: 0.21202 (0.21563) | > loss_disc_real_3: 0.22365 (0.21870) | > loss_disc_real_4: 0.24187 (0.21448) | > loss_disc_real_5: 0.23364 (0.21335) | > loss_0: 2.35600 (2.31738) | > grad_norm_0: 14.81764 (16.74283) | > loss_gen: 2.40187 (2.56332) | > loss_kl: 2.51285 (2.65855) | > loss_feat: 8.33831 (8.71858) | > loss_mel: 17.51534 (17.78776) | > loss_duration: 1.71251 (1.70661) | > loss_1: 32.48089 (33.43475) | > grad_norm_1: 133.79037 (138.55669) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.31240 (2.23764) | > loader_time: 0.03920 (0.03586)  --> STEP: 9687/15287 -- GLOBAL_STEP: 974975 | > loss_disc: 2.28696 (2.31735) | > loss_disc_real_0: 0.08105 (0.12244) | > loss_disc_real_1: 0.21648 (0.21146) | > loss_disc_real_2: 0.23008 (0.21562) | > loss_disc_real_3: 0.22893 (0.21871) | > loss_disc_real_4: 0.21443 (0.21449) | > loss_disc_real_5: 0.19624 (0.21335) | > loss_0: 2.28696 (2.31735) | > grad_norm_0: 29.72538 (16.75286) | > loss_gen: 2.42821 (2.56335) | > loss_kl: 2.71680 (2.65852) | > loss_feat: 8.66374 (8.71861) | > loss_mel: 17.37781 (17.78756) | > loss_duration: 1.68275 (1.70661) | > loss_1: 32.86930 (33.43458) | > grad_norm_1: 204.32193 (138.59499) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.69150 (2.23952) | > loader_time: 0.03740 (0.03585)  --> STEP: 9712/15287 -- GLOBAL_STEP: 975000 | > loss_disc: 2.34911 (2.31736) | > loss_disc_real_0: 0.13636 (0.12243) | > loss_disc_real_1: 0.24531 (0.21146) | > loss_disc_real_2: 0.22627 (0.21562) | > loss_disc_real_3: 0.20686 (0.21872) | > loss_disc_real_4: 0.21883 (0.21449) | > loss_disc_real_5: 0.20820 (0.21337) | > loss_0: 2.34911 (2.31736) | > grad_norm_0: 10.09526 (16.75509) | > loss_gen: 2.53866 (2.56327) | > loss_kl: 2.62347 (2.65858) | > loss_feat: 8.93883 (8.71855) | > loss_mel: 17.78563 (17.78756) | > loss_duration: 1.68274 (1.70663) | > loss_1: 33.56932 (33.43452) | > grad_norm_1: 85.48834 (138.53073) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.36040 (2.24126) | > loader_time: 0.03320 (0.03585)  --> STEP: 9737/15287 -- GLOBAL_STEP: 975025 | > loss_disc: 2.28204 (2.31754) | > loss_disc_real_0: 0.12976 (0.12246) | > loss_disc_real_1: 0.20638 (0.21147) | > loss_disc_real_2: 0.20414 (0.21562) | > loss_disc_real_3: 0.16835 (0.21872) | > loss_disc_real_4: 0.17885 (0.21448) | > loss_disc_real_5: 0.17186 (0.21336) | > loss_0: 2.28204 (2.31754) | > grad_norm_0: 11.40029 (16.75072) | > loss_gen: 2.48518 (2.56304) | > loss_kl: 2.72946 (2.65859) | > loss_feat: 8.83469 (8.71803) | > loss_mel: 17.78960 (17.78754) | > loss_duration: 1.74814 (1.70663) | > loss_1: 33.58707 (33.43377) | > grad_norm_1: 59.63606 (138.40039) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.13940 (2.24319) | > loader_time: 0.03540 (0.03585)  --> STEP: 9762/15287 -- GLOBAL_STEP: 975050 | > loss_disc: 2.38263 (2.31767) | > loss_disc_real_0: 0.12292 (0.12246) | > loss_disc_real_1: 0.19146 (0.21149) | > loss_disc_real_2: 0.19998 (0.21564) | > loss_disc_real_3: 0.23686 (0.21873) | > loss_disc_real_4: 0.22431 (0.21450) | > loss_disc_real_5: 0.23494 (0.21337) | > loss_0: 2.38263 (2.31767) | > grad_norm_0: 6.56672 (16.73972) | > loss_gen: 2.57985 (2.56305) | > loss_kl: 2.65690 (2.65867) | > loss_feat: 8.81238 (8.71770) | > loss_mel: 18.45894 (17.78811) | > loss_duration: 1.71275 (1.70667) | > loss_1: 34.22081 (33.43414) | > grad_norm_1: 131.34061 (138.30061) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39980 (2.24462) | > loader_time: 0.04630 (0.03586)  --> STEP: 9787/15287 -- GLOBAL_STEP: 975075 | > loss_disc: 2.32305 (2.31773) | > loss_disc_real_0: 0.10051 (0.12246) | > loss_disc_real_1: 0.24061 (0.21150) | > loss_disc_real_2: 0.23813 (0.21565) | > loss_disc_real_3: 0.22277 (0.21874) | > loss_disc_real_4: 0.21261 (0.21451) | > loss_disc_real_5: 0.21636 (0.21337) | > loss_0: 2.32305 (2.31773) | > grad_norm_0: 19.20898 (16.75168) | > loss_gen: 2.44795 (2.56291) | > loss_kl: 2.63961 (2.65855) | > loss_feat: 8.29787 (8.71707) | > loss_mel: 17.69732 (17.78794) | > loss_duration: 1.70293 (1.70667) | > loss_1: 32.78568 (33.43309) | > grad_norm_1: 148.74080 (138.32094) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23980 (2.24603) | > loader_time: 0.03610 (0.03586)  --> STEP: 9812/15287 -- GLOBAL_STEP: 975100 | > loss_disc: 2.39937 (2.31773) | > loss_disc_real_0: 0.09960 (0.12247) | > loss_disc_real_1: 0.21235 (0.21149) | > loss_disc_real_2: 0.19831 (0.21565) | > loss_disc_real_3: 0.20640 (0.21874) | > loss_disc_real_4: 0.21884 (0.21452) | > loss_disc_real_5: 0.23991 (0.21336) | > loss_0: 2.39937 (2.31773) | > grad_norm_0: 30.87817 (16.75831) | > loss_gen: 2.34368 (2.56287) | > loss_kl: 2.67101 (2.65861) | > loss_feat: 8.17696 (8.71683) | > loss_mel: 17.13145 (17.78766) | > loss_duration: 1.72744 (1.70668) | > loss_1: 32.05053 (33.43262) | > grad_norm_1: 119.40534 (138.30650) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.95480 (2.24729) | > loader_time: 0.03940 (0.03587)  --> STEP: 9837/15287 -- GLOBAL_STEP: 975125 | > loss_disc: 2.38101 (2.31772) | > loss_disc_real_0: 0.15729 (0.12246) | > loss_disc_real_1: 0.23139 (0.21148) | > loss_disc_real_2: 0.25428 (0.21565) | > loss_disc_real_3: 0.27134 (0.21874) | > loss_disc_real_4: 0.24287 (0.21450) | > loss_disc_real_5: 0.22826 (0.21338) | > loss_0: 2.38101 (2.31772) | > grad_norm_0: 29.70465 (16.75916) | > loss_gen: 2.68905 (2.56289) | > loss_kl: 2.62642 (2.65871) | > loss_feat: 8.45259 (8.71696) | > loss_mel: 17.57312 (17.78765) | > loss_duration: 1.68367 (1.70668) | > loss_1: 33.02484 (33.43286) | > grad_norm_1: 75.05901 (138.28387) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36760 (2.24824) | > loader_time: 0.03260 (0.03586)  --> STEP: 9862/15287 -- GLOBAL_STEP: 975150 | > loss_disc: 2.30404 (2.31770) | > loss_disc_real_0: 0.12811 (0.12245) | > loss_disc_real_1: 0.21582 (0.21148) | > loss_disc_real_2: 0.22606 (0.21565) | > loss_disc_real_3: 0.23741 (0.21875) | > loss_disc_real_4: 0.23006 (0.21450) | > loss_disc_real_5: 0.20674 (0.21339) | > loss_0: 2.30404 (2.31770) | > grad_norm_0: 7.86741 (16.75349) | > loss_gen: 2.49701 (2.56292) | > loss_kl: 2.67834 (2.65869) | > loss_feat: 8.89903 (8.71694) | > loss_mel: 17.35476 (17.78782) | > loss_duration: 1.75386 (1.70669) | > loss_1: 33.18301 (33.43302) | > grad_norm_1: 124.10461 (138.26640) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.20090 (2.24990) | > loader_time: 0.03970 (0.03586)  --> STEP: 9887/15287 -- GLOBAL_STEP: 975175 | > loss_disc: 2.26639 (2.31773) | > loss_disc_real_0: 0.08609 (0.12245) | > loss_disc_real_1: 0.22503 (0.21147) | > loss_disc_real_2: 0.21554 (0.21565) | > loss_disc_real_3: 0.20147 (0.21876) | > loss_disc_real_4: 0.20979 (0.21452) | > loss_disc_real_5: 0.19925 (0.21338) | > loss_0: 2.26639 (2.31773) | > grad_norm_0: 9.90619 (16.76379) | > loss_gen: 2.66200 (2.56282) | > loss_kl: 2.62700 (2.65870) | > loss_feat: 9.23471 (8.71642) | > loss_mel: 17.76892 (17.78739) | > loss_duration: 1.70700 (1.70669) | > loss_1: 33.99963 (33.43199) | > grad_norm_1: 149.77910 (138.26624) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.19150 (2.25132) | > loader_time: 0.03030 (0.03586)  --> STEP: 9912/15287 -- GLOBAL_STEP: 975200 | > loss_disc: 2.35800 (2.31775) | > loss_disc_real_0: 0.08163 (0.12248) | > loss_disc_real_1: 0.23561 (0.21147) | > loss_disc_real_2: 0.23983 (0.21567) | > loss_disc_real_3: 0.23446 (0.21877) | > loss_disc_real_4: 0.22620 (0.21454) | > loss_disc_real_5: 0.23389 (0.21341) | > loss_0: 2.35800 (2.31775) | > grad_norm_0: 9.91171 (16.76238) | > loss_gen: 2.49804 (2.56297) | > loss_kl: 2.73702 (2.65869) | > loss_feat: 8.40704 (8.71637) | > loss_mel: 17.64915 (17.78728) | > loss_duration: 1.70116 (1.70668) | > loss_1: 32.99242 (33.43194) | > grad_norm_1: 70.93962 (138.20009) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52850 (2.25261) | > loader_time: 0.03500 (0.03586)  --> STEP: 9937/15287 -- GLOBAL_STEP: 975225 | > loss_disc: 2.35119 (2.31782) | > loss_disc_real_0: 0.10375 (0.12248) | > loss_disc_real_1: 0.23257 (0.21147) | > loss_disc_real_2: 0.22357 (0.21567) | > loss_disc_real_3: 0.24895 (0.21877) | > loss_disc_real_4: 0.18742 (0.21454) | > loss_disc_real_5: 0.22219 (0.21342) | > loss_0: 2.35119 (2.31782) | > grad_norm_0: 9.71300 (16.75334) | > loss_gen: 2.50483 (2.56286) | > loss_kl: 2.58853 (2.65878) | > loss_feat: 8.83292 (8.71603) | > loss_mel: 17.35154 (17.78690) | > loss_duration: 1.72380 (1.70669) | > loss_1: 33.00161 (33.43122) | > grad_norm_1: 82.52982 (138.09296) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.63990 (2.25367) | > loader_time: 0.03700 (0.03585)  --> STEP: 9962/15287 -- GLOBAL_STEP: 975250 | > loss_disc: 2.54659 (2.31790) | > loss_disc_real_0: 0.10340 (0.12250) | > loss_disc_real_1: 0.22995 (0.21149) | > loss_disc_real_2: 0.22492 (0.21568) | > loss_disc_real_3: 0.22567 (0.21879) | > loss_disc_real_4: 0.23104 (0.21454) | > loss_disc_real_5: 0.20433 (0.21342) | > loss_0: 2.54659 (2.31790) | > grad_norm_0: 17.92406 (16.73592) | > loss_gen: 2.27570 (2.56286) | > loss_kl: 2.72192 (2.65887) | > loss_feat: 8.54921 (8.71583) | > loss_mel: 18.33562 (17.78696) | > loss_duration: 1.73084 (1.70669) | > loss_1: 33.61330 (33.43116) | > grad_norm_1: 54.64019 (137.91545) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.17400 (2.25495) | > loader_time: 0.03440 (0.03585)  --> STEP: 9987/15287 -- GLOBAL_STEP: 975275 | > loss_disc: 2.44537 (2.31807) | > loss_disc_real_0: 0.15848 (0.12252) | > loss_disc_real_1: 0.27174 (0.21150) | > loss_disc_real_2: 0.21712 (0.21569) | > loss_disc_real_3: 0.23023 (0.21878) | > loss_disc_real_4: 0.22237 (0.21454) | > loss_disc_real_5: 0.23384 (0.21343) | > loss_0: 2.44537 (2.31807) | > grad_norm_0: 21.88575 (16.72519) | > loss_gen: 2.62910 (2.56277) | > loss_kl: 2.54243 (2.65887) | > loss_feat: 8.19711 (8.71554) | > loss_mel: 17.35985 (17.78745) | > loss_duration: 1.65778 (1.70667) | > loss_1: 32.38626 (33.43125) | > grad_norm_1: 79.16412 (137.84810) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.87780 (2.25584) | > loader_time: 0.03030 (0.03585)  --> STEP: 10012/15287 -- GLOBAL_STEP: 975300 | > loss_disc: 2.29577 (2.31819) | > loss_disc_real_0: 0.10896 (0.12253) | > loss_disc_real_1: 0.20948 (0.21155) | > loss_disc_real_2: 0.21477 (0.21568) | > loss_disc_real_3: 0.21533 (0.21879) | > loss_disc_real_4: 0.22510 (0.21454) | > loss_disc_real_5: 0.22665 (0.21345) | > loss_0: 2.29577 (2.31819) | > grad_norm_0: 19.58895 (16.73784) | > loss_gen: 2.55011 (2.56259) | > loss_kl: 2.61320 (2.65877) | > loss_feat: 8.88276 (8.71473) | > loss_mel: 17.65048 (17.78776) | > loss_duration: 1.68732 (1.70665) | > loss_1: 33.38388 (33.43043) | > grad_norm_1: 124.99493 (137.82899) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44340 (2.25663) | > loader_time: 0.03250 (0.03585)  --> STEP: 10037/15287 -- GLOBAL_STEP: 975325 | > loss_disc: 2.26523 (2.31817) | > loss_disc_real_0: 0.15060 (0.12252) | > loss_disc_real_1: 0.21134 (0.21154) | > loss_disc_real_2: 0.23724 (0.21568) | > loss_disc_real_3: 0.21477 (0.21879) | > loss_disc_real_4: 0.21790 (0.21453) | > loss_disc_real_5: 0.21799 (0.21344) | > loss_0: 2.26523 (2.31817) | > grad_norm_0: 41.99256 (16.73612) | > loss_gen: 2.69137 (2.56254) | > loss_kl: 2.64464 (2.65871) | > loss_feat: 8.98039 (8.71427) | > loss_mel: 18.09202 (17.78727) | > loss_duration: 1.70399 (1.70664) | > loss_1: 34.11240 (33.42937) | > grad_norm_1: 100.61510 (137.81743) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25470 (2.25811) | > loader_time: 0.03450 (0.03585)  --> STEP: 10062/15287 -- GLOBAL_STEP: 975350 | > loss_disc: 2.21553 (2.31808) | > loss_disc_real_0: 0.11160 (0.12250) | > loss_disc_real_1: 0.18927 (0.21153) | > loss_disc_real_2: 0.18769 (0.21566) | > loss_disc_real_3: 0.21063 (0.21879) | > loss_disc_real_4: 0.21572 (0.21453) | > loss_disc_real_5: 0.21359 (0.21345) | > loss_0: 2.21553 (2.31808) | > grad_norm_0: 17.70395 (16.73728) | > loss_gen: 2.61711 (2.56250) | > loss_kl: 2.64030 (2.65869) | > loss_feat: 9.41148 (8.71410) | > loss_mel: 18.38051 (17.78707) | > loss_duration: 1.68144 (1.70662) | > loss_1: 34.73084 (33.42893) | > grad_norm_1: 166.43951 (137.86766) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39910 (2.25894) | > loader_time: 0.03810 (0.03584)  --> STEP: 10087/15287 -- GLOBAL_STEP: 975375 | > loss_disc: 2.29416 (2.31803) | > loss_disc_real_0: 0.13655 (0.12250) | > loss_disc_real_1: 0.22667 (0.21153) | > loss_disc_real_2: 0.23826 (0.21565) | > loss_disc_real_3: 0.23680 (0.21879) | > loss_disc_real_4: 0.20770 (0.21453) | > loss_disc_real_5: 0.23650 (0.21345) | > loss_0: 2.29416 (2.31803) | > grad_norm_0: 11.88387 (16.72493) | > loss_gen: 2.44831 (2.56247) | > loss_kl: 2.75166 (2.65871) | > loss_feat: 9.16097 (8.71405) | > loss_mel: 18.09917 (17.78659) | > loss_duration: 1.69414 (1.70660) | > loss_1: 34.15425 (33.42837) | > grad_norm_1: 121.13005 (137.78185) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38230 (2.25981) | > loader_time: 0.03810 (0.03584)  --> STEP: 10112/15287 -- GLOBAL_STEP: 975400 | > loss_disc: 2.33004 (2.31806) | > loss_disc_real_0: 0.13028 (0.12249) | > loss_disc_real_1: 0.21720 (0.21152) | > loss_disc_real_2: 0.20487 (0.21565) | > loss_disc_real_3: 0.18595 (0.21879) | > loss_disc_real_4: 0.19869 (0.21452) | > loss_disc_real_5: 0.22722 (0.21345) | > loss_0: 2.33004 (2.31806) | > grad_norm_0: 5.74001 (16.70856) | > loss_gen: 2.70519 (2.56247) | > loss_kl: 2.69533 (2.65877) | > loss_feat: 9.28252 (8.71419) | > loss_mel: 18.40624 (17.78686) | > loss_duration: 1.67625 (1.70661) | > loss_1: 34.76553 (33.42883) | > grad_norm_1: 83.36311 (137.63828) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.47160 (2.26050) | > loader_time: 0.03090 (0.03584)  --> STEP: 10137/15287 -- GLOBAL_STEP: 975425 | > loss_disc: 2.21275 (2.31816) | > loss_disc_real_0: 0.11711 (0.12253) | > loss_disc_real_1: 0.19553 (0.21156) | > loss_disc_real_2: 0.22167 (0.21566) | > loss_disc_real_3: 0.19065 (0.21879) | > loss_disc_real_4: 0.18411 (0.21453) | > loss_disc_real_5: 0.19209 (0.21347) | > loss_0: 2.21275 (2.31816) | > grad_norm_0: 28.02729 (16.70155) | > loss_gen: 2.59595 (2.56259) | > loss_kl: 2.67037 (2.65879) | > loss_feat: 8.38097 (8.71413) | > loss_mel: 17.20436 (17.78690) | > loss_duration: 1.66733 (1.70661) | > loss_1: 32.51899 (33.42894) | > grad_norm_1: 139.10185 (137.58130) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18450 (2.26088) | > loader_time: 0.03610 (0.03584)  --> STEP: 10162/15287 -- GLOBAL_STEP: 975450 | > loss_disc: 2.39269 (2.31833) | > loss_disc_real_0: 0.12012 (0.12254) | > loss_disc_real_1: 0.20428 (0.21157) | > loss_disc_real_2: 0.20865 (0.21569) | > loss_disc_real_3: 0.22972 (0.21881) | > loss_disc_real_4: 0.21646 (0.21455) | > loss_disc_real_5: 0.22300 (0.21347) | > loss_0: 2.39269 (2.31833) | > grad_norm_0: 14.82426 (16.69790) | > loss_gen: 2.38851 (2.56246) | > loss_kl: 2.58646 (2.65882) | > loss_feat: 7.89267 (8.71348) | > loss_mel: 17.78528 (17.78695) | > loss_duration: 1.71729 (1.70660) | > loss_1: 32.37022 (33.42823) | > grad_norm_1: 175.93889 (137.54878) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21770 (2.26187) | > loader_time: 0.04000 (0.03584)  --> STEP: 10187/15287 -- GLOBAL_STEP: 975475 | > loss_disc: 2.36506 (2.31831) | > loss_disc_real_0: 0.14331 (0.12252) | > loss_disc_real_1: 0.23038 (0.21157) | > loss_disc_real_2: 0.24759 (0.21568) | > loss_disc_real_3: 0.21347 (0.21880) | > loss_disc_real_4: 0.21175 (0.21455) | > loss_disc_real_5: 0.20588 (0.21346) | > loss_0: 2.36506 (2.31831) | > grad_norm_0: 5.21153 (16.69569) | > loss_gen: 2.32347 (2.56236) | > loss_kl: 2.63672 (2.65880) | > loss_feat: 8.10234 (8.71298) | > loss_mel: 17.43349 (17.78667) | > loss_duration: 1.74114 (1.70659) | > loss_1: 32.23716 (33.42732) | > grad_norm_1: 188.51396 (137.57703) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.64220 (2.26301) | > loader_time: 0.03450 (0.03584)  --> STEP: 10212/15287 -- GLOBAL_STEP: 975500 | > loss_disc: 2.28928 (2.31827) | > loss_disc_real_0: 0.09942 (0.12252) | > loss_disc_real_1: 0.20273 (0.21156) | > loss_disc_real_2: 0.19763 (0.21568) | > loss_disc_real_3: 0.21826 (0.21879) | > loss_disc_real_4: 0.22667 (0.21454) | > loss_disc_real_5: 0.21702 (0.21346) | > loss_0: 2.28928 (2.31827) | > grad_norm_0: 8.10084 (16.69551) | > loss_gen: 2.62799 (2.56231) | > loss_kl: 2.72741 (2.65876) | > loss_feat: 9.09606 (8.71295) | > loss_mel: 17.94099 (17.78643) | > loss_duration: 1.76514 (1.70658) | > loss_1: 34.15759 (33.42696) | > grad_norm_1: 109.91249 (137.59596) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.83920 (2.26388) | > loader_time: 0.03230 (0.03583)  --> STEP: 10237/15287 -- GLOBAL_STEP: 975525 | > loss_disc: 2.25292 (2.31822) | > loss_disc_real_0: 0.12682 (0.12251) | > loss_disc_real_1: 0.20961 (0.21155) | > loss_disc_real_2: 0.21348 (0.21567) | > loss_disc_real_3: 0.18287 (0.21878) | > loss_disc_real_4: 0.22059 (0.21454) | > loss_disc_real_5: 0.23796 (0.21346) | > loss_0: 2.25292 (2.31822) | > grad_norm_0: 22.37833 (16.69331) | > loss_gen: 2.69935 (2.56224) | > loss_kl: 2.64381 (2.65876) | > loss_feat: 9.35897 (8.71290) | > loss_mel: 18.20232 (17.78639) | > loss_duration: 1.68005 (1.70658) | > loss_1: 34.58450 (33.42679) | > grad_norm_1: 169.83018 (137.59085) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.81930 (2.26490) | > loader_time: 0.03370 (0.03583)  --> STEP: 10262/15287 -- GLOBAL_STEP: 975550 | > loss_disc: 2.40590 (2.31819) | > loss_disc_real_0: 0.29467 (0.12251) | > loss_disc_real_1: 0.21422 (0.21155) | > loss_disc_real_2: 0.20515 (0.21567) | > loss_disc_real_3: 0.19859 (0.21878) | > loss_disc_real_4: 0.18532 (0.21453) | > loss_disc_real_5: 0.20201 (0.21347) | > loss_0: 2.40590 (2.31819) | > grad_norm_0: 45.15895 (16.69608) | > loss_gen: 2.69533 (2.56226) | > loss_kl: 2.64484 (2.65878) | > loss_feat: 8.08169 (8.71256) | > loss_mel: 17.24754 (17.78608) | > loss_duration: 1.70987 (1.70656) | > loss_1: 32.37927 (33.42616) | > grad_norm_1: 176.41295 (137.58994) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.63670 (2.26591) | > loader_time: 0.03410 (0.03583)  --> STEP: 10287/15287 -- GLOBAL_STEP: 975575 | > loss_disc: 2.29738 (2.31818) | > loss_disc_real_0: 0.10414 (0.12255) | > loss_disc_real_1: 0.22194 (0.21155) | > loss_disc_real_2: 0.22318 (0.21564) | > loss_disc_real_3: 0.22430 (0.21878) | > loss_disc_real_4: 0.21366 (0.21453) | > loss_disc_real_5: 0.21932 (0.21347) | > loss_0: 2.29738 (2.31818) | > grad_norm_0: 17.14280 (16.70031) | > loss_gen: 2.51385 (2.56227) | > loss_kl: 2.48085 (2.65871) | > loss_feat: 8.56352 (8.71272) | > loss_mel: 17.27773 (17.78574) | > loss_duration: 1.74942 (1.70656) | > loss_1: 32.58538 (33.42591) | > grad_norm_1: 81.04092 (137.60596) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19320 (2.26639) | > loader_time: 0.03540 (0.03582)  --> STEP: 10312/15287 -- GLOBAL_STEP: 975600 | > loss_disc: 2.26780 (2.31814) | > loss_disc_real_0: 0.13848 (0.12254) | > loss_disc_real_1: 0.27112 (0.21156) | > loss_disc_real_2: 0.23853 (0.21565) | > loss_disc_real_3: 0.20722 (0.21877) | > loss_disc_real_4: 0.19702 (0.21452) | > loss_disc_real_5: 0.19980 (0.21346) | > loss_0: 2.26780 (2.31814) | > grad_norm_0: 16.79988 (16.68772) | > loss_gen: 2.68049 (2.56231) | > loss_kl: 2.70758 (2.65881) | > loss_feat: 8.86904 (8.71276) | > loss_mel: 17.97568 (17.78550) | > loss_duration: 1.74040 (1.70657) | > loss_1: 33.97320 (33.42585) | > grad_norm_1: 110.24406 (137.54160) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.51140 (2.26679) | > loader_time: 0.03010 (0.03582)  --> STEP: 10337/15287 -- GLOBAL_STEP: 975625 | > loss_disc: 2.39638 (2.31818) | > loss_disc_real_0: 0.10263 (0.12255) | > loss_disc_real_1: 0.20905 (0.21156) | > loss_disc_real_2: 0.19638 (0.21567) | > loss_disc_real_3: 0.23631 (0.21878) | > loss_disc_real_4: 0.20910 (0.21452) | > loss_disc_real_5: 0.21521 (0.21346) | > loss_0: 2.39638 (2.31818) | > grad_norm_0: 7.09455 (16.68160) | > loss_gen: 2.63809 (2.56228) | > loss_kl: 2.67773 (2.65884) | > loss_feat: 8.50984 (8.71252) | > loss_mel: 17.83280 (17.78536) | > loss_duration: 1.67397 (1.70655) | > loss_1: 33.33242 (33.42544) | > grad_norm_1: 52.98544 (137.53975) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.61330 (2.26718) | > loader_time: 0.03410 (0.03582)  --> STEP: 10362/15287 -- GLOBAL_STEP: 975650 | > loss_disc: 2.21269 (2.31818) | > loss_disc_real_0: 0.10246 (0.12257) | > loss_disc_real_1: 0.19366 (0.21156) | > loss_disc_real_2: 0.19851 (0.21568) | > loss_disc_real_3: 0.20765 (0.21877) | > loss_disc_real_4: 0.20605 (0.21452) | > loss_disc_real_5: 0.21529 (0.21346) | > loss_0: 2.21269 (2.31818) | > grad_norm_0: 6.77843 (16.68177) | > loss_gen: 2.53220 (2.56225) | > loss_kl: 2.63668 (2.65889) | > loss_feat: 8.75682 (8.71235) | > loss_mel: 17.54853 (17.78527) | > loss_duration: 1.71785 (1.70653) | > loss_1: 33.19208 (33.42519) | > grad_norm_1: 163.15134 (137.54471) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.32340 (2.26851) | > loader_time: 0.03190 (0.03581)  --> STEP: 10387/15287 -- GLOBAL_STEP: 975675 | > loss_disc: 2.26129 (2.31823) | > loss_disc_real_0: 0.12794 (0.12257) | > loss_disc_real_1: 0.19925 (0.21156) | > loss_disc_real_2: 0.22004 (0.21569) | > loss_disc_real_3: 0.19229 (0.21879) | > loss_disc_real_4: 0.22243 (0.21453) | > loss_disc_real_5: 0.18766 (0.21347) | > loss_0: 2.26129 (2.31823) | > grad_norm_0: 16.29089 (16.67995) | > loss_gen: 2.53648 (2.56228) | > loss_kl: 2.56689 (2.65888) | > loss_feat: 9.10745 (8.71229) | > loss_mel: 17.87121 (17.78529) | > loss_duration: 1.72127 (1.70651) | > loss_1: 33.80330 (33.42514) | > grad_norm_1: 84.39035 (137.55566) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02720 (2.26915) | > loader_time: 0.03610 (0.03581)  --> STEP: 10412/15287 -- GLOBAL_STEP: 975700 | > loss_disc: 2.33260 (2.31823) | > loss_disc_real_0: 0.13905 (0.12257) | > loss_disc_real_1: 0.18373 (0.21155) | > loss_disc_real_2: 0.20180 (0.21568) | > loss_disc_real_3: 0.22532 (0.21880) | > loss_disc_real_4: 0.22348 (0.21454) | > loss_disc_real_5: 0.28783 (0.21348) | > loss_0: 2.33260 (2.31823) | > grad_norm_0: 9.42041 (16.67315) | > loss_gen: 2.61318 (2.56225) | > loss_kl: 2.66479 (2.65888) | > loss_feat: 8.39375 (8.71219) | > loss_mel: 17.82993 (17.78510) | > loss_duration: 1.69630 (1.70649) | > loss_1: 33.19795 (33.42483) | > grad_norm_1: 105.54026 (137.51387) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.87190 (2.26963) | > loader_time: 0.03360 (0.03581)  --> STEP: 10437/15287 -- GLOBAL_STEP: 975725 | > loss_disc: 2.36364 (2.31829) | > loss_disc_real_0: 0.11794 (0.12257) | > loss_disc_real_1: 0.20328 (0.21156) | > loss_disc_real_2: 0.19430 (0.21570) | > loss_disc_real_3: 0.22557 (0.21880) | > loss_disc_real_4: 0.21350 (0.21454) | > loss_disc_real_5: 0.22425 (0.21347) | > loss_0: 2.36364 (2.31829) | > grad_norm_0: 7.62457 (16.66596) | > loss_gen: 2.68834 (2.56222) | > loss_kl: 2.86444 (2.65892) | > loss_feat: 9.18622 (8.71199) | > loss_mel: 17.73582 (17.78530) | > loss_duration: 1.66242 (1.70646) | > loss_1: 34.13725 (33.42480) | > grad_norm_1: 116.68981 (137.48923) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.50230 (2.27026) | > loader_time: 0.03520 (0.03581)  --> STEP: 10462/15287 -- GLOBAL_STEP: 975750 | > loss_disc: 2.37028 (2.31834) | > loss_disc_real_0: 0.11111 (0.12257) | > loss_disc_real_1: 0.21379 (0.21155) | > loss_disc_real_2: 0.22086 (0.21571) | > loss_disc_real_3: 0.21581 (0.21881) | > loss_disc_real_4: 0.21189 (0.21455) | > loss_disc_real_5: 0.22118 (0.21348) | > loss_0: 2.37028 (2.31834) | > grad_norm_0: 20.36200 (16.66820) | > loss_gen: 2.37712 (2.56208) | > loss_kl: 2.67817 (2.65898) | > loss_feat: 8.19561 (8.71165) | > loss_mel: 17.57234 (17.78508) | > loss_duration: 1.72488 (1.70645) | > loss_1: 32.54813 (33.42416) | > grad_norm_1: 125.34560 (137.48814) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41040 (2.27076) | > loader_time: 0.03110 (0.03580)  --> STEP: 10487/15287 -- GLOBAL_STEP: 975775 | > loss_disc: 2.32765 (2.31831) | > loss_disc_real_0: 0.11814 (0.12256) | > loss_disc_real_1: 0.21409 (0.21155) | > loss_disc_real_2: 0.20924 (0.21570) | > loss_disc_real_3: 0.24514 (0.21881) | > loss_disc_real_4: 0.22465 (0.21455) | > loss_disc_real_5: 0.22526 (0.21346) | > loss_0: 2.32765 (2.31831) | > grad_norm_0: 10.44240 (16.65954) | > loss_gen: 2.64312 (2.56210) | > loss_kl: 2.64596 (2.65908) | > loss_feat: 8.62368 (8.71177) | > loss_mel: 17.68200 (17.78525) | > loss_duration: 1.69455 (1.70645) | > loss_1: 33.28931 (33.42455) | > grad_norm_1: 129.65579 (137.46875) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30880 (2.27102) | > loader_time: 0.03300 (0.03579)  --> STEP: 10512/15287 -- GLOBAL_STEP: 975800 | > loss_disc: 2.32969 (2.31832) | > loss_disc_real_0: 0.08909 (0.12255) | > loss_disc_real_1: 0.20294 (0.21156) | > loss_disc_real_2: 0.22124 (0.21571) | > loss_disc_real_3: 0.22018 (0.21882) | > loss_disc_real_4: 0.21896 (0.21455) | > loss_disc_real_5: 0.20904 (0.21346) | > loss_0: 2.32969 (2.31832) | > grad_norm_0: 19.67147 (16.66414) | > loss_gen: 2.53490 (2.56206) | > loss_kl: 2.70164 (2.65907) | > loss_feat: 8.50214 (8.71155) | > loss_mel: 17.40778 (17.78517) | > loss_duration: 1.71489 (1.70645) | > loss_1: 32.86135 (33.42421) | > grad_norm_1: 199.25415 (137.42941) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58710 (2.27170) | > loader_time: 0.03400 (0.03579)  --> STEP: 10537/15287 -- GLOBAL_STEP: 975825 | > loss_disc: 2.26254 (2.31822) | > loss_disc_real_0: 0.09878 (0.12251) | > loss_disc_real_1: 0.21458 (0.21154) | > loss_disc_real_2: 0.21524 (0.21569) | > loss_disc_real_3: 0.20729 (0.21882) | > loss_disc_real_4: 0.22228 (0.21456) | > loss_disc_real_5: 0.21849 (0.21347) | > loss_0: 2.26254 (2.31822) | > grad_norm_0: 8.46057 (16.66282) | > loss_gen: 2.53476 (2.56210) | > loss_kl: 2.65438 (2.65905) | > loss_feat: 8.27119 (8.71148) | > loss_mel: 17.44149 (17.78488) | > loss_duration: 1.73337 (1.70645) | > loss_1: 32.63519 (33.42387) | > grad_norm_1: 96.19164 (137.49278) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56660 (2.27224) | > loader_time: 0.04010 (0.03578)  --> STEP: 10562/15287 -- GLOBAL_STEP: 975850 | > loss_disc: 2.28854 (2.31815) | > loss_disc_real_0: 0.12885 (0.12250) | > loss_disc_real_1: 0.21180 (0.21153) | > loss_disc_real_2: 0.20323 (0.21568) | > loss_disc_real_3: 0.20794 (0.21881) | > loss_disc_real_4: 0.21919 (0.21456) | > loss_disc_real_5: 0.20072 (0.21346) | > loss_0: 2.28854 (2.31815) | > grad_norm_0: 23.30512 (16.66436) | > loss_gen: 2.63373 (2.56216) | > loss_kl: 2.58078 (2.65896) | > loss_feat: 8.92788 (8.71180) | > loss_mel: 17.86934 (17.78469) | > loss_duration: 1.73900 (1.70646) | > loss_1: 33.75072 (33.42398) | > grad_norm_1: 53.89704 (137.53430) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04290 (2.27256) | > loader_time: 0.03940 (0.03578)  --> STEP: 10587/15287 -- GLOBAL_STEP: 975875 | > loss_disc: 2.32197 (2.31812) | > loss_disc_real_0: 0.08126 (0.12249) | > loss_disc_real_1: 0.20980 (0.21155) | > loss_disc_real_2: 0.21355 (0.21568) | > loss_disc_real_3: 0.23040 (0.21881) | > loss_disc_real_4: 0.25203 (0.21457) | > loss_disc_real_5: 0.22444 (0.21345) | > loss_0: 2.32197 (2.31812) | > grad_norm_0: 19.11849 (16.66433) | > loss_gen: 2.55276 (2.56214) | > loss_kl: 2.66875 (2.65899) | > loss_feat: 9.23760 (8.71158) | > loss_mel: 18.21250 (17.78451) | > loss_duration: 1.75031 (1.70646) | > loss_1: 34.42191 (33.42359) | > grad_norm_1: 196.19298 (137.54460) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97160 (2.27314) | > loader_time: 0.03610 (0.03578)  --> STEP: 10612/15287 -- GLOBAL_STEP: 975900 | > loss_disc: 2.22963 (2.31819) | > loss_disc_real_0: 0.06700 (0.12249) | > loss_disc_real_1: 0.14422 (0.21155) | > loss_disc_real_2: 0.18611 (0.21569) | > loss_disc_real_3: 0.21833 (0.21881) | > loss_disc_real_4: 0.21172 (0.21458) | > loss_disc_real_5: 0.18760 (0.21345) | > loss_0: 2.22963 (2.31819) | > grad_norm_0: 14.52306 (16.66303) | > loss_gen: 2.65767 (2.56204) | > loss_kl: 2.63982 (2.65907) | > loss_feat: 9.34193 (8.71141) | > loss_mel: 18.08006 (17.78466) | > loss_duration: 1.76839 (1.70646) | > loss_1: 34.48787 (33.42356) | > grad_norm_1: 167.84961 (137.54398) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26710 (2.27366) | > loader_time: 0.03560 (0.03578)  --> STEP: 10637/15287 -- GLOBAL_STEP: 975925 | > loss_disc: 2.35029 (2.31819) | > loss_disc_real_0: 0.08228 (0.12247) | > loss_disc_real_1: 0.23892 (0.21154) | > loss_disc_real_2: 0.21808 (0.21569) | > loss_disc_real_3: 0.22164 (0.21882) | > loss_disc_real_4: 0.22321 (0.21459) | > loss_disc_real_5: 0.24546 (0.21346) | > loss_0: 2.35029 (2.31819) | > grad_norm_0: 19.67390 (16.66125) | > loss_gen: 2.61027 (2.56209) | > loss_kl: 2.56448 (2.65907) | > loss_feat: 8.58665 (8.71141) | > loss_mel: 17.95212 (17.78469) | > loss_duration: 1.67531 (1.70643) | > loss_1: 33.38883 (33.42362) | > grad_norm_1: 170.93964 (137.60353) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34160 (2.27439) | > loader_time: 0.03470 (0.03578)  --> STEP: 10662/15287 -- GLOBAL_STEP: 975950 | > loss_disc: 2.36410 (2.31815) | > loss_disc_real_0: 0.14110 (0.12246) | > loss_disc_real_1: 0.20197 (0.21153) | > loss_disc_real_2: 0.19430 (0.21569) | > loss_disc_real_3: 0.23637 (0.21882) | > loss_disc_real_4: 0.21862 (0.21459) | > loss_disc_real_5: 0.20619 (0.21345) | > loss_0: 2.36410 (2.31815) | > grad_norm_0: 24.94594 (16.65666) | > loss_gen: 2.45862 (2.56207) | > loss_kl: 2.59832 (2.65909) | > loss_feat: 8.27014 (8.71130) | > loss_mel: 17.81002 (17.78465) | > loss_duration: 1.72950 (1.70644) | > loss_1: 32.86659 (33.42347) | > grad_norm_1: 93.45675 (137.59949) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21300 (2.27518) | > loader_time: 0.03220 (0.03578)  --> STEP: 10687/15287 -- GLOBAL_STEP: 975975 | > loss_disc: 2.39827 (2.31825) | > loss_disc_real_0: 0.16151 (0.12246) | > loss_disc_real_1: 0.18844 (0.21154) | > loss_disc_real_2: 0.19677 (0.21569) | > loss_disc_real_3: 0.19273 (0.21883) | > loss_disc_real_4: 0.22010 (0.21459) | > loss_disc_real_5: 0.21229 (0.21346) | > loss_0: 2.39827 (2.31825) | > grad_norm_0: 21.05101 (16.66952) | > loss_gen: 2.50997 (2.56196) | > loss_kl: 2.64566 (2.65913) | > loss_feat: 8.86801 (8.71098) | > loss_mel: 18.04188 (17.78441) | > loss_duration: 1.71790 (1.70644) | > loss_1: 33.78341 (33.42286) | > grad_norm_1: 149.35913 (137.56432) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.90550 (2.27589) | > loader_time: 0.03250 (0.03578)  --> STEP: 10712/15287 -- GLOBAL_STEP: 976000 | > loss_disc: 2.29312 (2.31831) | > loss_disc_real_0: 0.11206 (0.12246) | > loss_disc_real_1: 0.21890 (0.21155) | > loss_disc_real_2: 0.21940 (0.21569) | > loss_disc_real_3: 0.19320 (0.21885) | > loss_disc_real_4: 0.22226 (0.21460) | > loss_disc_real_5: 0.18409 (0.21347) | > loss_0: 2.29312 (2.31831) | > grad_norm_0: 10.20354 (16.66789) | > loss_gen: 2.53708 (2.56193) | > loss_kl: 2.58741 (2.65918) | > loss_feat: 8.90020 (8.71086) | > loss_mel: 17.42694 (17.78453) | > loss_duration: 1.69403 (1.70643) | > loss_1: 33.14566 (33.42287) | > grad_norm_1: 98.39926 (137.53728) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.70620 (2.27700) | > loader_time: 0.03160 (0.03578)  --> STEP: 10737/15287 -- GLOBAL_STEP: 976025 | > loss_disc: 2.31586 (2.31826) | > loss_disc_real_0: 0.19647 (0.12246) | > loss_disc_real_1: 0.20207 (0.21154) | > loss_disc_real_2: 0.25122 (0.21569) | > loss_disc_real_3: 0.19918 (0.21885) | > loss_disc_real_4: 0.22371 (0.21459) | > loss_disc_real_5: 0.18849 (0.21347) | > loss_0: 2.31586 (2.31826) | > grad_norm_0: 23.66012 (16.66969) | > loss_gen: 2.78611 (2.56194) | > loss_kl: 2.73394 (2.65913) | > loss_feat: 8.42450 (8.71087) | > loss_mel: 17.24492 (17.78438) | > loss_duration: 1.72127 (1.70643) | > loss_1: 32.91074 (33.42271) | > grad_norm_1: 83.10313 (137.57397) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.79540 (2.27805) | > loader_time: 0.03620 (0.03578)  --> STEP: 10762/15287 -- GLOBAL_STEP: 976050 | > loss_disc: 2.42331 (2.31832) | > loss_disc_real_0: 0.12292 (0.12246) | > loss_disc_real_1: 0.23667 (0.21155) | > loss_disc_real_2: 0.24446 (0.21570) | > loss_disc_real_3: 0.24798 (0.21885) | > loss_disc_real_4: 0.21890 (0.21460) | > loss_disc_real_5: 0.22617 (0.21348) | > loss_0: 2.42331 (2.31832) | > grad_norm_0: 12.18255 (16.66835) | > loss_gen: 2.37765 (2.56189) | > loss_kl: 2.70148 (2.65916) | > loss_feat: 7.95609 (8.71049) | > loss_mel: 17.43772 (17.78422) | > loss_duration: 1.77654 (1.70645) | > loss_1: 32.24948 (33.42218) | > grad_norm_1: 116.33867 (137.53735) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.51970 (2.27849) | > loader_time: 0.04270 (0.03578)  --> STEP: 10787/15287 -- GLOBAL_STEP: 976075 | > loss_disc: 2.39692 (2.31830) | > loss_disc_real_0: 0.23928 (0.12247) | > loss_disc_real_1: 0.19540 (0.21155) | > loss_disc_real_2: 0.19201 (0.21570) | > loss_disc_real_3: 0.24490 (0.21885) | > loss_disc_real_4: 0.19533 (0.21459) | > loss_disc_real_5: 0.20742 (0.21347) | > loss_0: 2.39692 (2.31830) | > grad_norm_0: 53.92369 (16.67173) | > loss_gen: 2.70430 (2.56191) | > loss_kl: 2.60063 (2.65913) | > loss_feat: 9.01557 (8.71048) | > loss_mel: 17.90104 (17.78458) | > loss_duration: 1.71433 (1.70646) | > loss_1: 33.93588 (33.42255) | > grad_norm_1: 112.33688 (137.54532) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42590 (2.27918) | > loader_time: 0.03590 (0.03578)  --> STEP: 10812/15287 -- GLOBAL_STEP: 976100 | > loss_disc: 2.27849 (2.31831) | > loss_disc_real_0: 0.12662 (0.12248) | > loss_disc_real_1: 0.20895 (0.21154) | > loss_disc_real_2: 0.22380 (0.21570) | > loss_disc_real_3: 0.20539 (0.21885) | > loss_disc_real_4: 0.22877 (0.21458) | > loss_disc_real_5: 0.21890 (0.21347) | > loss_0: 2.27849 (2.31831) | > grad_norm_0: 17.02894 (16.68168) | > loss_gen: 2.62939 (2.56190) | > loss_kl: 2.68772 (2.65903) | > loss_feat: 8.79203 (8.71030) | > loss_mel: 17.62187 (17.78447) | > loss_duration: 1.70008 (1.70645) | > loss_1: 33.43109 (33.42213) | > grad_norm_1: 71.84489 (137.57491) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.47790 (2.27959) | > loader_time: 0.04040 (0.03577)  --> STEP: 10837/15287 -- GLOBAL_STEP: 976125 | > loss_disc: 2.29470 (2.31827) | > loss_disc_real_0: 0.09231 (0.12246) | > loss_disc_real_1: 0.19399 (0.21153) | > loss_disc_real_2: 0.22513 (0.21570) | > loss_disc_real_3: 0.23095 (0.21886) | > loss_disc_real_4: 0.22146 (0.21459) | > loss_disc_real_5: 0.22624 (0.21348) | > loss_0: 2.29470 (2.31827) | > grad_norm_0: 31.12613 (16.68647) | > loss_gen: 2.53589 (2.56184) | > loss_kl: 2.54347 (2.65904) | > loss_feat: 9.06868 (8.71010) | > loss_mel: 17.88046 (17.78423) | > loss_duration: 1.77899 (1.70644) | > loss_1: 33.80748 (33.42163) | > grad_norm_1: 167.32428 (137.59969) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19300 (2.28041) | > loader_time: 0.03720 (0.03577)  --> STEP: 10862/15287 -- GLOBAL_STEP: 976150 | > loss_disc: 2.36639 (2.31829) | > loss_disc_real_0: 0.20274 (0.12247) | > loss_disc_real_1: 0.21575 (0.21154) | > loss_disc_real_2: 0.22803 (0.21570) | > loss_disc_real_3: 0.21613 (0.21886) | > loss_disc_real_4: 0.23022 (0.21460) | > loss_disc_real_5: 0.20975 (0.21348) | > loss_0: 2.36639 (2.31829) | > grad_norm_0: 16.66057 (16.68709) | > loss_gen: 2.53682 (2.56181) | > loss_kl: 2.52587 (2.65902) | > loss_feat: 8.47530 (8.71000) | > loss_mel: 17.56868 (17.78399) | > loss_duration: 1.68116 (1.70644) | > loss_1: 32.78783 (33.42124) | > grad_norm_1: 178.74248 (137.61890) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.75920 (2.28075) | > loader_time: 0.03090 (0.03577)  --> STEP: 10887/15287 -- GLOBAL_STEP: 976175 | > loss_disc: 2.32781 (2.31834) | > loss_disc_real_0: 0.13598 (0.12248) | > loss_disc_real_1: 0.16993 (0.21152) | > loss_disc_real_2: 0.21627 (0.21569) | > loss_disc_real_3: 0.20475 (0.21886) | > loss_disc_real_4: 0.21192 (0.21461) | > loss_disc_real_5: 0.26379 (0.21348) | > loss_0: 2.32781 (2.31834) | > grad_norm_0: 12.29408 (16.69769) | > loss_gen: 2.44189 (2.56172) | > loss_kl: 2.52655 (2.65892) | > loss_feat: 8.18248 (8.70994) | > loss_mel: 17.24539 (17.78400) | > loss_duration: 1.75431 (1.70646) | > loss_1: 32.15061 (33.42100) | > grad_norm_1: 121.43050 (137.63341) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96970 (2.28143) | > loader_time: 0.03530 (0.03577)  --> STEP: 10912/15287 -- GLOBAL_STEP: 976200 | > loss_disc: 2.29568 (2.31838) | > loss_disc_real_0: 0.12050 (0.12251) | > loss_disc_real_1: 0.17954 (0.21153) | > loss_disc_real_2: 0.18332 (0.21570) | > loss_disc_real_3: 0.22549 (0.21886) | > loss_disc_real_4: 0.21441 (0.21461) | > loss_disc_real_5: 0.24709 (0.21348) | > loss_0: 2.29568 (2.31838) | > grad_norm_0: 10.67960 (16.69113) | > loss_gen: 2.52723 (2.56177) | > loss_kl: 2.71656 (2.65897) | > loss_feat: 8.41984 (8.70999) | > loss_mel: 17.92573 (17.78440) | > loss_duration: 1.74872 (1.70649) | > loss_1: 33.33809 (33.42159) | > grad_norm_1: 42.10667 (137.54002) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.78130 (2.28262) | > loader_time: 0.03180 (0.03577)  --> STEP: 10937/15287 -- GLOBAL_STEP: 976225 | > loss_disc: 2.38117 (2.31849) | > loss_disc_real_0: 0.09946 (0.12252) | > loss_disc_real_1: 0.20732 (0.21154) | > loss_disc_real_2: 0.21014 (0.21571) | > loss_disc_real_3: 0.23070 (0.21887) | > loss_disc_real_4: 0.23323 (0.21462) | > loss_disc_real_5: 0.22074 (0.21348) | > loss_0: 2.38117 (2.31849) | > grad_norm_0: 9.57651 (16.68313) | > loss_gen: 2.60678 (2.56171) | > loss_kl: 2.66513 (2.65900) | > loss_feat: 8.39516 (8.70990) | > loss_mel: 16.87190 (17.78471) | > loss_duration: 1.69630 (1.70652) | > loss_1: 32.23527 (33.42180) | > grad_norm_1: 118.32376 (137.48943) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15380 (2.28327) | > loader_time: 0.03240 (0.03577)  --> STEP: 10962/15287 -- GLOBAL_STEP: 976250 | > loss_disc: 2.35168 (2.31849) | > loss_disc_real_0: 0.11261 (0.12254) | > loss_disc_real_1: 0.23361 (0.21155) | > loss_disc_real_2: 0.19558 (0.21572) | > loss_disc_real_3: 0.21199 (0.21887) | > loss_disc_real_4: 0.19013 (0.21462) | > loss_disc_real_5: 0.22835 (0.21348) | > loss_0: 2.35168 (2.31849) | > grad_norm_0: 14.02194 (16.68626) | > loss_gen: 2.64283 (2.56175) | > loss_kl: 2.51956 (2.65893) | > loss_feat: 9.31801 (8.70976) | > loss_mel: 17.97102 (17.78473) | > loss_duration: 1.70711 (1.70652) | > loss_1: 34.15853 (33.42167) | > grad_norm_1: 80.59898 (137.47188) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35810 (2.28367) | > loader_time: 0.03080 (0.03576)  --> STEP: 10987/15287 -- GLOBAL_STEP: 976275 | > loss_disc: 2.33897 (2.31846) | > loss_disc_real_0: 0.13519 (0.12252) | > loss_disc_real_1: 0.15901 (0.21155) | > loss_disc_real_2: 0.20153 (0.21573) | > loss_disc_real_3: 0.23389 (0.21888) | > loss_disc_real_4: 0.21717 (0.21463) | > loss_disc_real_5: 0.23284 (0.21349) | > loss_0: 2.33897 (2.31846) | > grad_norm_0: 29.81511 (16.68648) | > loss_gen: 2.36257 (2.56182) | > loss_kl: 2.47810 (2.65878) | > loss_feat: 8.37867 (8.70986) | > loss_mel: 17.96426 (17.78471) | > loss_duration: 1.70854 (1.70653) | > loss_1: 32.89215 (33.42168) | > grad_norm_1: 140.79562 (137.45230) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23230 (2.28401) | > loader_time: 0.03290 (0.03576)  --> STEP: 11012/15287 -- GLOBAL_STEP: 976300 | > loss_disc: 2.29084 (2.31843) | > loss_disc_real_0: 0.11843 (0.12252) | > loss_disc_real_1: 0.18350 (0.21154) | > loss_disc_real_2: 0.19624 (0.21571) | > loss_disc_real_3: 0.20128 (0.21888) | > loss_disc_real_4: 0.19134 (0.21461) | > loss_disc_real_5: 0.20038 (0.21349) | > loss_0: 2.29084 (2.31843) | > grad_norm_0: 24.67083 (16.70210) | > loss_gen: 2.44035 (2.56173) | > loss_kl: 2.59611 (2.65869) | > loss_feat: 8.49470 (8.70953) | > loss_mel: 17.46393 (17.78439) | > loss_duration: 1.69886 (1.70654) | > loss_1: 32.69396 (33.42086) | > grad_norm_1: 240.65077 (137.57378) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.77230 (2.28377) | > loader_time: 0.03200 (0.03577)  --> STEP: 11037/15287 -- GLOBAL_STEP: 976325 | > loss_disc: 2.32249 (2.31842) | > loss_disc_real_0: 0.13792 (0.12250) | > loss_disc_real_1: 0.20850 (0.21153) | > loss_disc_real_2: 0.21596 (0.21570) | > loss_disc_real_3: 0.18876 (0.21888) | > loss_disc_real_4: 0.19556 (0.21461) | > loss_disc_real_5: 0.19234 (0.21349) | > loss_0: 2.32249 (2.31842) | > grad_norm_0: 5.57319 (16.70060) | > loss_gen: 2.73854 (2.56171) | > loss_kl: 2.66765 (2.65871) | > loss_feat: 8.56846 (8.70941) | > loss_mel: 17.99056 (17.78430) | > loss_duration: 1.71848 (1.70654) | > loss_1: 33.68370 (33.42065) | > grad_norm_1: 213.48560 (137.66917) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32860 (2.28379) | > loader_time: 0.03700 (0.03576)  --> STEP: 11062/15287 -- GLOBAL_STEP: 976350 | > loss_disc: 2.34340 (2.31852) | > loss_disc_real_0: 0.10631 (0.12250) | > loss_disc_real_1: 0.23544 (0.21154) | > loss_disc_real_2: 0.22775 (0.21571) | > loss_disc_real_3: 0.21309 (0.21890) | > loss_disc_real_4: 0.21459 (0.21462) | > loss_disc_real_5: 0.25340 (0.21351) | > loss_0: 2.34340 (2.31852) | > grad_norm_0: 6.70309 (16.69702) | > loss_gen: 2.48914 (2.56162) | > loss_kl: 2.74976 (2.65870) | > loss_feat: 8.76221 (8.70887) | > loss_mel: 17.58188 (17.78445) | > loss_duration: 1.70379 (1.70656) | > loss_1: 33.28678 (33.42019) | > grad_norm_1: 82.85268 (137.65195) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13120 (2.28397) | > loader_time: 0.03370 (0.03576)  --> STEP: 11087/15287 -- GLOBAL_STEP: 976375 | > loss_disc: 2.27160 (2.31851) | > loss_disc_real_0: 0.09491 (0.12248) | > loss_disc_real_1: 0.22998 (0.21153) | > loss_disc_real_2: 0.22085 (0.21571) | > loss_disc_real_3: 0.22565 (0.21890) | > loss_disc_real_4: 0.20464 (0.21462) | > loss_disc_real_5: 0.20409 (0.21351) | > loss_0: 2.27160 (2.31851) | > grad_norm_0: 17.01863 (16.69761) | > loss_gen: 2.65315 (2.56158) | > loss_kl: 2.66076 (2.65869) | > loss_feat: 8.78370 (8.70849) | > loss_mel: 18.21066 (17.78421) | > loss_duration: 1.69502 (1.70655) | > loss_1: 34.00329 (33.41952) | > grad_norm_1: 186.13426 (137.67538) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25490 (2.28381) | > loader_time: 0.03730 (0.03576)  --> STEP: 11112/15287 -- GLOBAL_STEP: 976400 | > loss_disc: 2.31033 (2.31846) | > loss_disc_real_0: 0.13985 (0.12247) | > loss_disc_real_1: 0.23224 (0.21154) | > loss_disc_real_2: 0.21924 (0.21570) | > loss_disc_real_3: 0.22355 (0.21889) | > loss_disc_real_4: 0.22555 (0.21462) | > loss_disc_real_5: 0.21760 (0.21350) | > loss_0: 2.31033 (2.31846) | > grad_norm_0: 9.53353 (16.70618) | > loss_gen: 2.49098 (2.56155) | > loss_kl: 2.54262 (2.65874) | > loss_feat: 7.82866 (8.70835) | > loss_mel: 17.42008 (17.78469) | > loss_duration: 1.69684 (1.70657) | > loss_1: 31.97919 (33.41990) | > grad_norm_1: 188.37671 (137.76640) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.53020 (2.28374) | > loader_time: 0.03120 (0.03576)  --> STEP: 11137/15287 -- GLOBAL_STEP: 976425 | > loss_disc: 2.24891 (2.31847) | > loss_disc_real_0: 0.10510 (0.12248) | > loss_disc_real_1: 0.18453 (0.21153) | > loss_disc_real_2: 0.19991 (0.21570) | > loss_disc_real_3: 0.18328 (0.21889) | > loss_disc_real_4: 0.20784 (0.21462) | > loss_disc_real_5: 0.24195 (0.21352) | > loss_0: 2.24891 (2.31847) | > grad_norm_0: 15.54320 (16.72486) | > loss_gen: 2.69591 (2.56158) | > loss_kl: 2.66335 (2.65870) | > loss_feat: 8.86035 (8.70835) | > loss_mel: 17.78818 (17.78466) | > loss_duration: 1.71463 (1.70660) | > loss_1: 33.72242 (33.41989) | > grad_norm_1: 210.70589 (137.79665) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.61360 (2.28415) | > loader_time: 0.03660 (0.03575)  --> STEP: 11162/15287 -- GLOBAL_STEP: 976450 | > loss_disc: 2.37190 (2.31847) | > loss_disc_real_0: 0.07249 (0.12249) | > loss_disc_real_1: 0.21039 (0.21152) | > loss_disc_real_2: 0.22596 (0.21569) | > loss_disc_real_3: 0.20199 (0.21888) | > loss_disc_real_4: 0.22386 (0.21461) | > loss_disc_real_5: 0.21761 (0.21352) | > loss_0: 2.37190 (2.31847) | > grad_norm_0: 14.72722 (16.73668) | > loss_gen: 2.53145 (2.56152) | > loss_kl: 2.66820 (2.65865) | > loss_feat: 8.41161 (8.70813) | > loss_mel: 17.59425 (17.78445) | > loss_duration: 1.72979 (1.70662) | > loss_1: 32.93531 (33.41936) | > grad_norm_1: 165.04265 (137.80142) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94070 (2.28447) | > loader_time: 0.03590 (0.03575)  --> STEP: 11187/15287 -- GLOBAL_STEP: 976475 | > loss_disc: 2.33004 (2.31844) | > loss_disc_real_0: 0.13210 (0.12251) | > loss_disc_real_1: 0.22762 (0.21152) | > loss_disc_real_2: 0.22230 (0.21570) | > loss_disc_real_3: 0.21939 (0.21888) | > loss_disc_real_4: 0.25247 (0.21461) | > loss_disc_real_5: 0.19424 (0.21351) | > loss_0: 2.33004 (2.31844) | > grad_norm_0: 15.71999 (16.73731) | > loss_gen: 2.57263 (2.56157) | > loss_kl: 2.80309 (2.65876) | > loss_feat: 8.11038 (8.70832) | > loss_mel: 18.04109 (17.78474) | > loss_duration: 1.69057 (1.70663) | > loss_1: 33.21777 (33.42001) | > grad_norm_1: 172.33665 (137.78078) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96280 (2.28492) | > loader_time: 0.03490 (0.03575)  --> STEP: 11212/15287 -- GLOBAL_STEP: 976500 | > loss_disc: 2.34233 (2.31850) | > loss_disc_real_0: 0.16110 (0.12255) | > loss_disc_real_1: 0.24308 (0.21153) | > loss_disc_real_2: 0.23926 (0.21570) | > loss_disc_real_3: 0.25627 (0.21889) | > loss_disc_real_4: 0.26624 (0.21461) | > loss_disc_real_5: 0.22323 (0.21351) | > loss_0: 2.34233 (2.31850) | > grad_norm_0: 26.06872 (16.74293) | > loss_gen: 2.65941 (2.56169) | > loss_kl: 2.57069 (2.65881) | > loss_feat: 9.21358 (8.70849) | > loss_mel: 18.42802 (17.78518) | > loss_duration: 1.75090 (1.70664) | > loss_1: 34.62260 (33.42081) | > grad_norm_1: 190.19781 (137.81454) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87450 (2.28486) | > loader_time: 0.03270 (0.03575)  --> STEP: 11237/15287 -- GLOBAL_STEP: 976525 | > loss_disc: 2.36676 (2.31852) | > loss_disc_real_0: 0.14874 (0.12254) | > loss_disc_real_1: 0.20116 (0.21153) | > loss_disc_real_2: 0.21960 (0.21570) | > loss_disc_real_3: 0.21614 (0.21890) | > loss_disc_real_4: 0.21475 (0.21463) | > loss_disc_real_5: 0.21210 (0.21352) | > loss_0: 2.36676 (2.31852) | > grad_norm_0: 10.90585 (16.74866) | > loss_gen: 2.42183 (2.56168) | > loss_kl: 2.64934 (2.65875) | > loss_feat: 8.90494 (8.70813) | > loss_mel: 17.93559 (17.78512) | > loss_duration: 1.75910 (1.70662) | > loss_1: 33.67078 (33.42029) | > grad_norm_1: 136.69691 (137.83005) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08830 (2.28611) | > loader_time: 0.03160 (0.03575)  --> STEP: 11262/15287 -- GLOBAL_STEP: 976550 | > loss_disc: 2.30371 (2.31850) | > loss_disc_real_0: 0.10414 (0.12254) | > loss_disc_real_1: 0.23195 (0.21153) | > loss_disc_real_2: 0.18342 (0.21570) | > loss_disc_real_3: 0.21018 (0.21891) | > loss_disc_real_4: 0.21733 (0.21464) | > loss_disc_real_5: 0.20337 (0.21353) | > loss_0: 2.30371 (2.31850) | > grad_norm_0: 18.80877 (16.76036) | > loss_gen: 2.53822 (2.56169) | > loss_kl: 2.63507 (2.65866) | > loss_feat: 9.32224 (8.70777) | > loss_mel: 18.24768 (17.78479) | > loss_duration: 1.68051 (1.70661) | > loss_1: 34.42372 (33.41951) | > grad_norm_1: 187.68364 (137.89423) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58300 (2.28652) | > loader_time: 0.03330 (0.03574)  --> STEP: 11287/15287 -- GLOBAL_STEP: 976575 | > loss_disc: 2.31466 (2.31845) | > loss_disc_real_0: 0.10764 (0.12253) | > loss_disc_real_1: 0.20537 (0.21152) | > loss_disc_real_2: 0.19568 (0.21570) | > loss_disc_real_3: 0.24573 (0.21891) | > loss_disc_real_4: 0.20552 (0.21463) | > loss_disc_real_5: 0.27647 (0.21354) | > loss_0: 2.31466 (2.31845) | > grad_norm_0: 22.02273 (16.76459) | > loss_gen: 2.47232 (2.56173) | > loss_kl: 2.75906 (2.65868) | > loss_feat: 8.73627 (8.70788) | > loss_mel: 17.82260 (17.78470) | > loss_duration: 1.71249 (1.70660) | > loss_1: 33.50273 (33.41958) | > grad_norm_1: 168.35652 (137.93002) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24050 (2.28710) | > loader_time: 0.03190 (0.03574)  --> STEP: 11312/15287 -- GLOBAL_STEP: 976600 | > loss_disc: 2.27702 (2.31842) | > loss_disc_real_0: 0.12461 (0.12251) | > loss_disc_real_1: 0.20236 (0.21151) | > loss_disc_real_2: 0.27086 (0.21570) | > loss_disc_real_3: 0.24551 (0.21892) | > loss_disc_real_4: 0.24266 (0.21464) | > loss_disc_real_5: 0.20990 (0.21355) | > loss_0: 2.27702 (2.31842) | > grad_norm_0: 26.57860 (16.77545) | > loss_gen: 2.59218 (2.56176) | > loss_kl: 2.70132 (2.65857) | > loss_feat: 8.69948 (8.70799) | > loss_mel: 17.17574 (17.78457) | > loss_duration: 1.69940 (1.70659) | > loss_1: 32.86811 (33.41947) | > grad_norm_1: 171.40102 (138.01491) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38830 (2.28734) | > loader_time: 0.03850 (0.03574)  --> STEP: 11337/15287 -- GLOBAL_STEP: 976625 | > loss_disc: 2.26533 (2.31844) | > loss_disc_real_0: 0.12470 (0.12250) | > loss_disc_real_1: 0.19554 (0.21152) | > loss_disc_real_2: 0.20469 (0.21570) | > loss_disc_real_3: 0.23034 (0.21893) | > loss_disc_real_4: 0.22606 (0.21464) | > loss_disc_real_5: 0.19932 (0.21355) | > loss_0: 2.26533 (2.31844) | > grad_norm_0: 14.33537 (16.77649) | > loss_gen: 2.63152 (2.56165) | > loss_kl: 2.84322 (2.65868) | > loss_feat: 8.92448 (8.70789) | > loss_mel: 17.90118 (17.78445) | > loss_duration: 1.73709 (1.70660) | > loss_1: 34.03749 (33.41927) | > grad_norm_1: 119.91995 (138.05840) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.74870 (2.28770) | > loader_time: 0.03220 (0.03574)  --> STEP: 11362/15287 -- GLOBAL_STEP: 976650 | > loss_disc: 2.26639 (2.31846) | > loss_disc_real_0: 0.11773 (0.12250) | > loss_disc_real_1: 0.20938 (0.21152) | > loss_disc_real_2: 0.22550 (0.21569) | > loss_disc_real_3: 0.22409 (0.21892) | > loss_disc_real_4: 0.20723 (0.21464) | > loss_disc_real_5: 0.20921 (0.21355) | > loss_0: 2.26639 (2.31846) | > grad_norm_0: 8.25767 (16.78574) | > loss_gen: 2.46329 (2.56158) | > loss_kl: 2.69672 (2.65873) | > loss_feat: 8.72656 (8.70781) | > loss_mel: 17.38742 (17.78455) | > loss_duration: 1.69278 (1.70658) | > loss_1: 32.96677 (33.41925) | > grad_norm_1: 142.20143 (138.10390) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36680 (2.28797) | > loader_time: 0.03800 (0.03574)  --> STEP: 11387/15287 -- GLOBAL_STEP: 976675 | > loss_disc: 2.26738 (2.31849) | > loss_disc_real_0: 0.11673 (0.12250) | > loss_disc_real_1: 0.20477 (0.21151) | > loss_disc_real_2: 0.21340 (0.21569) | > loss_disc_real_3: 0.21345 (0.21892) | > loss_disc_real_4: 0.19513 (0.21464) | > loss_disc_real_5: 0.19861 (0.21355) | > loss_0: 2.26738 (2.31849) | > grad_norm_0: 14.53746 (16.78543) | > loss_gen: 2.69995 (2.56152) | > loss_kl: 2.53746 (2.65870) | > loss_feat: 8.59244 (8.70773) | > loss_mel: 17.69268 (17.78459) | > loss_duration: 1.68199 (1.70657) | > loss_1: 33.20452 (33.41909) | > grad_norm_1: 110.69733 (138.13329) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36930 (2.28818) | > loader_time: 0.04030 (0.03574)  --> STEP: 11412/15287 -- GLOBAL_STEP: 976700 | > loss_disc: 2.42281 (2.31853) | > loss_disc_real_0: 0.11958 (0.12251) | > loss_disc_real_1: 0.22839 (0.21153) | > loss_disc_real_2: 0.21772 (0.21569) | > loss_disc_real_3: 0.23757 (0.21892) | > loss_disc_real_4: 0.25916 (0.21465) | > loss_disc_real_5: 0.23923 (0.21354) | > loss_0: 2.42281 (2.31853) | > grad_norm_0: 16.51015 (16.78646) | > loss_gen: 2.41055 (2.56142) | > loss_kl: 2.67046 (2.65871) | > loss_feat: 8.09454 (8.70730) | > loss_mel: 17.65287 (17.78444) | > loss_duration: 1.69439 (1.70655) | > loss_1: 32.52281 (33.41840) | > grad_norm_1: 238.20436 (138.14584) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.61770 (2.28868) | > loader_time: 0.03080 (0.03574)  --> STEP: 11437/15287 -- GLOBAL_STEP: 976725 | > loss_disc: 2.28894 (2.31847) | > loss_disc_real_0: 0.10554 (0.12250) | > loss_disc_real_1: 0.18310 (0.21152) | > loss_disc_real_2: 0.17857 (0.21568) | > loss_disc_real_3: 0.20417 (0.21891) | > loss_disc_real_4: 0.21265 (0.21465) | > loss_disc_real_5: 0.18383 (0.21354) | > loss_0: 2.28894 (2.31847) | > grad_norm_0: 6.60656 (16.78830) | > loss_gen: 2.93190 (2.56148) | > loss_kl: 2.68557 (2.65871) | > loss_feat: 8.92640 (8.70731) | > loss_mel: 17.86384 (17.78446) | > loss_duration: 1.71326 (1.70654) | > loss_1: 34.12098 (33.41849) | > grad_norm_1: 188.62254 (138.20917) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30810 (2.28887) | > loader_time: 0.03850 (0.03574)  --> STEP: 11462/15287 -- GLOBAL_STEP: 976750 | > loss_disc: 2.28472 (2.31854) | > loss_disc_real_0: 0.11189 (0.12249) | > loss_disc_real_1: 0.19709 (0.21153) | > loss_disc_real_2: 0.19905 (0.21569) | > loss_disc_real_3: 0.20015 (0.21892) | > loss_disc_real_4: 0.19616 (0.21465) | > loss_disc_real_5: 0.22163 (0.21357) | > loss_0: 2.28472 (2.31854) | > grad_norm_0: 11.67316 (16.79287) | > loss_gen: 2.51524 (2.56147) | > loss_kl: 2.71963 (2.65874) | > loss_feat: 8.77376 (8.70717) | > loss_mel: 18.09001 (17.78444) | > loss_duration: 1.67446 (1.70653) | > loss_1: 33.77309 (33.41833) | > grad_norm_1: 191.28862 (138.23883) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.47430 (2.28902) | > loader_time: 0.03870 (0.03574)  --> STEP: 11487/15287 -- GLOBAL_STEP: 976775 | > loss_disc: 2.22822 (2.31854) | > loss_disc_real_0: 0.10374 (0.12248) | > loss_disc_real_1: 0.20268 (0.21153) | > loss_disc_real_2: 0.21116 (0.21569) | > loss_disc_real_3: 0.22346 (0.21892) | > loss_disc_real_4: 0.23242 (0.21465) | > loss_disc_real_5: 0.21606 (0.21357) | > loss_0: 2.22822 (2.31854) | > grad_norm_0: 15.18470 (16.80653) | > loss_gen: 2.64383 (2.56141) | > loss_kl: 2.61641 (2.65878) | > loss_feat: 8.80201 (8.70712) | > loss_mel: 18.00495 (17.78482) | > loss_duration: 1.71347 (1.70654) | > loss_1: 33.78066 (33.41864) | > grad_norm_1: 222.44841 (138.28490) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32050 (2.28926) | > loader_time: 0.03040 (0.03573)  --> STEP: 11512/15287 -- GLOBAL_STEP: 976800 | > loss_disc: 2.33157 (2.31855) | > loss_disc_real_0: 0.12865 (0.12249) | > loss_disc_real_1: 0.19346 (0.21154) | > loss_disc_real_2: 0.22184 (0.21569) | > loss_disc_real_3: 0.22861 (0.21892) | > loss_disc_real_4: 0.21566 (0.21465) | > loss_disc_real_5: 0.22038 (0.21357) | > loss_0: 2.33157 (2.31855) | > grad_norm_0: 13.61645 (16.81128) | > loss_gen: 2.44328 (2.56142) | > loss_kl: 2.82327 (2.65873) | > loss_feat: 8.64649 (8.70715) | > loss_mel: 17.36868 (17.78463) | > loss_duration: 1.67692 (1.70654) | > loss_1: 32.95863 (33.41845) | > grad_norm_1: 116.19351 (138.31001) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01580 (2.28927) | > loader_time: 0.03570 (0.03573)  --> STEP: 11537/15287 -- GLOBAL_STEP: 976825 | > loss_disc: 2.33298 (2.31853) | > loss_disc_real_0: 0.10658 (0.12248) | > loss_disc_real_1: 0.21213 (0.21154) | > loss_disc_real_2: 0.22060 (0.21568) | > loss_disc_real_3: 0.21109 (0.21891) | > loss_disc_real_4: 0.21067 (0.21465) | > loss_disc_real_5: 0.17284 (0.21358) | > loss_0: 2.33298 (2.31853) | > grad_norm_0: 7.05721 (16.80564) | > loss_gen: 2.61201 (2.56145) | > loss_kl: 2.62894 (2.65875) | > loss_feat: 8.19566 (8.70723) | > loss_mel: 17.79932 (17.78471) | > loss_duration: 1.75137 (1.70654) | > loss_1: 32.98730 (33.41865) | > grad_norm_1: 136.39249 (138.34161) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04400 (2.28961) | > loader_time: 0.03640 (0.03574)  --> STEP: 11562/15287 -- GLOBAL_STEP: 976850 | > loss_disc: 2.26935 (2.31850) | > loss_disc_real_0: 0.06988 (0.12246) | > loss_disc_real_1: 0.16834 (0.21152) | > loss_disc_real_2: 0.17619 (0.21568) | > loss_disc_real_3: 0.22703 (0.21892) | > loss_disc_real_4: 0.17670 (0.21465) | > loss_disc_real_5: 0.22134 (0.21357) | > loss_0: 2.26935 (2.31850) | > grad_norm_0: 7.36893 (16.80460) | > loss_gen: 2.97166 (2.56155) | > loss_kl: 2.81115 (2.65884) | > loss_feat: 9.51169 (8.70766) | > loss_mel: 18.11589 (17.78496) | > loss_duration: 1.72092 (1.70655) | > loss_1: 35.13131 (33.41952) | > grad_norm_1: 98.23237 (138.36328) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.76150 (2.29003) | > loader_time: 0.04370 (0.03573)  --> STEP: 11587/15287 -- GLOBAL_STEP: 976875 | > loss_disc: 2.35695 (2.31856) | > loss_disc_real_0: 0.11626 (0.12248) | > loss_disc_real_1: 0.20219 (0.21154) | > loss_disc_real_2: 0.22038 (0.21568) | > loss_disc_real_3: 0.23243 (0.21892) | > loss_disc_real_4: 0.19572 (0.21465) | > loss_disc_real_5: 0.21749 (0.21358) | > loss_0: 2.35695 (2.31856) | > grad_norm_0: 16.46697 (16.80041) | > loss_gen: 2.52078 (2.56159) | > loss_kl: 2.68646 (2.65884) | > loss_feat: 8.44291 (8.70755) | > loss_mel: 17.46245 (17.78516) | > loss_duration: 1.73069 (1.70656) | > loss_1: 32.84328 (33.41967) | > grad_norm_1: 184.76602 (138.37120) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.86080 (2.29111) | > loader_time: 0.03060 (0.03574)  --> STEP: 11612/15287 -- GLOBAL_STEP: 976900 | > loss_disc: 2.32779 (2.31867) | > loss_disc_real_0: 0.10126 (0.12248) | > loss_disc_real_1: 0.23855 (0.21153) | > loss_disc_real_2: 0.21011 (0.21569) | > loss_disc_real_3: 0.23050 (0.21895) | > loss_disc_real_4: 0.21445 (0.21466) | > loss_disc_real_5: 0.21902 (0.21360) | > loss_0: 2.32779 (2.31867) | > grad_norm_0: 8.05874 (16.79951) | > loss_gen: 2.39114 (2.56153) | > loss_kl: 2.65510 (2.65883) | > loss_feat: 8.69791 (8.70713) | > loss_mel: 17.60162 (17.78527) | > loss_duration: 1.71061 (1.70656) | > loss_1: 33.05638 (33.41928) | > grad_norm_1: 43.03729 (138.34775) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26650 (2.29157) | > loader_time: 0.03260 (0.03574)  --> STEP: 11637/15287 -- GLOBAL_STEP: 976925 | > loss_disc: 2.28883 (2.31866) | > loss_disc_real_0: 0.11031 (0.12247) | > loss_disc_real_1: 0.21358 (0.21153) | > loss_disc_real_2: 0.21177 (0.21568) | > loss_disc_real_3: 0.22807 (0.21894) | > loss_disc_real_4: 0.21984 (0.21466) | > loss_disc_real_5: 0.19936 (0.21358) | > loss_0: 2.28883 (2.31866) | > grad_norm_0: 12.68144 (16.79481) | > loss_gen: 2.55409 (2.56150) | > loss_kl: 2.67082 (2.65882) | > loss_feat: 8.60992 (8.70668) | > loss_mel: 17.94979 (17.78516) | > loss_duration: 1.70386 (1.70657) | > loss_1: 33.48848 (33.41870) | > grad_norm_1: 64.68163 (138.35649) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55240 (2.29171) | > loader_time: 0.03710 (0.03573)  --> STEP: 11662/15287 -- GLOBAL_STEP: 976950 | > loss_disc: 2.37501 (2.31868) | > loss_disc_real_0: 0.12232 (0.12248) | > loss_disc_real_1: 0.22942 (0.21152) | > loss_disc_real_2: 0.22001 (0.21568) | > loss_disc_real_3: 0.21357 (0.21895) | > loss_disc_real_4: 0.21654 (0.21467) | > loss_disc_real_5: 0.22745 (0.21359) | > loss_0: 2.37501 (2.31868) | > grad_norm_0: 13.90452 (16.79398) | > loss_gen: 2.40508 (2.56148) | > loss_kl: 2.73041 (2.65879) | > loss_feat: 8.35813 (8.70643) | > loss_mel: 17.86306 (17.78523) | > loss_duration: 1.71520 (1.70659) | > loss_1: 33.07188 (33.41846) | > grad_norm_1: 63.90940 (138.30984) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.48660 (2.29185) | > loader_time: 0.03240 (0.03573)  --> STEP: 11687/15287 -- GLOBAL_STEP: 976975 | > loss_disc: 2.36083 (2.31873) | > loss_disc_real_0: 0.12661 (0.12248) | > loss_disc_real_1: 0.24077 (0.21153) | > loss_disc_real_2: 0.22279 (0.21568) | > loss_disc_real_3: 0.24177 (0.21895) | > loss_disc_real_4: 0.22500 (0.21468) | > loss_disc_real_5: 0.21888 (0.21360) | > loss_0: 2.36083 (2.31873) | > grad_norm_0: 7.00620 (16.78634) | > loss_gen: 2.53367 (2.56146) | > loss_kl: 2.74833 (2.65886) | > loss_feat: 9.39276 (8.70637) | > loss_mel: 18.69082 (17.78555) | > loss_duration: 1.71472 (1.70661) | > loss_1: 35.08029 (33.41879) | > grad_norm_1: 117.17869 (138.23958) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95120 (2.29209) | > loader_time: 0.03630 (0.03573)  --> STEP: 11712/15287 -- GLOBAL_STEP: 977000 | > loss_disc: 2.47073 (2.31887) | > loss_disc_real_0: 0.09130 (0.12254) | > loss_disc_real_1: 0.26451 (0.21152) | > loss_disc_real_2: 0.19231 (0.21570) | > loss_disc_real_3: 0.22651 (0.21896) | > loss_disc_real_4: 0.24777 (0.21467) | > loss_disc_real_5: 0.22306 (0.21360) | > loss_0: 2.47073 (2.31887) | > grad_norm_0: 14.27413 (16.78213) | > loss_gen: 2.45062 (2.56148) | > loss_kl: 2.67375 (2.65895) | > loss_feat: 8.06715 (8.70610) | > loss_mel: 17.29698 (17.78574) | > loss_duration: 1.66606 (1.70662) | > loss_1: 32.15456 (33.41884) | > grad_norm_1: 66.00599 (138.16991) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32430 (2.29242) | > loader_time: 0.03500 (0.03573)  --> STEP: 11737/15287 -- GLOBAL_STEP: 977025 | > loss_disc: 2.34209 (2.31897) | > loss_disc_real_0: 0.10622 (0.12259) | > loss_disc_real_1: 0.22283 (0.21153) | > loss_disc_real_2: 0.20386 (0.21570) | > loss_disc_real_3: 0.21761 (0.21897) | > loss_disc_real_4: 0.20181 (0.21468) | > loss_disc_real_5: 0.21652 (0.21362) | > loss_0: 2.34209 (2.31897) | > grad_norm_0: 22.46505 (16.78143) | > loss_gen: 2.51064 (2.56150) | > loss_kl: 2.57313 (2.65903) | > loss_feat: 8.29482 (8.70575) | > loss_mel: 18.21551 (17.78585) | > loss_duration: 1.67877 (1.70664) | > loss_1: 33.27287 (33.41870) | > grad_norm_1: 202.72403 (138.14053) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10960 (2.29251) | > loader_time: 0.03300 (0.03573)  --> STEP: 11762/15287 -- GLOBAL_STEP: 977050 | > loss_disc: 2.25113 (2.31898) | > loss_disc_real_0: 0.10768 (0.12260) | > loss_disc_real_1: 0.19167 (0.21153) | > loss_disc_real_2: 0.18792 (0.21570) | > loss_disc_real_3: 0.19638 (0.21897) | > loss_disc_real_4: 0.18489 (0.21468) | > loss_disc_real_5: 0.25091 (0.21363) | > loss_0: 2.25113 (2.31898) | > grad_norm_0: 19.67967 (16.78183) | > loss_gen: 2.50989 (2.56143) | > loss_kl: 2.68755 (2.65899) | > loss_feat: 8.76453 (8.70532) | > loss_mel: 17.41898 (17.78577) | > loss_duration: 1.67649 (1.70665) | > loss_1: 33.05744 (33.41811) | > grad_norm_1: 197.87054 (138.14046) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72800 (2.29278) | > loader_time: 0.03950 (0.03573)  --> STEP: 11787/15287 -- GLOBAL_STEP: 977075 | > loss_disc: 2.27739 (2.31895) | > loss_disc_real_0: 0.09607 (0.12258) | > loss_disc_real_1: 0.21113 (0.21153) | > loss_disc_real_2: 0.21079 (0.21570) | > loss_disc_real_3: 0.20853 (0.21896) | > loss_disc_real_4: 0.19965 (0.21468) | > loss_disc_real_5: 0.17378 (0.21362) | > loss_0: 2.27739 (2.31895) | > grad_norm_0: 23.89985 (16.78229) | > loss_gen: 2.50989 (2.56138) | > loss_kl: 2.85809 (2.65901) | > loss_feat: 9.16962 (8.70507) | > loss_mel: 18.21681 (17.78570) | > loss_duration: 1.69374 (1.70667) | > loss_1: 34.44814 (33.41778) | > grad_norm_1: 224.93271 (138.14711) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52480 (2.29286) | > loader_time: 0.03080 (0.03573)  --> STEP: 11812/15287 -- GLOBAL_STEP: 977100 | > loss_disc: 2.39126 (2.31892) | > loss_disc_real_0: 0.13455 (0.12256) | > loss_disc_real_1: 0.22997 (0.21153) | > loss_disc_real_2: 0.23883 (0.21570) | > loss_disc_real_3: 0.21891 (0.21896) | > loss_disc_real_4: 0.21894 (0.21467) | > loss_disc_real_5: 0.21444 (0.21362) | > loss_0: 2.39126 (2.31892) | > grad_norm_0: 5.47589 (16.78613) | > loss_gen: 2.46111 (2.56139) | > loss_kl: 2.59605 (2.65897) | > loss_feat: 8.32258 (8.70518) | > loss_mel: 17.72146 (17.78584) | > loss_duration: 1.68160 (1.70666) | > loss_1: 32.78279 (33.41798) | > grad_norm_1: 60.58703 (138.18845) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21610 (2.29292) | > loader_time: 0.03270 (0.03573)  --> STEP: 11837/15287 -- GLOBAL_STEP: 977125 | > loss_disc: 2.38733 (2.31887) | > loss_disc_real_0: 0.14012 (0.12254) | > loss_disc_real_1: 0.21556 (0.21151) | > loss_disc_real_2: 0.23693 (0.21569) | > loss_disc_real_3: 0.24500 (0.21897) | > loss_disc_real_4: 0.23598 (0.21468) | > loss_disc_real_5: 0.25396 (0.21363) | > loss_0: 2.38733 (2.31887) | > grad_norm_0: 23.93397 (16.78987) | > loss_gen: 2.60099 (2.56136) | > loss_kl: 2.75638 (2.65899) | > loss_feat: 9.01638 (8.70531) | > loss_mel: 17.71861 (17.78568) | > loss_duration: 1.68181 (1.70665) | > loss_1: 33.77417 (33.41793) | > grad_norm_1: 184.26604 (138.21992) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33330 (2.29302) | > loader_time: 0.03520 (0.03573)  --> STEP: 11862/15287 -- GLOBAL_STEP: 977150 | > loss_disc: 2.23671 (2.31883) | > loss_disc_real_0: 0.10649 (0.12252) | > loss_disc_real_1: 0.20081 (0.21150) | > loss_disc_real_2: 0.18673 (0.21569) | > loss_disc_real_3: 0.21652 (0.21897) | > loss_disc_real_4: 0.21825 (0.21467) | > loss_disc_real_5: 0.20077 (0.21362) | > loss_0: 2.23671 (2.31883) | > grad_norm_0: 10.11272 (16.78742) | > loss_gen: 2.62231 (2.56130) | > loss_kl: 2.76922 (2.65902) | > loss_feat: 8.87349 (8.70522) | > loss_mel: 18.55528 (17.78574) | > loss_duration: 1.69728 (1.70664) | > loss_1: 34.51758 (33.41788) | > grad_norm_1: 134.29904 (138.24374) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37770 (2.29317) | > loader_time: 0.03050 (0.03572)  --> STEP: 11887/15287 -- GLOBAL_STEP: 977175 | > loss_disc: 2.31278 (2.31882) | > loss_disc_real_0: 0.11506 (0.12251) | > loss_disc_real_1: 0.20626 (0.21150) | > loss_disc_real_2: 0.22433 (0.21568) | > loss_disc_real_3: 0.22563 (0.21897) | > loss_disc_real_4: 0.23715 (0.21467) | > loss_disc_real_5: 0.22483 (0.21363) | > loss_0: 2.31278 (2.31882) | > grad_norm_0: 17.36967 (16.79162) | > loss_gen: 2.59847 (2.56127) | > loss_kl: 2.72447 (2.65898) | > loss_feat: 8.68462 (8.70541) | > loss_mel: 18.10947 (17.78582) | > loss_duration: 1.72549 (1.70666) | > loss_1: 33.84252 (33.41810) | > grad_norm_1: 159.89594 (138.22543) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93020 (2.29332) | > loader_time: 0.03160 (0.03572)  --> STEP: 11912/15287 -- GLOBAL_STEP: 977200 | > loss_disc: 2.43333 (2.31877) | > loss_disc_real_0: 0.14036 (0.12250) | > loss_disc_real_1: 0.32061 (0.21150) | > loss_disc_real_2: 0.26560 (0.21568) | > loss_disc_real_3: 0.27046 (0.21896) | > loss_disc_real_4: 0.21889 (0.21467) | > loss_disc_real_5: 0.23741 (0.21362) | > loss_0: 2.43333 (2.31877) | > grad_norm_0: 14.88982 (16.79541) | > loss_gen: 2.60340 (2.56125) | > loss_kl: 2.59615 (2.65893) | > loss_feat: 8.77451 (8.70522) | > loss_mel: 17.39041 (17.78533) | > loss_duration: 1.68247 (1.70667) | > loss_1: 33.04692 (33.41736) | > grad_norm_1: 153.76416 (138.26212) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56660 (2.29372) | > loader_time: 0.03190 (0.03572)  --> STEP: 11937/15287 -- GLOBAL_STEP: 977225 | > loss_disc: 2.34841 (2.31880) | > loss_disc_real_0: 0.11060 (0.12250) | > loss_disc_real_1: 0.19263 (0.21150) | > loss_disc_real_2: 0.21193 (0.21568) | > loss_disc_real_3: 0.19967 (0.21895) | > loss_disc_real_4: 0.18829 (0.21465) | > loss_disc_real_5: 0.20459 (0.21362) | > loss_0: 2.34841 (2.31880) | > grad_norm_0: 12.59340 (16.79388) | > loss_gen: 2.55703 (2.56117) | > loss_kl: 2.53543 (2.65887) | > loss_feat: 8.90621 (8.70504) | > loss_mel: 17.66455 (17.78489) | > loss_duration: 1.70490 (1.70665) | > loss_1: 33.36811 (33.41661) | > grad_norm_1: 103.64261 (138.22726) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58850 (2.29387) | > loader_time: 0.03170 (0.03572)  --> STEP: 11962/15287 -- GLOBAL_STEP: 977250 | > loss_disc: 2.38294 (2.31888) | > loss_disc_real_0: 0.22230 (0.12252) | > loss_disc_real_1: 0.27311 (0.21151) | > loss_disc_real_2: 0.24460 (0.21570) | > loss_disc_real_3: 0.20006 (0.21896) | > loss_disc_real_4: 0.18051 (0.21466) | > loss_disc_real_5: 0.25111 (0.21363) | > loss_0: 2.38294 (2.31888) | > grad_norm_0: 17.87082 (16.78117) | > loss_gen: 2.60112 (2.56128) | > loss_kl: 2.74928 (2.65890) | > loss_feat: 8.88101 (8.70519) | > loss_mel: 18.39964 (17.78529) | > loss_duration: 1.71178 (1.70664) | > loss_1: 34.34283 (33.41728) | > grad_norm_1: 112.64618 (138.11455) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92270 (2.29384) | > loader_time: 0.03950 (0.03572)  --> STEP: 11987/15287 -- GLOBAL_STEP: 977275 | > loss_disc: 2.25494 (2.31891) | > loss_disc_real_0: 0.12967 (0.12253) | > loss_disc_real_1: 0.18626 (0.21152) | > loss_disc_real_2: 0.20526 (0.21569) | > loss_disc_real_3: 0.18471 (0.21896) | > loss_disc_real_4: 0.15706 (0.21467) | > loss_disc_real_5: 0.19753 (0.21363) | > loss_0: 2.25494 (2.31891) | > grad_norm_0: 15.34809 (16.78360) | > loss_gen: 2.45614 (2.56123) | > loss_kl: 2.67545 (2.65887) | > loss_feat: 9.13601 (8.70501) | > loss_mel: 17.68770 (17.78561) | > loss_duration: 1.68619 (1.70662) | > loss_1: 33.64149 (33.41731) | > grad_norm_1: 199.76526 (138.05838) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.16240 (2.29413) | > loader_time: 0.04100 (0.03572)  --> STEP: 12012/15287 -- GLOBAL_STEP: 977300 | > loss_disc: 2.24106 (2.31889) | > loss_disc_real_0: 0.08341 (0.12251) | > loss_disc_real_1: 0.18713 (0.21153) | > loss_disc_real_2: 0.21088 (0.21570) | > loss_disc_real_3: 0.20522 (0.21896) | > loss_disc_real_4: 0.20668 (0.21467) | > loss_disc_real_5: 0.18820 (0.21362) | > loss_0: 2.24106 (2.31889) | > grad_norm_0: 9.60547 (16.78573) | > loss_gen: 2.74228 (2.56119) | > loss_kl: 2.53470 (2.65885) | > loss_feat: 8.88604 (8.70482) | > loss_mel: 17.94029 (17.78573) | > loss_duration: 1.68890 (1.70662) | > loss_1: 33.79220 (33.41717) | > grad_norm_1: 59.24575 (138.05951) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58350 (2.29432) | > loader_time: 0.03430 (0.03572)  --> STEP: 12037/15287 -- GLOBAL_STEP: 977325 | > loss_disc: 2.34617 (2.31883) | > loss_disc_real_0: 0.12035 (0.12251) | > loss_disc_real_1: 0.23240 (0.21153) | > loss_disc_real_2: 0.21337 (0.21569) | > loss_disc_real_3: 0.22082 (0.21895) | > loss_disc_real_4: 0.22159 (0.21467) | > loss_disc_real_5: 0.19634 (0.21361) | > loss_0: 2.34617 (2.31883) | > grad_norm_0: 16.57404 (16.78573) | > loss_gen: 2.47928 (2.56124) | > loss_kl: 2.69096 (2.65879) | > loss_feat: 8.56819 (8.70508) | > loss_mel: 17.09615 (17.78578) | > loss_duration: 1.68921 (1.70662) | > loss_1: 32.52378 (33.41746) | > grad_norm_1: 135.60979 (138.07909) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55200 (2.29444) | > loader_time: 0.03250 (0.03572)  --> STEP: 12062/15287 -- GLOBAL_STEP: 977350 | > loss_disc: 2.25097 (2.31878) | > loss_disc_real_0: 0.08493 (0.12250) | > loss_disc_real_1: 0.20539 (0.21153) | > loss_disc_real_2: 0.21853 (0.21568) | > loss_disc_real_3: 0.23923 (0.21895) | > loss_disc_real_4: 0.25332 (0.21468) | > loss_disc_real_5: 0.22839 (0.21361) | > loss_0: 2.25097 (2.31878) | > grad_norm_0: 8.51896 (16.78451) | > loss_gen: 2.56020 (2.56124) | > loss_kl: 2.55051 (2.65884) | > loss_feat: 8.86368 (8.70504) | > loss_mel: 17.43033 (17.78541) | > loss_duration: 1.71262 (1.70662) | > loss_1: 33.11735 (33.41710) | > grad_norm_1: 147.23128 (138.09435) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39070 (2.29469) | > loader_time: 0.03240 (0.03572)  --> STEP: 12087/15287 -- GLOBAL_STEP: 977375 | > loss_disc: 2.41442 (2.31883) | > loss_disc_real_0: 0.20519 (0.12252) | > loss_disc_real_1: 0.20263 (0.21153) | > loss_disc_real_2: 0.19417 (0.21569) | > loss_disc_real_3: 0.21697 (0.21894) | > loss_disc_real_4: 0.22959 (0.21469) | > loss_disc_real_5: 0.22778 (0.21360) | > loss_0: 2.41442 (2.31883) | > grad_norm_0: 34.78886 (16.79160) | > loss_gen: 2.48758 (2.56127) | > loss_kl: 2.81001 (2.65887) | > loss_feat: 8.92149 (8.70507) | > loss_mel: 18.19265 (17.78531) | > loss_duration: 1.70718 (1.70662) | > loss_1: 34.11891 (33.41710) | > grad_norm_1: 213.12701 (138.10509) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58310 (2.29513) | > loader_time: 0.03550 (0.03572)  --> STEP: 12112/15287 -- GLOBAL_STEP: 977400 | > loss_disc: 2.28892 (2.31884) | > loss_disc_real_0: 0.12358 (0.12253) | > loss_disc_real_1: 0.17504 (0.21152) | > loss_disc_real_2: 0.16849 (0.21568) | > loss_disc_real_3: 0.20198 (0.21895) | > loss_disc_real_4: 0.17753 (0.21469) | > loss_disc_real_5: 0.19345 (0.21360) | > loss_0: 2.28892 (2.31884) | > grad_norm_0: 16.58521 (16.78943) | > loss_gen: 2.49614 (2.56117) | > loss_kl: 2.65085 (2.65886) | > loss_feat: 8.71730 (8.70489) | > loss_mel: 18.03316 (17.78513) | > loss_duration: 1.67769 (1.70663) | > loss_1: 33.57513 (33.41661) | > grad_norm_1: 162.05820 (138.11237) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.05810 (2.29530) | > loader_time: 0.03070 (0.03571)  --> STEP: 12137/15287 -- GLOBAL_STEP: 977425 | > loss_disc: 2.32561 (2.31877) | > loss_disc_real_0: 0.12498 (0.12252) | > loss_disc_real_1: 0.18610 (0.21151) | > loss_disc_real_2: 0.18625 (0.21567) | > loss_disc_real_3: 0.19859 (0.21894) | > loss_disc_real_4: 0.20182 (0.21468) | > loss_disc_real_5: 0.19930 (0.21359) | > loss_0: 2.32561 (2.31877) | > grad_norm_0: 37.53100 (16.79294) | > loss_gen: 2.36713 (2.56116) | > loss_kl: 2.67878 (2.65882) | > loss_feat: 9.27042 (8.70502) | > loss_mel: 17.73110 (17.78493) | > loss_duration: 1.71694 (1.70662) | > loss_1: 33.76438 (33.41648) | > grad_norm_1: 136.11104 (138.13741) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39390 (2.29552) | > loader_time: 0.03110 (0.03571)  --> STEP: 12162/15287 -- GLOBAL_STEP: 977450 | > loss_disc: 2.33255 (2.31872) | > loss_disc_real_0: 0.15362 (0.12252) | > loss_disc_real_1: 0.19767 (0.21149) | > loss_disc_real_2: 0.20614 (0.21566) | > loss_disc_real_3: 0.22910 (0.21893) | > loss_disc_real_4: 0.22503 (0.21467) | > loss_disc_real_5: 0.20564 (0.21358) | > loss_0: 2.33255 (2.31872) | > grad_norm_0: 20.38370 (16.80131) | > loss_gen: 2.52384 (2.56112) | > loss_kl: 2.74783 (2.65886) | > loss_feat: 8.51778 (8.70542) | > loss_mel: 17.62598 (17.78452) | > loss_duration: 1.70369 (1.70661) | > loss_1: 33.11911 (33.41647) | > grad_norm_1: 165.51389 (138.20500) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11510 (2.29566) | > loader_time: 0.03270 (0.03571)  --> STEP: 12187/15287 -- GLOBAL_STEP: 977475 | > loss_disc: 2.39496 (2.31875) | > loss_disc_real_0: 0.16369 (0.12253) | > loss_disc_real_1: 0.20249 (0.21150) | > loss_disc_real_2: 0.26426 (0.21566) | > loss_disc_real_3: 0.23826 (0.21893) | > loss_disc_real_4: 0.22891 (0.21467) | > loss_disc_real_5: 0.22298 (0.21358) | > loss_0: 2.39496 (2.31875) | > grad_norm_0: 7.60463 (16.79447) | > loss_gen: 2.41888 (2.56115) | > loss_kl: 2.58976 (2.65893) | > loss_feat: 8.28223 (8.70528) | > loss_mel: 17.36049 (17.78429) | > loss_duration: 1.73344 (1.70661) | > loss_1: 32.38480 (33.41617) | > grad_norm_1: 40.36674 (138.15230) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20050 (2.29581) | > loader_time: 0.03770 (0.03571)  --> STEP: 12212/15287 -- GLOBAL_STEP: 977500 | > loss_disc: 2.32348 (2.31873) | > loss_disc_real_0: 0.10459 (0.12253) | > loss_disc_real_1: 0.23779 (0.21150) | > loss_disc_real_2: 0.20276 (0.21565) | > loss_disc_real_3: 0.21096 (0.21893) | > loss_disc_real_4: 0.20982 (0.21467) | > loss_disc_real_5: 0.19905 (0.21358) | > loss_0: 2.32348 (2.31873) | > grad_norm_0: 26.69536 (16.79018) | > loss_gen: 2.43117 (2.56115) | > loss_kl: 2.56836 (2.65897) | > loss_feat: 8.88953 (8.70523) | > loss_mel: 17.72126 (17.78412) | > loss_duration: 1.72214 (1.70662) | > loss_1: 33.33246 (33.41601) | > grad_norm_1: 194.16608 (138.14909) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43390 (2.29596) | > loader_time: 0.03730 (0.03572)  --> STEP: 12237/15287 -- GLOBAL_STEP: 977525 | > loss_disc: 2.34060 (2.31876) | > loss_disc_real_0: 0.13724 (0.12253) | > loss_disc_real_1: 0.23293 (0.21151) | > loss_disc_real_2: 0.23857 (0.21565) | > loss_disc_real_3: 0.21025 (0.21893) | > loss_disc_real_4: 0.23328 (0.21468) | > loss_disc_real_5: 0.18729 (0.21360) | > loss_0: 2.34060 (2.31876) | > grad_norm_0: 22.58970 (16.78948) | > loss_gen: 2.54766 (2.56110) | > loss_kl: 2.61382 (2.65895) | > loss_feat: 8.70328 (8.70478) | > loss_mel: 18.04820 (17.78405) | > loss_duration: 1.74046 (1.70661) | > loss_1: 33.65343 (33.41542) | > grad_norm_1: 70.60339 (138.15152) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33890 (2.29618) | > loader_time: 0.04370 (0.03572)  --> STEP: 12262/15287 -- GLOBAL_STEP: 977550 | > loss_disc: 2.32077 (2.31875) | > loss_disc_real_0: 0.12505 (0.12253) | > loss_disc_real_1: 0.20911 (0.21150) | > loss_disc_real_2: 0.20759 (0.21564) | > loss_disc_real_3: 0.21581 (0.21893) | > loss_disc_real_4: 0.19944 (0.21467) | > loss_disc_real_5: 0.19566 (0.21360) | > loss_0: 2.32077 (2.31875) | > grad_norm_0: 15.94205 (16.79098) | > loss_gen: 2.54397 (2.56104) | > loss_kl: 2.66757 (2.65897) | > loss_feat: 8.80348 (8.70463) | > loss_mel: 17.30020 (17.78398) | > loss_duration: 1.73116 (1.70658) | > loss_1: 33.04638 (33.41513) | > grad_norm_1: 143.72414 (138.16267) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.83040 (2.29613) | > loader_time: 0.03290 (0.03571)  --> STEP: 12287/15287 -- GLOBAL_STEP: 977575 | > loss_disc: 2.35098 (2.31876) | > loss_disc_real_0: 0.10065 (0.12255) | > loss_disc_real_1: 0.18087 (0.21151) | > loss_disc_real_2: 0.19700 (0.21565) | > loss_disc_real_3: 0.22423 (0.21894) | > loss_disc_real_4: 0.19197 (0.21469) | > loss_disc_real_5: 0.22505 (0.21361) | > loss_0: 2.35098 (2.31876) | > grad_norm_0: 6.60905 (16.78791) | > loss_gen: 2.56600 (2.56116) | > loss_kl: 2.61156 (2.65901) | > loss_feat: 8.26405 (8.70448) | > loss_mel: 17.34575 (17.78378) | > loss_duration: 1.72779 (1.70658) | > loss_1: 32.51515 (33.41494) | > grad_norm_1: 88.28483 (138.15555) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92330 (2.29604) | > loader_time: 0.03580 (0.03571)  --> STEP: 12312/15287 -- GLOBAL_STEP: 977600 | > loss_disc: 2.25775 (2.31875) | > loss_disc_real_0: 0.10632 (0.12254) | > loss_disc_real_1: 0.19491 (0.21151) | > loss_disc_real_2: 0.21712 (0.21565) | > loss_disc_real_3: 0.21966 (0.21894) | > loss_disc_real_4: 0.21402 (0.21468) | > loss_disc_real_5: 0.20007 (0.21361) | > loss_0: 2.25775 (2.31875) | > grad_norm_0: 16.02503 (16.78039) | > loss_gen: 2.63339 (2.56115) | > loss_kl: 2.67279 (2.65902) | > loss_feat: 8.98041 (8.70465) | > loss_mel: 18.10493 (17.78372) | > loss_duration: 1.68172 (1.70656) | > loss_1: 34.07323 (33.41505) | > grad_norm_1: 132.88930 (138.13979) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.47070 (2.29624) | > loader_time: 0.03920 (0.03571)  --> STEP: 12337/15287 -- GLOBAL_STEP: 977625 | > loss_disc: 2.37412 (2.31874) | > loss_disc_real_0: 0.12235 (0.12255) | > loss_disc_real_1: 0.18026 (0.21150) | > loss_disc_real_2: 0.21649 (0.21564) | > loss_disc_real_3: 0.19391 (0.21894) | > loss_disc_real_4: 0.20621 (0.21467) | > loss_disc_real_5: 0.20827 (0.21360) | > loss_0: 2.37412 (2.31874) | > grad_norm_0: 17.38479 (16.77524) | > loss_gen: 2.47162 (2.56114) | > loss_kl: 2.73838 (2.65906) | > loss_feat: 8.80566 (8.70463) | > loss_mel: 18.01827 (17.78362) | > loss_duration: 1.70673 (1.70655) | > loss_1: 33.74067 (33.41493) | > grad_norm_1: 131.04504 (138.15475) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92140 (2.29637) | > loader_time: 0.03180 (0.03572)  --> STEP: 12362/15287 -- GLOBAL_STEP: 977650 | > loss_disc: 2.42270 (2.31879) | > loss_disc_real_0: 0.13831 (0.12253) | > loss_disc_real_1: 0.22557 (0.21151) | > loss_disc_real_2: 0.22793 (0.21564) | > loss_disc_real_3: 0.24417 (0.21895) | > loss_disc_real_4: 0.26325 (0.21471) | > loss_disc_real_5: 0.20839 (0.21362) | > loss_0: 2.42270 (2.31879) | > grad_norm_0: 38.85294 (16.79540) | > loss_gen: 2.41428 (2.56114) | > loss_kl: 2.70008 (2.65905) | > loss_feat: 8.41846 (8.70458) | > loss_mel: 17.96795 (17.78359) | > loss_duration: 1.68301 (1.70655) | > loss_1: 33.18378 (33.41484) | > grad_norm_1: 251.05585 (138.17361) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37650 (2.29643) | > loader_time: 0.03370 (0.03572)  --> STEP: 12387/15287 -- GLOBAL_STEP: 977675 | > loss_disc: 2.40639 (2.31878) | > loss_disc_real_0: 0.26587 (0.12256) | > loss_disc_real_1: 0.19533 (0.21151) | > loss_disc_real_2: 0.16326 (0.21564) | > loss_disc_real_3: 0.19247 (0.21895) | > loss_disc_real_4: 0.15442 (0.21470) | > loss_disc_real_5: 0.20809 (0.21363) | > loss_0: 2.40639 (2.31878) | > grad_norm_0: 32.29309 (16.80084) | > loss_gen: 2.64227 (2.56114) | > loss_kl: 2.55966 (2.65907) | > loss_feat: 8.66076 (8.70426) | > loss_mel: 17.58231 (17.78353) | > loss_duration: 1.69424 (1.70655) | > loss_1: 33.13924 (33.41450) | > grad_norm_1: 182.40111 (138.21512) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05460 (2.29654) | > loader_time: 0.03760 (0.03571)  --> STEP: 12412/15287 -- GLOBAL_STEP: 977700 | > loss_disc: 2.37168 (2.31880) | > loss_disc_real_0: 0.18575 (0.12258) | > loss_disc_real_1: 0.23323 (0.21151) | > loss_disc_real_2: 0.23719 (0.21565) | > loss_disc_real_3: 0.20696 (0.21895) | > loss_disc_real_4: 0.20432 (0.21471) | > loss_disc_real_5: 0.22147 (0.21363) | > loss_0: 2.37168 (2.31880) | > grad_norm_0: 17.88950 (16.79955) | > loss_gen: 2.62494 (2.56121) | > loss_kl: 2.60059 (2.65910) | > loss_feat: 7.86673 (8.70429) | > loss_mel: 17.93821 (17.78342) | > loss_duration: 1.72318 (1.70654) | > loss_1: 32.75366 (33.41451) | > grad_norm_1: 120.34065 (138.23100) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19580 (2.29671) | > loader_time: 0.03200 (0.03571)  --> STEP: 12437/15287 -- GLOBAL_STEP: 977725 | > loss_disc: 2.33221 (2.31880) | > loss_disc_real_0: 0.15898 (0.12259) | > loss_disc_real_1: 0.20628 (0.21151) | > loss_disc_real_2: 0.22744 (0.21566) | > loss_disc_real_3: 0.20166 (0.21895) | > loss_disc_real_4: 0.21009 (0.21471) | > loss_disc_real_5: 0.18166 (0.21363) | > loss_0: 2.33221 (2.31880) | > grad_norm_0: 12.24141 (16.79282) | > loss_gen: 2.45557 (2.56117) | > loss_kl: 2.62025 (2.65915) | > loss_feat: 8.09360 (8.70423) | > loss_mel: 17.67558 (17.78324) | > loss_duration: 1.70920 (1.70654) | > loss_1: 32.55420 (33.41430) | > grad_norm_1: 122.96976 (138.24658) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31700 (2.29688) | > loader_time: 0.03800 (0.03571)  --> STEP: 12462/15287 -- GLOBAL_STEP: 977750 | > loss_disc: 2.28510 (2.31883) | > loss_disc_real_0: 0.13460 (0.12259) | > loss_disc_real_1: 0.22221 (0.21152) | > loss_disc_real_2: 0.22202 (0.21566) | > loss_disc_real_3: 0.19640 (0.21895) | > loss_disc_real_4: 0.21231 (0.21471) | > loss_disc_real_5: 0.21281 (0.21363) | > loss_0: 2.28510 (2.31883) | > grad_norm_0: 8.92034 (16.78621) | > loss_gen: 2.50060 (2.56114) | > loss_kl: 2.48692 (2.65914) | > loss_feat: 8.31020 (8.70405) | > loss_mel: 16.91032 (17.78337) | > loss_duration: 1.71746 (1.70654) | > loss_1: 31.92550 (33.41420) | > grad_norm_1: 192.58031 (138.21706) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28680 (2.29681) | > loader_time: 0.03840 (0.03571)  --> STEP: 12487/15287 -- GLOBAL_STEP: 977775 | > loss_disc: 2.35048 (2.31881) | > loss_disc_real_0: 0.14178 (0.12258) | > loss_disc_real_1: 0.21335 (0.21151) | > loss_disc_real_2: 0.20918 (0.21566) | > loss_disc_real_3: 0.22074 (0.21894) | > loss_disc_real_4: 0.22302 (0.21470) | > loss_disc_real_5: 0.21631 (0.21363) | > loss_0: 2.35048 (2.31881) | > grad_norm_0: 9.22932 (16.78535) | > loss_gen: 2.50734 (2.56111) | > loss_kl: 2.56550 (2.65909) | > loss_feat: 8.59428 (8.70404) | > loss_mel: 17.69620 (17.78311) | > loss_duration: 1.71535 (1.70655) | > loss_1: 33.07867 (33.41385) | > grad_norm_1: 120.73746 (138.21678) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.49650 (2.29684) | > loader_time: 0.03780 (0.03571)  --> STEP: 12512/15287 -- GLOBAL_STEP: 977800 | > loss_disc: 2.26639 (2.31881) | > loss_disc_real_0: 0.13191 (0.12258) | > loss_disc_real_1: 0.20660 (0.21151) | > loss_disc_real_2: 0.19834 (0.21566) | > loss_disc_real_3: 0.20696 (0.21895) | > loss_disc_real_4: 0.19777 (0.21470) | > loss_disc_real_5: 0.22244 (0.21364) | > loss_0: 2.26639 (2.31881) | > grad_norm_0: 6.68272 (16.77425) | > loss_gen: 2.57577 (2.56112) | > loss_kl: 2.65738 (2.65915) | > loss_feat: 8.52589 (8.70398) | > loss_mel: 18.12153 (17.78316) | > loss_duration: 1.71639 (1.70655) | > loss_1: 33.59695 (33.41391) | > grad_norm_1: 74.02023 (138.15311) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.49250 (2.29718) | > loader_time: 0.03170 (0.03570)  --> STEP: 12537/15287 -- GLOBAL_STEP: 977825 | > loss_disc: 2.42231 (2.31894) | > loss_disc_real_0: 0.18495 (0.12260) | > loss_disc_real_1: 0.23985 (0.21152) | > loss_disc_real_2: 0.23060 (0.21568) | > loss_disc_real_3: 0.21534 (0.21895) | > loss_disc_real_4: 0.23750 (0.21471) | > loss_disc_real_5: 0.21461 (0.21365) | > loss_0: 2.42231 (2.31894) | > grad_norm_0: 11.71919 (16.76532) | > loss_gen: 2.63558 (2.56112) | > loss_kl: 2.50792 (2.65918) | > loss_feat: 8.19828 (8.70351) | > loss_mel: 17.41099 (17.78321) | > loss_duration: 1.72094 (1.70657) | > loss_1: 32.47371 (33.41352) | > grad_norm_1: 50.36489 (138.07068) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.46190 (2.29735) | > loader_time: 0.03730 (0.03570)  --> STEP: 12562/15287 -- GLOBAL_STEP: 977850 | > loss_disc: 2.29943 (2.31904) | > loss_disc_real_0: 0.11325 (0.12261) | > loss_disc_real_1: 0.18064 (0.21153) | > loss_disc_real_2: 0.20230 (0.21570) | > loss_disc_real_3: 0.19073 (0.21895) | > loss_disc_real_4: 0.19326 (0.21471) | > loss_disc_real_5: 0.21553 (0.21365) | > loss_0: 2.29943 (2.31904) | > grad_norm_0: 10.51882 (16.75632) | > loss_gen: 2.47517 (2.56106) | > loss_kl: 2.59372 (2.65922) | > loss_feat: 8.54800 (8.70317) | > loss_mel: 18.17109 (17.78358) | > loss_duration: 1.72134 (1.70659) | > loss_1: 33.50932 (33.41354) | > grad_norm_1: 93.93870 (138.01744) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31280 (2.29739) | > loader_time: 0.03380 (0.03570)  --> STEP: 12587/15287 -- GLOBAL_STEP: 977875 | > loss_disc: 2.34522 (2.31911) | > loss_disc_real_0: 0.12553 (0.12261) | > loss_disc_real_1: 0.23483 (0.21153) | > loss_disc_real_2: 0.22907 (0.21571) | > loss_disc_real_3: 0.22250 (0.21896) | > loss_disc_real_4: 0.20845 (0.21472) | > loss_disc_real_5: 0.25187 (0.21366) | > loss_0: 2.34522 (2.31911) | > grad_norm_0: 14.20026 (16.75226) | > loss_gen: 2.51903 (2.56097) | > loss_kl: 2.71495 (2.65919) | > loss_feat: 8.64715 (8.70286) | > loss_mel: 17.68012 (17.78380) | > loss_duration: 1.72406 (1.70660) | > loss_1: 33.28531 (33.41333) | > grad_norm_1: 154.94913 (137.99103) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43030 (2.29752) | > loader_time: 0.03940 (0.03569)  --> STEP: 12612/15287 -- GLOBAL_STEP: 977900 | > loss_disc: 2.29276 (2.31908) | > loss_disc_real_0: 0.16259 (0.12261) | > loss_disc_real_1: 0.18452 (0.21152) | > loss_disc_real_2: 0.18985 (0.21570) | > loss_disc_real_3: 0.20709 (0.21895) | > loss_disc_real_4: 0.18712 (0.21472) | > loss_disc_real_5: 0.21509 (0.21366) | > loss_0: 2.29276 (2.31908) | > grad_norm_0: 8.95855 (16.74515) | > loss_gen: 2.49965 (2.56094) | > loss_kl: 2.78418 (2.65921) | > loss_feat: 8.92387 (8.70282) | > loss_mel: 17.77877 (17.78358) | > loss_duration: 1.68273 (1.70660) | > loss_1: 33.66921 (33.41307) | > grad_norm_1: 164.89590 (137.96809) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.16520 (2.29761) | > loader_time: 0.04050 (0.03569)  --> STEP: 12637/15287 -- GLOBAL_STEP: 977925 | > loss_disc: 2.35477 (2.31910) | > loss_disc_real_0: 0.13755 (0.12260) | > loss_disc_real_1: 0.21880 (0.21151) | > loss_disc_real_2: 0.21962 (0.21569) | > loss_disc_real_3: 0.22000 (0.21895) | > loss_disc_real_4: 0.21297 (0.21472) | > loss_disc_real_5: 0.22101 (0.21366) | > loss_0: 2.35477 (2.31910) | > grad_norm_0: 16.02801 (16.73789) | > loss_gen: 2.54587 (2.56086) | > loss_kl: 2.64889 (2.65925) | > loss_feat: 8.49676 (8.70272) | > loss_mel: 17.46431 (17.78368) | > loss_duration: 1.68672 (1.70659) | > loss_1: 32.84254 (33.41303) | > grad_norm_1: 146.48180 (137.94209) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.71470 (2.29800) | > loader_time: 0.03190 (0.03569)  --> STEP: 12662/15287 -- GLOBAL_STEP: 977950 | > loss_disc: 2.40599 (2.31910) | > loss_disc_real_0: 0.12913 (0.12260) | > loss_disc_real_1: 0.29555 (0.21151) | > loss_disc_real_2: 0.27791 (0.21569) | > loss_disc_real_3: 0.20306 (0.21896) | > loss_disc_real_4: 0.22164 (0.21472) | > loss_disc_real_5: 0.21771 (0.21366) | > loss_0: 2.40599 (2.31910) | > grad_norm_0: 15.48577 (16.73210) | > loss_gen: 2.61031 (2.56087) | > loss_kl: 2.70182 (2.65923) | > loss_feat: 8.55371 (8.70276) | > loss_mel: 17.77951 (17.78374) | > loss_duration: 1.69781 (1.70661) | > loss_1: 33.34317 (33.41313) | > grad_norm_1: 63.51368 (137.86969) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.74210 (2.29820) | > loader_time: 0.04100 (0.03569)  --> STEP: 12687/15287 -- GLOBAL_STEP: 977975 | > loss_disc: 2.28008 (2.31907) | > loss_disc_real_0: 0.12851 (0.12258) | > loss_disc_real_1: 0.17766 (0.21151) | > loss_disc_real_2: 0.19156 (0.21568) | > loss_disc_real_3: 0.24633 (0.21896) | > loss_disc_real_4: 0.21264 (0.21472) | > loss_disc_real_5: 0.27273 (0.21367) | > loss_0: 2.28008 (2.31907) | > grad_norm_0: 12.96521 (16.72299) | > loss_gen: 2.63437 (2.56081) | > loss_kl: 2.67927 (2.65932) | > loss_feat: 8.97260 (8.70266) | > loss_mel: 17.78835 (17.78395) | > loss_duration: 1.69467 (1.70662) | > loss_1: 33.76927 (33.41330) | > grad_norm_1: 159.36722 (137.83318) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28290 (2.29824) | > loader_time: 0.03250 (0.03569)  --> STEP: 12712/15287 -- GLOBAL_STEP: 978000 | > loss_disc: 2.24643 (2.31905) | > loss_disc_real_0: 0.14180 (0.12258) | > loss_disc_real_1: 0.18265 (0.21150) | > loss_disc_real_2: 0.20792 (0.21568) | > loss_disc_real_3: 0.20775 (0.21896) | > loss_disc_real_4: 0.22260 (0.21472) | > loss_disc_real_5: 0.20177 (0.21366) | > loss_0: 2.24643 (2.31905) | > grad_norm_0: 20.52602 (16.72223) | > loss_gen: 2.65538 (2.56083) | > loss_kl: 2.61897 (2.65934) | > loss_feat: 9.26265 (8.70266) | > loss_mel: 17.63227 (17.78392) | > loss_duration: 1.67777 (1.70661) | > loss_1: 33.84705 (33.41330) | > grad_norm_1: 57.11745 (137.84885) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03680 (2.29878) | > loader_time: 0.03510 (0.03568)  --> STEP: 12737/15287 -- GLOBAL_STEP: 978025 | > loss_disc: 2.38308 (2.31904) | > loss_disc_real_0: 0.10762 (0.12260) | > loss_disc_real_1: 0.21686 (0.21150) | > loss_disc_real_2: 0.19964 (0.21568) | > loss_disc_real_3: 0.20414 (0.21896) | > loss_disc_real_4: 0.19120 (0.21471) | > loss_disc_real_5: 0.27751 (0.21368) | > loss_0: 2.38308 (2.31904) | > grad_norm_0: 11.97577 (16.72754) | > loss_gen: 2.22571 (2.56090) | > loss_kl: 2.63053 (2.65932) | > loss_feat: 8.41928 (8.70263) | > loss_mel: 17.78237 (17.78394) | > loss_duration: 1.72035 (1.70662) | > loss_1: 32.77824 (33.41335) | > grad_norm_1: 105.60355 (137.85382) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22600 (2.29900) | > loader_time: 0.03170 (0.03569)  --> STEP: 12762/15287 -- GLOBAL_STEP: 978050 | > loss_disc: 2.42494 (2.31908) | > loss_disc_real_0: 0.11428 (0.12261) | > loss_disc_real_1: 0.24755 (0.21151) | > loss_disc_real_2: 0.24324 (0.21569) | > loss_disc_real_3: 0.26681 (0.21897) | > loss_disc_real_4: 0.18863 (0.21471) | > loss_disc_real_5: 0.21286 (0.21368) | > loss_0: 2.42494 (2.31908) | > grad_norm_0: 8.04403 (16.71739) | > loss_gen: 2.40114 (2.56094) | > loss_kl: 2.69861 (2.65936) | > loss_feat: 8.36678 (8.70267) | > loss_mel: 17.87170 (17.78392) | > loss_duration: 1.72745 (1.70664) | > loss_1: 33.06568 (33.41347) | > grad_norm_1: 77.24290 (137.73648) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40260 (2.29906) | > loader_time: 0.03240 (0.03568)  --> STEP: 12787/15287 -- GLOBAL_STEP: 978075 | > loss_disc: 2.37379 (2.31916) | > loss_disc_real_0: 0.17258 (0.12264) | > loss_disc_real_1: 0.24960 (0.21152) | > loss_disc_real_2: 0.23269 (0.21570) | > loss_disc_real_3: 0.22895 (0.21896) | > loss_disc_real_4: 0.23255 (0.21472) | > loss_disc_real_5: 0.21458 (0.21368) | > loss_0: 2.37379 (2.31916) | > grad_norm_0: 29.04944 (16.70858) | > loss_gen: 2.65124 (2.56097) | > loss_kl: 2.56826 (2.65935) | > loss_feat: 8.46076 (8.70239) | > loss_mel: 18.10367 (17.78405) | > loss_duration: 1.73402 (1.70665) | > loss_1: 33.51794 (33.41334) | > grad_norm_1: 136.59273 (137.61884) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.54940 (2.29925) | > loader_time: 0.04240 (0.03568)  --> STEP: 12812/15287 -- GLOBAL_STEP: 978100 | > loss_disc: 2.29818 (2.31921) | > loss_disc_real_0: 0.11427 (0.12265) | > loss_disc_real_1: 0.21929 (0.21152) | > loss_disc_real_2: 0.21719 (0.21571) | > loss_disc_real_3: 0.22753 (0.21897) | > loss_disc_real_4: 0.20262 (0.21472) | > loss_disc_real_5: 0.22747 (0.21368) | > loss_0: 2.29818 (2.31921) | > grad_norm_0: 10.11051 (16.71089) | > loss_gen: 2.54965 (2.56095) | > loss_kl: 2.57702 (2.65930) | > loss_feat: 8.49750 (8.70220) | > loss_mel: 17.69837 (17.78411) | > loss_duration: 1.68116 (1.70665) | > loss_1: 33.00370 (33.41314) | > grad_norm_1: 147.24568 (137.58344) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25950 (2.29973) | > loader_time: 0.03400 (0.03568)  --> STEP: 12837/15287 -- GLOBAL_STEP: 978125 | > loss_disc: 2.32658 (2.31919) | > loss_disc_real_0: 0.09515 (0.12263) | > loss_disc_real_1: 0.21958 (0.21151) | > loss_disc_real_2: 0.20969 (0.21572) | > loss_disc_real_3: 0.21693 (0.21898) | > loss_disc_real_4: 0.20099 (0.21473) | > loss_disc_real_5: 0.22359 (0.21368) | > loss_0: 2.32658 (2.31919) | > grad_norm_0: 11.02321 (16.70881) | > loss_gen: 2.58261 (2.56100) | > loss_kl: 2.53203 (2.65925) | > loss_feat: 8.33864 (8.70216) | > loss_mel: 17.48372 (17.78393) | > loss_duration: 1.70455 (1.70667) | > loss_1: 32.64156 (33.41295) | > grad_norm_1: 143.23560 (137.55429) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.59970 (2.30001) | > loader_time: 0.03170 (0.03568)  --> STEP: 12862/15287 -- GLOBAL_STEP: 978150 | > loss_disc: 2.29300 (2.31914) | > loss_disc_real_0: 0.09005 (0.12262) | > loss_disc_real_1: 0.20013 (0.21151) | > loss_disc_real_2: 0.21436 (0.21572) | > loss_disc_real_3: 0.19873 (0.21898) | > loss_disc_real_4: 0.22295 (0.21473) | > loss_disc_real_5: 0.22367 (0.21368) | > loss_0: 2.29300 (2.31914) | > grad_norm_0: 16.84689 (16.70607) | > loss_gen: 2.65593 (2.56099) | > loss_kl: 2.64836 (2.65926) | > loss_feat: 9.27151 (8.70219) | > loss_mel: 18.22610 (17.78389) | > loss_duration: 1.73350 (1.70668) | > loss_1: 34.53540 (33.41294) | > grad_norm_1: 166.87454 (137.56282) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89740 (2.30015) | > loader_time: 0.03640 (0.03567)  --> STEP: 12887/15287 -- GLOBAL_STEP: 978175 | > loss_disc: 2.34141 (2.31908) | > loss_disc_real_0: 0.16106 (0.12262) | > loss_disc_real_1: 0.19337 (0.21149) | > loss_disc_real_2: 0.20464 (0.21571) | > loss_disc_real_3: 0.21733 (0.21897) | > loss_disc_real_4: 0.21558 (0.21473) | > loss_disc_real_5: 0.24501 (0.21368) | > loss_0: 2.34141 (2.31908) | > grad_norm_0: 22.51304 (16.70275) | > loss_gen: 2.48838 (2.56097) | > loss_kl: 2.61319 (2.65923) | > loss_feat: 8.39753 (8.70221) | > loss_mel: 17.44521 (17.78344) | > loss_duration: 1.65893 (1.70669) | > loss_1: 32.60324 (33.41249) | > grad_norm_1: 99.66394 (137.56650) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44440 (2.30062) | > loader_time: 0.03650 (0.03567)  --> STEP: 12912/15287 -- GLOBAL_STEP: 978200 | > loss_disc: 2.30120 (2.31900) | > loss_disc_real_0: 0.12288 (0.12260) | > loss_disc_real_1: 0.20212 (0.21149) | > loss_disc_real_2: 0.26521 (0.21571) | > loss_disc_real_3: 0.21070 (0.21897) | > loss_disc_real_4: 0.21613 (0.21472) | > loss_disc_real_5: 0.20801 (0.21367) | > loss_0: 2.30120 (2.31900) | > grad_norm_0: 35.11708 (16.70287) | > loss_gen: 2.50227 (2.56099) | > loss_kl: 2.55579 (2.65919) | > loss_feat: 8.44043 (8.70241) | > loss_mel: 17.32022 (17.78328) | > loss_duration: 1.72710 (1.70670) | > loss_1: 32.54581 (33.41253) | > grad_norm_1: 119.64092 (137.54767) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44390 (2.30126) | > loader_time: 0.03910 (0.03567)  --> STEP: 12937/15287 -- GLOBAL_STEP: 978225 | > loss_disc: 2.26145 (2.31895) | > loss_disc_real_0: 0.10142 (0.12258) | > loss_disc_real_1: 0.22777 (0.21149) | > loss_disc_real_2: 0.20055 (0.21569) | > loss_disc_real_3: 0.26750 (0.21895) | > loss_disc_real_4: 0.21152 (0.21471) | > loss_disc_real_5: 0.21647 (0.21367) | > loss_0: 2.26145 (2.31895) | > grad_norm_0: 29.30507 (16.70707) | > loss_gen: 2.56875 (2.56092) | > loss_kl: 2.66360 (2.65919) | > loss_feat: 8.62767 (8.70253) | > loss_mel: 16.93806 (17.78292) | > loss_duration: 1.72302 (1.70671) | > loss_1: 32.52110 (33.41223) | > grad_norm_1: 196.69418 (137.59676) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58650 (2.30154) | > loader_time: 0.03500 (0.03567)  --> STEP: 12962/15287 -- GLOBAL_STEP: 978250 | > loss_disc: 2.25290 (2.31887) | > loss_disc_real_0: 0.10855 (0.12256) | > loss_disc_real_1: 0.23213 (0.21147) | > loss_disc_real_2: 0.21962 (0.21568) | > loss_disc_real_3: 0.20611 (0.21895) | > loss_disc_real_4: 0.18063 (0.21470) | > loss_disc_real_5: 0.17192 (0.21366) | > loss_0: 2.25290 (2.31887) | > grad_norm_0: 9.06559 (16.71138) | > loss_gen: 2.64123 (2.56091) | > loss_kl: 2.64801 (2.65921) | > loss_feat: 9.52668 (8.70271) | > loss_mel: 17.52165 (17.78263) | > loss_duration: 1.71956 (1.70674) | > loss_1: 34.05714 (33.41217) | > grad_norm_1: 109.86116 (137.64468) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88860 (2.30176) | > loader_time: 0.03270 (0.03567)  --> STEP: 12987/15287 -- GLOBAL_STEP: 978275 | > loss_disc: 2.42273 (2.31883) | > loss_disc_real_0: 0.20410 (0.12259) | > loss_disc_real_1: 0.29268 (0.21148) | > loss_disc_real_2: 0.27302 (0.21568) | > loss_disc_real_3: 0.25522 (0.21895) | > loss_disc_real_4: 0.24519 (0.21470) | > loss_disc_real_5: 0.24774 (0.21367) | > loss_0: 2.42273 (2.31883) | > grad_norm_0: 12.74289 (16.70740) | > loss_gen: 2.53778 (2.56101) | > loss_kl: 2.68662 (2.65922) | > loss_feat: 8.46605 (8.70285) | > loss_mel: 17.63498 (17.78241) | > loss_duration: 1.68669 (1.70674) | > loss_1: 33.01212 (33.41219) | > grad_norm_1: 84.94324 (137.58708) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.34020 (2.30193) | > loader_time: 0.03280 (0.03567)  --> STEP: 13012/15287 -- GLOBAL_STEP: 978300 | > loss_disc: 2.28123 (2.31883) | > loss_disc_real_0: 0.10609 (0.12258) | > loss_disc_real_1: 0.22409 (0.21148) | > loss_disc_real_2: 0.23511 (0.21568) | > loss_disc_real_3: 0.22638 (0.21895) | > loss_disc_real_4: 0.21366 (0.21470) | > loss_disc_real_5: 0.20306 (0.21366) | > loss_0: 2.28123 (2.31883) | > grad_norm_0: 8.67554 (16.69582) | > loss_gen: 2.45804 (2.56096) | > loss_kl: 2.59581 (2.65923) | > loss_feat: 9.24924 (8.70267) | > loss_mel: 17.95449 (17.78214) | > loss_duration: 1.70180 (1.70674) | > loss_1: 33.95938 (33.41171) | > grad_norm_1: 106.86102 (137.53302) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31630 (2.30198) | > loader_time: 0.03470 (0.03567)  --> STEP: 13037/15287 -- GLOBAL_STEP: 978325 | > loss_disc: 2.33970 (2.31880) | > loss_disc_real_0: 0.10852 (0.12257) | > loss_disc_real_1: 0.20158 (0.21147) | > loss_disc_real_2: 0.20346 (0.21568) | > loss_disc_real_3: 0.20989 (0.21894) | > loss_disc_real_4: 0.20892 (0.21470) | > loss_disc_real_5: 0.22163 (0.21366) | > loss_0: 2.33970 (2.31880) | > grad_norm_0: 6.99808 (16.69332) | > loss_gen: 2.63503 (2.56094) | > loss_kl: 2.80902 (2.65925) | > loss_feat: 8.85570 (8.70277) | > loss_mel: 17.36424 (17.78199) | > loss_duration: 1.72125 (1.70674) | > loss_1: 33.38525 (33.41165) | > grad_norm_1: 154.50542 (137.55382) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99680 (2.30225) | > loader_time: 0.03310 (0.03566)  --> STEP: 13062/15287 -- GLOBAL_STEP: 978350 | > loss_disc: 2.24799 (2.31879) | > loss_disc_real_0: 0.09520 (0.12256) | > loss_disc_real_1: 0.16684 (0.21145) | > loss_disc_real_2: 0.20836 (0.21568) | > loss_disc_real_3: 0.21273 (0.21894) | > loss_disc_real_4: 0.20580 (0.21470) | > loss_disc_real_5: 0.18404 (0.21366) | > loss_0: 2.24799 (2.31879) | > grad_norm_0: 17.35678 (16.69214) | > loss_gen: 2.66297 (2.56089) | > loss_kl: 2.64572 (2.65925) | > loss_feat: 9.23280 (8.70278) | > loss_mel: 18.32256 (17.78197) | > loss_duration: 1.72876 (1.70676) | > loss_1: 34.59281 (33.41160) | > grad_norm_1: 167.25821 (137.54298) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05590 (2.30258) | > loader_time: 0.03670 (0.03567)  --> STEP: 13087/15287 -- GLOBAL_STEP: 978375 | > loss_disc: 2.30875 (2.31881) | > loss_disc_real_0: 0.10737 (0.12257) | > loss_disc_real_1: 0.22025 (0.21146) | > loss_disc_real_2: 0.19544 (0.21567) | > loss_disc_real_3: 0.24150 (0.21893) | > loss_disc_real_4: 0.24648 (0.21471) | > loss_disc_real_5: 0.18527 (0.21366) | > loss_0: 2.30875 (2.31881) | > grad_norm_0: 9.92614 (16.68600) | > loss_gen: 2.49887 (2.56089) | > loss_kl: 2.69045 (2.65927) | > loss_feat: 8.51302 (8.70269) | > loss_mel: 17.34717 (17.78192) | > loss_duration: 1.70689 (1.70676) | > loss_1: 32.75640 (33.41149) | > grad_norm_1: 130.10945 (137.51831) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01200 (2.30257) | > loader_time: 0.03710 (0.03566)  --> STEP: 13112/15287 -- GLOBAL_STEP: 978400 | > loss_disc: 2.32854 (2.31882) | > loss_disc_real_0: 0.11933 (0.12258) | > loss_disc_real_1: 0.21130 (0.21145) | > loss_disc_real_2: 0.20802 (0.21567) | > loss_disc_real_3: 0.21945 (0.21894) | > loss_disc_real_4: 0.21180 (0.21472) | > loss_disc_real_5: 0.23700 (0.21367) | > loss_0: 2.32854 (2.31882) | > grad_norm_0: 21.68337 (16.68436) | > loss_gen: 2.45325 (2.56096) | > loss_kl: 2.66734 (2.65933) | > loss_feat: 8.38342 (8.70255) | > loss_mel: 18.03461 (17.78173) | > loss_duration: 1.68519 (1.70676) | > loss_1: 33.22382 (33.41126) | > grad_norm_1: 165.59778 (137.54184) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.64590 (2.30304) | > loader_time: 0.03540 (0.03566)  --> STEP: 13137/15287 -- GLOBAL_STEP: 978425 | > loss_disc: 2.38841 (2.31885) | > loss_disc_real_0: 0.15733 (0.12258) | > loss_disc_real_1: 0.26321 (0.21145) | > loss_disc_real_2: 0.26179 (0.21568) | > loss_disc_real_3: 0.24166 (0.21893) | > loss_disc_real_4: 0.23288 (0.21472) | > loss_disc_real_5: 0.22150 (0.21366) | > loss_0: 2.38841 (2.31885) | > grad_norm_0: 6.78282 (16.67843) | > loss_gen: 2.51374 (2.56090) | > loss_kl: 2.54818 (2.65934) | > loss_feat: 8.57218 (8.70216) | > loss_mel: 17.42540 (17.78144) | > loss_duration: 1.72394 (1.70677) | > loss_1: 32.78345 (33.41055) | > grad_norm_1: 92.38931 (137.50977) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.33020 (2.30320) | > loader_time: 0.04680 (0.03566)  --> STEP: 13162/15287 -- GLOBAL_STEP: 978450 | > loss_disc: 2.36696 (2.31885) | > loss_disc_real_0: 0.17377 (0.12259) | > loss_disc_real_1: 0.22059 (0.21145) | > loss_disc_real_2: 0.22346 (0.21569) | > loss_disc_real_3: 0.22846 (0.21893) | > loss_disc_real_4: 0.23431 (0.21471) | > loss_disc_real_5: 0.19773 (0.21365) | > loss_0: 2.36696 (2.31885) | > grad_norm_0: 13.67553 (16.68530) | > loss_gen: 2.48877 (2.56085) | > loss_kl: 2.76680 (2.65933) | > loss_feat: 8.25532 (8.70214) | > loss_mel: 17.27374 (17.78160) | > loss_duration: 1.70638 (1.70677) | > loss_1: 32.49102 (33.41063) | > grad_norm_1: 75.12035 (137.50778) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35230 (2.30324) | > loader_time: 0.05640 (0.03566)  --> STEP: 13187/15287 -- GLOBAL_STEP: 978475 | > loss_disc: 2.37979 (2.31881) | > loss_disc_real_0: 0.12136 (0.12258) | > loss_disc_real_1: 0.20850 (0.21145) | > loss_disc_real_2: 0.20412 (0.21568) | > loss_disc_real_3: 0.20264 (0.21892) | > loss_disc_real_4: 0.20991 (0.21471) | > loss_disc_real_5: 0.21079 (0.21365) | > loss_0: 2.37979 (2.31881) | > grad_norm_0: 15.27001 (16.68188) | > loss_gen: 2.38718 (2.56089) | > loss_kl: 2.62627 (2.65929) | > loss_feat: 8.26492 (8.70238) | > loss_mel: 17.14600 (17.78163) | > loss_duration: 1.75885 (1.70679) | > loss_1: 32.18321 (33.41091) | > grad_norm_1: 160.99229 (137.48949) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06600 (2.30349) | > loader_time: 0.03600 (0.03566)  --> STEP: 13212/15287 -- GLOBAL_STEP: 978500 | > loss_disc: 2.26663 (2.31883) | > loss_disc_real_0: 0.13113 (0.12259) | > loss_disc_real_1: 0.20702 (0.21145) | > loss_disc_real_2: 0.22335 (0.21568) | > loss_disc_real_3: 0.18661 (0.21892) | > loss_disc_real_4: 0.17990 (0.21472) | > loss_disc_real_5: 0.19530 (0.21366) | > loss_0: 2.26663 (2.31883) | > grad_norm_0: 18.91704 (16.68451) | > loss_gen: 2.55169 (2.56089) | > loss_kl: 2.63894 (2.65926) | > loss_feat: 8.69497 (8.70240) | > loss_mel: 17.96263 (17.78169) | > loss_duration: 1.72254 (1.70680) | > loss_1: 33.57077 (33.41097) | > grad_norm_1: 173.41652 (137.49945) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.65180 (2.30390) | > loader_time: 0.03660 (0.03567)  --> STEP: 13237/15287 -- GLOBAL_STEP: 978525 | > loss_disc: 2.28464 (2.31886) | > loss_disc_real_0: 0.12620 (0.12262) | > loss_disc_real_1: 0.23666 (0.21147) | > loss_disc_real_2: 0.22236 (0.21568) | > loss_disc_real_3: 0.23243 (0.21892) | > loss_disc_real_4: 0.23114 (0.21472) | > loss_disc_real_5: 0.21768 (0.21366) | > loss_0: 2.28464 (2.31886) | > grad_norm_0: 12.16574 (16.67999) | > loss_gen: 2.57652 (2.56095) | > loss_kl: 2.75276 (2.65926) | > loss_feat: 9.18060 (8.70222) | > loss_mel: 18.05467 (17.78161) | > loss_duration: 1.68804 (1.70680) | > loss_1: 34.25259 (33.41076) | > grad_norm_1: 146.92384 (137.48048) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72130 (2.30414) | > loader_time: 0.03480 (0.03567)  --> STEP: 13262/15287 -- GLOBAL_STEP: 978550 | > loss_disc: 2.34753 (2.31885) | > loss_disc_real_0: 0.12440 (0.12261) | > loss_disc_real_1: 0.23534 (0.21147) | > loss_disc_real_2: 0.22632 (0.21568) | > loss_disc_real_3: 0.23371 (0.21892) | > loss_disc_real_4: 0.24611 (0.21472) | > loss_disc_real_5: 0.20609 (0.21366) | > loss_0: 2.34753 (2.31885) | > grad_norm_0: 9.52910 (16.67179) | > loss_gen: 2.71948 (2.56097) | > loss_kl: 2.63113 (2.65932) | > loss_feat: 9.12374 (8.70232) | > loss_mel: 17.48975 (17.78182) | > loss_duration: 1.69999 (1.70679) | > loss_1: 33.66409 (33.41113) | > grad_norm_1: 101.98300 (137.43452) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.62520 (2.30447) | > loader_time: 0.03540 (0.03567)  --> STEP: 13287/15287 -- GLOBAL_STEP: 978575 | > loss_disc: 2.31402 (2.31885) | > loss_disc_real_0: 0.12073 (0.12259) | > loss_disc_real_1: 0.17993 (0.21147) | > loss_disc_real_2: 0.21286 (0.21568) | > loss_disc_real_3: 0.21731 (0.21891) | > loss_disc_real_4: 0.17583 (0.21472) | > loss_disc_real_5: 0.23209 (0.21367) | > loss_0: 2.31402 (2.31885) | > grad_norm_0: 10.17350 (16.66459) | > loss_gen: 2.64555 (2.56093) | > loss_kl: 2.77136 (2.65938) | > loss_feat: 8.75422 (8.70246) | > loss_mel: 17.85049 (17.78193) | > loss_duration: 1.70633 (1.70680) | > loss_1: 33.72795 (33.41145) | > grad_norm_1: 144.48628 (137.37244) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16070 (2.30496) | > loader_time: 0.03730 (0.03567)  --> STEP: 13312/15287 -- GLOBAL_STEP: 978600 | > loss_disc: 2.29770 (2.31894) | > loss_disc_real_0: 0.12765 (0.12260) | > loss_disc_real_1: 0.19094 (0.21147) | > loss_disc_real_2: 0.22273 (0.21568) | > loss_disc_real_3: 0.19099 (0.21892) | > loss_disc_real_4: 0.20832 (0.21473) | > loss_disc_real_5: 0.19352 (0.21367) | > loss_0: 2.29770 (2.31894) | > grad_norm_0: 26.15961 (16.66451) | > loss_gen: 2.40957 (2.56082) | > loss_kl: 2.67444 (2.65936) | > loss_feat: 8.77111 (8.70222) | > loss_mel: 17.79071 (17.78198) | > loss_duration: 1.71886 (1.70681) | > loss_1: 33.36468 (33.41113) | > grad_norm_1: 72.09589 (137.35030) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.01870 (2.30526) | > loader_time: 0.04250 (0.03567)  --> STEP: 13337/15287 -- GLOBAL_STEP: 978625 | > loss_disc: 2.29675 (2.31885) | > loss_disc_real_0: 0.12294 (0.12258) | > loss_disc_real_1: 0.22390 (0.21145) | > loss_disc_real_2: 0.20169 (0.21566) | > loss_disc_real_3: 0.22718 (0.21892) | > loss_disc_real_4: 0.22600 (0.21473) | > loss_disc_real_5: 0.23008 (0.21367) | > loss_0: 2.29675 (2.31885) | > grad_norm_0: 16.54569 (16.66807) | > loss_gen: 2.63007 (2.56081) | > loss_kl: 2.83022 (2.65939) | > loss_feat: 8.70070 (8.70237) | > loss_mel: 18.28330 (17.78186) | > loss_duration: 1.68420 (1.70681) | > loss_1: 34.12849 (33.41117) | > grad_norm_1: 177.27133 (137.38652) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.48910 (2.30547) | > loader_time: 0.03220 (0.03567)  --> STEP: 13362/15287 -- GLOBAL_STEP: 978650 | > loss_disc: 2.28941 (2.31886) | > loss_disc_real_0: 0.11581 (0.12258) | > loss_disc_real_1: 0.18235 (0.21144) | > loss_disc_real_2: 0.19627 (0.21566) | > loss_disc_real_3: 0.23952 (0.21892) | > loss_disc_real_4: 0.23587 (0.21473) | > loss_disc_real_5: 0.23890 (0.21366) | > loss_0: 2.28941 (2.31886) | > grad_norm_0: 13.12097 (16.66828) | > loss_gen: 2.57437 (2.56076) | > loss_kl: 2.75746 (2.65942) | > loss_feat: 8.96902 (8.70245) | > loss_mel: 17.83796 (17.78175) | > loss_duration: 1.70204 (1.70680) | > loss_1: 33.84085 (33.41111) | > grad_norm_1: 84.80072 (137.38936) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36720 (2.30572) | > loader_time: 0.03020 (0.03566)  --> STEP: 13387/15287 -- GLOBAL_STEP: 978675 | > loss_disc: 2.39634 (2.31887) | > loss_disc_real_0: 0.15536 (0.12259) | > loss_disc_real_1: 0.22518 (0.21145) | > loss_disc_real_2: 0.22190 (0.21567) | > loss_disc_real_3: 0.24260 (0.21892) | > loss_disc_real_4: 0.24601 (0.21474) | > loss_disc_real_5: 0.20038 (0.21366) | > loss_0: 2.39634 (2.31887) | > grad_norm_0: 16.90734 (16.65925) | > loss_gen: 2.35521 (2.56078) | > loss_kl: 2.81070 (2.65949) | > loss_feat: 9.02666 (8.70230) | > loss_mel: 18.52142 (17.78174) | > loss_duration: 1.70530 (1.70679) | > loss_1: 34.41929 (33.41103) | > grad_norm_1: 68.66223 (137.29810) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42490 (2.30581) | > loader_time: 0.03480 (0.03566)  --> STEP: 13412/15287 -- GLOBAL_STEP: 978700 | > loss_disc: 2.42736 (2.31893) | > loss_disc_real_0: 0.17347 (0.12260) | > loss_disc_real_1: 0.23854 (0.21145) | > loss_disc_real_2: 0.23733 (0.21567) | > loss_disc_real_3: 0.26613 (0.21892) | > loss_disc_real_4: 0.23176 (0.21474) | > loss_disc_real_5: 0.22369 (0.21367) | > loss_0: 2.42736 (2.31893) | > grad_norm_0: 25.35831 (16.64833) | > loss_gen: 2.62539 (2.56078) | > loss_kl: 2.80805 (2.65953) | > loss_feat: 8.04896 (8.70222) | > loss_mel: 18.19469 (17.78196) | > loss_duration: 1.73613 (1.70680) | > loss_1: 33.41322 (33.41123) | > grad_norm_1: 90.84090 (137.20692) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11620 (2.30583) | > loader_time: 0.03200 (0.03566)  --> STEP: 13437/15287 -- GLOBAL_STEP: 978725 | > loss_disc: 2.30213 (2.31903) | > loss_disc_real_0: 0.10553 (0.12260) | > loss_disc_real_1: 0.22099 (0.21146) | > loss_disc_real_2: 0.21255 (0.21568) | > loss_disc_real_3: 0.20176 (0.21893) | > loss_disc_real_4: 0.20205 (0.21474) | > loss_disc_real_5: 0.18216 (0.21368) | > loss_0: 2.30213 (2.31903) | > grad_norm_0: 15.63656 (16.64699) | > loss_gen: 2.51900 (2.56067) | > loss_kl: 2.57865 (2.65953) | > loss_feat: 8.69851 (8.70170) | > loss_mel: 17.89329 (17.78222) | > loss_duration: 1.66946 (1.70681) | > loss_1: 33.35891 (33.41087) | > grad_norm_1: 165.56097 (137.16309) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96470 (2.30605) | > loader_time: 0.03640 (0.03566)  --> STEP: 13462/15287 -- GLOBAL_STEP: 978750 | > loss_disc: 2.28104 (2.31897) | > loss_disc_real_0: 0.10313 (0.12259) | > loss_disc_real_1: 0.20176 (0.21146) | > loss_disc_real_2: 0.20420 (0.21567) | > loss_disc_real_3: 0.22318 (0.21892) | > loss_disc_real_4: 0.19910 (0.21473) | > loss_disc_real_5: 0.21024 (0.21367) | > loss_0: 2.28104 (2.31897) | > grad_norm_0: 13.77907 (16.65409) | > loss_gen: 2.63400 (2.56066) | > loss_kl: 2.53804 (2.65945) | > loss_feat: 8.49453 (8.70165) | > loss_mel: 17.68940 (17.78208) | > loss_duration: 1.74080 (1.70682) | > loss_1: 33.09676 (33.41059) | > grad_norm_1: 175.14534 (137.20035) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.97390 (2.30625) | > loader_time: 0.03090 (0.03566)  --> STEP: 13487/15287 -- GLOBAL_STEP: 978775 | > loss_disc: 2.32024 (2.31892) | > loss_disc_real_0: 0.10852 (0.12258) | > loss_disc_real_1: 0.23787 (0.21145) | > loss_disc_real_2: 0.22186 (0.21568) | > loss_disc_real_3: 0.25608 (0.21893) | > loss_disc_real_4: 0.25401 (0.21473) | > loss_disc_real_5: 0.24558 (0.21367) | > loss_0: 2.32024 (2.31892) | > grad_norm_0: 15.30480 (16.65720) | > loss_gen: 2.68806 (2.56069) | > loss_kl: 2.54494 (2.65936) | > loss_feat: 8.63045 (8.70161) | > loss_mel: 17.81814 (17.78190) | > loss_duration: 1.66214 (1.70683) | > loss_1: 33.34373 (33.41032) | > grad_norm_1: 112.89896 (137.21931) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43460 (2.30644) | > loader_time: 0.03540 (0.03566)  --> STEP: 13512/15287 -- GLOBAL_STEP: 978800 | > loss_disc: 2.37201 (2.31889) | > loss_disc_real_0: 0.13264 (0.12258) | > loss_disc_real_1: 0.20589 (0.21145) | > loss_disc_real_2: 0.23793 (0.21568) | > loss_disc_real_3: 0.22125 (0.21892) | > loss_disc_real_4: 0.22227 (0.21473) | > loss_disc_real_5: 0.22087 (0.21368) | > loss_0: 2.37201 (2.31889) | > grad_norm_0: 9.76075 (16.65285) | > loss_gen: 2.35922 (2.56066) | > loss_kl: 2.50225 (2.65934) | > loss_feat: 8.01481 (8.70164) | > loss_mel: 17.24824 (17.78167) | > loss_duration: 1.72777 (1.70683) | > loss_1: 31.85229 (33.41006) | > grad_norm_1: 95.75478 (137.18523) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43000 (2.30661) | > loader_time: 0.03550 (0.03566)  --> STEP: 13537/15287 -- GLOBAL_STEP: 978825 | > loss_disc: 2.30927 (2.31888) | > loss_disc_real_0: 0.09182 (0.12258) | > loss_disc_real_1: 0.19233 (0.21147) | > loss_disc_real_2: 0.21684 (0.21567) | > loss_disc_real_3: 0.19192 (0.21892) | > loss_disc_real_4: 0.19439 (0.21472) | > loss_disc_real_5: 0.21143 (0.21368) | > loss_0: 2.30927 (2.31888) | > grad_norm_0: 13.52492 (16.64890) | > loss_gen: 2.36980 (2.56074) | > loss_kl: 2.60151 (2.65939) | > loss_feat: 8.92097 (8.70184) | > loss_mel: 17.66469 (17.78183) | > loss_duration: 1.72414 (1.70684) | > loss_1: 33.28110 (33.41056) | > grad_norm_1: 167.95473 (137.17709) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27120 (2.30666) | > loader_time: 0.03810 (0.03566)  --> STEP: 13562/15287 -- GLOBAL_STEP: 978850 | > loss_disc: 2.24791 (2.31892) | > loss_disc_real_0: 0.09623 (0.12257) | > loss_disc_real_1: 0.19558 (0.21147) | > loss_disc_real_2: 0.19706 (0.21567) | > loss_disc_real_3: 0.22736 (0.21892) | > loss_disc_real_4: 0.20452 (0.21473) | > loss_disc_real_5: 0.20896 (0.21368) | > loss_0: 2.24791 (2.31892) | > grad_norm_0: 13.45920 (16.64358) | > loss_gen: 2.60059 (2.56066) | > loss_kl: 2.57334 (2.65938) | > loss_feat: 8.98279 (8.70162) | > loss_mel: 17.89437 (17.78187) | > loss_duration: 1.72288 (1.70684) | > loss_1: 33.77396 (33.41030) | > grad_norm_1: 118.69336 (137.13107) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20610 (2.30667) | > loader_time: 0.03240 (0.03565)  --> STEP: 13587/15287 -- GLOBAL_STEP: 978875 | > loss_disc: 2.32093 (2.31896) | > loss_disc_real_0: 0.09786 (0.12258) | > loss_disc_real_1: 0.22771 (0.21147) | > loss_disc_real_2: 0.23961 (0.21568) | > loss_disc_real_3: 0.21881 (0.21893) | > loss_disc_real_4: 0.19889 (0.21473) | > loss_disc_real_5: 0.20898 (0.21369) | > loss_0: 2.32093 (2.31896) | > grad_norm_0: 7.13905 (16.64674) | > loss_gen: 2.61909 (2.56067) | > loss_kl: 2.59240 (2.65937) | > loss_feat: 8.93781 (8.70146) | > loss_mel: 18.06562 (17.78192) | > loss_duration: 1.76532 (1.70685) | > loss_1: 33.98025 (33.41018) | > grad_norm_1: 139.85681 (137.14877) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98520 (2.30672) | > loader_time: 0.04060 (0.03565)  --> STEP: 13612/15287 -- GLOBAL_STEP: 978900 | > loss_disc: 2.37263 (2.31896) | > loss_disc_real_0: 0.13787 (0.12259) | > loss_disc_real_1: 0.21755 (0.21147) | > loss_disc_real_2: 0.21108 (0.21568) | > loss_disc_real_3: 0.24729 (0.21893) | > loss_disc_real_4: 0.23207 (0.21473) | > loss_disc_real_5: 0.21795 (0.21368) | > loss_0: 2.37263 (2.31896) | > grad_norm_0: 16.81204 (16.64299) | > loss_gen: 2.53477 (2.56064) | > loss_kl: 2.61149 (2.65935) | > loss_feat: 7.62360 (8.70121) | > loss_mel: 17.02355 (17.78143) | > loss_duration: 1.72400 (1.70685) | > loss_1: 31.51741 (33.40941) | > grad_norm_1: 90.27399 (137.13759) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43300 (2.30679) | > loader_time: 0.03130 (0.03565)  --> STEP: 13637/15287 -- GLOBAL_STEP: 978925 | > loss_disc: 2.34742 (2.31895) | > loss_disc_real_0: 0.12497 (0.12259) | > loss_disc_real_1: 0.19881 (0.21146) | > loss_disc_real_2: 0.24727 (0.21568) | > loss_disc_real_3: 0.24305 (0.21893) | > loss_disc_real_4: 0.21890 (0.21473) | > loss_disc_real_5: 0.23334 (0.21368) | > loss_0: 2.34742 (2.31895) | > grad_norm_0: 22.19571 (16.63733) | > loss_gen: 2.47664 (2.56064) | > loss_kl: 2.75239 (2.65942) | > loss_feat: 9.03265 (8.70150) | > loss_mel: 18.07581 (17.78178) | > loss_duration: 1.71255 (1.70687) | > loss_1: 34.05005 (33.41014) | > grad_norm_1: 153.87885 (137.10223) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40740 (2.30682) | > loader_time: 0.06480 (0.03565)  --> STEP: 13662/15287 -- GLOBAL_STEP: 978950 | > loss_disc: 2.39582 (2.31898) | > loss_disc_real_0: 0.08995 (0.12258) | > loss_disc_real_1: 0.20613 (0.21146) | > loss_disc_real_2: 0.22227 (0.21568) | > loss_disc_real_3: 0.21001 (0.21893) | > loss_disc_real_4: 0.22491 (0.21473) | > loss_disc_real_5: 0.28399 (0.21370) | > loss_0: 2.39582 (2.31898) | > grad_norm_0: 17.73734 (16.64190) | > loss_gen: 2.47362 (2.56058) | > loss_kl: 2.63481 (2.65945) | > loss_feat: 8.51143 (8.70140) | > loss_mel: 17.50043 (17.78153) | > loss_duration: 1.72031 (1.70688) | > loss_1: 32.84061 (33.40977) | > grad_norm_1: 82.05766 (137.09158) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31380 (2.30737) | > loader_time: 0.03590 (0.03565)  --> STEP: 13687/15287 -- GLOBAL_STEP: 978975 | > loss_disc: 2.33145 (2.31893) | > loss_disc_real_0: 0.13027 (0.12256) | > loss_disc_real_1: 0.19710 (0.21146) | > loss_disc_real_2: 0.17963 (0.21568) | > loss_disc_real_3: 0.21372 (0.21894) | > loss_disc_real_4: 0.20935 (0.21473) | > loss_disc_real_5: 0.23533 (0.21371) | > loss_0: 2.33145 (2.31893) | > grad_norm_0: 15.31291 (16.64347) | > loss_gen: 2.52119 (2.56074) | > loss_kl: 2.65811 (2.65951) | > loss_feat: 8.49889 (8.70169) | > loss_mel: 17.53583 (17.78193) | > loss_duration: 1.70355 (1.70689) | > loss_1: 32.91757 (33.41068) | > grad_norm_1: 294.12689 (137.16243) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94280 (2.30797) | > loader_time: 0.03210 (0.03565)  --> STEP: 13712/15287 -- GLOBAL_STEP: 979000 | > loss_disc: 2.32818 (2.31890) | > loss_disc_real_0: 0.13295 (0.12256) | > loss_disc_real_1: 0.23175 (0.21145) | > loss_disc_real_2: 0.22917 (0.21568) | > loss_disc_real_3: 0.22087 (0.21893) | > loss_disc_real_4: 0.20329 (0.21473) | > loss_disc_real_5: 0.23219 (0.21370) | > loss_0: 2.32818 (2.31890) | > grad_norm_0: 66.94492 (16.67896) | > loss_gen: 2.48511 (2.56076) | > loss_kl: 2.62668 (2.65949) | > loss_feat: 7.99893 (8.70157) | > loss_mel: 18.02578 (17.78214) | > loss_duration: 1.72217 (1.70688) | > loss_1: 32.85867 (33.41075) | > grad_norm_1: 247.05666 (137.29048) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25020 (2.30816) | > loader_time: 0.03230 (0.03565)  --> STEP: 13737/15287 -- GLOBAL_STEP: 979025 | > loss_disc: 2.40468 (2.31890) | > loss_disc_real_0: 0.20703 (0.12256) | > loss_disc_real_1: 0.21761 (0.21145) | > loss_disc_real_2: 0.24021 (0.21568) | > loss_disc_real_3: 0.22696 (0.21893) | > loss_disc_real_4: 0.21816 (0.21473) | > loss_disc_real_5: 0.23606 (0.21370) | > loss_0: 2.40468 (2.31890) | > grad_norm_0: 9.90655 (16.68645) | > loss_gen: 2.28722 (2.56076) | > loss_kl: 2.56042 (2.65946) | > loss_feat: 8.76352 (8.70152) | > loss_mel: 17.18144 (17.78196) | > loss_duration: 1.71047 (1.70689) | > loss_1: 32.50307 (33.41050) | > grad_norm_1: 44.50219 (137.29080) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96430 (2.30836) | > loader_time: 0.03080 (0.03564)  --> STEP: 13762/15287 -- GLOBAL_STEP: 979050 | > loss_disc: 2.34935 (2.31894) | > loss_disc_real_0: 0.09243 (0.12257) | > loss_disc_real_1: 0.20046 (0.21145) | > loss_disc_real_2: 0.22043 (0.21569) | > loss_disc_real_3: 0.21420 (0.21893) | > loss_disc_real_4: 0.21781 (0.21474) | > loss_disc_real_5: 0.20253 (0.21371) | > loss_0: 2.34935 (2.31894) | > grad_norm_0: 12.25135 (16.68661) | > loss_gen: 2.42957 (2.56070) | > loss_kl: 2.53352 (2.65953) | > loss_feat: 8.76764 (8.70139) | > loss_mel: 18.21721 (17.78200) | > loss_duration: 1.68675 (1.70689) | > loss_1: 33.63469 (33.41045) | > grad_norm_1: 116.56717 (137.25848) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.74070 (2.30856) | > loader_time: 0.03760 (0.03564)  --> STEP: 13787/15287 -- GLOBAL_STEP: 979075 | > loss_disc: 2.14985 (2.31894) | > loss_disc_real_0: 0.09193 (0.12258) | > loss_disc_real_1: 0.17674 (0.21145) | > loss_disc_real_2: 0.19340 (0.21568) | > loss_disc_real_3: 0.21217 (0.21894) | > loss_disc_real_4: 0.18436 (0.21473) | > loss_disc_real_5: 0.24290 (0.21371) | > loss_0: 2.14985 (2.31894) | > grad_norm_0: 9.74204 (16.68787) | > loss_gen: 2.74526 (2.56067) | > loss_kl: 2.77278 (2.65955) | > loss_feat: 9.58682 (8.70141) | > loss_mel: 18.14137 (17.78193) | > loss_duration: 1.69349 (1.70691) | > loss_1: 34.93972 (33.41041) | > grad_norm_1: 215.63841 (137.28246) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11440 (2.30870) | > loader_time: 0.03120 (0.03564)  --> STEP: 13812/15287 -- GLOBAL_STEP: 979100 | > loss_disc: 2.27899 (2.31894) | > loss_disc_real_0: 0.10483 (0.12257) | > loss_disc_real_1: 0.20412 (0.21145) | > loss_disc_real_2: 0.19461 (0.21567) | > loss_disc_real_3: 0.24213 (0.21895) | > loss_disc_real_4: 0.19082 (0.21473) | > loss_disc_real_5: 0.21253 (0.21371) | > loss_0: 2.27899 (2.31894) | > grad_norm_0: 20.86296 (16.68577) | > loss_gen: 2.50972 (2.56065) | > loss_kl: 2.62702 (2.65950) | > loss_feat: 8.51191 (8.70130) | > loss_mel: 17.75652 (17.78160) | > loss_duration: 1.71600 (1.70693) | > loss_1: 33.12118 (33.40992) | > grad_norm_1: 121.08409 (137.25320) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17310 (2.30883) | > loader_time: 0.03320 (0.03564)  --> STEP: 13837/15287 -- GLOBAL_STEP: 979125 | > loss_disc: 2.45358 (2.31900) | > loss_disc_real_0: 0.22517 (0.12259) | > loss_disc_real_1: 0.21532 (0.21147) | > loss_disc_real_2: 0.17200 (0.21566) | > loss_disc_real_3: 0.23390 (0.21895) | > loss_disc_real_4: 0.25399 (0.21474) | > loss_disc_real_5: 0.20126 (0.21371) | > loss_0: 2.45358 (2.31900) | > grad_norm_0: 17.18515 (16.68024) | > loss_gen: 2.48453 (2.56068) | > loss_kl: 2.63780 (2.65951) | > loss_feat: 8.17043 (8.70116) | > loss_mel: 17.22186 (17.78167) | > loss_duration: 1.66608 (1.70691) | > loss_1: 32.18071 (33.40987) | > grad_norm_1: 159.50262 (137.19398) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56590 (2.30889) | > loader_time: 0.03780 (0.03564)  --> STEP: 13862/15287 -- GLOBAL_STEP: 979150 | > loss_disc: 2.30733 (2.31905) | > loss_disc_real_0: 0.13534 (0.12263) | > loss_disc_real_1: 0.21767 (0.21148) | > loss_disc_real_2: 0.22136 (0.21567) | > loss_disc_real_3: 0.19432 (0.21896) | > loss_disc_real_4: 0.18955 (0.21475) | > loss_disc_real_5: 0.18752 (0.21371) | > loss_0: 2.30733 (2.31905) | > grad_norm_0: 12.23018 (16.67828) | > loss_gen: 2.58365 (2.56072) | > loss_kl: 2.56468 (2.65949) | > loss_feat: 8.61811 (8.70083) | > loss_mel: 17.63867 (17.78176) | > loss_duration: 1.69771 (1.70692) | > loss_1: 33.10283 (33.40964) | > grad_norm_1: 74.65636 (137.15176) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58220 (2.30915) | > loader_time: 0.03550 (0.03564)  --> STEP: 13887/15287 -- GLOBAL_STEP: 979175 | > loss_disc: 2.36199 (2.31914) | > loss_disc_real_0: 0.10682 (0.12264) | > loss_disc_real_1: 0.24326 (0.21149) | > loss_disc_real_2: 0.21522 (0.21567) | > loss_disc_real_3: 0.19601 (0.21897) | > loss_disc_real_4: 0.19803 (0.21475) | > loss_disc_real_5: 0.23011 (0.21371) | > loss_0: 2.36199 (2.31914) | > grad_norm_0: 8.33076 (16.66983) | > loss_gen: 2.47648 (2.56064) | > loss_kl: 2.66908 (2.65955) | > loss_feat: 8.13838 (8.70058) | > loss_mel: 17.87838 (17.78201) | > loss_duration: 1.69140 (1.70692) | > loss_1: 32.85371 (33.40963) | > grad_norm_1: 116.75809 (137.04697) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31760 (2.30988) | > loader_time: 0.03110 (0.03564)  --> STEP: 13912/15287 -- GLOBAL_STEP: 979200 | > loss_disc: 2.32901 (2.31915) | > loss_disc_real_0: 0.11423 (0.12263) | > loss_disc_real_1: 0.19904 (0.21149) | > loss_disc_real_2: 0.21185 (0.21568) | > loss_disc_real_3: 0.21192 (0.21897) | > loss_disc_real_4: 0.22037 (0.21476) | > loss_disc_real_5: 0.23348 (0.21371) | > loss_0: 2.32901 (2.31915) | > grad_norm_0: 8.57834 (16.66457) | > loss_gen: 2.57346 (2.56063) | > loss_kl: 2.82267 (2.65955) | > loss_feat: 8.70581 (8.70044) | > loss_mel: 18.21879 (17.78217) | > loss_duration: 1.72790 (1.70693) | > loss_1: 34.04865 (33.40965) | > grad_norm_1: 47.54908 (137.03717) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08370 (2.31007) | > loader_time: 0.03260 (0.03564)  --> STEP: 13937/15287 -- GLOBAL_STEP: 979225 | > loss_disc: 2.32169 (2.31912) | > loss_disc_real_0: 0.09833 (0.12263) | > loss_disc_real_1: 0.21487 (0.21148) | > loss_disc_real_2: 0.20344 (0.21567) | > loss_disc_real_3: 0.23111 (0.21896) | > loss_disc_real_4: 0.22947 (0.21475) | > loss_disc_real_5: 0.20726 (0.21371) | > loss_0: 2.32169 (2.31912) | > grad_norm_0: 28.68702 (16.66752) | > loss_gen: 2.48913 (2.56068) | > loss_kl: 2.68577 (2.65953) | > loss_feat: 8.53477 (8.70059) | > loss_mel: 17.30274 (17.78218) | > loss_duration: 1.70531 (1.70693) | > loss_1: 32.71773 (33.40983) | > grad_norm_1: 216.27455 (137.03659) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24250 (2.31011) | > loader_time: 0.03140 (0.03564)  --> STEP: 13962/15287 -- GLOBAL_STEP: 979250 | > loss_disc: 2.33118 (2.31909) | > loss_disc_real_0: 0.10402 (0.12263) | > loss_disc_real_1: 0.21747 (0.21147) | > loss_disc_real_2: 0.23010 (0.21567) | > loss_disc_real_3: 0.21390 (0.21896) | > loss_disc_real_4: 0.20168 (0.21475) | > loss_disc_real_5: 0.23483 (0.21370) | > loss_0: 2.33118 (2.31909) | > grad_norm_0: 15.06367 (16.66634) | > loss_gen: 2.51906 (2.56065) | > loss_kl: 2.57677 (2.65951) | > loss_feat: 8.87505 (8.70081) | > loss_mel: 18.36124 (17.78221) | > loss_duration: 1.69601 (1.70693) | > loss_1: 34.02813 (33.41005) | > grad_norm_1: 65.64268 (136.99965) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.48840 (2.31024) | > loader_time: 0.03250 (0.03563)  --> STEP: 13987/15287 -- GLOBAL_STEP: 979275 | > loss_disc: 2.34491 (2.31904) | > loss_disc_real_0: 0.15704 (0.12263) | > loss_disc_real_1: 0.23497 (0.21147) | > loss_disc_real_2: 0.25273 (0.21568) | > loss_disc_real_3: 0.22541 (0.21895) | > loss_disc_real_4: 0.24708 (0.21475) | > loss_disc_real_5: 0.23589 (0.21370) | > loss_0: 2.34491 (2.31904) | > grad_norm_0: 16.18554 (16.66552) | > loss_gen: 2.52973 (2.56075) | > loss_kl: 2.66974 (2.65953) | > loss_feat: 9.21923 (8.70109) | > loss_mel: 17.51941 (17.78216) | > loss_duration: 1.67760 (1.70691) | > loss_1: 33.61572 (33.41039) | > grad_norm_1: 192.84987 (137.04306) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85800 (2.31044) | > loader_time: 0.03410 (0.03563)  --> STEP: 14012/15287 -- GLOBAL_STEP: 979300 | > loss_disc: 2.30680 (2.31905) | > loss_disc_real_0: 0.11497 (0.12263) | > loss_disc_real_1: 0.21067 (0.21147) | > loss_disc_real_2: 0.23299 (0.21567) | > loss_disc_real_3: 0.22042 (0.21895) | > loss_disc_real_4: 0.22749 (0.21475) | > loss_disc_real_5: 0.20044 (0.21372) | > loss_0: 2.30680 (2.31905) | > grad_norm_0: 15.31482 (16.66851) | > loss_gen: 2.56510 (2.56071) | > loss_kl: 2.63645 (2.65953) | > loss_feat: 8.85799 (8.70100) | > loss_mel: 17.60075 (17.78195) | > loss_duration: 1.67323 (1.70690) | > loss_1: 33.33352 (33.41006) | > grad_norm_1: 72.07336 (137.04349) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.62850 (2.31107) | > loader_time: 0.03100 (0.03563)  --> STEP: 14037/15287 -- GLOBAL_STEP: 979325 | > loss_disc: 2.37047 (2.31900) | > loss_disc_real_0: 0.07109 (0.12261) | > loss_disc_real_1: 0.18775 (0.21145) | > loss_disc_real_2: 0.20260 (0.21565) | > loss_disc_real_3: 0.21418 (0.21894) | > loss_disc_real_4: 0.22371 (0.21474) | > loss_disc_real_5: 0.22425 (0.21371) | > loss_0: 2.37047 (2.31900) | > grad_norm_0: 14.85747 (16.67283) | > loss_gen: 2.26602 (2.56060) | > loss_kl: 2.57704 (2.65952) | > loss_feat: 8.20163 (8.70097) | > loss_mel: 17.26479 (17.78157) | > loss_duration: 1.68928 (1.70690) | > loss_1: 31.99875 (33.40950) | > grad_norm_1: 167.99174 (137.11125) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37510 (2.31113) | > loader_time: 0.03550 (0.03563)  --> STEP: 14062/15287 -- GLOBAL_STEP: 979350 | > loss_disc: 2.22234 (2.31903) | > loss_disc_real_0: 0.07972 (0.12265) | > loss_disc_real_1: 0.19043 (0.21146) | > loss_disc_real_2: 0.18868 (0.21565) | > loss_disc_real_3: 0.21688 (0.21895) | > loss_disc_real_4: 0.19233 (0.21474) | > loss_disc_real_5: 0.20546 (0.21372) | > loss_0: 2.22234 (2.31903) | > grad_norm_0: 25.97895 (16.67890) | > loss_gen: 2.42350 (2.56060) | > loss_kl: 2.48250 (2.65947) | > loss_feat: 8.46904 (8.70074) | > loss_mel: 16.91599 (17.78120) | > loss_duration: 1.71146 (1.70688) | > loss_1: 32.00249 (33.40884) | > grad_norm_1: 168.48022 (137.12961) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30420 (2.31135) | > loader_time: 0.03630 (0.03562)  --> STEP: 14087/15287 -- GLOBAL_STEP: 979375 | > loss_disc: 2.33820 (2.31898) | > loss_disc_real_0: 0.11460 (0.12263) | > loss_disc_real_1: 0.23429 (0.21145) | > loss_disc_real_2: 0.22094 (0.21564) | > loss_disc_real_3: 0.24462 (0.21894) | > loss_disc_real_4: 0.21105 (0.21474) | > loss_disc_real_5: 0.23593 (0.21372) | > loss_0: 2.33820 (2.31898) | > grad_norm_0: 11.56150 (16.67820) | > loss_gen: 2.58963 (2.56058) | > loss_kl: 2.64298 (2.65954) | > loss_feat: 8.38479 (8.70089) | > loss_mel: 17.89415 (17.78106) | > loss_duration: 1.69810 (1.70687) | > loss_1: 33.20966 (33.40892) | > grad_norm_1: 61.23021 (137.13696) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58710 (2.31143) | > loader_time: 0.03600 (0.03562)  --> STEP: 14112/15287 -- GLOBAL_STEP: 979400 | > loss_disc: 2.42235 (2.31901) | > loss_disc_real_0: 0.13856 (0.12264) | > loss_disc_real_1: 0.27521 (0.21146) | > loss_disc_real_2: 0.27350 (0.21565) | > loss_disc_real_3: 0.23639 (0.21894) | > loss_disc_real_4: 0.25130 (0.21474) | > loss_disc_real_5: 0.17057 (0.21373) | > loss_0: 2.42235 (2.31901) | > grad_norm_0: 8.35981 (16.67624) | > loss_gen: 2.18461 (2.56059) | > loss_kl: 2.60253 (2.65962) | > loss_feat: 7.99284 (8.70072) | > loss_mel: 17.53705 (17.78110) | > loss_duration: 1.68504 (1.70685) | > loss_1: 32.00207 (33.40886) | > grad_norm_1: 62.86161 (137.13963) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21360 (2.31171) | > loader_time: 0.03330 (0.03562)  --> STEP: 14137/15287 -- GLOBAL_STEP: 979425 | > loss_disc: 2.50715 (2.31910) | > loss_disc_real_0: 0.09764 (0.12265) | > loss_disc_real_1: 0.22573 (0.21147) | > loss_disc_real_2: 0.20497 (0.21565) | > loss_disc_real_3: 0.21552 (0.21894) | > loss_disc_real_4: 0.22341 (0.21474) | > loss_disc_real_5: 0.23381 (0.21372) | > loss_0: 2.50715 (2.31910) | > grad_norm_0: 21.47958 (16.67072) | > loss_gen: 2.21352 (2.56056) | > loss_kl: 2.76610 (2.65968) | > loss_feat: 8.28399 (8.70074) | > loss_mel: 17.72976 (17.78127) | > loss_duration: 1.70310 (1.70683) | > loss_1: 32.69647 (33.40904) | > grad_norm_1: 154.75291 (137.07661) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96160 (2.31180) | > loader_time: 0.03190 (0.03562)  --> STEP: 14162/15287 -- GLOBAL_STEP: 979450 | > loss_disc: 2.36134 (2.31914) | > loss_disc_real_0: 0.07870 (0.12267) | > loss_disc_real_1: 0.21921 (0.21148) | > loss_disc_real_2: 0.22376 (0.21564) | > loss_disc_real_3: 0.21166 (0.21895) | > loss_disc_real_4: 0.22901 (0.21473) | > loss_disc_real_5: 0.22632 (0.21372) | > loss_0: 2.36134 (2.31914) | > grad_norm_0: 7.66385 (16.66855) | > loss_gen: 2.76619 (2.56055) | > loss_kl: 2.67330 (2.65964) | > loss_feat: 8.37379 (8.70061) | > loss_mel: 17.99465 (17.78160) | > loss_duration: 1.69672 (1.70682) | > loss_1: 33.50465 (33.40919) | > grad_norm_1: 111.15485 (137.06400) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39570 (2.31200) | > loader_time: 0.03160 (0.03561)  --> STEP: 14187/15287 -- GLOBAL_STEP: 979475 | > loss_disc: 2.30299 (2.31915) | > loss_disc_real_0: 0.13356 (0.12270) | > loss_disc_real_1: 0.23716 (0.21149) | > loss_disc_real_2: 0.22306 (0.21565) | > loss_disc_real_3: 0.23523 (0.21894) | > loss_disc_real_4: 0.23989 (0.21473) | > loss_disc_real_5: 0.20468 (0.21371) | > loss_0: 2.30299 (2.31915) | > grad_norm_0: 21.48376 (16.66779) | > loss_gen: 2.48882 (2.56059) | > loss_kl: 2.70852 (2.65960) | > loss_feat: 8.62764 (8.70034) | > loss_mel: 17.97458 (17.78151) | > loss_duration: 1.69748 (1.70680) | > loss_1: 33.49705 (33.40881) | > grad_norm_1: 188.06703 (137.04222) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.54130 (2.31229) | > loader_time: 0.03920 (0.03561)  --> STEP: 14212/15287 -- GLOBAL_STEP: 979500 | > loss_disc: 2.47474 (2.31919) | > loss_disc_real_0: 0.22923 (0.12271) | > loss_disc_real_1: 0.23500 (0.21150) | > loss_disc_real_2: 0.18070 (0.21565) | > loss_disc_real_3: 0.22690 (0.21895) | > loss_disc_real_4: 0.23034 (0.21473) | > loss_disc_real_5: 0.22557 (0.21371) | > loss_0: 2.47474 (2.31919) | > grad_norm_0: 32.05138 (16.66549) | > loss_gen: 2.59081 (2.56059) | > loss_kl: 2.62107 (2.65954) | > loss_feat: 8.48330 (8.70013) | > loss_mel: 17.44182 (17.78158) | > loss_duration: 1.69682 (1.70680) | > loss_1: 32.83383 (33.40862) | > grad_norm_1: 80.53857 (136.94203) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.51910 (2.31246) | > loader_time: 0.03210 (0.03561)  --> STEP: 14237/15287 -- GLOBAL_STEP: 979525 | > loss_disc: 2.40425 (2.31924) | > loss_disc_real_0: 0.12281 (0.12271) | > loss_disc_real_1: 0.21588 (0.21150) | > loss_disc_real_2: 0.20332 (0.21565) | > loss_disc_real_3: 0.25223 (0.21896) | > loss_disc_real_4: 0.23395 (0.21473) | > loss_disc_real_5: 0.23472 (0.21371) | > loss_0: 2.40425 (2.31924) | > grad_norm_0: 15.58073 (16.66336) | > loss_gen: 2.43128 (2.56050) | > loss_kl: 2.54779 (2.65952) | > loss_feat: 7.84823 (8.69982) | > loss_mel: 17.45548 (17.78167) | > loss_duration: 1.71108 (1.70680) | > loss_1: 31.99386 (33.40827) | > grad_norm_1: 115.71806 (136.92525) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35780 (2.31253) | > loader_time: 0.03670 (0.03561)  --> STEP: 14262/15287 -- GLOBAL_STEP: 979550 | > loss_disc: 2.35144 (2.31927) | > loss_disc_real_0: 0.15817 (0.12271) | > loss_disc_real_1: 0.18968 (0.21150) | > loss_disc_real_2: 0.22706 (0.21566) | > loss_disc_real_3: 0.24953 (0.21896) | > loss_disc_real_4: 0.21726 (0.21473) | > loss_disc_real_5: 0.25255 (0.21371) | > loss_0: 2.35144 (2.31927) | > grad_norm_0: 17.33147 (16.66311) | > loss_gen: 2.62420 (2.56046) | > loss_kl: 2.65494 (2.65952) | > loss_feat: 8.33611 (8.69967) | > loss_mel: 17.74669 (17.78152) | > loss_duration: 1.73492 (1.70679) | > loss_1: 33.09685 (33.40794) | > grad_norm_1: 107.14084 (136.93646) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35130 (2.31269) | > loader_time: 0.03430 (0.03561)  --> STEP: 14287/15287 -- GLOBAL_STEP: 979575 | > loss_disc: 2.34895 (2.31927) | > loss_disc_real_0: 0.11795 (0.12271) | > loss_disc_real_1: 0.20213 (0.21150) | > loss_disc_real_2: 0.24602 (0.21566) | > loss_disc_real_3: 0.23969 (0.21897) | > loss_disc_real_4: 0.25420 (0.21475) | > loss_disc_real_5: 0.21528 (0.21372) | > loss_0: 2.34895 (2.31927) | > grad_norm_0: 19.78363 (16.66124) | > loss_gen: 2.48066 (2.56045) | > loss_kl: 2.67836 (2.65951) | > loss_feat: 8.60022 (8.69954) | > loss_mel: 18.25380 (17.78152) | > loss_duration: 1.66394 (1.70679) | > loss_1: 33.67699 (33.40776) | > grad_norm_1: 207.35266 (136.96240) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25950 (2.31272) | > loader_time: 0.03700 (0.03561)  --> STEP: 14312/15287 -- GLOBAL_STEP: 979600 | > loss_disc: 2.20957 (2.31925) | > loss_disc_real_0: 0.10353 (0.12270) | > loss_disc_real_1: 0.18372 (0.21149) | > loss_disc_real_2: 0.21211 (0.21566) | > loss_disc_real_3: 0.21034 (0.21896) | > loss_disc_real_4: 0.19279 (0.21474) | > loss_disc_real_5: 0.20853 (0.21372) | > loss_0: 2.20957 (2.31925) | > grad_norm_0: 11.65347 (16.66256) | > loss_gen: 2.82388 (2.56044) | > loss_kl: 2.65477 (2.65950) | > loss_feat: 9.17747 (8.69946) | > loss_mel: 17.53248 (17.78125) | > loss_duration: 1.68259 (1.70678) | > loss_1: 33.87119 (33.40739) | > grad_norm_1: 175.69316 (136.97472) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35170 (2.31282) | > loader_time: 0.03490 (0.03561)  --> STEP: 14337/15287 -- GLOBAL_STEP: 979625 | > loss_disc: 2.28753 (2.31922) | > loss_disc_real_0: 0.10325 (0.12270) | > loss_disc_real_1: 0.21803 (0.21149) | > loss_disc_real_2: 0.22590 (0.21565) | > loss_disc_real_3: 0.21773 (0.21896) | > loss_disc_real_4: 0.22933 (0.21474) | > loss_disc_real_5: 0.24073 (0.21372) | > loss_0: 2.28753 (2.31922) | > grad_norm_0: 30.93015 (16.66934) | > loss_gen: 2.51264 (2.56042) | > loss_kl: 2.64781 (2.65958) | > loss_feat: 8.34436 (8.69948) | > loss_mel: 17.61338 (17.78124) | > loss_duration: 1.69565 (1.70675) | > loss_1: 32.81385 (33.40743) | > grad_norm_1: 215.38411 (137.01508) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.64140 (2.31297) | > loader_time: 0.03220 (0.03561)  --> STEP: 14362/15287 -- GLOBAL_STEP: 979650 | > loss_disc: 1.90267 (2.31871) | > loss_disc_real_0: 0.08914 (0.12268) | > loss_disc_real_1: 0.22973 (0.21147) | > loss_disc_real_2: 0.21664 (0.21563) | > loss_disc_real_3: 0.17651 (0.21892) | > loss_disc_real_4: 0.14775 (0.21469) | > loss_disc_real_5: 0.15033 (0.21366) | > loss_0: 1.90267 (2.31871) | > grad_norm_0: 24.03860 (16.67500) | > loss_gen: 2.96046 (2.56155) | > loss_kl: 2.58151 (2.65957) | > loss_feat: 9.70722 (8.70189) | > loss_mel: 18.31293 (17.78178) | > loss_duration: 1.72345 (1.70674) | > loss_1: 35.28557 (33.41150) | > grad_norm_1: 499.30746 (137.29781) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33310 (2.31331) | > loader_time: 0.03200 (0.03561)  --> STEP: 14387/15287 -- GLOBAL_STEP: 979675 | > loss_disc: 3.14637 (2.31907) | > loss_disc_real_0: 0.19135 (0.12267) | > loss_disc_real_1: 0.32068 (0.21149) | > loss_disc_real_2: 0.25104 (0.21566) | > loss_disc_real_3: 0.27139 (0.21897) | > loss_disc_real_4: 0.30280 (0.21473) | > loss_disc_real_5: 0.43130 (0.21365) | > loss_0: 3.14637 (2.31907) | > grad_norm_0: 94.29208 (16.70797) | > loss_gen: 2.57476 (2.56182) | > loss_kl: 2.52432 (2.65957) | > loss_feat: 8.26493 (8.70231) | > loss_mel: 17.52901 (17.78219) | > loss_duration: 1.67530 (1.70671) | > loss_1: 32.56833 (33.41256) | > grad_norm_1: 212.23685 (137.53958) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.64230 (2.31351) | > loader_time: 0.03160 (0.03561)  --> STEP: 14412/15287 -- GLOBAL_STEP: 979700 | > loss_disc: 2.36042 (2.31948) | > loss_disc_real_0: 0.09587 (0.12270) | > loss_disc_real_1: 0.23007 (0.21153) | > loss_disc_real_2: 0.21028 (0.21568) | > loss_disc_real_3: 0.21752 (0.21901) | > loss_disc_real_4: 0.23230 (0.21476) | > loss_disc_real_5: 0.24493 (0.21375) | > loss_0: 2.36042 (2.31948) | > grad_norm_0: 15.41195 (16.74327) | > loss_gen: 2.61516 (2.56140) | > loss_kl: 2.58036 (2.65946) | > loss_feat: 8.92427 (8.70079) | > loss_mel: 17.78088 (17.78201) | > loss_duration: 1.76758 (1.70669) | > loss_1: 33.66825 (33.41033) | > grad_norm_1: 189.13092 (137.56506) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.03440 (2.31371) | > loader_time: 0.04260 (0.03561)  --> STEP: 14437/15287 -- GLOBAL_STEP: 979725 | > loss_disc: 2.46704 (2.31953) | > loss_disc_real_0: 0.14690 (0.12271) | > loss_disc_real_1: 0.20447 (0.21153) | > loss_disc_real_2: 0.21523 (0.21569) | > loss_disc_real_3: 0.20505 (0.21901) | > loss_disc_real_4: 0.20050 (0.21477) | > loss_disc_real_5: 0.24306 (0.21377) | > loss_0: 2.46704 (2.31953) | > grad_norm_0: 28.23162 (16.74249) | > loss_gen: 2.27763 (2.56134) | > loss_kl: 2.90247 (2.65947) | > loss_feat: 8.13682 (8.70055) | > loss_mel: 18.19562 (17.78180) | > loss_duration: 1.68107 (1.70668) | > loss_1: 33.19361 (33.40980) | > grad_norm_1: 133.29459 (137.56929) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.66070 (2.31388) | > loader_time: 0.04400 (0.03561)  --> STEP: 14462/15287 -- GLOBAL_STEP: 979750 | > loss_disc: 2.35525 (2.31963) | > loss_disc_real_0: 0.12111 (0.12273) | > loss_disc_real_1: 0.25822 (0.21154) | > loss_disc_real_2: 0.22183 (0.21570) | > loss_disc_real_3: 0.21817 (0.21900) | > loss_disc_real_4: 0.22421 (0.21477) | > loss_disc_real_5: 0.19909 (0.21378) | > loss_0: 2.35525 (2.31963) | > grad_norm_0: 9.02422 (16.74379) | > loss_gen: 2.61731 (2.56125) | > loss_kl: 2.57233 (2.65949) | > loss_feat: 8.54138 (8.70010) | > loss_mel: 17.30777 (17.78178) | > loss_duration: 1.66090 (1.70667) | > loss_1: 32.69969 (33.40924) | > grad_norm_1: 64.02110 (137.53186) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.84780 (2.31486) | > loader_time: 0.03200 (0.03562)  --> STEP: 14487/15287 -- GLOBAL_STEP: 979775 | > loss_disc: 2.27145 (2.31965) | > loss_disc_real_0: 0.10743 (0.12273) | > loss_disc_real_1: 0.20120 (0.21153) | > loss_disc_real_2: 0.22908 (0.21570) | > loss_disc_real_3: 0.18815 (0.21900) | > loss_disc_real_4: 0.19671 (0.21477) | > loss_disc_real_5: 0.19792 (0.21377) | > loss_0: 2.27145 (2.31965) | > grad_norm_0: 14.93235 (16.74729) | > loss_gen: 2.52373 (2.56121) | > loss_kl: 2.63679 (2.65949) | > loss_feat: 8.56603 (8.69994) | > loss_mel: 18.01619 (17.78172) | > loss_duration: 1.68082 (1.70667) | > loss_1: 33.42357 (33.40898) | > grad_norm_1: 149.43204 (137.57159) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.67130 (2.31505) | > loader_time: 0.03400 (0.03561)  --> STEP: 14512/15287 -- GLOBAL_STEP: 979800 | > loss_disc: 2.31658 (2.31972) | > loss_disc_real_0: 0.10857 (0.12273) | > loss_disc_real_1: 0.22856 (0.21154) | > loss_disc_real_2: 0.22825 (0.21571) | > loss_disc_real_3: 0.23274 (0.21899) | > loss_disc_real_4: 0.19059 (0.21478) | > loss_disc_real_5: 0.19559 (0.21379) | > loss_0: 2.31658 (2.31972) | > grad_norm_0: 7.92351 (16.75053) | > loss_gen: 2.49358 (2.56116) | > loss_kl: 2.71827 (2.65946) | > loss_feat: 8.47950 (8.69959) | > loss_mel: 17.89111 (17.78170) | > loss_duration: 1.70312 (1.70665) | > loss_1: 33.28558 (33.40850) | > grad_norm_1: 132.84206 (137.61624) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.78060 (2.31524) | > loader_time: 0.03150 (0.03561)  --> STEP: 14537/15287 -- GLOBAL_STEP: 979825 | > loss_disc: 2.42674 (2.31976) | > loss_disc_real_0: 0.22374 (0.12274) | > loss_disc_real_1: 0.20585 (0.21155) | > loss_disc_real_2: 0.22469 (0.21572) | > loss_disc_real_3: 0.24121 (0.21900) | > loss_disc_real_4: 0.24640 (0.21480) | > loss_disc_real_5: 0.27996 (0.21379) | > loss_0: 2.42674 (2.31976) | > grad_norm_0: 17.75870 (16.74558) | > loss_gen: 2.43620 (2.56121) | > loss_kl: 2.66757 (2.65944) | > loss_feat: 8.05165 (8.69947) | > loss_mel: 17.80550 (17.78196) | > loss_duration: 1.69775 (1.70665) | > loss_1: 32.65866 (33.40868) | > grad_norm_1: 63.56617 (137.57794) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16200 (2.31543) | > loader_time: 0.03370 (0.03561)  --> STEP: 14562/15287 -- GLOBAL_STEP: 979850 | > loss_disc: 2.50972 (2.31990) | > loss_disc_real_0: 0.20886 (0.12276) | > loss_disc_real_1: 0.19155 (0.21156) | > loss_disc_real_2: 0.18817 (0.21572) | > loss_disc_real_3: 0.26838 (0.21902) | > loss_disc_real_4: 0.23033 (0.21480) | > loss_disc_real_5: 0.20513 (0.21379) | > loss_0: 2.50972 (2.31990) | > grad_norm_0: 35.92771 (16.73660) | > loss_gen: 2.37864 (2.56115) | > loss_kl: 2.61328 (2.65946) | > loss_feat: 7.77711 (8.69911) | > loss_mel: 17.65220 (17.78233) | > loss_duration: 1.73447 (1.70666) | > loss_1: 32.15570 (33.40864) | > grad_norm_1: 106.49872 (137.46965) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97200 (2.31570) | > loader_time: 0.03410 (0.03561)  --> STEP: 14587/15287 -- GLOBAL_STEP: 979875 | > loss_disc: 2.42833 (2.31999) | > loss_disc_real_0: 0.12110 (0.12276) | > loss_disc_real_1: 0.23820 (0.21157) | > loss_disc_real_2: 0.23423 (0.21573) | > loss_disc_real_3: 0.25867 (0.21904) | > loss_disc_real_4: 0.24275 (0.21482) | > loss_disc_real_5: 0.23387 (0.21379) | > loss_0: 2.42833 (2.31999) | > grad_norm_0: 15.37179 (16.72919) | > loss_gen: 2.39856 (2.56112) | > loss_kl: 2.63701 (2.65942) | > loss_feat: 7.93104 (8.69880) | > loss_mel: 17.84118 (17.78235) | > loss_duration: 1.67928 (1.70666) | > loss_1: 32.48706 (33.40828) | > grad_norm_1: 89.60340 (137.42647) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.83880 (2.31587) | > loader_time: 0.03890 (0.03561)  --> STEP: 14612/15287 -- GLOBAL_STEP: 979900 | > loss_disc: 2.30014 (2.31996) | > loss_disc_real_0: 0.10580 (0.12275) | > loss_disc_real_1: 0.22092 (0.21156) | > loss_disc_real_2: 0.21780 (0.21573) | > loss_disc_real_3: 0.20678 (0.21903) | > loss_disc_real_4: 0.21043 (0.21481) | > loss_disc_real_5: 0.19970 (0.21379) | > loss_0: 2.30014 (2.31996) | > grad_norm_0: 15.70704 (16.72668) | > loss_gen: 2.45909 (2.56107) | > loss_kl: 2.68738 (2.65935) | > loss_feat: 8.77805 (8.69864) | > loss_mel: 17.70323 (17.78220) | > loss_duration: 1.70107 (1.70667) | > loss_1: 33.32882 (33.40786) | > grad_norm_1: 197.58020 (137.44756) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.12640 (2.31594) | > loader_time: 0.03920 (0.03561)  --> STEP: 14637/15287 -- GLOBAL_STEP: 979925 | > loss_disc: 2.26305 (2.31994) | > loss_disc_real_0: 0.11659 (0.12274) | > loss_disc_real_1: 0.19826 (0.21156) | > loss_disc_real_2: 0.18320 (0.21572) | > loss_disc_real_3: 0.19985 (0.21903) | > loss_disc_real_4: 0.22236 (0.21481) | > loss_disc_real_5: 0.20595 (0.21380) | > loss_0: 2.26305 (2.31994) | > grad_norm_0: 10.58236 (16.72145) | > loss_gen: 2.62893 (2.56104) | > loss_kl: 2.75960 (2.65934) | > loss_feat: 8.83933 (8.69843) | > loss_mel: 17.73440 (17.78189) | > loss_duration: 1.71011 (1.70666) | > loss_1: 33.67237 (33.40727) | > grad_norm_1: 175.65755 (137.47502) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26620 (2.31606) | > loader_time: 0.03060 (0.03560)  --> STEP: 14662/15287 -- GLOBAL_STEP: 979950 | > loss_disc: 2.30028 (2.31992) | > loss_disc_real_0: 0.10834 (0.12273) | > loss_disc_real_1: 0.20430 (0.21155) | > loss_disc_real_2: 0.19739 (0.21571) | > loss_disc_real_3: 0.19409 (0.21902) | > loss_disc_real_4: 0.18931 (0.21481) | > loss_disc_real_5: 0.20268 (0.21380) | > loss_0: 2.30028 (2.31992) | > grad_norm_0: 13.34618 (16.71956) | > loss_gen: 2.52602 (2.56100) | > loss_kl: 2.70752 (2.65929) | > loss_feat: 9.03390 (8.69838) | > loss_mel: 18.15906 (17.78177) | > loss_duration: 1.78878 (1.70666) | > loss_1: 34.21528 (33.40701) | > grad_norm_1: 272.91257 (137.49438) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.12530 (2.31627) | > loader_time: 0.03700 (0.03560)  --> STEP: 14687/15287 -- GLOBAL_STEP: 979975 | > loss_disc: 2.33586 (2.31985) | > loss_disc_real_0: 0.14510 (0.12272) | > loss_disc_real_1: 0.21662 (0.21155) | > loss_disc_real_2: 0.22382 (0.21571) | > loss_disc_real_3: 0.23532 (0.21902) | > loss_disc_real_4: 0.22312 (0.21481) | > loss_disc_real_5: 0.18154 (0.21380) | > loss_0: 2.33586 (2.31985) | > grad_norm_0: 23.26259 (16.71944) | > loss_gen: 2.59767 (2.56104) | > loss_kl: 2.66847 (2.65934) | > loss_feat: 8.53721 (8.69835) | > loss_mel: 17.64962 (17.78152) | > loss_duration: 1.72071 (1.70666) | > loss_1: 33.17368 (33.40682) | > grad_norm_1: 119.22517 (137.50583) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24580 (2.31677) | > loader_time: 0.03750 (0.03560)  --> STEP: 14712/15287 -- GLOBAL_STEP: 980000 | > loss_disc: 2.33889 (2.31982) | > loss_disc_real_0: 0.15363 (0.12272) | > loss_disc_real_1: 0.21471 (0.21154) | > loss_disc_real_2: 0.23602 (0.21572) | > loss_disc_real_3: 0.22699 (0.21902) | > loss_disc_real_4: 0.22596 (0.21481) | > loss_disc_real_5: 0.23519 (0.21380) | > loss_0: 2.33889 (2.31982) | > grad_norm_0: 11.76240 (16.71403) | > loss_gen: 2.77157 (2.56111) | > loss_kl: 2.57390 (2.65933) | > loss_feat: 9.35330 (8.69870) | > loss_mel: 17.96465 (17.78151) | > loss_duration: 1.70178 (1.70667) | > loss_1: 34.36521 (33.40724) | > grad_norm_1: 168.29100 (137.51741) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39700 (2.31695) | > loader_time: 0.03610 (0.03560) > CHECKPOINT : ./checkpoints/yourtts_multilingual/yourtts-du_en_fr_ge_it_pl_ptbr_sp-November-08-2022_12+19PM-0cbaa0f6/checkpoint_980000.pth  --> STEP: 14737/15287 -- GLOBAL_STEP: 980025 | > loss_disc: 2.22976 (2.31981) | > loss_disc_real_0: 0.09483 (0.12272) | > loss_disc_real_1: 0.22267 (0.21153) | > loss_disc_real_2: 0.19792 (0.21571) | > loss_disc_real_3: 0.19441 (0.21901) | > loss_disc_real_4: 0.20217 (0.21480) | > loss_disc_real_5: 0.21460 (0.21379) | > loss_0: 2.22976 (2.31981) | > grad_norm_0: 27.72499 (16.71936) | > loss_gen: 2.57483 (2.56099) | > loss_kl: 2.43364 (2.65937) | > loss_feat: 8.71521 (8.69861) | > loss_mel: 17.65141 (17.78134) | > loss_duration: 1.70133 (1.70665) | > loss_1: 33.07641 (33.40687) | > grad_norm_1: 153.36957 (137.54768) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23040 (2.31720) | > loader_time: 0.04130 (0.03560)  --> STEP: 14762/15287 -- GLOBAL_STEP: 980050 | > loss_disc: 2.32796 (2.31977) | > loss_disc_real_0: 0.10519 (0.12270) | > loss_disc_real_1: 0.18460 (0.21153) | > loss_disc_real_2: 0.17331 (0.21570) | > loss_disc_real_3: 0.20870 (0.21899) | > loss_disc_real_4: 0.20586 (0.21480) | > loss_disc_real_5: 0.22783 (0.21378) | > loss_0: 2.32796 (2.31977) | > grad_norm_0: 17.70678 (16.72874) | > loss_gen: 2.45976 (2.56092) | > loss_kl: 2.55145 (2.65941) | > loss_feat: 8.50770 (8.69860) | > loss_mel: 17.49858 (17.78124) | > loss_duration: 1.69186 (1.70664) | > loss_1: 32.70935 (33.40672) | > grad_norm_1: 163.05792 (137.58221) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15120 (2.31737) | > loader_time: 0.03940 (0.03561)  --> STEP: 14787/15287 -- GLOBAL_STEP: 980075 | > loss_disc: 2.27209 (2.31973) | > loss_disc_real_0: 0.10070 (0.12269) | > loss_disc_real_1: 0.21006 (0.21152) | > loss_disc_real_2: 0.19708 (0.21569) | > loss_disc_real_3: 0.19004 (0.21899) | > loss_disc_real_4: 0.22498 (0.21480) | > loss_disc_real_5: 0.19507 (0.21378) | > loss_0: 2.27209 (2.31973) | > grad_norm_0: 23.46543 (16.73291) | > loss_gen: 2.56647 (2.56086) | > loss_kl: 2.64515 (2.65938) | > loss_feat: 8.65928 (8.69844) | > loss_mel: 17.57936 (17.78105) | > loss_duration: 1.70299 (1.70663) | > loss_1: 33.15325 (33.40628) | > grad_norm_1: 188.79509 (137.63347) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32660 (2.31755) | > loader_time: 0.03520 (0.03561)  --> STEP: 14812/15287 -- GLOBAL_STEP: 980100 | > loss_disc: 2.32526 (2.31970) | > loss_disc_real_0: 0.15332 (0.12269) | > loss_disc_real_1: 0.22691 (0.21151) | > loss_disc_real_2: 0.18941 (0.21569) | > loss_disc_real_3: 0.21242 (0.21898) | > loss_disc_real_4: 0.19942 (0.21479) | > loss_disc_real_5: 0.19513 (0.21378) | > loss_0: 2.32526 (2.31970) | > grad_norm_0: 12.58655 (16.73681) | > loss_gen: 2.67833 (2.56085) | > loss_kl: 2.54134 (2.65937) | > loss_feat: 8.77955 (8.69840) | > loss_mel: 17.88810 (17.78089) | > loss_duration: 1.67282 (1.70663) | > loss_1: 33.56015 (33.40606) | > grad_norm_1: 138.25548 (137.66798) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.99140 (2.31798) | > loader_time: 0.03540 (0.03561)  --> STEP: 14837/15287 -- GLOBAL_STEP: 980125 | > loss_disc: 2.34448 (2.31971) | > loss_disc_real_0: 0.14026 (0.12269) | > loss_disc_real_1: 0.20440 (0.21150) | > loss_disc_real_2: 0.22702 (0.21569) | > loss_disc_real_3: 0.23366 (0.21898) | > loss_disc_real_4: 0.24686 (0.21480) | > loss_disc_real_5: 0.16556 (0.21378) | > loss_0: 2.34448 (2.31971) | > grad_norm_0: 23.57671 (16.73937) | > loss_gen: 2.44842 (2.56079) | > loss_kl: 2.74562 (2.65943) | > loss_feat: 8.61785 (8.69826) | > loss_mel: 17.33425 (17.78093) | > loss_duration: 1.73806 (1.70664) | > loss_1: 32.88419 (33.40594) | > grad_norm_1: 155.87085 (137.69127) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23190 (2.31815) | > loader_time: 0.02980 (0.03561)  --> STEP: 14862/15287 -- GLOBAL_STEP: 980150 | > loss_disc: 2.27242 (2.31971) | > loss_disc_real_0: 0.09611 (0.12268) | > loss_disc_real_1: 0.23796 (0.21150) | > loss_disc_real_2: 0.19208 (0.21569) | > loss_disc_real_3: 0.17708 (0.21898) | > loss_disc_real_4: 0.18248 (0.21480) | > loss_disc_real_5: 0.19950 (0.21378) | > loss_0: 2.27242 (2.31971) | > grad_norm_0: 15.44580 (16.73411) | > loss_gen: 2.59365 (2.56077) | > loss_kl: 2.61157 (2.65942) | > loss_feat: 8.77488 (8.69805) | > loss_mel: 17.71626 (17.78077) | > loss_duration: 1.71111 (1.70663) | > loss_1: 33.40747 (33.40552) | > grad_norm_1: 109.65366 (137.68767) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29590 (2.31819) | > loader_time: 0.03310 (0.03561)  --> STEP: 14887/15287 -- GLOBAL_STEP: 980175 | > loss_disc: 2.28071 (2.31974) | > loss_disc_real_0: 0.10792 (0.12269) | > loss_disc_real_1: 0.21185 (0.21151) | > loss_disc_real_2: 0.21740 (0.21569) | > loss_disc_real_3: 0.21319 (0.21898) | > loss_disc_real_4: 0.21434 (0.21480) | > loss_disc_real_5: 0.20947 (0.21378) | > loss_0: 2.28071 (2.31974) | > grad_norm_0: 21.09242 (16.73972) | > loss_gen: 2.39730 (2.56072) | > loss_kl: 2.51805 (2.65939) | > loss_feat: 8.60797 (8.69765) | > loss_mel: 17.34974 (17.78056) | > loss_duration: 1.73574 (1.70664) | > loss_1: 32.60880 (33.40486) | > grad_norm_1: 63.71527 (137.72546) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.89120 (2.31850) | > loader_time: 0.03820 (0.03561)  --> STEP: 14912/15287 -- GLOBAL_STEP: 980200 | > loss_disc: 2.35418 (2.31975) | > loss_disc_real_0: 0.07745 (0.12269) | > loss_disc_real_1: 0.23000 (0.21150) | > loss_disc_real_2: 0.19969 (0.21567) | > loss_disc_real_3: 0.22478 (0.21897) | > loss_disc_real_4: 0.21681 (0.21479) | > loss_disc_real_5: 0.20413 (0.21378) | > loss_0: 2.35418 (2.31975) | > grad_norm_0: 20.34513 (16.74800) | > loss_gen: 2.44450 (2.56064) | > loss_kl: 2.85575 (2.65951) | > loss_feat: 8.66376 (8.69767) | > loss_mel: 17.87449 (17.78066) | > loss_duration: 1.65756 (1.70664) | > loss_1: 33.49606 (33.40499) | > grad_norm_1: 162.64005 (137.75612) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44750 (2.31848) | > loader_time: 0.03380 (0.03560)  --> STEP: 14937/15287 -- GLOBAL_STEP: 980225 | > loss_disc: 2.38356 (2.31977) | > loss_disc_real_0: 0.11720 (0.12271) | > loss_disc_real_1: 0.25150 (0.21150) | > loss_disc_real_2: 0.22358 (0.21568) | > loss_disc_real_3: 0.20031 (0.21896) | > loss_disc_real_4: 0.19725 (0.21478) | > loss_disc_real_5: 0.24126 (0.21378) | > loss_0: 2.38356 (2.31977) | > grad_norm_0: 13.06327 (16.74483) | > loss_gen: 2.51430 (2.56069) | > loss_kl: 2.67304 (2.65961) | > loss_feat: 8.88404 (8.69765) | > loss_mel: 18.49599 (17.78091) | > loss_duration: 1.70681 (1.70664) | > loss_1: 34.27418 (33.40536) | > grad_norm_1: 157.27341 (137.73497) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.77450 (2.31869) | > loader_time: 0.03190 (0.03560)  --> STEP: 14962/15287 -- GLOBAL_STEP: 980250 | > loss_disc: 2.32934 (2.31983) | > loss_disc_real_0: 0.11616 (0.12271) | > loss_disc_real_1: 0.21714 (0.21150) | > loss_disc_real_2: 0.21686 (0.21569) | > loss_disc_real_3: 0.18680 (0.21896) | > loss_disc_real_4: 0.20047 (0.21478) | > loss_disc_real_5: 0.19843 (0.21378) | > loss_0: 2.32934 (2.31983) | > grad_norm_0: 11.88244 (16.73980) | > loss_gen: 2.47435 (2.56061) | > loss_kl: 2.64997 (2.65968) | > loss_feat: 8.32174 (8.69751) | > loss_mel: 17.92326 (17.78126) | > loss_duration: 1.67414 (1.70665) | > loss_1: 33.04346 (33.40558) | > grad_norm_1: 175.34071 (137.71628) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39520 (2.31893) | > loader_time: 0.03400 (0.03561)  --> STEP: 14987/15287 -- GLOBAL_STEP: 980275 | > loss_disc: 2.34736 (2.31988) | > loss_disc_real_0: 0.14410 (0.12271) | > loss_disc_real_1: 0.18993 (0.21150) | > loss_disc_real_2: 0.23336 (0.21569) | > loss_disc_real_3: 0.21972 (0.21897) | > loss_disc_real_4: 0.19620 (0.21478) | > loss_disc_real_5: 0.20547 (0.21379) | > loss_0: 2.34736 (2.31988) | > grad_norm_0: 15.94983 (16.73004) | > loss_gen: 2.72692 (2.56059) | > loss_kl: 2.64847 (2.65969) | > loss_feat: 8.55211 (8.69738) | > loss_mel: 18.31967 (17.78138) | > loss_duration: 1.69579 (1.70665) | > loss_1: 33.94296 (33.40556) | > grad_norm_1: 120.45402 (137.62309) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35270 (2.31895) | > loader_time: 0.04320 (0.03561)  --> STEP: 15012/15287 -- GLOBAL_STEP: 980300 | > loss_disc: 2.33384 (2.31995) | > loss_disc_real_0: 0.18026 (0.12272) | > loss_disc_real_1: 0.20006 (0.21151) | > loss_disc_real_2: 0.23328 (0.21570) | > loss_disc_real_3: 0.20347 (0.21898) | > loss_disc_real_4: 0.20290 (0.21479) | > loss_disc_real_5: 0.19633 (0.21378) | > loss_0: 2.33384 (2.31995) | > grad_norm_0: 9.81763 (16.72836) | > loss_gen: 2.54416 (2.56052) | > loss_kl: 2.64398 (2.65970) | > loss_feat: 8.57543 (8.69686) | > loss_mel: 17.47006 (17.78158) | > loss_duration: 1.69585 (1.70665) | > loss_1: 32.92947 (33.40517) | > grad_norm_1: 110.61889 (137.60391) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42130 (2.31911) | > loader_time: 0.03230 (0.03561)  --> STEP: 15037/15287 -- GLOBAL_STEP: 980325 | > loss_disc: 2.31180 (2.31999) | > loss_disc_real_0: 0.15466 (0.12277) | > loss_disc_real_1: 0.17722 (0.21149) | > loss_disc_real_2: 0.20155 (0.21569) | > loss_disc_real_3: 0.23301 (0.21897) | > loss_disc_real_4: 0.18864 (0.21479) | > loss_disc_real_5: 0.23991 (0.21378) | > loss_0: 2.31180 (2.31999) | > grad_norm_0: 17.97936 (16.72380) | > loss_gen: 2.53539 (2.56051) | > loss_kl: 2.67990 (2.65975) | > loss_feat: 8.81673 (8.69660) | > loss_mel: 17.75994 (17.78149) | > loss_duration: 1.73064 (1.70666) | > loss_1: 33.52259 (33.40485) | > grad_norm_1: 164.22543 (137.55592) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02730 (2.31944) | > loader_time: 0.03640 (0.03561)  --> STEP: 15062/15287 -- GLOBAL_STEP: 980350 | > loss_disc: 2.21015 (2.31994) | > loss_disc_real_0: 0.10252 (0.12275) | > loss_disc_real_1: 0.19777 (0.21149) | > loss_disc_real_2: 0.22336 (0.21569) | > loss_disc_real_3: 0.23930 (0.21897) | > loss_disc_real_4: 0.20718 (0.21479) | > loss_disc_real_5: 0.18406 (0.21378) | > loss_0: 2.21015 (2.31994) | > grad_norm_0: 7.86874 (16.71782) | > loss_gen: 2.71238 (2.56053) | > loss_kl: 2.56205 (2.65975) | > loss_feat: 8.82420 (8.69669) | > loss_mel: 17.54198 (17.78142) | > loss_duration: 1.68888 (1.70666) | > loss_1: 33.32949 (33.40489) | > grad_norm_1: 104.68052 (137.53751) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52400 (2.31959) | > loader_time: 0.03160 (0.03561)  --> STEP: 15087/15287 -- GLOBAL_STEP: 980375 | > loss_disc: 2.38678 (2.31996) | > loss_disc_real_0: 0.12415 (0.12275) | > loss_disc_real_1: 0.24799 (0.21149) | > loss_disc_real_2: 0.22034 (0.21569) | > loss_disc_real_3: 0.21889 (0.21898) | > loss_disc_real_4: 0.24972 (0.21479) | > loss_disc_real_5: 0.20810 (0.21378) | > loss_0: 2.38678 (2.31996) | > grad_norm_0: 16.31329 (16.71143) | > loss_gen: 2.46844 (2.56050) | > loss_kl: 2.59046 (2.65977) | > loss_feat: 8.40391 (8.69678) | > loss_mel: 18.30081 (17.78140) | > loss_duration: 1.72877 (1.70666) | > loss_1: 33.49239 (33.40495) | > grad_norm_1: 169.31168 (137.52065) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16870 (2.31968) | > loader_time: 0.03100 (0.03560)  --> STEP: 15112/15287 -- GLOBAL_STEP: 980400 | > loss_disc: 2.51600 (2.31964) | > loss_disc_real_0: 0.15034 (0.12273) | > loss_disc_real_1: 0.18358 (0.21147) | > loss_disc_real_2: 0.22714 (0.21568) | > loss_disc_real_3: 0.23827 (0.21894) | > loss_disc_real_4: 0.19420 (0.21475) | > loss_disc_real_5: 0.28281 (0.21372) | > loss_0: 2.51600 (2.31964) | > grad_norm_0: 26.30910 (16.71904) | > loss_gen: 2.64434 (2.56117) | > loss_kl: 2.78451 (2.65975) | > loss_feat: 9.34097 (8.69819) | > loss_mel: 18.21621 (17.78172) | > loss_duration: 1.71583 (1.70667) | > loss_1: 34.70186 (33.40735) | > grad_norm_1: 204.23154 (137.75246) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22180 (2.31986) | > loader_time: 0.03830 (0.03560)  --> STEP: 15137/15287 -- GLOBAL_STEP: 980425 | > loss_disc: 2.55168 (2.32007) | > loss_disc_real_0: 0.12858 (0.12272) | > loss_disc_real_1: 0.25168 (0.21149) | > loss_disc_real_2: 0.24456 (0.21571) | > loss_disc_real_3: 0.22808 (0.21898) | > loss_disc_real_4: 0.22149 (0.21481) | > loss_disc_real_5: 0.19747 (0.21382) | > loss_0: 2.55168 (2.32007) | > grad_norm_0: 30.24240 (16.74435) | > loss_gen: 2.32674 (2.56126) | > loss_kl: 2.70748 (2.65977) | > loss_feat: 8.63265 (8.69815) | > loss_mel: 17.87121 (17.78184) | > loss_duration: 1.75630 (1.70667) | > loss_1: 33.29438 (33.40753) | > grad_norm_1: 163.58701 (137.86964) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00540 (2.32027) | > loader_time: 0.03550 (0.03560)  --> STEP: 15162/15287 -- GLOBAL_STEP: 980450 | > loss_disc: 2.41339 (2.32021) | > loss_disc_real_0: 0.12371 (0.12273) | > loss_disc_real_1: 0.20779 (0.21150) | > loss_disc_real_2: 0.21977 (0.21572) | > loss_disc_real_3: 0.22572 (0.21900) | > loss_disc_real_4: 0.24093 (0.21483) | > loss_disc_real_5: 0.20704 (0.21384) | > loss_0: 2.41339 (2.32021) | > grad_norm_0: 18.70155 (16.76374) | > loss_gen: 2.28907 (2.56112) | > loss_kl: 2.71588 (2.65971) | > loss_feat: 7.52444 (8.69752) | > loss_mel: 17.10765 (17.78174) | > loss_duration: 1.68014 (1.70666) | > loss_1: 31.31716 (33.40659) | > grad_norm_1: 132.68056 (137.96045) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96260 (2.32030) | > loader_time: 0.03600 (0.03560)  --> STEP: 15187/15287 -- GLOBAL_STEP: 980475 | > loss_disc: 2.37961 (2.32019) | > loss_disc_real_0: 0.13751 (0.12271) | > loss_disc_real_1: 0.19612 (0.21149) | > loss_disc_real_2: 0.20720 (0.21571) | > loss_disc_real_3: 0.24695 (0.21900) | > loss_disc_real_4: 0.21672 (0.21483) | > loss_disc_real_5: 0.22841 (0.21385) | > loss_0: 2.37961 (2.32019) | > grad_norm_0: 39.95945 (16.76900) | > loss_gen: 2.37261 (2.56107) | > loss_kl: 2.65649 (2.65967) | > loss_feat: 7.95261 (8.69728) | > loss_mel: 17.62519 (17.78155) | > loss_duration: 1.73912 (1.70665) | > loss_1: 32.34604 (33.40606) | > grad_norm_1: 262.24234 (138.04506) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33720 (2.32066) | > loader_time: 0.03960 (0.03560)  --> STEP: 15212/15287 -- GLOBAL_STEP: 980500 | > loss_disc: 2.28492 (2.32016) | > loss_disc_real_0: 0.09384 (0.12270) | > loss_disc_real_1: 0.22561 (0.21149) | > loss_disc_real_2: 0.21615 (0.21571) | > loss_disc_real_3: 0.20575 (0.21901) | > loss_disc_real_4: 0.20080 (0.21483) | > loss_disc_real_5: 0.20014 (0.21386) | > loss_0: 2.28492 (2.32016) | > grad_norm_0: 8.68211 (16.77549) | > loss_gen: 2.60756 (2.56107) | > loss_kl: 2.86872 (2.65969) | > loss_feat: 8.42836 (8.69730) | > loss_mel: 17.91703 (17.78152) | > loss_duration: 1.66413 (1.70665) | > loss_1: 33.48580 (33.40606) | > grad_norm_1: 201.01595 (138.15900) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.65300 (2.32077) | > loader_time: 0.03880 (0.03561)  --> STEP: 15237/15287 -- GLOBAL_STEP: 980525 | > loss_disc: 2.32125 (2.32018) | > loss_disc_real_0: 0.16221 (0.12270) | > loss_disc_real_1: 0.20782 (0.21149) | > loss_disc_real_2: 0.19753 (0.21571) | > loss_disc_real_3: 0.20837 (0.21900) | > loss_disc_real_4: 0.21582 (0.21484) | > loss_disc_real_5: 0.21338 (0.21387) | > loss_0: 2.32125 (2.32018) | > grad_norm_0: 14.95071 (16.77525) | > loss_gen: 2.52347 (2.56105) | > loss_kl: 2.63133 (2.65971) | > loss_feat: 8.46834 (8.69731) | > loss_mel: 17.26845 (17.78173) | > loss_duration: 1.69524 (1.70665) | > loss_1: 32.58683 (33.40628) | > grad_norm_1: 105.12023 (138.16039) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28880 (2.32075) | > loader_time: 0.03270 (0.03560)  --> STEP: 15262/15287 -- GLOBAL_STEP: 980550 | > loss_disc: 2.39921 (2.32019) | > loss_disc_real_0: 0.18797 (0.12271) | > loss_disc_real_1: 0.21377 (0.21149) | > loss_disc_real_2: 0.23667 (0.21570) | > loss_disc_real_3: 0.26299 (0.21900) | > loss_disc_real_4: 0.21825 (0.21484) | > loss_disc_real_5: 0.26151 (0.21386) | > loss_0: 2.39921 (2.32019) | > grad_norm_0: 18.68095 (16.77180) | > loss_gen: 2.58327 (2.56100) | > loss_kl: 2.59766 (2.65974) | > loss_feat: 8.63141 (8.69724) | > loss_mel: 18.09036 (17.78174) | > loss_duration: 1.75023 (1.70666) | > loss_1: 33.65292 (33.40622) | > grad_norm_1: 108.72865 (138.14893) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23540 (2.32103) | > loader_time: 0.03740 (0.03560)  > EVALUATION   --> STEP: 0 | > loss_disc: 2.29905 (2.29905) | > loss_disc_real_0: 0.07626 (0.07626) | > loss_disc_real_1: 0.17524 (0.17524) | > loss_disc_real_2: 0.20964 (0.20964) | > loss_disc_real_3: 0.23203 (0.23203) | > loss_disc_real_4: 0.20997 (0.20997) | > loss_disc_real_5: 0.17894 (0.17894) | > loss_0: 2.29905 (2.29905) | > loss_gen: 2.31621 (2.31621) | > loss_kl: 2.58613 (2.58613) | > loss_feat: 8.90610 (8.90610) | > loss_mel: 17.26472 (17.26472) | > loss_duration: 1.69725 (1.69725) | > loss_1: 32.77041 (32.77041)  --> STEP: 1 | > loss_disc: 2.34867 (2.34867) | > loss_disc_real_0: 0.12741 (0.12741) | > loss_disc_real_1: 0.17615 (0.17615) | > loss_disc_real_2: 0.21660 (0.21660) | > loss_disc_real_3: 0.21924 (0.21924) | > loss_disc_real_4: 0.22960 (0.22960) | > loss_disc_real_5: 0.16290 (0.16290) | > loss_0: 2.34867 (2.34867) | > loss_gen: 2.33701 (2.33701) | > loss_kl: 2.65543 (2.65543) | > loss_feat: 9.32998 (9.32998) | > loss_mel: 17.48698 (17.48698) | > loss_duration: 1.66587 (1.66587) | > loss_1: 33.47528 (33.47528)  --> STEP: 2 | > loss_disc: 2.26342 (2.30605) | > loss_disc_real_0: 0.08477 (0.10609) | > loss_disc_real_1: 0.16909 (0.17262) | > loss_disc_real_2: 0.20099 (0.20879) | > loss_disc_real_3: 0.23934 (0.22929) | > loss_disc_real_4: 0.21526 (0.22243) | > loss_disc_real_5: 0.16864 (0.16577) | > loss_0: 2.26342 (2.30605) | > loss_gen: 2.34065 (2.33883) | > loss_kl: 2.81063 (2.73303) | > loss_feat: 9.12548 (9.22773) | > loss_mel: 18.10916 (17.79807) | > loss_duration: 1.69638 (1.68113) | > loss_1: 34.08230 (33.77879)  --> STEP: 3 | > loss_disc: 2.36253 (2.32488) | > loss_disc_real_0: 0.10163 (0.10460) | > loss_disc_real_1: 0.17958 (0.17494) | > loss_disc_real_2: 0.22955 (0.21571) | > loss_disc_real_3: 0.24799 (0.23552) | > loss_disc_real_4: 0.22448 (0.22311) | > loss_disc_real_5: 0.19607 (0.17587) | > loss_0: 2.36253 (2.32488) | > loss_gen: 2.32779 (2.33515) | > loss_kl: 2.82838 (2.76481) | > loss_feat: 8.56737 (9.00761) | > loss_mel: 17.72924 (17.77513) | > loss_duration: 1.71483 (1.69236) | > loss_1: 33.16761 (33.57507)  --> STEP: 4 | > loss_disc: 2.26780 (2.31061) | > loss_disc_real_0: 0.08794 (0.10044) | > loss_disc_real_1: 0.17280 (0.17440) | > loss_disc_real_2: 0.20928 (0.21410) | > loss_disc_real_3: 0.22763 (0.23355) | > loss_disc_real_4: 0.21356 (0.22072) | > loss_disc_real_5: 0.15830 (0.17148) | > loss_0: 2.26780 (2.31061) | > loss_gen: 2.32096 (2.33160) | > loss_kl: 2.54569 (2.71003) | > loss_feat: 8.44093 (8.86594) | > loss_mel: 17.48089 (17.70157) | > loss_duration: 1.67599 (1.68827) | > loss_1: 32.46446 (33.29741)  --> STEP: 5 | > loss_disc: 2.35969 (2.32042) | > loss_disc_real_0: 0.10541 (0.10143) | > loss_disc_real_1: 0.17855 (0.17523) | > loss_disc_real_2: 0.22023 (0.21533) | > loss_disc_real_3: 0.23281 (0.23340) | > loss_disc_real_4: 0.22912 (0.22240) | > loss_disc_real_5: 0.17920 (0.17302) | > loss_0: 2.35969 (2.32042) | > loss_gen: 2.29985 (2.32525) | > loss_kl: 2.51327 (2.67068) | > loss_feat: 8.62577 (8.81791) | > loss_mel: 16.64613 (17.49048) | > loss_duration: 1.71906 (1.69443) | > loss_1: 31.80409 (32.99875)  --> STEP: 6 | > loss_disc: 2.30414 (2.31771) | > loss_disc_real_0: 0.08621 (0.09889) | > loss_disc_real_1: 0.17515 (0.17522) | > loss_disc_real_2: 0.22859 (0.21754) | > loss_disc_real_3: 0.24210 (0.23485) | > loss_disc_real_4: 0.20527 (0.21955) | > loss_disc_real_5: 0.18232 (0.17457) | > loss_0: 2.30414 (2.31771) | > loss_gen: 2.32686 (2.32552) | > loss_kl: 2.68363 (2.67284) | > loss_feat: 9.18209 (8.87861) | > loss_mel: 17.75584 (17.53471) | > loss_duration: 1.69939 (1.69526) | > loss_1: 33.64782 (33.10693)  --> STEP: 7 | > loss_disc: 2.26796 (2.31060) | > loss_disc_real_0: 0.08919 (0.09751) | > loss_disc_real_1: 0.16416 (0.17364) | > loss_disc_real_2: 0.20642 (0.21595) | > loss_disc_real_3: 0.23540 (0.23493) | > loss_disc_real_4: 0.21088 (0.21831) | > loss_disc_real_5: 0.15871 (0.17231) | > loss_0: 2.26796 (2.31060) | > loss_gen: 2.26523 (2.31691) | > loss_kl: 2.82813 (2.69502) | > loss_feat: 8.63370 (8.84362) | > loss_mel: 17.69139 (17.55709) | > loss_duration: 1.72621 (1.69968) | > loss_1: 33.14466 (33.11232)  --> STEP: 8 | > loss_disc: 2.27182 (2.30576) | > loss_disc_real_0: 0.08676 (0.09616) | > loss_disc_real_1: 0.16975 (0.17315) | > loss_disc_real_2: 0.21984 (0.21644) | > loss_disc_real_3: 0.22980 (0.23429) | > loss_disc_real_4: 0.21376 (0.21774) | > loss_disc_real_5: 0.16668 (0.17160) | > loss_0: 2.27182 (2.30576) | > loss_gen: 2.33199 (2.31879) | > loss_kl: 2.54482 (2.67625) | > loss_feat: 8.73965 (8.83062) | > loss_mel: 17.60046 (17.56251) | > loss_duration: 1.72204 (1.70247) | > loss_1: 32.93895 (33.09065)  --> STEP: 9 | > loss_disc: 2.28916 (2.30391) | > loss_disc_real_0: 0.09514 (0.09605) | > loss_disc_real_1: 0.15944 (0.17163) | > loss_disc_real_2: 0.20174 (0.21480) | > loss_disc_real_3: 0.22443 (0.23319) | > loss_disc_real_4: 0.20724 (0.21657) | > loss_disc_real_5: 0.17781 (0.17229) | > loss_0: 2.28916 (2.30391) | > loss_gen: 2.29051 (2.31565) | > loss_kl: 2.65182 (2.67353) | > loss_feat: 8.69951 (8.81605) | > loss_mel: 17.44346 (17.54929) | > loss_duration: 1.67916 (1.69988) | > loss_1: 32.76446 (33.05441)  --> STEP: 10 | > loss_disc: 2.24755 (2.29827) | > loss_disc_real_0: 0.07916 (0.09436) | > loss_disc_real_1: 0.17157 (0.17162) | > loss_disc_real_2: 0.20646 (0.21397) | > loss_disc_real_3: 0.21799 (0.23167) | > loss_disc_real_4: 0.19665 (0.21458) | > loss_disc_real_5: 0.16625 (0.17169) | > loss_0: 2.24755 (2.29827) | > loss_gen: 2.33103 (2.31719) | > loss_kl: 2.67991 (2.67417) | > loss_feat: 8.83070 (8.81752) | > loss_mel: 17.78557 (17.57291) | > loss_duration: 1.68958 (1.69885) | > loss_1: 33.31678 (33.08064)  --> STEP: 11 | > loss_disc: 2.28283 (2.29687) | > loss_disc_real_0: 0.08628 (0.09363) | > loss_disc_real_1: 0.17205 (0.17166) | > loss_disc_real_2: 0.22215 (0.21471) | > loss_disc_real_3: 0.21945 (0.23056) | > loss_disc_real_4: 0.21837 (0.21493) | > loss_disc_real_5: 0.15812 (0.17045) | > loss_0: 2.28283 (2.29687) | > loss_gen: 2.31068 (2.31660) | > loss_kl: 2.51489 (2.65969) | > loss_feat: 8.64694 (8.80201) | > loss_mel: 17.48606 (17.56502) | > loss_duration: 1.76115 (1.70452) | > loss_1: 32.71973 (33.04783)  --> STEP: 12 | > loss_disc: 2.27831 (2.29532) | > loss_disc_real_0: 0.08905 (0.09325) | > loss_disc_real_1: 0.16642 (0.17123) | > loss_disc_real_2: 0.20736 (0.21410) | > loss_disc_real_3: 0.22617 (0.23020) | > loss_disc_real_4: 0.22281 (0.21558) | > loss_disc_real_5: 0.18539 (0.17170) | > loss_0: 2.27831 (2.29532) | > loss_gen: 2.37385 (2.32137) | > loss_kl: 2.65063 (2.65894) | > loss_feat: 9.06778 (8.82416) | > loss_mel: 18.25532 (17.62254) | > loss_duration: 1.68761 (1.70311) | > loss_1: 34.03519 (33.13011)  --> STEP: 13 | > loss_disc: 2.27895 (2.29406) | > loss_disc_real_0: 0.08634 (0.09272) | > loss_disc_real_1: 0.16219 (0.17053) | > loss_disc_real_2: 0.21030 (0.21381) | > loss_disc_real_3: 0.23251 (0.23037) | > loss_disc_real_4: 0.22446 (0.21627) | > loss_disc_real_5: 0.18528 (0.17274) | > loss_0: 2.27895 (2.29406) | > loss_gen: 2.38147 (2.32599) | > loss_kl: 2.64736 (2.65805) | > loss_feat: 8.64159 (8.81012) | > loss_mel: 17.72664 (17.63055) | > loss_duration: 1.71152 (1.70375) | > loss_1: 33.10858 (33.12846)  --> STEP: 14 | > loss_disc: 2.30798 (2.29506) | > loss_disc_real_0: 0.08527 (0.09218) | > loss_disc_real_1: 0.18002 (0.17121) | > loss_disc_real_2: 0.22544 (0.21464) | > loss_disc_real_3: 0.23359 (0.23060) | > loss_disc_real_4: 0.22730 (0.21705) | > loss_disc_real_5: 0.17037 (0.17257) | > loss_0: 2.30798 (2.29506) | > loss_gen: 2.31906 (2.32550) | > loss_kl: 2.73942 (2.66386) | > loss_feat: 8.23163 (8.76880) | > loss_mel: 17.61758 (17.62963) | > loss_duration: 1.66049 (1.70066) | > loss_1: 32.56819 (33.08844)  --> STEP: 15 | > loss_disc: 2.31220 (2.29620) | > loss_disc_real_0: 0.09785 (0.09256) | > loss_disc_real_1: 0.17124 (0.17121) | > loss_disc_real_2: 0.21381 (0.21458) | > loss_disc_real_3: 0.22849 (0.23046) | > loss_disc_real_4: 0.22362 (0.21749) | > loss_disc_real_5: 0.18231 (0.17322) | > loss_0: 2.31220 (2.29620) | > loss_gen: 2.33925 (2.32641) | > loss_kl: 2.72253 (2.66777) | > loss_feat: 8.87885 (8.77613) | > loss_mel: 17.70482 (17.63464) | > loss_duration: 1.69679 (1.70041) | > loss_1: 33.34224 (33.10536)  --> STEP: 16 | > loss_disc: 2.29939 (2.29640) | > loss_disc_real_0: 0.09284 (0.09258) | > loss_disc_real_1: 0.16270 (0.17068) | > loss_disc_real_2: 0.21606 (0.21468) | > loss_disc_real_3: 0.23464 (0.23072) | > loss_disc_real_4: 0.21967 (0.21763) | > loss_disc_real_5: 0.17111 (0.17309) | > loss_0: 2.29939 (2.29640) | > loss_gen: 2.32348 (2.32623) | > loss_kl: 2.64883 (2.66659) | > loss_feat: 8.20093 (8.74018) | > loss_mel: 17.74055 (17.64126) | > loss_duration: 1.70161 (1.70048) | > loss_1: 32.61540 (33.07474)  --> STEP: 17 | > loss_disc: 2.31358 (2.29741) | > loss_disc_real_0: 0.09415 (0.09267) | > loss_disc_real_1: 0.17155 (0.17073) | > loss_disc_real_2: 0.21035 (0.21442) | > loss_disc_real_3: 0.23570 (0.23102) | > loss_disc_real_4: 0.21105 (0.21724) | > loss_disc_real_5: 0.16934 (0.17287) | > loss_0: 2.31358 (2.29741) | > loss_gen: 2.29160 (2.32419) | > loss_kl: 2.77797 (2.67314) | > loss_feat: 8.76782 (8.74181) | > loss_mel: 17.71610 (17.64566) | > loss_duration: 1.70435 (1.70071) | > loss_1: 33.25784 (33.08551)  --> STEP: 18 | > loss_disc: 2.19692 (2.29183) | > loss_disc_real_0: 0.08185 (0.09207) | > loss_disc_real_1: 0.16452 (0.17039) | > loss_disc_real_2: 0.21709 (0.21457) | > loss_disc_real_3: 0.21851 (0.23032) | > loss_disc_real_4: 0.21273 (0.21699) | > loss_disc_real_5: 0.15440 (0.17184) | > loss_0: 2.19692 (2.29183) | > loss_gen: 2.41405 (2.32918) | > loss_kl: 2.74901 (2.67735) | > loss_feat: 8.67976 (8.73836) | > loss_mel: 17.89761 (17.65966) | > loss_duration: 1.68815 (1.70001) | > loss_1: 33.42859 (33.10457)  --> STEP: 19 | > loss_disc: 2.29527 (2.29201) | > loss_disc_real_0: 0.10666 (0.09284) | > loss_disc_real_1: 0.17042 (0.17039) | > loss_disc_real_2: 0.22397 (0.21506) | > loss_disc_real_3: 0.24621 (0.23116) | > loss_disc_real_4: 0.22306 (0.21731) | > loss_disc_real_5: 0.18719 (0.17265) | > loss_0: 2.29527 (2.29201) | > loss_gen: 2.44123 (2.33508) | > loss_kl: 2.76461 (2.68195) | > loss_feat: 8.76636 (8.73984) | > loss_mel: 17.57673 (17.65529) | > loss_duration: 1.69042 (1.69951) | > loss_1: 33.23935 (33.11166)  --> STEP: 20 | > loss_disc: 2.25627 (2.29022) | > loss_disc_real_0: 0.08932 (0.09266) | > loss_disc_real_1: 0.16898 (0.17032) | > loss_disc_real_2: 0.21186 (0.21490) | > loss_disc_real_3: 0.23140 (0.23117) | > loss_disc_real_4: 0.20009 (0.21645) | > loss_disc_real_5: 0.17254 (0.17265) | > loss_0: 2.25627 (2.29022) | > loss_gen: 2.38017 (2.33734) | > loss_kl: 2.72452 (2.68408) | > loss_feat: 9.11579 (8.75863) | > loss_mel: 18.06141 (17.67560) | > loss_duration: 1.69402 (1.69923) | > loss_1: 33.97591 (33.15487)  --> STEP: 21 | > loss_disc: 2.23975 (2.28782) | > loss_disc_real_0: 0.07167 (0.09166) | > loss_disc_real_1: 0.17087 (0.17034) | > loss_disc_real_2: 0.20772 (0.21456) | > loss_disc_real_3: 0.22516 (0.23088) | > loss_disc_real_4: 0.21464 (0.21636) | > loss_disc_real_5: 0.14813 (0.17148) | > loss_0: 2.23975 (2.28782) | > loss_gen: 2.35912 (2.33837) | > loss_kl: 2.57699 (2.67898) | > loss_feat: 8.89082 (8.76493) | > loss_mel: 17.84258 (17.68355) | > loss_duration: 1.71274 (1.69988) | > loss_1: 33.38224 (33.16570)  --> STEP: 22 | > loss_disc: 2.25006 (2.28610) | > loss_disc_real_0: 0.08050 (0.09116) | > loss_disc_real_1: 0.16086 (0.16991) | > loss_disc_real_2: 0.21494 (0.21458) | > loss_disc_real_3: 0.22955 (0.23082) | > loss_disc_real_4: 0.21416 (0.21626) | > loss_disc_real_5: 0.17708 (0.17173) | > loss_0: 2.25006 (2.28610) | > loss_gen: 2.36137 (2.33942) | > loss_kl: 2.84587 (2.68656) | > loss_feat: 9.70093 (8.80748) | > loss_mel: 17.82349 (17.68991) | > loss_duration: 1.70621 (1.70016) | > loss_1: 34.43788 (33.22353)  --> STEP: 23 | > loss_disc: 2.26712 (2.28528) | > loss_disc_real_0: 0.08032 (0.09068) | > loss_disc_real_1: 0.17098 (0.16996) | > loss_disc_real_2: 0.21050 (0.21440) | > loss_disc_real_3: 0.24254 (0.23133) | > loss_disc_real_4: 0.21097 (0.21603) | > loss_disc_real_5: 0.17580 (0.17191) | > loss_0: 2.26712 (2.28528) | > loss_gen: 2.36366 (2.34047) | > loss_kl: 2.69621 (2.68698) | > loss_feat: 9.07486 (8.81910) | > loss_mel: 17.87426 (17.69793) | > loss_duration: 1.73730 (1.70178) | > loss_1: 33.74628 (33.24626)  --> STEP: 24 | > loss_disc: 2.25132 (2.28386) | > loss_disc_real_0: 0.07611 (0.09008) | > loss_disc_real_1: 0.16990 (0.16996) | > loss_disc_real_2: 0.20969 (0.21421) | > loss_disc_real_3: 0.22864 (0.23122) | > loss_disc_real_4: 0.20970 (0.21577) | > loss_disc_real_5: 0.18458 (0.17244) | > loss_0: 2.25132 (2.28386) | > loss_gen: 2.38180 (2.34219) | > loss_kl: 2.71055 (2.68796) | > loss_feat: 9.45711 (8.84568) | > loss_mel: 18.09461 (17.71446) | > loss_duration: 1.70161 (1.70177) | > loss_1: 34.34567 (33.29207)  --> STEP: 25 | > loss_disc: 2.25167 (2.28258) | > loss_disc_real_0: 0.08052 (0.08970) | > loss_disc_real_1: 0.16836 (0.16989) | > loss_disc_real_2: 0.22075 (0.21447) | > loss_disc_real_3: 0.23522 (0.23138) | > loss_disc_real_4: 0.20856 (0.21548) | > loss_disc_real_5: 0.16977 (0.17233) | > loss_0: 2.25167 (2.28258) | > loss_gen: 2.36566 (2.34313) | > loss_kl: 2.50052 (2.68047) | > loss_feat: 8.84825 (8.84579) | > loss_mel: 17.71831 (17.71461) | > loss_duration: 1.68318 (1.70103) | > loss_1: 33.11592 (33.28502)  --> STEP: 26 | > loss_disc: 2.31555 (2.28384) | > loss_disc_real_0: 0.09746 (0.08999) | > loss_disc_real_1: 0.18918 (0.17063) | > loss_disc_real_2: 0.23219 (0.21515) | > loss_disc_real_3: 0.25209 (0.23218) | > loss_disc_real_4: 0.24548 (0.21663) | > loss_disc_real_5: 0.19692 (0.17328) | > loss_0: 2.31555 (2.28384) | > loss_gen: 2.47016 (2.34802) | > loss_kl: 2.68284 (2.68056) | > loss_feat: 8.40992 (8.82902) | > loss_mel: 17.42609 (17.70351) | > loss_duration: 1.66342 (1.69958) | > loss_1: 32.65243 (33.26069)  --> STEP: 27 | > loss_disc: 2.30469 (2.28462) | > loss_disc_real_0: 0.08266 (0.08972) | > loss_disc_real_1: 0.17217 (0.17069) | > loss_disc_real_2: 0.20611 (0.21481) | > loss_disc_real_3: 0.24691 (0.23272) | > loss_disc_real_4: 0.21146 (0.21644) | > loss_disc_real_5: 0.18966 (0.17388) | > loss_0: 2.30469 (2.28462) | > loss_gen: 2.34812 (2.34802) | > loss_kl: 2.67205 (2.68024) | > loss_feat: 8.74095 (8.82576) | > loss_mel: 17.41283 (17.69275) | > loss_duration: 1.68749 (1.69913) | > loss_1: 32.86143 (33.24591)  --> STEP: 28 | > loss_disc: 2.31547 (2.28572) | > loss_disc_real_0: 0.09606 (0.08995) | > loss_disc_real_1: 0.16305 (0.17042) | > loss_disc_real_2: 0.21789 (0.21492) | > loss_disc_real_3: 0.24312 (0.23309) | > loss_disc_real_4: 0.22293 (0.21667) | > loss_disc_real_5: 0.16843 (0.17369) | > loss_0: 2.31547 (2.28572) | > loss_gen: 2.32034 (2.34703) | > loss_kl: 2.61092 (2.67777) | > loss_feat: 8.98115 (8.83131) | > loss_mel: 17.48976 (17.68550) | > loss_duration: 1.69943 (1.69914) | > loss_1: 33.10160 (33.24075)  --> STEP: 29 | > loss_disc: 2.24812 (2.28442) | > loss_disc_real_0: 0.08234 (0.08969) | > loss_disc_real_1: 0.16605 (0.17027) | > loss_disc_real_2: 0.21306 (0.21486) | > loss_disc_real_3: 0.21330 (0.23241) | > loss_disc_real_4: 0.20104 (0.21614) | > loss_disc_real_5: 0.15969 (0.17321) | > loss_0: 2.24812 (2.28442) | > loss_gen: 2.35668 (2.34737) | > loss_kl: 2.57687 (2.67429) | > loss_feat: 9.23226 (8.84514) | > loss_mel: 17.62654 (17.68347) | > loss_duration: 1.72806 (1.70014) | > loss_1: 33.52040 (33.25040)  --> STEP: 30 | > loss_disc: 2.29300 (2.28471) | > loss_disc_real_0: 0.09125 (0.08974) | > loss_disc_real_1: 0.17306 (0.17036) | > loss_disc_real_2: 0.21369 (0.21482) | > loss_disc_real_3: 0.23746 (0.23258) | > loss_disc_real_4: 0.22887 (0.21656) | > loss_disc_real_5: 0.17841 (0.17338) | > loss_0: 2.29300 (2.28471) | > loss_gen: 2.34373 (2.34724) | > loss_kl: 2.64519 (2.67332) | > loss_feat: 8.59772 (8.83689) | > loss_mel: 17.47182 (17.67641) | > loss_duration: 1.68848 (1.69975) | > loss_1: 32.74694 (33.23362)  --> STEP: 31 | > loss_disc: 2.32737 (2.28608) | > loss_disc_real_0: 0.08079 (0.08945) | > loss_disc_real_1: 0.17042 (0.17036) | > loss_disc_real_2: 0.21795 (0.21492) | > loss_disc_real_3: 0.24552 (0.23300) | > loss_disc_real_4: 0.22855 (0.21695) | > loss_disc_real_5: 0.17820 (0.17353) | > loss_0: 2.32737 (2.28608) | > loss_gen: 2.31763 (2.34629) | > loss_kl: 2.69545 (2.67403) | > loss_feat: 8.73680 (8.83366) | > loss_mel: 17.98554 (17.68638) | > loss_duration: 1.71517 (1.70025) | > loss_1: 33.45059 (33.24062)  --> STEP: 32 | > loss_disc: 2.27352 (2.28569) | > loss_disc_real_0: 0.09290 (0.08956) | > loss_disc_real_1: 0.18038 (0.17068) | > loss_disc_real_2: 0.22025 (0.21509) | > loss_disc_real_3: 0.23277 (0.23299) | > loss_disc_real_4: 0.20935 (0.21671) | > loss_disc_real_5: 0.18445 (0.17388) | > loss_0: 2.27352 (2.28569) | > loss_gen: 2.40267 (2.34805) | > loss_kl: 2.65311 (2.67338) | > loss_feat: 8.41511 (8.82058) | > loss_mel: 17.28017 (17.67369) | > loss_duration: 1.70642 (1.70044) | > loss_1: 32.45747 (33.21614)  --> STEP: 33 | > loss_disc: 2.23544 (2.28417) | > loss_disc_real_0: 0.08648 (0.08946) | > loss_disc_real_1: 0.16858 (0.17061) | > loss_disc_real_2: 0.21584 (0.21511) | > loss_disc_real_3: 0.21332 (0.23239) | > loss_disc_real_4: 0.20288 (0.21629) | > loss_disc_real_5: 0.15823 (0.17340) | > loss_0: 2.23544 (2.28417) | > loss_gen: 2.36377 (2.34853) | > loss_kl: 2.69315 (2.67398) | > loss_feat: 9.20837 (8.83233) | > loss_mel: 17.92674 (17.68136) | > loss_duration: 1.73007 (1.70134) | > loss_1: 33.92210 (33.23754)  --> STEP: 34 | > loss_disc: 2.27658 (2.28394) | > loss_disc_real_0: 0.09364 (0.08959) | > loss_disc_real_1: 0.16497 (0.17045) | > loss_disc_real_2: 0.21475 (0.21510) | > loss_disc_real_3: 0.23577 (0.23249) | > loss_disc_real_4: 0.19813 (0.21576) | > loss_disc_real_5: 0.16905 (0.17327) | > loss_0: 2.27658 (2.28394) | > loss_gen: 2.34716 (2.34849) | > loss_kl: 2.66052 (2.67358) | > loss_feat: 9.07281 (8.83941) | > loss_mel: 18.05206 (17.69226) | > loss_duration: 1.73171 (1.70223) | > loss_1: 33.86425 (33.25597)  --> STEP: 35 | > loss_disc: 2.25691 (2.28317) | > loss_disc_real_0: 0.08493 (0.08945) | > loss_disc_real_1: 0.17212 (0.17049) | > loss_disc_real_2: 0.20277 (0.21475) | > loss_disc_real_3: 0.21350 (0.23195) | > loss_disc_real_4: 0.22781 (0.21610) | > loss_disc_real_5: 0.17067 (0.17320) | > loss_0: 2.25691 (2.28317) | > loss_gen: 2.34541 (2.34840) | > loss_kl: 2.63060 (2.67235) | > loss_feat: 9.33591 (8.85359) | > loss_mel: 17.79114 (17.69508) | > loss_duration: 1.70890 (1.70242) | > loss_1: 33.81196 (33.27186)  --> STEP: 36 | > loss_disc: 2.29060 (2.28338) | > loss_disc_real_0: 0.09281 (0.08955) | > loss_disc_real_1: 0.18562 (0.17091) | > loss_disc_real_2: 0.22451 (0.21502) | > loss_disc_real_3: 0.22771 (0.23183) | > loss_disc_real_4: 0.22647 (0.21639) | > loss_disc_real_5: 0.17002 (0.17311) | > loss_0: 2.29060 (2.28338) | > loss_gen: 2.35171 (2.34849) | > loss_kl: 2.64632 (2.67163) | > loss_feat: 8.48256 (8.84329) | > loss_mel: 17.23803 (17.68239) | > loss_duration: 1.75538 (1.70389) | > loss_1: 32.47399 (33.24969)  --> STEP: 37 | > loss_disc: 2.26645 (2.28292) | > loss_disc_real_0: 0.08429 (0.08941) | > loss_disc_real_1: 0.17031 (0.17090) | > loss_disc_real_2: 0.20442 (0.21473) | > loss_disc_real_3: 0.23069 (0.23180) | > loss_disc_real_4: 0.21401 (0.21632) | > loss_disc_real_5: 0.16880 (0.17299) | > loss_0: 2.26645 (2.28292) | > loss_gen: 2.30722 (2.34738) | > loss_kl: 2.61407 (2.67007) | > loss_feat: 8.63037 (8.83753) | > loss_mel: 17.81561 (17.68599) | > loss_duration: 1.66002 (1.70271) | > loss_1: 33.02729 (33.24369)  --> STEP: 38 | > loss_disc: 2.32249 (2.28396) | > loss_disc_real_0: 0.07486 (0.08902) | > loss_disc_real_1: 0.16869 (0.17084) | > loss_disc_real_2: 0.22069 (0.21489) | > loss_disc_real_3: 0.23021 (0.23176) | > loss_disc_real_4: 0.22666 (0.21660) | > loss_disc_real_5: 0.19188 (0.17349) | > loss_0: 2.32249 (2.28396) | > loss_gen: 2.33010 (2.34692) | > loss_kl: 2.67080 (2.67009) | > loss_feat: 8.71735 (8.83437) | > loss_mel: 17.97257 (17.69353) | > loss_duration: 1.71469 (1.70302) | > loss_1: 33.40550 (33.24794)  --> STEP: 39 | > loss_disc: 2.25544 (2.28323) | > loss_disc_real_0: 0.07560 (0.08868) | > loss_disc_real_1: 0.15144 (0.17034) | > loss_disc_real_2: 0.19105 (0.21428) | > loss_disc_real_3: 0.22892 (0.23169) | > loss_disc_real_4: 0.20124 (0.21620) | > loss_disc_real_5: 0.15271 (0.17296) | > loss_0: 2.25544 (2.28323) | > loss_gen: 2.25215 (2.34449) | > loss_kl: 2.62793 (2.66901) | > loss_feat: 8.62499 (8.82900) | > loss_mel: 17.87060 (17.69807) | > loss_duration: 1.69201 (1.70274) | > loss_1: 33.06768 (33.24332)  --> STEP: 40 | > loss_disc: 2.27031 (2.28291) | > loss_disc_real_0: 0.08609 (0.08861) | > loss_disc_real_1: 0.16776 (0.17028) | > loss_disc_real_2: 0.22045 (0.21443) | > loss_disc_real_3: 0.21827 (0.23135) | > loss_disc_real_4: 0.21112 (0.21608) | > loss_disc_real_5: 0.16074 (0.17265) | > loss_0: 2.27031 (2.28291) | > loss_gen: 2.32532 (2.34401) | > loss_kl: 2.60296 (2.66736) | > loss_feat: 8.57156 (8.82257) | > loss_mel: 17.72656 (17.69879) | > loss_duration: 1.70719 (1.70285) | > loss_1: 32.93359 (33.23558)  --> STEP: 41 | > loss_disc: 2.37182 (2.28508) | > loss_disc_real_0: 0.10238 (0.08895) | > loss_disc_real_1: 0.17265 (0.17034) | > loss_disc_real_2: 0.22595 (0.21471) | > loss_disc_real_3: 0.24792 (0.23176) | > loss_disc_real_4: 0.23774 (0.21660) | > loss_disc_real_5: 0.19727 (0.17325) | > loss_0: 2.37182 (2.28508) | > loss_gen: 2.31404 (2.34328) | > loss_kl: 2.51850 (2.66373) | > loss_feat: 8.32024 (8.81031) | > loss_mel: 17.70169 (17.69886) | > loss_duration: 1.68399 (1.70239) | > loss_1: 32.53846 (33.21857)  --> STEP: 42 | > loss_disc: 2.37349 (2.28718) | > loss_disc_real_0: 0.10146 (0.08925) | > loss_disc_real_1: 0.17378 (0.17042) | > loss_disc_real_2: 0.21490 (0.21472) | > loss_disc_real_3: 0.23868 (0.23192) | > loss_disc_real_4: 0.21434 (0.21655) | > loss_disc_real_5: 0.18633 (0.17357) | > loss_0: 2.37349 (2.28718) | > loss_gen: 2.23380 (2.34067) | > loss_kl: 2.74181 (2.66559) | > loss_feat: 7.82761 (8.78692) | > loss_mel: 17.52868 (17.69481) | > loss_duration: 1.67796 (1.70181) | > loss_1: 32.00986 (33.18980)  --> STEP: 43 | > loss_disc: 2.26802 (2.28674) | > loss_disc_real_0: 0.07893 (0.08901) | > loss_disc_real_1: 0.16700 (0.17034) | > loss_disc_real_2: 0.21795 (0.21479) | > loss_disc_real_3: 0.22672 (0.23180) | > loss_disc_real_4: 0.22185 (0.21667) | > loss_disc_real_5: 0.17648 (0.17363) | > loss_0: 2.26802 (2.28674) | > loss_gen: 2.34403 (2.34075) | > loss_kl: 2.58960 (2.66382) | > loss_feat: 8.80411 (8.78732) | > loss_mel: 17.83384 (17.69804) | > loss_duration: 1.70231 (1.70182) | > loss_1: 33.27389 (33.19175)  --> STEP: 44 | > loss_disc: 2.36215 (2.28845) | > loss_disc_real_0: 0.08370 (0.08889) | > loss_disc_real_1: 0.18634 (0.17070) | > loss_disc_real_2: 0.22207 (0.21496) | > loss_disc_real_3: 0.25220 (0.23226) | > loss_disc_real_4: 0.22306 (0.21682) | > loss_disc_real_5: 0.19244 (0.17406) | > loss_0: 2.36215 (2.28845) | > loss_gen: 2.27335 (2.33922) | > loss_kl: 2.70996 (2.66487) | > loss_feat: 8.55137 (8.78195) | > loss_mel: 17.54910 (17.69466) | > loss_duration: 1.69601 (1.70169) | > loss_1: 32.77979 (33.18239)  --> STEP: 45 | > loss_disc: 2.34791 (2.28977) | > loss_disc_real_0: 0.10378 (0.08922) | > loss_disc_real_1: 0.18138 (0.17094) | > loss_disc_real_2: 0.22252 (0.21513) | > loss_disc_real_3: 0.23300 (0.23228) | > loss_disc_real_4: 0.22039 (0.21690) | > loss_disc_real_5: 0.19310 (0.17448) | > loss_0: 2.34791 (2.28977) | > loss_gen: 2.30867 (2.33854) | > loss_kl: 2.64648 (2.66446) | > loss_feat: 8.43697 (8.77429) | > loss_mel: 17.91578 (17.69957) | > loss_duration: 1.65740 (1.70071) | > loss_1: 32.96530 (33.17757)  --> STEP: 46 | > loss_disc: 2.19634 (2.28774) | > loss_disc_real_0: 0.05553 (0.08849) | > loss_disc_real_1: 0.16875 (0.17089) | > loss_disc_real_2: 0.21524 (0.21513) | > loss_disc_real_3: 0.21728 (0.23195) | > loss_disc_real_4: 0.18967 (0.21631) | > loss_disc_real_5: 0.15125 (0.17398) | > loss_0: 2.19634 (2.28774) | > loss_gen: 2.36885 (2.33920) | > loss_kl: 2.49424 (2.66076) | > loss_feat: 9.46133 (8.78922) | > loss_mel: 17.95056 (17.70503) | > loss_duration: 1.71587 (1.70104) | > loss_1: 33.99084 (33.19525)  --> STEP: 47 | > loss_disc: 2.24787 (2.28689) | > loss_disc_real_0: 0.07788 (0.08826) | > loss_disc_real_1: 0.17356 (0.17095) | > loss_disc_real_2: 0.21700 (0.21517) | > loss_disc_real_3: 0.22881 (0.23189) | > loss_disc_real_4: 0.20507 (0.21607) | > loss_disc_real_5: 0.16938 (0.17388) | > loss_0: 2.24787 (2.28689) | > loss_gen: 2.37610 (2.33999) | > loss_kl: 2.69154 (2.66142) | > loss_feat: 9.10753 (8.79600) | > loss_mel: 18.21741 (17.71593) | > loss_duration: 1.70299 (1.70108) | > loss_1: 34.09556 (33.21441)  --> STEP: 48 | > loss_disc: 2.28864 (2.28693) | > loss_disc_real_0: 0.08686 (0.08823) | > loss_disc_real_1: 0.17124 (0.17095) | > loss_disc_real_2: 0.21537 (0.21517) | > loss_disc_real_3: 0.23093 (0.23187) | > loss_disc_real_4: 0.20882 (0.21592) | > loss_disc_real_5: 0.17941 (0.17400) | > loss_0: 2.28864 (2.28693) | > loss_gen: 2.32911 (2.33976) | > loss_kl: 2.78233 (2.66394) | > loss_feat: 8.47446 (8.78930) | > loss_mel: 17.33969 (17.70809) | > loss_duration: 1.68308 (1.70070) | > loss_1: 32.60868 (33.20179)  --> STEP: 49 | > loss_disc: 2.25091 (2.28619) | > loss_disc_real_0: 0.08275 (0.08812) | > loss_disc_real_1: 0.17292 (0.17099) | > loss_disc_real_2: 0.22635 (0.21540) | > loss_disc_real_3: 0.24304 (0.23210) | > loss_disc_real_4: 0.22455 (0.21609) | > loss_disc_real_5: 0.17838 (0.17409) | > loss_0: 2.25091 (2.28619) | > loss_gen: 2.43069 (2.34161) | > loss_kl: 2.61651 (2.66297) | > loss_feat: 9.04111 (8.79444) | > loss_mel: 17.69448 (17.70781) | > loss_duration: 1.70012 (1.70069) | > loss_1: 33.48291 (33.20752)  --> STEP: 50 | > loss_disc: 2.27914 (2.28605) | > loss_disc_real_0: 0.09288 (0.08821) | > loss_disc_real_1: 0.16393 (0.17085) | > loss_disc_real_2: 0.21119 (0.21532) | > loss_disc_real_3: 0.24049 (0.23226) | > loss_disc_real_4: 0.21623 (0.21610) | > loss_disc_real_5: 0.17165 (0.17404) | > loss_0: 2.27914 (2.28605) | > loss_gen: 2.36196 (2.34202) | > loss_kl: 2.71672 (2.66404) | > loss_feat: 8.99103 (8.79837) | > loss_mel: 18.10661 (17.71579) | > loss_duration: 1.66967 (1.70007) | > loss_1: 33.84599 (33.22029)  --> STEP: 51 | > loss_disc: 2.28968 (2.28612) | > loss_disc_real_0: 0.08908 (0.08823) | > loss_disc_real_1: 0.16982 (0.17083) | > loss_disc_real_2: 0.22262 (0.21546) | > loss_disc_real_3: 0.23625 (0.23234) | > loss_disc_real_4: 0.21231 (0.21602) | > loss_disc_real_5: 0.16892 (0.17394) | > loss_0: 2.28968 (2.28612) | > loss_gen: 2.32593 (2.34171) | > loss_kl: 2.70994 (2.66494) | > loss_feat: 8.72672 (8.79696) | > loss_mel: 17.60065 (17.71353) | > loss_duration: 1.70185 (1.70011) | > loss_1: 33.06511 (33.21725)  --> STEP: 52 | > loss_disc: 2.26359 (2.28569) | > loss_disc_real_0: 0.07987 (0.08807) | > loss_disc_real_1: 0.17046 (0.17083) | > loss_disc_real_2: 0.22716 (0.21569) | > loss_disc_real_3: 0.23490 (0.23239) | > loss_disc_real_4: 0.21982 (0.21609) | > loss_disc_real_5: 0.17882 (0.17403) | > loss_0: 2.26359 (2.28569) | > loss_gen: 2.39909 (2.34281) | > loss_kl: 2.64280 (2.66452) | > loss_feat: 8.72047 (8.79549) | > loss_mel: 17.52974 (17.71000) | > loss_duration: 1.68978 (1.69991) | > loss_1: 32.98188 (33.21272)  --> STEP: 53 | > loss_disc: 2.28842 (2.28574) | > loss_disc_real_0: 0.08312 (0.08798) | > loss_disc_real_1: 0.17429 (0.17089) | > loss_disc_real_2: 0.22040 (0.21577) | > loss_disc_real_3: 0.22777 (0.23230) | > loss_disc_real_4: 0.21168 (0.21601) | > loss_disc_real_5: 0.16606 (0.17388) | > loss_0: 2.28842 (2.28574) | > loss_gen: 2.31889 (2.34236) | > loss_kl: 2.56385 (2.66262) | > loss_feat: 8.61012 (8.79200) | > loss_mel: 17.54706 (17.70692) | > loss_duration: 1.72790 (1.70044) | > loss_1: 32.76782 (33.20433)  --> STEP: 54 | > loss_disc: 2.28817 (2.28579) | > loss_disc_real_0: 0.10112 (0.08822) | > loss_disc_real_1: 0.16420 (0.17077) | > loss_disc_real_2: 0.19925 (0.21547) | > loss_disc_real_3: 0.23632 (0.23238) | > loss_disc_real_4: 0.21583 (0.21601) | > loss_disc_real_5: 0.17779 (0.17395) | > loss_0: 2.28817 (2.28579) | > loss_gen: 2.31099 (2.34178) | > loss_kl: 2.57177 (2.66093) | > loss_feat: 8.19689 (8.78097) | > loss_mel: 17.39512 (17.70115) | > loss_duration: 1.68026 (1.70006) | > loss_1: 32.15503 (33.18489)  --> STEP: 55 | > loss_disc: 2.32336 (2.28647) | > loss_disc_real_0: 0.09040 (0.08826) | > loss_disc_real_1: 0.18075 (0.17095) | > loss_disc_real_2: 0.24037 (0.21592) | > loss_disc_real_3: 0.24964 (0.23269) | > loss_disc_real_4: 0.22406 (0.21615) | > loss_disc_real_5: 0.17437 (0.17396) | > loss_0: 2.32336 (2.28647) | > loss_gen: 2.34332 (2.34181) | > loss_kl: 2.77592 (2.66303) | > loss_feat: 8.24534 (8.77123) | > loss_mel: 17.41747 (17.69599) | > loss_duration: 1.72113 (1.70044) | > loss_1: 32.50318 (33.17250)  --> STEP: 56 | > loss_disc: 2.29411 (2.28661) | > loss_disc_real_0: 0.07046 (0.08794) | > loss_disc_real_1: 0.17811 (0.17108) | > loss_disc_real_2: 0.22358 (0.21606) | > loss_disc_real_3: 0.23133 (0.23267) | > loss_disc_real_4: 0.21301 (0.21610) | > loss_disc_real_5: 0.17734 (0.17402) | > loss_0: 2.29411 (2.28661) | > loss_gen: 2.31799 (2.34138) | > loss_kl: 2.55928 (2.66117) | > loss_feat: 8.10976 (8.75942) | > loss_mel: 17.47262 (17.69200) | > loss_duration: 1.73025 (1.70098) | > loss_1: 32.18988 (33.15495)  --> STEP: 57 | > loss_disc: 2.26886 (2.28629) | > loss_disc_real_0: 0.08577 (0.08790) | > loss_disc_real_1: 0.17650 (0.17117) | > loss_disc_real_2: 0.21589 (0.21605) | > loss_disc_real_3: 0.23093 (0.23264) | > loss_disc_real_4: 0.21897 (0.21615) | > loss_disc_real_5: 0.17384 (0.17402) | > loss_0: 2.26886 (2.28629) | > loss_gen: 2.33084 (2.34120) | > loss_kl: 2.63314 (2.66068) | > loss_feat: 8.20861 (8.74976) | > loss_mel: 17.79503 (17.69381) | > loss_duration: 1.68605 (1.70071) | > loss_1: 32.65366 (33.14616)  --> STEP: 58 | > loss_disc: 2.30511 (2.28662) | > loss_disc_real_0: 0.07992 (0.08777) | > loss_disc_real_1: 0.17864 (0.17130) | > loss_disc_real_2: 0.22398 (0.21619) | > loss_disc_real_3: 0.22962 (0.23259) | > loss_disc_real_4: 0.20077 (0.21588) | > loss_disc_real_5: 0.16683 (0.17389) | > loss_0: 2.30511 (2.28662) | > loss_gen: 2.31586 (2.34076) | > loss_kl: 2.68908 (2.66117) | > loss_feat: 9.12429 (8.75622) | > loss_mel: 17.98588 (17.69884) | > loss_duration: 1.65369 (1.69990) | > loss_1: 33.76880 (33.15689)  --> STEP: 59 | > loss_disc: 2.22851 (2.28563) | > loss_disc_real_0: 0.09020 (0.08781) | > loss_disc_real_1: 0.19275 (0.17166) | > loss_disc_real_2: 0.23301 (0.21648) | > loss_disc_real_3: 0.23463 (0.23262) | > loss_disc_real_4: 0.20698 (0.21573) | > loss_disc_real_5: 0.16231 (0.17370) | > loss_0: 2.22851 (2.28563) | > loss_gen: 2.41600 (2.34203) | > loss_kl: 2.68858 (2.66164) | > loss_feat: 8.47939 (8.75152) | > loss_mel: 17.25915 (17.69139) | > loss_duration: 1.71399 (1.70014) | > loss_1: 32.55711 (33.14673)  --> STEP: 60 | > loss_disc: 2.33936 (2.28653) | > loss_disc_real_0: 0.08800 (0.08781) | > loss_disc_real_1: 0.17675 (0.17175) | > loss_disc_real_2: 0.21723 (0.21649) | > loss_disc_real_3: 0.22917 (0.23256) | > loss_disc_real_4: 0.22595 (0.21590) | > loss_disc_real_5: 0.19050 (0.17398) | > loss_0: 2.33936 (2.28653) | > loss_gen: 2.28907 (2.34115) | > loss_kl: 2.64080 (2.66129) | > loss_feat: 8.64486 (8.74975) | > loss_mel: 17.72526 (17.69196) | > loss_duration: 1.65546 (1.69940) | > loss_1: 32.95544 (33.14354)  --> STEP: 61 | > loss_disc: 2.29604 (2.28669) | > loss_disc_real_0: 0.09082 (0.08786) | > loss_disc_real_1: 0.17318 (0.17177) | > loss_disc_real_2: 0.22101 (0.21656) | > loss_disc_real_3: 0.23466 (0.23260) | > loss_disc_real_4: 0.22271 (0.21601) | > loss_disc_real_5: 0.19299 (0.17429) | > loss_0: 2.29604 (2.28669) | > loss_gen: 2.37625 (2.34173) | > loss_kl: 2.67422 (2.66150) | > loss_feat: 8.69475 (8.74885) | > loss_mel: 17.68789 (17.69189) | > loss_duration: 1.71177 (1.69960) | > loss_1: 33.14487 (33.14356)  --> STEP: 62 | > loss_disc: 2.33727 (2.28750) | > loss_disc_real_0: 0.09303 (0.08794) | > loss_disc_real_1: 0.18347 (0.17196) | > loss_disc_real_2: 0.22719 (0.21673) | > loss_disc_real_3: 0.23656 (0.23266) | > loss_disc_real_4: 0.22796 (0.21621) | > loss_disc_real_5: 0.17203 (0.17425) | > loss_0: 2.33727 (2.28750) | > loss_gen: 2.29565 (2.34098) | > loss_kl: 2.59126 (2.66037) | > loss_feat: 8.57403 (8.74603) | > loss_mel: 17.29201 (17.68544) | > loss_duration: 1.74974 (1.70041) | > loss_1: 32.50268 (33.13322)  --> STEP: 63 | > loss_disc: 2.27046 (2.28723) | > loss_disc_real_0: 0.09267 (0.08802) | > loss_disc_real_1: 0.17660 (0.17203) | > loss_disc_real_2: 0.21881 (0.21677) | > loss_disc_real_3: 0.23991 (0.23278) | > loss_disc_real_4: 0.21986 (0.21626) | > loss_disc_real_5: 0.17762 (0.17431) | > loss_0: 2.27046 (2.28723) | > loss_gen: 2.41547 (2.34217) | > loss_kl: 2.63406 (2.65995) | > loss_feat: 8.82098 (8.74722) | > loss_mel: 18.04396 (17.69113) | > loss_duration: 1.76588 (1.70145) | > loss_1: 33.68035 (33.14191)  --> STEP: 64 | > loss_disc: 2.29418 (2.28734) | > loss_disc_real_0: 0.09734 (0.08816) | > loss_disc_real_1: 0.17637 (0.17210) | > loss_disc_real_2: 0.21410 (0.21673) | > loss_disc_real_3: 0.23332 (0.23278) | > loss_disc_real_4: 0.21234 (0.21620) | > loss_disc_real_5: 0.16902 (0.17422) | > loss_0: 2.29418 (2.28734) | > loss_gen: 2.34299 (2.34218) | > loss_kl: 2.69758 (2.66054) | > loss_feat: 8.40452 (8.74186) | > loss_mel: 17.81775 (17.69311) | > loss_duration: 1.67639 (1.70106) | > loss_1: 32.93923 (33.13875)  --> STEP: 65 | > loss_disc: 2.26084 (2.28693) | > loss_disc_real_0: 0.07478 (0.08796) | > loss_disc_real_1: 0.16800 (0.17204) | > loss_disc_real_2: 0.20824 (0.21660) | > loss_disc_real_3: 0.23252 (0.23278) | > loss_disc_real_4: 0.20898 (0.21609) | > loss_disc_real_5: 0.16493 (0.17408) | > loss_0: 2.26084 (2.28693) | > loss_gen: 2.32488 (2.34191) | > loss_kl: 2.75136 (2.66193) | > loss_feat: 9.32848 (8.75089) | > loss_mel: 18.16609 (17.70038) | > loss_duration: 1.71880 (1.70133) | > loss_1: 34.28960 (33.15645)  --> STEP: 66 | > loss_disc: 2.31841 (2.28741) | > loss_disc_real_0: 0.10431 (0.08821) | > loss_disc_real_1: 0.17450 (0.17208) | > loss_disc_real_2: 0.21787 (0.21661) | > loss_disc_real_3: 0.23396 (0.23280) | > loss_disc_real_4: 0.22496 (0.21623) | > loss_disc_real_5: 0.17101 (0.17403) | > loss_0: 2.31841 (2.28741) | > loss_gen: 2.34737 (2.34199) | > loss_kl: 2.61165 (2.66117) | > loss_feat: 9.15295 (8.75698) | > loss_mel: 17.79834 (17.70187) | > loss_duration: 1.68409 (1.70107) | > loss_1: 33.59440 (33.16309)  --> STEP: 67 | > loss_disc: 2.33255 (2.28808) | > loss_disc_real_0: 0.11014 (0.08853) | > loss_disc_real_1: 0.17654 (0.17214) | > loss_disc_real_2: 0.22542 (0.21675) | > loss_disc_real_3: 0.24002 (0.23291) | > loss_disc_real_4: 0.23565 (0.21652) | > loss_disc_real_5: 0.20199 (0.17445) | > loss_0: 2.33255 (2.28808) | > loss_gen: 2.38174 (2.34259) | > loss_kl: 2.59691 (2.66021) | > loss_feat: 8.37085 (8.75122) | > loss_mel: 17.84674 (17.70403) | > loss_duration: 1.66823 (1.70058) | > loss_1: 32.86447 (33.15863)  --> STEP: 68 | > loss_disc: 2.29345 (2.28816) | > loss_disc_real_0: 0.09077 (0.08857) | > loss_disc_real_1: 0.18574 (0.17234) | > loss_disc_real_2: 0.21714 (0.21675) | > loss_disc_real_3: 0.22163 (0.23274) | > loss_disc_real_4: 0.21084 (0.21643) | > loss_disc_real_5: 0.17201 (0.17441) | > loss_0: 2.29345 (2.28816) | > loss_gen: 2.35974 (2.34284) | > loss_kl: 2.60475 (2.65940) | > loss_feat: 8.87150 (8.75299) | > loss_mel: 17.90818 (17.70703) | > loss_duration: 1.70138 (1.70059) | > loss_1: 33.44555 (33.16285)  --> STEP: 69 | > loss_disc: 2.22233 (2.28721) | > loss_disc_real_0: 0.08739 (0.08855) | > loss_disc_real_1: 0.16712 (0.17227) | > loss_disc_real_2: 0.20690 (0.21661) | > loss_disc_real_3: 0.23659 (0.23280) | > loss_disc_real_4: 0.20324 (0.21624) | > loss_disc_real_5: 0.16965 (0.17435) | > loss_0: 2.22233 (2.28721) | > loss_gen: 2.35537 (2.34302) | > loss_kl: 2.56638 (2.65805) | > loss_feat: 8.68051 (8.75194) | > loss_mel: 17.70459 (17.70700) | > loss_duration: 1.68667 (1.70039) | > loss_1: 32.99353 (33.16040)  --> STEP: 70 | > loss_disc: 2.28071 (2.28711) | > loss_disc_real_0: 0.09206 (0.08860) | > loss_disc_real_1: 0.15938 (0.17208) | > loss_disc_real_2: 0.22033 (0.21666) | > loss_disc_real_3: 0.23194 (0.23278) | > loss_disc_real_4: 0.22215 (0.21633) | > loss_disc_real_5: 0.18882 (0.17455) | > loss_0: 2.28071 (2.28711) | > loss_gen: 2.34542 (2.34306) | > loss_kl: 2.60712 (2.65732) | > loss_feat: 8.93988 (8.75462) | > loss_mel: 18.08465 (17.71239) | > loss_duration: 1.72673 (1.70077) | > loss_1: 33.70380 (33.16816)  --> STEP: 71 | > loss_disc: 2.30854 (2.28742) | > loss_disc_real_0: 0.08414 (0.08854) | > loss_disc_real_1: 0.16880 (0.17204) | > loss_disc_real_2: 0.21397 (0.21662) | > loss_disc_real_3: 0.24450 (0.23295) | > loss_disc_real_4: 0.21434 (0.21630) | > loss_disc_real_5: 0.16249 (0.17438) | > loss_0: 2.30854 (2.28742) | > loss_gen: 2.27056 (2.34204) | > loss_kl: 2.66226 (2.65739) | > loss_feat: 8.57877 (8.75214) | > loss_mel: 17.70012 (17.71222) | > loss_duration: 1.70403 (1.70081) | > loss_1: 32.91574 (33.16460)  --> STEP: 72 | > loss_disc: 2.26213 (2.28706) | > loss_disc_real_0: 0.07934 (0.08841) | > loss_disc_real_1: 0.17126 (0.17203) | > loss_disc_real_2: 0.21189 (0.21656) | > loss_disc_real_3: 0.22536 (0.23284) | > loss_disc_real_4: 0.21738 (0.21631) | > loss_disc_real_5: 0.17462 (0.17439) | > loss_0: 2.26213 (2.28706) | > loss_gen: 2.34682 (2.34210) | > loss_kl: 2.57326 (2.65622) | > loss_feat: 9.16457 (8.75787) | > loss_mel: 18.54406 (17.72377) | > loss_duration: 1.69597 (1.70074) | > loss_1: 34.32467 (33.18072)  --> STEP: 73 | > loss_disc: 2.31363 (2.28743) | > loss_disc_real_0: 0.10174 (0.08859) | > loss_disc_real_1: 0.17708 (0.17210) | > loss_disc_real_2: 0.21434 (0.21653) | > loss_disc_real_3: 0.23631 (0.23289) | > loss_disc_real_4: 0.20128 (0.21611) | > loss_disc_real_5: 0.16264 (0.17422) | > loss_0: 2.31363 (2.28743) | > loss_gen: 2.26476 (2.34104) | > loss_kl: 2.58555 (2.65526) | > loss_feat: 8.54924 (8.75501) | > loss_mel: 17.14877 (17.71590) | > loss_duration: 1.74829 (1.70140) | > loss_1: 32.29660 (33.16861)  --> STEP: 74 | > loss_disc: 2.30140 (2.28762) | > loss_disc_real_0: 0.09584 (0.08869) | > loss_disc_real_1: 0.16759 (0.17203) | > loss_disc_real_2: 0.21447 (0.21650) | > loss_disc_real_3: 0.23307 (0.23289) | > loss_disc_real_4: 0.22113 (0.21618) | > loss_disc_real_5: 0.17742 (0.17427) | > loss_0: 2.30140 (2.28762) | > loss_gen: 2.35382 (2.34122) | > loss_kl: 2.67583 (2.65553) | > loss_feat: 8.45062 (8.75090) | > loss_mel: 17.63313 (17.71478) | > loss_duration: 1.73769 (1.70189) | > loss_1: 32.85109 (33.16431)  --> STEP: 75 | > loss_disc: 2.26331 (2.28729) | > loss_disc_real_0: 0.09205 (0.08873) | > loss_disc_real_1: 0.17244 (0.17204) | > loss_disc_real_2: 0.21367 (0.21646) | > loss_disc_real_3: 0.24495 (0.23305) | > loss_disc_real_4: 0.21272 (0.21613) | > loss_disc_real_5: 0.17938 (0.17434) | > loss_0: 2.26331 (2.28729) | > loss_gen: 2.39002 (2.34187) | > loss_kl: 2.59408 (2.65471) | > loss_feat: 8.36209 (8.74572) | > loss_mel: 17.52808 (17.71229) | > loss_duration: 1.69370 (1.70178) | > loss_1: 32.56797 (33.15636)  --> STEP: 76 | > loss_disc: 2.30786 (2.28756) | > loss_disc_real_0: 0.09384 (0.08880) | > loss_disc_real_1: 0.17765 (0.17211) | > loss_disc_real_2: 0.22777 (0.21661) | > loss_disc_real_3: 0.24998 (0.23328) | > loss_disc_real_4: 0.21190 (0.21607) | > loss_disc_real_5: 0.19544 (0.17461) | > loss_0: 2.30786 (2.28756) | > loss_gen: 2.37497 (2.34230) | > loss_kl: 2.63389 (2.65444) | > loss_feat: 8.51228 (8.74265) | > loss_mel: 17.60152 (17.71083) | > loss_duration: 1.69919 (1.70174) | > loss_1: 32.82187 (33.15196)  --> STEP: 77 | > loss_disc: 2.30682 (2.28781) | > loss_disc_real_0: 0.09107 (0.08883) | > loss_disc_real_1: 0.17006 (0.17209) | > loss_disc_real_2: 0.21136 (0.21654) | > loss_disc_real_3: 0.23094 (0.23325) | > loss_disc_real_4: 0.21971 (0.21612) | > loss_disc_real_5: 0.16166 (0.17445) | > loss_0: 2.30682 (2.28781) | > loss_gen: 2.30339 (2.34180) | > loss_kl: 2.72749 (2.65539) | > loss_feat: 9.28461 (8.74968) | > loss_mel: 17.22212 (17.70449) | > loss_duration: 1.72316 (1.70202) | > loss_1: 33.26077 (33.15337)  --> STEP: 78 | > loss_disc: 2.28755 (2.28781) | > loss_disc_real_0: 0.09017 (0.08885) | > loss_disc_real_1: 0.17677 (0.17215) | > loss_disc_real_2: 0.21568 (0.21653) | > loss_disc_real_3: 0.24091 (0.23334) | > loss_disc_real_4: 0.22699 (0.21626) | > loss_disc_real_5: 0.18989 (0.17464) | > loss_0: 2.28755 (2.28781) | > loss_gen: 2.38088 (2.34230) | > loss_kl: 2.74974 (2.65660) | > loss_feat: 8.36533 (8.74476) | > loss_mel: 17.91412 (17.70717) | > loss_duration: 1.74393 (1.70256) | > loss_1: 33.15401 (33.15338)  --> STEP: 79 | > loss_disc: 2.25052 (2.28734) | > loss_disc_real_0: 0.07638 (0.08869) | > loss_disc_real_1: 0.17050 (0.17213) | > loss_disc_real_2: 0.21449 (0.21651) | > loss_disc_real_3: 0.23312 (0.23334) | > loss_disc_real_4: 0.21572 (0.21625) | > loss_disc_real_5: 0.18264 (0.17474) | > loss_0: 2.25052 (2.28734) | > loss_gen: 2.40239 (2.34306) | > loss_kl: 2.67765 (2.65686) | > loss_feat: 8.73004 (8.74457) | > loss_mel: 18.20065 (17.71342) | > loss_duration: 1.70301 (1.70256) | > loss_1: 33.71374 (33.16048)  --> STEP: 80 | > loss_disc: 2.35508 (2.28819) | > loss_disc_real_0: 0.09176 (0.08873) | > loss_disc_real_1: 0.18471 (0.17228) | > loss_disc_real_2: 0.23221 (0.21670) | > loss_disc_real_3: 0.24070 (0.23343) | > loss_disc_real_4: 0.23558 (0.21649) | > loss_disc_real_5: 0.16886 (0.17467) | > loss_0: 2.35508 (2.28819) | > loss_gen: 2.32178 (2.34279) | > loss_kl: 2.67360 (2.65707) | > loss_feat: 8.60820 (8.74287) | > loss_mel: 17.46137 (17.71027) | > loss_duration: 1.64752 (1.70188) | > loss_1: 32.71248 (33.15488)  --> STEP: 81 | > loss_disc: 2.30356 (2.28838) | > loss_disc_real_0: 0.08045 (0.08863) | > loss_disc_real_1: 0.17255 (0.17229) | > loss_disc_real_2: 0.21252 (0.21665) | > loss_disc_real_3: 0.23781 (0.23349) | > loss_disc_real_4: 0.21834 (0.21652) | > loss_disc_real_5: 0.18096 (0.17475) | > loss_0: 2.30356 (2.28838) | > loss_gen: 2.29304 (2.34218) | > loss_kl: 2.62398 (2.65667) | > loss_feat: 8.03762 (8.73416) | > loss_mel: 17.32263 (17.70549) | > loss_duration: 1.69016 (1.70173) | > loss_1: 31.96743 (33.14022)  --> STEP: 82 | > loss_disc: 2.23657 (2.28774) | > loss_disc_real_0: 0.07032 (0.08840) | > loss_disc_real_1: 0.18324 (0.17242) | > loss_disc_real_2: 0.21451 (0.21662) | > loss_disc_real_3: 0.23947 (0.23356) | > loss_disc_real_4: 0.21694 (0.21652) | > loss_disc_real_5: 0.15495 (0.17451) | > loss_0: 2.23657 (2.28774) | > loss_gen: 2.39065 (2.34277) | > loss_kl: 2.51650 (2.65496) | > loss_feat: 8.93362 (8.73659) | > loss_mel: 17.92675 (17.70819) | > loss_duration: 1.63912 (1.70097) | > loss_1: 33.40665 (33.14347)  --> STEP: 83 | > loss_disc: 2.25468 (2.28735) | > loss_disc_real_0: 0.06992 (0.08818) | > loss_disc_real_1: 0.16760 (0.17236) | > loss_disc_real_2: 0.21396 (0.21659) | > loss_disc_real_3: 0.23081 (0.23353) | > loss_disc_real_4: 0.21886 (0.21655) | > loss_disc_real_5: 0.17153 (0.17447) | > loss_0: 2.25468 (2.28735) | > loss_gen: 2.33873 (2.34272) | > loss_kl: 2.66176 (2.65504) | > loss_feat: 8.83774 (8.73781) | > loss_mel: 17.84264 (17.70980) | > loss_duration: 1.70712 (1.70104) | > loss_1: 33.38798 (33.14641)  --> STEP: 84 | > loss_disc: 2.33249 (2.28788) | > loss_disc_real_0: 0.09842 (0.08830) | > loss_disc_real_1: 0.16880 (0.17232) | > loss_disc_real_2: 0.20410 (0.21644) | > loss_disc_real_3: 0.22392 (0.23341) | > loss_disc_real_4: 0.20919 (0.21646) | > loss_disc_real_5: 0.17193 (0.17444) | > loss_0: 2.33249 (2.28788) | > loss_gen: 2.22213 (2.34128) | > loss_kl: 2.59171 (2.65428) | > loss_feat: 8.89542 (8.73969) | > loss_mel: 17.49918 (17.70730) | > loss_duration: 1.68358 (1.70083) | > loss_1: 32.89201 (33.14338)  --> STEP: 85 | > loss_disc: 2.30616 (2.28810) | > loss_disc_real_0: 0.08038 (0.08821) | > loss_disc_real_1: 0.18157 (0.17243) | > loss_disc_real_2: 0.22208 (0.21651) | > loss_disc_real_3: 0.24081 (0.23350) | > loss_disc_real_4: 0.22565 (0.21657) | > loss_disc_real_5: 0.15964 (0.17427) | > loss_0: 2.30616 (2.28810) | > loss_gen: 2.32963 (2.34115) | > loss_kl: 2.52760 (2.65279) | > loss_feat: 8.47166 (8.73653) | > loss_mel: 17.51824 (17.70507) | > loss_duration: 1.66241 (1.70038) | > loss_1: 32.50954 (33.13593)  --> STEP: 86 | > loss_disc: 2.32474 (2.28852) | > loss_disc_real_0: 0.09402 (0.08828) | > loss_disc_real_1: 0.18089 (0.17253) | > loss_disc_real_2: 0.22370 (0.21659) | > loss_disc_real_3: 0.24700 (0.23366) | > loss_disc_real_4: 0.23865 (0.21683) | > loss_disc_real_5: 0.18925 (0.17444) | > loss_0: 2.32474 (2.28852) | > loss_gen: 2.39354 (2.34176) | > loss_kl: 2.57950 (2.65194) | > loss_feat: 8.02724 (8.72828) | > loss_mel: 17.26077 (17.69991) | > loss_duration: 1.71173 (1.70051) | > loss_1: 31.97278 (33.12240)  --> STEP: 87 | > loss_disc: 2.29663 (2.28862) | > loss_disc_real_0: 0.09560 (0.08836) | > loss_disc_real_1: 0.16709 (0.17246) | > loss_disc_real_2: 0.21630 (0.21659) | > loss_disc_real_3: 0.24163 (0.23375) | > loss_disc_real_4: 0.21665 (0.21683) | > loss_disc_real_5: 0.18085 (0.17451) | > loss_0: 2.29663 (2.28862) | > loss_gen: 2.33971 (2.34173) | > loss_kl: 2.62264 (2.65160) | > loss_feat: 8.30147 (8.72338) | > loss_mel: 17.39502 (17.69640) | > loss_duration: 1.69948 (1.70050) | > loss_1: 32.35831 (33.11362)  --> STEP: 88 | > loss_disc: 2.28668 (2.28859) | > loss_disc_real_0: 0.09160 (0.08840) | > loss_disc_real_1: 0.15610 (0.17228) | > loss_disc_real_2: 0.21638 (0.21659) | > loss_disc_real_3: 0.22956 (0.23370) | > loss_disc_real_4: 0.20200 (0.21666) | > loss_disc_real_5: 0.17893 (0.17457) | > loss_0: 2.28668 (2.28859) | > loss_gen: 2.31455 (2.34142) | > loss_kl: 2.77668 (2.65303) | > loss_feat: 8.06490 (8.71589) | > loss_mel: 17.79460 (17.69752) | > loss_duration: 1.75811 (1.70116) | > loss_1: 32.70884 (33.10902)  --> STEP: 89 | > loss_disc: 2.28798 (2.28859) | > loss_disc_real_0: 0.08194 (0.08833) | > loss_disc_real_1: 0.16229 (0.17217) | > loss_disc_real_2: 0.22025 (0.21663) | > loss_disc_real_3: 0.22909 (0.23365) | > loss_disc_real_4: 0.21752 (0.21667) | > loss_disc_real_5: 0.17250 (0.17454) | > loss_0: 2.28798 (2.28859) | > loss_gen: 2.31451 (2.34112) | > loss_kl: 2.78209 (2.65448) | > loss_feat: 9.21253 (8.72147) | > loss_mel: 17.82330 (17.69893) | > loss_duration: 1.72018 (1.70137) | > loss_1: 33.85261 (33.11737)  --> STEP: 90 | > loss_disc: 2.32631 (2.28901) | > loss_disc_real_0: 0.10379 (0.08850) | > loss_disc_real_1: 0.18267 (0.17228) | > loss_disc_real_2: 0.22826 (0.21676) | > loss_disc_real_3: 0.24269 (0.23375) | > loss_disc_real_4: 0.23569 (0.21688) | > loss_disc_real_5: 0.17199 (0.17451) | > loss_0: 2.32631 (2.28901) | > loss_gen: 2.33756 (2.34108) | > loss_kl: 2.74409 (2.65547) | > loss_feat: 7.94284 (8.71282) | > loss_mel: 16.99610 (17.69112) | > loss_duration: 1.65559 (1.70086) | > loss_1: 31.67618 (33.10136)  --> STEP: 91 | > loss_disc: 2.27284 (2.28883) | > loss_disc_real_0: 0.07732 (0.08837) | > loss_disc_real_1: 0.17276 (0.17229) | > loss_disc_real_2: 0.19660 (0.21654) | > loss_disc_real_3: 0.21872 (0.23358) | > loss_disc_real_4: 0.19841 (0.21668) | > loss_disc_real_5: 0.16033 (0.17436) | > loss_0: 2.27284 (2.28883) | > loss_gen: 2.29375 (2.34056) | > loss_kl: 2.61095 (2.65498) | > loss_feat: 8.65894 (8.71223) | > loss_mel: 17.43646 (17.68833) | > loss_duration: 1.70836 (1.70094) | > loss_1: 32.70845 (33.09705)  --> STEP: 92 | > loss_disc: 2.29709 (2.28892) | > loss_disc_real_0: 0.09567 (0.08845) | > loss_disc_real_1: 0.17211 (0.17229) | > loss_disc_real_2: 0.21480 (0.21652) | > loss_disc_real_3: 0.22240 (0.23346) | > loss_disc_real_4: 0.21864 (0.21670) | > loss_disc_real_5: 0.17525 (0.17437) | > loss_0: 2.29709 (2.28892) | > loss_gen: 2.34339 (2.34059) | > loss_kl: 2.80990 (2.65667) | > loss_feat: 8.59687 (8.71098) | > loss_mel: 17.72497 (17.68872) | > loss_duration: 1.67134 (1.70062) | > loss_1: 33.14647 (33.09759)  --> STEP: 93 | > loss_disc: 2.29605 (2.28900) | > loss_disc_real_0: 0.08877 (0.08846) | > loss_disc_real_1: 0.16702 (0.17223) | > loss_disc_real_2: 0.22229 (0.21658) | > loss_disc_real_3: 0.22379 (0.23336) | > loss_disc_real_4: 0.20258 (0.21655) | > loss_disc_real_5: 0.16515 (0.17427) | > loss_0: 2.29605 (2.28900) | > loss_gen: 2.30278 (2.34019) | > loss_kl: 2.77140 (2.65790) | > loss_feat: 9.00353 (8.71412) | > loss_mel: 17.92812 (17.69130) | > loss_duration: 1.71608 (1.70079) | > loss_1: 33.72192 (33.10430)  --> STEP: 94 | > loss_disc: 2.31658 (2.28929) | > loss_disc_real_0: 0.09443 (0.08852) | > loss_disc_real_1: 0.17222 (0.17223) | > loss_disc_real_2: 0.22061 (0.21662) | > loss_disc_real_3: 0.23818 (0.23341) | > loss_disc_real_4: 0.22920 (0.21668) | > loss_disc_real_5: 0.17341 (0.17426) | > loss_0: 2.31658 (2.28929) | > loss_gen: 2.32013 (2.33997) | > loss_kl: 2.57984 (2.65707) | > loss_feat: 7.94851 (8.70598) | > loss_mel: 17.49096 (17.68917) | > loss_duration: 1.68414 (1.70061) | > loss_1: 32.02359 (33.09280)  --> STEP: 95 | > loss_disc: 2.28518 (2.28925) | > loss_disc_real_0: 0.11030 (0.08875) | > loss_disc_real_1: 0.17129 (0.17222) | > loss_disc_real_2: 0.21111 (0.21656) | > loss_disc_real_3: 0.23152 (0.23339) | > loss_disc_real_4: 0.21510 (0.21666) | > loss_disc_real_5: 0.17666 (0.17428) | > loss_0: 2.28518 (2.28925) | > loss_gen: 2.35610 (2.34014) | > loss_kl: 2.76895 (2.65825) | > loss_feat: 8.72520 (8.70618) | > loss_mel: 18.17278 (17.69426) | > loss_duration: 1.68209 (1.70042) | > loss_1: 33.70511 (33.09925)  --> STEP: 96 | > loss_disc: 2.26917 (2.28904) | > loss_disc_real_0: 0.09367 (0.08880) | > loss_disc_real_1: 0.18405 (0.17234) | > loss_disc_real_2: 0.22300 (0.21663) | > loss_disc_real_3: 0.23564 (0.23341) | > loss_disc_real_4: 0.21104 (0.21660) | > loss_disc_real_5: 0.16203 (0.17416) | > loss_0: 2.26917 (2.28904) | > loss_gen: 2.38195 (2.34058) | > loss_kl: 2.57229 (2.65735) | > loss_feat: 8.87978 (8.70799) | > loss_mel: 16.82132 (17.68517) | > loss_duration: 1.72750 (1.70070) | > loss_1: 32.38285 (33.09179)  --> STEP: 97 | > loss_disc: 2.30398 (2.28919) | > loss_disc_real_0: 0.07854 (0.08870) | > loss_disc_real_1: 0.16996 (0.17232) | > loss_disc_real_2: 0.21387 (0.21660) | > loss_disc_real_3: 0.21697 (0.23324) | > loss_disc_real_4: 0.21468 (0.21658) | > loss_disc_real_5: 0.17569 (0.17417) | > loss_0: 2.30398 (2.28919) | > loss_gen: 2.29041 (2.34006) | > loss_kl: 2.67369 (2.65752) | > loss_feat: 8.56337 (8.70650) | > loss_mel: 17.94905 (17.68789) | > loss_duration: 1.69490 (1.70064) | > loss_1: 33.17142 (33.09261)  --> STEP: 98 | > loss_disc: 2.28655 (2.28916) | > loss_disc_real_0: 0.09241 (0.08873) | > loss_disc_real_1: 0.16061 (0.17220) | > loss_disc_real_2: 0.20934 (0.21653) | > loss_disc_real_3: 0.22389 (0.23315) | > loss_disc_real_4: 0.21402 (0.21656) | > loss_disc_real_5: 0.20022 (0.17444) | > loss_0: 2.28655 (2.28916) | > loss_gen: 2.33124 (2.33997) | > loss_kl: 2.61955 (2.65713) | > loss_feat: 8.39482 (8.70332) | > loss_mel: 17.84579 (17.68950) | > loss_duration: 1.74392 (1.70108) | > loss_1: 32.93534 (33.09100)  --> STEP: 99 | > loss_disc: 2.29852 (2.28926) | > loss_disc_real_0: 0.07479 (0.08859) | > loss_disc_real_1: 0.17067 (0.17218) | > loss_disc_real_2: 0.22107 (0.21658) | > loss_disc_real_3: 0.24618 (0.23328) | > loss_disc_real_4: 0.20811 (0.21647) | > loss_disc_real_5: 0.17109 (0.17440) | > loss_0: 2.29852 (2.28926) | > loss_gen: 2.34534 (2.34003) | > loss_kl: 2.59662 (2.65652) | > loss_feat: 9.13997 (8.70773) | > loss_mel: 18.22610 (17.69492) | > loss_duration: 1.74150 (1.70149) | > loss_1: 34.04954 (33.10069)  --> STEP: 100 | > loss_disc: 2.33848 (2.28975) | > loss_disc_real_0: 0.09313 (0.08864) | > loss_disc_real_1: 0.17948 (0.17226) | > loss_disc_real_2: 0.23166 (0.21673) | > loss_disc_real_3: 0.24509 (0.23340) | > loss_disc_real_4: 0.22157 (0.21652) | > loss_disc_real_5: 0.17612 (0.17442) | > loss_0: 2.33848 (2.28975) | > loss_gen: 2.31964 (2.33982) | > loss_kl: 2.65655 (2.65652) | > loss_feat: 8.06999 (8.70135) | > loss_mel: 17.73416 (17.69531) | > loss_duration: 1.72931 (1.70177) | > loss_1: 32.50965 (33.09478)  --> STEP: 101 | > loss_disc: 2.28869 (2.28974) | > loss_disc_real_0: 0.08961 (0.08865) | > loss_disc_real_1: 0.17876 (0.17232) | > loss_disc_real_2: 0.22061 (0.21676) | > loss_disc_real_3: 0.22344 (0.23330) | > loss_disc_real_4: 0.22132 (0.21657) | > loss_disc_real_5: 0.17310 (0.17441) | > loss_0: 2.28869 (2.28974) | > loss_gen: 2.36164 (2.34004) | > loss_kl: 2.60755 (2.65604) | > loss_feat: 8.87913 (8.70311) | > loss_mel: 17.48001 (17.69318) | > loss_duration: 1.76393 (1.70238) | > loss_1: 33.09226 (33.09475)  --> STEP: 102 | > loss_disc: 2.25091 (2.28936) | > loss_disc_real_0: 0.07834 (0.08855) | > loss_disc_real_1: 0.16455 (0.17224) | > loss_disc_real_2: 0.20710 (0.21667) | > loss_disc_real_3: 0.23272 (0.23329) | > loss_disc_real_4: 0.22420 (0.21665) | > loss_disc_real_5: 0.16947 (0.17436) | > loss_0: 2.25091 (2.28936) | > loss_gen: 2.37017 (2.34033) | > loss_kl: 2.68525 (2.65632) | > loss_feat: 8.73100 (8.70338) | > loss_mel: 17.51955 (17.69148) | > loss_duration: 1.70581 (1.70242) | > loss_1: 33.01178 (33.09394)  --> STEP: 103 | > loss_disc: 2.24494 (2.28893) | > loss_disc_real_0: 0.07073 (0.08837) | > loss_disc_real_1: 0.17292 (0.17225) | > loss_disc_real_2: 0.20856 (0.21659) | > loss_disc_real_3: 0.22307 (0.23319) | > loss_disc_real_4: 0.21239 (0.21661) | > loss_disc_real_5: 0.19160 (0.17453) | > loss_0: 2.24494 (2.28893) | > loss_gen: 2.39792 (2.34089) | > loss_kl: 2.76085 (2.65734) | > loss_feat: 9.85699 (8.71459) | > loss_mel: 18.03646 (17.69483) | > loss_duration: 1.71774 (1.70257) | > loss_1: 34.76996 (33.11021)  --> STEP: 104 | > loss_disc: 2.29096 (2.28895) | > loss_disc_real_0: 0.08494 (0.08834) | > loss_disc_real_1: 0.16365 (0.17217) | > loss_disc_real_2: 0.21888 (0.21661) | > loss_disc_real_3: 0.24405 (0.23330) | > loss_disc_real_4: 0.22833 (0.21672) | > loss_disc_real_5: 0.19209 (0.17470) | > loss_0: 2.29096 (2.28895) | > loss_gen: 2.38548 (2.34132) | > loss_kl: 2.75616 (2.65829) | > loss_feat: 8.59276 (8.71341) | > loss_mel: 17.46347 (17.69260) | > loss_duration: 1.68337 (1.70238) | > loss_1: 32.88123 (33.10801)  --> STEP: 105 | > loss_disc: 2.32196 (2.28926) | > loss_disc_real_0: 0.08865 (0.08834) | > loss_disc_real_1: 0.17725 (0.17222) | > loss_disc_real_2: 0.22379 (0.21668) | > loss_disc_real_3: 0.23358 (0.23330) | > loss_disc_real_4: 0.22457 (0.21679) | > loss_disc_real_5: 0.17570 (0.17471) | > loss_0: 2.32196 (2.28926) | > loss_gen: 2.29563 (2.34089) | > loss_kl: 2.63419 (2.65806) | > loss_feat: 8.20393 (8.70856) | > loss_mel: 17.45234 (17.69032) | > loss_duration: 1.71081 (1.70246) | > loss_1: 32.29691 (33.10028)  --> STEP: 106 | > loss_disc: 2.29590 (2.28933) | > loss_disc_real_0: 0.09290 (0.08839) | > loss_disc_real_1: 0.16903 (0.17219) | > loss_disc_real_2: 0.22756 (0.21678) | > loss_disc_real_3: 0.22220 (0.23320) | > loss_disc_real_4: 0.21641 (0.21679) | > loss_disc_real_5: 0.16735 (0.17464) | > loss_0: 2.29590 (2.28933) | > loss_gen: 2.32769 (2.34076) | > loss_kl: 2.71162 (2.65856) | > loss_feat: 8.64727 (8.70798) | > loss_mel: 17.73698 (17.69076) | > loss_duration: 1.69895 (1.70243) | > loss_1: 33.12251 (33.10049)  --> STEP: 107 | > loss_disc: 2.28638 (2.28930) | > loss_disc_real_0: 0.09351 (0.08843) | > loss_disc_real_1: 0.17453 (0.17221) | > loss_disc_real_2: 0.21124 (0.21673) | > loss_disc_real_3: 0.22446 (0.23312) | > loss_disc_real_4: 0.22325 (0.21685) | > loss_disc_real_5: 0.17536 (0.17464) | > loss_0: 2.28638 (2.28930) | > loss_gen: 2.34816 (2.34083) | > loss_kl: 2.69891 (2.65894) | > loss_feat: 8.74012 (8.70828) | > loss_mel: 17.68201 (17.69067) | > loss_duration: 1.72420 (1.70263) | > loss_1: 33.19341 (33.10136)  --> STEP: 108 | > loss_disc: 2.30300 (2.28942) | > loss_disc_real_0: 0.08052 (0.08836) | > loss_disc_real_1: 0.17457 (0.17223) | > loss_disc_real_2: 0.22143 (0.21678) | > loss_disc_real_3: 0.23188 (0.23310) | > loss_disc_real_4: 0.23250 (0.21699) | > loss_disc_real_5: 0.17066 (0.17461) | > loss_0: 2.30300 (2.28942) | > loss_gen: 2.31999 (2.34064) | > loss_kl: 2.63497 (2.65872) | > loss_feat: 9.04876 (8.71144) | > loss_mel: 17.93743 (17.69296) | > loss_duration: 1.70445 (1.70265) | > loss_1: 33.64560 (33.10640)  --> STEP: 109 | > loss_disc: 2.39081 (2.29035) | > loss_disc_real_0: 0.11364 (0.08859) | > loss_disc_real_1: 0.18939 (0.17239) | > loss_disc_real_2: 0.23223 (0.21692) | > loss_disc_real_3: 0.25548 (0.23331) | > loss_disc_real_4: 0.25665 (0.21736) | > loss_disc_real_5: 0.19242 (0.17477) | > loss_0: 2.39081 (2.29035) | > loss_gen: 2.37305 (2.34093) | > loss_kl: 2.76593 (2.65970) | > loss_feat: 8.24137 (8.70712) | > loss_mel: 17.58412 (17.69196) | > loss_duration: 1.68685 (1.70250) | > loss_1: 32.65133 (33.10222)  --> STEP: 110 | > loss_disc: 2.21764 (2.28969) | > loss_disc_real_0: 0.07463 (0.08847) | > loss_disc_real_1: 0.17366 (0.17240) | > loss_disc_real_2: 0.20414 (0.21680) | > loss_disc_real_3: 0.21879 (0.23318) | > loss_disc_real_4: 0.20010 (0.21720) | > loss_disc_real_5: 0.15190 (0.17456) | > loss_0: 2.21764 (2.28969) | > loss_gen: 2.34936 (2.34101) | > loss_kl: 2.70903 (2.66015) | > loss_feat: 9.22618 (8.71184) | > loss_mel: 17.76816 (17.69265) | > loss_duration: 1.71953 (1.70266) | > loss_1: 33.77227 (33.10831)  --> STEP: 111 | > loss_disc: 2.25737 (2.28940) | > loss_disc_real_0: 0.09554 (0.08853) | > loss_disc_real_1: 0.17531 (0.17243) | > loss_disc_real_2: 0.21306 (0.21677) | > loss_disc_real_3: 0.21457 (0.23301) | > loss_disc_real_4: 0.19691 (0.21702) | > loss_disc_real_5: 0.16353 (0.17446) | > loss_0: 2.25737 (2.28940) | > loss_gen: 2.32574 (2.34087) | > loss_kl: 2.65034 (2.66006) | > loss_feat: 9.31601 (8.71729) | > loss_mel: 17.97171 (17.69517) | > loss_duration: 1.69851 (1.70262) | > loss_1: 33.96231 (33.11601)  --> STEP: 112 | > loss_disc: 2.31144 (2.28960) | > loss_disc_real_0: 0.09185 (0.08856) | > loss_disc_real_1: 0.16783 (0.17238) | > loss_disc_real_2: 0.21155 (0.21672) | > loss_disc_real_3: 0.22500 (0.23294) | > loss_disc_real_4: 0.22078 (0.21705) | > loss_disc_real_5: 0.18688 (0.17457) | > loss_0: 2.31144 (2.28960) | > loss_gen: 2.31111 (2.34061) | > loss_kl: 2.77378 (2.66108) | > loss_feat: 8.34050 (8.71392) | > loss_mel: 17.68330 (17.69506) | > loss_duration: 1.70152 (1.70261) | > loss_1: 32.81022 (33.11328)  --> STEP: 113 | > loss_disc: 2.27119 (2.28944) | > loss_disc_real_0: 0.07835 (0.08847) | > loss_disc_real_1: 0.16181 (0.17229) | > loss_disc_real_2: 0.20706 (0.21664) | > loss_disc_real_3: 0.21568 (0.23279) | > loss_disc_real_4: 0.21612 (0.21704) | > loss_disc_real_5: 0.16818 (0.17452) | > loss_0: 2.27119 (2.28944) | > loss_gen: 2.31873 (2.34041) | > loss_kl: 2.60789 (2.66061) | > loss_feat: 9.15660 (8.71784) | > loss_mel: 17.99070 (17.69768) | > loss_duration: 1.69832 (1.70257) | > loss_1: 33.77224 (33.11911)  --> STEP: 114 | > loss_disc: 2.32131 (2.28972) | > loss_disc_real_0: 0.08573 (0.08844) | > loss_disc_real_1: 0.17373 (0.17230) | > loss_disc_real_2: 0.21446 (0.21662) | > loss_disc_real_3: 0.24743 (0.23291) | > loss_disc_real_4: 0.21604 (0.21703) | > loss_disc_real_5: 0.18098 (0.17457) | > loss_0: 2.32131 (2.28972) | > loss_gen: 2.32916 (2.34032) | > loss_kl: 2.54459 (2.65959) | > loss_feat: 8.21718 (8.71345) | > loss_mel: 17.43465 (17.69537) | > loss_duration: 1.72175 (1.70274) | > loss_1: 32.24734 (33.11147)  --> STEP: 115 | > loss_disc: 2.23118 (2.28921) | > loss_disc_real_0: 0.08533 (0.08842) | > loss_disc_real_1: 0.16672 (0.17226) | > loss_disc_real_2: 0.21246 (0.21658) | > loss_disc_real_3: 0.22307 (0.23283) | > loss_disc_real_4: 0.20776 (0.21695) | > loss_disc_real_5: 0.16254 (0.17447) | > loss_0: 2.23118 (2.28921) | > loss_gen: 2.36107 (2.34050) | > loss_kl: 2.68200 (2.65978) | > loss_feat: 8.39104 (8.71065) | > loss_mel: 17.48635 (17.69355) | > loss_duration: 1.73158 (1.70299) | > loss_1: 32.65205 (33.10748)  --> STEP: 116 | > loss_disc: 2.30263 (2.28932) | > loss_disc_real_0: 0.07231 (0.08828) | > loss_disc_real_1: 0.16363 (0.17218) | > loss_disc_real_2: 0.20815 (0.21651) | > loss_disc_real_3: 0.23382 (0.23284) | > loss_disc_real_4: 0.21111 (0.21690) | > loss_disc_real_5: 0.17317 (0.17446) | > loss_0: 2.30263 (2.28932) | > loss_gen: 2.27207 (2.33991) | > loss_kl: 2.69265 (2.66007) | > loss_feat: 9.01946 (8.71331) | > loss_mel: 17.87331 (17.69510) | > loss_duration: 1.75144 (1.70341) | > loss_1: 33.60893 (33.11180)  --> STEP: 117 | > loss_disc: 2.32104 (2.28959) | > loss_disc_real_0: 0.10011 (0.08838) | > loss_disc_real_1: 0.16746 (0.17214) | > loss_disc_real_2: 0.22261 (0.21656) | > loss_disc_real_3: 0.24427 (0.23293) | > loss_disc_real_4: 0.23379 (0.21705) | > loss_disc_real_5: 0.16146 (0.17435) | > loss_0: 2.32104 (2.28959) | > loss_gen: 2.32003 (2.33974) | > loss_kl: 2.80314 (2.66129) | > loss_feat: 9.17108 (8.71722) | > loss_mel: 17.71681 (17.69529) | > loss_duration: 1.73893 (1.70371) | > loss_1: 33.74999 (33.11725)  --> STEP: 118 | > loss_disc: 2.33480 (2.28998) | > loss_disc_real_0: 0.09679 (0.08845) | > loss_disc_real_1: 0.16902 (0.17211) | > loss_disc_real_2: 0.21154 (0.21652) | > loss_disc_real_3: 0.21721 (0.23280) | > loss_disc_real_4: 0.20929 (0.21698) | > loss_disc_real_5: 0.17746 (0.17437) | > loss_0: 2.33480 (2.28998) | > loss_gen: 2.21981 (2.33872) | > loss_kl: 2.69603 (2.66158) | > loss_feat: 8.78226 (8.71777) | > loss_mel: 17.87983 (17.69685) | > loss_duration: 1.69057 (1.70360) | > loss_1: 33.26850 (33.11853)  --> STEP: 119 | > loss_disc: 2.30796 (2.29013) | > loss_disc_real_0: 0.10106 (0.08856) | > loss_disc_real_1: 0.18238 (0.17220) | > loss_disc_real_2: 0.22423 (0.21658) | > loss_disc_real_3: 0.22401 (0.23273) | > loss_disc_real_4: 0.21617 (0.21698) | > loss_disc_real_5: 0.15995 (0.17425) | > loss_0: 2.30796 (2.29013) | > loss_gen: 2.33245 (2.33867) | > loss_kl: 2.75876 (2.66240) | > loss_feat: 8.64739 (8.71718) | > loss_mel: 17.30743 (17.69358) | > loss_duration: 1.66889 (1.70331) | > loss_1: 32.71492 (33.11514)  --> STEP: 120 | > loss_disc: 2.28309 (2.29007) | > loss_disc_real_0: 0.09951 (0.08865) | > loss_disc_real_1: 0.18247 (0.17229) | > loss_disc_real_2: 0.21596 (0.21658) | > loss_disc_real_3: 0.21642 (0.23259) | > loss_disc_real_4: 0.21754 (0.21698) | > loss_disc_real_5: 0.16361 (0.17416) | > loss_0: 2.28309 (2.29007) | > loss_gen: 2.36989 (2.33893) | > loss_kl: 2.62203 (2.66207) | > loss_feat: 9.01046 (8.71963) | > loss_mel: 17.96735 (17.69586) | > loss_duration: 1.70285 (1.70331) | > loss_1: 33.67258 (33.11979)  --> STEP: 121 | > loss_disc: 2.27048 (2.28991) | > loss_disc_real_0: 0.07322 (0.08852) | > loss_disc_real_1: 0.16445 (0.17222) | > loss_disc_real_2: 0.21686 (0.21658) | > loss_disc_real_3: 0.22711 (0.23255) | > loss_disc_real_4: 0.21476 (0.21696) | > loss_disc_real_5: 0.15528 (0.17401) | > loss_0: 2.27048 (2.28991) | > loss_gen: 2.31456 (2.33873) | > loss_kl: 2.59506 (2.66151) | > loss_feat: 8.43698 (8.71729) | > loss_mel: 17.45821 (17.69389) | > loss_duration: 1.70540 (1.70332) | > loss_1: 32.51021 (33.11475)  --> STEP: 122 | > loss_disc: 2.25783 (2.28964) | > loss_disc_real_0: 0.07729 (0.08843) | > loss_disc_real_1: 0.16827 (0.17219) | > loss_disc_real_2: 0.21135 (0.21654) | > loss_disc_real_3: 0.22184 (0.23246) | > loss_disc_real_4: 0.20865 (0.21689) | > loss_disc_real_5: 0.17159 (0.17399) | > loss_0: 2.25783 (2.28964) | > loss_gen: 2.30414 (2.33844) | > loss_kl: 2.66783 (2.66156) | > loss_feat: 8.75523 (8.71760) | > loss_mel: 17.17318 (17.68962) | > loss_duration: 1.70559 (1.70334) | > loss_1: 32.60598 (33.11058)  --> STEP: 123 | > loss_disc: 2.32483 (2.28993) | > loss_disc_real_0: 0.09630 (0.08849) | > loss_disc_real_1: 0.17298 (0.17220) | > loss_disc_real_2: 0.22924 (0.21664) | > loss_disc_real_3: 0.25549 (0.23265) | > loss_disc_real_4: 0.23397 (0.21703) | > loss_disc_real_5: 0.17280 (0.17398) | > loss_0: 2.32483 (2.28993) | > loss_gen: 2.36516 (2.33866) | > loss_kl: 2.80486 (2.66273) | > loss_feat: 8.32451 (8.71440) | > loss_mel: 17.53632 (17.68838) | > loss_duration: 1.65597 (1.70296) | > loss_1: 32.68682 (33.10713)  --> STEP: 124 | > loss_disc: 2.40858 (2.29089) | > loss_disc_real_0: 0.11594 (0.08871) | > loss_disc_real_1: 0.18143 (0.17227) | > loss_disc_real_2: 0.21591 (0.21663) | > loss_disc_real_3: 0.25960 (0.23286) | > loss_disc_real_4: 0.22247 (0.21708) | > loss_disc_real_5: 0.18421 (0.17406) | > loss_0: 2.40858 (2.29089) | > loss_gen: 2.26814 (2.33809) | > loss_kl: 2.75811 (2.66350) | > loss_feat: 8.00534 (8.70869) | > loss_mel: 17.07445 (17.68343) | > loss_duration: 1.66344 (1.70264) | > loss_1: 31.76948 (33.09634)  --> STEP: 125 | > loss_disc: 2.26274 (2.29066) | > loss_disc_real_0: 0.07933 (0.08864) | > loss_disc_real_1: 0.16380 (0.17220) | > loss_disc_real_2: 0.19611 (0.21647) | > loss_disc_real_3: 0.21382 (0.23271) | > loss_disc_real_4: 0.20167 (0.21695) | > loss_disc_real_5: 0.16294 (0.17397) | > loss_0: 2.26274 (2.29066) | > loss_gen: 2.26893 (2.33754) | > loss_kl: 2.59856 (2.66298) | > loss_feat: 8.56325 (8.70752) | > loss_mel: 17.87126 (17.68493) | > loss_duration: 1.71633 (1.70275) | > loss_1: 33.01832 (33.09572)  --> STEP: 126 | > loss_disc: 2.29900 (2.29073) | > loss_disc_real_0: 0.08911 (0.08864) | > loss_disc_real_1: 0.18966 (0.17234) | > loss_disc_real_2: 0.23898 (0.21665) | > loss_disc_real_3: 0.22875 (0.23268) | > loss_disc_real_4: 0.22065 (0.21698) | > loss_disc_real_5: 0.17555 (0.17398) | > loss_0: 2.29900 (2.29073) | > loss_gen: 2.35408 (2.33767) | > loss_kl: 2.71581 (2.66340) | > loss_feat: 8.50228 (8.70590) | > loss_mel: 17.02004 (17.67966) | > loss_duration: 1.69186 (1.70266) | > loss_1: 32.28407 (33.08928)  --> STEP: 127 | > loss_disc: 2.35402 (2.29123) | > loss_disc_real_0: 0.10297 (0.08876) | > loss_disc_real_1: 0.17370 (0.17235) | > loss_disc_real_2: 0.21910 (0.21667) | > loss_disc_real_3: 0.23863 (0.23273) | > loss_disc_real_4: 0.22205 (0.21702) | > loss_disc_real_5: 0.18595 (0.17408) | > loss_0: 2.35402 (2.29123) | > loss_gen: 2.28164 (2.33723) | > loss_kl: 2.64760 (2.66327) | > loss_feat: 8.42670 (8.70370) | > loss_mel: 17.68875 (17.67973) | > loss_duration: 1.73992 (1.70296) | > loss_1: 32.78460 (33.08688)  --> STEP: 128 | > loss_disc: 2.29980 (2.29129) | > loss_disc_real_0: 0.09041 (0.08877) | > loss_disc_real_1: 0.16721 (0.17231) | > loss_disc_real_2: 0.21230 (0.21663) | > loss_disc_real_3: 0.24546 (0.23283) | > loss_disc_real_4: 0.22543 (0.21709) | > loss_disc_real_5: 0.18321 (0.17415) | > loss_0: 2.29980 (2.29129) | > loss_gen: 2.34246 (2.33727) | > loss_kl: 2.71767 (2.66370) | > loss_feat: 8.74999 (8.70406) | > loss_mel: 18.56291 (17.68663) | > loss_duration: 1.67540 (1.70274) | > loss_1: 34.04842 (33.09439)  --> STEP: 129 | > loss_disc: 2.29693 (2.29134) | > loss_disc_real_0: 0.07251 (0.08864) | > loss_disc_real_1: 0.18742 (0.17243) | > loss_disc_real_2: 0.23393 (0.21677) | > loss_disc_real_3: 0.25146 (0.23297) | > loss_disc_real_4: 0.22957 (0.21719) | > loss_disc_real_5: 0.18491 (0.17423) | > loss_0: 2.29693 (2.29134) | > loss_gen: 2.39604 (2.33773) | > loss_kl: 2.62221 (2.66338) | > loss_feat: 8.24446 (8.70050) | > loss_mel: 17.73477 (17.68700) | > loss_duration: 1.72147 (1.70289) | > loss_1: 32.71894 (33.09148)  --> STEP: 130 | > loss_disc: 2.28490 (2.29129) | > loss_disc_real_0: 0.07968 (0.08857) | > loss_disc_real_1: 0.16668 (0.17238) | > loss_disc_real_2: 0.21653 (0.21677) | > loss_disc_real_3: 0.23702 (0.23300) | > loss_disc_real_4: 0.21865 (0.21720) | > loss_disc_real_5: 0.16532 (0.17416) | > loss_0: 2.28490 (2.29129) | > loss_gen: 2.33594 (2.33771) | > loss_kl: 2.83332 (2.66468) | > loss_feat: 9.24524 (8.70469) | > loss_mel: 17.83935 (17.68817) | > loss_duration: 1.68786 (1.70277) | > loss_1: 33.94171 (33.09803)  --> STEP: 131 | > loss_disc: 2.26680 (2.29110) | > loss_disc_real_0: 0.07647 (0.08848) | > loss_disc_real_1: 0.15890 (0.17228) | > loss_disc_real_2: 0.19631 (0.21661) | > loss_disc_real_3: 0.22704 (0.23296) | > loss_disc_real_4: 0.22303 (0.21724) | > loss_disc_real_5: 0.18730 (0.17426) | > loss_0: 2.26680 (2.29110) | > loss_gen: 2.31944 (2.33757) | > loss_kl: 2.65960 (2.66465) | > loss_feat: 8.38160 (8.70222) | > loss_mel: 18.12519 (17.69151) | > loss_duration: 1.71500 (1.70286) | > loss_1: 33.20082 (33.09881)  --> STEP: 132 | > loss_disc: 2.24554 (2.29076) | > loss_disc_real_0: 0.07986 (0.08842) | > loss_disc_real_1: 0.16893 (0.17226) | > loss_disc_real_2: 0.21819 (0.21662) | > loss_disc_real_3: 0.23833 (0.23300) | > loss_disc_real_4: 0.20426 (0.21714) | > loss_disc_real_5: 0.15465 (0.17412) | > loss_0: 2.24554 (2.29076) | > loss_gen: 2.35594 (2.33771) | > loss_kl: 2.67857 (2.66475) | > loss_feat: 8.56244 (8.70116) | > loss_mel: 17.67024 (17.69135) | > loss_duration: 1.67641 (1.70266) | > loss_1: 32.94360 (33.09763)  --> STEP: 133 | > loss_disc: 2.25253 (2.29047) | > loss_disc_real_0: 0.07931 (0.08835) | > loss_disc_real_1: 0.16285 (0.17219) | > loss_disc_real_2: 0.20820 (0.21656) | > loss_disc_real_3: 0.23623 (0.23302) | > loss_disc_real_4: 0.21801 (0.21715) | > loss_disc_real_5: 0.18026 (0.17416) | > loss_0: 2.25253 (2.29047) | > loss_gen: 2.36783 (2.33794) | > loss_kl: 2.63440 (2.66452) | > loss_feat: 8.80014 (8.70191) | > loss_mel: 18.01056 (17.69375) | > loss_duration: 1.68288 (1.70251) | > loss_1: 33.49582 (33.10063)  --> STEP: 134 | > loss_disc: 2.27688 (2.29037) | > loss_disc_real_0: 0.08706 (0.08834) | > loss_disc_real_1: 0.17110 (0.17218) | > loss_disc_real_2: 0.23114 (0.21667) | > loss_disc_real_3: 0.23343 (0.23302) | > loss_disc_real_4: 0.22430 (0.21720) | > loss_disc_real_5: 0.17174 (0.17414) | > loss_0: 2.27688 (2.29037) | > loss_gen: 2.37110 (2.33819) | > loss_kl: 2.60870 (2.66411) | > loss_feat: 8.95320 (8.70378) | > loss_mel: 17.88598 (17.69518) | > loss_duration: 1.71332 (1.70259) | > loss_1: 33.53229 (33.10385)  --> STEP: 135 | > loss_disc: 2.36841 (2.29095) | > loss_disc_real_0: 0.10810 (0.08848) | > loss_disc_real_1: 0.16996 (0.17216) | > loss_disc_real_2: 0.22375 (0.21672) | > loss_disc_real_3: 0.23926 (0.23307) | > loss_disc_real_4: 0.22808 (0.21728) | > loss_disc_real_5: 0.17547 (0.17415) | > loss_0: 2.36841 (2.29095) | > loss_gen: 2.27998 (2.33775) | > loss_kl: 2.74587 (2.66471) | > loss_feat: 8.89539 (8.70520) | > loss_mel: 17.60472 (17.69451) | > loss_duration: 1.66676 (1.70233) | > loss_1: 33.19272 (33.10451)  --> STEP: 136 | > loss_disc: 2.28732 (2.29092) | > loss_disc_real_0: 0.09126 (0.08850) | > loss_disc_real_1: 0.16981 (0.17214) | > loss_disc_real_2: 0.20351 (0.21662) | > loss_disc_real_3: 0.23019 (0.23305) | > loss_disc_real_4: 0.21964 (0.21730) | > loss_disc_real_5: 0.17039 (0.17413) | > loss_0: 2.28732 (2.29092) | > loss_gen: 2.31751 (2.33760) | > loss_kl: 2.62865 (2.66445) | > loss_feat: 8.79927 (8.70589) | > loss_mel: 18.02633 (17.69695) | > loss_duration: 1.69737 (1.70229) | > loss_1: 33.46912 (33.10719)  --> STEP: 137 | > loss_disc: 2.25978 (2.29069) | > loss_disc_real_0: 0.09354 (0.08854) | > loss_disc_real_1: 0.17254 (0.17215) | > loss_disc_real_2: 0.21963 (0.21664) | > loss_disc_real_3: 0.24375 (0.23313) | > loss_disc_real_4: 0.22471 (0.21735) | > loss_disc_real_5: 0.17315 (0.17412) | > loss_0: 2.25978 (2.29069) | > loss_gen: 2.40668 (2.33811) | > loss_kl: 2.68380 (2.66459) | > loss_feat: 8.85940 (8.70701) | > loss_mel: 17.46447 (17.69526) | > loss_duration: 1.68956 (1.70220) | > loss_1: 33.10392 (33.10717)  --> STEP: 138 | > loss_disc: 2.28188 (2.29063) | > loss_disc_real_0: 0.08284 (0.08850) | > loss_disc_real_1: 0.16651 (0.17211) | > loss_disc_real_2: 0.21339 (0.21662) | > loss_disc_real_3: 0.23481 (0.23314) | > loss_disc_real_4: 0.20744 (0.21728) | > loss_disc_real_5: 0.18561 (0.17420) | > loss_0: 2.28188 (2.29063) | > loss_gen: 2.34065 (2.33813) | > loss_kl: 2.65414 (2.66451) | > loss_feat: 8.59561 (8.70621) | > loss_mel: 17.54446 (17.69416) | > loss_duration: 1.68109 (1.70205) | > loss_1: 32.81595 (33.10506)  --> STEP: 139 | > loss_disc: 2.26993 (2.29048) | > loss_disc_real_0: 0.08079 (0.08844) | > loss_disc_real_1: 0.18100 (0.17217) | > loss_disc_real_2: 0.22426 (0.21668) | > loss_disc_real_3: 0.23117 (0.23313) | > loss_disc_real_4: 0.22119 (0.21731) | > loss_disc_real_5: 0.16412 (0.17413) | > loss_0: 2.26993 (2.29048) | > loss_gen: 2.37252 (2.33838) | > loss_kl: 2.65016 (2.66441) | > loss_feat: 8.47786 (8.70456) | > loss_mel: 17.68139 (17.69407) | > loss_duration: 1.69891 (1.70202) | > loss_1: 32.88083 (33.10345)  --> STEP: 140 | > loss_disc: 2.31046 (2.29062) | > loss_disc_real_0: 0.09065 (0.08846) | > loss_disc_real_1: 0.17544 (0.17219) | > loss_disc_real_2: 0.21270 (0.21665) | > loss_disc_real_3: 0.23566 (0.23314) | > loss_disc_real_4: 0.21186 (0.21727) | > loss_disc_real_5: 0.19395 (0.17427) | > loss_0: 2.31046 (2.29062) | > loss_gen: 2.35705 (2.33851) | > loss_kl: 2.59892 (2.66394) | > loss_feat: 8.34535 (8.70200) | > loss_mel: 17.51374 (17.69278) | > loss_duration: 1.73653 (1.70227) | > loss_1: 32.55159 (33.09951)  --> STEP: 141 | > loss_disc: 2.31373 (2.29079) | > loss_disc_real_0: 0.08903 (0.08846) | > loss_disc_real_1: 0.16870 (0.17217) | > loss_disc_real_2: 0.21729 (0.21665) | > loss_disc_real_3: 0.22721 (0.23310) | > loss_disc_real_4: 0.21659 (0.21727) | > loss_disc_real_5: 0.18020 (0.17431) | > loss_0: 2.31373 (2.29079) | > loss_gen: 2.28842 (2.33815) | > loss_kl: 2.53608 (2.66303) | > loss_feat: 8.52663 (8.70075) | > loss_mel: 17.86598 (17.69401) | > loss_duration: 1.68178 (1.70213) | > loss_1: 32.89889 (33.09808)  --> STEP: 142 | > loss_disc: 2.30344 (2.29087) | > loss_disc_real_0: 0.08686 (0.08845) | > loss_disc_real_1: 0.17064 (0.17216) | > loss_disc_real_2: 0.20615 (0.21658) | > loss_disc_real_3: 0.24023 (0.23315) | > loss_disc_real_4: 0.23187 (0.21737) | > loss_disc_real_5: 0.17205 (0.17430) | > loss_0: 2.30344 (2.29087) | > loss_gen: 2.31685 (2.33800) | > loss_kl: 2.72408 (2.66346) | > loss_feat: 8.42134 (8.69879) | > loss_mel: 17.43174 (17.69216) | > loss_duration: 1.71833 (1.70224) | > loss_1: 32.61235 (33.09466)  --> STEP: 143 | > loss_disc: 2.31399 (2.29104) | > loss_disc_real_0: 0.10636 (0.08858) | > loss_disc_real_1: 0.17849 (0.17220) | > loss_disc_real_2: 0.22944 (0.21667) | > loss_disc_real_3: 0.24182 (0.23321) | > loss_disc_real_4: 0.21775 (0.21737) | > loss_disc_real_5: 0.17256 (0.17429) | > loss_0: 2.31399 (2.29104) | > loss_gen: 2.33768 (2.33800) | > loss_kl: 2.70028 (2.66372) | > loss_feat: 7.98936 (8.69383) | > loss_mel: 17.47491 (17.69064) | > loss_duration: 1.72326 (1.70239) | > loss_1: 32.22549 (33.08858)  --> STEP: 144 | > loss_disc: 2.25976 (2.29082) | > loss_disc_real_0: 0.09625 (0.08863) | > loss_disc_real_1: 0.16434 (0.17215) | > loss_disc_real_2: 0.22319 (0.21671) | > loss_disc_real_3: 0.23033 (0.23319) | > loss_disc_real_4: 0.21904 (0.21738) | > loss_disc_real_5: 0.17748 (0.17431) | > loss_0: 2.25976 (2.29082) | > loss_gen: 2.37503 (2.33826) | > loss_kl: 2.65076 (2.66363) | > loss_feat: 8.74845 (8.69420) | > loss_mel: 17.67282 (17.69052) | > loss_duration: 1.72768 (1.70256) | > loss_1: 33.17475 (33.08918)  --> STEP: 145 | > loss_disc: 2.24804 (2.29052) | > loss_disc_real_0: 0.08449 (0.08860) | > loss_disc_real_1: 0.17347 (0.17216) | > loss_disc_real_2: 0.21646 (0.21671) | > loss_disc_real_3: 0.24777 (0.23329) | > loss_disc_real_4: 0.22181 (0.21741) | > loss_disc_real_5: 0.17698 (0.17433) | > loss_0: 2.24804 (2.29052) | > loss_gen: 2.42831 (2.33888) | > loss_kl: 2.70459 (2.66391) | > loss_feat: 8.58405 (8.69345) | > loss_mel: 17.88214 (17.69184) | > loss_duration: 1.66881 (1.70233) | > loss_1: 33.26791 (33.09041)  --> STEP: 146 | > loss_disc: 2.29195 (2.29053) | > loss_disc_real_0: 0.08522 (0.08858) | > loss_disc_real_1: 0.17325 (0.17216) | > loss_disc_real_2: 0.20579 (0.21664) | > loss_disc_real_3: 0.22521 (0.23324) | > loss_disc_real_4: 0.21014 (0.21736) | > loss_disc_real_5: 0.18341 (0.17439) | > loss_0: 2.29195 (2.29053) | > loss_gen: 2.28257 (2.33849) | > loss_kl: 2.60340 (2.66350) | > loss_feat: 8.04828 (8.68903) | > loss_mel: 17.32302 (17.68931) | > loss_duration: 1.68243 (1.70219) | > loss_1: 31.93970 (33.08253)  --> STEP: 147 | > loss_disc: 2.31605 (2.29071) | > loss_disc_real_0: 0.08378 (0.08855) | > loss_disc_real_1: 0.17260 (0.17217) | > loss_disc_real_2: 0.20898 (0.21658) | > loss_disc_real_3: 0.23839 (0.23327) | > loss_disc_real_4: 0.22370 (0.21741) | > loss_disc_real_5: 0.18043 (0.17443) | > loss_0: 2.31605 (2.29071) | > loss_gen: 2.30981 (2.33830) | > loss_kl: 2.77831 (2.66428) | > loss_feat: 8.94924 (8.69080) | > loss_mel: 18.11917 (17.69224) | > loss_duration: 1.66201 (1.70192) | > loss_1: 33.81852 (33.08754)  --> STEP: 148 | > loss_disc: 2.35873 (2.29117) | > loss_disc_real_0: 0.09295 (0.08858) | > loss_disc_real_1: 0.17714 (0.17220) | > loss_disc_real_2: 0.22339 (0.21663) | > loss_disc_real_3: 0.24597 (0.23336) | > loss_disc_real_4: 0.23196 (0.21751) | > loss_disc_real_5: 0.17517 (0.17443) | > loss_0: 2.35873 (2.29117) | > loss_gen: 2.25913 (2.33776) | > loss_kl: 2.74353 (2.66482) | > loss_feat: 7.99399 (8.68609) | > loss_mel: 17.87806 (17.69349) | > loss_duration: 1.69340 (1.70186) | > loss_1: 32.56811 (33.08403)  --> STEP: 149 | > loss_disc: 2.25442 (2.29092) | > loss_disc_real_0: 0.07770 (0.08850) | > loss_disc_real_1: 0.16968 (0.17218) | > loss_disc_real_2: 0.21606 (0.21663) | > loss_disc_real_3: 0.24798 (0.23346) | > loss_disc_real_4: 0.22599 (0.21756) | > loss_disc_real_5: 0.17337 (0.17443) | > loss_0: 2.25442 (2.29092) | > loss_gen: 2.38170 (2.33806) | > loss_kl: 2.84997 (2.66606) | > loss_feat: 8.55840 (8.68523) | > loss_mel: 17.79542 (17.69418) | > loss_duration: 1.67032 (1.70165) | > loss_1: 33.25581 (33.08518)  --> STEP: 150 | > loss_disc: 2.26466 (2.29075) | > loss_disc_real_0: 0.08160 (0.08846) | > loss_disc_real_1: 0.17478 (0.17220) | > loss_disc_real_2: 0.20904 (0.21658) | > loss_disc_real_3: 0.22510 (0.23340) | > loss_disc_real_4: 0.21103 (0.21752) | > loss_disc_real_5: 0.17732 (0.17445) | > loss_0: 2.26466 (2.29075) | > loss_gen: 2.36120 (2.33821) | > loss_kl: 2.76664 (2.66673) | > loss_feat: 8.71719 (8.68544) | > loss_mel: 18.08065 (17.69675) | > loss_duration: 1.71161 (1.70172) | > loss_1: 33.63730 (33.08886)  --> STEP: 151 | > loss_disc: 2.26486 (2.29057) | > loss_disc_real_0: 0.10198 (0.08855) | > loss_disc_real_1: 0.17188 (0.17220) | > loss_disc_real_2: 0.21641 (0.21658) | > loss_disc_real_3: 0.24141 (0.23345) | > loss_disc_real_4: 0.21161 (0.21748) | > loss_disc_real_5: 0.19564 (0.17459) | > loss_0: 2.26486 (2.29057) | > loss_gen: 2.46027 (2.33902) | > loss_kl: 2.73629 (2.66719) | > loss_feat: 9.20804 (8.68891) | > loss_mel: 18.01751 (17.69888) | > loss_duration: 1.75710 (1.70208) | > loss_1: 34.17920 (33.09608)  --> STEP: 152 | > loss_disc: 2.25691 (2.29035) | > loss_disc_real_0: 0.06643 (0.08840) | > loss_disc_real_1: 0.16296 (0.17214) | > loss_disc_real_2: 0.20574 (0.21650) | > loss_disc_real_3: 0.22021 (0.23337) | > loss_disc_real_4: 0.20231 (0.21738) | > loss_disc_real_5: 0.16916 (0.17455) | > loss_0: 2.25691 (2.29035) | > loss_gen: 2.29662 (2.33874) | > loss_kl: 2.75206 (2.66775) | > loss_feat: 9.29005 (8.69286) | > loss_mel: 18.02954 (17.70105) | > loss_duration: 1.67750 (1.70192) | > loss_1: 34.04576 (33.10233)  --> STEP: 153 | > loss_disc: 2.34827 (2.29073) | > loss_disc_real_0: 0.08807 (0.08840) | > loss_disc_real_1: 0.18350 (0.17221) | > loss_disc_real_2: 0.21958 (0.21652) | > loss_disc_real_3: 0.25549 (0.23351) | > loss_disc_real_4: 0.23467 (0.21749) | > loss_disc_real_5: 0.18051 (0.17459) | > loss_0: 2.34827 (2.29073) | > loss_gen: 2.33689 (2.33873) | > loss_kl: 2.70515 (2.66799) | > loss_feat: 8.87046 (8.69402) | > loss_mel: 17.84238 (17.70198) | > loss_duration: 1.74390 (1.70220) | > loss_1: 33.49878 (33.10493)  --> STEP: 154 | > loss_disc: 2.27346 (2.29062) | > loss_disc_real_0: 0.08900 (0.08840) | > loss_disc_real_1: 0.17685 (0.17224) | > loss_disc_real_2: 0.21146 (0.21649) | > loss_disc_real_3: 0.23218 (0.23350) | > loss_disc_real_4: 0.22701 (0.21756) | > loss_disc_real_5: 0.20681 (0.17480) | > loss_0: 2.27346 (2.29062) | > loss_gen: 2.43254 (2.33934) | > loss_kl: 2.62897 (2.66774) | > loss_feat: 7.75106 (8.68790) | > loss_mel: 17.28062 (17.69924) | > loss_duration: 1.68233 (1.70207) | > loss_1: 31.77552 (33.09629) --> EVAL PERFORMANCE | > avg_loader_time: 0.03530 (-0.00256) | > avg_loss_disc: 2.29062 (-0.07058) | > avg_loss_disc_real_0: 0.08840 (-0.02404) | > avg_loss_disc_real_1: 0.17224 (-0.04408) | > avg_loss_disc_real_2: 0.21649 (+0.00663) | > avg_loss_disc_real_3: 0.23350 (+0.00105) | > avg_loss_disc_real_4: 0.21756 (+0.00004) | > avg_loss_disc_real_5: 0.17480 (-0.04414) | > avg_loss_0: 2.29062 (-0.07058) | > avg_loss_gen: 2.33934 (-0.02447) | > avg_loss_kl: 2.66774 (+0.02356) | > avg_loss_feat: 8.68790 (+0.29963) | > avg_loss_mel: 17.69924 (-0.22705) | > avg_loss_duration: 1.70207 (+0.00292) | > avg_loss_1: 33.09629 (+0.07459)  > EPOCH: 2/1000 --> ./checkpoints/yourtts_multilingual/yourtts-du_en_fr_ge_it_pl_ptbr_sp-November-08-2022_12+19PM-0cbaa0f6  > TRAINING (2022-11-09 07:46:34)   --> STEP: 0/15287 -- GLOBAL_STEP: 980575 | > loss_disc: 2.23607 (2.23607) | > loss_disc_real_0: 0.07887 (0.07887) | > loss_disc_real_1: 0.16749 (0.16749) | > loss_disc_real_2: 0.21826 (0.21826) | > loss_disc_real_3: 0.22884 (0.22884) | > loss_disc_real_4: 0.20593 (0.20593) | > loss_disc_real_5: 0.16151 (0.16151) | > loss_0: 2.23607 (2.23607) | > grad_norm_0: 11.13091 (11.13091) | > loss_gen: 2.50573 (2.50573) | > loss_kl: 2.59570 (2.59570) | > loss_feat: 8.34610 (8.34610) | > loss_mel: 17.69067 (17.69067) | > loss_duration: 1.67358 (1.67358) | > loss_1: 32.81178 (32.81178) | > grad_norm_1: 183.77182 (183.77182) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24120 (2.24122) | > loader_time: 2.77000 (2.76997)  --> STEP: 25/15287 -- GLOBAL_STEP: 980600 | > loss_disc: 2.39825 (2.34545) | > loss_disc_real_0: 0.11450 (0.12243) | > loss_disc_real_1: 0.21239 (0.21727) | > loss_disc_real_2: 0.22079 (0.21575) | > loss_disc_real_3: 0.20291 (0.21944) | > loss_disc_real_4: 0.18519 (0.22014) | > loss_disc_real_5: 0.26829 (0.22012) | > loss_0: 2.39825 (2.34545) | > grad_norm_0: 9.12624 (17.51309) | > loss_gen: 2.49632 (2.54450) | > loss_kl: 2.69533 (2.66223) | > loss_feat: 8.11576 (8.59605) | > loss_mel: 18.08285 (17.85071) | > loss_duration: 1.72967 (1.70060) | > loss_1: 33.11992 (33.35408) | > grad_norm_1: 174.30559 (144.54619) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90570 (1.98188) | > loader_time: 0.03880 (0.03580)  --> STEP: 50/15287 -- GLOBAL_STEP: 980625 | > loss_disc: 2.37218 (2.33275) | > loss_disc_real_0: 0.15763 (0.12390) | > loss_disc_real_1: 0.19125 (0.21078) | > loss_disc_real_2: 0.25723 (0.21436) | > loss_disc_real_3: 0.20698 (0.21877) | > loss_disc_real_4: 0.17253 (0.21691) | > loss_disc_real_5: 0.19610 (0.21478) | > loss_0: 2.37218 (2.33275) | > grad_norm_0: 22.76533 (15.41392) | > loss_gen: 2.53386 (2.54072) | > loss_kl: 2.58526 (2.64886) | > loss_feat: 8.46229 (8.60253) | > loss_mel: 17.37877 (17.89103) | > loss_duration: 1.70530 (1.70349) | > loss_1: 32.66548 (33.38661) | > grad_norm_1: 154.86832 (135.71463) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36320 (2.07863) | > loader_time: 0.03710 (0.03651)  --> STEP: 75/15287 -- GLOBAL_STEP: 980650 | > loss_disc: 2.37005 (2.33086) | > loss_disc_real_0: 0.21600 (0.12430) | > loss_disc_real_1: 0.19559 (0.21027) | > loss_disc_real_2: 0.19494 (0.21450) | > loss_disc_real_3: 0.24273 (0.21929) | > loss_disc_real_4: 0.21359 (0.21571) | > loss_disc_real_5: 0.23689 (0.21401) | > loss_0: 2.37005 (2.33086) | > grad_norm_0: 35.28874 (15.47877) | > loss_gen: 2.86135 (2.55143) | > loss_kl: 2.74448 (2.66913) | > loss_feat: 8.35445 (8.63157) | > loss_mel: 17.83229 (17.88774) | > loss_duration: 1.72801 (1.70520) | > loss_1: 33.52058 (33.44505) | > grad_norm_1: 110.67181 (134.58087) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22760 (2.13216) | > loader_time: 0.03530 (0.03670)  --> STEP: 100/15287 -- GLOBAL_STEP: 980675 | > loss_disc: 2.34863 (2.33642) | > loss_disc_real_0: 0.11067 (0.12858) | > loss_disc_real_1: 0.23411 (0.21100) | > loss_disc_real_2: 0.20815 (0.21304) | > loss_disc_real_3: 0.20965 (0.21925) | > loss_disc_real_4: 0.20049 (0.21463) | > loss_disc_real_5: 0.22843 (0.21471) | > loss_0: 2.34863 (2.33642) | > grad_norm_0: 9.05380 (15.65327) | > loss_gen: 2.71226 (2.54884) | > loss_kl: 2.77576 (2.66349) | > loss_feat: 8.65072 (8.57776) | > loss_mel: 17.60688 (17.86770) | > loss_duration: 1.68931 (1.70710) | > loss_1: 33.43494 (33.36487) | > grad_norm_1: 133.32416 (132.19032) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39640 (2.15593) | > loader_time: 0.03860 (0.03662)  --> STEP: 125/15287 -- GLOBAL_STEP: 980700 | > loss_disc: 2.38083 (2.33771) | > loss_disc_real_0: 0.19330 (0.12791) | > loss_disc_real_1: 0.21066 (0.21115) | > loss_disc_real_2: 0.19547 (0.21300) | > loss_disc_real_3: 0.20135 (0.21971) | > loss_disc_real_4: 0.17464 (0.21439) | > loss_disc_real_5: 0.22019 (0.21434) | > loss_0: 2.38083 (2.33771) | > grad_norm_0: 26.27254 (14.85577) | > loss_gen: 2.55978 (2.55279) | > loss_kl: 2.70164 (2.67006) | > loss_feat: 8.89123 (8.60949) | > loss_mel: 17.74602 (17.88349) | > loss_duration: 1.69059 (1.70527) | > loss_1: 33.58925 (33.42108) | > grad_norm_1: 157.87599 (127.28996) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29390 (2.18118) | > loader_time: 0.03690 (0.03669)  --> STEP: 150/15287 -- GLOBAL_STEP: 980725 | > loss_disc: 2.34148 (2.35220) | > loss_disc_real_0: 0.15295 (0.13095) | > loss_disc_real_1: 0.20626 (0.21318) | > loss_disc_real_2: 0.20931 (0.21518) | > loss_disc_real_3: 0.23969 (0.22045) | > loss_disc_real_4: 0.23357 (0.21556) | > loss_disc_real_5: 0.21632 (0.21518) | > loss_0: 2.34148 (2.35220) | > grad_norm_0: 12.21151 (14.61202) | > loss_gen: 2.57917 (2.54664) | > loss_kl: 2.70394 (2.67036) | > loss_feat: 8.44330 (8.56902) | > loss_mel: 17.68066 (17.87887) | > loss_duration: 1.69290 (1.70437) | > loss_1: 33.09996 (33.36924) | > grad_norm_1: 82.74761 (122.08520) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16620 (2.22529) | > loader_time: 0.04200 (0.03697)  --> STEP: 175/15287 -- GLOBAL_STEP: 980750 | > loss_disc: 2.33514 (2.34763) | > loss_disc_real_0: 0.12924 (0.12972) | > loss_disc_real_1: 0.20802 (0.21275) | > loss_disc_real_2: 0.22890 (0.21516) | > loss_disc_real_3: 0.20623 (0.22085) | > loss_disc_real_4: 0.22035 (0.21524) | > loss_disc_real_5: 0.22073 (0.21543) | > loss_0: 2.33514 (2.34763) | > grad_norm_0: 13.90038 (14.77389) | > loss_gen: 2.48646 (2.54924) | > loss_kl: 2.67354 (2.66525) | > loss_feat: 8.48182 (8.56406) | > loss_mel: 17.66806 (17.88387) | > loss_duration: 1.71326 (1.70375) | > loss_1: 33.02314 (33.36616) | > grad_norm_1: 139.19063 (123.24747) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40740 (2.23672) | > loader_time: 0.03710 (0.03713)  --> STEP: 200/15287 -- GLOBAL_STEP: 980775 | > loss_disc: 2.29314 (2.34104) | > loss_disc_real_0: 0.14588 (0.12830) | > loss_disc_real_1: 0.21835 (0.21269) | > loss_disc_real_2: 0.20431 (0.21494) | > loss_disc_real_3: 0.24689 (0.22062) | > loss_disc_real_4: 0.22971 (0.21499) | > loss_disc_real_5: 0.18748 (0.21468) | > loss_0: 2.29314 (2.34104) | > grad_norm_0: 15.32420 (14.64630) | > loss_gen: 2.64013 (2.55322) | > loss_kl: 2.56622 (2.66047) | > loss_feat: 8.64563 (8.58389) | > loss_mel: 18.01773 (17.86143) | > loss_duration: 1.69650 (1.70312) | > loss_1: 33.56622 (33.36211) | > grad_norm_1: 75.41447 (122.23303) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14170 (2.24844) | > loader_time: 0.03530 (0.03713)  --> STEP: 225/15287 -- GLOBAL_STEP: 980800 | > loss_disc: 2.39175 (2.33523) | > loss_disc_real_0: 0.13173 (0.12696) | > loss_disc_real_1: 0.21785 (0.21243) | > loss_disc_real_2: 0.20480 (0.21438) | > loss_disc_real_3: 0.21036 (0.22008) | > loss_disc_real_4: 0.19004 (0.21446) | > loss_disc_real_5: 0.25010 (0.21416) | > loss_0: 2.39175 (2.33523) | > grad_norm_0: 13.95055 (14.53011) | > loss_gen: 2.46992 (2.55405) | > loss_kl: 2.70724 (2.65830) | > loss_feat: 8.26132 (8.60121) | > loss_mel: 17.31234 (17.83997) | > loss_duration: 1.71448 (1.70377) | > loss_1: 32.46529 (33.35728) | > grad_norm_1: 81.91008 (124.02895) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44330 (2.25467) | > loader_time: 0.03510 (0.03691)  --> STEP: 250/15287 -- GLOBAL_STEP: 980825 | > loss_disc: 2.35627 (2.33137) | > loss_disc_real_0: 0.15996 (0.12667) | > loss_disc_real_1: 0.21659 (0.21166) | > loss_disc_real_2: 0.23284 (0.21417) | > loss_disc_real_3: 0.26541 (0.21990) | > loss_disc_real_4: 0.26225 (0.21480) | > loss_disc_real_5: 0.26694 (0.21446) | > loss_0: 2.35627 (2.33137) | > grad_norm_0: 24.88612 (14.69931) | > loss_gen: 2.58129 (2.55772) | > loss_kl: 2.57090 (2.66212) | > loss_feat: 8.62001 (8.62344) | > loss_mel: 17.56087 (17.83285) | > loss_duration: 1.69333 (1.70333) | > loss_1: 33.02641 (33.37944) | > grad_norm_1: 176.79912 (125.89228) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33070 (2.26560) | > loader_time: 0.03970 (0.03693)  --> STEP: 275/15287 -- GLOBAL_STEP: 980850 | > loss_disc: 2.34504 (2.33108) | > loss_disc_real_0: 0.09930 (0.12586) | > loss_disc_real_1: 0.20647 (0.21120) | > loss_disc_real_2: 0.19498 (0.21441) | > loss_disc_real_3: 0.23491 (0.21984) | > loss_disc_real_4: 0.18040 (0.21459) | > loss_disc_real_5: 0.21167 (0.21450) | > loss_0: 2.34504 (2.33108) | > grad_norm_0: 35.96117 (14.84378) | > loss_gen: 2.44319 (2.55504) | > loss_kl: 2.65462 (2.66262) | > loss_feat: 7.69442 (8.62949) | > loss_mel: 17.00105 (17.82968) | > loss_duration: 1.72157 (1.70380) | > loss_1: 31.51484 (33.38064) | > grad_norm_1: 158.57368 (125.94633) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11200 (2.27885) | > loader_time: 0.03490 (0.03694)  --> STEP: 300/15287 -- GLOBAL_STEP: 980875 | > loss_disc: 2.34648 (2.32897) | > loss_disc_real_0: 0.13814 (0.12593) | > loss_disc_real_1: 0.22006 (0.21121) | > loss_disc_real_2: 0.23992 (0.21478) | > loss_disc_real_3: 0.24164 (0.21963) | > loss_disc_real_4: 0.23097 (0.21470) | > loss_disc_real_5: 0.20503 (0.21427) | > loss_0: 2.34648 (2.32897) | > grad_norm_0: 12.90580 (14.90421) | > loss_gen: 2.54059 (2.55646) | > loss_kl: 2.67497 (2.66166) | > loss_feat: 8.47472 (8.63674) | > loss_mel: 17.34676 (17.81756) | > loss_duration: 1.67398 (1.70361) | > loss_1: 32.71102 (33.37603) | > grad_norm_1: 91.34955 (125.13056) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.48220 (2.28298) | > loader_time: 0.03810 (0.03697)  --> STEP: 325/15287 -- GLOBAL_STEP: 980900 | > loss_disc: 2.32665 (2.32780) | > loss_disc_real_0: 0.12900 (0.12566) | > loss_disc_real_1: 0.20735 (0.21108) | > loss_disc_real_2: 0.22471 (0.21487) | > loss_disc_real_3: 0.25176 (0.21978) | > loss_disc_real_4: 0.20258 (0.21484) | > loss_disc_real_5: 0.22390 (0.21414) | > loss_0: 2.32665 (2.32780) | > grad_norm_0: 19.53629 (14.80395) | > loss_gen: 2.47955 (2.55662) | > loss_kl: 2.72301 (2.66335) | > loss_feat: 8.53768 (8.63058) | > loss_mel: 17.75560 (17.80623) | > loss_duration: 1.68576 (1.70324) | > loss_1: 33.18160 (33.36005) | > grad_norm_1: 137.44231 (124.85709) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41470 (2.28499) | > loader_time: 0.03640 (0.03699)  --> STEP: 350/15287 -- GLOBAL_STEP: 980925 | > loss_disc: 2.35476 (2.32581) | > loss_disc_real_0: 0.16593 (0.12497) | > loss_disc_real_1: 0.22047 (0.21099) | > loss_disc_real_2: 0.23402 (0.21485) | > loss_disc_real_3: 0.20325 (0.22007) | > loss_disc_real_4: 0.18814 (0.21545) | > loss_disc_real_5: 0.20944 (0.21400) | > loss_0: 2.35476 (2.32581) | > grad_norm_0: 8.77498 (14.66574) | > loss_gen: 2.53281 (2.56112) | > loss_kl: 2.58451 (2.66395) | > loss_feat: 8.38017 (8.64227) | > loss_mel: 17.73509 (17.79971) | > loss_duration: 1.72181 (1.70302) | > loss_1: 32.95440 (33.37009) | > grad_norm_1: 84.95366 (125.24074) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10270 (2.28992) | > loader_time: 0.03180 (0.03685)  --> STEP: 375/15287 -- GLOBAL_STEP: 980950 | > loss_disc: 2.37886 (2.32493) | > loss_disc_real_0: 0.13656 (0.12483) | > loss_disc_real_1: 0.22929 (0.21067) | > loss_disc_real_2: 0.24378 (0.21460) | > loss_disc_real_3: 0.20292 (0.21990) | > loss_disc_real_4: 0.21667 (0.21555) | > loss_disc_real_5: 0.20658 (0.21368) | > loss_0: 2.37886 (2.32493) | > grad_norm_0: 14.93104 (14.76350) | > loss_gen: 2.61769 (2.56091) | > loss_kl: 2.62193 (2.66316) | > loss_feat: 8.11538 (8.64501) | > loss_mel: 17.22204 (17.80489) | > loss_duration: 1.69713 (1.70289) | > loss_1: 32.27417 (33.37687) | > grad_norm_1: 169.31038 (126.83994) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38010 (2.29395) | > loader_time: 0.03510 (0.03676)  --> STEP: 400/15287 -- GLOBAL_STEP: 980975 | > loss_disc: 2.29075 (2.32552) | > loss_disc_real_0: 0.11524 (0.12535) | > loss_disc_real_1: 0.18744 (0.21126) | > loss_disc_real_2: 0.19595 (0.21465) | > loss_disc_real_3: 0.21445 (0.22032) | > loss_disc_real_4: 0.18658 (0.21574) | > loss_disc_real_5: 0.22256 (0.21409) | > loss_0: 2.29075 (2.32552) | > grad_norm_0: 14.57625 (14.97275) | > loss_gen: 2.49230 (2.56306) | > loss_kl: 2.64251 (2.66376) | > loss_feat: 8.73378 (8.64778) | > loss_mel: 17.57896 (17.80475) | > loss_duration: 1.67304 (1.70257) | > loss_1: 33.12059 (33.38194) | > grad_norm_1: 104.70425 (126.32720) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.59480 (2.29389) | > loader_time: 0.03660 (0.03673)  --> STEP: 425/15287 -- GLOBAL_STEP: 981000 | > loss_disc: 2.33217 (2.32431) | > loss_disc_real_0: 0.10305 (0.12530) | > loss_disc_real_1: 0.22130 (0.21133) | > loss_disc_real_2: 0.24146 (0.21475) | > loss_disc_real_3: 0.24736 (0.22028) | > loss_disc_real_4: 0.22228 (0.21552) | > loss_disc_real_5: 0.21788 (0.21404) | > loss_0: 2.33217 (2.32431) | > grad_norm_0: 7.77814 (14.92105) | > loss_gen: 2.52744 (2.56357) | > loss_kl: 2.55261 (2.66338) | > loss_feat: 8.25048 (8.64959) | > loss_mel: 17.72423 (17.79799) | > loss_duration: 1.70514 (1.70241) | > loss_1: 32.75990 (33.37695) | > grad_norm_1: 109.91484 (126.97457) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41210 (2.30068) | > loader_time: 0.03880 (0.03673)  --> STEP: 450/15287 -- GLOBAL_STEP: 981025 | > loss_disc: 2.27485 (2.32510) | > loss_disc_real_0: 0.14338 (0.12548) | > loss_disc_real_1: 0.21626 (0.21136) | > loss_disc_real_2: 0.22267 (0.21488) | > loss_disc_real_3: 0.23155 (0.22015) | > loss_disc_real_4: 0.22244 (0.21547) | > loss_disc_real_5: 0.17477 (0.21415) | > loss_0: 2.27485 (2.32510) | > grad_norm_0: 15.72722 (14.81823) | > loss_gen: 2.52745 (2.56255) | > loss_kl: 2.67356 (2.66426) | > loss_feat: 8.47403 (8.65069) | > loss_mel: 18.32305 (17.80013) | > loss_duration: 1.70125 (1.70299) | > loss_1: 33.69934 (33.38061) | > grad_norm_1: 78.03848 (125.79919) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.12180 (2.30161) | > loader_time: 0.03340 (0.03664)  --> STEP: 475/15287 -- GLOBAL_STEP: 981050 | > loss_disc: 2.35428 (2.32389) | > loss_disc_real_0: 0.15948 (0.12522) | > loss_disc_real_1: 0.22599 (0.21106) | > loss_disc_real_2: 0.23116 (0.21470) | > loss_disc_real_3: 0.23815 (0.22023) | > loss_disc_real_4: 0.21280 (0.21550) | > loss_disc_real_5: 0.19697 (0.21423) | > loss_0: 2.35428 (2.32389) | > grad_norm_0: 24.29129 (14.92270) | > loss_gen: 2.56678 (2.56410) | > loss_kl: 2.53670 (2.66264) | > loss_feat: 7.82289 (8.65240) | > loss_mel: 17.09458 (17.79236) | > loss_duration: 1.72276 (1.70296) | > loss_1: 31.74370 (33.37444) | > grad_norm_1: 47.35386 (126.00258) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36020 (2.31390) | > loader_time: 0.03700 (0.03683)  --> STEP: 500/15287 -- GLOBAL_STEP: 981075 | > loss_disc: 2.29898 (2.32285) | > loss_disc_real_0: 0.13262 (0.12562) | > loss_disc_real_1: 0.21295 (0.21089) | > loss_disc_real_2: 0.23251 (0.21452) | > loss_disc_real_3: 0.22588 (0.22026) | > loss_disc_real_4: 0.22517 (0.21534) | > loss_disc_real_5: 0.21564 (0.21403) | > loss_0: 2.29898 (2.32285) | > grad_norm_0: 14.73654 (15.18528) | > loss_gen: 2.46040 (2.56440) | > loss_kl: 2.63357 (2.66205) | > loss_feat: 8.71886 (8.65501) | > loss_mel: 17.35936 (17.78768) | > loss_duration: 1.72341 (1.70278) | > loss_1: 32.89560 (33.37189) | > grad_norm_1: 191.57030 (127.26614) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55120 (2.31688) | > loader_time: 0.03340 (0.03670)  --> STEP: 525/15287 -- GLOBAL_STEP: 981100 | > loss_disc: 2.28449 (2.32271) | > loss_disc_real_0: 0.09008 (0.12533) | > loss_disc_real_1: 0.18457 (0.21110) | > loss_disc_real_2: 0.19709 (0.21463) | > loss_disc_real_3: 0.22555 (0.22012) | > loss_disc_real_4: 0.21560 (0.21516) | > loss_disc_real_5: 0.22436 (0.21396) | > loss_0: 2.28449 (2.32271) | > grad_norm_0: 11.96425 (15.07209) | > loss_gen: 2.62802 (2.56333) | > loss_kl: 2.62477 (2.66222) | > loss_feat: 8.39720 (8.65623) | > loss_mel: 17.66942 (17.78144) | > loss_duration: 1.69456 (1.70276) | > loss_1: 33.01397 (33.36596) | > grad_norm_1: 164.82098 (127.74014) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56460 (2.31851) | > loader_time: 0.03650 (0.03670)  --> STEP: 550/15287 -- GLOBAL_STEP: 981125 | > loss_disc: 2.35797 (2.32267) | > loss_disc_real_0: 0.13282 (0.12510) | > loss_disc_real_1: 0.23026 (0.21128) | > loss_disc_real_2: 0.27168 (0.21492) | > loss_disc_real_3: 0.23665 (0.21996) | > loss_disc_real_4: 0.26182 (0.21540) | > loss_disc_real_5: 0.19527 (0.21376) | > loss_0: 2.35797 (2.32267) | > grad_norm_0: 4.32634 (14.96482) | > loss_gen: 2.48171 (2.56368) | > loss_kl: 2.73669 (2.66211) | > loss_feat: 8.92959 (8.65719) | > loss_mel: 18.16359 (17.78012) | > loss_duration: 1.67405 (1.70234) | > loss_1: 33.98562 (33.36542) | > grad_norm_1: 64.69379 (126.81258) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28610 (2.32084) | > loader_time: 0.03290 (0.03676)  --> STEP: 575/15287 -- GLOBAL_STEP: 981150 | > loss_disc: 2.34344 (2.32279) | > loss_disc_real_0: 0.13006 (0.12475) | > loss_disc_real_1: 0.21757 (0.21128) | > loss_disc_real_2: 0.20653 (0.21553) | > loss_disc_real_3: 0.22226 (0.21998) | > loss_disc_real_4: 0.21364 (0.21543) | > loss_disc_real_5: 0.20731 (0.21365) | > loss_0: 2.34344 (2.32279) | > grad_norm_0: 19.41887 (15.00787) | > loss_gen: 2.35086 (2.56268) | > loss_kl: 2.73204 (2.66197) | > loss_feat: 8.12463 (8.65267) | > loss_mel: 18.11536 (17.78148) | > loss_duration: 1.73502 (1.70249) | > loss_1: 33.05791 (33.36128) | > grad_norm_1: 181.84964 (127.72134) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21190 (2.32026) | > loader_time: 0.03340 (0.03666)  --> STEP: 600/15287 -- GLOBAL_STEP: 981175 | > loss_disc: 2.29607 (2.32194) | > loss_disc_real_0: 0.12172 (0.12423) | > loss_disc_real_1: 0.19969 (0.21111) | > loss_disc_real_2: 0.22907 (0.21550) | > loss_disc_real_3: 0.21305 (0.21982) | > loss_disc_real_4: 0.24004 (0.21573) | > loss_disc_real_5: 0.24871 (0.21381) | > loss_0: 2.29607 (2.32194) | > grad_norm_0: 12.83378 (15.13755) | > loss_gen: 2.51467 (2.56199) | > loss_kl: 2.66274 (2.66105) | > loss_feat: 8.59002 (8.65417) | > loss_mel: 18.16361 (17.78181) | > loss_duration: 1.69820 (1.70214) | > loss_1: 33.62924 (33.36115) | > grad_norm_1: 178.93195 (129.04877) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27320 (2.32338) | > loader_time: 0.03410 (0.03658)  --> STEP: 625/15287 -- GLOBAL_STEP: 981200 | > loss_disc: 2.34959 (2.32186) | > loss_disc_real_0: 0.16161 (0.12420) | > loss_disc_real_1: 0.21201 (0.21127) | > loss_disc_real_2: 0.21673 (0.21553) | > loss_disc_real_3: 0.22062 (0.22000) | > loss_disc_real_4: 0.21147 (0.21557) | > loss_disc_real_5: 0.22204 (0.21365) | > loss_0: 2.34959 (2.32186) | > grad_norm_0: 20.85763 (15.25513) | > loss_gen: 2.48273 (2.56091) | > loss_kl: 2.63604 (2.66122) | > loss_feat: 8.44383 (8.65235) | > loss_mel: 17.88293 (17.78471) | > loss_duration: 1.69140 (1.70190) | > loss_1: 33.13693 (33.36107) | > grad_norm_1: 146.77664 (129.46970) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39890 (2.32767) | > loader_time: 0.03840 (0.03659)  --> STEP: 650/15287 -- GLOBAL_STEP: 981225 | > loss_disc: 2.34585 (2.32167) | > loss_disc_real_0: 0.13590 (0.12422) | > loss_disc_real_1: 0.20552 (0.21138) | > loss_disc_real_2: 0.19198 (0.21549) | > loss_disc_real_3: 0.21853 (0.22004) | > loss_disc_real_4: 0.20871 (0.21551) | > loss_disc_real_5: 0.22898 (0.21383) | > loss_0: 2.34585 (2.32167) | > grad_norm_0: 4.28777 (15.25561) | > loss_gen: 2.58057 (2.56069) | > loss_kl: 2.49162 (2.66082) | > loss_feat: 8.50935 (8.64729) | > loss_mel: 17.42612 (17.77693) | > loss_duration: 1.69287 (1.70207) | > loss_1: 32.70054 (33.34779) | > grad_norm_1: 79.36143 (129.45345) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92920 (2.32839) | > loader_time: 0.03250 (0.03654)  --> STEP: 675/15287 -- GLOBAL_STEP: 981250 | > loss_disc: 2.30552 (2.32277) | > loss_disc_real_0: 0.15924 (0.12442) | > loss_disc_real_1: 0.20953 (0.21153) | > loss_disc_real_2: 0.21746 (0.21567) | > loss_disc_real_3: 0.23873 (0.22001) | > loss_disc_real_4: 0.19431 (0.21558) | > loss_disc_real_5: 0.19568 (0.21373) | > loss_0: 2.30552 (2.32277) | > grad_norm_0: 14.40571 (15.03691) | > loss_gen: 2.62222 (2.56041) | > loss_kl: 2.66537 (2.66214) | > loss_feat: 8.80443 (8.64691) | > loss_mel: 17.38326 (17.78219) | > loss_duration: 1.68405 (1.70185) | > loss_1: 33.15934 (33.35349) | > grad_norm_1: 49.72391 (127.24860) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21900 (2.33031) | > loader_time: 0.03660 (0.03657)  --> STEP: 700/15287 -- GLOBAL_STEP: 981275 | > loss_disc: 2.50829 (2.32547) | > loss_disc_real_0: 0.27571 (0.12524) | > loss_disc_real_1: 0.24742 (0.21179) | > loss_disc_real_2: 0.20378 (0.21580) | > loss_disc_real_3: 0.25021 (0.22025) | > loss_disc_real_4: 0.22334 (0.21559) | > loss_disc_real_5: 0.22016 (0.21390) | > loss_0: 2.50829 (2.32547) | > grad_norm_0: 29.75779 (14.96930) | > loss_gen: 2.57646 (2.56028) | > loss_kl: 2.64476 (2.66199) | > loss_feat: 7.93105 (8.64136) | > loss_mel: 17.54299 (17.79049) | > loss_duration: 1.75237 (1.70187) | > loss_1: 32.44762 (33.35598) | > grad_norm_1: 108.07613 (125.83821) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24890 (2.33314) | > loader_time: 0.03350 (0.03661)  --> STEP: 725/15287 -- GLOBAL_STEP: 981300 | > loss_disc: 2.30754 (2.32656) | > loss_disc_real_0: 0.19934 (0.12586) | > loss_disc_real_1: 0.19664 (0.21196) | > loss_disc_real_2: 0.22045 (0.21587) | > loss_disc_real_3: 0.19180 (0.22020) | > loss_disc_real_4: 0.17352 (0.21560) | > loss_disc_real_5: 0.17324 (0.21385) | > loss_0: 2.30754 (2.32656) | > grad_norm_0: 16.81494 (14.88281) | > loss_gen: 2.55736 (2.55919) | > loss_kl: 2.58479 (2.66138) | > loss_feat: 8.81519 (8.63332) | > loss_mel: 18.07255 (17.79511) | > loss_duration: 1.67258 (1.70198) | > loss_1: 33.70247 (33.35096) | > grad_norm_1: 77.69339 (123.78519) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36020 (2.33552) | > loader_time: 0.03410 (0.03663)  --> STEP: 750/15287 -- GLOBAL_STEP: 981325 | > loss_disc: 2.31672 (2.32760) | > loss_disc_real_0: 0.13248 (0.12609) | > loss_disc_real_1: 0.22655 (0.21212) | > loss_disc_real_2: 0.22401 (0.21597) | > loss_disc_real_3: 0.23743 (0.22026) | > loss_disc_real_4: 0.20744 (0.21554) | > loss_disc_real_5: 0.21789 (0.21373) | > loss_0: 2.31672 (2.32760) | > grad_norm_0: 4.71208 (14.67429) | > loss_gen: 2.48606 (2.55891) | > loss_kl: 2.61223 (2.66201) | > loss_feat: 8.77579 (8.63074) | > loss_mel: 18.07875 (17.79659) | > loss_duration: 1.69057 (1.70217) | > loss_1: 33.64339 (33.35041) | > grad_norm_1: 60.64912 (121.57205) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25790 (2.33510) | > loader_time: 0.03090 (0.03661)  --> STEP: 775/15287 -- GLOBAL_STEP: 981350 | > loss_disc: 2.34532 (2.32723) | > loss_disc_real_0: 0.14944 (0.12594) | > loss_disc_real_1: 0.18613 (0.21208) | > loss_disc_real_2: 0.21225 (0.21592) | > loss_disc_real_3: 0.19566 (0.22020) | > loss_disc_real_4: 0.21014 (0.21547) | > loss_disc_real_5: 0.22793 (0.21357) | > loss_0: 2.34532 (2.32723) | > grad_norm_0: 21.53557 (14.63635) | > loss_gen: 2.52148 (2.55841) | > loss_kl: 2.72083 (2.66115) | > loss_feat: 8.65667 (8.62918) | > loss_mel: 18.18714 (17.80295) | > loss_duration: 1.69430 (1.70239) | > loss_1: 33.78041 (33.35404) | > grad_norm_1: 107.00852 (121.34322) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34550 (2.33735) | > loader_time: 0.03540 (0.03663)  --> STEP: 800/15287 -- GLOBAL_STEP: 981375 | > loss_disc: 2.30443 (2.32687) | > loss_disc_real_0: 0.08695 (0.12580) | > loss_disc_real_1: 0.20511 (0.21206) | > loss_disc_real_2: 0.22359 (0.21601) | > loss_disc_real_3: 0.21623 (0.22013) | > loss_disc_real_4: 0.23897 (0.21540) | > loss_disc_real_5: 0.21757 (0.21351) | > loss_0: 2.30443 (2.32687) | > grad_norm_0: 21.71999 (14.62503) | > loss_gen: 2.48270 (2.55804) | > loss_kl: 2.65030 (2.65990) | > loss_feat: 9.21810 (8.63134) | > loss_mel: 18.13357 (17.80075) | > loss_duration: 1.71444 (1.70228) | > loss_1: 34.19911 (33.35228) | > grad_norm_1: 123.55643 (121.31534) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.53810 (2.33813) | > loader_time: 0.03460 (0.03662)  --> STEP: 825/15287 -- GLOBAL_STEP: 981400 | > loss_disc: 2.25925 (2.32599) | > loss_disc_real_0: 0.09496 (0.12552) | > loss_disc_real_1: 0.22836 (0.21198) | > loss_disc_real_2: 0.21177 (0.21580) | > loss_disc_real_3: 0.21563 (0.22012) | > loss_disc_real_4: 0.20882 (0.21534) | > loss_disc_real_5: 0.19454 (0.21342) | > loss_0: 2.25925 (2.32599) | > grad_norm_0: 5.79690 (14.53905) | > loss_gen: 2.68991 (2.55779) | > loss_kl: 2.65226 (2.66029) | > loss_feat: 9.16252 (8.63383) | > loss_mel: 17.67411 (17.79696) | > loss_duration: 1.69764 (1.70199) | > loss_1: 33.87646 (33.35082) | > grad_norm_1: 120.02802 (121.30711) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.87540 (2.33900) | > loader_time: 0.03880 (0.03666)  --> STEP: 850/15287 -- GLOBAL_STEP: 981425 | > loss_disc: 2.24511 (2.32478) | > loss_disc_real_0: 0.12161 (0.12515) | > loss_disc_real_1: 0.19958 (0.21193) | > loss_disc_real_2: 0.21252 (0.21565) | > loss_disc_real_3: 0.19038 (0.21977) | > loss_disc_real_4: 0.20366 (0.21514) | > loss_disc_real_5: 0.22031 (0.21336) | > loss_0: 2.24511 (2.32478) | > grad_norm_0: 27.27063 (14.64559) | > loss_gen: 2.59030 (2.55726) | > loss_kl: 2.66034 (2.65939) | > loss_feat: 9.28272 (8.63563) | > loss_mel: 17.63520 (17.79083) | > loss_duration: 1.71136 (1.70208) | > loss_1: 33.87991 (33.34514) | > grad_norm_1: 163.18141 (122.04012) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24550 (2.34098) | > loader_time: 0.03600 (0.03664)  --> STEP: 875/15287 -- GLOBAL_STEP: 981450 | > loss_disc: 2.25215 (2.32336) | > loss_disc_real_0: 0.11530 (0.12486) | > loss_disc_real_1: 0.17693 (0.21170) | > loss_disc_real_2: 0.22929 (0.21545) | > loss_disc_real_3: 0.21390 (0.21956) | > loss_disc_real_4: 0.23019 (0.21485) | > loss_disc_real_5: 0.18791 (0.21325) | > loss_0: 2.25215 (2.32336) | > grad_norm_0: 9.75269 (14.76734) | > loss_gen: 2.48615 (2.55663) | > loss_kl: 2.68529 (2.65948) | > loss_feat: 8.51269 (8.63947) | > loss_mel: 17.21633 (17.78754) | > loss_duration: 1.67030 (1.70210) | > loss_1: 32.57075 (33.34518) | > grad_norm_1: 194.99242 (123.46524) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30950 (2.33976) | > loader_time: 0.03700 (0.03658)  --> STEP: 900/15287 -- GLOBAL_STEP: 981475 | > loss_disc: 2.35007 (2.32223) | > loss_disc_real_0: 0.15741 (0.12473) | > loss_disc_real_1: 0.18928 (0.21146) | > loss_disc_real_2: 0.21923 (0.21543) | > loss_disc_real_3: 0.24832 (0.21949) | > loss_disc_real_4: 0.23419 (0.21488) | > loss_disc_real_5: 0.20922 (0.21348) | > loss_0: 2.35007 (2.32223) | > grad_norm_0: 23.98019 (14.92139) | > loss_gen: 2.43628 (2.55784) | > loss_kl: 2.74672 (2.65965) | > loss_feat: 8.61666 (8.64782) | > loss_mel: 17.54723 (17.78379) | > loss_duration: 1.68639 (1.70212) | > loss_1: 33.03328 (33.35117) | > grad_norm_1: 131.89102 (123.76893) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26740 (2.34147) | > loader_time: 0.03810 (0.03661)  --> STEP: 925/15287 -- GLOBAL_STEP: 981500 | > loss_disc: 2.29891 (2.32119) | > loss_disc_real_0: 0.09605 (0.12447) | > loss_disc_real_1: 0.20425 (0.21139) | > loss_disc_real_2: 0.21025 (0.21539) | > loss_disc_real_3: 0.21608 (0.21946) | > loss_disc_real_4: 0.22856 (0.21480) | > loss_disc_real_5: 0.22150 (0.21345) | > loss_0: 2.29891 (2.32119) | > grad_norm_0: 19.91973 (15.13802) | > loss_gen: 2.55987 (2.55761) | > loss_kl: 2.67997 (2.65907) | > loss_feat: 8.75571 (8.65091) | > loss_mel: 17.72996 (17.77865) | > loss_duration: 1.70118 (1.70212) | > loss_1: 33.42670 (33.34829) | > grad_norm_1: 190.90858 (125.47787) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19370 (2.34154) | > loader_time: 0.03860 (0.03663)  --> STEP: 950/15287 -- GLOBAL_STEP: 981525 | > loss_disc: 2.30150 (2.32009) | > loss_disc_real_0: 0.11733 (0.12429) | > loss_disc_real_1: 0.20385 (0.21126) | > loss_disc_real_2: 0.20966 (0.21533) | > loss_disc_real_3: 0.22246 (0.21951) | > loss_disc_real_4: 0.22013 (0.21470) | > loss_disc_real_5: 0.24225 (0.21354) | > loss_0: 2.30150 (2.32009) | > grad_norm_0: 12.15659 (15.22334) | > loss_gen: 2.60004 (2.55850) | > loss_kl: 2.58484 (2.65885) | > loss_feat: 8.98904 (8.65573) | > loss_mel: 18.15083 (17.77826) | > loss_duration: 1.69934 (1.70220) | > loss_1: 34.02410 (33.35349) | > grad_norm_1: 230.97505 (126.53630) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31270 (2.34146) | > loader_time: 0.02960 (0.03655)  --> STEP: 975/15287 -- GLOBAL_STEP: 981550 | > loss_disc: 2.26502 (2.31920) | > loss_disc_real_0: 0.10613 (0.12409) | > loss_disc_real_1: 0.21782 (0.21111) | > loss_disc_real_2: 0.22801 (0.21523) | > loss_disc_real_3: 0.20904 (0.21934) | > loss_disc_real_4: 0.18172 (0.21466) | > loss_disc_real_5: 0.19815 (0.21348) | > loss_0: 2.26502 (2.31920) | > grad_norm_0: 18.76000 (15.28417) | > loss_gen: 2.68467 (2.55866) | > loss_kl: 2.56879 (2.65916) | > loss_feat: 9.10276 (8.66284) | > loss_mel: 17.85544 (17.77600) | > loss_duration: 1.70906 (1.70217) | > loss_1: 33.92072 (33.35878) | > grad_norm_1: 239.45787 (127.37386) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27190 (2.34166) | > loader_time: 0.03570 (0.03653)  --> STEP: 1000/15287 -- GLOBAL_STEP: 981575 | > loss_disc: 2.41297 (2.31930) | > loss_disc_real_0: 0.16067 (0.12404) | > loss_disc_real_1: 0.22445 (0.21115) | > loss_disc_real_2: 0.23022 (0.21526) | > loss_disc_real_3: 0.22237 (0.21933) | > loss_disc_real_4: 0.21999 (0.21459) | > loss_disc_real_5: 0.20512 (0.21345) | > loss_0: 2.41297 (2.31930) | > grad_norm_0: 10.01859 (15.27683) | > loss_gen: 2.61244 (2.55883) | > loss_kl: 2.66643 (2.65954) | > loss_feat: 8.18721 (8.66418) | > loss_mel: 16.92095 (17.77777) | > loss_duration: 1.65785 (1.70194) | > loss_1: 32.04488 (33.36220) | > grad_norm_1: 89.73162 (127.87798) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34300 (2.34106) | > loader_time: 0.03490 (0.03651)  --> STEP: 1025/15287 -- GLOBAL_STEP: 981600 | > loss_disc: 2.29896 (2.31994) | > loss_disc_real_0: 0.13275 (0.12443) | > loss_disc_real_1: 0.21220 (0.21126) | > loss_disc_real_2: 0.21672 (0.21532) | > loss_disc_real_3: 0.25372 (0.21940) | > loss_disc_real_4: 0.21613 (0.21459) | > loss_disc_real_5: 0.22953 (0.21352) | > loss_0: 2.29896 (2.31994) | > grad_norm_0: 10.73905 (15.33014) | > loss_gen: 2.60572 (2.55852) | > loss_kl: 2.76108 (2.65932) | > loss_feat: 9.14248 (8.66619) | > loss_mel: 18.49490 (17.77934) | > loss_duration: 1.73761 (1.70199) | > loss_1: 34.74179 (33.36531) | > grad_norm_1: 150.24420 (128.25877) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.04140 (2.34374) | > loader_time: 0.04560 (0.03655)  --> STEP: 1050/15287 -- GLOBAL_STEP: 981625 | > loss_disc: 2.33456 (2.32075) | > loss_disc_real_0: 0.14269 (0.12482) | > loss_disc_real_1: 0.22306 (0.21135) | > loss_disc_real_2: 0.22572 (0.21528) | > loss_disc_real_3: 0.21141 (0.21933) | > loss_disc_real_4: 0.21007 (0.21456) | > loss_disc_real_5: 0.21561 (0.21355) | > loss_0: 2.33456 (2.32075) | > grad_norm_0: 11.72951 (15.34737) | > loss_gen: 2.47895 (2.55801) | > loss_kl: 2.72738 (2.65949) | > loss_feat: 8.76069 (8.66627) | > loss_mel: 17.95430 (17.78057) | > loss_duration: 1.70599 (1.70223) | > loss_1: 33.62730 (33.36652) | > grad_norm_1: 125.60281 (128.35815) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21560 (2.34314) | > loader_time: 0.03550 (0.03655)  --> STEP: 1075/15287 -- GLOBAL_STEP: 981650 | > loss_disc: 2.31139 (2.32093) | > loss_disc_real_0: 0.12928 (0.12473) | > loss_disc_real_1: 0.18293 (0.21136) | > loss_disc_real_2: 0.21476 (0.21538) | > loss_disc_real_3: 0.21981 (0.21932) | > loss_disc_real_4: 0.20877 (0.21453) | > loss_disc_real_5: 0.20877 (0.21347) | > loss_0: 2.31139 (2.32093) | > grad_norm_0: 9.34505 (15.35264) | > loss_gen: 2.71306 (2.55875) | > loss_kl: 2.72293 (2.65954) | > loss_feat: 8.79950 (8.66873) | > loss_mel: 17.49432 (17.78234) | > loss_duration: 1.72436 (1.70239) | > loss_1: 33.45417 (33.37169) | > grad_norm_1: 158.70274 (128.78697) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22180 (2.34222) | > loader_time: 0.03530 (0.03653)  --> STEP: 1100/15287 -- GLOBAL_STEP: 981675 | > loss_disc: 2.31577 (2.32058) | > loss_disc_real_0: 0.12421 (0.12462) | > loss_disc_real_1: 0.20671 (0.21134) | > loss_disc_real_2: 0.21162 (0.21534) | > loss_disc_real_3: 0.19368 (0.21924) | > loss_disc_real_4: 0.21130 (0.21446) | > loss_disc_real_5: 0.21616 (0.21349) | > loss_0: 2.31577 (2.32058) | > grad_norm_0: 17.03959 (15.33328) | > loss_gen: 2.58446 (2.55854) | > loss_kl: 2.52625 (2.65952) | > loss_feat: 7.70813 (8.66773) | > loss_mel: 17.20273 (17.78235) | > loss_duration: 1.73783 (1.70235) | > loss_1: 31.75940 (33.37043) | > grad_norm_1: 144.07219 (128.96974) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27930 (2.34298) | > loader_time: 0.03440 (0.03654)  --> STEP: 1125/15287 -- GLOBAL_STEP: 981700 | > loss_disc: 2.30664 (2.32042) | > loss_disc_real_0: 0.07850 (0.12440) | > loss_disc_real_1: 0.18104 (0.21129) | > loss_disc_real_2: 0.18553 (0.21526) | > loss_disc_real_3: 0.22008 (0.21932) | > loss_disc_real_4: 0.22171 (0.21451) | > loss_disc_real_5: 0.18296 (0.21349) | > loss_0: 2.30664 (2.32042) | > grad_norm_0: 10.83342 (15.37484) | > loss_gen: 2.60365 (2.55822) | > loss_kl: 2.56210 (2.65878) | > loss_feat: 9.01609 (8.66956) | > loss_mel: 17.70888 (17.78059) | > loss_duration: 1.71591 (1.70240) | > loss_1: 33.60663 (33.36946) | > grad_norm_1: 52.22807 (129.22733) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39860 (2.34240) | > loader_time: 0.04160 (0.03657)  --> STEP: 1150/15287 -- GLOBAL_STEP: 981725 | > loss_disc: 2.34208 (2.32091) | > loss_disc_real_0: 0.10695 (0.12467) | > loss_disc_real_1: 0.20054 (0.21133) | > loss_disc_real_2: 0.22482 (0.21538) | > loss_disc_real_3: 0.20361 (0.21933) | > loss_disc_real_4: 0.22068 (0.21455) | > loss_disc_real_5: 0.20693 (0.21357) | > loss_0: 2.34208 (2.32091) | > grad_norm_0: 16.48108 (15.33373) | > loss_gen: 2.45839 (2.55867) | > loss_kl: 2.56743 (2.65937) | > loss_feat: 8.91918 (8.67087) | > loss_mel: 18.39625 (17.78168) | > loss_duration: 1.69863 (1.70234) | > loss_1: 34.03987 (33.37288) | > grad_norm_1: 121.01091 (128.82201) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18720 (2.34225) | > loader_time: 0.03700 (0.03654)  --> STEP: 1175/15287 -- GLOBAL_STEP: 981750 | > loss_disc: 2.30461 (2.32087) | > loss_disc_real_0: 0.17058 (0.12460) | > loss_disc_real_1: 0.18083 (0.21130) | > loss_disc_real_2: 0.21977 (0.21532) | > loss_disc_real_3: 0.21811 (0.21937) | > loss_disc_real_4: 0.20484 (0.21458) | > loss_disc_real_5: 0.22183 (0.21350) | > loss_0: 2.30461 (2.32087) | > grad_norm_0: 13.78556 (15.28891) | > loss_gen: 2.79738 (2.55861) | > loss_kl: 2.79058 (2.65978) | > loss_feat: 8.86926 (8.67152) | > loss_mel: 17.99368 (17.77979) | > loss_duration: 1.67408 (1.70233) | > loss_1: 34.12497 (33.37199) | > grad_norm_1: 83.66287 (128.52596) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52970 (2.34439) | > loader_time: 0.03430 (0.03652)  --> STEP: 1200/15287 -- GLOBAL_STEP: 981775 | > loss_disc: 2.26385 (2.32086) | > loss_disc_real_0: 0.13631 (0.12465) | > loss_disc_real_1: 0.21465 (0.21132) | > loss_disc_real_2: 0.21619 (0.21538) | > loss_disc_real_3: 0.23398 (0.21936) | > loss_disc_real_4: 0.23911 (0.21450) | > loss_disc_real_5: 0.21292 (0.21351) | > loss_0: 2.26385 (2.32086) | > grad_norm_0: 14.97790 (15.36325) | > loss_gen: 2.54252 (2.55822) | > loss_kl: 2.69708 (2.66006) | > loss_feat: 8.71845 (8.67097) | > loss_mel: 17.53795 (17.77767) | > loss_duration: 1.72049 (1.70243) | > loss_1: 33.21648 (33.36931) | > grad_norm_1: 176.56683 (128.73940) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42660 (2.34541) | > loader_time: 0.03500 (0.03649)  --> STEP: 1225/15287 -- GLOBAL_STEP: 981800 | > loss_disc: 2.29989 (2.32013) | > loss_disc_real_0: 0.10684 (0.12455) | > loss_disc_real_1: 0.20257 (0.21130) | > loss_disc_real_2: 0.20706 (0.21530) | > loss_disc_real_3: 0.24380 (0.21934) | > loss_disc_real_4: 0.22144 (0.21455) | > loss_disc_real_5: 0.23280 (0.21343) | > loss_0: 2.29989 (2.32013) | > grad_norm_0: 6.59344 (15.32856) | > loss_gen: 2.71222 (2.55877) | > loss_kl: 2.74566 (2.66036) | > loss_feat: 9.02741 (8.67169) | > loss_mel: 17.73599 (17.77501) | > loss_duration: 1.68795 (1.70240) | > loss_1: 33.90924 (33.36821) | > grad_norm_1: 103.02264 (128.73038) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40120 (2.34488) | > loader_time: 0.03270 (0.03645)  --> STEP: 1250/15287 -- GLOBAL_STEP: 981825 | > loss_disc: 2.26044 (2.32083) | > loss_disc_real_0: 0.10746 (0.12487) | > loss_disc_real_1: 0.18118 (0.21130) | > loss_disc_real_2: 0.21006 (0.21540) | > loss_disc_real_3: 0.19546 (0.21925) | > loss_disc_real_4: 0.20515 (0.21455) | > loss_disc_real_5: 0.20529 (0.21329) | > loss_0: 2.26044 (2.32083) | > grad_norm_0: 7.68004 (15.41933) | > loss_gen: 2.73816 (2.55856) | > loss_kl: 2.74635 (2.66067) | > loss_feat: 8.82394 (8.67047) | > loss_mel: 17.61251 (17.77556) | > loss_duration: 1.74084 (1.70244) | > loss_1: 33.66180 (33.36769) | > grad_norm_1: 44.88976 (128.98108) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.12330 (2.34491) | > loader_time: 0.03440 (0.03644)  --> STEP: 1275/15287 -- GLOBAL_STEP: 981850 | > loss_disc: 2.30394 (2.32079) | > loss_disc_real_0: 0.12604 (0.12489) | > loss_disc_real_1: 0.17931 (0.21129) | > loss_disc_real_2: 0.17996 (0.21531) | > loss_disc_real_3: 0.17660 (0.21919) | > loss_disc_real_4: 0.17635 (0.21443) | > loss_disc_real_5: 0.23428 (0.21336) | > loss_0: 2.30394 (2.32079) | > grad_norm_0: 22.71190 (15.43026) | > loss_gen: 2.59885 (2.55832) | > loss_kl: 2.79514 (2.66111) | > loss_feat: 8.81027 (8.67150) | > loss_mel: 17.83498 (17.77524) | > loss_duration: 1.66858 (1.70260) | > loss_1: 33.70781 (33.36875) | > grad_norm_1: 98.57696 (128.79079) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22760 (2.34515) | > loader_time: 0.03720 (0.03646)  --> STEP: 1300/15287 -- GLOBAL_STEP: 981875 | > loss_disc: 2.33985 (2.32048) | > loss_disc_real_0: 0.16964 (0.12479) | > loss_disc_real_1: 0.24785 (0.21131) | > loss_disc_real_2: 0.23363 (0.21536) | > loss_disc_real_3: 0.23041 (0.21921) | > loss_disc_real_4: 0.21957 (0.21440) | > loss_disc_real_5: 0.22706 (0.21338) | > loss_0: 2.33985 (2.32048) | > grad_norm_0: 12.81548 (15.43615) | > loss_gen: 2.45715 (2.55865) | > loss_kl: 2.58576 (2.66138) | > loss_feat: 8.18378 (8.67068) | > loss_mel: 17.91769 (17.77516) | > loss_duration: 1.68317 (1.70256) | > loss_1: 32.82756 (33.36840) | > grad_norm_1: 101.89387 (129.23743) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35440 (2.34568) | > loader_time: 0.03660 (0.03649)  --> STEP: 1325/15287 -- GLOBAL_STEP: 981900 | > loss_disc: 2.35260 (2.32041) | > loss_disc_real_0: 0.12987 (0.12476) | > loss_disc_real_1: 0.17347 (0.21127) | > loss_disc_real_2: 0.21440 (0.21527) | > loss_disc_real_3: 0.21654 (0.21915) | > loss_disc_real_4: 0.19735 (0.21442) | > loss_disc_real_5: 0.21109 (0.21341) | > loss_0: 2.35260 (2.32041) | > grad_norm_0: 11.15828 (15.49635) | > loss_gen: 2.44266 (2.55829) | > loss_kl: 2.59301 (2.66197) | > loss_feat: 8.70103 (8.66910) | > loss_mel: 18.06236 (17.77275) | > loss_duration: 1.69966 (1.70255) | > loss_1: 33.49872 (33.36464) | > grad_norm_1: 132.42033 (129.36279) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16270 (2.34583) | > loader_time: 0.03520 (0.03648)  --> STEP: 1350/15287 -- GLOBAL_STEP: 981925 | > loss_disc: 2.30078 (2.32054) | > loss_disc_real_0: 0.11257 (0.12482) | > loss_disc_real_1: 0.19863 (0.21131) | > loss_disc_real_2: 0.21235 (0.21528) | > loss_disc_real_3: 0.18608 (0.21914) | > loss_disc_real_4: 0.18755 (0.21441) | > loss_disc_real_5: 0.18234 (0.21341) | > loss_0: 2.30078 (2.32054) | > grad_norm_0: 9.14633 (15.46231) | > loss_gen: 2.62016 (2.55819) | > loss_kl: 2.72354 (2.66201) | > loss_feat: 8.36762 (8.66761) | > loss_mel: 17.44578 (17.77331) | > loss_duration: 1.71316 (1.70261) | > loss_1: 32.87025 (33.36372) | > grad_norm_1: 124.13997 (129.00490) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32560 (2.34568) | > loader_time: 0.03630 (0.03648)  --> STEP: 1375/15287 -- GLOBAL_STEP: 981950 | > loss_disc: 2.29031 (2.32077) | > loss_disc_real_0: 0.07855 (0.12506) | > loss_disc_real_1: 0.20359 (0.21137) | > loss_disc_real_2: 0.22525 (0.21547) | > loss_disc_real_3: 0.20622 (0.21909) | > loss_disc_real_4: 0.21265 (0.21452) | > loss_disc_real_5: 0.18638 (0.21351) | > loss_0: 2.29031 (2.32077) | > grad_norm_0: 7.01507 (15.46666) | > loss_gen: 2.64087 (2.55891) | > loss_kl: 2.64894 (2.66220) | > loss_feat: 8.63646 (8.66545) | > loss_mel: 18.06390 (17.77044) | > loss_duration: 1.69177 (1.70262) | > loss_1: 33.68195 (33.35962) | > grad_norm_1: 98.46176 (128.72195) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44070 (2.34678) | > loader_time: 0.04150 (0.03648)  --> STEP: 1400/15287 -- GLOBAL_STEP: 981975 | > loss_disc: 2.38448 (2.32081) | > loss_disc_real_0: 0.15595 (0.12498) | > loss_disc_real_1: 0.22507 (0.21139) | > loss_disc_real_2: 0.22901 (0.21552) | > loss_disc_real_3: 0.23644 (0.21913) | > loss_disc_real_4: 0.20944 (0.21451) | > loss_disc_real_5: 0.24243 (0.21355) | > loss_0: 2.38448 (2.32081) | > grad_norm_0: 15.56178 (15.39969) | > loss_gen: 2.52129 (2.55888) | > loss_kl: 2.66659 (2.66191) | > loss_feat: 8.15761 (8.66376) | > loss_mel: 17.89689 (17.77138) | > loss_duration: 1.76320 (1.70275) | > loss_1: 33.00558 (33.35866) | > grad_norm_1: 156.04764 (128.54103) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98610 (2.34758) | > loader_time: 0.04340 (0.03651)  --> STEP: 1425/15287 -- GLOBAL_STEP: 982000 | > loss_disc: 2.31024 (2.32092) | > loss_disc_real_0: 0.11424 (0.12490) | > loss_disc_real_1: 0.18061 (0.21135) | > loss_disc_real_2: 0.21205 (0.21554) | > loss_disc_real_3: 0.18437 (0.21908) | > loss_disc_real_4: 0.21293 (0.21451) | > loss_disc_real_5: 0.23691 (0.21355) | > loss_0: 2.31024 (2.32092) | > grad_norm_0: 23.08597 (15.41202) | > loss_gen: 2.47391 (2.55821) | > loss_kl: 2.57920 (2.66173) | > loss_feat: 8.44161 (8.66433) | > loss_mel: 17.39609 (17.76953) | > loss_duration: 1.69056 (1.70267) | > loss_1: 32.58138 (33.35646) | > grad_norm_1: 229.85741 (128.83066) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35670 (2.34314) | > loader_time: 0.03790 (0.03659)  --> STEP: 1450/15287 -- GLOBAL_STEP: 982025 | > loss_disc: 2.33529 (2.32046) | > loss_disc_real_0: 0.12770 (0.12468) | > loss_disc_real_1: 0.20408 (0.21131) | > loss_disc_real_2: 0.22088 (0.21551) | > loss_disc_real_3: 0.23902 (0.21917) | > loss_disc_real_4: 0.21684 (0.21443) | > loss_disc_real_5: 0.21478 (0.21348) | > loss_0: 2.33529 (2.32046) | > grad_norm_0: 16.02343 (15.48299) | > loss_gen: 2.39822 (2.55835) | > loss_kl: 2.65213 (2.66055) | > loss_feat: 8.51702 (8.66514) | > loss_mel: 17.63458 (17.76719) | > loss_duration: 1.69973 (1.70255) | > loss_1: 32.90168 (33.35374) | > grad_norm_1: 102.29292 (129.31517) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35390 (2.34876) | > loader_time: 0.04140 (0.03661)  --> STEP: 1475/15287 -- GLOBAL_STEP: 982050 | > loss_disc: 2.24877 (2.32008) | > loss_disc_real_0: 0.10132 (0.12461) | > loss_disc_real_1: 0.21198 (0.21139) | > loss_disc_real_2: 0.22488 (0.21560) | > loss_disc_real_3: 0.22294 (0.21929) | > loss_disc_real_4: 0.24767 (0.21462) | > loss_disc_real_5: 0.19032 (0.21348) | > loss_0: 2.24877 (2.32008) | > grad_norm_0: 22.56129 (15.57925) | > loss_gen: 2.65297 (2.55927) | > loss_kl: 2.64178 (2.66077) | > loss_feat: 9.09531 (8.66433) | > loss_mel: 18.42002 (17.76557) | > loss_duration: 1.74931 (1.70248) | > loss_1: 34.55940 (33.35240) | > grad_norm_1: 174.08943 (129.70357) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32260 (2.35323) | > loader_time: 0.03200 (0.03662)  --> STEP: 1500/15287 -- GLOBAL_STEP: 982075 | > loss_disc: 2.34584 (2.31978) | > loss_disc_real_0: 0.11271 (0.12445) | > loss_disc_real_1: 0.22406 (0.21126) | > loss_disc_real_2: 0.23603 (0.21549) | > loss_disc_real_3: 0.22618 (0.21920) | > loss_disc_real_4: 0.23526 (0.21445) | > loss_disc_real_5: 0.20502 (0.21345) | > loss_0: 2.34584 (2.31978) | > grad_norm_0: 5.52212 (15.61549) | > loss_gen: 2.65967 (2.55841) | > loss_kl: 2.76558 (2.66102) | > loss_feat: 8.61314 (8.66481) | > loss_mel: 17.65946 (17.76452) | > loss_duration: 1.71563 (1.70243) | > loss_1: 33.41348 (33.35117) | > grad_norm_1: 89.83318 (130.29807) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 5.09290 (2.36172) | > loader_time: 0.04100 (0.03662)  --> STEP: 1525/15287 -- GLOBAL_STEP: 982100 | > loss_disc: 2.37312 (2.31973) | > loss_disc_real_0: 0.16235 (0.12457) | > loss_disc_real_1: 0.20387 (0.21124) | > loss_disc_real_2: 0.19865 (0.21544) | > loss_disc_real_3: 0.20410 (0.21917) | > loss_disc_real_4: 0.18513 (0.21445) | > loss_disc_real_5: 0.19283 (0.21343) | > loss_0: 2.37312 (2.31973) | > grad_norm_0: 14.14590 (15.59139) | > loss_gen: 2.29749 (2.55829) | > loss_kl: 2.69284 (2.66177) | > loss_feat: 8.06504 (8.66578) | > loss_mel: 17.34786 (17.76425) | > loss_duration: 1.72180 (1.70252) | > loss_1: 32.12503 (33.35258) | > grad_norm_1: 150.82089 (130.20317) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.05100 (2.37184) | > loader_time: 0.03200 (0.03662)  --> STEP: 1550/15287 -- GLOBAL_STEP: 982125 | > loss_disc: 2.39163 (2.31987) | > loss_disc_real_0: 0.15180 (0.12446) | > loss_disc_real_1: 0.26522 (0.21127) | > loss_disc_real_2: 0.22126 (0.21550) | > loss_disc_real_3: 0.21383 (0.21920) | > loss_disc_real_4: 0.21034 (0.21446) | > loss_disc_real_5: 0.21747 (0.21352) | > loss_0: 2.39163 (2.31987) | > grad_norm_0: 9.63120 (15.58278) | > loss_gen: 2.39784 (2.55837) | > loss_kl: 2.57560 (2.66169) | > loss_feat: 8.47661 (8.66566) | > loss_mel: 17.64231 (17.76332) | > loss_duration: 1.70196 (1.70245) | > loss_1: 32.79433 (33.35145) | > grad_norm_1: 134.12047 (130.39165) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.91100 (2.38285) | > loader_time: 0.03350 (0.03659)  --> STEP: 1575/15287 -- GLOBAL_STEP: 982150 | > loss_disc: 2.33909 (2.31982) | > loss_disc_real_0: 0.10931 (0.12430) | > loss_disc_real_1: 0.20746 (0.21118) | > loss_disc_real_2: 0.19968 (0.21547) | > loss_disc_real_3: 0.19137 (0.21910) | > loss_disc_real_4: 0.21038 (0.21449) | > loss_disc_real_5: 0.19148 (0.21355) | > loss_0: 2.33909 (2.31982) | > grad_norm_0: 14.56229 (15.62167) | > loss_gen: 2.53464 (2.55816) | > loss_kl: 2.73821 (2.66171) | > loss_feat: 8.33988 (8.66544) | > loss_mel: 17.97968 (17.76219) | > loss_duration: 1.68655 (1.70233) | > loss_1: 33.27895 (33.34980) | > grad_norm_1: 193.63519 (130.86324) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 4.07760 (2.39048) | > loader_time: 0.03940 (0.03660)  --> STEP: 1600/15287 -- GLOBAL_STEP: 982175 | > loss_disc: 2.30445 (2.31961) | > loss_disc_real_0: 0.09333 (0.12430) | > loss_disc_real_1: 0.21761 (0.21127) | > loss_disc_real_2: 0.22028 (0.21553) | > loss_disc_real_3: 0.23215 (0.21919) | > loss_disc_real_4: 0.23819 (0.21454) | > loss_disc_real_5: 0.24283 (0.21359) | > loss_0: 2.30445 (2.31961) | > grad_norm_0: 13.97924 (15.65024) | > loss_gen: 2.46274 (2.55849) | > loss_kl: 2.57894 (2.66187) | > loss_feat: 8.58788 (8.66453) | > loss_mel: 17.75963 (17.76203) | > loss_duration: 1.70517 (1.70234) | > loss_1: 33.09436 (33.34921) | > grad_norm_1: 190.40300 (131.20287) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.11500 (2.39784) | > loader_time: 0.03170 (0.03658)  --> STEP: 1625/15287 -- GLOBAL_STEP: 982200 | > loss_disc: 2.26880 (2.31921) | > loss_disc_real_0: 0.13097 (0.12418) | > loss_disc_real_1: 0.22377 (0.21141) | > loss_disc_real_2: 0.23272 (0.21555) | > loss_disc_real_3: 0.22248 (0.21917) | > loss_disc_real_4: 0.22312 (0.21463) | > loss_disc_real_5: 0.22039 (0.21353) | > loss_0: 2.26880 (2.31921) | > grad_norm_0: 5.97906 (15.70099) | > loss_gen: 2.43373 (2.55882) | > loss_kl: 2.59522 (2.66195) | > loss_feat: 9.03461 (8.66634) | > loss_mel: 17.69344 (17.76180) | > loss_duration: 1.71164 (1.70230) | > loss_1: 33.46864 (33.35117) | > grad_norm_1: 101.73730 (131.68015) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.89050 (2.40510) | > loader_time: 0.03290 (0.03655)  --> STEP: 1650/15287 -- GLOBAL_STEP: 982225 | > loss_disc: 2.25011 (2.31874) | > loss_disc_real_0: 0.07113 (0.12402) | > loss_disc_real_1: 0.19576 (0.21126) | > loss_disc_real_2: 0.21257 (0.21542) | > loss_disc_real_3: 0.19969 (0.21911) | > loss_disc_real_4: 0.18796 (0.21460) | > loss_disc_real_5: 0.19575 (0.21347) | > loss_0: 2.25011 (2.31874) | > grad_norm_0: 20.45390 (15.78211) | > loss_gen: 2.34215 (2.55803) | > loss_kl: 2.55113 (2.66112) | > loss_feat: 8.45659 (8.66602) | > loss_mel: 17.75228 (17.75950) | > loss_duration: 1.72067 (1.70221) | > loss_1: 32.82282 (33.34685) | > grad_norm_1: 195.75076 (132.09534) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.93240 (2.41174) | > loader_time: 0.03140 (0.03652)  --> STEP: 1675/15287 -- GLOBAL_STEP: 982250 | > loss_disc: 2.30011 (2.31831) | > loss_disc_real_0: 0.12619 (0.12386) | > loss_disc_real_1: 0.22336 (0.21120) | > loss_disc_real_2: 0.20333 (0.21533) | > loss_disc_real_3: 0.19033 (0.21900) | > loss_disc_real_4: 0.23048 (0.21457) | > loss_disc_real_5: 0.20764 (0.21352) | > loss_0: 2.30011 (2.31831) | > grad_norm_0: 17.99056 (15.81082) | > loss_gen: 2.66448 (2.55838) | > loss_kl: 2.75116 (2.66122) | > loss_feat: 8.93092 (8.66823) | > loss_mel: 17.93549 (17.75862) | > loss_duration: 1.68476 (1.70233) | > loss_1: 33.96681 (33.34875) | > grad_norm_1: 158.12613 (132.44911) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42410 (2.41759) | > loader_time: 0.03720 (0.03650)  --> STEP: 1700/15287 -- GLOBAL_STEP: 982275 | > loss_disc: 2.38172 (2.31805) | > loss_disc_real_0: 0.21434 (0.12391) | > loss_disc_real_1: 0.19373 (0.21114) | > loss_disc_real_2: 0.31480 (0.21542) | > loss_disc_real_3: 0.25230 (0.21899) | > loss_disc_real_4: 0.27041 (0.21460) | > loss_disc_real_5: 0.22453 (0.21351) | > loss_0: 2.38172 (2.31805) | > grad_norm_0: 34.52244 (15.84756) | > loss_gen: 2.90321 (2.55937) | > loss_kl: 2.82449 (2.66151) | > loss_feat: 8.90202 (8.67035) | > loss_mel: 17.76535 (17.75834) | > loss_duration: 1.69785 (1.70236) | > loss_1: 34.09291 (33.35191) | > grad_norm_1: 160.05510 (132.63591) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.78160 (2.42683) | > loader_time: 0.03710 (0.03649)  --> STEP: 1725/15287 -- GLOBAL_STEP: 982300 | > loss_disc: 2.36423 (2.31864) | > loss_disc_real_0: 0.17117 (0.12389) | > loss_disc_real_1: 0.20992 (0.21119) | > loss_disc_real_2: 0.22133 (0.21553) | > loss_disc_real_3: 0.19374 (0.21914) | > loss_disc_real_4: 0.24370 (0.21468) | > loss_disc_real_5: 0.21741 (0.21358) | > loss_0: 2.36423 (2.31864) | > grad_norm_0: 15.84501 (15.85264) | > loss_gen: 2.47747 (2.55911) | > loss_kl: 2.68820 (2.66210) | > loss_feat: 8.21540 (8.66826) | > loss_mel: 17.59008 (17.75793) | > loss_duration: 1.71400 (1.70247) | > loss_1: 32.68515 (33.34983) | > grad_norm_1: 77.13000 (132.51669) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42970 (2.42734) | > loader_time: 0.03590 (0.03651)  --> STEP: 1750/15287 -- GLOBAL_STEP: 982325 | > loss_disc: 2.28726 (2.31863) | > loss_disc_real_0: 0.15774 (0.12387) | > loss_disc_real_1: 0.19539 (0.21125) | > loss_disc_real_2: 0.21452 (0.21549) | > loss_disc_real_3: 0.22620 (0.21910) | > loss_disc_real_4: 0.23246 (0.21473) | > loss_disc_real_5: 0.17691 (0.21352) | > loss_0: 2.28726 (2.31863) | > grad_norm_0: 18.65491 (15.82154) | > loss_gen: 2.65026 (2.55916) | > loss_kl: 2.68368 (2.66237) | > loss_feat: 8.73582 (8.66811) | > loss_mel: 18.10140 (17.76061) | > loss_duration: 1.69657 (1.70252) | > loss_1: 33.86774 (33.35274) | > grad_norm_1: 218.33429 (132.31735) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72600 (2.42820) | > loader_time: 0.03680 (0.03650)  --> STEP: 1775/15287 -- GLOBAL_STEP: 982350 | > loss_disc: 2.25807 (2.31878) | > loss_disc_real_0: 0.08645 (0.12382) | > loss_disc_real_1: 0.21240 (0.21129) | > loss_disc_real_2: 0.19988 (0.21551) | > loss_disc_real_3: 0.19587 (0.21914) | > loss_disc_real_4: 0.19882 (0.21475) | > loss_disc_real_5: 0.21022 (0.21360) | > loss_0: 2.25807 (2.31878) | > grad_norm_0: 19.54261 (15.87549) | > loss_gen: 2.63954 (2.55934) | > loss_kl: 2.66493 (2.66206) | > loss_feat: 8.59075 (8.66744) | > loss_mel: 18.10129 (17.75988) | > loss_duration: 1.70429 (1.70263) | > loss_1: 33.70080 (33.35131) | > grad_norm_1: 227.00699 (132.43622) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.73190 (2.43198) | > loader_time: 0.03670 (0.03648)  --> STEP: 1800/15287 -- GLOBAL_STEP: 982375 | > loss_disc: 2.19873 (2.31866) | > loss_disc_real_0: 0.09905 (0.12379) | > loss_disc_real_1: 0.19632 (0.21132) | > loss_disc_real_2: 0.19776 (0.21550) | > loss_disc_real_3: 0.19107 (0.21913) | > loss_disc_real_4: 0.22013 (0.21473) | > loss_disc_real_5: 0.21475 (0.21360) | > loss_0: 2.19873 (2.31866) | > grad_norm_0: 8.26232 (15.91992) | > loss_gen: 2.56261 (2.55959) | > loss_kl: 2.62540 (2.66136) | > loss_feat: 8.50748 (8.66681) | > loss_mel: 17.54761 (17.76074) | > loss_duration: 1.71360 (1.70271) | > loss_1: 32.95671 (33.35120) | > grad_norm_1: 134.32812 (132.64404) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37860 (2.43565) | > loader_time: 0.03810 (0.03646)  --> STEP: 1825/15287 -- GLOBAL_STEP: 982400 | > loss_disc: 2.32790 (2.31909) | > loss_disc_real_0: 0.10249 (0.12378) | > loss_disc_real_1: 0.22023 (0.21140) | > loss_disc_real_2: 0.24563 (0.21552) | > loss_disc_real_3: 0.23137 (0.21918) | > loss_disc_real_4: 0.24350 (0.21468) | > loss_disc_real_5: 0.22003 (0.21361) | > loss_0: 2.32790 (2.31909) | > grad_norm_0: 20.04982 (15.99903) | > loss_gen: 2.59139 (2.55927) | > loss_kl: 2.67622 (2.66081) | > loss_feat: 8.76431 (8.66734) | > loss_mel: 17.85204 (17.76149) | > loss_duration: 1.71903 (1.70282) | > loss_1: 33.60300 (33.35172) | > grad_norm_1: 182.91505 (132.79674) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72170 (2.43767) | > loader_time: 0.03320 (0.03644)  --> STEP: 1850/15287 -- GLOBAL_STEP: 982425 | > loss_disc: 2.33989 (2.31892) | > loss_disc_real_0: 0.15261 (0.12378) | > loss_disc_real_1: 0.23805 (0.21133) | > loss_disc_real_2: 0.23851 (0.21555) | > loss_disc_real_3: 0.21236 (0.21913) | > loss_disc_real_4: 0.22601 (0.21463) | > loss_disc_real_5: 0.22970 (0.21360) | > loss_0: 2.33989 (2.31892) | > grad_norm_0: 14.25942 (15.99994) | > loss_gen: 2.62460 (2.55973) | > loss_kl: 2.49305 (2.66079) | > loss_feat: 8.33291 (8.66849) | > loss_mel: 17.42484 (17.76189) | > loss_duration: 1.74592 (1.70292) | > loss_1: 32.62133 (33.35382) | > grad_norm_1: 140.08305 (132.82066) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43910 (2.43652) | > loader_time: 0.03780 (0.03646)  --> STEP: 1875/15287 -- GLOBAL_STEP: 982450 | > loss_disc: 2.37306 (2.31873) | > loss_disc_real_0: 0.12032 (0.12372) | > loss_disc_real_1: 0.22358 (0.21131) | > loss_disc_real_2: 0.19666 (0.21554) | > loss_disc_real_3: 0.22302 (0.21913) | > loss_disc_real_4: 0.23138 (0.21461) | > loss_disc_real_5: 0.23387 (0.21364) | > loss_0: 2.37306 (2.31873) | > grad_norm_0: 24.30519 (16.01026) | > loss_gen: 2.54842 (2.55991) | > loss_kl: 2.69797 (2.66112) | > loss_feat: 8.49805 (8.66728) | > loss_mel: 17.99435 (17.75928) | > loss_duration: 1.67890 (1.70291) | > loss_1: 33.41770 (33.35051) | > grad_norm_1: 196.45914 (133.00912) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38340 (2.43834) | > loader_time: 0.03510 (0.03647)  --> STEP: 1900/15287 -- GLOBAL_STEP: 982475 | > loss_disc: 2.44193 (2.31862) | > loss_disc_real_0: 0.19097 (0.12378) | > loss_disc_real_1: 0.20874 (0.21129) | > loss_disc_real_2: 0.21312 (0.21552) | > loss_disc_real_3: 0.21690 (0.21911) | > loss_disc_real_4: 0.21780 (0.21461) | > loss_disc_real_5: 0.20460 (0.21360) | > loss_0: 2.44193 (2.31862) | > grad_norm_0: 23.44410 (16.02036) | > loss_gen: 2.53995 (2.56017) | > loss_kl: 2.48899 (2.66081) | > loss_feat: 8.37735 (8.66775) | > loss_mel: 17.32420 (17.75913) | > loss_duration: 1.71350 (1.70294) | > loss_1: 32.44399 (33.35081) | > grad_norm_1: 43.49895 (132.91463) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.94670 (2.43894) | > loader_time: 0.03110 (0.03643)  --> STEP: 1925/15287 -- GLOBAL_STEP: 982500 | > loss_disc: 2.26590 (2.31892) | > loss_disc_real_0: 0.12801 (0.12390) | > loss_disc_real_1: 0.21161 (0.21140) | > loss_disc_real_2: 0.18582 (0.21556) | > loss_disc_real_3: 0.18316 (0.21916) | > loss_disc_real_4: 0.18779 (0.21463) | > loss_disc_real_5: 0.28156 (0.21371) | > loss_0: 2.26590 (2.31892) | > grad_norm_0: 23.80833 (16.00319) | > loss_gen: 2.36116 (2.56040) | > loss_kl: 2.71448 (2.66103) | > loss_feat: 9.25778 (8.66839) | > loss_mel: 17.96292 (17.76009) | > loss_duration: 1.70572 (1.70305) | > loss_1: 34.00207 (33.35295) | > grad_norm_1: 137.31697 (132.70395) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20050 (2.44063) | > loader_time: 0.03180 (0.03639)  --> STEP: 1950/15287 -- GLOBAL_STEP: 982525 | > loss_disc: 2.27703 (2.31899) | > loss_disc_real_0: 0.10731 (0.12385) | > loss_disc_real_1: 0.22682 (0.21140) | > loss_disc_real_2: 0.20950 (0.21554) | > loss_disc_real_3: 0.20785 (0.21918) | > loss_disc_real_4: 0.18515 (0.21466) | > loss_disc_real_5: 0.21575 (0.21373) | > loss_0: 2.27703 (2.31899) | > grad_norm_0: 7.72616 (16.02392) | > loss_gen: 2.84022 (2.56040) | > loss_kl: 2.63059 (2.66079) | > loss_feat: 8.61591 (8.66762) | > loss_mel: 17.83178 (17.75980) | > loss_duration: 1.70996 (1.70321) | > loss_1: 33.62846 (33.35183) | > grad_norm_1: 126.92565 (132.78595) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23850 (2.44177) | > loader_time: 0.03510 (0.03639)  --> STEP: 1975/15287 -- GLOBAL_STEP: 982550 | > loss_disc: 2.36319 (2.31882) | > loss_disc_real_0: 0.11858 (0.12376) | > loss_disc_real_1: 0.20811 (0.21140) | > loss_disc_real_2: 0.21682 (0.21555) | > loss_disc_real_3: 0.22251 (0.21916) | > loss_disc_real_4: 0.19156 (0.21465) | > loss_disc_real_5: 0.22816 (0.21370) | > loss_0: 2.36319 (2.31882) | > grad_norm_0: 8.65424 (16.01423) | > loss_gen: 2.53610 (2.56018) | > loss_kl: 2.78323 (2.66070) | > loss_feat: 8.24940 (8.66746) | > loss_mel: 17.58797 (17.76043) | > loss_duration: 1.69395 (1.70328) | > loss_1: 32.85066 (33.35207) | > grad_norm_1: 135.86217 (132.82309) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08010 (2.44586) | > loader_time: 0.04210 (0.03642)  --> STEP: 2000/15287 -- GLOBAL_STEP: 982575 | > loss_disc: 2.36231 (2.31859) | > loss_disc_real_0: 0.07022 (0.12369) | > loss_disc_real_1: 0.20685 (0.21136) | > loss_disc_real_2: 0.22121 (0.21555) | > loss_disc_real_3: 0.21593 (0.21918) | > loss_disc_real_4: 0.19594 (0.21466) | > loss_disc_real_5: 0.23994 (0.21375) | > loss_0: 2.36231 (2.31859) | > grad_norm_0: 14.03437 (16.01491) | > loss_gen: 2.54392 (2.56058) | > loss_kl: 2.62817 (2.66087) | > loss_feat: 8.53744 (8.66882) | > loss_mel: 17.80531 (17.76134) | > loss_duration: 1.71054 (1.70336) | > loss_1: 33.22537 (33.35498) | > grad_norm_1: 142.93471 (133.04425) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99700 (2.44641) | > loader_time: 0.04340 (0.03644)  --> STEP: 2025/15287 -- GLOBAL_STEP: 982600 | > loss_disc: 2.27282 (2.31818) | > loss_disc_real_0: 0.09123 (0.12355) | > loss_disc_real_1: 0.20607 (0.21133) | > loss_disc_real_2: 0.23993 (0.21563) | > loss_disc_real_3: 0.18134 (0.21912) | > loss_disc_real_4: 0.23983 (0.21470) | > loss_disc_real_5: 0.18499 (0.21362) | > loss_0: 2.27282 (2.31818) | > grad_norm_0: 32.71233 (16.06581) | > loss_gen: 2.51346 (2.56051) | > loss_kl: 2.61697 (2.66073) | > loss_feat: 8.96710 (8.66838) | > loss_mel: 17.86797 (17.76057) | > loss_duration: 1.70063 (1.70330) | > loss_1: 33.66613 (33.35350) | > grad_norm_1: 204.69748 (133.25729) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89960 (2.44698) | > loader_time: 0.04140 (0.03646)  --> STEP: 2050/15287 -- GLOBAL_STEP: 982625 | > loss_disc: 2.29162 (2.31816) | > loss_disc_real_0: 0.10976 (0.12350) | > loss_disc_real_1: 0.23918 (0.21132) | > loss_disc_real_2: 0.20648 (0.21559) | > loss_disc_real_3: 0.22437 (0.21907) | > loss_disc_real_4: 0.23718 (0.21471) | > loss_disc_real_5: 0.22840 (0.21363) | > loss_0: 2.29162 (2.31816) | > grad_norm_0: 8.39689 (16.12655) | > loss_gen: 2.65042 (2.56013) | > loss_kl: 2.66826 (2.66086) | > loss_feat: 8.75767 (8.66769) | > loss_mel: 18.07334 (17.75877) | > loss_duration: 1.73218 (1.70338) | > loss_1: 33.88187 (33.35081) | > grad_norm_1: 189.11253 (133.61400) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.84060 (2.44589) | > loader_time: 0.04130 (0.03648)  --> STEP: 2075/15287 -- GLOBAL_STEP: 982650 | > loss_disc: 2.37508 (2.31807) | > loss_disc_real_0: 0.09243 (0.12350) | > loss_disc_real_1: 0.19798 (0.21134) | > loss_disc_real_2: 0.21426 (0.21563) | > loss_disc_real_3: 0.18911 (0.21907) | > loss_disc_real_4: 0.19556 (0.21465) | > loss_disc_real_5: 0.17020 (0.21362) | > loss_0: 2.37508 (2.31807) | > grad_norm_0: 11.85695 (16.14982) | > loss_gen: 2.34855 (2.56024) | > loss_kl: 2.78607 (2.66121) | > loss_feat: 8.48470 (8.67009) | > loss_mel: 17.76108 (17.76001) | > loss_duration: 1.72211 (1.70334) | > loss_1: 33.10250 (33.35488) | > grad_norm_1: 181.43076 (133.81673) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.69770 (2.44756) | > loader_time: 0.03200 (0.03649)  --> STEP: 2100/15287 -- GLOBAL_STEP: 982675 | > loss_disc: 2.27181 (2.31824) | > loss_disc_real_0: 0.14685 (0.12353) | > loss_disc_real_1: 0.16729 (0.21130) | > loss_disc_real_2: 0.17381 (0.21559) | > loss_disc_real_3: 0.20213 (0.21907) | > loss_disc_real_4: 0.19632 (0.21464) | > loss_disc_real_5: 0.26025 (0.21367) | > loss_0: 2.27181 (2.31824) | > grad_norm_0: 18.62877 (16.11296) | > loss_gen: 2.58213 (2.55998) | > loss_kl: 2.66400 (2.66080) | > loss_feat: 8.69629 (8.66874) | > loss_mel: 17.92764 (17.75869) | > loss_duration: 1.66090 (1.70337) | > loss_1: 33.53096 (33.35157) | > grad_norm_1: 119.29332 (133.75058) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94780 (2.44735) | > loader_time: 0.04790 (0.03652)  --> STEP: 2125/15287 -- GLOBAL_STEP: 982700 | > loss_disc: 2.35475 (2.31885) | > loss_disc_real_0: 0.15669 (0.12365) | > loss_disc_real_1: 0.24287 (0.21137) | > loss_disc_real_2: 0.21498 (0.21565) | > loss_disc_real_3: 0.22462 (0.21911) | > loss_disc_real_4: 0.23072 (0.21467) | > loss_disc_real_5: 0.19528 (0.21365) | > loss_0: 2.35475 (2.31885) | > grad_norm_0: 10.45376 (16.11558) | > loss_gen: 2.71764 (2.55985) | > loss_kl: 2.57225 (2.66027) | > loss_feat: 7.57566 (8.66678) | > loss_mel: 17.30471 (17.76075) | > loss_duration: 1.69128 (1.70341) | > loss_1: 31.86155 (33.35105) | > grad_norm_1: 50.17728 (133.76418) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88950 (2.44185) | > loader_time: 0.04150 (0.03658)  --> STEP: 2150/15287 -- GLOBAL_STEP: 982725 | > loss_disc: 2.40371 (2.31892) | > loss_disc_real_0: 0.09820 (0.12359) | > loss_disc_real_1: 0.24213 (0.21136) | > loss_disc_real_2: 0.25447 (0.21567) | > loss_disc_real_3: 0.22949 (0.21914) | > loss_disc_real_4: 0.25128 (0.21468) | > loss_disc_real_5: 0.19721 (0.21366) | > loss_0: 2.40371 (2.31892) | > grad_norm_0: 13.03296 (16.14418) | > loss_gen: 2.62963 (2.55999) | > loss_kl: 2.50329 (2.66001) | > loss_feat: 8.84434 (8.66799) | > loss_mel: 17.97531 (17.76120) | > loss_duration: 1.71446 (1.70340) | > loss_1: 33.66703 (33.35258) | > grad_norm_1: 162.87383 (133.93488) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86280 (2.43585) | > loader_time: 0.04310 (0.03659)  --> STEP: 2175/15287 -- GLOBAL_STEP: 982750 | > loss_disc: 2.34631 (2.31879) | > loss_disc_real_0: 0.10252 (0.12359) | > loss_disc_real_1: 0.19002 (0.21132) | > loss_disc_real_2: 0.19303 (0.21558) | > loss_disc_real_3: 0.22853 (0.21917) | > loss_disc_real_4: 0.19931 (0.21462) | > loss_disc_real_5: 0.25026 (0.21367) | > loss_0: 2.34631 (2.31879) | > grad_norm_0: 19.32874 (16.16965) | > loss_gen: 2.51836 (2.55994) | > loss_kl: 2.77981 (2.65932) | > loss_feat: 8.92775 (8.66858) | > loss_mel: 17.76090 (17.76141) | > loss_duration: 1.67435 (1.70345) | > loss_1: 33.66117 (33.35269) | > grad_norm_1: 199.54781 (134.18236) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17540 (2.43016) | > loader_time: 0.03410 (0.03661)  --> STEP: 2200/15287 -- GLOBAL_STEP: 982775 | > loss_disc: 2.28204 (2.31862) | > loss_disc_real_0: 0.13030 (0.12347) | > loss_disc_real_1: 0.26260 (0.21128) | > loss_disc_real_2: 0.18467 (0.21556) | > loss_disc_real_3: 0.21229 (0.21916) | > loss_disc_real_4: 0.24535 (0.21458) | > loss_disc_real_5: 0.19736 (0.21360) | > loss_0: 2.28204 (2.31862) | > grad_norm_0: 8.11338 (16.18659) | > loss_gen: 2.75140 (2.55993) | > loss_kl: 2.57731 (2.65910) | > loss_feat: 9.33322 (8.66857) | > loss_mel: 17.24356 (17.76037) | > loss_duration: 1.68939 (1.70354) | > loss_1: 33.59488 (33.35150) | > grad_norm_1: 149.99541 (134.48820) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94700 (2.42467) | > loader_time: 0.04090 (0.03663)  --> STEP: 2225/15287 -- GLOBAL_STEP: 982800 | > loss_disc: 2.30613 (2.31863) | > loss_disc_real_0: 0.16332 (0.12351) | > loss_disc_real_1: 0.19861 (0.21119) | > loss_disc_real_2: 0.20759 (0.21552) | > loss_disc_real_3: 0.24071 (0.21911) | > loss_disc_real_4: 0.21502 (0.21454) | > loss_disc_real_5: 0.22656 (0.21359) | > loss_0: 2.30613 (2.31863) | > grad_norm_0: 16.53535 (16.20433) | > loss_gen: 2.62879 (2.55951) | > loss_kl: 2.48330 (2.65908) | > loss_feat: 8.69543 (8.66880) | > loss_mel: 17.45770 (17.75891) | > loss_duration: 1.71444 (1.70353) | > loss_1: 32.97966 (33.34980) | > grad_norm_1: 235.46381 (134.55746) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88640 (2.41966) | > loader_time: 0.03390 (0.03664)  --> STEP: 2250/15287 -- GLOBAL_STEP: 982825 | > loss_disc: 2.34877 (2.31878) | > loss_disc_real_0: 0.16123 (0.12353) | > loss_disc_real_1: 0.15784 (0.21121) | > loss_disc_real_2: 0.21463 (0.21551) | > loss_disc_real_3: 0.24020 (0.21912) | > loss_disc_real_4: 0.22039 (0.21453) | > loss_disc_real_5: 0.19490 (0.21355) | > loss_0: 2.34877 (2.31878) | > grad_norm_0: 18.67675 (16.17988) | > loss_gen: 2.54130 (2.55941) | > loss_kl: 2.77928 (2.65936) | > loss_feat: 8.36883 (8.66872) | > loss_mel: 17.58720 (17.75894) | > loss_duration: 1.72758 (1.70348) | > loss_1: 33.00420 (33.34987) | > grad_norm_1: 114.00327 (134.44148) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99740 (2.41445) | > loader_time: 0.03920 (0.03664)  --> STEP: 2275/15287 -- GLOBAL_STEP: 982850 | > loss_disc: 2.33301 (2.31892) | > loss_disc_real_0: 0.15409 (0.12355) | > loss_disc_real_1: 0.21502 (0.21119) | > loss_disc_real_2: 0.21365 (0.21551) | > loss_disc_real_3: 0.21904 (0.21911) | > loss_disc_real_4: 0.20534 (0.21453) | > loss_disc_real_5: 0.19506 (0.21359) | > loss_0: 2.33301 (2.31892) | > grad_norm_0: 22.69255 (16.16307) | > loss_gen: 2.53666 (2.55927) | > loss_kl: 2.60991 (2.65957) | > loss_feat: 8.63450 (8.66952) | > loss_mel: 17.83995 (17.75948) | > loss_duration: 1.68681 (1.70351) | > loss_1: 33.30784 (33.35130) | > grad_norm_1: 194.33516 (134.30005) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95220 (2.40964) | > loader_time: 0.03410 (0.03665)  --> STEP: 2300/15287 -- GLOBAL_STEP: 982875 | > loss_disc: 2.28093 (2.31920) | > loss_disc_real_0: 0.12427 (0.12348) | > loss_disc_real_1: 0.20904 (0.21125) | > loss_disc_real_2: 0.20035 (0.21549) | > loss_disc_real_3: 0.22032 (0.21912) | > loss_disc_real_4: 0.20251 (0.21448) | > loss_disc_real_5: 0.23366 (0.21362) | > loss_0: 2.28093 (2.31920) | > grad_norm_0: 35.21758 (16.17517) | > loss_gen: 2.46291 (2.55879) | > loss_kl: 2.77314 (2.65969) | > loss_feat: 8.05499 (8.66830) | > loss_mel: 17.75247 (17.76027) | > loss_duration: 1.69019 (1.70342) | > loss_1: 32.73370 (33.35043) | > grad_norm_1: 179.41891 (134.37999) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05400 (2.40476) | > loader_time: 0.03230 (0.03663)  --> STEP: 2325/15287 -- GLOBAL_STEP: 982900 | > loss_disc: 2.30668 (2.31893) | > loss_disc_real_0: 0.10819 (0.12339) | > loss_disc_real_1: 0.20460 (0.21119) | > loss_disc_real_2: 0.20739 (0.21545) | > loss_disc_real_3: 0.21843 (0.21910) | > loss_disc_real_4: 0.20629 (0.21450) | > loss_disc_real_5: 0.20209 (0.21359) | > loss_0: 2.30668 (2.31893) | > grad_norm_0: 17.98353 (16.21530) | > loss_gen: 2.54230 (2.55877) | > loss_kl: 2.68693 (2.65945) | > loss_feat: 9.00199 (8.66758) | > loss_mel: 17.70192 (17.75968) | > loss_duration: 1.67679 (1.70338) | > loss_1: 33.60994 (33.34878) | > grad_norm_1: 185.46400 (134.65634) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28910 (2.40129) | > loader_time: 0.03820 (0.03663)  --> STEP: 2350/15287 -- GLOBAL_STEP: 982925 | > loss_disc: 2.25439 (2.31891) | > loss_disc_real_0: 0.07308 (0.12361) | > loss_disc_real_1: 0.16112 (0.21126) | > loss_disc_real_2: 0.18954 (0.21540) | > loss_disc_real_3: 0.18651 (0.21903) | > loss_disc_real_4: 0.17302 (0.21450) | > loss_disc_real_5: 0.19431 (0.21362) | > loss_0: 2.25439 (2.31891) | > grad_norm_0: 7.68491 (16.26500) | > loss_gen: 2.82968 (2.55918) | > loss_kl: 2.68654 (2.65923) | > loss_feat: 9.50329 (8.66753) | > loss_mel: 18.11086 (17.75928) | > loss_duration: 1.71643 (1.70334) | > loss_1: 34.84681 (33.34851) | > grad_norm_1: 97.18406 (134.59700) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05310 (2.39675) | > loader_time: 0.03490 (0.03665)  --> STEP: 2375/15287 -- GLOBAL_STEP: 982950 | > loss_disc: 2.32711 (2.31871) | > loss_disc_real_0: 0.10591 (0.12371) | > loss_disc_real_1: 0.17654 (0.21127) | > loss_disc_real_2: 0.21563 (0.21545) | > loss_disc_real_3: 0.19488 (0.21902) | > loss_disc_real_4: 0.20289 (0.21451) | > loss_disc_real_5: 0.21243 (0.21361) | > loss_0: 2.32711 (2.31871) | > grad_norm_0: 11.20033 (16.24257) | > loss_gen: 2.69448 (2.55960) | > loss_kl: 2.89564 (2.65892) | > loss_feat: 8.82919 (8.66854) | > loss_mel: 17.65110 (17.75817) | > loss_duration: 1.72663 (1.70331) | > loss_1: 33.79704 (33.34848) | > grad_norm_1: 150.12502 (134.47752) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.78110 (2.39555) | > loader_time: 0.04350 (0.03667)  --> STEP: 2400/15287 -- GLOBAL_STEP: 982975 | > loss_disc: 2.25717 (2.31890) | > loss_disc_real_0: 0.14587 (0.12370) | > loss_disc_real_1: 0.23652 (0.21131) | > loss_disc_real_2: 0.21961 (0.21545) | > loss_disc_real_3: 0.22276 (0.21901) | > loss_disc_real_4: 0.21649 (0.21451) | > loss_disc_real_5: 0.23149 (0.21359) | > loss_0: 2.25717 (2.31890) | > grad_norm_0: 15.82047 (16.20140) | > loss_gen: 2.73941 (2.55929) | > loss_kl: 2.66068 (2.65915) | > loss_feat: 8.96655 (8.66983) | > loss_mel: 18.10780 (17.75893) | > loss_duration: 1.68580 (1.70336) | > loss_1: 34.16024 (33.35049) | > grad_norm_1: 204.96751 (134.23650) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.84170 (2.39130) | > loader_time: 0.03420 (0.03671)  --> STEP: 2425/15287 -- GLOBAL_STEP: 983000 | > loss_disc: 2.33191 (2.31904) | > loss_disc_real_0: 0.12951 (0.12362) | > loss_disc_real_1: 0.20987 (0.21130) | > loss_disc_real_2: 0.21223 (0.21542) | > loss_disc_real_3: 0.23376 (0.21907) | > loss_disc_real_4: 0.25769 (0.21455) | > loss_disc_real_5: 0.24910 (0.21366) | > loss_0: 2.33191 (2.31904) | > grad_norm_0: 25.76526 (16.18659) | > loss_gen: 2.65265 (2.55938) | > loss_kl: 2.64165 (2.65915) | > loss_feat: 8.64142 (8.66985) | > loss_mel: 17.34166 (17.75893) | > loss_duration: 1.72714 (1.70333) | > loss_1: 33.00452 (33.35058) | > grad_norm_1: 229.44925 (134.35471) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10050 (2.38694) | > loader_time: 0.03730 (0.03675)  --> STEP: 2450/15287 -- GLOBAL_STEP: 983025 | > loss_disc: 2.19676 (2.31896) | > loss_disc_real_0: 0.09250 (0.12358) | > loss_disc_real_1: 0.18632 (0.21127) | > loss_disc_real_2: 0.17946 (0.21540) | > loss_disc_real_3: 0.18838 (0.21915) | > loss_disc_real_4: 0.20805 (0.21455) | > loss_disc_real_5: 0.20435 (0.21366) | > loss_0: 2.19676 (2.31896) | > grad_norm_0: 16.77573 (16.25862) | > loss_gen: 2.67304 (2.55917) | > loss_kl: 2.63759 (2.65875) | > loss_feat: 9.35320 (8.66901) | > loss_mel: 17.97739 (17.75924) | > loss_duration: 1.72654 (1.70334) | > loss_1: 34.36776 (33.34946) | > grad_norm_1: 207.50327 (134.77760) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85690 (2.38271) | > loader_time: 0.04070 (0.03678)  --> STEP: 2475/15287 -- GLOBAL_STEP: 983050 | > loss_disc: 2.27630 (2.31898) | > loss_disc_real_0: 0.10144 (0.12349) | > loss_disc_real_1: 0.19118 (0.21126) | > loss_disc_real_2: 0.22280 (0.21538) | > loss_disc_real_3: 0.22553 (0.21912) | > loss_disc_real_4: 0.23176 (0.21451) | > loss_disc_real_5: 0.21801 (0.21372) | > loss_0: 2.27630 (2.31898) | > grad_norm_0: 25.16629 (16.30303) | > loss_gen: 2.57962 (2.55903) | > loss_kl: 2.41518 (2.65814) | > loss_feat: 7.66512 (8.66969) | > loss_mel: 16.92552 (17.75897) | > loss_duration: 1.74892 (1.70333) | > loss_1: 31.33436 (33.34911) | > grad_norm_1: 185.55186 (135.00972) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.82020 (2.37885) | > loader_time: 0.03250 (0.03681)  --> STEP: 2500/15287 -- GLOBAL_STEP: 983075 | > loss_disc: 2.35421 (2.31872) | > loss_disc_real_0: 0.10889 (0.12339) | > loss_disc_real_1: 0.21790 (0.21128) | > loss_disc_real_2: 0.17835 (0.21534) | > loss_disc_real_3: 0.20867 (0.21909) | > loss_disc_real_4: 0.20180 (0.21453) | > loss_disc_real_5: 0.24354 (0.21373) | > loss_0: 2.35421 (2.31872) | > grad_norm_0: 18.31647 (16.28654) | > loss_gen: 2.50711 (2.55910) | > loss_kl: 2.55761 (2.65810) | > loss_feat: 8.26379 (8.66981) | > loss_mel: 17.13976 (17.75960) | > loss_duration: 1.69915 (1.70339) | > loss_1: 32.16742 (33.34993) | > grad_norm_1: 172.50517 (135.23949) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.63520 (2.37630) | > loader_time: 0.04340 (0.03683)  --> STEP: 2525/15287 -- GLOBAL_STEP: 983100 | > loss_disc: 2.33067 (2.31884) | > loss_disc_real_0: 0.12697 (0.12338) | > loss_disc_real_1: 0.22918 (0.21148) | > loss_disc_real_2: 0.22597 (0.21536) | > loss_disc_real_3: 0.22858 (0.21909) | > loss_disc_real_4: 0.22622 (0.21459) | > loss_disc_real_5: 0.23722 (0.21377) | > loss_0: 2.33067 (2.31884) | > grad_norm_0: 21.05363 (16.31799) | > loss_gen: 2.54881 (2.55943) | > loss_kl: 2.68484 (2.65851) | > loss_feat: 8.47454 (8.66967) | > loss_mel: 17.77634 (17.75965) | > loss_duration: 1.71494 (1.70335) | > loss_1: 33.19946 (33.35055) | > grad_norm_1: 186.34554 (135.39308) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95310 (2.37373) | > loader_time: 0.03950 (0.03690)  --> STEP: 2550/15287 -- GLOBAL_STEP: 983125 | > loss_disc: 2.32544 (2.31866) | > loss_disc_real_0: 0.11092 (0.12332) | > loss_disc_real_1: 0.20853 (0.21144) | > loss_disc_real_2: 0.20475 (0.21533) | > loss_disc_real_3: 0.21806 (0.21907) | > loss_disc_real_4: 0.22283 (0.21455) | > loss_disc_real_5: 0.22194 (0.21376) | > loss_0: 2.32544 (2.31866) | > grad_norm_0: 24.15371 (16.30979) | > loss_gen: 2.52036 (2.55914) | > loss_kl: 2.61149 (2.65845) | > loss_feat: 8.46062 (8.67069) | > loss_mel: 17.67559 (17.75997) | > loss_duration: 1.68944 (1.70335) | > loss_1: 32.95749 (33.35154) | > grad_norm_1: 161.54109 (135.48148) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94140 (2.36962) | > loader_time: 0.03660 (0.03693)  --> STEP: 2575/15287 -- GLOBAL_STEP: 983150 | > loss_disc: 2.28663 (2.31858) | > loss_disc_real_0: 0.10421 (0.12331) | > loss_disc_real_1: 0.17720 (0.21142) | > loss_disc_real_2: 0.17392 (0.21533) | > loss_disc_real_3: 0.20605 (0.21905) | > loss_disc_real_4: 0.19430 (0.21456) | > loss_disc_real_5: 0.23309 (0.21378) | > loss_0: 2.28663 (2.31858) | > grad_norm_0: 13.10549 (16.31384) | > loss_gen: 2.36571 (2.55915) | > loss_kl: 2.64488 (2.65837) | > loss_feat: 8.75216 (8.67104) | > loss_mel: 17.82265 (17.75923) | > loss_duration: 1.71415 (1.70339) | > loss_1: 33.29955 (33.35111) | > grad_norm_1: 141.37817 (135.57996) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.84470 (2.36576) | > loader_time: 0.04140 (0.03692)  --> STEP: 2600/15287 -- GLOBAL_STEP: 983175 | > loss_disc: 2.28768 (2.31850) | > loss_disc_real_0: 0.08678 (0.12324) | > loss_disc_real_1: 0.20280 (0.21140) | > loss_disc_real_2: 0.20418 (0.21531) | > loss_disc_real_3: 0.23883 (0.21905) | > loss_disc_real_4: 0.18845 (0.21450) | > loss_disc_real_5: 0.20356 (0.21377) | > loss_0: 2.28768 (2.31850) | > grad_norm_0: 25.97645 (16.31532) | > loss_gen: 2.35067 (2.55886) | > loss_kl: 2.71951 (2.65837) | > loss_feat: 9.51130 (8.67174) | > loss_mel: 18.34634 (17.75940) | > loss_duration: 1.73655 (1.70335) | > loss_1: 34.66438 (33.35165) | > grad_norm_1: 205.58301 (135.72667) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91560 (2.36227) | > loader_time: 0.03570 (0.03694)  --> STEP: 2625/15287 -- GLOBAL_STEP: 983200 | > loss_disc: 2.24403 (2.31850) | > loss_disc_real_0: 0.09830 (0.12321) | > loss_disc_real_1: 0.20217 (0.21137) | > loss_disc_real_2: 0.21312 (0.21533) | > loss_disc_real_3: 0.21452 (0.21908) | > loss_disc_real_4: 0.22241 (0.21452) | > loss_disc_real_5: 0.22217 (0.21380) | > loss_0: 2.24403 (2.31850) | > grad_norm_0: 20.34433 (16.33318) | > loss_gen: 2.60912 (2.55872) | > loss_kl: 2.58719 (2.65845) | > loss_feat: 8.36568 (8.67146) | > loss_mel: 17.54670 (17.75904) | > loss_duration: 1.71790 (1.70328) | > loss_1: 32.82659 (33.35089) | > grad_norm_1: 192.30544 (136.00893) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90150 (2.35894) | > loader_time: 0.04080 (0.03694)  --> STEP: 2650/15287 -- GLOBAL_STEP: 983225 | > loss_disc: 2.28325 (2.31837) | > loss_disc_real_0: 0.12571 (0.12313) | > loss_disc_real_1: 0.18249 (0.21135) | > loss_disc_real_2: 0.21384 (0.21535) | > loss_disc_real_3: 0.21922 (0.21907) | > loss_disc_real_4: 0.22544 (0.21452) | > loss_disc_real_5: 0.17503 (0.21372) | > loss_0: 2.28325 (2.31837) | > grad_norm_0: 13.37655 (16.30941) | > loss_gen: 2.67019 (2.55865) | > loss_kl: 2.71087 (2.65914) | > loss_feat: 8.69625 (8.67274) | > loss_mel: 17.34025 (17.75872) | > loss_duration: 1.67355 (1.70323) | > loss_1: 33.09111 (33.35241) | > grad_norm_1: 158.48619 (136.05591) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97360 (2.35522) | > loader_time: 0.03630 (0.03693)  --> STEP: 2675/15287 -- GLOBAL_STEP: 983250 | > loss_disc: 2.26044 (2.31865) | > loss_disc_real_0: 0.14114 (0.12317) | > loss_disc_real_1: 0.21035 (0.21133) | > loss_disc_real_2: 0.21318 (0.21533) | > loss_disc_real_3: 0.20684 (0.21909) | > loss_disc_real_4: 0.22330 (0.21451) | > loss_disc_real_5: 0.24643 (0.21378) | > loss_0: 2.26044 (2.31865) | > grad_norm_0: 22.36973 (16.33479) | > loss_gen: 2.62915 (2.55837) | > loss_kl: 2.65908 (2.65924) | > loss_feat: 8.90272 (8.67257) | > loss_mel: 17.55206 (17.75908) | > loss_duration: 1.71428 (1.70320) | > loss_1: 33.45729 (33.35239) | > grad_norm_1: 217.85229 (136.18655) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93780 (2.35167) | > loader_time: 0.03560 (0.03691)  --> STEP: 2700/15287 -- GLOBAL_STEP: 983275 | > loss_disc: 2.27920 (2.31821) | > loss_disc_real_0: 0.13340 (0.12308) | > loss_disc_real_1: 0.22435 (0.21128) | > loss_disc_real_2: 0.21563 (0.21529) | > loss_disc_real_3: 0.23626 (0.21903) | > loss_disc_real_4: 0.20820 (0.21446) | > loss_disc_real_5: 0.18083 (0.21372) | > loss_0: 2.27920 (2.31821) | > grad_norm_0: 12.02871 (16.36080) | > loss_gen: 2.76918 (2.55848) | > loss_kl: 2.61082 (2.65927) | > loss_feat: 8.85893 (8.67365) | > loss_mel: 17.63230 (17.75852) | > loss_duration: 1.72630 (1.70315) | > loss_1: 33.59752 (33.35302) | > grad_norm_1: 230.26979 (136.63820) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.66990 (2.34947) | > loader_time: 0.03800 (0.03691)  --> STEP: 2725/15287 -- GLOBAL_STEP: 983300 | > loss_disc: 2.32698 (2.31830) | > loss_disc_real_0: 0.12454 (0.12304) | > loss_disc_real_1: 0.18651 (0.21124) | > loss_disc_real_2: 0.19144 (0.21530) | > loss_disc_real_3: 0.17583 (0.21904) | > loss_disc_real_4: 0.16886 (0.21445) | > loss_disc_real_5: 0.19968 (0.21375) | > loss_0: 2.32698 (2.31830) | > grad_norm_0: 28.01134 (16.38745) | > loss_gen: 2.41040 (2.55816) | > loss_kl: 2.71452 (2.65919) | > loss_feat: 8.91435 (8.67430) | > loss_mel: 17.41394 (17.75847) | > loss_duration: 1.66767 (1.70313) | > loss_1: 33.12088 (33.35320) | > grad_norm_1: 240.15004 (136.90446) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91320 (2.34678) | > loader_time: 0.04090 (0.03695)  --> STEP: 2750/15287 -- GLOBAL_STEP: 983325 | > loss_disc: 2.37169 (2.31811) | > loss_disc_real_0: 0.10266 (0.12296) | > loss_disc_real_1: 0.20455 (0.21118) | > loss_disc_real_2: 0.21515 (0.21532) | > loss_disc_real_3: 0.20771 (0.21898) | > loss_disc_real_4: 0.18544 (0.21439) | > loss_disc_real_5: 0.23383 (0.21374) | > loss_0: 2.37169 (2.31811) | > grad_norm_0: 22.81407 (16.41532) | > loss_gen: 2.50137 (2.55828) | > loss_kl: 2.66373 (2.65949) | > loss_feat: 8.60954 (8.67469) | > loss_mel: 17.90241 (17.75925) | > loss_duration: 1.71685 (1.70315) | > loss_1: 33.39390 (33.35480) | > grad_norm_1: 235.09628 (137.22652) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00240 (2.34288) | > loader_time: 0.03980 (0.03699)  --> STEP: 2775/15287 -- GLOBAL_STEP: 983350 | > loss_disc: 2.37672 (2.31836) | > loss_disc_real_0: 0.11130 (0.12299) | > loss_disc_real_1: 0.27013 (0.21121) | > loss_disc_real_2: 0.24818 (0.21534) | > loss_disc_real_3: 0.19344 (0.21898) | > loss_disc_real_4: 0.22669 (0.21443) | > loss_disc_real_5: 0.21658 (0.21379) | > loss_0: 2.37672 (2.31836) | > grad_norm_0: 23.38525 (16.41985) | > loss_gen: 2.33257 (2.55794) | > loss_kl: 2.68082 (2.65931) | > loss_feat: 8.49893 (8.67387) | > loss_mel: 17.27041 (17.76019) | > loss_duration: 1.68645 (1.70312) | > loss_1: 32.46918 (33.35437) | > grad_norm_1: 169.84883 (137.31696) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04320 (2.34073) | > loader_time: 0.04260 (0.03700)  --> STEP: 2800/15287 -- GLOBAL_STEP: 983375 | > loss_disc: 2.38283 (2.31844) | > loss_disc_real_0: 0.16592 (0.12302) | > loss_disc_real_1: 0.20215 (0.21124) | > loss_disc_real_2: 0.18948 (0.21536) | > loss_disc_real_3: 0.22978 (0.21900) | > loss_disc_real_4: 0.25165 (0.21446) | > loss_disc_real_5: 0.22863 (0.21379) | > loss_0: 2.38283 (2.31844) | > grad_norm_0: 22.83688 (16.42401) | > loss_gen: 2.49805 (2.55796) | > loss_kl: 2.70000 (2.65946) | > loss_feat: 8.12714 (8.67362) | > loss_mel: 17.57960 (17.75928) | > loss_duration: 1.67656 (1.70313) | > loss_1: 32.58134 (33.35340) | > grad_norm_1: 150.73317 (137.38719) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02000 (2.33960) | > loader_time: 0.04110 (0.03702)  --> STEP: 2825/15287 -- GLOBAL_STEP: 983400 | > loss_disc: 2.35000 (2.31866) | > loss_disc_real_0: 0.14899 (0.12303) | > loss_disc_real_1: 0.18568 (0.21122) | > loss_disc_real_2: 0.18565 (0.21537) | > loss_disc_real_3: 0.18856 (0.21897) | > loss_disc_real_4: 0.23577 (0.21449) | > loss_disc_real_5: 0.20912 (0.21378) | > loss_0: 2.35000 (2.31866) | > grad_norm_0: 14.83724 (16.38831) | > loss_gen: 2.39898 (2.55782) | > loss_kl: 2.59333 (2.65941) | > loss_feat: 8.62619 (8.67336) | > loss_mel: 17.74834 (17.75980) | > loss_duration: 1.71433 (1.70317) | > loss_1: 33.08118 (33.35350) | > grad_norm_1: 193.75978 (137.27696) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93190 (2.33625) | > loader_time: 0.04340 (0.03704)  --> STEP: 2850/15287 -- GLOBAL_STEP: 983425 | > loss_disc: 2.28899 (2.31898) | > loss_disc_real_0: 0.10050 (0.12315) | > loss_disc_real_1: 0.18533 (0.21119) | > loss_disc_real_2: 0.20522 (0.21535) | > loss_disc_real_3: 0.21182 (0.21900) | > loss_disc_real_4: 0.24856 (0.21458) | > loss_disc_real_5: 0.26044 (0.21383) | > loss_0: 2.28899 (2.31898) | > grad_norm_0: 17.69322 (16.38800) | > loss_gen: 2.51419 (2.55778) | > loss_kl: 2.46401 (2.65959) | > loss_feat: 8.84702 (8.67271) | > loss_mel: 18.25074 (17.76150) | > loss_duration: 1.72312 (1.70323) | > loss_1: 33.79908 (33.35477) | > grad_norm_1: 135.16957 (137.24736) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90970 (2.33323) | > loader_time: 0.04810 (0.03706)  --> STEP: 2875/15287 -- GLOBAL_STEP: 983450 | > loss_disc: 2.30597 (2.31881) | > loss_disc_real_0: 0.10010 (0.12312) | > loss_disc_real_1: 0.19431 (0.21115) | > loss_disc_real_2: 0.20573 (0.21533) | > loss_disc_real_3: 0.23286 (0.21901) | > loss_disc_real_4: 0.22138 (0.21458) | > loss_disc_real_5: 0.23443 (0.21382) | > loss_0: 2.30597 (2.31881) | > grad_norm_0: 19.25495 (16.39868) | > loss_gen: 2.51581 (2.55782) | > loss_kl: 2.65229 (2.65916) | > loss_feat: 8.11088 (8.67380) | > loss_mel: 17.55348 (17.76219) | > loss_duration: 1.66841 (1.70325) | > loss_1: 32.50086 (33.35618) | > grad_norm_1: 162.50620 (137.45349) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92400 (2.33002) | > loader_time: 0.03270 (0.03706)  --> STEP: 2900/15287 -- GLOBAL_STEP: 983475 | > loss_disc: 2.27855 (2.31868) | > loss_disc_real_0: 0.11823 (0.12311) | > loss_disc_real_1: 0.19834 (0.21114) | > loss_disc_real_2: 0.20931 (0.21531) | > loss_disc_real_3: 0.19169 (0.21895) | > loss_disc_real_4: 0.19223 (0.21452) | > loss_disc_real_5: 0.22209 (0.21383) | > loss_0: 2.27855 (2.31868) | > grad_norm_0: 15.34959 (16.41124) | > loss_gen: 2.59049 (2.55766) | > loss_kl: 2.66654 (2.65929) | > loss_feat: 8.83658 (8.67371) | > loss_mel: 17.97369 (17.76160) | > loss_duration: 1.68718 (1.70317) | > loss_1: 33.75448 (33.35539) | > grad_norm_1: 98.74339 (137.43080) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.82290 (2.32648) | > loader_time: 0.03330 (0.03705)  --> STEP: 2925/15287 -- GLOBAL_STEP: 983500 | > loss_disc: 2.33029 (2.31864) | > loss_disc_real_0: 0.09957 (0.12309) | > loss_disc_real_1: 0.15043 (0.21109) | > loss_disc_real_2: 0.20957 (0.21527) | > loss_disc_real_3: 0.24227 (0.21892) | > loss_disc_real_4: 0.19783 (0.21454) | > loss_disc_real_5: 0.21321 (0.21382) | > loss_0: 2.33029 (2.31864) | > grad_norm_0: 18.24605 (16.38363) | > loss_gen: 2.44968 (2.55775) | > loss_kl: 2.61006 (2.65923) | > loss_feat: 8.85575 (8.67438) | > loss_mel: 17.46103 (17.76179) | > loss_duration: 1.69317 (1.70320) | > loss_1: 33.06969 (33.35632) | > grad_norm_1: 85.03741 (137.31364) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95530 (2.32335) | > loader_time: 0.03340 (0.03704)  --> STEP: 2950/15287 -- GLOBAL_STEP: 983525 | > loss_disc: 2.22576 (2.31869) | > loss_disc_real_0: 0.09727 (0.12301) | > loss_disc_real_1: 0.19622 (0.21110) | > loss_disc_real_2: 0.19597 (0.21529) | > loss_disc_real_3: 0.20934 (0.21899) | > loss_disc_real_4: 0.20678 (0.21458) | > loss_disc_real_5: 0.20647 (0.21386) | > loss_0: 2.22576 (2.31869) | > grad_norm_0: 13.77459 (16.38433) | > loss_gen: 2.59041 (2.55788) | > loss_kl: 2.74214 (2.65935) | > loss_feat: 8.43299 (8.67435) | > loss_mel: 18.02131 (17.76154) | > loss_duration: 1.67538 (1.70327) | > loss_1: 33.46223 (33.35637) | > grad_norm_1: 117.48943 (137.32890) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88300 (2.32055) | > loader_time: 0.03690 (0.03702)  --> STEP: 2975/15287 -- GLOBAL_STEP: 983550 | > loss_disc: 2.31480 (2.31859) | > loss_disc_real_0: 0.10609 (0.12296) | > loss_disc_real_1: 0.29807 (0.21119) | > loss_disc_real_2: 0.24844 (0.21530) | > loss_disc_real_3: 0.24179 (0.21901) | > loss_disc_real_4: 0.20595 (0.21458) | > loss_disc_real_5: 0.22137 (0.21385) | > loss_0: 2.31480 (2.31859) | > grad_norm_0: 33.23070 (16.39625) | > loss_gen: 2.59809 (2.55838) | > loss_kl: 2.54228 (2.65933) | > loss_feat: 8.66441 (8.67530) | > loss_mel: 17.65655 (17.76257) | > loss_duration: 1.70056 (1.70330) | > loss_1: 33.16189 (33.35886) | > grad_norm_1: 161.81084 (137.48517) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91260 (2.31726) | > loader_time: 0.03240 (0.03700)  --> STEP: 3000/15287 -- GLOBAL_STEP: 983575 | > loss_disc: 2.34155 (2.31842) | > loss_disc_real_0: 0.15318 (0.12291) | > loss_disc_real_1: 0.22775 (0.21120) | > loss_disc_real_2: 0.22848 (0.21532) | > loss_disc_real_3: 0.22217 (0.21898) | > loss_disc_real_4: 0.22044 (0.21459) | > loss_disc_real_5: 0.19734 (0.21389) | > loss_0: 2.34155 (2.31842) | > grad_norm_0: 18.43145 (16.42645) | > loss_gen: 2.47089 (2.55851) | > loss_kl: 2.45477 (2.65939) | > loss_feat: 7.84219 (8.67489) | > loss_mel: 17.26530 (17.76046) | > loss_duration: 1.69634 (1.70328) | > loss_1: 31.72950 (33.35650) | > grad_norm_1: 51.04308 (137.71104) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98090 (2.31426) | > loader_time: 0.03340 (0.03698)  --> STEP: 3025/15287 -- GLOBAL_STEP: 983600 | > loss_disc: 2.25403 (2.31851) | > loss_disc_real_0: 0.09892 (0.12291) | > loss_disc_real_1: 0.18720 (0.21118) | > loss_disc_real_2: 0.19875 (0.21534) | > loss_disc_real_3: 0.18979 (0.21889) | > loss_disc_real_4: 0.19642 (0.21455) | > loss_disc_real_5: 0.20356 (0.21391) | > loss_0: 2.25403 (2.31851) | > grad_norm_0: 31.72714 (16.46502) | > loss_gen: 2.42022 (2.55811) | > loss_kl: 2.52941 (2.65913) | > loss_feat: 8.54187 (8.67485) | > loss_mel: 17.77387 (17.76070) | > loss_duration: 1.74729 (1.70332) | > loss_1: 33.01266 (33.35608) | > grad_norm_1: 163.92825 (137.92632) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85990 (2.31127) | > loader_time: 0.03820 (0.03695)  --> STEP: 3050/15287 -- GLOBAL_STEP: 983625 | > loss_disc: 2.28635 (2.31829) | > loss_disc_real_0: 0.08635 (0.12287) | > loss_disc_real_1: 0.19484 (0.21115) | > loss_disc_real_2: 0.21450 (0.21530) | > loss_disc_real_3: 0.20523 (0.21887) | > loss_disc_real_4: 0.20705 (0.21457) | > loss_disc_real_5: 0.20289 (0.21390) | > loss_0: 2.28635 (2.31829) | > grad_norm_0: 20.26298 (16.47352) | > loss_gen: 2.58164 (2.55808) | > loss_kl: 2.56587 (2.65858) | > loss_feat: 9.09068 (8.67490) | > loss_mel: 17.61490 (17.76029) | > loss_duration: 1.68885 (1.70334) | > loss_1: 33.54194 (33.35518) | > grad_norm_1: 155.24870 (138.10530) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.82810 (2.30857) | > loader_time: 0.03520 (0.03693)  --> STEP: 3075/15287 -- GLOBAL_STEP: 983650 | > loss_disc: 2.39271 (2.31833) | > loss_disc_real_0: 0.16379 (0.12286) | > loss_disc_real_1: 0.22770 (0.21112) | > loss_disc_real_2: 0.23726 (0.21528) | > loss_disc_real_3: 0.21570 (0.21886) | > loss_disc_real_4: 0.22534 (0.21455) | > loss_disc_real_5: 0.20717 (0.21391) | > loss_0: 2.39271 (2.31833) | > grad_norm_0: 19.65996 (16.48596) | > loss_gen: 2.39636 (2.55800) | > loss_kl: 2.47465 (2.65852) | > loss_feat: 8.01203 (8.67439) | > loss_mel: 17.48404 (17.76061) | > loss_duration: 1.69511 (1.70336) | > loss_1: 32.06219 (33.35487) | > grad_norm_1: 36.10367 (138.23268) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.81100 (2.30714) | > loader_time: 0.03690 (0.03695)  --> STEP: 3100/15287 -- GLOBAL_STEP: 983675 | > loss_disc: 2.57566 (2.31746) | > loss_disc_real_0: 0.12964 (0.12282) | > loss_disc_real_1: 0.18721 (0.21106) | > loss_disc_real_2: 0.22248 (0.21526) | > loss_disc_real_3: 0.22081 (0.21880) | > loss_disc_real_4: 0.21935 (0.21445) | > loss_disc_real_5: 0.26670 (0.21361) | > loss_0: 2.57566 (2.31746) | > grad_norm_0: 20.52057 (16.52626) | > loss_gen: 2.74063 (2.55999) | > loss_kl: 2.68909 (2.65876) | > loss_feat: 9.18511 (8.67805) | > loss_mel: 19.04705 (17.76321) | > loss_duration: 1.74555 (1.70343) | > loss_1: 35.40744 (33.36343) | > grad_norm_1: 188.55466 (139.20140) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98870 (2.30411) | > loader_time: 0.03310 (0.03692)  --> STEP: 3125/15287 -- GLOBAL_STEP: 983700 | > loss_disc: 2.45860 (2.31797) | > loss_disc_real_0: 0.20374 (0.12275) | > loss_disc_real_1: 0.20366 (0.21113) | > loss_disc_real_2: 0.22960 (0.21537) | > loss_disc_real_3: 0.21936 (0.21898) | > loss_disc_real_4: 0.22636 (0.21467) | > loss_disc_real_5: 0.24680 (0.21361) | > loss_0: 2.45860 (2.31797) | > grad_norm_0: 62.12605 (16.65422) | > loss_gen: 2.45496 (2.56176) | > loss_kl: 2.55154 (2.65827) | > loss_feat: 7.87207 (8.68138) | > loss_mel: 17.88412 (17.76568) | > loss_duration: 1.68912 (1.70348) | > loss_1: 32.45180 (33.37058) | > grad_norm_1: 118.62386 (140.13638) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97450 (2.30139) | > loader_time: 0.03280 (0.03690)  --> STEP: 3150/15287 -- GLOBAL_STEP: 983725 | > loss_disc: 2.25824 (2.31832) | > loss_disc_real_0: 0.13214 (0.12280) | > loss_disc_real_1: 0.19676 (0.21111) | > loss_disc_real_2: 0.19431 (0.21536) | > loss_disc_real_3: 0.23460 (0.21898) | > loss_disc_real_4: 0.19928 (0.21468) | > loss_disc_real_5: 0.23720 (0.21368) | > loss_0: 2.25824 (2.31832) | > grad_norm_0: 25.13466 (16.75250) | > loss_gen: 2.50462 (2.56113) | > loss_kl: 2.64946 (2.65756) | > loss_feat: 9.05665 (8.67856) | > loss_mel: 17.87392 (17.76602) | > loss_duration: 1.71252 (1.70352) | > loss_1: 33.79718 (33.36681) | > grad_norm_1: 169.69785 (140.70406) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97150 (2.29881) | > loader_time: 0.03640 (0.03688)  --> STEP: 3175/15287 -- GLOBAL_STEP: 983750 | > loss_disc: 2.42634 (2.31843) | > loss_disc_real_0: 0.14000 (0.12284) | > loss_disc_real_1: 0.19212 (0.21113) | > loss_disc_real_2: 0.21727 (0.21538) | > loss_disc_real_3: 0.24503 (0.21899) | > loss_disc_real_4: 0.24274 (0.21468) | > loss_disc_real_5: 0.22729 (0.21374) | > loss_0: 2.42634 (2.31843) | > grad_norm_0: 17.43984 (16.80003) | > loss_gen: 2.49706 (2.56088) | > loss_kl: 2.73377 (2.65750) | > loss_feat: 8.92556 (8.67749) | > loss_mel: 18.05284 (17.76529) | > loss_duration: 1.70806 (1.70351) | > loss_1: 33.91730 (33.36469) | > grad_norm_1: 68.43575 (140.75636) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92830 (2.29579) | > loader_time: 0.03840 (0.03685)  --> STEP: 3200/15287 -- GLOBAL_STEP: 983775 | > loss_disc: 2.36912 (2.31869) | > loss_disc_real_0: 0.16237 (0.12299) | > loss_disc_real_1: 0.21139 (0.21115) | > loss_disc_real_2: 0.22472 (0.21540) | > loss_disc_real_3: 0.22596 (0.21900) | > loss_disc_real_4: 0.22691 (0.21468) | > loss_disc_real_5: 0.20532 (0.21375) | > loss_0: 2.36912 (2.31869) | > grad_norm_0: 18.96654 (16.76667) | > loss_gen: 2.72547 (2.56115) | > loss_kl: 2.76882 (2.65764) | > loss_feat: 8.59447 (8.67736) | > loss_mel: 18.30029 (17.76639) | > loss_duration: 1.66573 (1.70348) | > loss_1: 34.05479 (33.36604) | > grad_norm_1: 75.17480 (140.19589) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92390 (2.29344) | > loader_time: 0.03280 (0.03684)  --> STEP: 3225/15287 -- GLOBAL_STEP: 983800 | > loss_disc: 2.40678 (2.31948) | > loss_disc_real_0: 0.19128 (0.12323) | > loss_disc_real_1: 0.27773 (0.21120) | > loss_disc_real_2: 0.22278 (0.21543) | > loss_disc_real_3: 0.20770 (0.21902) | > loss_disc_real_4: 0.19236 (0.21475) | > loss_disc_real_5: 0.17066 (0.21375) | > loss_0: 2.40678 (2.31948) | > grad_norm_0: 15.65415 (16.75171) | > loss_gen: 2.43684 (2.56088) | > loss_kl: 2.59402 (2.65765) | > loss_feat: 7.98970 (8.67653) | > loss_mel: 17.50099 (17.76824) | > loss_duration: 1.69443 (1.70352) | > loss_1: 32.21598 (33.36685) | > grad_norm_1: 93.04523 (139.63882) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91660 (2.29094) | > loader_time: 0.03250 (0.03681)  --> STEP: 3250/15287 -- GLOBAL_STEP: 983825 | > loss_disc: 2.30560 (2.31962) | > loss_disc_real_0: 0.10146 (0.12326) | > loss_disc_real_1: 0.19091 (0.21117) | > loss_disc_real_2: 0.21573 (0.21544) | > loss_disc_real_3: 0.22799 (0.21901) | > loss_disc_real_4: 0.21734 (0.21474) | > loss_disc_real_5: 0.25689 (0.21375) | > loss_0: 2.30560 (2.31962) | > grad_norm_0: 12.41182 (16.70603) | > loss_gen: 2.53144 (2.56081) | > loss_kl: 2.63541 (2.65757) | > loss_feat: 8.79361 (8.67552) | > loss_mel: 17.76602 (17.76950) | > loss_duration: 1.71578 (1.70354) | > loss_1: 33.44225 (33.36698) | > grad_norm_1: 157.22801 (139.38457) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91420 (2.28866) | > loader_time: 0.03340 (0.03679)  --> STEP: 3275/15287 -- GLOBAL_STEP: 983850 | > loss_disc: 2.32420 (2.31992) | > loss_disc_real_0: 0.10125 (0.12324) | > loss_disc_real_1: 0.18125 (0.21124) | > loss_disc_real_2: 0.17725 (0.21545) | > loss_disc_real_3: 0.18937 (0.21903) | > loss_disc_real_4: 0.18778 (0.21475) | > loss_disc_real_5: 0.19566 (0.21378) | > loss_0: 2.32420 (2.31992) | > grad_norm_0: 8.82279 (16.68531) | > loss_gen: 2.55266 (2.56066) | > loss_kl: 2.63693 (2.65787) | > loss_feat: 8.66818 (8.67572) | > loss_mel: 17.94948 (17.77060) | > loss_duration: 1.74038 (1.70354) | > loss_1: 33.54763 (33.36842) | > grad_norm_1: 117.09516 (139.32507) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85290 (2.28611) | > loader_time: 0.03370 (0.03677)  --> STEP: 3300/15287 -- GLOBAL_STEP: 983875 | > loss_disc: 2.25920 (2.31985) | > loss_disc_real_0: 0.10124 (0.12323) | > loss_disc_real_1: 0.21297 (0.21124) | > loss_disc_real_2: 0.20688 (0.21546) | > loss_disc_real_3: 0.22084 (0.21902) | > loss_disc_real_4: 0.19798 (0.21473) | > loss_disc_real_5: 0.21426 (0.21378) | > loss_0: 2.25920 (2.31985) | > grad_norm_0: 15.00842 (16.70329) | > loss_gen: 2.57898 (2.56049) | > loss_kl: 2.54962 (2.65792) | > loss_feat: 8.60518 (8.67492) | > loss_mel: 17.92964 (17.77128) | > loss_duration: 1.70859 (1.70352) | > loss_1: 33.37202 (33.36816) | > grad_norm_1: 133.25012 (139.31413) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94610 (2.28367) | > loader_time: 0.03240 (0.03675)  --> STEP: 3325/15287 -- GLOBAL_STEP: 983900 | > loss_disc: 2.32953 (2.31988) | > loss_disc_real_0: 0.12150 (0.12319) | > loss_disc_real_1: 0.19606 (0.21123) | > loss_disc_real_2: 0.19832 (0.21546) | > loss_disc_real_3: 0.23252 (0.21905) | > loss_disc_real_4: 0.21165 (0.21474) | > loss_disc_real_5: 0.19406 (0.21377) | > loss_0: 2.32953 (2.31988) | > grad_norm_0: 18.00102 (16.67016) | > loss_gen: 2.49866 (2.56044) | > loss_kl: 2.65122 (2.65780) | > loss_feat: 8.84651 (8.67562) | > loss_mel: 17.92260 (17.77131) | > loss_duration: 1.73173 (1.70362) | > loss_1: 33.65071 (33.36884) | > grad_norm_1: 182.80023 (139.18022) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98590 (2.28089) | > loader_time: 0.03300 (0.03673)  --> STEP: 3350/15287 -- GLOBAL_STEP: 983925 | > loss_disc: 2.34466 (2.31970) | > loss_disc_real_0: 0.15024 (0.12316) | > loss_disc_real_1: 0.22467 (0.21117) | > loss_disc_real_2: 0.20884 (0.21544) | > loss_disc_real_3: 0.21408 (0.21903) | > loss_disc_real_4: 0.25789 (0.21476) | > loss_disc_real_5: 0.22332 (0.21379) | > loss_0: 2.34466 (2.31970) | > grad_norm_0: 22.05471 (16.67970) | > loss_gen: 2.58261 (2.56045) | > loss_kl: 2.71426 (2.65781) | > loss_feat: 8.41344 (8.67494) | > loss_mel: 17.88980 (17.77000) | > loss_duration: 1.69109 (1.70360) | > loss_1: 33.29120 (33.36685) | > grad_norm_1: 129.23431 (139.26933) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00090 (2.27834) | > loader_time: 0.04710 (0.03673)  --> STEP: 3375/15287 -- GLOBAL_STEP: 983950 | > loss_disc: 2.31221 (2.31962) | > loss_disc_real_0: 0.10973 (0.12310) | > loss_disc_real_1: 0.19915 (0.21117) | > loss_disc_real_2: 0.19212 (0.21544) | > loss_disc_real_3: 0.19539 (0.21903) | > loss_disc_real_4: 0.21311 (0.21476) | > loss_disc_real_5: 0.20959 (0.21380) | > loss_0: 2.31221 (2.31962) | > grad_norm_0: 15.06304 (16.69541) | > loss_gen: 2.53683 (2.56022) | > loss_kl: 2.63233 (2.65784) | > loss_feat: 8.84124 (8.67469) | > loss_mel: 17.79322 (17.77035) | > loss_duration: 1.75491 (1.70365) | > loss_1: 33.55854 (33.36680) | > grad_norm_1: 131.70497 (139.25824) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.80720 (2.27558) | > loader_time: 0.03280 (0.03672)  --> STEP: 3400/15287 -- GLOBAL_STEP: 983975 | > loss_disc: 2.30267 (2.31947) | > loss_disc_real_0: 0.11507 (0.12304) | > loss_disc_real_1: 0.20922 (0.21115) | > loss_disc_real_2: 0.20647 (0.21544) | > loss_disc_real_3: 0.24065 (0.21903) | > loss_disc_real_4: 0.22321 (0.21478) | > loss_disc_real_5: 0.22347 (0.21379) | > loss_0: 2.30267 (2.31947) | > grad_norm_0: 17.66882 (16.71611) | > loss_gen: 2.59367 (2.56033) | > loss_kl: 2.61578 (2.65798) | > loss_feat: 9.03270 (8.67518) | > loss_mel: 17.65867 (17.76826) | > loss_duration: 1.73156 (1.70372) | > loss_1: 33.63237 (33.36551) | > grad_norm_1: 134.50143 (139.42746) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85100 (2.27305) | > loader_time: 0.03250 (0.03671)  --> STEP: 3425/15287 -- GLOBAL_STEP: 984000 | > loss_disc: 2.34670 (2.31931) | > loss_disc_real_0: 0.11420 (0.12301) | > loss_disc_real_1: 0.22572 (0.21113) | > loss_disc_real_2: 0.25216 (0.21547) | > loss_disc_real_3: 0.23459 (0.21902) | > loss_disc_real_4: 0.22010 (0.21480) | > loss_disc_real_5: 0.22611 (0.21379) | > loss_0: 2.34670 (2.31931) | > grad_norm_0: 28.35345 (16.71905) | > loss_gen: 2.29556 (2.56025) | > loss_kl: 2.59781 (2.65812) | > loss_feat: 8.02951 (8.67583) | > loss_mel: 17.40689 (17.76779) | > loss_duration: 1.71620 (1.70375) | > loss_1: 32.04596 (33.36577) | > grad_norm_1: 98.19710 (139.42241) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08910 (2.27076) | > loader_time: 0.03250 (0.03668)  --> STEP: 3450/15287 -- GLOBAL_STEP: 984025 | > loss_disc: 2.29870 (2.31917) | > loss_disc_real_0: 0.07624 (0.12297) | > loss_disc_real_1: 0.18059 (0.21110) | > loss_disc_real_2: 0.23965 (0.21545) | > loss_disc_real_3: 0.17954 (0.21898) | > loss_disc_real_4: 0.23970 (0.21480) | > loss_disc_real_5: 0.23680 (0.21377) | > loss_0: 2.29870 (2.31917) | > grad_norm_0: 19.31948 (16.73907) | > loss_gen: 2.62372 (2.56031) | > loss_kl: 2.74680 (2.65822) | > loss_feat: 8.97086 (8.67668) | > loss_mel: 17.44622 (17.76731) | > loss_duration: 1.73084 (1.70378) | > loss_1: 33.51844 (33.36633) | > grad_norm_1: 65.65012 (139.56488) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99740 (2.26870) | > loader_time: 0.03590 (0.03667)  --> STEP: 3475/15287 -- GLOBAL_STEP: 984050 | > loss_disc: 2.27203 (2.31930) | > loss_disc_real_0: 0.14087 (0.12301) | > loss_disc_real_1: 0.22076 (0.21113) | > loss_disc_real_2: 0.20854 (0.21547) | > loss_disc_real_3: 0.20913 (0.21895) | > loss_disc_real_4: 0.22241 (0.21484) | > loss_disc_real_5: 0.23601 (0.21379) | > loss_0: 2.27203 (2.31930) | > grad_norm_0: 16.53703 (16.72758) | > loss_gen: 2.72252 (2.56024) | > loss_kl: 2.63243 (2.65807) | > loss_feat: 8.83160 (8.67656) | > loss_mel: 18.03599 (17.76729) | > loss_duration: 1.67821 (1.70382) | > loss_1: 33.90075 (33.36599) | > grad_norm_1: 120.93980 (139.38921) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87710 (2.26631) | > loader_time: 0.03360 (0.03664)  --> STEP: 3500/15287 -- GLOBAL_STEP: 984075 | > loss_disc: 2.35860 (2.31931) | > loss_disc_real_0: 0.10307 (0.12296) | > loss_disc_real_1: 0.23719 (0.21117) | > loss_disc_real_2: 0.21957 (0.21550) | > loss_disc_real_3: 0.23562 (0.21897) | > loss_disc_real_4: 0.23486 (0.21487) | > loss_disc_real_5: 0.25481 (0.21378) | > loss_0: 2.35860 (2.31931) | > grad_norm_0: 22.81959 (16.71228) | > loss_gen: 2.62245 (2.56029) | > loss_kl: 2.66325 (2.65808) | > loss_feat: 8.83501 (8.67692) | > loss_mel: 17.97899 (17.76779) | > loss_duration: 1.71625 (1.70385) | > loss_1: 33.81595 (33.36697) | > grad_norm_1: 166.92633 (139.37405) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.81050 (2.26409) | > loader_time: 0.03280 (0.03662)  --> STEP: 3525/15287 -- GLOBAL_STEP: 984100 | > loss_disc: 2.37548 (2.31916) | > loss_disc_real_0: 0.15437 (0.12292) | > loss_disc_real_1: 0.19442 (0.21114) | > loss_disc_real_2: 0.23626 (0.21548) | > loss_disc_real_3: 0.24421 (0.21894) | > loss_disc_real_4: 0.22251 (0.21484) | > loss_disc_real_5: 0.24095 (0.21381) | > loss_0: 2.37548 (2.31916) | > grad_norm_0: 38.30313 (16.71129) | > loss_gen: 2.56767 (2.56042) | > loss_kl: 2.78154 (2.65819) | > loss_feat: 8.82688 (8.67728) | > loss_mel: 17.75121 (17.76768) | > loss_duration: 1.72751 (1.70400) | > loss_1: 33.65482 (33.36760) | > grad_norm_1: 96.97825 (139.39496) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96280 (2.26163) | > loader_time: 0.03300 (0.03662)  --> STEP: 3550/15287 -- GLOBAL_STEP: 984125 | > loss_disc: 2.29164 (2.31910) | > loss_disc_real_0: 0.12094 (0.12289) | > loss_disc_real_1: 0.20625 (0.21112) | > loss_disc_real_2: 0.21369 (0.21548) | > loss_disc_real_3: 0.20096 (0.21895) | > loss_disc_real_4: 0.21184 (0.21484) | > loss_disc_real_5: 0.19275 (0.21381) | > loss_0: 2.29164 (2.31910) | > grad_norm_0: 10.75517 (16.74946) | > loss_gen: 2.48902 (2.56033) | > loss_kl: 2.61508 (2.65790) | > loss_feat: 8.25360 (8.67623) | > loss_mel: 17.82793 (17.76702) | > loss_duration: 1.69460 (1.70408) | > loss_1: 32.88022 (33.36559) | > grad_norm_1: 134.44949 (139.35202) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96170 (2.25966) | > loader_time: 0.04790 (0.03664)  --> STEP: 3575/15287 -- GLOBAL_STEP: 984150 | > loss_disc: 2.33528 (2.31904) | > loss_disc_real_0: 0.11310 (0.12289) | > loss_disc_real_1: 0.20726 (0.21111) | > loss_disc_real_2: 0.23082 (0.21552) | > loss_disc_real_3: 0.23582 (0.21896) | > loss_disc_real_4: 0.23123 (0.21486) | > loss_disc_real_5: 0.23327 (0.21382) | > loss_0: 2.33528 (2.31904) | > grad_norm_0: 20.47502 (16.76572) | > loss_gen: 2.46649 (2.56027) | > loss_kl: 2.53417 (2.65787) | > loss_feat: 8.40473 (8.67605) | > loss_mel: 17.61229 (17.76641) | > loss_duration: 1.72083 (1.70414) | > loss_1: 32.73850 (33.36478) | > grad_norm_1: 134.56915 (139.40797) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89740 (2.25744) | > loader_time: 0.03560 (0.03665)  --> STEP: 3600/15287 -- GLOBAL_STEP: 984175 | > loss_disc: 2.17568 (2.31919) | > loss_disc_real_0: 0.09633 (0.12289) | > loss_disc_real_1: 0.17765 (0.21112) | > loss_disc_real_2: 0.18286 (0.21550) | > loss_disc_real_3: 0.18918 (0.21894) | > loss_disc_real_4: 0.17753 (0.21487) | > loss_disc_real_5: 0.18087 (0.21382) | > loss_0: 2.17568 (2.31919) | > grad_norm_0: 13.11489 (16.78202) | > loss_gen: 2.63953 (2.55996) | > loss_kl: 2.61262 (2.65793) | > loss_feat: 8.72410 (8.67548) | > loss_mel: 17.73195 (17.76594) | > loss_duration: 1.67633 (1.70414) | > loss_1: 33.38453 (33.36349) | > grad_norm_1: 136.42636 (139.37845) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04990 (2.25585) | > loader_time: 0.03620 (0.03664)  --> STEP: 3625/15287 -- GLOBAL_STEP: 984200 | > loss_disc: 2.32024 (2.31910) | > loss_disc_real_0: 0.10593 (0.12284) | > loss_disc_real_1: 0.19088 (0.21113) | > loss_disc_real_2: 0.23533 (0.21552) | > loss_disc_real_3: 0.23047 (0.21894) | > loss_disc_real_4: 0.22228 (0.21488) | > loss_disc_real_5: 0.21731 (0.21381) | > loss_0: 2.32024 (2.31910) | > grad_norm_0: 10.36362 (16.78956) | > loss_gen: 2.57178 (2.56006) | > loss_kl: 2.65013 (2.65807) | > loss_feat: 8.96531 (8.67664) | > loss_mel: 17.71560 (17.76626) | > loss_duration: 1.70961 (1.70411) | > loss_1: 33.61243 (33.36518) | > grad_norm_1: 162.39406 (139.52559) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04230 (2.25426) | > loader_time: 0.03220 (0.03664)  --> STEP: 3650/15287 -- GLOBAL_STEP: 984225 | > loss_disc: 2.45733 (2.31944) | > loss_disc_real_0: 0.15191 (0.12285) | > loss_disc_real_1: 0.25132 (0.21114) | > loss_disc_real_2: 0.23576 (0.21556) | > loss_disc_real_3: 0.21764 (0.21900) | > loss_disc_real_4: 0.22422 (0.21492) | > loss_disc_real_5: 0.21625 (0.21386) | > loss_0: 2.45733 (2.31944) | > grad_norm_0: 16.23588 (16.78277) | > loss_gen: 2.30252 (2.56002) | > loss_kl: 2.77624 (2.65819) | > loss_feat: 8.00092 (8.67636) | > loss_mel: 17.75782 (17.76763) | > loss_duration: 1.70635 (1.70413) | > loss_1: 32.54384 (33.36636) | > grad_norm_1: 120.18765 (139.49919) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09450 (2.25250) | > loader_time: 0.03600 (0.03662)  --> STEP: 3675/15287 -- GLOBAL_STEP: 984250 | > loss_disc: 2.27357 (2.31959) | > loss_disc_real_0: 0.09412 (0.12288) | > loss_disc_real_1: 0.22779 (0.21118) | > loss_disc_real_2: 0.25990 (0.21562) | > loss_disc_real_3: 0.25109 (0.21902) | > loss_disc_real_4: 0.21751 (0.21491) | > loss_disc_real_5: 0.18445 (0.21386) | > loss_0: 2.27357 (2.31959) | > grad_norm_0: 8.68434 (16.76628) | > loss_gen: 2.46946 (2.55996) | > loss_kl: 2.54540 (2.65818) | > loss_feat: 8.93279 (8.67541) | > loss_mel: 17.75646 (17.76773) | > loss_duration: 1.72896 (1.70418) | > loss_1: 33.43306 (33.36549) | > grad_norm_1: 109.84617 (139.24638) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86090 (2.25031) | > loader_time: 0.03280 (0.03660)  --> STEP: 3700/15287 -- GLOBAL_STEP: 984275 | > loss_disc: 2.37174 (2.31978) | > loss_disc_real_0: 0.17224 (0.12294) | > loss_disc_real_1: 0.20185 (0.21116) | > loss_disc_real_2: 0.22068 (0.21561) | > loss_disc_real_3: 0.20469 (0.21903) | > loss_disc_real_4: 0.20117 (0.21493) | > loss_disc_real_5: 0.20116 (0.21385) | > loss_0: 2.37174 (2.31978) | > grad_norm_0: 8.69044 (16.75239) | > loss_gen: 2.53514 (2.55990) | > loss_kl: 2.72367 (2.65784) | > loss_feat: 8.81759 (8.67552) | > loss_mel: 17.89709 (17.76837) | > loss_duration: 1.69957 (1.70420) | > loss_1: 33.67307 (33.36586) | > grad_norm_1: 82.27341 (139.08083) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10420 (2.24823) | > loader_time: 0.03370 (0.03658)  --> STEP: 3725/15287 -- GLOBAL_STEP: 984300 | > loss_disc: 2.32395 (2.31981) | > loss_disc_real_0: 0.11343 (0.12295) | > loss_disc_real_1: 0.24388 (0.21117) | > loss_disc_real_2: 0.21472 (0.21560) | > loss_disc_real_3: 0.20637 (0.21905) | > loss_disc_real_4: 0.20865 (0.21492) | > loss_disc_real_5: 0.22368 (0.21383) | > loss_0: 2.32395 (2.31981) | > grad_norm_0: 5.91176 (16.71766) | > loss_gen: 2.66456 (2.55991) | > loss_kl: 2.73601 (2.65774) | > loss_feat: 8.40803 (8.67484) | > loss_mel: 17.65462 (17.76873) | > loss_duration: 1.70215 (1.70425) | > loss_1: 33.16537 (33.36551) | > grad_norm_1: 112.87958 (138.87328) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95260 (2.24598) | > loader_time: 0.03300 (0.03656)  --> STEP: 3750/15287 -- GLOBAL_STEP: 984325 | > loss_disc: 2.34530 (2.31984) | > loss_disc_real_0: 0.11839 (0.12293) | > loss_disc_real_1: 0.20639 (0.21117) | > loss_disc_real_2: 0.22697 (0.21561) | > loss_disc_real_3: 0.20169 (0.21909) | > loss_disc_real_4: 0.22050 (0.21493) | > loss_disc_real_5: 0.21938 (0.21384) | > loss_0: 2.34530 (2.31984) | > grad_norm_0: 12.80239 (16.71653) | > loss_gen: 2.42410 (2.55979) | > loss_kl: 2.74631 (2.65792) | > loss_feat: 8.38346 (8.67502) | > loss_mel: 17.41055 (17.76930) | > loss_duration: 1.73641 (1.70427) | > loss_1: 32.70083 (33.36634) | > grad_norm_1: 92.43940 (138.85127) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43540 (2.24424) | > loader_time: 0.04480 (0.03655)  --> STEP: 3775/15287 -- GLOBAL_STEP: 984350 | > loss_disc: 2.35566 (2.31991) | > loss_disc_real_0: 0.08332 (0.12292) | > loss_disc_real_1: 0.18922 (0.21117) | > loss_disc_real_2: 0.25101 (0.21561) | > loss_disc_real_3: 0.19507 (0.21907) | > loss_disc_real_4: 0.17640 (0.21493) | > loss_disc_real_5: 0.18570 (0.21386) | > loss_0: 2.35566 (2.31991) | > grad_norm_0: 19.74266 (16.71382) | > loss_gen: 2.55365 (2.55984) | > loss_kl: 2.63871 (2.65794) | > loss_feat: 8.34819 (8.67487) | > loss_mel: 17.71049 (17.76905) | > loss_duration: 1.71814 (1.70424) | > loss_1: 32.96917 (33.36598) | > grad_norm_1: 108.99496 (138.75095) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98910 (2.24255) | > loader_time: 0.03360 (0.03654)  --> STEP: 3800/15287 -- GLOBAL_STEP: 984375 | > loss_disc: 2.30480 (2.32002) | > loss_disc_real_0: 0.08948 (0.12290) | > loss_disc_real_1: 0.19203 (0.21115) | > loss_disc_real_2: 0.20896 (0.21562) | > loss_disc_real_3: 0.24403 (0.21909) | > loss_disc_real_4: 0.23025 (0.21492) | > loss_disc_real_5: 0.23894 (0.21389) | > loss_0: 2.30480 (2.32002) | > grad_norm_0: 8.92729 (16.71441) | > loss_gen: 2.65661 (2.55957) | > loss_kl: 2.77278 (2.65796) | > loss_feat: 8.46845 (8.67431) | > loss_mel: 17.92209 (17.76881) | > loss_duration: 1.72106 (1.70425) | > loss_1: 33.54099 (33.36496) | > grad_norm_1: 109.08640 (138.68846) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00920 (2.24226) | > loader_time: 0.03460 (0.03654)  --> STEP: 3825/15287 -- GLOBAL_STEP: 984400 | > loss_disc: 2.32702 (2.32022) | > loss_disc_real_0: 0.12074 (0.12289) | > loss_disc_real_1: 0.21421 (0.21116) | > loss_disc_real_2: 0.19920 (0.21567) | > loss_disc_real_3: 0.20154 (0.21909) | > loss_disc_real_4: 0.22508 (0.21495) | > loss_disc_real_5: 0.21045 (0.21388) | > loss_0: 2.32702 (2.32022) | > grad_norm_0: 6.13148 (16.71253) | > loss_gen: 2.57460 (2.55926) | > loss_kl: 2.64747 (2.65799) | > loss_feat: 8.03625 (8.67295) | > loss_mel: 17.08753 (17.76909) | > loss_duration: 1.73745 (1.70429) | > loss_1: 32.08330 (33.36364) | > grad_norm_1: 108.88387 (138.71692) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01650 (2.24065) | > loader_time: 0.03830 (0.03655)  --> STEP: 3850/15287 -- GLOBAL_STEP: 984425 | > loss_disc: 2.25390 (2.32014) | > loss_disc_real_0: 0.11120 (0.12284) | > loss_disc_real_1: 0.21621 (0.21115) | > loss_disc_real_2: 0.21034 (0.21570) | > loss_disc_real_3: 0.23051 (0.21907) | > loss_disc_real_4: 0.21097 (0.21492) | > loss_disc_real_5: 0.22391 (0.21390) | > loss_0: 2.25390 (2.32014) | > grad_norm_0: 10.84466 (16.71740) | > loss_gen: 2.56597 (2.55926) | > loss_kl: 2.51628 (2.65756) | > loss_feat: 8.41513 (8.67270) | > loss_mel: 17.76259 (17.76954) | > loss_duration: 1.71785 (1.70430) | > loss_1: 32.97782 (33.36341) | > grad_norm_1: 132.47856 (138.80263) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05500 (2.23901) | > loader_time: 0.03800 (0.03654)  --> STEP: 3875/15287 -- GLOBAL_STEP: 984450 | > loss_disc: 2.33847 (2.31998) | > loss_disc_real_0: 0.13904 (0.12279) | > loss_disc_real_1: 0.21117 (0.21115) | > loss_disc_real_2: 0.20808 (0.21569) | > loss_disc_real_3: 0.20528 (0.21906) | > loss_disc_real_4: 0.23648 (0.21492) | > loss_disc_real_5: 0.19918 (0.21388) | > loss_0: 2.33847 (2.31998) | > grad_norm_0: 20.24195 (16.70599) | > loss_gen: 2.50927 (2.55927) | > loss_kl: 2.68069 (2.65749) | > loss_feat: 8.44937 (8.67291) | > loss_mel: 18.03803 (17.76938) | > loss_duration: 1.70396 (1.70432) | > loss_1: 33.38132 (33.36343) | > grad_norm_1: 80.38422 (138.88156) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04410 (2.23756) | > loader_time: 0.03470 (0.03653)  --> STEP: 3900/15287 -- GLOBAL_STEP: 984475 | > loss_disc: 2.33235 (2.31990) | > loss_disc_real_0: 0.13962 (0.12278) | > loss_disc_real_1: 0.20216 (0.21116) | > loss_disc_real_2: 0.21322 (0.21569) | > loss_disc_real_3: 0.21543 (0.21903) | > loss_disc_real_4: 0.22910 (0.21491) | > loss_disc_real_5: 0.21468 (0.21384) | > loss_0: 2.33235 (2.31990) | > grad_norm_0: 8.61419 (16.69759) | > loss_gen: 2.52273 (2.55909) | > loss_kl: 2.56795 (2.65733) | > loss_feat: 8.49566 (8.67307) | > loss_mel: 17.66444 (17.76895) | > loss_duration: 1.77536 (1.70437) | > loss_1: 33.02614 (33.36288) | > grad_norm_1: 68.08613 (138.79187) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03000 (2.23639) | > loader_time: 0.03660 (0.03653)  --> STEP: 3925/15287 -- GLOBAL_STEP: 984500 | > loss_disc: 2.33116 (2.31992) | > loss_disc_real_0: 0.18056 (0.12279) | > loss_disc_real_1: 0.21689 (0.21118) | > loss_disc_real_2: 0.17320 (0.21569) | > loss_disc_real_3: 0.18517 (0.21901) | > loss_disc_real_4: 0.16342 (0.21487) | > loss_disc_real_5: 0.22798 (0.21386) | > loss_0: 2.33116 (2.31992) | > grad_norm_0: 17.86458 (16.70277) | > loss_gen: 2.38226 (2.55924) | > loss_kl: 2.77064 (2.65733) | > loss_feat: 8.87488 (8.67395) | > loss_mel: 17.63313 (17.76998) | > loss_duration: 1.65986 (1.70441) | > loss_1: 33.32077 (33.36497) | > grad_norm_1: 131.61098 (138.86729) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03810 (2.23487) | > loader_time: 0.03270 (0.03652)  --> STEP: 3950/15287 -- GLOBAL_STEP: 984525 | > loss_disc: 2.23873 (2.31983) | > loss_disc_real_0: 0.10061 (0.12276) | > loss_disc_real_1: 0.20725 (0.21116) | > loss_disc_real_2: 0.21014 (0.21570) | > loss_disc_real_3: 0.21913 (0.21901) | > loss_disc_real_4: 0.20757 (0.21486) | > loss_disc_real_5: 0.18933 (0.21385) | > loss_0: 2.23873 (2.31983) | > grad_norm_0: 11.64663 (16.69895) | > loss_gen: 2.71882 (2.55919) | > loss_kl: 2.63769 (2.65727) | > loss_feat: 9.21964 (8.67330) | > loss_mel: 17.56486 (17.76892) | > loss_duration: 1.65696 (1.70439) | > loss_1: 33.79797 (33.36314) | > grad_norm_1: 156.25740 (138.84299) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10440 (2.23338) | > loader_time: 0.03830 (0.03652)  --> STEP: 3975/15287 -- GLOBAL_STEP: 984550 | > loss_disc: 2.29368 (2.31979) | > loss_disc_real_0: 0.13609 (0.12278) | > loss_disc_real_1: 0.19175 (0.21114) | > loss_disc_real_2: 0.22023 (0.21570) | > loss_disc_real_3: 0.24044 (0.21901) | > loss_disc_real_4: 0.23275 (0.21485) | > loss_disc_real_5: 0.23319 (0.21387) | > loss_0: 2.29368 (2.31979) | > grad_norm_0: 13.04761 (16.70414) | > loss_gen: 2.61897 (2.55913) | > loss_kl: 2.59705 (2.65730) | > loss_feat: 8.76685 (8.67316) | > loss_mel: 17.39226 (17.76922) | > loss_duration: 1.77663 (1.70437) | > loss_1: 33.15176 (33.36326) | > grad_norm_1: 57.91619 (138.82005) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.76400 (2.23139) | > loader_time: 0.03230 (0.03651)  --> STEP: 4000/15287 -- GLOBAL_STEP: 984575 | > loss_disc: 2.30624 (2.31967) | > loss_disc_real_0: 0.11908 (0.12278) | > loss_disc_real_1: 0.19810 (0.21113) | > loss_disc_real_2: 0.23226 (0.21569) | > loss_disc_real_3: 0.23793 (0.21903) | > loss_disc_real_4: 0.16725 (0.21483) | > loss_disc_real_5: 0.21291 (0.21388) | > loss_0: 2.30624 (2.31967) | > grad_norm_0: 21.41932 (16.68697) | > loss_gen: 2.47446 (2.55939) | > loss_kl: 2.57559 (2.65750) | > loss_feat: 8.76589 (8.67376) | > loss_mel: 18.00738 (17.76919) | > loss_duration: 1.69161 (1.70433) | > loss_1: 33.51494 (33.36424) | > grad_norm_1: 120.56542 (138.76482) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23770 (2.22996) | > loader_time: 0.03690 (0.03649)  --> STEP: 4025/15287 -- GLOBAL_STEP: 984600 | > loss_disc: 2.28133 (2.31974) | > loss_disc_real_0: 0.12313 (0.12273) | > loss_disc_real_1: 0.19244 (0.21113) | > loss_disc_real_2: 0.19078 (0.21570) | > loss_disc_real_3: 0.20825 (0.21904) | > loss_disc_real_4: 0.20775 (0.21483) | > loss_disc_real_5: 0.20536 (0.21386) | > loss_0: 2.28133 (2.31974) | > grad_norm_0: 16.96264 (16.67294) | > loss_gen: 2.52253 (2.55914) | > loss_kl: 2.54992 (2.65728) | > loss_feat: 8.95901 (8.67357) | > loss_mel: 17.82932 (17.76962) | > loss_duration: 1.72279 (1.70436) | > loss_1: 33.58357 (33.36403) | > grad_norm_1: 147.02138 (138.69324) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89360 (2.22843) | > loader_time: 0.03240 (0.03647)  --> STEP: 4050/15287 -- GLOBAL_STEP: 984625 | > loss_disc: 2.36516 (2.31999) | > loss_disc_real_0: 0.13437 (0.12276) | > loss_disc_real_1: 0.22581 (0.21110) | > loss_disc_real_2: 0.23302 (0.21569) | > loss_disc_real_3: 0.22566 (0.21904) | > loss_disc_real_4: 0.24108 (0.21486) | > loss_disc_real_5: 0.22432 (0.21385) | > loss_0: 2.36516 (2.31999) | > grad_norm_0: 14.94303 (16.71264) | > loss_gen: 2.39502 (2.55882) | > loss_kl: 2.63391 (2.65712) | > loss_feat: 8.45339 (8.67294) | > loss_mel: 17.46835 (17.76885) | > loss_duration: 1.67693 (1.70440) | > loss_1: 32.62761 (33.36219) | > grad_norm_1: 159.36569 (138.78026) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09740 (2.22653) | > loader_time: 0.03320 (0.03645)  --> STEP: 4075/15287 -- GLOBAL_STEP: 984650 | > loss_disc: 2.35928 (2.32004) | > loss_disc_real_0: 0.13833 (0.12276) | > loss_disc_real_1: 0.18930 (0.21107) | > loss_disc_real_2: 0.20840 (0.21569) | > loss_disc_real_3: 0.21819 (0.21904) | > loss_disc_real_4: 0.22126 (0.21486) | > loss_disc_real_5: 0.20382 (0.21387) | > loss_0: 2.35928 (2.32004) | > grad_norm_0: 25.26349 (16.74471) | > loss_gen: 2.37285 (2.55878) | > loss_kl: 2.60719 (2.65696) | > loss_feat: 8.14625 (8.67284) | > loss_mel: 17.65415 (17.76932) | > loss_duration: 1.69744 (1.70440) | > loss_1: 32.47787 (33.36237) | > grad_norm_1: 85.73518 (138.91107) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06400 (2.22565) | > loader_time: 0.04180 (0.03646)  --> STEP: 4100/15287 -- GLOBAL_STEP: 984675 | > loss_disc: 2.25784 (2.31984) | > loss_disc_real_0: 0.10735 (0.12269) | > loss_disc_real_1: 0.20658 (0.21110) | > loss_disc_real_2: 0.23000 (0.21568) | > loss_disc_real_3: 0.22932 (0.21902) | > loss_disc_real_4: 0.22752 (0.21483) | > loss_disc_real_5: 0.21039 (0.21386) | > loss_0: 2.25784 (2.31984) | > grad_norm_0: 13.98230 (16.77172) | > loss_gen: 2.58323 (2.55898) | > loss_kl: 2.60523 (2.65676) | > loss_feat: 9.16678 (8.67388) | > loss_mel: 17.45703 (17.76962) | > loss_duration: 1.67662 (1.70440) | > loss_1: 33.48890 (33.36370) | > grad_norm_1: 135.43768 (139.19707) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86410 (2.22448) | > loader_time: 0.03140 (0.03645)  --> STEP: 4125/15287 -- GLOBAL_STEP: 984700 | > loss_disc: 2.34760 (2.31975) | > loss_disc_real_0: 0.12959 (0.12266) | > loss_disc_real_1: 0.19038 (0.21108) | > loss_disc_real_2: 0.21961 (0.21568) | > loss_disc_real_3: 0.20864 (0.21900) | > loss_disc_real_4: 0.22918 (0.21481) | > loss_disc_real_5: 0.21548 (0.21389) | > loss_0: 2.34760 (2.31975) | > grad_norm_0: 14.05873 (16.79498) | > loss_gen: 2.41637 (2.55896) | > loss_kl: 2.80389 (2.65661) | > loss_feat: 8.62509 (8.67355) | > loss_mel: 17.65884 (17.76833) | > loss_duration: 1.70815 (1.70441) | > loss_1: 33.21234 (33.36194) | > grad_norm_1: 115.90697 (139.29115) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.78710 (2.22259) | > loader_time: 0.03110 (0.03643)  --> STEP: 4150/15287 -- GLOBAL_STEP: 984725 | > loss_disc: 2.32894 (2.31967) | > loss_disc_real_0: 0.12492 (0.12263) | > loss_disc_real_1: 0.20133 (0.21107) | > loss_disc_real_2: 0.23385 (0.21568) | > loss_disc_real_3: 0.22951 (0.21900) | > loss_disc_real_4: 0.25000 (0.21482) | > loss_disc_real_5: 0.20768 (0.21388) | > loss_0: 2.32894 (2.31967) | > grad_norm_0: 10.72504 (16.78554) | > loss_gen: 2.47763 (2.55894) | > loss_kl: 2.76600 (2.65661) | > loss_feat: 9.23489 (8.67393) | > loss_mel: 18.53520 (17.76834) | > loss_duration: 1.74862 (1.70448) | > loss_1: 34.76233 (33.36238) | > grad_norm_1: 148.71071 (139.24683) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03130 (2.22122) | > loader_time: 0.03250 (0.03641)  --> STEP: 4175/15287 -- GLOBAL_STEP: 984750 | > loss_disc: 2.27147 (2.31976) | > loss_disc_real_0: 0.10618 (0.12265) | > loss_disc_real_1: 0.19442 (0.21112) | > loss_disc_real_2: 0.21605 (0.21574) | > loss_disc_real_3: 0.18081 (0.21898) | > loss_disc_real_4: 0.20219 (0.21482) | > loss_disc_real_5: 0.19262 (0.21387) | > loss_0: 2.27147 (2.31976) | > grad_norm_0: 6.46333 (16.77773) | > loss_gen: 2.62796 (2.55896) | > loss_kl: 2.59459 (2.65658) | > loss_feat: 9.12642 (8.67395) | > loss_mel: 17.69309 (17.76882) | > loss_duration: 1.67867 (1.70449) | > loss_1: 33.72072 (33.36288) | > grad_norm_1: 156.82568 (139.24036) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96300 (2.21979) | > loader_time: 0.03310 (0.03641)  --> STEP: 4200/15287 -- GLOBAL_STEP: 984775 | > loss_disc: 2.22505 (2.31984) | > loss_disc_real_0: 0.07698 (0.12262) | > loss_disc_real_1: 0.18417 (0.21112) | > loss_disc_real_2: 0.20106 (0.21579) | > loss_disc_real_3: 0.21085 (0.21904) | > loss_disc_real_4: 0.19111 (0.21489) | > loss_disc_real_5: 0.19253 (0.21389) | > loss_0: 2.22505 (2.31984) | > grad_norm_0: 12.19634 (16.78521) | > loss_gen: 2.55849 (2.55914) | > loss_kl: 2.49227 (2.65634) | > loss_feat: 9.63356 (8.67423) | > loss_mel: 18.04842 (17.76999) | > loss_duration: 1.70961 (1.70444) | > loss_1: 34.44236 (33.36420) | > grad_norm_1: 195.21045 (139.23587) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17790 (2.21820) | > loader_time: 0.03620 (0.03638)  --> STEP: 4225/15287 -- GLOBAL_STEP: 984800 | > loss_disc: 2.38171 (2.31998) | > loss_disc_real_0: 0.15707 (0.12261) | > loss_disc_real_1: 0.19539 (0.21114) | > loss_disc_real_2: 0.20888 (0.21580) | > loss_disc_real_3: 0.18735 (0.21905) | > loss_disc_real_4: 0.20727 (0.21491) | > loss_disc_real_5: 0.22324 (0.21389) | > loss_0: 2.38171 (2.31998) | > grad_norm_0: 31.61786 (16.79639) | > loss_gen: 2.45167 (2.55916) | > loss_kl: 2.73385 (2.65607) | > loss_feat: 8.50159 (8.67370) | > loss_mel: 17.56320 (17.77023) | > loss_duration: 1.70969 (1.70445) | > loss_1: 32.96000 (33.36366) | > grad_norm_1: 90.75561 (139.30623) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01370 (2.21671) | > loader_time: 0.03380 (0.03637)  --> STEP: 4250/15287 -- GLOBAL_STEP: 984825 | > loss_disc: 2.25152 (2.31993) | > loss_disc_real_0: 0.08209 (0.12256) | > loss_disc_real_1: 0.20064 (0.21112) | > loss_disc_real_2: 0.18663 (0.21579) | > loss_disc_real_3: 0.20912 (0.21903) | > loss_disc_real_4: 0.18018 (0.21489) | > loss_disc_real_5: 0.23133 (0.21392) | > loss_0: 2.25152 (2.31993) | > grad_norm_0: 24.30399 (16.85534) | > loss_gen: 2.70271 (2.55897) | > loss_kl: 2.80164 (2.65606) | > loss_feat: 9.22564 (8.67398) | > loss_mel: 18.33146 (17.77027) | > loss_duration: 1.72604 (1.70446) | > loss_1: 34.78749 (33.36378) | > grad_norm_1: 249.91135 (139.42157) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19990 (2.21513) | > loader_time: 0.03880 (0.03635)  --> STEP: 4275/15287 -- GLOBAL_STEP: 984850 | > loss_disc: 2.34700 (2.31998) | > loss_disc_real_0: 0.16122 (0.12262) | > loss_disc_real_1: 0.19097 (0.21114) | > loss_disc_real_2: 0.22538 (0.21580) | > loss_disc_real_3: 0.21702 (0.21901) | > loss_disc_real_4: 0.21090 (0.21490) | > loss_disc_real_5: 0.20337 (0.21388) | > loss_0: 2.34700 (2.31998) | > grad_norm_0: 12.75430 (16.87343) | > loss_gen: 2.46175 (2.55881) | > loss_kl: 2.68010 (2.65632) | > loss_feat: 8.40207 (8.67386) | > loss_mel: 17.57318 (17.77018) | > loss_duration: 1.73807 (1.70453) | > loss_1: 32.85517 (33.36376) | > grad_norm_1: 98.88891 (139.40034) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91240 (2.21344) | > loader_time: 0.03150 (0.03633)  --> STEP: 4300/15287 -- GLOBAL_STEP: 984875 | > loss_disc: 2.29973 (2.31998) | > loss_disc_real_0: 0.11559 (0.12260) | > loss_disc_real_1: 0.20490 (0.21114) | > loss_disc_real_2: 0.20656 (0.21579) | > loss_disc_real_3: 0.21371 (0.21899) | > loss_disc_real_4: 0.22015 (0.21489) | > loss_disc_real_5: 0.20758 (0.21391) | > loss_0: 2.29973 (2.31998) | > grad_norm_0: 23.45319 (16.88553) | > loss_gen: 2.63301 (2.55888) | > loss_kl: 2.54886 (2.65638) | > loss_feat: 8.89754 (8.67404) | > loss_mel: 17.67982 (17.77007) | > loss_duration: 1.65835 (1.70451) | > loss_1: 33.41759 (33.36396) | > grad_norm_1: 126.59690 (139.49199) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99320 (2.21193) | > loader_time: 0.03360 (0.03631)  --> STEP: 4325/15287 -- GLOBAL_STEP: 984900 | > loss_disc: 2.35392 (2.31992) | > loss_disc_real_0: 0.09425 (0.12258) | > loss_disc_real_1: 0.23280 (0.21111) | > loss_disc_real_2: 0.22897 (0.21577) | > loss_disc_real_3: 0.20819 (0.21897) | > loss_disc_real_4: 0.20603 (0.21486) | > loss_disc_real_5: 0.18526 (0.21391) | > loss_0: 2.35392 (2.31992) | > grad_norm_0: 9.91450 (16.89639) | > loss_gen: 2.76926 (2.55895) | > loss_kl: 2.51431 (2.65632) | > loss_feat: 8.41113 (8.67413) | > loss_mel: 17.35568 (17.77050) | > loss_duration: 1.73556 (1.70455) | > loss_1: 32.78595 (33.36450) | > grad_norm_1: 188.17810 (139.62775) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35400 (2.21098) | > loader_time: 0.04080 (0.03632)  --> STEP: 4350/15287 -- GLOBAL_STEP: 984925 | > loss_disc: 2.28686 (2.31984) | > loss_disc_real_0: 0.11081 (0.12257) | > loss_disc_real_1: 0.20722 (0.21110) | > loss_disc_real_2: 0.19288 (0.21577) | > loss_disc_real_3: 0.21898 (0.21895) | > loss_disc_real_4: 0.20572 (0.21485) | > loss_disc_real_5: 0.17567 (0.21388) | > loss_0: 2.28686 (2.31984) | > grad_norm_0: 12.72549 (16.91335) | > loss_gen: 2.55315 (2.55878) | > loss_kl: 2.68025 (2.65635) | > loss_feat: 8.70287 (8.67396) | > loss_mel: 17.64787 (17.77014) | > loss_duration: 1.71146 (1.70448) | > loss_1: 33.29560 (33.36377) | > grad_norm_1: 158.67268 (139.68498) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15700 (2.20964) | > loader_time: 0.03830 (0.03630)  --> STEP: 4375/15287 -- GLOBAL_STEP: 984950 | > loss_disc: 2.28777 (2.31987) | > loss_disc_real_0: 0.09457 (0.12263) | > loss_disc_real_1: 0.19108 (0.21109) | > loss_disc_real_2: 0.19750 (0.21575) | > loss_disc_real_3: 0.20783 (0.21896) | > loss_disc_real_4: 0.20008 (0.21485) | > loss_disc_real_5: 0.22390 (0.21385) | > loss_0: 2.28777 (2.31987) | > grad_norm_0: 10.14762 (16.90593) | > loss_gen: 2.50118 (2.55893) | > loss_kl: 2.69489 (2.65644) | > loss_feat: 8.97814 (8.67405) | > loss_mel: 17.95250 (17.76996) | > loss_duration: 1.73866 (1.70451) | > loss_1: 33.86537 (33.36393) | > grad_norm_1: 121.38445 (139.45679) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95370 (2.20817) | > loader_time: 0.03170 (0.03628)  --> STEP: 4400/15287 -- GLOBAL_STEP: 984975 | > loss_disc: 2.34339 (2.32003) | > loss_disc_real_0: 0.07998 (0.12270) | > loss_disc_real_1: 0.20295 (0.21110) | > loss_disc_real_2: 0.21898 (0.21578) | > loss_disc_real_3: 0.20406 (0.21897) | > loss_disc_real_4: 0.23898 (0.21488) | > loss_disc_real_5: 0.21899 (0.21384) | > loss_0: 2.34339 (2.32003) | > grad_norm_0: 18.20102 (16.89612) | > loss_gen: 2.54563 (2.55892) | > loss_kl: 2.77765 (2.65664) | > loss_feat: 9.54978 (8.67377) | > loss_mel: 18.00632 (17.77008) | > loss_duration: 1.65375 (1.70451) | > loss_1: 34.53314 (33.36396) | > grad_norm_1: 219.22951 (139.35188) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94980 (2.20676) | > loader_time: 0.03250 (0.03626)  --> STEP: 4425/15287 -- GLOBAL_STEP: 985000 | > loss_disc: 2.37383 (2.32023) | > loss_disc_real_0: 0.12924 (0.12274) | > loss_disc_real_1: 0.21350 (0.21113) | > loss_disc_real_2: 0.20853 (0.21580) | > loss_disc_real_3: 0.24021 (0.21898) | > loss_disc_real_4: 0.22923 (0.21489) | > loss_disc_real_5: 0.23551 (0.21384) | > loss_0: 2.37383 (2.32023) | > grad_norm_0: 8.95164 (16.87272) | > loss_gen: 2.63577 (2.55893) | > loss_kl: 2.64656 (2.65657) | > loss_feat: 8.67248 (8.67324) | > loss_mel: 17.91420 (17.77077) | > loss_duration: 1.69913 (1.70451) | > loss_1: 33.56815 (33.36408) | > grad_norm_1: 88.60489 (139.13995) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32240 (2.20594) | > loader_time: 0.03830 (0.03625)  --> STEP: 4450/15287 -- GLOBAL_STEP: 985025 | > loss_disc: 2.31139 (2.32023) | > loss_disc_real_0: 0.15119 (0.12275) | > loss_disc_real_1: 0.19109 (0.21114) | > loss_disc_real_2: 0.25161 (0.21581) | > loss_disc_real_3: 0.25902 (0.21897) | > loss_disc_real_4: 0.23164 (0.21489) | > loss_disc_real_5: 0.20293 (0.21384) | > loss_0: 2.31139 (2.32023) | > grad_norm_0: 27.89735 (16.86337) | > loss_gen: 2.55091 (2.55908) | > loss_kl: 2.49738 (2.65651) | > loss_feat: 8.09049 (8.67345) | > loss_mel: 17.11432 (17.77111) | > loss_duration: 1.70690 (1.70451) | > loss_1: 31.96001 (33.36470) | > grad_norm_1: 116.16067 (139.14145) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95100 (2.20473) | > loader_time: 0.03170 (0.03625)  --> STEP: 4475/15287 -- GLOBAL_STEP: 985050 | > loss_disc: 2.31476 (2.32030) | > loss_disc_real_0: 0.09932 (0.12272) | > loss_disc_real_1: 0.20620 (0.21116) | > loss_disc_real_2: 0.21401 (0.21582) | > loss_disc_real_3: 0.20525 (0.21899) | > loss_disc_real_4: 0.20363 (0.21491) | > loss_disc_real_5: 0.18014 (0.21382) | > loss_0: 2.31476 (2.32030) | > grad_norm_0: 5.68994 (16.84573) | > loss_gen: 2.79646 (2.55897) | > loss_kl: 2.62376 (2.65648) | > loss_feat: 9.41717 (8.67324) | > loss_mel: 18.18362 (17.77086) | > loss_duration: 1.68548 (1.70451) | > loss_1: 34.70650 (33.36411) | > grad_norm_1: 94.90747 (139.07205) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93790 (2.20326) | > loader_time: 0.03230 (0.03623)  --> STEP: 4500/15287 -- GLOBAL_STEP: 985075 | > loss_disc: 2.30101 (2.32032) | > loss_disc_real_0: 0.10391 (0.12276) | > loss_disc_real_1: 0.20144 (0.21118) | > loss_disc_real_2: 0.20009 (0.21582) | > loss_disc_real_3: 0.21447 (0.21901) | > loss_disc_real_4: 0.20989 (0.21492) | > loss_disc_real_5: 0.19997 (0.21382) | > loss_0: 2.30101 (2.32032) | > grad_norm_0: 9.26215 (16.84244) | > loss_gen: 2.51721 (2.55899) | > loss_kl: 2.60941 (2.65636) | > loss_feat: 8.67873 (8.67289) | > loss_mel: 17.21196 (17.77053) | > loss_duration: 1.67327 (1.70450) | > loss_1: 32.69057 (33.36330) | > grad_norm_1: 115.10161 (139.09074) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93130 (2.20210) | > loader_time: 0.03160 (0.03622)  --> STEP: 4525/15287 -- GLOBAL_STEP: 985100 | > loss_disc: 2.29257 (2.32025) | > loss_disc_real_0: 0.12460 (0.12273) | > loss_disc_real_1: 0.19233 (0.21117) | > loss_disc_real_2: 0.19725 (0.21583) | > loss_disc_real_3: 0.19385 (0.21898) | > loss_disc_real_4: 0.22055 (0.21489) | > loss_disc_real_5: 0.21537 (0.21379) | > loss_0: 2.29257 (2.32025) | > grad_norm_0: 10.52796 (16.81478) | > loss_gen: 2.78522 (2.55896) | > loss_kl: 2.61639 (2.65638) | > loss_feat: 9.43452 (8.67315) | > loss_mel: 17.74275 (17.77070) | > loss_duration: 1.69653 (1.70454) | > loss_1: 34.27541 (33.36378) | > grad_norm_1: 177.50056 (138.97963) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90220 (2.20086) | > loader_time: 0.03180 (0.03621)  --> STEP: 4550/15287 -- GLOBAL_STEP: 985125 | > loss_disc: 2.39670 (2.32027) | > loss_disc_real_0: 0.10794 (0.12271) | > loss_disc_real_1: 0.14964 (0.21116) | > loss_disc_real_2: 0.17809 (0.21584) | > loss_disc_real_3: 0.20331 (0.21902) | > loss_disc_real_4: 0.23670 (0.21490) | > loss_disc_real_5: 0.19738 (0.21380) | > loss_0: 2.39670 (2.32027) | > grad_norm_0: 31.76278 (16.82336) | > loss_gen: 2.27645 (2.55873) | > loss_kl: 2.60628 (2.65632) | > loss_feat: 7.91307 (8.67197) | > loss_mel: 17.33706 (17.77016) | > loss_duration: 1.73244 (1.70457) | > loss_1: 31.86530 (33.36177) | > grad_norm_1: 165.27832 (139.00180) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85700 (2.19964) | > loader_time: 0.03430 (0.03620)  --> STEP: 4575/15287 -- GLOBAL_STEP: 985150 | > loss_disc: 2.29655 (2.32029) | > loss_disc_real_0: 0.11535 (0.12274) | > loss_disc_real_1: 0.21178 (0.21117) | > loss_disc_real_2: 0.21946 (0.21583) | > loss_disc_real_3: 0.22544 (0.21902) | > loss_disc_real_4: 0.22343 (0.21489) | > loss_disc_real_5: 0.18494 (0.21381) | > loss_0: 2.29655 (2.32029) | > grad_norm_0: 25.46410 (16.81790) | > loss_gen: 2.48501 (2.55868) | > loss_kl: 2.48062 (2.65627) | > loss_feat: 8.95103 (8.67146) | > loss_mel: 17.49549 (17.76952) | > loss_duration: 1.73889 (1.70457) | > loss_1: 33.15104 (33.36054) | > grad_norm_1: 130.69592 (138.93739) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93230 (2.19832) | > loader_time: 0.03140 (0.03618)  --> STEP: 4600/15287 -- GLOBAL_STEP: 985175 | > loss_disc: 2.32809 (2.32020) | > loss_disc_real_0: 0.10064 (0.12270) | > loss_disc_real_1: 0.19232 (0.21115) | > loss_disc_real_2: 0.19519 (0.21583) | > loss_disc_real_3: 0.24086 (0.21904) | > loss_disc_real_4: 0.26103 (0.21493) | > loss_disc_real_5: 0.20568 (0.21380) | > loss_0: 2.32809 (2.32020) | > grad_norm_0: 15.72211 (16.80596) | > loss_gen: 2.33810 (2.55877) | > loss_kl: 2.76209 (2.65641) | > loss_feat: 8.45838 (8.67170) | > loss_mel: 17.65666 (17.76896) | > loss_duration: 1.68896 (1.70462) | > loss_1: 32.90419 (33.36048) | > grad_norm_1: 137.00116 (138.78423) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15650 (2.19705) | > loader_time: 0.03710 (0.03617)  --> STEP: 4625/15287 -- GLOBAL_STEP: 985200 | > loss_disc: 2.32950 (2.32033) | > loss_disc_real_0: 0.17766 (0.12272) | > loss_disc_real_1: 0.19667 (0.21115) | > loss_disc_real_2: 0.19670 (0.21584) | > loss_disc_real_3: 0.19953 (0.21906) | > loss_disc_real_4: 0.21712 (0.21493) | > loss_disc_real_5: 0.19696 (0.21380) | > loss_0: 2.32950 (2.32033) | > grad_norm_0: 26.62240 (16.79856) | > loss_gen: 2.69844 (2.55872) | > loss_kl: 2.60255 (2.65645) | > loss_feat: 8.23312 (8.67139) | > loss_mel: 17.63897 (17.76924) | > loss_duration: 1.69378 (1.70467) | > loss_1: 32.86686 (33.36049) | > grad_norm_1: 61.03033 (138.55438) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95680 (2.19634) | > loader_time: 0.03400 (0.03616)  --> STEP: 4650/15287 -- GLOBAL_STEP: 985225 | > loss_disc: 2.27018 (2.32037) | > loss_disc_real_0: 0.13514 (0.12276) | > loss_disc_real_1: 0.22251 (0.21114) | > loss_disc_real_2: 0.22434 (0.21584) | > loss_disc_real_3: 0.21096 (0.21903) | > loss_disc_real_4: 0.20463 (0.21494) | > loss_disc_real_5: 0.21604 (0.21375) | > loss_0: 2.27018 (2.32037) | > grad_norm_0: 9.81782 (16.79651) | > loss_gen: 2.67417 (2.55857) | > loss_kl: 2.62479 (2.65654) | > loss_feat: 9.18703 (8.67104) | > loss_mel: 18.54974 (17.76955) | > loss_duration: 1.71571 (1.70462) | > loss_1: 34.75143 (33.36036) | > grad_norm_1: 134.25963 (138.32500) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40060 (2.19655) | > loader_time: 0.03900 (0.03617)  --> STEP: 4675/15287 -- GLOBAL_STEP: 985250 | > loss_disc: 2.39477 (2.32028) | > loss_disc_real_0: 0.13656 (0.12274) | > loss_disc_real_1: 0.19482 (0.21115) | > loss_disc_real_2: 0.20391 (0.21585) | > loss_disc_real_3: 0.24138 (0.21905) | > loss_disc_real_4: 0.23449 (0.21493) | > loss_disc_real_5: 0.22699 (0.21374) | > loss_0: 2.39477 (2.32028) | > grad_norm_0: 24.61565 (16.82057) | > loss_gen: 2.48091 (2.55863) | > loss_kl: 2.56389 (2.65626) | > loss_feat: 7.87677 (8.67114) | > loss_mel: 16.91492 (17.76918) | > loss_duration: 1.69262 (1.70465) | > loss_1: 31.52910 (33.35990) | > grad_norm_1: 149.57651 (138.25519) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.81620 (2.19641) | > loader_time: 0.03120 (0.03618)  --> STEP: 4700/15287 -- GLOBAL_STEP: 985275 | > loss_disc: 2.26586 (2.32007) | > loss_disc_real_0: 0.13061 (0.12269) | > loss_disc_real_1: 0.20095 (0.21113) | > loss_disc_real_2: 0.20165 (0.21583) | > loss_disc_real_3: 0.21193 (0.21904) | > loss_disc_real_4: 0.21347 (0.21492) | > loss_disc_real_5: 0.20029 (0.21372) | > loss_0: 2.26586 (2.32007) | > grad_norm_0: 14.26584 (16.82256) | > loss_gen: 2.55485 (2.55879) | > loss_kl: 2.65991 (2.65615) | > loss_feat: 9.00506 (8.67154) | > loss_mel: 17.52626 (17.76916) | > loss_duration: 1.64561 (1.70459) | > loss_1: 33.39169 (33.36025) | > grad_norm_1: 155.79239 (138.32878) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94950 (2.19497) | > loader_time: 0.03280 (0.03616)  --> STEP: 4725/15287 -- GLOBAL_STEP: 985300 | > loss_disc: 2.27686 (2.32000) | > loss_disc_real_0: 0.11307 (0.12267) | > loss_disc_real_1: 0.19894 (0.21114) | > loss_disc_real_2: 0.19450 (0.21582) | > loss_disc_real_3: 0.18729 (0.21903) | > loss_disc_real_4: 0.18952 (0.21490) | > loss_disc_real_5: 0.18820 (0.21371) | > loss_0: 2.27686 (2.32000) | > grad_norm_0: 31.24133 (16.85604) | > loss_gen: 2.43417 (2.55870) | > loss_kl: 2.64203 (2.65610) | > loss_feat: 9.01456 (8.67138) | > loss_mel: 18.11106 (17.76849) | > loss_duration: 1.68448 (1.70455) | > loss_1: 33.88631 (33.35925) | > grad_norm_1: 273.38293 (138.34767) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94820 (2.19360) | > loader_time: 0.03190 (0.03614)  --> STEP: 4750/15287 -- GLOBAL_STEP: 985325 | > loss_disc: 2.28926 (2.31989) | > loss_disc_real_0: 0.10751 (0.12264) | > loss_disc_real_1: 0.18645 (0.21110) | > loss_disc_real_2: 0.17982 (0.21578) | > loss_disc_real_3: 0.22321 (0.21904) | > loss_disc_real_4: 0.21836 (0.21488) | > loss_disc_real_5: 0.23542 (0.21370) | > loss_0: 2.28926 (2.31989) | > grad_norm_0: 31.85930 (16.88823) | > loss_gen: 2.42583 (2.55856) | > loss_kl: 2.75315 (2.65618) | > loss_feat: 8.62950 (8.67210) | > loss_mel: 17.85122 (17.76814) | > loss_duration: 1.70053 (1.70454) | > loss_1: 33.36024 (33.35956) | > grad_norm_1: 232.81989 (138.63994) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85400 (2.19244) | > loader_time: 0.03470 (0.03613)  --> STEP: 4775/15287 -- GLOBAL_STEP: 985350 | > loss_disc: 2.32644 (2.31980) | > loss_disc_real_0: 0.08654 (0.12263) | > loss_disc_real_1: 0.20131 (0.21107) | > loss_disc_real_2: 0.20011 (0.21574) | > loss_disc_real_3: 0.22089 (0.21900) | > loss_disc_real_4: 0.22781 (0.21487) | > loss_disc_real_5: 0.26539 (0.21372) | > loss_0: 2.32644 (2.31980) | > grad_norm_0: 7.22326 (16.88867) | > loss_gen: 2.54140 (2.55857) | > loss_kl: 2.74953 (2.65648) | > loss_feat: 8.59865 (8.67282) | > loss_mel: 17.90478 (17.76771) | > loss_duration: 1.72379 (1.70455) | > loss_1: 33.51815 (33.36017) | > grad_norm_1: 92.33980 (138.59386) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.83150 (2.19123) | > loader_time: 0.03150 (0.03611)  --> STEP: 4800/15287 -- GLOBAL_STEP: 985375 | > loss_disc: 2.41138 (2.31994) | > loss_disc_real_0: 0.12356 (0.12261) | > loss_disc_real_1: 0.24074 (0.21110) | > loss_disc_real_2: 0.22414 (0.21577) | > loss_disc_real_3: 0.25085 (0.21899) | > loss_disc_real_4: 0.25176 (0.21486) | > loss_disc_real_5: 0.19131 (0.21372) | > loss_0: 2.41138 (2.31994) | > grad_norm_0: 25.29119 (16.87320) | > loss_gen: 2.51550 (2.55856) | > loss_kl: 2.62770 (2.65665) | > loss_feat: 8.40301 (8.67288) | > loss_mel: 17.86937 (17.76820) | > loss_duration: 1.73119 (1.70454) | > loss_1: 33.14676 (33.36085) | > grad_norm_1: 162.29303 (138.60875) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07710 (2.19087) | > loader_time: 0.04220 (0.03611)  --> STEP: 4825/15287 -- GLOBAL_STEP: 985400 | > loss_disc: 2.29498 (2.31998) | > loss_disc_real_0: 0.09617 (0.12260) | > loss_disc_real_1: 0.19587 (0.21110) | > loss_disc_real_2: 0.18876 (0.21575) | > loss_disc_real_3: 0.21392 (0.21900) | > loss_disc_real_4: 0.22156 (0.21487) | > loss_disc_real_5: 0.20843 (0.21373) | > loss_0: 2.29498 (2.31998) | > grad_norm_0: 25.46725 (16.88356) | > loss_gen: 2.40716 (2.55843) | > loss_kl: 2.61860 (2.65643) | > loss_feat: 8.84550 (8.67249) | > loss_mel: 17.93349 (17.76864) | > loss_duration: 1.72376 (1.70453) | > loss_1: 33.52851 (33.36055) | > grad_norm_1: 200.18945 (138.66682) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05050 (2.19085) | > loader_time: 0.03400 (0.03613)  --> STEP: 4850/15287 -- GLOBAL_STEP: 985425 | > loss_disc: 2.39178 (2.31993) | > loss_disc_real_0: 0.13681 (0.12258) | > loss_disc_real_1: 0.23587 (0.21107) | > loss_disc_real_2: 0.24592 (0.21573) | > loss_disc_real_3: 0.22655 (0.21900) | > loss_disc_real_4: 0.21190 (0.21487) | > loss_disc_real_5: 0.21401 (0.21372) | > loss_0: 2.39178 (2.31993) | > grad_norm_0: 5.54256 (16.88873) | > loss_gen: 2.54161 (2.55845) | > loss_kl: 2.69015 (2.65617) | > loss_feat: 9.11638 (8.67321) | > loss_mel: 18.16806 (17.76863) | > loss_duration: 1.73990 (1.70452) | > loss_1: 34.25610 (33.36101) | > grad_norm_1: 49.44722 (138.72118) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93260 (2.18999) | > loader_time: 0.03240 (0.03613)  --> STEP: 4875/15287 -- GLOBAL_STEP: 985450 | > loss_disc: 2.27191 (2.31985) | > loss_disc_real_0: 0.12235 (0.12256) | > loss_disc_real_1: 0.19879 (0.21106) | > loss_disc_real_2: 0.19851 (0.21569) | > loss_disc_real_3: 0.20842 (0.21900) | > loss_disc_real_4: 0.19295 (0.21487) | > loss_disc_real_5: 0.21032 (0.21372) | > loss_0: 2.27191 (2.31985) | > grad_norm_0: 16.37514 (16.88718) | > loss_gen: 2.59551 (2.55843) | > loss_kl: 2.76397 (2.65617) | > loss_feat: 9.29674 (8.67391) | > loss_mel: 18.18041 (17.76939) | > loss_duration: 1.69426 (1.70449) | > loss_1: 34.53090 (33.36242) | > grad_norm_1: 166.89777 (138.76881) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90530 (2.18923) | > loader_time: 0.03710 (0.03612)  --> STEP: 4900/15287 -- GLOBAL_STEP: 985475 | > loss_disc: 2.31298 (2.31973) | > loss_disc_real_0: 0.11510 (0.12253) | > loss_disc_real_1: 0.22842 (0.21106) | > loss_disc_real_2: 0.20791 (0.21571) | > loss_disc_real_3: 0.21338 (0.21898) | > loss_disc_real_4: 0.21478 (0.21487) | > loss_disc_real_5: 0.21361 (0.21369) | > loss_0: 2.31298 (2.31973) | > grad_norm_0: 6.73049 (16.90674) | > loss_gen: 2.66376 (2.55848) | > loss_kl: 2.63702 (2.65599) | > loss_feat: 8.88012 (8.67353) | > loss_mel: 17.93498 (17.76899) | > loss_duration: 1.71120 (1.70449) | > loss_1: 33.82707 (33.36153) | > grad_norm_1: 142.11499 (138.82817) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15430 (2.18817) | > loader_time: 0.04360 (0.03612)  --> STEP: 4925/15287 -- GLOBAL_STEP: 985500 | > loss_disc: 2.24568 (2.31969) | > loss_disc_real_0: 0.08729 (0.12259) | > loss_disc_real_1: 0.19535 (0.21105) | > loss_disc_real_2: 0.23545 (0.21574) | > loss_disc_real_3: 0.19419 (0.21899) | > loss_disc_real_4: 0.19567 (0.21486) | > loss_disc_real_5: 0.23192 (0.21369) | > loss_0: 2.24568 (2.31969) | > grad_norm_0: 7.65413 (16.90897) | > loss_gen: 2.75281 (2.55870) | > loss_kl: 2.65177 (2.65608) | > loss_feat: 9.02225 (8.67346) | > loss_mel: 17.83882 (17.76869) | > loss_duration: 1.70248 (1.70449) | > loss_1: 33.96813 (33.36147) | > grad_norm_1: 193.23100 (138.78596) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.80860 (2.18720) | > loader_time: 0.03310 (0.03611)  --> STEP: 4950/15287 -- GLOBAL_STEP: 985525 | > loss_disc: 2.26383 (2.32000) | > loss_disc_real_0: 0.14766 (0.12262) | > loss_disc_real_1: 0.19022 (0.21108) | > loss_disc_real_2: 0.18918 (0.21574) | > loss_disc_real_3: 0.20076 (0.21904) | > loss_disc_real_4: 0.21385 (0.21490) | > loss_disc_real_5: 0.19738 (0.21368) | > loss_0: 2.26383 (2.32000) | > grad_norm_0: 11.96486 (16.91349) | > loss_gen: 2.59282 (2.55844) | > loss_kl: 2.57315 (2.65604) | > loss_feat: 8.86848 (8.67269) | > loss_mel: 17.86370 (17.76866) | > loss_duration: 1.71623 (1.70452) | > loss_1: 33.61437 (33.36038) | > grad_norm_1: 53.49279 (138.76302) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86570 (2.18594) | > loader_time: 0.03140 (0.03610)  --> STEP: 4975/15287 -- GLOBAL_STEP: 985550 | > loss_disc: 2.26071 (2.31989) | > loss_disc_real_0: 0.09499 (0.12258) | > loss_disc_real_1: 0.19889 (0.21105) | > loss_disc_real_2: 0.21409 (0.21571) | > loss_disc_real_3: 0.22745 (0.21905) | > loss_disc_real_4: 0.20976 (0.21488) | > loss_disc_real_5: 0.19800 (0.21369) | > loss_0: 2.26071 (2.31989) | > grad_norm_0: 20.04404 (16.91334) | > loss_gen: 2.59768 (2.55849) | > loss_kl: 2.65051 (2.65592) | > loss_feat: 9.37855 (8.67334) | > loss_mel: 17.98161 (17.76898) | > loss_duration: 1.72892 (1.70450) | > loss_1: 34.33727 (33.36127) | > grad_norm_1: 110.15998 (138.80992) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01710 (2.18493) | > loader_time: 0.03260 (0.03609)  --> STEP: 5000/15287 -- GLOBAL_STEP: 985575 | > loss_disc: 2.25672 (2.32001) | > loss_disc_real_0: 0.11558 (0.12260) | > loss_disc_real_1: 0.23456 (0.21108) | > loss_disc_real_2: 0.22935 (0.21571) | > loss_disc_real_3: 0.19029 (0.21910) | > loss_disc_real_4: 0.19609 (0.21488) | > loss_disc_real_5: 0.18563 (0.21371) | > loss_0: 2.25672 (2.32001) | > grad_norm_0: 13.44018 (16.93753) | > loss_gen: 2.64174 (2.55844) | > loss_kl: 2.54652 (2.65597) | > loss_feat: 9.20929 (8.67290) | > loss_mel: 17.48026 (17.76846) | > loss_duration: 1.71603 (1.70445) | > loss_1: 33.59385 (33.36026) | > grad_norm_1: 173.62117 (138.92188) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44760 (2.18400) | > loader_time: 0.03790 (0.03608)  --> STEP: 5025/15287 -- GLOBAL_STEP: 985600 | > loss_disc: 2.49325 (2.32014) | > loss_disc_real_0: 0.10204 (0.12261) | > loss_disc_real_1: 0.23647 (0.21107) | > loss_disc_real_2: 0.23225 (0.21570) | > loss_disc_real_3: 0.23752 (0.21910) | > loss_disc_real_4: 0.22167 (0.21488) | > loss_disc_real_5: 0.20063 (0.21374) | > loss_0: 2.49325 (2.32014) | > grad_norm_0: 7.56386 (16.91015) | > loss_gen: 2.59769 (2.55841) | > loss_kl: 2.80593 (2.65608) | > loss_feat: 8.90830 (8.67362) | > loss_mel: 18.26455 (17.76902) | > loss_duration: 1.69068 (1.70445) | > loss_1: 34.26715 (33.36161) | > grad_norm_1: 58.41316 (138.73215) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04410 (2.18306) | > loader_time: 0.03580 (0.03608)  --> STEP: 5050/15287 -- GLOBAL_STEP: 985625 | > loss_disc: 2.45208 (2.32044) | > loss_disc_real_0: 0.14483 (0.12266) | > loss_disc_real_1: 0.19712 (0.21110) | > loss_disc_real_2: 0.24621 (0.21573) | > loss_disc_real_3: 0.23057 (0.21912) | > loss_disc_real_4: 0.22805 (0.21490) | > loss_disc_real_5: 0.18344 (0.21374) | > loss_0: 2.45208 (2.32044) | > grad_norm_0: 5.64924 (16.87558) | > loss_gen: 2.40863 (2.55823) | > loss_kl: 2.62496 (2.65599) | > loss_feat: 7.85695 (8.67216) | > loss_mel: 17.65006 (17.76984) | > loss_duration: 1.76307 (1.70447) | > loss_1: 32.30367 (33.36072) | > grad_norm_1: 71.36967 (138.37590) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87240 (2.18202) | > loader_time: 0.03270 (0.03606)  --> STEP: 5075/15287 -- GLOBAL_STEP: 985650 | > loss_disc: 2.33569 (2.32066) | > loss_disc_real_0: 0.14996 (0.12274) | > loss_disc_real_1: 0.20339 (0.21110) | > loss_disc_real_2: 0.20402 (0.21574) | > loss_disc_real_3: 0.20886 (0.21913) | > loss_disc_real_4: 0.22871 (0.21492) | > loss_disc_real_5: 0.18171 (0.21377) | > loss_0: 2.33569 (2.32066) | > grad_norm_0: 17.63536 (16.87086) | > loss_gen: 2.51268 (2.55818) | > loss_kl: 2.52118 (2.65589) | > loss_feat: 8.91198 (8.67108) | > loss_mel: 17.85236 (17.77018) | > loss_duration: 1.72343 (1.70447) | > loss_1: 33.52163 (33.35981) | > grad_norm_1: 160.14871 (138.24812) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86010 (2.18171) | > loader_time: 0.03150 (0.03606)  --> STEP: 5100/15287 -- GLOBAL_STEP: 985675 | > loss_disc: 2.33271 (2.32065) | > loss_disc_real_0: 0.14418 (0.12270) | > loss_disc_real_1: 0.17977 (0.21107) | > loss_disc_real_2: 0.18390 (0.21573) | > loss_disc_real_3: 0.20388 (0.21912) | > loss_disc_real_4: 0.20161 (0.21489) | > loss_disc_real_5: 0.23967 (0.21375) | > loss_0: 2.33271 (2.32065) | > grad_norm_0: 25.83440 (16.86516) | > loss_gen: 2.54358 (2.55787) | > loss_kl: 2.58710 (2.65573) | > loss_feat: 8.38585 (8.67080) | > loss_mel: 17.39281 (17.77030) | > loss_duration: 1.67369 (1.70447) | > loss_1: 32.58303 (33.35920) | > grad_norm_1: 156.76665 (138.23984) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88370 (2.18032) | > loader_time: 0.03160 (0.03604)  --> STEP: 5125/15287 -- GLOBAL_STEP: 985700 | > loss_disc: 2.26153 (2.32053) | > loss_disc_real_0: 0.09081 (0.12267) | > loss_disc_real_1: 0.23079 (0.21108) | > loss_disc_real_2: 0.22089 (0.21573) | > loss_disc_real_3: 0.19823 (0.21909) | > loss_disc_real_4: 0.17832 (0.21485) | > loss_disc_real_5: 0.21992 (0.21373) | > loss_0: 2.26153 (2.32053) | > grad_norm_0: 30.34393 (16.87526) | > loss_gen: 2.56144 (2.55780) | > loss_kl: 2.64576 (2.65574) | > loss_feat: 8.59376 (8.67051) | > loss_mel: 17.95374 (17.77025) | > loss_duration: 1.65490 (1.70443) | > loss_1: 33.40961 (33.35875) | > grad_norm_1: 183.41895 (138.34142) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96490 (2.17934) | > loader_time: 0.03120 (0.03603)  --> STEP: 5150/15287 -- GLOBAL_STEP: 985725 | > loss_disc: 2.26645 (2.32035) | > loss_disc_real_0: 0.10404 (0.12264) | > loss_disc_real_1: 0.22993 (0.21108) | > loss_disc_real_2: 0.20972 (0.21572) | > loss_disc_real_3: 0.20689 (0.21907) | > loss_disc_real_4: 0.20351 (0.21484) | > loss_disc_real_5: 0.19990 (0.21372) | > loss_0: 2.26645 (2.32035) | > grad_norm_0: 7.27006 (16.87558) | > loss_gen: 2.65649 (2.55787) | > loss_kl: 2.59931 (2.65571) | > loss_feat: 8.64263 (8.67120) | > loss_mel: 17.43505 (17.77012) | > loss_duration: 1.71039 (1.70443) | > loss_1: 33.04386 (33.35934) | > grad_norm_1: 161.94872 (138.42415) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.84100 (2.17893) | > loader_time: 0.04140 (0.03603)  --> STEP: 5175/15287 -- GLOBAL_STEP: 985750 | > loss_disc: 2.40598 (2.32026) | > loss_disc_real_0: 0.12131 (0.12260) | > loss_disc_real_1: 0.21576 (0.21108) | > loss_disc_real_2: 0.25260 (0.21570) | > loss_disc_real_3: 0.25915 (0.21906) | > loss_disc_real_4: 0.25608 (0.21482) | > loss_disc_real_5: 0.21933 (0.21370) | > loss_0: 2.40598 (2.32026) | > grad_norm_0: 20.20426 (16.86427) | > loss_gen: 2.59880 (2.55795) | > loss_kl: 2.68506 (2.65583) | > loss_feat: 8.56501 (8.67127) | > loss_mel: 17.43020 (17.76974) | > loss_duration: 1.64994 (1.70442) | > loss_1: 32.92900 (33.35921) | > grad_norm_1: 79.10104 (138.34769) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87950 (2.17834) | > loader_time: 0.03210 (0.03603)  --> STEP: 5200/15287 -- GLOBAL_STEP: 985775 | > loss_disc: 2.39114 (2.32046) | > loss_disc_real_0: 0.21103 (0.12267) | > loss_disc_real_1: 0.23963 (0.21115) | > loss_disc_real_2: 0.23439 (0.21578) | > loss_disc_real_3: 0.16853 (0.21911) | > loss_disc_real_4: 0.18457 (0.21483) | > loss_disc_real_5: 0.22765 (0.21372) | > loss_0: 2.39114 (2.32046) | > grad_norm_0: 18.16470 (16.90416) | > loss_gen: 2.49818 (2.55817) | > loss_kl: 2.51021 (2.65603) | > loss_feat: 8.70622 (8.67072) | > loss_mel: 17.07807 (17.76973) | > loss_duration: 1.69881 (1.70444) | > loss_1: 32.49149 (33.35909) | > grad_norm_1: 150.71977 (138.46739) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.12750 (2.17802) | > loader_time: 0.04320 (0.03604)  --> STEP: 5225/15287 -- GLOBAL_STEP: 985800 | > loss_disc: 2.28340 (2.32042) | > loss_disc_real_0: 0.09670 (0.12266) | > loss_disc_real_1: 0.20737 (0.21117) | > loss_disc_real_2: 0.20126 (0.21578) | > loss_disc_real_3: 0.22762 (0.21911) | > loss_disc_real_4: 0.20575 (0.21485) | > loss_disc_real_5: 0.21200 (0.21374) | > loss_0: 2.28340 (2.32042) | > grad_norm_0: 21.62014 (16.88816) | > loss_gen: 2.28381 (2.55811) | > loss_kl: 2.75317 (2.65602) | > loss_feat: 8.68026 (8.67060) | > loss_mel: 18.09913 (17.76954) | > loss_duration: 1.71369 (1.70442) | > loss_1: 33.53006 (33.35868) | > grad_norm_1: 164.11674 (138.37627) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.83640 (2.17761) | > loader_time: 0.03050 (0.03605)  --> STEP: 5250/15287 -- GLOBAL_STEP: 985825 | > loss_disc: 2.27542 (2.32046) | > loss_disc_real_0: 0.09593 (0.12266) | > loss_disc_real_1: 0.20647 (0.21115) | > loss_disc_real_2: 0.21904 (0.21578) | > loss_disc_real_3: 0.21723 (0.21910) | > loss_disc_real_4: 0.22571 (0.21483) | > loss_disc_real_5: 0.23609 (0.21373) | > loss_0: 2.27542 (2.32046) | > grad_norm_0: 16.98554 (16.88188) | > loss_gen: 2.52706 (2.55799) | > loss_kl: 2.61849 (2.65611) | > loss_feat: 8.52042 (8.67014) | > loss_mel: 17.73283 (17.76949) | > loss_duration: 1.70759 (1.70442) | > loss_1: 33.10638 (33.35815) | > grad_norm_1: 147.23618 (138.37956) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.84910 (2.17648) | > loader_time: 0.03310 (0.03603)  --> STEP: 5275/15287 -- GLOBAL_STEP: 985850 | > loss_disc: 2.33417 (2.32040) | > loss_disc_real_0: 0.12750 (0.12263) | > loss_disc_real_1: 0.20481 (0.21116) | > loss_disc_real_2: 0.21071 (0.21578) | > loss_disc_real_3: 0.20377 (0.21908) | > loss_disc_real_4: 0.21403 (0.21481) | > loss_disc_real_5: 0.23158 (0.21370) | > loss_0: 2.33417 (2.32040) | > grad_norm_0: 33.17313 (16.88475) | > loss_gen: 2.49561 (2.55786) | > loss_kl: 2.61362 (2.65613) | > loss_feat: 8.81316 (8.67010) | > loss_mel: 17.25290 (17.76958) | > loss_duration: 1.72882 (1.70441) | > loss_1: 32.90411 (33.35806) | > grad_norm_1: 174.90167 (138.46492) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03930 (2.17557) | > loader_time: 0.04610 (0.03602)  --> STEP: 5300/15287 -- GLOBAL_STEP: 985875 | > loss_disc: 2.22798 (2.32033) | > loss_disc_real_0: 0.10963 (0.12266) | > loss_disc_real_1: 0.19971 (0.21115) | > loss_disc_real_2: 0.20877 (0.21578) | > loss_disc_real_3: 0.21612 (0.21908) | > loss_disc_real_4: 0.19444 (0.21480) | > loss_disc_real_5: 0.19610 (0.21369) | > loss_0: 2.22798 (2.32033) | > grad_norm_0: 5.55686 (16.87503) | > loss_gen: 2.66706 (2.55788) | > loss_kl: 2.68862 (2.65625) | > loss_feat: 9.40757 (8.67040) | > loss_mel: 18.02602 (17.76962) | > loss_duration: 1.72876 (1.70441) | > loss_1: 34.51803 (33.35854) | > grad_norm_1: 87.06125 (138.43361) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.83310 (2.17453) | > loader_time: 0.03090 (0.03600)  --> STEP: 5325/15287 -- GLOBAL_STEP: 985900 | > loss_disc: 2.35682 (2.32033) | > loss_disc_real_0: 0.12329 (0.12262) | > loss_disc_real_1: 0.21104 (0.21115) | > loss_disc_real_2: 0.20438 (0.21582) | > loss_disc_real_3: 0.21822 (0.21913) | > loss_disc_real_4: 0.20066 (0.21484) | > loss_disc_real_5: 0.20659 (0.21369) | > loss_0: 2.35682 (2.32033) | > grad_norm_0: 7.80317 (16.86509) | > loss_gen: 2.55331 (2.55810) | > loss_kl: 2.68494 (2.65623) | > loss_feat: 8.35376 (8.67097) | > loss_mel: 17.90262 (17.76980) | > loss_duration: 1.70473 (1.70443) | > loss_1: 33.19937 (33.35948) | > grad_norm_1: 130.21587 (138.45026) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89580 (2.17345) | > loader_time: 0.03130 (0.03600)  --> STEP: 5350/15287 -- GLOBAL_STEP: 985925 | > loss_disc: 2.32206 (2.32030) | > loss_disc_real_0: 0.13470 (0.12260) | > loss_disc_real_1: 0.20515 (0.21115) | > loss_disc_real_2: 0.22992 (0.21582) | > loss_disc_real_3: 0.23025 (0.21910) | > loss_disc_real_4: 0.22777 (0.21484) | > loss_disc_real_5: 0.20710 (0.21370) | > loss_0: 2.32206 (2.32030) | > grad_norm_0: 9.89021 (16.86016) | > loss_gen: 2.50596 (2.55800) | > loss_kl: 2.68156 (2.65636) | > loss_feat: 8.78407 (8.67094) | > loss_mel: 17.80976 (17.76967) | > loss_duration: 1.72971 (1.70444) | > loss_1: 33.51106 (33.35936) | > grad_norm_1: 52.74328 (138.42313) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86120 (2.17226) | > loader_time: 0.03310 (0.03599)  --> STEP: 5375/15287 -- GLOBAL_STEP: 985950 | > loss_disc: 2.25422 (2.32031) | > loss_disc_real_0: 0.13372 (0.12264) | > loss_disc_real_1: 0.20151 (0.21116) | > loss_disc_real_2: 0.19824 (0.21581) | > loss_disc_real_3: 0.21654 (0.21910) | > loss_disc_real_4: 0.21269 (0.21484) | > loss_disc_real_5: 0.19090 (0.21368) | > loss_0: 2.25422 (2.32031) | > grad_norm_0: 11.62873 (16.85910) | > loss_gen: 2.51116 (2.55788) | > loss_kl: 2.70283 (2.65661) | > loss_feat: 8.65737 (8.67090) | > loss_mel: 17.73737 (17.76987) | > loss_duration: 1.70156 (1.70440) | > loss_1: 33.31028 (33.35962) | > grad_norm_1: 144.98560 (138.33270) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99890 (2.17120) | > loader_time: 0.03310 (0.03597)  --> STEP: 5400/15287 -- GLOBAL_STEP: 985975 | > loss_disc: 2.31829 (2.32035) | > loss_disc_real_0: 0.12156 (0.12266) | > loss_disc_real_1: 0.22971 (0.21115) | > loss_disc_real_2: 0.21397 (0.21582) | > loss_disc_real_3: 0.20446 (0.21909) | > loss_disc_real_4: 0.18556 (0.21485) | > loss_disc_real_5: 0.27263 (0.21369) | > loss_0: 2.31829 (2.32035) | > grad_norm_0: 14.20041 (16.83633) | > loss_gen: 2.66199 (2.55794) | > loss_kl: 2.62422 (2.65679) | > loss_feat: 8.91758 (8.67039) | > loss_mel: 17.69343 (17.76997) | > loss_duration: 1.73592 (1.70439) | > loss_1: 33.63314 (33.35943) | > grad_norm_1: 33.46416 (138.12822) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.80470 (2.17020) | > loader_time: 0.03280 (0.03595)  --> STEP: 5425/15287 -- GLOBAL_STEP: 986000 | > loss_disc: 2.46552 (2.32057) | > loss_disc_real_0: 0.28635 (0.12274) | > loss_disc_real_1: 0.26312 (0.21119) | > loss_disc_real_2: 0.22913 (0.21585) | > loss_disc_real_3: 0.23227 (0.21911) | > loss_disc_real_4: 0.19042 (0.21487) | > loss_disc_real_5: 0.24227 (0.21370) | > loss_0: 2.46552 (2.32057) | > grad_norm_0: 28.92009 (16.83572) | > loss_gen: 2.71236 (2.55796) | > loss_kl: 2.69972 (2.65687) | > loss_feat: 8.28188 (8.66970) | > loss_mel: 17.50641 (17.77025) | > loss_duration: 1.70411 (1.70437) | > loss_1: 32.90449 (33.35909) | > grad_norm_1: 138.15526 (138.01926) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.78690 (2.16913) | > loader_time: 0.03150 (0.03594)  --> STEP: 5450/15287 -- GLOBAL_STEP: 986025 | > loss_disc: 2.32388 (2.32057) | > loss_disc_real_0: 0.11293 (0.12273) | > loss_disc_real_1: 0.21476 (0.21120) | > loss_disc_real_2: 0.21316 (0.21584) | > loss_disc_real_3: 0.22225 (0.21912) | > loss_disc_real_4: 0.21261 (0.21486) | > loss_disc_real_5: 0.19634 (0.21369) | > loss_0: 2.32388 (2.32057) | > grad_norm_0: 10.10732 (16.81973) | > loss_gen: 2.66131 (2.55786) | > loss_kl: 2.55895 (2.65697) | > loss_feat: 8.57948 (8.66920) | > loss_mel: 17.69789 (17.77091) | > loss_duration: 1.71438 (1.70435) | > loss_1: 33.21201 (33.35925) | > grad_norm_1: 126.35268 (137.93852) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93660 (2.16817) | > loader_time: 0.03220 (0.03593)  --> STEP: 5475/15287 -- GLOBAL_STEP: 986050 | > loss_disc: 2.32818 (2.32063) | > loss_disc_real_0: 0.10496 (0.12272) | > loss_disc_real_1: 0.21396 (0.21122) | > loss_disc_real_2: 0.23412 (0.21585) | > loss_disc_real_3: 0.21681 (0.21913) | > loss_disc_real_4: 0.22420 (0.21488) | > loss_disc_real_5: 0.21086 (0.21370) | > loss_0: 2.32818 (2.32063) | > grad_norm_0: 14.19755 (16.81389) | > loss_gen: 2.50764 (2.55773) | > loss_kl: 2.69806 (2.65699) | > loss_feat: 8.27913 (8.66848) | > loss_mel: 17.83750 (17.77096) | > loss_duration: 1.68794 (1.70431) | > loss_1: 33.01027 (33.35843) | > grad_norm_1: 144.93584 (137.98132) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02730 (2.16745) | > loader_time: 0.03580 (0.03592)  --> STEP: 5500/15287 -- GLOBAL_STEP: 986075 | > loss_disc: 2.18897 (2.32049) | > loss_disc_real_0: 0.11362 (0.12272) | > loss_disc_real_1: 0.19195 (0.21123) | > loss_disc_real_2: 0.19943 (0.21584) | > loss_disc_real_3: 0.20466 (0.21912) | > loss_disc_real_4: 0.19907 (0.21486) | > loss_disc_real_5: 0.17645 (0.21368) | > loss_0: 2.18897 (2.32049) | > grad_norm_0: 6.13556 (16.82299) | > loss_gen: 2.84057 (2.55793) | > loss_kl: 2.75652 (2.65692) | > loss_feat: 9.67513 (8.66948) | > loss_mel: 17.80958 (17.77060) | > loss_duration: 1.65494 (1.70427) | > loss_1: 34.73673 (33.35915) | > grad_norm_1: 181.42706 (138.00388) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05770 (2.16658) | > loader_time: 0.03270 (0.03591)  --> STEP: 5525/15287 -- GLOBAL_STEP: 986100 | > loss_disc: 2.25756 (2.32034) | > loss_disc_real_0: 0.11190 (0.12268) | > loss_disc_real_1: 0.20355 (0.21121) | > loss_disc_real_2: 0.21328 (0.21582) | > loss_disc_real_3: 0.22162 (0.21915) | > loss_disc_real_4: 0.23952 (0.21487) | > loss_disc_real_5: 0.22627 (0.21370) | > loss_0: 2.25756 (2.32034) | > grad_norm_0: 23.25659 (16.84138) | > loss_gen: 2.60690 (2.55800) | > loss_kl: 2.76825 (2.65704) | > loss_feat: 9.05107 (8.66994) | > loss_mel: 17.84803 (17.77004) | > loss_duration: 1.68136 (1.70426) | > loss_1: 33.95560 (33.35924) | > grad_norm_1: 170.67836 (138.11099) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96440 (2.16594) | > loader_time: 0.03160 (0.03591)  --> STEP: 5550/15287 -- GLOBAL_STEP: 986125 | > loss_disc: 2.28084 (2.32014) | > loss_disc_real_0: 0.08529 (0.12264) | > loss_disc_real_1: 0.19896 (0.21120) | > loss_disc_real_2: 0.20803 (0.21582) | > loss_disc_real_3: 0.21003 (0.21914) | > loss_disc_real_4: 0.18984 (0.21485) | > loss_disc_real_5: 0.17598 (0.21366) | > loss_0: 2.28084 (2.32014) | > grad_norm_0: 19.51671 (16.83944) | > loss_gen: 2.49046 (2.55811) | > loss_kl: 2.42458 (2.65688) | > loss_feat: 9.22478 (8.67074) | > loss_mel: 17.61697 (17.76988) | > loss_duration: 1.70425 (1.70425) | > loss_1: 33.46103 (33.35981) | > grad_norm_1: 134.83041 (138.20747) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15640 (2.16544) | > loader_time: 0.04940 (0.03592)  --> STEP: 5575/15287 -- GLOBAL_STEP: 986150 | > loss_disc: 2.36939 (2.32018) | > loss_disc_real_0: 0.10577 (0.12263) | > loss_disc_real_1: 0.22375 (0.21120) | > loss_disc_real_2: 0.23127 (0.21583) | > loss_disc_real_3: 0.21285 (0.21917) | > loss_disc_real_4: 0.22844 (0.21488) | > loss_disc_real_5: 0.20681 (0.21366) | > loss_0: 2.36939 (2.32018) | > grad_norm_0: 7.65202 (16.85290) | > loss_gen: 2.55997 (2.55812) | > loss_kl: 2.80806 (2.65698) | > loss_feat: 8.44882 (8.67002) | > loss_mel: 17.40634 (17.76945) | > loss_duration: 1.69718 (1.70422) | > loss_1: 32.92037 (33.35875) | > grad_norm_1: 152.67854 (138.26929) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92010 (2.16524) | > loader_time: 0.03350 (0.03592)  --> STEP: 5600/15287 -- GLOBAL_STEP: 986175 | > loss_disc: 2.26581 (2.32009) | > loss_disc_real_0: 0.13961 (0.12263) | > loss_disc_real_1: 0.19823 (0.21118) | > loss_disc_real_2: 0.20750 (0.21582) | > loss_disc_real_3: 0.24683 (0.21916) | > loss_disc_real_4: 0.24103 (0.21489) | > loss_disc_real_5: 0.20266 (0.21363) | > loss_0: 2.26581 (2.32009) | > grad_norm_0: 20.75311 (16.83827) | > loss_gen: 2.67014 (2.55808) | > loss_kl: 2.57944 (2.65701) | > loss_feat: 9.00478 (8.66955) | > loss_mel: 17.54063 (17.76896) | > loss_duration: 1.71663 (1.70420) | > loss_1: 33.51162 (33.35777) | > grad_norm_1: 176.24854 (138.26648) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90860 (2.16455) | > loader_time: 0.03330 (0.03592)  --> STEP: 5625/15287 -- GLOBAL_STEP: 986200 | > loss_disc: 2.33023 (2.32018) | > loss_disc_real_0: 0.10181 (0.12263) | > loss_disc_real_1: 0.24798 (0.21118) | > loss_disc_real_2: 0.25334 (0.21584) | > loss_disc_real_3: 0.20796 (0.21915) | > loss_disc_real_4: 0.23700 (0.21490) | > loss_disc_real_5: 0.19888 (0.21364) | > loss_0: 2.33023 (2.32018) | > grad_norm_0: 12.41652 (16.83246) | > loss_gen: 2.54910 (2.55787) | > loss_kl: 2.65045 (2.65722) | > loss_feat: 8.68785 (8.66893) | > loss_mel: 17.44455 (17.76874) | > loss_duration: 1.73041 (1.70418) | > loss_1: 33.06237 (33.35691) | > grad_norm_1: 92.51451 (138.26762) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.80200 (2.16384) | > loader_time: 0.03060 (0.03591)  --> STEP: 5650/15287 -- GLOBAL_STEP: 986225 | > loss_disc: 2.25051 (2.32016) | > loss_disc_real_0: 0.09388 (0.12264) | > loss_disc_real_1: 0.21016 (0.21116) | > loss_disc_real_2: 0.22304 (0.21584) | > loss_disc_real_3: 0.21025 (0.21915) | > loss_disc_real_4: 0.18185 (0.21489) | > loss_disc_real_5: 0.21208 (0.21362) | > loss_0: 2.25051 (2.32016) | > grad_norm_0: 38.21514 (16.84018) | > loss_gen: 2.46653 (2.55780) | > loss_kl: 2.81454 (2.65745) | > loss_feat: 9.02169 (8.66859) | > loss_mel: 17.92707 (17.76831) | > loss_duration: 1.67373 (1.70418) | > loss_1: 33.90356 (33.35629) | > grad_norm_1: 121.97220 (138.28001) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06560 (2.16303) | > loader_time: 0.03280 (0.03590)  --> STEP: 5675/15287 -- GLOBAL_STEP: 986250 | > loss_disc: 2.24075 (2.32010) | > loss_disc_real_0: 0.11053 (0.12262) | > loss_disc_real_1: 0.22831 (0.21115) | > loss_disc_real_2: 0.23446 (0.21585) | > loss_disc_real_3: 0.19914 (0.21915) | > loss_disc_real_4: 0.18723 (0.21489) | > loss_disc_real_5: 0.19516 (0.21363) | > loss_0: 2.24075 (2.32010) | > grad_norm_0: 21.85369 (16.86125) | > loss_gen: 2.57554 (2.55784) | > loss_kl: 2.53545 (2.65751) | > loss_feat: 8.78151 (8.66861) | > loss_mel: 17.60140 (17.76743) | > loss_duration: 1.74595 (1.70415) | > loss_1: 33.23986 (33.35550) | > grad_norm_1: 206.51186 (138.37453) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.82820 (2.16205) | > loader_time: 0.03280 (0.03590)  --> STEP: 5700/15287 -- GLOBAL_STEP: 986275 | > loss_disc: 2.36675 (2.32021) | > loss_disc_real_0: 0.20285 (0.12268) | > loss_disc_real_1: 0.24374 (0.21115) | > loss_disc_real_2: 0.24909 (0.21585) | > loss_disc_real_3: 0.26330 (0.21915) | > loss_disc_real_4: 0.26621 (0.21489) | > loss_disc_real_5: 0.23907 (0.21363) | > loss_0: 2.36675 (2.32021) | > grad_norm_0: 25.30512 (16.85832) | > loss_gen: 2.74441 (2.55783) | > loss_kl: 2.64715 (2.65752) | > loss_feat: 8.20593 (8.66824) | > loss_mel: 18.07619 (17.76731) | > loss_duration: 1.68651 (1.70412) | > loss_1: 33.36020 (33.35499) | > grad_norm_1: 94.58257 (138.24712) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96460 (2.16109) | > loader_time: 0.03220 (0.03589)  --> STEP: 5725/15287 -- GLOBAL_STEP: 986300 | > loss_disc: 2.34135 (2.32025) | > loss_disc_real_0: 0.11751 (0.12267) | > loss_disc_real_1: 0.22927 (0.21115) | > loss_disc_real_2: 0.23857 (0.21584) | > loss_disc_real_3: 0.19997 (0.21914) | > loss_disc_real_4: 0.20659 (0.21487) | > loss_disc_real_5: 0.21756 (0.21366) | > loss_0: 2.34135 (2.32025) | > grad_norm_0: 12.48412 (16.84869) | > loss_gen: 2.62636 (2.55781) | > loss_kl: 2.69278 (2.65754) | > loss_feat: 9.05090 (8.66903) | > loss_mel: 18.19925 (17.76788) | > loss_duration: 1.69469 (1.70414) | > loss_1: 34.26397 (33.35636) | > grad_norm_1: 166.84515 (138.13951) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08060 (2.16018) | > loader_time: 0.03520 (0.03588)  --> STEP: 5750/15287 -- GLOBAL_STEP: 986325 | > loss_disc: 2.42259 (2.32026) | > loss_disc_real_0: 0.14593 (0.12269) | > loss_disc_real_1: 0.24103 (0.21113) | > loss_disc_real_2: 0.24181 (0.21583) | > loss_disc_real_3: 0.20549 (0.21911) | > loss_disc_real_4: 0.17583 (0.21485) | > loss_disc_real_5: 0.19581 (0.21364) | > loss_0: 2.42259 (2.32026) | > grad_norm_0: 37.27934 (16.85371) | > loss_gen: 2.43305 (2.55791) | > loss_kl: 2.65816 (2.65759) | > loss_feat: 8.69209 (8.66898) | > loss_mel: 17.62652 (17.76829) | > loss_duration: 1.70784 (1.70408) | > loss_1: 33.11765 (33.35681) | > grad_norm_1: 104.12894 (138.14540) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22950 (2.15960) | > loader_time: 0.04020 (0.03588)  --> STEP: 5775/15287 -- GLOBAL_STEP: 986350 | > loss_disc: 2.38851 (2.32049) | > loss_disc_real_0: 0.18716 (0.12274) | > loss_disc_real_1: 0.19434 (0.21115) | > loss_disc_real_2: 0.21653 (0.21583) | > loss_disc_real_3: 0.24957 (0.21910) | > loss_disc_real_4: 0.21784 (0.21483) | > loss_disc_real_5: 0.24817 (0.21365) | > loss_0: 2.38851 (2.32049) | > grad_norm_0: 8.11847 (16.85865) | > loss_gen: 2.31967 (2.55766) | > loss_kl: 2.59720 (2.65753) | > loss_feat: 8.30155 (8.66859) | > loss_mel: 17.70708 (17.76907) | > loss_duration: 1.70041 (1.70410) | > loss_1: 32.62591 (33.35688) | > grad_norm_1: 72.00243 (138.10234) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41060 (2.15879) | > loader_time: 0.05420 (0.03588)  --> STEP: 5800/15287 -- GLOBAL_STEP: 986375 | > loss_disc: 2.27159 (2.32080) | > loss_disc_real_0: 0.09722 (0.12287) | > loss_disc_real_1: 0.18099 (0.21114) | > loss_disc_real_2: 0.19751 (0.21584) | > loss_disc_real_3: 0.19964 (0.21915) | > loss_disc_real_4: 0.20151 (0.21487) | > loss_disc_real_5: 0.20251 (0.21365) | > loss_0: 2.27159 (2.32080) | > grad_norm_0: 8.14097 (16.87433) | > loss_gen: 2.61011 (2.55770) | > loss_kl: 2.68267 (2.65749) | > loss_feat: 8.97173 (8.66782) | > loss_mel: 18.11689 (17.76945) | > loss_duration: 1.70561 (1.70412) | > loss_1: 34.08700 (33.35652) | > grad_norm_1: 73.30578 (137.94025) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96610 (2.15804) | > loader_time: 0.03480 (0.03588)  --> STEP: 5825/15287 -- GLOBAL_STEP: 986400 | > loss_disc: 2.22218 (2.32076) | > loss_disc_real_0: 0.11663 (0.12286) | > loss_disc_real_1: 0.24922 (0.21116) | > loss_disc_real_2: 0.19863 (0.21583) | > loss_disc_real_3: 0.22457 (0.21916) | > loss_disc_real_4: 0.18288 (0.21488) | > loss_disc_real_5: 0.20708 (0.21365) | > loss_0: 2.22218 (2.32076) | > grad_norm_0: 14.95012 (16.85428) | > loss_gen: 2.69847 (2.55776) | > loss_kl: 2.63243 (2.65745) | > loss_feat: 8.93513 (8.66807) | > loss_mel: 18.03992 (17.76994) | > loss_duration: 1.75989 (1.70417) | > loss_1: 34.06584 (33.35734) | > grad_norm_1: 175.08194 (137.83658) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.50690 (2.15764) | > loader_time: 0.03970 (0.03588)  --> STEP: 5850/15287 -- GLOBAL_STEP: 986425 | > loss_disc: 2.37516 (2.32081) | > loss_disc_real_0: 0.11244 (0.12286) | > loss_disc_real_1: 0.20999 (0.21117) | > loss_disc_real_2: 0.20695 (0.21584) | > loss_disc_real_3: 0.21571 (0.21917) | > loss_disc_real_4: 0.19852 (0.21489) | > loss_disc_real_5: 0.22937 (0.21365) | > loss_0: 2.37516 (2.32081) | > grad_norm_0: 29.64405 (16.86152) | > loss_gen: 2.41798 (2.55776) | > loss_kl: 2.46329 (2.65740) | > loss_feat: 8.38918 (8.66768) | > loss_mel: 18.11530 (17.76985) | > loss_duration: 1.72801 (1.70420) | > loss_1: 33.11376 (33.35684) | > grad_norm_1: 129.16740 (137.83836) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01800 (2.15682) | > loader_time: 0.03080 (0.03588)  --> STEP: 5875/15287 -- GLOBAL_STEP: 986450 | > loss_disc: 2.32488 (2.32061) | > loss_disc_real_0: 0.11526 (0.12285) | > loss_disc_real_1: 0.17297 (0.21115) | > loss_disc_real_2: 0.19154 (0.21581) | > loss_disc_real_3: 0.21475 (0.21915) | > loss_disc_real_4: 0.20445 (0.21488) | > loss_disc_real_5: 0.22443 (0.21364) | > loss_0: 2.32488 (2.32061) | > grad_norm_0: 3.78470 (16.86149) | > loss_gen: 2.58403 (2.55792) | > loss_kl: 2.63391 (2.65752) | > loss_feat: 9.13010 (8.66899) | > loss_mel: 17.80778 (17.77022) | > loss_duration: 1.69644 (1.70422) | > loss_1: 33.85227 (33.35882) | > grad_norm_1: 154.61115 (137.90680) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89670 (2.15621) | > loader_time: 0.03210 (0.03588)  --> STEP: 5900/15287 -- GLOBAL_STEP: 986475 | > loss_disc: 2.29544 (2.32063) | > loss_disc_real_0: 0.09766 (0.12285) | > loss_disc_real_1: 0.20336 (0.21116) | > loss_disc_real_2: 0.23168 (0.21580) | > loss_disc_real_3: 0.21096 (0.21914) | > loss_disc_real_4: 0.21038 (0.21489) | > loss_disc_real_5: 0.21170 (0.21366) | > loss_0: 2.29544 (2.32063) | > grad_norm_0: 8.85094 (16.86204) | > loss_gen: 2.65973 (2.55795) | > loss_kl: 2.68491 (2.65760) | > loss_feat: 8.54118 (8.66883) | > loss_mel: 17.71634 (17.77007) | > loss_duration: 1.79822 (1.70426) | > loss_1: 33.40039 (33.35867) | > grad_norm_1: 163.11830 (137.94485) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89380 (2.15566) | > loader_time: 0.03180 (0.03588)  --> STEP: 5925/15287 -- GLOBAL_STEP: 986500 | > loss_disc: 2.30550 (2.32065) | > loss_disc_real_0: 0.11924 (0.12287) | > loss_disc_real_1: 0.22076 (0.21117) | > loss_disc_real_2: 0.24826 (0.21581) | > loss_disc_real_3: 0.22442 (0.21914) | > loss_disc_real_4: 0.20806 (0.21487) | > loss_disc_real_5: 0.20839 (0.21364) | > loss_0: 2.30550 (2.32065) | > grad_norm_0: 11.78934 (16.85179) | > loss_gen: 2.51846 (2.55785) | > loss_kl: 2.54234 (2.65745) | > loss_feat: 8.42823 (8.66843) | > loss_mel: 17.80231 (17.76969) | > loss_duration: 1.71756 (1.70427) | > loss_1: 33.00890 (33.35764) | > grad_norm_1: 116.49966 (137.82703) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22430 (2.15580) | > loader_time: 0.03950 (0.03589)  --> STEP: 5950/15287 -- GLOBAL_STEP: 986525 | > loss_disc: 2.37238 (2.32059) | > loss_disc_real_0: 0.10310 (0.12287) | > loss_disc_real_1: 0.20187 (0.21116) | > loss_disc_real_2: 0.18647 (0.21581) | > loss_disc_real_3: 0.27797 (0.21916) | > loss_disc_real_4: 0.27601 (0.21491) | > loss_disc_real_5: 0.23711 (0.21361) | > loss_0: 2.37238 (2.32059) | > grad_norm_0: 29.30877 (16.83765) | > loss_gen: 2.43256 (2.55794) | > loss_kl: 2.75895 (2.65731) | > loss_feat: 8.61088 (8.66858) | > loss_mel: 18.30865 (17.76974) | > loss_duration: 1.69237 (1.70427) | > loss_1: 33.80340 (33.35779) | > grad_norm_1: 153.25987 (137.72595) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.64650 (2.15525) | > loader_time: 0.04320 (0.03589)  --> STEP: 5975/15287 -- GLOBAL_STEP: 986550 | > loss_disc: 2.35020 (2.32063) | > loss_disc_real_0: 0.09239 (0.12289) | > loss_disc_real_1: 0.21785 (0.21117) | > loss_disc_real_2: 0.18701 (0.21582) | > loss_disc_real_3: 0.20304 (0.21916) | > loss_disc_real_4: 0.20441 (0.21490) | > loss_disc_real_5: 0.22128 (0.21361) | > loss_0: 2.35020 (2.32063) | > grad_norm_0: 8.41674 (16.83891) | > loss_gen: 2.51767 (2.55779) | > loss_kl: 2.70137 (2.65724) | > loss_feat: 8.04590 (8.66821) | > loss_mel: 17.62431 (17.76936) | > loss_duration: 1.69374 (1.70431) | > loss_1: 32.58299 (33.35686) | > grad_norm_1: 66.39191 (137.63527) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96450 (2.15462) | > loader_time: 0.03110 (0.03589)  --> STEP: 6000/15287 -- GLOBAL_STEP: 986575 | > loss_disc: 2.31854 (2.32059) | > loss_disc_real_0: 0.14617 (0.12289) | > loss_disc_real_1: 0.18817 (0.21116) | > loss_disc_real_2: 0.20933 (0.21583) | > loss_disc_real_3: 0.20263 (0.21915) | > loss_disc_real_4: 0.19596 (0.21488) | > loss_disc_real_5: 0.18655 (0.21359) | > loss_0: 2.31854 (2.32059) | > grad_norm_0: 27.12519 (16.81602) | > loss_gen: 2.58670 (2.55786) | > loss_kl: 2.63659 (2.65748) | > loss_feat: 8.78579 (8.66858) | > loss_mel: 18.34996 (17.76951) | > loss_duration: 1.73900 (1.70433) | > loss_1: 34.09804 (33.35767) | > grad_norm_1: 76.48039 (137.42229) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90270 (2.15399) | > loader_time: 0.03140 (0.03588)  --> STEP: 6025/15287 -- GLOBAL_STEP: 986600 | > loss_disc: 2.28520 (2.32070) | > loss_disc_real_0: 0.13384 (0.12291) | > loss_disc_real_1: 0.21854 (0.21117) | > loss_disc_real_2: 0.24849 (0.21584) | > loss_disc_real_3: 0.21150 (0.21915) | > loss_disc_real_4: 0.21947 (0.21489) | > loss_disc_real_5: 0.20265 (0.21359) | > loss_0: 2.28520 (2.32070) | > grad_norm_0: 24.42175 (16.80369) | > loss_gen: 2.65280 (2.55776) | > loss_kl: 2.67889 (2.65749) | > loss_feat: 8.91797 (8.66849) | > loss_mel: 17.92982 (17.77008) | > loss_duration: 1.69182 (1.70433) | > loss_1: 33.87131 (33.35807) | > grad_norm_1: 159.37386 (137.30659) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11740 (2.15326) | > loader_time: 0.03440 (0.03588)  --> STEP: 6050/15287 -- GLOBAL_STEP: 986625 | > loss_disc: 2.26213 (2.32068) | > loss_disc_real_0: 0.13868 (0.12289) | > loss_disc_real_1: 0.21315 (0.21117) | > loss_disc_real_2: 0.21251 (0.21586) | > loss_disc_real_3: 0.22536 (0.21914) | > loss_disc_real_4: 0.19586 (0.21489) | > loss_disc_real_5: 0.20450 (0.21359) | > loss_0: 2.26213 (2.32068) | > grad_norm_0: 30.11950 (16.80447) | > loss_gen: 2.60553 (2.55774) | > loss_kl: 2.66128 (2.65735) | > loss_feat: 9.23917 (8.66867) | > loss_mel: 17.50709 (17.76999) | > loss_duration: 1.68455 (1.70433) | > loss_1: 33.69762 (33.35801) | > grad_norm_1: 131.55305 (137.28070) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04010 (2.15228) | > loader_time: 0.03400 (0.03587)  --> STEP: 6075/15287 -- GLOBAL_STEP: 986650 | > loss_disc: 2.32164 (2.32056) | > loss_disc_real_0: 0.07831 (0.12287) | > loss_disc_real_1: 0.21186 (0.21117) | > loss_disc_real_2: 0.24161 (0.21584) | > loss_disc_real_3: 0.22383 (0.21913) | > loss_disc_real_4: 0.21665 (0.21489) | > loss_disc_real_5: 0.20949 (0.21358) | > loss_0: 2.32164 (2.32056) | > grad_norm_0: 17.00749 (16.81047) | > loss_gen: 2.51313 (2.55772) | > loss_kl: 2.60802 (2.65728) | > loss_feat: 8.42416 (8.66888) | > loss_mel: 17.83891 (17.76992) | > loss_duration: 1.78538 (1.70433) | > loss_1: 33.16959 (33.35807) | > grad_norm_1: 177.02858 (137.34639) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96220 (2.15158) | > loader_time: 0.03150 (0.03586)  --> STEP: 6100/15287 -- GLOBAL_STEP: 986675 | > loss_disc: 2.24055 (2.32039) | > loss_disc_real_0: 0.11500 (0.12282) | > loss_disc_real_1: 0.21882 (0.21115) | > loss_disc_real_2: 0.21990 (0.21584) | > loss_disc_real_3: 0.22161 (0.21912) | > loss_disc_real_4: 0.22956 (0.21488) | > loss_disc_real_5: 0.19297 (0.21358) | > loss_0: 2.24055 (2.32039) | > grad_norm_0: 10.00760 (16.80646) | > loss_gen: 2.78293 (2.55788) | > loss_kl: 2.82835 (2.65734) | > loss_feat: 8.79409 (8.66954) | > loss_mel: 18.13200 (17.77020) | > loss_duration: 1.70913 (1.70430) | > loss_1: 34.24650 (33.35918) | > grad_norm_1: 177.12741 (137.38535) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02560 (2.15088) | > loader_time: 0.03190 (0.03584)  --> STEP: 6125/15287 -- GLOBAL_STEP: 986700 | > loss_disc: 2.34979 (2.32038) | > loss_disc_real_0: 0.12154 (0.12281) | > loss_disc_real_1: 0.23820 (0.21114) | > loss_disc_real_2: 0.20558 (0.21581) | > loss_disc_real_3: 0.20629 (0.21910) | > loss_disc_real_4: 0.20435 (0.21488) | > loss_disc_real_5: 0.18388 (0.21358) | > loss_0: 2.34979 (2.32038) | > grad_norm_0: 11.10627 (16.80465) | > loss_gen: 2.57101 (2.55768) | > loss_kl: 2.70584 (2.65737) | > loss_feat: 9.01073 (8.66959) | > loss_mel: 18.08031 (17.77004) | > loss_duration: 1.72181 (1.70429) | > loss_1: 34.08969 (33.35890) | > grad_norm_1: 181.96710 (137.42844) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95600 (2.14998) | > loader_time: 0.03220 (0.03584)  --> STEP: 6150/15287 -- GLOBAL_STEP: 986725 | > loss_disc: 2.30517 (2.32036) | > loss_disc_real_0: 0.13156 (0.12280) | > loss_disc_real_1: 0.19128 (0.21112) | > loss_disc_real_2: 0.21611 (0.21581) | > loss_disc_real_3: 0.21487 (0.21911) | > loss_disc_real_4: 0.20737 (0.21487) | > loss_disc_real_5: 0.21932 (0.21359) | > loss_0: 2.30517 (2.32036) | > grad_norm_0: 36.08379 (16.81756) | > loss_gen: 2.41943 (2.55756) | > loss_kl: 2.56417 (2.65735) | > loss_feat: 8.87414 (8.66936) | > loss_mel: 17.40059 (17.76952) | > loss_duration: 1.64952 (1.70430) | > loss_1: 32.90786 (33.35802) | > grad_norm_1: 160.53967 (137.47835) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15840 (2.14928) | > loader_time: 0.03530 (0.03583)  --> STEP: 6175/15287 -- GLOBAL_STEP: 986750 | > loss_disc: 2.31564 (2.32022) | > loss_disc_real_0: 0.14574 (0.12276) | > loss_disc_real_1: 0.19180 (0.21111) | > loss_disc_real_2: 0.19607 (0.21580) | > loss_disc_real_3: 0.23942 (0.21910) | > loss_disc_real_4: 0.21886 (0.21488) | > loss_disc_real_5: 0.22825 (0.21358) | > loss_0: 2.31564 (2.32022) | > grad_norm_0: 28.28247 (16.81592) | > loss_gen: 2.51541 (2.55762) | > loss_kl: 2.63255 (2.65733) | > loss_feat: 8.39537 (8.67007) | > loss_mel: 17.18037 (17.76897) | > loss_duration: 1.70358 (1.70428) | > loss_1: 32.42728 (33.35820) | > grad_norm_1: 146.70116 (137.56783) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14210 (2.14885) | > loader_time: 0.04550 (0.03583)  --> STEP: 6200/15287 -- GLOBAL_STEP: 986775 | > loss_disc: 2.33784 (2.32026) | > loss_disc_real_0: 0.15694 (0.12283) | > loss_disc_real_1: 0.24741 (0.21111) | > loss_disc_real_2: 0.22029 (0.21579) | > loss_disc_real_3: 0.20454 (0.21912) | > loss_disc_real_4: 0.18395 (0.21490) | > loss_disc_real_5: 0.18727 (0.21359) | > loss_0: 2.33784 (2.32026) | > grad_norm_0: 15.64635 (16.82289) | > loss_gen: 2.80817 (2.55786) | > loss_kl: 2.65493 (2.65742) | > loss_feat: 8.36674 (8.66980) | > loss_mel: 17.82356 (17.76839) | > loss_duration: 1.73031 (1.70432) | > loss_1: 33.38371 (33.35772) | > grad_norm_1: 128.23735 (137.58737) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88970 (2.14844) | > loader_time: 0.03760 (0.03585)  --> STEP: 6225/15287 -- GLOBAL_STEP: 986800 | > loss_disc: 2.35412 (2.32029) | > loss_disc_real_0: 0.11980 (0.12289) | > loss_disc_real_1: 0.23459 (0.21112) | > loss_disc_real_2: 0.20242 (0.21581) | > loss_disc_real_3: 0.21235 (0.21911) | > loss_disc_real_4: 0.23097 (0.21487) | > loss_disc_real_5: 0.20930 (0.21357) | > loss_0: 2.35412 (2.32029) | > grad_norm_0: 8.54041 (16.81841) | > loss_gen: 2.40160 (2.55781) | > loss_kl: 2.53072 (2.65739) | > loss_feat: 8.50258 (8.66958) | > loss_mel: 17.91808 (17.76769) | > loss_duration: 1.70462 (1.70433) | > loss_1: 33.05761 (33.35672) | > grad_norm_1: 127.45328 (137.53040) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.64510 (2.14845) | > loader_time: 0.03400 (0.03587)  --> STEP: 6250/15287 -- GLOBAL_STEP: 986825 | > loss_disc: 2.37174 (2.32041) | > loss_disc_real_0: 0.10934 (0.12287) | > loss_disc_real_1: 0.20154 (0.21113) | > loss_disc_real_2: 0.19508 (0.21580) | > loss_disc_real_3: 0.23803 (0.21912) | > loss_disc_real_4: 0.22277 (0.21488) | > loss_disc_real_5: 0.24948 (0.21357) | > loss_0: 2.37174 (2.32041) | > grad_norm_0: 21.22203 (16.80243) | > loss_gen: 2.48848 (2.55769) | > loss_kl: 2.71317 (2.65755) | > loss_feat: 8.37875 (8.66938) | > loss_mel: 17.79964 (17.76789) | > loss_duration: 1.68567 (1.70434) | > loss_1: 33.06572 (33.35678) | > grad_norm_1: 141.97385 (137.49190) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.50010 (2.14931) | > loader_time: 0.04430 (0.03590)  --> STEP: 6275/15287 -- GLOBAL_STEP: 986850 | > loss_disc: 2.37290 (2.32044) | > loss_disc_real_0: 0.13780 (0.12287) | > loss_disc_real_1: 0.19502 (0.21112) | > loss_disc_real_2: 0.24146 (0.21579) | > loss_disc_real_3: 0.21227 (0.21912) | > loss_disc_real_4: 0.23212 (0.21488) | > loss_disc_real_5: 0.21437 (0.21358) | > loss_0: 2.37290 (2.32044) | > grad_norm_0: 25.42872 (16.80378) | > loss_gen: 2.49240 (2.55756) | > loss_kl: 2.68715 (2.65747) | > loss_feat: 8.52082 (8.66915) | > loss_mel: 17.93106 (17.76791) | > loss_duration: 1.70713 (1.70435) | > loss_1: 33.33857 (33.35637) | > grad_norm_1: 155.10052 (137.53996) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18640 (2.14880) | > loader_time: 0.04150 (0.03592)  --> STEP: 6300/15287 -- GLOBAL_STEP: 986875 | > loss_disc: 2.32003 (2.32049) | > loss_disc_real_0: 0.12438 (0.12286) | > loss_disc_real_1: 0.21275 (0.21114) | > loss_disc_real_2: 0.24981 (0.21583) | > loss_disc_real_3: 0.22242 (0.21912) | > loss_disc_real_4: 0.22844 (0.21491) | > loss_disc_real_5: 0.18264 (0.21360) | > loss_0: 2.32003 (2.32049) | > grad_norm_0: 13.17667 (16.80811) | > loss_gen: 2.53587 (2.55755) | > loss_kl: 2.58620 (2.65736) | > loss_feat: 8.60784 (8.66864) | > loss_mel: 17.41753 (17.76793) | > loss_duration: 1.73308 (1.70438) | > loss_1: 32.88052 (33.35581) | > grad_norm_1: 95.70493 (137.59381) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93230 (2.14904) | > loader_time: 0.04160 (0.03594)  --> STEP: 6325/15287 -- GLOBAL_STEP: 986900 | > loss_disc: 2.37410 (2.32045) | > loss_disc_real_0: 0.14975 (0.12284) | > loss_disc_real_1: 0.23458 (0.21113) | > loss_disc_real_2: 0.22365 (0.21580) | > loss_disc_real_3: 0.23235 (0.21910) | > loss_disc_real_4: 0.24310 (0.21492) | > loss_disc_real_5: 0.21553 (0.21358) | > loss_0: 2.37410 (2.32045) | > grad_norm_0: 10.46710 (16.81390) | > loss_gen: 2.48947 (2.55749) | > loss_kl: 2.60279 (2.65732) | > loss_feat: 8.38669 (8.66912) | > loss_mel: 17.77474 (17.76757) | > loss_duration: 1.68266 (1.70438) | > loss_1: 32.93636 (33.35583) | > grad_norm_1: 143.54707 (137.61195) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89690 (2.14844) | > loader_time: 0.03820 (0.03597)  --> STEP: 6350/15287 -- GLOBAL_STEP: 986925 | > loss_disc: 2.41825 (2.32047) | > loss_disc_real_0: 0.12393 (0.12284) | > loss_disc_real_1: 0.21204 (0.21111) | > loss_disc_real_2: 0.21926 (0.21580) | > loss_disc_real_3: 0.23746 (0.21910) | > loss_disc_real_4: 0.24074 (0.21492) | > loss_disc_real_5: 0.22091 (0.21358) | > loss_0: 2.41825 (2.32047) | > grad_norm_0: 20.42132 (16.81021) | > loss_gen: 2.49422 (2.55736) | > loss_kl: 2.63985 (2.65724) | > loss_feat: 8.31314 (8.66852) | > loss_mel: 17.35715 (17.76702) | > loss_duration: 1.68838 (1.70436) | > loss_1: 32.49274 (33.35445) | > grad_norm_1: 142.98486 (137.60092) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09320 (2.14784) | > loader_time: 0.03640 (0.03599)  --> STEP: 6375/15287 -- GLOBAL_STEP: 986950 | > loss_disc: 2.23508 (2.32040) | > loss_disc_real_0: 0.10558 (0.12283) | > loss_disc_real_1: 0.20249 (0.21110) | > loss_disc_real_2: 0.22701 (0.21579) | > loss_disc_real_3: 0.19982 (0.21910) | > loss_disc_real_4: 0.23179 (0.21490) | > loss_disc_real_5: 0.19839 (0.21358) | > loss_0: 2.23508 (2.32040) | > grad_norm_0: 8.10129 (16.79745) | > loss_gen: 2.67593 (2.55735) | > loss_kl: 2.51995 (2.65732) | > loss_feat: 8.34629 (8.66843) | > loss_mel: 18.11887 (17.76709) | > loss_duration: 1.73355 (1.70438) | > loss_1: 33.39459 (33.35454) | > grad_norm_1: 201.00743 (137.63390) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93090 (2.14738) | > loader_time: 0.03590 (0.03601)  --> STEP: 6400/15287 -- GLOBAL_STEP: 986975 | > loss_disc: 2.38819 (2.32050) | > loss_disc_real_0: 0.08116 (0.12283) | > loss_disc_real_1: 0.22758 (0.21110) | > loss_disc_real_2: 0.22933 (0.21578) | > loss_disc_real_3: 0.21825 (0.21911) | > loss_disc_real_4: 0.25950 (0.21490) | > loss_disc_real_5: 0.19549 (0.21359) | > loss_0: 2.38819 (2.32050) | > grad_norm_0: 26.63096 (16.80229) | > loss_gen: 2.35786 (2.55720) | > loss_kl: 2.68995 (2.65734) | > loss_feat: 8.58583 (8.66842) | > loss_mel: 17.85919 (17.76681) | > loss_duration: 1.70042 (1.70437) | > loss_1: 33.19324 (33.35411) | > grad_norm_1: 53.27456 (137.61398) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10830 (2.14686) | > loader_time: 0.03720 (0.03602)  --> STEP: 6425/15287 -- GLOBAL_STEP: 987000 | > loss_disc: 2.35618 (2.32070) | > loss_disc_real_0: 0.11363 (0.12286) | > loss_disc_real_1: 0.21511 (0.21113) | > loss_disc_real_2: 0.23889 (0.21582) | > loss_disc_real_3: 0.23357 (0.21913) | > loss_disc_real_4: 0.20256 (0.21489) | > loss_disc_real_5: 0.21062 (0.21359) | > loss_0: 2.35618 (2.32070) | > grad_norm_0: 21.91117 (16.79725) | > loss_gen: 2.37943 (2.55708) | > loss_kl: 2.78912 (2.65753) | > loss_feat: 8.82829 (8.66825) | > loss_mel: 17.86493 (17.76732) | > loss_duration: 1.70202 (1.70438) | > loss_1: 33.56379 (33.35452) | > grad_norm_1: 148.07059 (137.57083) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88360 (2.14612) | > loader_time: 0.03560 (0.03603)  --> STEP: 6450/15287 -- GLOBAL_STEP: 987025 | > loss_disc: 2.34868 (2.32070) | > loss_disc_real_0: 0.13281 (0.12285) | > loss_disc_real_1: 0.22066 (0.21113) | > loss_disc_real_2: 0.21214 (0.21581) | > loss_disc_real_3: 0.21401 (0.21915) | > loss_disc_real_4: 0.21348 (0.21491) | > loss_disc_real_5: 0.19573 (0.21360) | > loss_0: 2.34868 (2.32070) | > grad_norm_0: 16.26388 (16.80949) | > loss_gen: 2.49929 (2.55709) | > loss_kl: 2.75995 (2.65747) | > loss_feat: 8.68566 (8.66822) | > loss_mel: 17.87955 (17.76710) | > loss_duration: 1.68955 (1.70439) | > loss_1: 33.51399 (33.35423) | > grad_norm_1: 179.78569 (137.61908) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22830 (2.14580) | > loader_time: 0.03970 (0.03605)  --> STEP: 6475/15287 -- GLOBAL_STEP: 987050 | > loss_disc: 2.25783 (2.32068) | > loss_disc_real_0: 0.10116 (0.12282) | > loss_disc_real_1: 0.19287 (0.21112) | > loss_disc_real_2: 0.20484 (0.21580) | > loss_disc_real_3: 0.19958 (0.21914) | > loss_disc_real_4: 0.21451 (0.21490) | > loss_disc_real_5: 0.25158 (0.21362) | > loss_0: 2.25783 (2.32068) | > grad_norm_0: 20.31324 (16.81150) | > loss_gen: 2.55490 (2.55711) | > loss_kl: 2.68010 (2.65765) | > loss_feat: 8.51234 (8.66825) | > loss_mel: 17.94882 (17.76685) | > loss_duration: 1.72225 (1.70443) | > loss_1: 33.41842 (33.35424) | > grad_norm_1: 139.87352 (137.64658) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15650 (2.14649) | > loader_time: 0.03880 (0.03607)  --> STEP: 6500/15287 -- GLOBAL_STEP: 987075 | > loss_disc: 2.26520 (2.32068) | > loss_disc_real_0: 0.07432 (0.12280) | > loss_disc_real_1: 0.18584 (0.21116) | > loss_disc_real_2: 0.22724 (0.21580) | > loss_disc_real_3: 0.23357 (0.21912) | > loss_disc_real_4: 0.19598 (0.21490) | > loss_disc_real_5: 0.21700 (0.21363) | > loss_0: 2.26520 (2.32068) | > grad_norm_0: 21.09878 (16.81945) | > loss_gen: 2.58668 (2.55711) | > loss_kl: 2.57864 (2.65771) | > loss_feat: 9.01920 (8.66839) | > loss_mel: 17.81423 (17.76724) | > loss_duration: 1.73769 (1.70445) | > loss_1: 33.73644 (33.35484) | > grad_norm_1: 181.49174 (137.72313) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32800 (2.14614) | > loader_time: 0.04750 (0.03609)  --> STEP: 6525/15287 -- GLOBAL_STEP: 987100 | > loss_disc: 2.30762 (2.32064) | > loss_disc_real_0: 0.10547 (0.12279) | > loss_disc_real_1: 0.20322 (0.21114) | > loss_disc_real_2: 0.22534 (0.21579) | > loss_disc_real_3: 0.21633 (0.21911) | > loss_disc_real_4: 0.20391 (0.21488) | > loss_disc_real_5: 0.22586 (0.21363) | > loss_0: 2.30762 (2.32064) | > grad_norm_0: 17.54830 (16.82607) | > loss_gen: 2.64223 (2.55705) | > loss_kl: 2.64735 (2.65754) | > loss_feat: 8.56910 (8.66831) | > loss_mel: 16.84894 (17.76707) | > loss_duration: 1.66800 (1.70446) | > loss_1: 32.37561 (33.35437) | > grad_norm_1: 134.68918 (137.79982) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.80430 (2.14689) | > loader_time: 0.03210 (0.03610)  --> STEP: 6550/15287 -- GLOBAL_STEP: 987125 | > loss_disc: 2.25911 (2.32058) | > loss_disc_real_0: 0.07625 (0.12275) | > loss_disc_real_1: 0.22073 (0.21115) | > loss_disc_real_2: 0.22569 (0.21578) | > loss_disc_real_3: 0.21525 (0.21912) | > loss_disc_real_4: 0.20196 (0.21490) | > loss_disc_real_5: 0.19055 (0.21364) | > loss_0: 2.25911 (2.32058) | > grad_norm_0: 24.98076 (16.84743) | > loss_gen: 2.52266 (2.55705) | > loss_kl: 2.54298 (2.65748) | > loss_feat: 8.54394 (8.66846) | > loss_mel: 17.73731 (17.76671) | > loss_duration: 1.68027 (1.70446) | > loss_1: 33.02716 (33.35410) | > grad_norm_1: 239.02689 (137.95267) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.83580 (2.14798) | > loader_time: 0.04780 (0.03612)  --> STEP: 6575/15287 -- GLOBAL_STEP: 987150 | > loss_disc: 2.32669 (2.32055) | > loss_disc_real_0: 0.08648 (0.12274) | > loss_disc_real_1: 0.21558 (0.21115) | > loss_disc_real_2: 0.24929 (0.21579) | > loss_disc_real_3: 0.26872 (0.21913) | > loss_disc_real_4: 0.22517 (0.21490) | > loss_disc_real_5: 0.22983 (0.21365) | > loss_0: 2.32669 (2.32055) | > grad_norm_0: 14.84783 (16.84805) | > loss_gen: 2.54739 (2.55710) | > loss_kl: 2.64380 (2.65742) | > loss_feat: 9.08850 (8.66858) | > loss_mel: 17.85259 (17.76641) | > loss_duration: 1.69786 (1.70444) | > loss_1: 33.83015 (33.35389) | > grad_norm_1: 72.05150 (137.95103) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.45960 (2.14927) | > loader_time: 0.03320 (0.03615)  --> STEP: 6600/15287 -- GLOBAL_STEP: 987175 | > loss_disc: 2.32383 (2.32053) | > loss_disc_real_0: 0.11617 (0.12273) | > loss_disc_real_1: 0.18572 (0.21115) | > loss_disc_real_2: 0.21339 (0.21579) | > loss_disc_real_3: 0.24854 (0.21915) | > loss_disc_real_4: 0.22439 (0.21490) | > loss_disc_real_5: 0.23963 (0.21367) | > loss_0: 2.32383 (2.32053) | > grad_norm_0: 9.03577 (16.82914) | > loss_gen: 2.53531 (2.55711) | > loss_kl: 2.67248 (2.65749) | > loss_feat: 8.69933 (8.66896) | > loss_mel: 17.95922 (17.76627) | > loss_duration: 1.75429 (1.70449) | > loss_1: 33.62063 (33.35428) | > grad_norm_1: 166.60941 (137.79755) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02880 (2.14986) | > loader_time: 0.03600 (0.03617)  --> STEP: 6625/15287 -- GLOBAL_STEP: 987200 | > loss_disc: 2.30610 (2.32052) | > loss_disc_real_0: 0.13152 (0.12269) | > loss_disc_real_1: 0.22712 (0.21114) | > loss_disc_real_2: 0.22812 (0.21580) | > loss_disc_real_3: 0.19157 (0.21915) | > loss_disc_real_4: 0.22004 (0.21490) | > loss_disc_real_5: 0.17985 (0.21364) | > loss_0: 2.30610 (2.32052) | > grad_norm_0: 21.35415 (16.82067) | > loss_gen: 2.65057 (2.55719) | > loss_kl: 2.64550 (2.65753) | > loss_feat: 8.78364 (8.66922) | > loss_mel: 17.88662 (17.76617) | > loss_duration: 1.67739 (1.70452) | > loss_1: 33.64371 (33.35458) | > grad_norm_1: 144.52620 (137.77383) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03470 (2.15014) | > loader_time: 0.05040 (0.03620)  --> STEP: 6650/15287 -- GLOBAL_STEP: 987225 | > loss_disc: 2.35068 (2.32066) | > loss_disc_real_0: 0.11032 (0.12270) | > loss_disc_real_1: 0.23534 (0.21113) | > loss_disc_real_2: 0.22222 (0.21578) | > loss_disc_real_3: 0.24378 (0.21917) | > loss_disc_real_4: 0.21434 (0.21493) | > loss_disc_real_5: 0.21803 (0.21365) | > loss_0: 2.35068 (2.32066) | > grad_norm_0: 20.94909 (16.84050) | > loss_gen: 2.61889 (2.55692) | > loss_kl: 2.72241 (2.65761) | > loss_feat: 8.30245 (8.66881) | > loss_mel: 17.92989 (17.76624) | > loss_duration: 1.73885 (1.70453) | > loss_1: 33.31249 (33.35408) | > grad_norm_1: 209.66165 (137.86372) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.66710 (2.15016) | > loader_time: 0.04130 (0.03621)  --> STEP: 6675/15287 -- GLOBAL_STEP: 987250 | > loss_disc: 2.20546 (2.32066) | > loss_disc_real_0: 0.09857 (0.12270) | > loss_disc_real_1: 0.20508 (0.21115) | > loss_disc_real_2: 0.19599 (0.21577) | > loss_disc_real_3: 0.20890 (0.21917) | > loss_disc_real_4: 0.18460 (0.21493) | > loss_disc_real_5: 0.17534 (0.21364) | > loss_0: 2.20546 (2.32066) | > grad_norm_0: 20.59515 (16.84699) | > loss_gen: 2.49385 (2.55693) | > loss_kl: 2.64571 (2.65773) | > loss_feat: 9.13501 (8.66889) | > loss_mel: 18.04595 (17.76650) | > loss_duration: 1.73676 (1.70453) | > loss_1: 34.05728 (33.35452) | > grad_norm_1: 187.12216 (137.93700) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03800 (2.15115) | > loader_time: 0.03110 (0.03622)  --> STEP: 6700/15287 -- GLOBAL_STEP: 987275 | > loss_disc: 2.24890 (2.32062) | > loss_disc_real_0: 0.11408 (0.12268) | > loss_disc_real_1: 0.19964 (0.21114) | > loss_disc_real_2: 0.16599 (0.21577) | > loss_disc_real_3: 0.21567 (0.21917) | > loss_disc_real_4: 0.21440 (0.21494) | > loss_disc_real_5: 0.21035 (0.21366) | > loss_0: 2.24890 (2.32062) | > grad_norm_0: 7.48899 (16.84327) | > loss_gen: 2.66160 (2.55701) | > loss_kl: 2.65711 (2.65773) | > loss_feat: 9.06745 (8.66967) | > loss_mel: 18.15867 (17.76686) | > loss_duration: 1.67389 (1.70455) | > loss_1: 34.21872 (33.35576) | > grad_norm_1: 130.54634 (137.95979) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.03470 (2.15215) | > loader_time: 0.03380 (0.03622)  --> STEP: 6725/15287 -- GLOBAL_STEP: 987300 | > loss_disc: 2.29838 (2.32063) | > loss_disc_real_0: 0.08885 (0.12267) | > loss_disc_real_1: 0.20862 (0.21115) | > loss_disc_real_2: 0.21192 (0.21578) | > loss_disc_real_3: 0.23435 (0.21917) | > loss_disc_real_4: 0.23320 (0.21493) | > loss_disc_real_5: 0.18342 (0.21365) | > loss_0: 2.29838 (2.32063) | > grad_norm_0: 20.62083 (16.83152) | > loss_gen: 2.58639 (2.55693) | > loss_kl: 2.62854 (2.65782) | > loss_feat: 8.67139 (8.66969) | > loss_mel: 17.75216 (17.76682) | > loss_duration: 1.71218 (1.70459) | > loss_1: 33.35066 (33.35580) | > grad_norm_1: 154.43001 (137.89821) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42830 (2.15351) | > loader_time: 0.04010 (0.03623)  --> STEP: 6750/15287 -- GLOBAL_STEP: 987325 | > loss_disc: 2.26753 (2.32064) | > loss_disc_real_0: 0.10914 (0.12265) | > loss_disc_real_1: 0.20076 (0.21115) | > loss_disc_real_2: 0.21358 (0.21578) | > loss_disc_real_3: 0.18750 (0.21917) | > loss_disc_real_4: 0.19712 (0.21494) | > loss_disc_real_5: 0.21281 (0.21366) | > loss_0: 2.26753 (2.32064) | > grad_norm_0: 27.54209 (16.83193) | > loss_gen: 2.41828 (2.55681) | > loss_kl: 2.76341 (2.65784) | > loss_feat: 8.52209 (8.66996) | > loss_mel: 17.71045 (17.76693) | > loss_duration: 1.69423 (1.70459) | > loss_1: 33.10847 (33.35609) | > grad_norm_1: 159.69058 (137.99146) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.87070 (2.15423) | > loader_time: 0.04060 (0.03625)  --> STEP: 6775/15287 -- GLOBAL_STEP: 987350 | > loss_disc: 2.41304 (2.32054) | > loss_disc_real_0: 0.19807 (0.12265) | > loss_disc_real_1: 0.22447 (0.21112) | > loss_disc_real_2: 0.24986 (0.21578) | > loss_disc_real_3: 0.21845 (0.21914) | > loss_disc_real_4: 0.24011 (0.21493) | > loss_disc_real_5: 0.24224 (0.21365) | > loss_0: 2.41304 (2.32054) | > grad_norm_0: 10.93485 (16.84092) | > loss_gen: 2.43982 (2.55688) | > loss_kl: 2.62136 (2.65778) | > loss_feat: 8.78918 (8.67049) | > loss_mel: 17.73817 (17.76673) | > loss_duration: 1.69610 (1.70461) | > loss_1: 33.28463 (33.35645) | > grad_norm_1: 198.28123 (138.03500) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03130 (2.15572) | > loader_time: 0.04200 (0.03626)  --> STEP: 6800/15287 -- GLOBAL_STEP: 987375 | > loss_disc: 2.40107 (2.32063) | > loss_disc_real_0: 0.13427 (0.12268) | > loss_disc_real_1: 0.19943 (0.21111) | > loss_disc_real_2: 0.22603 (0.21577) | > loss_disc_real_3: 0.22345 (0.21915) | > loss_disc_real_4: 0.21171 (0.21493) | > loss_disc_real_5: 0.22700 (0.21366) | > loss_0: 2.40107 (2.32063) | > grad_norm_0: 27.08722 (16.83734) | > loss_gen: 2.34198 (2.55679) | > loss_kl: 2.68506 (2.65792) | > loss_feat: 8.19078 (8.67041) | > loss_mel: 17.69802 (17.76722) | > loss_duration: 1.73225 (1.70461) | > loss_1: 32.64808 (33.35691) | > grad_norm_1: 195.60254 (138.00270) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.85810 (2.15597) | > loader_time: 0.03640 (0.03628)  --> STEP: 6825/15287 -- GLOBAL_STEP: 987400 | > loss_disc: 2.36446 (2.32066) | > loss_disc_real_0: 0.14317 (0.12269) | > loss_disc_real_1: 0.20818 (0.21111) | > loss_disc_real_2: 0.24920 (0.21578) | > loss_disc_real_3: 0.22714 (0.21915) | > loss_disc_real_4: 0.23778 (0.21494) | > loss_disc_real_5: 0.21660 (0.21367) | > loss_0: 2.36446 (2.32066) | > grad_norm_0: 13.46538 (16.82997) | > loss_gen: 2.47771 (2.55677) | > loss_kl: 2.56975 (2.65788) | > loss_feat: 8.29047 (8.67008) | > loss_mel: 17.70766 (17.76723) | > loss_duration: 1.72996 (1.70461) | > loss_1: 32.77556 (33.35653) | > grad_norm_1: 169.11392 (137.92812) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29560 (2.15676) | > loader_time: 0.03550 (0.03631)  --> STEP: 6850/15287 -- GLOBAL_STEP: 987425 | > loss_disc: 2.32540 (2.32072) | > loss_disc_real_0: 0.14758 (0.12270) | > loss_disc_real_1: 0.23177 (0.21115) | > loss_disc_real_2: 0.19909 (0.21580) | > loss_disc_real_3: 0.21356 (0.21918) | > loss_disc_real_4: 0.22607 (0.21496) | > loss_disc_real_5: 0.21576 (0.21367) | > loss_0: 2.32540 (2.32072) | > grad_norm_0: 9.07013 (16.82930) | > loss_gen: 2.61072 (2.55685) | > loss_kl: 2.69649 (2.65785) | > loss_feat: 8.69877 (8.66938) | > loss_mel: 18.14766 (17.76692) | > loss_duration: 1.69815 (1.70459) | > loss_1: 33.85178 (33.35554) | > grad_norm_1: 90.77150 (137.89667) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95370 (2.15737) | > loader_time: 0.04490 (0.03632)  --> STEP: 6875/15287 -- GLOBAL_STEP: 987450 | > loss_disc: 2.35821 (2.32085) | > loss_disc_real_0: 0.17231 (0.12272) | > loss_disc_real_1: 0.19462 (0.21116) | > loss_disc_real_2: 0.24816 (0.21581) | > loss_disc_real_3: 0.22488 (0.21920) | > loss_disc_real_4: 0.24525 (0.21498) | > loss_disc_real_5: 0.25317 (0.21370) | > loss_0: 2.35821 (2.32085) | > grad_norm_0: 10.36929 (16.83308) | > loss_gen: 2.41290 (2.55675) | > loss_kl: 2.68121 (2.65785) | > loss_feat: 8.30815 (8.66950) | > loss_mel: 17.47116 (17.76696) | > loss_duration: 1.75171 (1.70459) | > loss_1: 32.62513 (33.35560) | > grad_norm_1: 77.48281 (137.84543) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41770 (2.15835) | > loader_time: 0.03270 (0.03634)  --> STEP: 6900/15287 -- GLOBAL_STEP: 987475 | > loss_disc: 2.35268 (2.32100) | > loss_disc_real_0: 0.12480 (0.12275) | > loss_disc_real_1: 0.19139 (0.21115) | > loss_disc_real_2: 0.20195 (0.21582) | > loss_disc_real_3: 0.19500 (0.21921) | > loss_disc_real_4: 0.20677 (0.21498) | > loss_disc_real_5: 0.18608 (0.21370) | > loss_0: 2.35268 (2.32100) | > grad_norm_0: 9.61677 (16.82803) | > loss_gen: 2.63691 (2.55664) | > loss_kl: 2.72717 (2.65802) | > loss_feat: 8.93928 (8.66918) | > loss_mel: 18.02115 (17.76706) | > loss_duration: 1.70682 (1.70464) | > loss_1: 34.03134 (33.35547) | > grad_norm_1: 139.57254 (137.75740) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44620 (2.15948) | > loader_time: 0.03800 (0.03635)  --> STEP: 6925/15287 -- GLOBAL_STEP: 987500 | > loss_disc: 2.29527 (2.32097) | > loss_disc_real_0: 0.11751 (0.12274) | > loss_disc_real_1: 0.18004 (0.21114) | > loss_disc_real_2: 0.21141 (0.21581) | > loss_disc_real_3: 0.21593 (0.21921) | > loss_disc_real_4: 0.24524 (0.21498) | > loss_disc_real_5: 0.21896 (0.21370) | > loss_0: 2.29527 (2.32097) | > grad_norm_0: 5.26291 (16.82504) | > loss_gen: 2.72283 (2.55666) | > loss_kl: 2.77956 (2.65800) | > loss_feat: 8.71815 (8.66874) | > loss_mel: 17.70650 (17.76695) | > loss_duration: 1.72181 (1.70468) | > loss_1: 33.64885 (33.35497) | > grad_norm_1: 114.82642 (137.75995) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.07430 (2.16034) | > loader_time: 0.05450 (0.03637)  --> STEP: 6950/15287 -- GLOBAL_STEP: 987525 | > loss_disc: 2.22055 (2.32098) | > loss_disc_real_0: 0.08127 (0.12272) | > loss_disc_real_1: 0.20636 (0.21115) | > loss_disc_real_2: 0.20708 (0.21582) | > loss_disc_real_3: 0.20024 (0.21920) | > loss_disc_real_4: 0.19625 (0.21496) | > loss_disc_real_5: 0.16269 (0.21372) | > loss_0: 2.22055 (2.32098) | > grad_norm_0: 10.62710 (16.81926) | > loss_gen: 2.80731 (2.55674) | > loss_kl: 2.74452 (2.65801) | > loss_feat: 8.99193 (8.66904) | > loss_mel: 17.81091 (17.76694) | > loss_duration: 1.66671 (1.70468) | > loss_1: 34.02137 (33.35535) | > grad_norm_1: 346.25082 (137.71466) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99330 (2.16091) | > loader_time: 0.04330 (0.03639)  --> STEP: 6975/15287 -- GLOBAL_STEP: 987550 | > loss_disc: 2.48010 (2.32112) | > loss_disc_real_0: 0.07475 (0.12270) | > loss_disc_real_1: 0.19653 (0.21115) | > loss_disc_real_2: 0.20332 (0.21583) | > loss_disc_real_3: 0.23475 (0.21920) | > loss_disc_real_4: 0.25807 (0.21501) | > loss_disc_real_5: 0.30915 (0.21387) | > loss_0: 2.48010 (2.32112) | > grad_norm_0: 53.40369 (16.90074) | > loss_gen: 2.49514 (2.55736) | > loss_kl: 2.57036 (2.65806) | > loss_feat: 8.81676 (8.66967) | > loss_mel: 17.37306 (17.76765) | > loss_duration: 1.65097 (1.70470) | > loss_1: 32.90629 (33.35738) | > grad_norm_1: 199.25122 (138.05235) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.63400 (2.16127) | > loader_time: 0.03270 (0.03642)  --> STEP: 7000/15287 -- GLOBAL_STEP: 987575 | > loss_disc: 2.31129 (2.32139) | > loss_disc_real_0: 0.09337 (0.12275) | > loss_disc_real_1: 0.20615 (0.21118) | > loss_disc_real_2: 0.22282 (0.21583) | > loss_disc_real_3: 0.20105 (0.21923) | > loss_disc_real_4: 0.21783 (0.21504) | > loss_disc_real_5: 0.22391 (0.21393) | > loss_0: 2.31129 (2.32139) | > grad_norm_0: 13.31058 (16.97737) | > loss_gen: 2.57972 (2.55707) | > loss_kl: 2.51679 (2.65778) | > loss_feat: 8.66641 (8.66835) | > loss_mel: 17.60077 (17.76701) | > loss_duration: 1.70225 (1.70470) | > loss_1: 33.06595 (33.35485) | > grad_norm_1: 252.19040 (138.33960) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.11740 (2.16149) | > loader_time: 0.04510 (0.03643)  --> STEP: 7025/15287 -- GLOBAL_STEP: 987600 | > loss_disc: 2.30570 (2.32137) | > loss_disc_real_0: 0.08057 (0.12277) | > loss_disc_real_1: 0.21156 (0.21117) | > loss_disc_real_2: 0.20577 (0.21582) | > loss_disc_real_3: 0.24231 (0.21922) | > loss_disc_real_4: 0.18217 (0.21503) | > loss_disc_real_5: 0.23255 (0.21393) | > loss_0: 2.30570 (2.32137) | > grad_norm_0: 15.93515 (16.99956) | > loss_gen: 2.62178 (2.55698) | > loss_kl: 2.70276 (2.65758) | > loss_feat: 9.01071 (8.66789) | > loss_mel: 17.79352 (17.76623) | > loss_duration: 1.77172 (1.70473) | > loss_1: 33.90049 (33.35336) | > grad_norm_1: 216.25337 (138.34842) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26380 (2.16297) | > loader_time: 0.03090 (0.03643)  --> STEP: 7050/15287 -- GLOBAL_STEP: 987625 | > loss_disc: 2.28690 (2.32145) | > loss_disc_real_0: 0.10338 (0.12280) | > loss_disc_real_1: 0.21251 (0.21119) | > loss_disc_real_2: 0.21135 (0.21583) | > loss_disc_real_3: 0.19337 (0.21923) | > loss_disc_real_4: 0.20661 (0.21504) | > loss_disc_real_5: 0.20701 (0.21393) | > loss_0: 2.28690 (2.32145) | > grad_norm_0: 16.50664 (17.00119) | > loss_gen: 2.53838 (2.55692) | > loss_kl: 2.75741 (2.65764) | > loss_feat: 8.80419 (8.66741) | > loss_mel: 17.70382 (17.76582) | > loss_duration: 1.70896 (1.70473) | > loss_1: 33.51276 (33.35247) | > grad_norm_1: 62.65262 (138.29605) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93180 (2.16236) | > loader_time: 0.03770 (0.03645)  --> STEP: 7075/15287 -- GLOBAL_STEP: 987650 | > loss_disc: 2.32816 (2.32163) | > loss_disc_real_0: 0.10860 (0.12287) | > loss_disc_real_1: 0.18911 (0.21122) | > loss_disc_real_2: 0.20202 (0.21583) | > loss_disc_real_3: 0.19443 (0.21923) | > loss_disc_real_4: 0.19075 (0.21503) | > loss_disc_real_5: 0.22429 (0.21394) | > loss_0: 2.32816 (2.32163) | > grad_norm_0: 8.53719 (16.99021) | > loss_gen: 2.49836 (2.55694) | > loss_kl: 2.58340 (2.65766) | > loss_feat: 8.25829 (8.66712) | > loss_mel: 18.02429 (17.76598) | > loss_duration: 1.70654 (1.70472) | > loss_1: 33.07088 (33.35236) | > grad_norm_1: 78.58209 (138.20346) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98070 (2.16178) | > loader_time: 0.04010 (0.03647)  --> STEP: 7100/15287 -- GLOBAL_STEP: 987675 | > loss_disc: 2.26305 (2.32164) | > loss_disc_real_0: 0.13028 (0.12283) | > loss_disc_real_1: 0.18850 (0.21122) | > loss_disc_real_2: 0.20901 (0.21581) | > loss_disc_real_3: 0.21822 (0.21927) | > loss_disc_real_4: 0.19548 (0.21506) | > loss_disc_real_5: 0.21163 (0.21398) | > loss_0: 2.26305 (2.32164) | > grad_norm_0: 10.80597 (16.98018) | > loss_gen: 2.67198 (2.55711) | > loss_kl: 2.52163 (2.65760) | > loss_feat: 9.06307 (8.66704) | > loss_mel: 18.16584 (17.76620) | > loss_duration: 1.72309 (1.70471) | > loss_1: 34.14561 (33.35259) | > grad_norm_1: 201.25931 (138.22832) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.84960 (2.16412) | > loader_time: 0.04360 (0.03648)  --> STEP: 7125/15287 -- GLOBAL_STEP: 987700 | > loss_disc: 2.26249 (2.32164) | > loss_disc_real_0: 0.11112 (0.12282) | > loss_disc_real_1: 0.19242 (0.21122) | > loss_disc_real_2: 0.19607 (0.21581) | > loss_disc_real_3: 0.21636 (0.21926) | > loss_disc_real_4: 0.18703 (0.21506) | > loss_disc_real_5: 0.22704 (0.21398) | > loss_0: 2.26249 (2.32164) | > grad_norm_0: 22.48350 (16.99443) | > loss_gen: 2.63562 (2.55708) | > loss_kl: 2.59587 (2.65760) | > loss_feat: 8.61600 (8.66683) | > loss_mel: 17.74058 (17.76626) | > loss_duration: 1.72868 (1.70475) | > loss_1: 33.31675 (33.35246) | > grad_norm_1: 183.01056 (138.23975) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88670 (2.16342) | > loader_time: 0.04000 (0.03650)  --> STEP: 7150/15287 -- GLOBAL_STEP: 987725 | > loss_disc: 2.31237 (2.32179) | > loss_disc_real_0: 0.09528 (0.12286) | > loss_disc_real_1: 0.17669 (0.21126) | > loss_disc_real_2: 0.25804 (0.21582) | > loss_disc_real_3: 0.21366 (0.21928) | > loss_disc_real_4: 0.20789 (0.21509) | > loss_disc_real_5: 0.21292 (0.21400) | > loss_0: 2.31237 (2.32179) | > grad_norm_0: 17.52196 (17.00286) | > loss_gen: 2.57793 (2.55710) | > loss_kl: 2.62111 (2.65760) | > loss_feat: 8.73306 (8.66652) | > loss_mel: 18.11159 (17.76656) | > loss_duration: 1.69731 (1.70476) | > loss_1: 33.74100 (33.35247) | > grad_norm_1: 175.83244 (138.23122) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89710 (2.16428) | > loader_time: 0.04190 (0.03650)  --> STEP: 7175/15287 -- GLOBAL_STEP: 987750 | > loss_disc: 2.39539 (2.32182) | > loss_disc_real_0: 0.15464 (0.12286) | > loss_disc_real_1: 0.24411 (0.21126) | > loss_disc_real_2: 0.23195 (0.21581) | > loss_disc_real_3: 0.21936 (0.21930) | > loss_disc_real_4: 0.21781 (0.21509) | > loss_disc_real_5: 0.22112 (0.21400) | > loss_0: 2.39539 (2.32182) | > grad_norm_0: 8.24635 (16.99743) | > loss_gen: 2.41849 (2.55701) | > loss_kl: 2.84438 (2.65771) | > loss_feat: 8.02584 (8.66608) | > loss_mel: 17.54272 (17.76674) | > loss_duration: 1.70166 (1.70477) | > loss_1: 32.53310 (33.35225) | > grad_norm_1: 111.56876 (138.18906) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95690 (2.16351) | > loader_time: 0.03490 (0.03651)  --> STEP: 7200/15287 -- GLOBAL_STEP: 987775 | > loss_disc: 2.26823 (2.32187) | > loss_disc_real_0: 0.09529 (0.12287) | > loss_disc_real_1: 0.23027 (0.21125) | > loss_disc_real_2: 0.20807 (0.21581) | > loss_disc_real_3: 0.22136 (0.21929) | > loss_disc_real_4: 0.22438 (0.21508) | > loss_disc_real_5: 0.21862 (0.21400) | > loss_0: 2.26823 (2.32187) | > grad_norm_0: 8.15148 (16.99776) | > loss_gen: 2.63149 (2.55675) | > loss_kl: 2.68358 (2.65767) | > loss_feat: 8.55020 (8.66542) | > loss_mel: 17.45343 (17.76655) | > loss_duration: 1.70929 (1.70477) | > loss_1: 33.02799 (33.35111) | > grad_norm_1: 71.66846 (138.13527) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90970 (2.16322) | > loader_time: 0.03870 (0.03653)  --> STEP: 7225/15287 -- GLOBAL_STEP: 987800 | > loss_disc: 2.34070 (2.32179) | > loss_disc_real_0: 0.17045 (0.12287) | > loss_disc_real_1: 0.19834 (0.21122) | > loss_disc_real_2: 0.21764 (0.21580) | > loss_disc_real_3: 0.21271 (0.21926) | > loss_disc_real_4: 0.21471 (0.21504) | > loss_disc_real_5: 0.22294 (0.21398) | > loss_0: 2.34070 (2.32179) | > grad_norm_0: 9.12508 (16.99646) | > loss_gen: 2.39065 (2.55665) | > loss_kl: 2.66443 (2.65758) | > loss_feat: 8.65223 (8.66569) | > loss_mel: 17.79094 (17.76648) | > loss_duration: 1.69121 (1.70476) | > loss_1: 33.18946 (33.35111) | > grad_norm_1: 163.42984 (138.15378) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91940 (2.16253) | > loader_time: 0.03770 (0.03654)  --> STEP: 7250/15287 -- GLOBAL_STEP: 987825 | > loss_disc: 2.34798 (2.32174) | > loss_disc_real_0: 0.18160 (0.12287) | > loss_disc_real_1: 0.20579 (0.21120) | > loss_disc_real_2: 0.22832 (0.21579) | > loss_disc_real_3: 0.21463 (0.21925) | > loss_disc_real_4: 0.20441 (0.21504) | > loss_disc_real_5: 0.20959 (0.21397) | > loss_0: 2.34798 (2.32174) | > grad_norm_0: 41.54621 (17.00330) | > loss_gen: 2.50090 (2.55663) | > loss_kl: 2.69738 (2.65754) | > loss_feat: 8.46257 (8.66570) | > loss_mel: 17.59115 (17.76618) | > loss_duration: 1.66774 (1.70474) | > loss_1: 32.91974 (33.35073) | > grad_norm_1: 117.12305 (138.15642) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02830 (2.16215) | > loader_time: 0.04280 (0.03655)  --> STEP: 7275/15287 -- GLOBAL_STEP: 987850 | > loss_disc: 2.36056 (2.32174) | > loss_disc_real_0: 0.11173 (0.12287) | > loss_disc_real_1: 0.20994 (0.21119) | > loss_disc_real_2: 0.21818 (0.21580) | > loss_disc_real_3: 0.22557 (0.21924) | > loss_disc_real_4: 0.19306 (0.21504) | > loss_disc_real_5: 0.23349 (0.21397) | > loss_0: 2.36056 (2.32174) | > grad_norm_0: 13.78842 (17.00627) | > loss_gen: 2.57353 (2.55654) | > loss_kl: 2.63153 (2.65750) | > loss_feat: 8.43416 (8.66586) | > loss_mel: 17.77182 (17.76603) | > loss_duration: 1.70743 (1.70476) | > loss_1: 33.11846 (33.35063) | > grad_norm_1: 116.73882 (138.14799) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17720 (2.16208) | > loader_time: 0.04320 (0.03657)  --> STEP: 7300/15287 -- GLOBAL_STEP: 987875 | > loss_disc: 2.30440 (2.32173) | > loss_disc_real_0: 0.12140 (0.12287) | > loss_disc_real_1: 0.22810 (0.21120) | > loss_disc_real_2: 0.19333 (0.21582) | > loss_disc_real_3: 0.22979 (0.21924) | > loss_disc_real_4: 0.21445 (0.21503) | > loss_disc_real_5: 0.17781 (0.21397) | > loss_0: 2.30440 (2.32173) | > grad_norm_0: 8.62728 (17.00296) | > loss_gen: 2.73201 (2.55662) | > loss_kl: 2.48290 (2.65751) | > loss_feat: 8.56098 (8.66557) | > loss_mel: 17.47829 (17.76571) | > loss_duration: 1.70676 (1.70481) | > loss_1: 32.96095 (33.35018) | > grad_norm_1: 71.60673 (138.14853) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90970 (2.16187) | > loader_time: 0.03740 (0.03658)  --> STEP: 7325/15287 -- GLOBAL_STEP: 987900 | > loss_disc: 2.29540 (2.32169) | > loss_disc_real_0: 0.09632 (0.12286) | > loss_disc_real_1: 0.20157 (0.21120) | > loss_disc_real_2: 0.20888 (0.21582) | > loss_disc_real_3: 0.18095 (0.21924) | > loss_disc_real_4: 0.22947 (0.21504) | > loss_disc_real_5: 0.23059 (0.21397) | > loss_0: 2.29540 (2.32169) | > grad_norm_0: 21.39925 (17.00079) | > loss_gen: 2.35455 (2.55653) | > loss_kl: 2.59361 (2.65737) | > loss_feat: 8.26479 (8.66557) | > loss_mel: 17.45638 (17.76546) | > loss_duration: 1.69893 (1.70481) | > loss_1: 32.36826 (33.34969) | > grad_norm_1: 170.55502 (138.13077) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94640 (2.16283) | > loader_time: 0.04610 (0.03659)  --> STEP: 7350/15287 -- GLOBAL_STEP: 987925 | > loss_disc: 2.25700 (2.32173) | > loss_disc_real_0: 0.10015 (0.12286) | > loss_disc_real_1: 0.20096 (0.21120) | > loss_disc_real_2: 0.20570 (0.21582) | > loss_disc_real_3: 0.18990 (0.21923) | > loss_disc_real_4: 0.20477 (0.21503) | > loss_disc_real_5: 0.17286 (0.21398) | > loss_0: 2.25700 (2.32173) | > grad_norm_0: 13.54455 (16.99599) | > loss_gen: 2.48990 (2.55642) | > loss_kl: 2.55063 (2.65741) | > loss_feat: 8.47637 (8.66517) | > loss_mel: 17.72091 (17.76537) | > loss_duration: 1.71189 (1.70481) | > loss_1: 32.94969 (33.34913) | > grad_norm_1: 151.77490 (138.08347) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98060 (2.16217) | > loader_time: 0.05160 (0.03661)  --> STEP: 7375/15287 -- GLOBAL_STEP: 987950 | > loss_disc: 2.30988 (2.32174) | > loss_disc_real_0: 0.15323 (0.12291) | > loss_disc_real_1: 0.22051 (0.21119) | > loss_disc_real_2: 0.19675 (0.21581) | > loss_disc_real_3: 0.22685 (0.21922) | > loss_disc_real_4: 0.22282 (0.21502) | > loss_disc_real_5: 0.21655 (0.21398) | > loss_0: 2.30988 (2.32174) | > grad_norm_0: 28.24066 (16.99183) | > loss_gen: 2.60323 (2.55649) | > loss_kl: 2.58782 (2.65748) | > loss_feat: 9.16821 (8.66521) | > loss_mel: 17.96250 (17.76561) | > loss_duration: 1.71507 (1.70482) | > loss_1: 34.03683 (33.34956) | > grad_norm_1: 176.82350 (138.01025) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.54250 (2.16241) | > loader_time: 0.03560 (0.03663)  --> STEP: 7400/15287 -- GLOBAL_STEP: 987975 | > loss_disc: 2.22043 (2.32175) | > loss_disc_real_0: 0.08771 (0.12295) | > loss_disc_real_1: 0.17552 (0.21120) | > loss_disc_real_2: 0.17098 (0.21580) | > loss_disc_real_3: 0.19591 (0.21923) | > loss_disc_real_4: 0.19470 (0.21503) | > loss_disc_real_5: 0.21877 (0.21398) | > loss_0: 2.22043 (2.32175) | > grad_norm_0: 7.98542 (16.98598) | > loss_gen: 2.70276 (2.55662) | > loss_kl: 2.67906 (2.65748) | > loss_feat: 9.35657 (8.66519) | > loss_mel: 17.34097 (17.76591) | > loss_duration: 1.70396 (1.70487) | > loss_1: 33.78332 (33.35000) | > grad_norm_1: 120.77347 (137.99207) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.86820 (2.16277) | > loader_time: 0.03670 (0.03665)  --> STEP: 7425/15287 -- GLOBAL_STEP: 988000 | > loss_disc: 2.19892 (2.32182) | > loss_disc_real_0: 0.09310 (0.12295) | > loss_disc_real_1: 0.20134 (0.21122) | > loss_disc_real_2: 0.19561 (0.21580) | > loss_disc_real_3: 0.21816 (0.21925) | > loss_disc_real_4: 0.22662 (0.21507) | > loss_disc_real_5: 0.22356 (0.21400) | > loss_0: 2.19892 (2.32182) | > grad_norm_0: 13.47481 (16.98798) | > loss_gen: 2.56051 (2.55659) | > loss_kl: 2.58989 (2.65752) | > loss_feat: 8.98363 (8.66506) | > loss_mel: 17.90167 (17.76641) | > loss_duration: 1.72227 (1.70489) | > loss_1: 33.75797 (33.35041) | > grad_norm_1: 146.32584 (137.97118) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00000 (2.16256) | > loader_time: 0.04110 (0.03667)  --> STEP: 7450/15287 -- GLOBAL_STEP: 988025 | > loss_disc: 2.34066 (2.32170) | > loss_disc_real_0: 0.11045 (0.12293) | > loss_disc_real_1: 0.21500 (0.21122) | > loss_disc_real_2: 0.22058 (0.21578) | > loss_disc_real_3: 0.22912 (0.21924) | > loss_disc_real_4: 0.22431 (0.21507) | > loss_disc_real_5: 0.18634 (0.21399) | > loss_0: 2.34066 (2.32170) | > grad_norm_0: 27.92570 (16.98187) | > loss_gen: 2.43105 (2.55669) | > loss_kl: 2.67075 (2.65761) | > loss_feat: 8.67044 (8.66557) | > loss_mel: 18.19488 (17.76665) | > loss_duration: 1.76784 (1.70491) | > loss_1: 33.73497 (33.35135) | > grad_norm_1: 182.09061 (137.98868) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87090 (2.16206) | > loader_time: 0.03700 (0.03669)  --> STEP: 7475/15287 -- GLOBAL_STEP: 988050 | > loss_disc: 2.31427 (2.32165) | > loss_disc_real_0: 0.13043 (0.12292) | > loss_disc_real_1: 0.21092 (0.21123) | > loss_disc_real_2: 0.19981 (0.21577) | > loss_disc_real_3: 0.23355 (0.21923) | > loss_disc_real_4: 0.24023 (0.21507) | > loss_disc_real_5: 0.20693 (0.21398) | > loss_0: 2.31427 (2.32165) | > grad_norm_0: 8.07584 (16.97258) | > loss_gen: 2.45888 (2.55676) | > loss_kl: 2.87078 (2.65767) | > loss_feat: 8.93592 (8.66596) | > loss_mel: 17.62333 (17.76634) | > loss_duration: 1.68586 (1.70490) | > loss_1: 33.57477 (33.35156) | > grad_norm_1: 156.06866 (137.99428) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.81690 (2.16272) | > loader_time: 0.04030 (0.03670)  --> STEP: 7500/15287 -- GLOBAL_STEP: 988075 | > loss_disc: 2.34343 (2.32165) | > loss_disc_real_0: 0.11375 (0.12290) | > loss_disc_real_1: 0.19565 (0.21124) | > loss_disc_real_2: 0.21790 (0.21577) | > loss_disc_real_3: 0.20333 (0.21921) | > loss_disc_real_4: 0.20970 (0.21504) | > loss_disc_real_5: 0.19435 (0.21398) | > loss_0: 2.34343 (2.32165) | > grad_norm_0: 17.47442 (16.97452) | > loss_gen: 2.56581 (2.55663) | > loss_kl: 2.58539 (2.65770) | > loss_feat: 8.66977 (8.66554) | > loss_mel: 17.98448 (17.76614) | > loss_duration: 1.70440 (1.70489) | > loss_1: 33.50986 (33.35085) | > grad_norm_1: 81.08593 (137.96844) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18110 (2.16221) | > loader_time: 0.04120 (0.03672)  --> STEP: 7525/15287 -- GLOBAL_STEP: 988100 | > loss_disc: 2.27324 (2.32169) | > loss_disc_real_0: 0.14497 (0.12290) | > loss_disc_real_1: 0.22485 (0.21125) | > loss_disc_real_2: 0.23974 (0.21578) | > loss_disc_real_3: 0.22262 (0.21922) | > loss_disc_real_4: 0.21382 (0.21503) | > loss_disc_real_5: 0.18113 (0.21399) | > loss_0: 2.27324 (2.32169) | > grad_norm_0: 8.61849 (16.97686) | > loss_gen: 2.60171 (2.55656) | > loss_kl: 2.63445 (2.65771) | > loss_feat: 8.60333 (8.66531) | > loss_mel: 17.58189 (17.76641) | > loss_duration: 1.71495 (1.70488) | > loss_1: 33.13633 (33.35081) | > grad_norm_1: 95.83391 (138.02267) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02520 (2.16218) | > loader_time: 0.04190 (0.03674)  --> STEP: 7550/15287 -- GLOBAL_STEP: 988125 | > loss_disc: 2.40042 (2.32174) | > loss_disc_real_0: 0.11610 (0.12294) | > loss_disc_real_1: 0.24599 (0.21125) | > loss_disc_real_2: 0.21974 (0.21578) | > loss_disc_real_3: 0.23083 (0.21920) | > loss_disc_real_4: 0.20386 (0.21503) | > loss_disc_real_5: 0.23011 (0.21400) | > loss_0: 2.40042 (2.32174) | > grad_norm_0: 13.48899 (16.97351) | > loss_gen: 2.51179 (2.55657) | > loss_kl: 2.88680 (2.65774) | > loss_feat: 8.38407 (8.66545) | > loss_mel: 18.72807 (17.76673) | > loss_duration: 1.72522 (1.70488) | > loss_1: 34.23594 (33.35130) | > grad_norm_1: 49.17398 (137.94336) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90880 (2.16161) | > loader_time: 0.04430 (0.03675)  --> STEP: 7575/15287 -- GLOBAL_STEP: 988150 | > loss_disc: 2.36472 (2.32187) | > loss_disc_real_0: 0.10258 (0.12297) | > loss_disc_real_1: 0.19926 (0.21128) | > loss_disc_real_2: 0.21943 (0.21580) | > loss_disc_real_3: 0.21889 (0.21920) | > loss_disc_real_4: 0.21370 (0.21504) | > loss_disc_real_5: 0.20924 (0.21399) | > loss_0: 2.36472 (2.32187) | > grad_norm_0: 9.70636 (16.97146) | > loss_gen: 2.50784 (2.55642) | > loss_kl: 2.51076 (2.65774) | > loss_feat: 8.56913 (8.66457) | > loss_mel: 17.94936 (17.76676) | > loss_duration: 1.77427 (1.70487) | > loss_1: 33.31136 (33.35028) | > grad_norm_1: 146.25569 (137.90529) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86510 (2.16098) | > loader_time: 0.03780 (0.03676)  --> STEP: 7600/15287 -- GLOBAL_STEP: 988175 | > loss_disc: 2.37092 (2.32187) | > loss_disc_real_0: 0.10684 (0.12296) | > loss_disc_real_1: 0.22641 (0.21127) | > loss_disc_real_2: 0.21971 (0.21579) | > loss_disc_real_3: 0.24059 (0.21921) | > loss_disc_real_4: 0.23981 (0.21505) | > loss_disc_real_5: 0.22010 (0.21399) | > loss_0: 2.37092 (2.32187) | > grad_norm_0: 14.11702 (16.95445) | > loss_gen: 2.40601 (2.55637) | > loss_kl: 2.63647 (2.65769) | > loss_feat: 8.78379 (8.66475) | > loss_mel: 18.02353 (17.76713) | > loss_duration: 1.77753 (1.70484) | > loss_1: 33.62733 (33.35071) | > grad_norm_1: 102.36553 (137.82361) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91430 (2.16027) | > loader_time: 0.03700 (0.03676)  --> STEP: 7625/15287 -- GLOBAL_STEP: 988200 | > loss_disc: 2.40936 (2.32190) | > loss_disc_real_0: 0.15141 (0.12294) | > loss_disc_real_1: 0.21800 (0.21126) | > loss_disc_real_2: 0.21317 (0.21580) | > loss_disc_real_3: 0.23282 (0.21921) | > loss_disc_real_4: 0.23588 (0.21505) | > loss_disc_real_5: 0.22308 (0.21398) | > loss_0: 2.40936 (2.32190) | > grad_norm_0: 14.63680 (16.94206) | > loss_gen: 2.61926 (2.55631) | > loss_kl: 2.60334 (2.65771) | > loss_feat: 8.73160 (8.66474) | > loss_mel: 17.97595 (17.76724) | > loss_duration: 1.69665 (1.70485) | > loss_1: 33.62681 (33.35075) | > grad_norm_1: 147.73199 (137.77983) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92250 (2.15974) | > loader_time: 0.03610 (0.03678)  --> STEP: 7650/15287 -- GLOBAL_STEP: 988225 | > loss_disc: 2.31461 (2.32187) | > loss_disc_real_0: 0.10060 (0.12296) | > loss_disc_real_1: 0.25178 (0.21127) | > loss_disc_real_2: 0.24075 (0.21580) | > loss_disc_real_3: 0.23235 (0.21921) | > loss_disc_real_4: 0.23590 (0.21504) | > loss_disc_real_5: 0.21542 (0.21398) | > loss_0: 2.31461 (2.32187) | > grad_norm_0: 9.28752 (16.93164) | > loss_gen: 2.49420 (2.55625) | > loss_kl: 2.68667 (2.65757) | > loss_feat: 8.88322 (8.66522) | > loss_mel: 17.95632 (17.76739) | > loss_duration: 1.73486 (1.70486) | > loss_1: 33.75528 (33.35120) | > grad_norm_1: 141.89487 (137.74310) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85640 (2.15917) | > loader_time: 0.03880 (0.03678)  --> STEP: 7675/15287 -- GLOBAL_STEP: 988250 | > loss_disc: 2.30255 (2.32190) | > loss_disc_real_0: 0.14303 (0.12297) | > loss_disc_real_1: 0.20559 (0.21127) | > loss_disc_real_2: 0.21880 (0.21579) | > loss_disc_real_3: 0.22873 (0.21921) | > loss_disc_real_4: 0.23021 (0.21505) | > loss_disc_real_5: 0.19698 (0.21397) | > loss_0: 2.30255 (2.32190) | > grad_norm_0: 9.92168 (16.92035) | > loss_gen: 2.49436 (2.55619) | > loss_kl: 2.77036 (2.65760) | > loss_feat: 9.08017 (8.66535) | > loss_mel: 17.63538 (17.76749) | > loss_duration: 1.69655 (1.70485) | > loss_1: 33.67682 (33.35141) | > grad_norm_1: 169.15268 (137.64677) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88710 (2.15896) | > loader_time: 0.04040 (0.03680)  --> STEP: 7700/15287 -- GLOBAL_STEP: 988275 | > loss_disc: 2.36385 (2.32195) | > loss_disc_real_0: 0.12326 (0.12297) | > loss_disc_real_1: 0.18983 (0.21127) | > loss_disc_real_2: 0.22559 (0.21581) | > loss_disc_real_3: 0.22654 (0.21922) | > loss_disc_real_4: 0.20905 (0.21505) | > loss_disc_real_5: 0.21339 (0.21397) | > loss_0: 2.36385 (2.32195) | > grad_norm_0: 7.93996 (16.90976) | > loss_gen: 2.51129 (2.55616) | > loss_kl: 2.61112 (2.65757) | > loss_feat: 8.30077 (8.66507) | > loss_mel: 17.74183 (17.76771) | > loss_duration: 1.70412 (1.70486) | > loss_1: 32.86913 (33.35128) | > grad_norm_1: 80.06627 (137.58568) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99830 (2.15847) | > loader_time: 0.03390 (0.03681)  --> STEP: 7725/15287 -- GLOBAL_STEP: 988300 | > loss_disc: 2.23776 (2.32196) | > loss_disc_real_0: 0.10212 (0.12297) | > loss_disc_real_1: 0.19932 (0.21127) | > loss_disc_real_2: 0.19167 (0.21582) | > loss_disc_real_3: 0.21409 (0.21921) | > loss_disc_real_4: 0.20471 (0.21505) | > loss_disc_real_5: 0.18017 (0.21395) | > loss_0: 2.23776 (2.32196) | > grad_norm_0: 6.04292 (16.90059) | > loss_gen: 2.61936 (2.55611) | > loss_kl: 2.55808 (2.65746) | > loss_feat: 8.76403 (8.66438) | > loss_mel: 17.87406 (17.76779) | > loss_duration: 1.70650 (1.70486) | > loss_1: 33.52203 (33.35051) | > grad_norm_1: 82.37613 (137.48166) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90520 (2.15779) | > loader_time: 0.03490 (0.03680)  --> STEP: 7750/15287 -- GLOBAL_STEP: 988325 | > loss_disc: 2.29516 (2.32203) | > loss_disc_real_0: 0.09370 (0.12297) | > loss_disc_real_1: 0.21956 (0.21128) | > loss_disc_real_2: 0.20902 (0.21584) | > loss_disc_real_3: 0.21840 (0.21923) | > loss_disc_real_4: 0.20817 (0.21507) | > loss_disc_real_5: 0.21872 (0.21397) | > loss_0: 2.29516 (2.32203) | > grad_norm_0: 9.38585 (16.90135) | > loss_gen: 2.56745 (2.55613) | > loss_kl: 2.54445 (2.65737) | > loss_feat: 9.05477 (8.66402) | > loss_mel: 17.97271 (17.76796) | > loss_duration: 1.73130 (1.70486) | > loss_1: 33.87067 (33.35025) | > grad_norm_1: 121.60511 (137.43813) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01540 (2.15740) | > loader_time: 0.03540 (0.03681)  --> STEP: 7775/15287 -- GLOBAL_STEP: 988350 | > loss_disc: 2.27306 (2.32197) | > loss_disc_real_0: 0.10439 (0.12296) | > loss_disc_real_1: 0.20808 (0.21129) | > loss_disc_real_2: 0.19574 (0.21584) | > loss_disc_real_3: 0.21713 (0.21923) | > loss_disc_real_4: 0.19950 (0.21507) | > loss_disc_real_5: 0.24097 (0.21397) | > loss_0: 2.27306 (2.32197) | > grad_norm_0: 11.03657 (16.89756) | > loss_gen: 2.64794 (2.55609) | > loss_kl: 2.74424 (2.65728) | > loss_feat: 8.90672 (8.66396) | > loss_mel: 18.05396 (17.76740) | > loss_duration: 1.71905 (1.70487) | > loss_1: 34.07191 (33.34952) | > grad_norm_1: 199.74754 (137.41031) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87730 (2.15686) | > loader_time: 0.03410 (0.03681)  --> STEP: 7800/15287 -- GLOBAL_STEP: 988375 | > loss_disc: 2.35447 (2.32199) | > loss_disc_real_0: 0.08899 (0.12295) | > loss_disc_real_1: 0.18745 (0.21127) | > loss_disc_real_2: 0.20983 (0.21585) | > loss_disc_real_3: 0.19962 (0.21922) | > loss_disc_real_4: 0.21055 (0.21505) | > loss_disc_real_5: 0.23774 (0.21396) | > loss_0: 2.35447 (2.32199) | > grad_norm_0: 24.82843 (16.89995) | > loss_gen: 2.44445 (2.55597) | > loss_kl: 2.74302 (2.65720) | > loss_feat: 8.91222 (8.66372) | > loss_mel: 17.93270 (17.76714) | > loss_duration: 1.67389 (1.70488) | > loss_1: 33.70628 (33.34880) | > grad_norm_1: 195.96654 (137.38585) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85240 (2.15631) | > loader_time: 0.03370 (0.03681)  --> STEP: 7825/15287 -- GLOBAL_STEP: 988400 | > loss_disc: 2.33536 (2.32197) | > loss_disc_real_0: 0.10105 (0.12294) | > loss_disc_real_1: 0.19198 (0.21129) | > loss_disc_real_2: 0.21195 (0.21584) | > loss_disc_real_3: 0.21379 (0.21922) | > loss_disc_real_4: 0.21297 (0.21505) | > loss_disc_real_5: 0.20774 (0.21396) | > loss_0: 2.33536 (2.32197) | > grad_norm_0: 11.36707 (16.89600) | > loss_gen: 2.52293 (2.55590) | > loss_kl: 2.72950 (2.65713) | > loss_feat: 8.59630 (8.66348) | > loss_mel: 17.70021 (17.76688) | > loss_duration: 1.69063 (1.70488) | > loss_1: 33.23957 (33.34816) | > grad_norm_1: 140.31636 (137.37161) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96590 (2.15571) | > loader_time: 0.03440 (0.03680)  --> STEP: 7850/15287 -- GLOBAL_STEP: 988425 | > loss_disc: 2.26686 (2.32190) | > loss_disc_real_0: 0.10487 (0.12291) | > loss_disc_real_1: 0.18749 (0.21128) | > loss_disc_real_2: 0.20543 (0.21584) | > loss_disc_real_3: 0.21027 (0.21922) | > loss_disc_real_4: 0.21799 (0.21505) | > loss_disc_real_5: 0.21574 (0.21395) | > loss_0: 2.26686 (2.32190) | > grad_norm_0: 16.12530 (16.88780) | > loss_gen: 2.54466 (2.55591) | > loss_kl: 2.60576 (2.65706) | > loss_feat: 9.10346 (8.66345) | > loss_mel: 17.92413 (17.76658) | > loss_duration: 1.73525 (1.70488) | > loss_1: 33.91326 (33.34775) | > grad_norm_1: 92.82427 (137.35187) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.83770 (2.15534) | > loader_time: 0.03520 (0.03680)  --> STEP: 7875/15287 -- GLOBAL_STEP: 988450 | > loss_disc: 2.35713 (2.32188) | > loss_disc_real_0: 0.19381 (0.12292) | > loss_disc_real_1: 0.20926 (0.21129) | > loss_disc_real_2: 0.23800 (0.21583) | > loss_disc_real_3: 0.23905 (0.21921) | > loss_disc_real_4: 0.24438 (0.21505) | > loss_disc_real_5: 0.20168 (0.21395) | > loss_0: 2.35713 (2.32188) | > grad_norm_0: 20.40842 (16.88056) | > loss_gen: 2.51296 (2.55597) | > loss_kl: 2.56778 (2.65703) | > loss_feat: 8.21080 (8.66389) | > loss_mel: 17.88454 (17.76700) | > loss_duration: 1.71623 (1.70489) | > loss_1: 32.89231 (33.34866) | > grad_norm_1: 101.17260 (137.36153) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96410 (2.15491) | > loader_time: 0.04050 (0.03680)  --> STEP: 7900/15287 -- GLOBAL_STEP: 988475 | > loss_disc: 2.34259 (2.32180) | > loss_disc_real_0: 0.09833 (0.12290) | > loss_disc_real_1: 0.19850 (0.21126) | > loss_disc_real_2: 0.20422 (0.21581) | > loss_disc_real_3: 0.19003 (0.21918) | > loss_disc_real_4: 0.19971 (0.21505) | > loss_disc_real_5: 0.21224 (0.21395) | > loss_0: 2.34259 (2.32180) | > grad_norm_0: 26.33977 (16.87361) | > loss_gen: 2.33181 (2.55588) | > loss_kl: 2.73511 (2.65698) | > loss_feat: 8.45211 (8.66390) | > loss_mel: 17.61609 (17.76691) | > loss_duration: 1.72834 (1.70488) | > loss_1: 32.86346 (33.34844) | > grad_norm_1: 112.81938 (137.34671) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.79210 (2.15471) | > loader_time: 0.03560 (0.03681)  --> STEP: 7925/15287 -- GLOBAL_STEP: 988500 | > loss_disc: 2.37073 (2.32183) | > loss_disc_real_0: 0.11463 (0.12295) | > loss_disc_real_1: 0.21872 (0.21125) | > loss_disc_real_2: 0.24285 (0.21583) | > loss_disc_real_3: 0.21129 (0.21917) | > loss_disc_real_4: 0.21474 (0.21505) | > loss_disc_real_5: 0.25199 (0.21395) | > loss_0: 2.37073 (2.32183) | > grad_norm_0: 17.81203 (16.88710) | > loss_gen: 2.45750 (2.55596) | > loss_kl: 2.68319 (2.65693) | > loss_feat: 8.48863 (8.66378) | > loss_mel: 17.63519 (17.76642) | > loss_duration: 1.74456 (1.70489) | > loss_1: 33.00907 (33.34788) | > grad_norm_1: 159.68935 (137.36728) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.80340 (2.15435) | > loader_time: 0.03320 (0.03682)  --> STEP: 7950/15287 -- GLOBAL_STEP: 988525 | > loss_disc: 2.45698 (2.32179) | > loss_disc_real_0: 0.28111 (0.12293) | > loss_disc_real_1: 0.17957 (0.21125) | > loss_disc_real_2: 0.20709 (0.21582) | > loss_disc_real_3: 0.20236 (0.21916) | > loss_disc_real_4: 0.20773 (0.21505) | > loss_disc_real_5: 0.25454 (0.21396) | > loss_0: 2.45698 (2.32179) | > grad_norm_0: 40.76149 (16.89506) | > loss_gen: 2.75775 (2.55598) | > loss_kl: 2.84448 (2.65688) | > loss_feat: 8.65896 (8.66398) | > loss_mel: 17.30408 (17.76627) | > loss_duration: 1.65281 (1.70489) | > loss_1: 33.21809 (33.34790) | > grad_norm_1: 194.97345 (137.44037) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95480 (2.15376) | > loader_time: 0.03520 (0.03681)  --> STEP: 7975/15287 -- GLOBAL_STEP: 988550 | > loss_disc: 2.38710 (2.32182) | > loss_disc_real_0: 0.16184 (0.12293) | > loss_disc_real_1: 0.26931 (0.21125) | > loss_disc_real_2: 0.23110 (0.21582) | > loss_disc_real_3: 0.21833 (0.21915) | > loss_disc_real_4: 0.22807 (0.21504) | > loss_disc_real_5: 0.22603 (0.21396) | > loss_0: 2.38710 (2.32182) | > grad_norm_0: 20.78609 (16.89318) | > loss_gen: 2.58754 (2.55595) | > loss_kl: 2.69577 (2.65691) | > loss_feat: 8.89694 (8.66421) | > loss_mel: 17.56675 (17.76634) | > loss_duration: 1.71381 (1.70489) | > loss_1: 33.46081 (33.34819) | > grad_norm_1: 101.70546 (137.45589) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91370 (2.15331) | > loader_time: 0.03220 (0.03681)  --> STEP: 8000/15287 -- GLOBAL_STEP: 988575 | > loss_disc: 2.36527 (2.32195) | > loss_disc_real_0: 0.17247 (0.12294) | > loss_disc_real_1: 0.18146 (0.21127) | > loss_disc_real_2: 0.18755 (0.21583) | > loss_disc_real_3: 0.22021 (0.21915) | > loss_disc_real_4: 0.20180 (0.21503) | > loss_disc_real_5: 0.25110 (0.21398) | > loss_0: 2.36527 (2.32195) | > grad_norm_0: 14.92374 (16.88528) | > loss_gen: 2.43556 (2.55586) | > loss_kl: 2.58470 (2.65693) | > loss_feat: 8.74824 (8.66420) | > loss_mel: 17.77705 (17.76647) | > loss_duration: 1.70173 (1.70490) | > loss_1: 33.24730 (33.34824) | > grad_norm_1: 84.48245 (137.36668) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01440 (2.15260) | > loader_time: 0.03430 (0.03681)  --> STEP: 8025/15287 -- GLOBAL_STEP: 988600 | > loss_disc: 2.34449 (2.32202) | > loss_disc_real_0: 0.09848 (0.12293) | > loss_disc_real_1: 0.19342 (0.21126) | > loss_disc_real_2: 0.17180 (0.21582) | > loss_disc_real_3: 0.21895 (0.21915) | > loss_disc_real_4: 0.17989 (0.21502) | > loss_disc_real_5: 0.22753 (0.21398) | > loss_0: 2.34449 (2.32202) | > grad_norm_0: 20.91995 (16.87437) | > loss_gen: 2.43845 (2.55575) | > loss_kl: 2.55996 (2.65688) | > loss_feat: 8.52850 (8.66444) | > loss_mel: 17.58896 (17.76669) | > loss_duration: 1.65043 (1.70488) | > loss_1: 32.76630 (33.34855) | > grad_norm_1: 128.14105 (137.32153) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90290 (2.15234) | > loader_time: 0.03350 (0.03681)  --> STEP: 8050/15287 -- GLOBAL_STEP: 988625 | > loss_disc: 2.48777 (2.32213) | > loss_disc_real_0: 0.17917 (0.12295) | > loss_disc_real_1: 0.17295 (0.21126) | > loss_disc_real_2: 0.18426 (0.21581) | > loss_disc_real_3: 0.23017 (0.21916) | > loss_disc_real_4: 0.21534 (0.21503) | > loss_disc_real_5: 0.20785 (0.21399) | > loss_0: 2.48777 (2.32213) | > grad_norm_0: 11.56770 (16.85788) | > loss_gen: 2.34189 (2.55576) | > loss_kl: 2.78802 (2.65703) | > loss_feat: 8.16763 (8.66435) | > loss_mel: 17.80638 (17.76678) | > loss_duration: 1.66329 (1.70486) | > loss_1: 32.76721 (33.34867) | > grad_norm_1: 58.33181 (137.14198) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93530 (2.15168) | > loader_time: 0.03390 (0.03681)  --> STEP: 8075/15287 -- GLOBAL_STEP: 988650 | > loss_disc: 2.32158 (2.32223) | > loss_disc_real_0: 0.12498 (0.12297) | > loss_disc_real_1: 0.24184 (0.21127) | > loss_disc_real_2: 0.20223 (0.21580) | > loss_disc_real_3: 0.22375 (0.21917) | > loss_disc_real_4: 0.22160 (0.21504) | > loss_disc_real_5: 0.17707 (0.21400) | > loss_0: 2.32158 (2.32223) | > grad_norm_0: 18.95679 (16.84017) | > loss_gen: 2.66230 (2.55580) | > loss_kl: 2.61414 (2.65712) | > loss_feat: 8.44483 (8.66391) | > loss_mel: 17.78609 (17.76743) | > loss_duration: 1.68570 (1.70484) | > loss_1: 33.19305 (33.34896) | > grad_norm_1: 87.39172 (136.97542) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88460 (2.15120) | > loader_time: 0.03250 (0.03680)  --> STEP: 8100/15287 -- GLOBAL_STEP: 988675 | > loss_disc: 2.46593 (2.32232) | > loss_disc_real_0: 0.19605 (0.12298) | > loss_disc_real_1: 0.25723 (0.21128) | > loss_disc_real_2: 0.24097 (0.21582) | > loss_disc_real_3: 0.24796 (0.21917) | > loss_disc_real_4: 0.25265 (0.21505) | > loss_disc_real_5: 0.24376 (0.21400) | > loss_0: 2.46593 (2.32232) | > grad_norm_0: 24.37595 (16.82927) | > loss_gen: 3.09329 (2.55583) | > loss_kl: 2.65963 (2.65706) | > loss_feat: 8.86398 (8.66352) | > loss_mel: 18.44400 (17.76750) | > loss_duration: 1.68371 (1.70481) | > loss_1: 34.74461 (33.34859) | > grad_norm_1: 132.24171 (136.90102) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20070 (2.15059) | > loader_time: 0.03930 (0.03680)  --> STEP: 8125/15287 -- GLOBAL_STEP: 988700 | > loss_disc: 2.34491 (2.32244) | > loss_disc_real_0: 0.12317 (0.12302) | > loss_disc_real_1: 0.19628 (0.21131) | > loss_disc_real_2: 0.21121 (0.21583) | > loss_disc_real_3: 0.20242 (0.21919) | > loss_disc_real_4: 0.20309 (0.21505) | > loss_disc_real_5: 0.19856 (0.21402) | > loss_0: 2.34491 (2.32244) | > grad_norm_0: 20.58453 (16.83786) | > loss_gen: 2.51270 (2.55571) | > loss_kl: 2.70393 (2.65705) | > loss_feat: 9.25086 (8.66272) | > loss_mel: 17.61570 (17.76742) | > loss_duration: 1.67059 (1.70479) | > loss_1: 33.75378 (33.34758) | > grad_norm_1: 192.92067 (136.84982) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00270 (2.14994) | > loader_time: 0.04190 (0.03679)  --> STEP: 8150/15287 -- GLOBAL_STEP: 988725 | > loss_disc: 2.27807 (2.32240) | > loss_disc_real_0: 0.10177 (0.12300) | > loss_disc_real_1: 0.20657 (0.21132) | > loss_disc_real_2: 0.21782 (0.21582) | > loss_disc_real_3: 0.20178 (0.21919) | > loss_disc_real_4: 0.20730 (0.21505) | > loss_disc_real_5: 0.19265 (0.21402) | > loss_0: 2.27807 (2.32240) | > grad_norm_0: 12.37108 (16.83703) | > loss_gen: 2.58729 (2.55566) | > loss_kl: 2.63223 (2.65706) | > loss_feat: 8.89152 (8.66252) | > loss_mel: 17.98333 (17.76730) | > loss_duration: 1.67201 (1.70477) | > loss_1: 33.76637 (33.34719) | > grad_norm_1: 99.22911 (136.90092) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05270 (2.14931) | > loader_time: 0.03450 (0.03678)  --> STEP: 8175/15287 -- GLOBAL_STEP: 988750 | > loss_disc: 2.24411 (2.32233) | > loss_disc_real_0: 0.13536 (0.12298) | > loss_disc_real_1: 0.21962 (0.21132) | > loss_disc_real_2: 0.22695 (0.21583) | > loss_disc_real_3: 0.18126 (0.21917) | > loss_disc_real_4: 0.19194 (0.21504) | > loss_disc_real_5: 0.19583 (0.21402) | > loss_0: 2.24411 (2.32233) | > grad_norm_0: 10.74880 (16.83609) | > loss_gen: 2.59429 (2.55558) | > loss_kl: 2.57091 (2.65701) | > loss_feat: 8.91763 (8.66249) | > loss_mel: 18.49432 (17.76710) | > loss_duration: 1.69304 (1.70477) | > loss_1: 34.27019 (33.34683) | > grad_norm_1: 156.63814 (136.91982) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95390 (2.14879) | > loader_time: 0.03230 (0.03678)  --> STEP: 8200/15287 -- GLOBAL_STEP: 988775 | > loss_disc: 2.37161 (2.32232) | > loss_disc_real_0: 0.15326 (0.12298) | > loss_disc_real_1: 0.20163 (0.21132) | > loss_disc_real_2: 0.22160 (0.21583) | > loss_disc_real_3: 0.23907 (0.21918) | > loss_disc_real_4: 0.22890 (0.21505) | > loss_disc_real_5: 0.22204 (0.21402) | > loss_0: 2.37161 (2.32232) | > grad_norm_0: 19.02067 (16.83271) | > loss_gen: 2.40083 (2.55551) | > loss_kl: 2.71520 (2.65698) | > loss_feat: 8.28540 (8.66211) | > loss_mel: 17.93536 (17.76672) | > loss_duration: 1.70144 (1.70474) | > loss_1: 33.03823 (33.34596) | > grad_norm_1: 117.83224 (136.89345) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15010 (2.14829) | > loader_time: 0.03670 (0.03677)  --> STEP: 8225/15287 -- GLOBAL_STEP: 988800 | > loss_disc: 2.33671 (2.32222) | > loss_disc_real_0: 0.14764 (0.12296) | > loss_disc_real_1: 0.18481 (0.21132) | > loss_disc_real_2: 0.19732 (0.21581) | > loss_disc_real_3: 0.21864 (0.21916) | > loss_disc_real_4: 0.22458 (0.21504) | > loss_disc_real_5: 0.23594 (0.21401) | > loss_0: 2.33671 (2.32222) | > grad_norm_0: 5.25919 (16.81967) | > loss_gen: 2.41990 (2.55546) | > loss_kl: 2.69702 (2.65692) | > loss_feat: 8.78952 (8.66222) | > loss_mel: 17.67695 (17.76624) | > loss_duration: 1.69989 (1.70473) | > loss_1: 33.28328 (33.34548) | > grad_norm_1: 59.16191 (136.81834) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90460 (2.14801) | > loader_time: 0.03310 (0.03677)  --> STEP: 8250/15287 -- GLOBAL_STEP: 988825 | > loss_disc: 2.34511 (2.32228) | > loss_disc_real_0: 0.08630 (0.12297) | > loss_disc_real_1: 0.23099 (0.21133) | > loss_disc_real_2: 0.21153 (0.21582) | > loss_disc_real_3: 0.21996 (0.21916) | > loss_disc_real_4: 0.20209 (0.21504) | > loss_disc_real_5: 0.20570 (0.21400) | > loss_0: 2.34511 (2.32228) | > grad_norm_0: 14.37349 (16.80722) | > loss_gen: 2.40346 (2.55538) | > loss_kl: 2.82978 (2.65702) | > loss_feat: 8.97164 (8.66195) | > loss_mel: 18.46058 (17.76638) | > loss_duration: 1.72806 (1.70473) | > loss_1: 34.39353 (33.34537) | > grad_norm_1: 165.41418 (136.72501) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06820 (2.14770) | > loader_time: 0.03580 (0.03677)  --> STEP: 8275/15287 -- GLOBAL_STEP: 988850 | > loss_disc: 2.26410 (2.32232) | > loss_disc_real_0: 0.14392 (0.12300) | > loss_disc_real_1: 0.18544 (0.21132) | > loss_disc_real_2: 0.16802 (0.21579) | > loss_disc_real_3: 0.22021 (0.21917) | > loss_disc_real_4: 0.18128 (0.21504) | > loss_disc_real_5: 0.22425 (0.21399) | > loss_0: 2.26410 (2.32232) | > grad_norm_0: 24.75026 (16.80942) | > loss_gen: 2.51736 (2.55526) | > loss_kl: 2.42773 (2.65703) | > loss_feat: 9.11303 (8.66166) | > loss_mel: 17.67485 (17.76643) | > loss_duration: 1.70483 (1.70476) | > loss_1: 33.43781 (33.34505) | > grad_norm_1: 202.51620 (136.69872) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08670 (2.14747) | > loader_time: 0.03700 (0.03677)  --> STEP: 8300/15287 -- GLOBAL_STEP: 988875 | > loss_disc: 2.23603 (2.32233) | > loss_disc_real_0: 0.07042 (0.12299) | > loss_disc_real_1: 0.22975 (0.21132) | > loss_disc_real_2: 0.20806 (0.21578) | > loss_disc_real_3: 0.21745 (0.21917) | > loss_disc_real_4: 0.20885 (0.21504) | > loss_disc_real_5: 0.18725 (0.21400) | > loss_0: 2.23603 (2.32233) | > grad_norm_0: 11.79327 (16.79508) | > loss_gen: 2.62019 (2.55528) | > loss_kl: 2.57815 (2.65704) | > loss_feat: 9.65411 (8.66177) | > loss_mel: 17.85102 (17.76655) | > loss_duration: 1.76113 (1.70477) | > loss_1: 34.46460 (33.34531) | > grad_norm_1: 101.71727 (136.63135) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.80590 (2.14718) | > loader_time: 0.03240 (0.03676)  --> STEP: 8325/15287 -- GLOBAL_STEP: 988900 | > loss_disc: 2.33334 (2.32234) | > loss_disc_real_0: 0.12400 (0.12298) | > loss_disc_real_1: 0.21670 (0.21134) | > loss_disc_real_2: 0.21833 (0.21579) | > loss_disc_real_3: 0.22101 (0.21919) | > loss_disc_real_4: 0.21943 (0.21503) | > loss_disc_real_5: 0.19669 (0.21400) | > loss_0: 2.33334 (2.32234) | > grad_norm_0: 18.58861 (16.79017) | > loss_gen: 2.45761 (2.55526) | > loss_kl: 2.63212 (2.65703) | > loss_feat: 8.37009 (8.66152) | > loss_mel: 17.36763 (17.76615) | > loss_duration: 1.73446 (1.70479) | > loss_1: 32.56191 (33.34467) | > grad_norm_1: 103.82988 (136.60909) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90120 (2.14661) | > loader_time: 0.03210 (0.03676)  --> STEP: 8350/15287 -- GLOBAL_STEP: 988925 | > loss_disc: 2.35390 (2.32229) | > loss_disc_real_0: 0.11194 (0.12297) | > loss_disc_real_1: 0.21798 (0.21135) | > loss_disc_real_2: 0.20946 (0.21579) | > loss_disc_real_3: 0.20801 (0.21917) | > loss_disc_real_4: 0.24479 (0.21503) | > loss_disc_real_5: 0.23478 (0.21401) | > loss_0: 2.35390 (2.32229) | > grad_norm_0: 19.03036 (16.78795) | > loss_gen: 2.43508 (2.55523) | > loss_kl: 2.67860 (2.65695) | > loss_feat: 8.83646 (8.66162) | > loss_mel: 18.15390 (17.76628) | > loss_duration: 1.74821 (1.70482) | > loss_1: 33.85225 (33.34481) | > grad_norm_1: 135.95758 (136.61823) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19470 (2.14612) | > loader_time: 0.03350 (0.03675)  --> STEP: 8375/15287 -- GLOBAL_STEP: 988950 | > loss_disc: 2.35255 (2.32225) | > loss_disc_real_0: 0.13756 (0.12295) | > loss_disc_real_1: 0.21008 (0.21136) | > loss_disc_real_2: 0.22368 (0.21578) | > loss_disc_real_3: 0.23255 (0.21917) | > loss_disc_real_4: 0.19859 (0.21502) | > loss_disc_real_5: 0.21108 (0.21400) | > loss_0: 2.35255 (2.32225) | > grad_norm_0: 29.54395 (16.78080) | > loss_gen: 2.53886 (2.55521) | > loss_kl: 2.58961 (2.65689) | > loss_feat: 8.40549 (8.66193) | > loss_mel: 17.38791 (17.76601) | > loss_duration: 1.68921 (1.70482) | > loss_1: 32.61108 (33.34476) | > grad_norm_1: 160.28397 (136.61607) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14670 (2.14550) | > loader_time: 0.03510 (0.03673)  --> STEP: 8400/15287 -- GLOBAL_STEP: 988975 | > loss_disc: 2.29449 (2.32216) | > loss_disc_real_0: 0.14824 (0.12294) | > loss_disc_real_1: 0.20408 (0.21135) | > loss_disc_real_2: 0.22744 (0.21577) | > loss_disc_real_3: 0.22175 (0.21916) | > loss_disc_real_4: 0.22700 (0.21502) | > loss_disc_real_5: 0.18762 (0.21399) | > loss_0: 2.29449 (2.32216) | > grad_norm_0: 20.30682 (16.78001) | > loss_gen: 2.67181 (2.55520) | > loss_kl: 2.74707 (2.65694) | > loss_feat: 8.72143 (8.66196) | > loss_mel: 17.56479 (17.76605) | > loss_duration: 1.67607 (1.70484) | > loss_1: 33.38117 (33.34489) | > grad_norm_1: 125.79250 (136.60918) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00740 (2.14498) | > loader_time: 0.03220 (0.03673)  --> STEP: 8425/15287 -- GLOBAL_STEP: 989000 | > loss_disc: 2.27659 (2.32210) | > loss_disc_real_0: 0.10105 (0.12292) | > loss_disc_real_1: 0.22522 (0.21133) | > loss_disc_real_2: 0.16235 (0.21575) | > loss_disc_real_3: 0.19889 (0.21914) | > loss_disc_real_4: 0.20496 (0.21501) | > loss_disc_real_5: 0.18004 (0.21399) | > loss_0: 2.27659 (2.32210) | > grad_norm_0: 25.10298 (16.77827) | > loss_gen: 2.49414 (2.55516) | > loss_kl: 2.68847 (2.65702) | > loss_feat: 9.47208 (8.66192) | > loss_mel: 17.98953 (17.76565) | > loss_duration: 1.71191 (1.70484) | > loss_1: 34.35613 (33.34448) | > grad_norm_1: 205.39510 (136.65572) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88160 (2.14446) | > loader_time: 0.03550 (0.03672)  --> STEP: 8450/15287 -- GLOBAL_STEP: 989025 | > loss_disc: 2.24757 (2.32207) | > loss_disc_real_0: 0.05664 (0.12289) | > loss_disc_real_1: 0.21767 (0.21132) | > loss_disc_real_2: 0.21884 (0.21575) | > loss_disc_real_3: 0.20754 (0.21915) | > loss_disc_real_4: 0.20494 (0.21500) | > loss_disc_real_5: 0.19474 (0.21398) | > loss_0: 2.24757 (2.32207) | > grad_norm_0: 10.07487 (16.78081) | > loss_gen: 2.83973 (2.55515) | > loss_kl: 2.68270 (2.65702) | > loss_feat: 9.24282 (8.66229) | > loss_mel: 17.86043 (17.76563) | > loss_duration: 1.72082 (1.70488) | > loss_1: 34.34649 (33.34486) | > grad_norm_1: 149.51680 (136.70665) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55210 (2.14483) | > loader_time: 0.04910 (0.03674)  --> STEP: 8475/15287 -- GLOBAL_STEP: 989050 | > loss_disc: 2.25932 (2.32200) | > loss_disc_real_0: 0.11260 (0.12288) | > loss_disc_real_1: 0.23383 (0.21133) | > loss_disc_real_2: 0.20788 (0.21574) | > loss_disc_real_3: 0.21289 (0.21916) | > loss_disc_real_4: 0.19076 (0.21500) | > loss_disc_real_5: 0.18361 (0.21398) | > loss_0: 2.25932 (2.32200) | > grad_norm_0: 31.38209 (16.79237) | > loss_gen: 2.47907 (2.55517) | > loss_kl: 2.62915 (2.65707) | > loss_feat: 8.89146 (8.66275) | > loss_mel: 17.86937 (17.76550) | > loss_duration: 1.69598 (1.70488) | > loss_1: 33.56503 (33.34526) | > grad_norm_1: 243.86586 (136.74402) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18900 (2.14481) | > loader_time: 0.03930 (0.03674)  --> STEP: 8500/15287 -- GLOBAL_STEP: 989075 | > loss_disc: 2.36240 (2.32196) | > loss_disc_real_0: 0.20497 (0.12288) | > loss_disc_real_1: 0.25134 (0.21133) | > loss_disc_real_2: 0.22837 (0.21574) | > loss_disc_real_3: 0.22369 (0.21916) | > loss_disc_real_4: 0.22946 (0.21500) | > loss_disc_real_5: 0.20334 (0.21397) | > loss_0: 2.36240 (2.32196) | > grad_norm_0: 36.99694 (16.81278) | > loss_gen: 2.65989 (2.55522) | > loss_kl: 2.67008 (2.65704) | > loss_feat: 8.29030 (8.66279) | > loss_mel: 16.67947 (17.76550) | > loss_duration: 1.68301 (1.70488) | > loss_1: 31.98276 (33.34531) | > grad_norm_1: 117.85918 (136.84886) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43750 (2.14519) | > loader_time: 0.04120 (0.03675)  --> STEP: 8525/15287 -- GLOBAL_STEP: 989100 | > loss_disc: 2.33225 (2.32196) | > loss_disc_real_0: 0.10884 (0.12287) | > loss_disc_real_1: 0.23433 (0.21133) | > loss_disc_real_2: 0.24609 (0.21576) | > loss_disc_real_3: 0.23623 (0.21916) | > loss_disc_real_4: 0.21879 (0.21501) | > loss_disc_real_5: 0.20492 (0.21397) | > loss_0: 2.33225 (2.32196) | > grad_norm_0: 21.70544 (16.81036) | > loss_gen: 2.61039 (2.55530) | > loss_kl: 2.52801 (2.65706) | > loss_feat: 8.74991 (8.66318) | > loss_mel: 17.58648 (17.76554) | > loss_duration: 1.72897 (1.70489) | > loss_1: 33.20376 (33.34586) | > grad_norm_1: 77.97099 (136.87294) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41590 (2.14505) | > loader_time: 0.04530 (0.03675)  --> STEP: 8550/15287 -- GLOBAL_STEP: 989125 | > loss_disc: 2.41652 (2.32202) | > loss_disc_real_0: 0.12830 (0.12286) | > loss_disc_real_1: 0.25102 (0.21136) | > loss_disc_real_2: 0.21359 (0.21577) | > loss_disc_real_3: 0.19465 (0.21918) | > loss_disc_real_4: 0.18841 (0.21503) | > loss_disc_real_5: 0.18943 (0.21398) | > loss_0: 2.41652 (2.32202) | > grad_norm_0: 10.39993 (16.80551) | > loss_gen: 2.60498 (2.55538) | > loss_kl: 2.70247 (2.65723) | > loss_feat: 9.36552 (8.66337) | > loss_mel: 17.90074 (17.76567) | > loss_duration: 1.74930 (1.70490) | > loss_1: 34.32302 (33.34643) | > grad_norm_1: 108.38810 (136.86922) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96090 (2.14447) | > loader_time: 0.03280 (0.03674)  --> STEP: 8575/15287 -- GLOBAL_STEP: 989150 | > loss_disc: 2.31909 (2.32209) | > loss_disc_real_0: 0.09875 (0.12288) | > loss_disc_real_1: 0.22473 (0.21138) | > loss_disc_real_2: 0.21103 (0.21578) | > loss_disc_real_3: 0.21069 (0.21918) | > loss_disc_real_4: 0.19939 (0.21502) | > loss_disc_real_5: 0.21303 (0.21397) | > loss_0: 2.31909 (2.32209) | > grad_norm_0: 14.59080 (16.80956) | > loss_gen: 2.61271 (2.55527) | > loss_kl: 2.59893 (2.65721) | > loss_feat: 8.42915 (8.66271) | > loss_mel: 17.85508 (17.76551) | > loss_duration: 1.70285 (1.70493) | > loss_1: 33.19872 (33.34551) | > grad_norm_1: 168.32323 (136.82687) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96190 (2.14413) | > loader_time: 0.03690 (0.03675)  --> STEP: 8600/15287 -- GLOBAL_STEP: 989175 | > loss_disc: 2.26194 (2.32213) | > loss_disc_real_0: 0.13341 (0.12291) | > loss_disc_real_1: 0.21496 (0.21139) | > loss_disc_real_2: 0.22366 (0.21580) | > loss_disc_real_3: 0.21347 (0.21918) | > loss_disc_real_4: 0.20591 (0.21502) | > loss_disc_real_5: 0.22891 (0.21397) | > loss_0: 2.26194 (2.32213) | > grad_norm_0: 8.55762 (16.80202) | > loss_gen: 2.57590 (2.55520) | > loss_kl: 2.80177 (2.65728) | > loss_feat: 9.02193 (8.66252) | > loss_mel: 17.82508 (17.76569) | > loss_duration: 1.69372 (1.70496) | > loss_1: 33.91840 (33.34554) | > grad_norm_1: 168.70067 (136.75034) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27610 (2.14392) | > loader_time: 0.03380 (0.03675)  --> STEP: 8625/15287 -- GLOBAL_STEP: 989200 | > loss_disc: 2.35560 (2.32214) | > loss_disc_real_0: 0.08316 (0.12290) | > loss_disc_real_1: 0.20065 (0.21140) | > loss_disc_real_2: 0.20056 (0.21580) | > loss_disc_real_3: 0.21449 (0.21918) | > loss_disc_real_4: 0.19939 (0.21503) | > loss_disc_real_5: 0.21277 (0.21397) | > loss_0: 2.35560 (2.32214) | > grad_norm_0: 20.71905 (16.80190) | > loss_gen: 2.39475 (2.55524) | > loss_kl: 2.65943 (2.65729) | > loss_feat: 8.51884 (8.66270) | > loss_mel: 17.80366 (17.76602) | > loss_duration: 1.68980 (1.70496) | > loss_1: 33.06647 (33.34608) | > grad_norm_1: 154.64259 (136.82500) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96670 (2.14340) | > loader_time: 0.03320 (0.03674)  --> STEP: 8650/15287 -- GLOBAL_STEP: 989225 | > loss_disc: 2.38422 (2.32215) | > loss_disc_real_0: 0.11426 (0.12288) | > loss_disc_real_1: 0.21828 (0.21140) | > loss_disc_real_2: 0.24953 (0.21580) | > loss_disc_real_3: 0.18265 (0.21918) | > loss_disc_real_4: 0.21476 (0.21502) | > loss_disc_real_5: 0.20371 (0.21397) | > loss_0: 2.38422 (2.32215) | > grad_norm_0: 10.53896 (16.79009) | > loss_gen: 2.54872 (2.55522) | > loss_kl: 2.66942 (2.65731) | > loss_feat: 8.47343 (8.66263) | > loss_mel: 18.08100 (17.76621) | > loss_duration: 1.75599 (1.70497) | > loss_1: 33.52856 (33.34622) | > grad_norm_1: 141.29965 (136.81291) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90570 (2.14284) | > loader_time: 0.03440 (0.03673)  --> STEP: 8675/15287 -- GLOBAL_STEP: 989250 | > loss_disc: 2.38331 (2.32220) | > loss_disc_real_0: 0.12999 (0.12288) | > loss_disc_real_1: 0.22100 (0.21139) | > loss_disc_real_2: 0.21343 (0.21579) | > loss_disc_real_3: 0.25787 (0.21919) | > loss_disc_real_4: 0.20465 (0.21503) | > loss_disc_real_5: 0.24795 (0.21399) | > loss_0: 2.38331 (2.32220) | > grad_norm_0: 12.83608 (16.77802) | > loss_gen: 2.51824 (2.55515) | > loss_kl: 2.71531 (2.65743) | > loss_feat: 8.64522 (8.66237) | > loss_mel: 18.35894 (17.76617) | > loss_duration: 1.70083 (1.70496) | > loss_1: 33.93854 (33.34596) | > grad_norm_1: 104.29057 (136.69304) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01670 (2.14230) | > loader_time: 0.03400 (0.03673)  --> STEP: 8700/15287 -- GLOBAL_STEP: 989275 | > loss_disc: 2.32544 (2.32222) | > loss_disc_real_0: 0.07961 (0.12287) | > loss_disc_real_1: 0.20510 (0.21139) | > loss_disc_real_2: 0.22723 (0.21580) | > loss_disc_real_3: 0.20692 (0.21919) | > loss_disc_real_4: 0.17958 (0.21503) | > loss_disc_real_5: 0.20384 (0.21398) | > loss_0: 2.32544 (2.32222) | > grad_norm_0: 10.93903 (16.76396) | > loss_gen: 2.57535 (2.55515) | > loss_kl: 2.71805 (2.65744) | > loss_feat: 9.32728 (8.66237) | > loss_mel: 17.92108 (17.76661) | > loss_duration: 1.72245 (1.70497) | > loss_1: 34.26422 (33.34642) | > grad_norm_1: 206.66438 (136.65544) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89390 (2.14174) | > loader_time: 0.03350 (0.03672)  --> STEP: 8725/15287 -- GLOBAL_STEP: 989300 | > loss_disc: 2.26680 (2.32224) | > loss_disc_real_0: 0.11715 (0.12285) | > loss_disc_real_1: 0.19016 (0.21140) | > loss_disc_real_2: 0.20186 (0.21579) | > loss_disc_real_3: 0.22913 (0.21921) | > loss_disc_real_4: 0.24136 (0.21505) | > loss_disc_real_5: 0.23758 (0.21399) | > loss_0: 2.26680 (2.32224) | > grad_norm_0: 31.68125 (16.77472) | > loss_gen: 2.69437 (2.55515) | > loss_kl: 2.67671 (2.65741) | > loss_feat: 9.08798 (8.66219) | > loss_mel: 18.08280 (17.76623) | > loss_duration: 1.72210 (1.70495) | > loss_1: 34.26397 (33.34581) | > grad_norm_1: 216.86494 (136.65515) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87750 (2.14132) | > loader_time: 0.03440 (0.03672)  --> STEP: 8750/15287 -- GLOBAL_STEP: 989325 | > loss_disc: 2.34773 (2.32222) | > loss_disc_real_0: 0.08831 (0.12286) | > loss_disc_real_1: 0.25237 (0.21145) | > loss_disc_real_2: 0.23301 (0.21582) | > loss_disc_real_3: 0.22270 (0.21922) | > loss_disc_real_4: 0.19909 (0.21503) | > loss_disc_real_5: 0.22002 (0.21399) | > loss_0: 2.34773 (2.32222) | > grad_norm_0: 12.85303 (16.78741) | > loss_gen: 2.48289 (2.55527) | > loss_kl: 2.67681 (2.65734) | > loss_feat: 8.76970 (8.66217) | > loss_mel: 17.51903 (17.76598) | > loss_duration: 1.73395 (1.70498) | > loss_1: 33.18237 (33.34563) | > grad_norm_1: 166.26337 (136.74312) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00050 (2.14091) | > loader_time: 0.03770 (0.03672)  --> STEP: 8775/15287 -- GLOBAL_STEP: 989350 | > loss_disc: 2.38874 (2.32216) | > loss_disc_real_0: 0.13301 (0.12285) | > loss_disc_real_1: 0.21157 (0.21143) | > loss_disc_real_2: 0.21833 (0.21580) | > loss_disc_real_3: 0.26657 (0.21922) | > loss_disc_real_4: 0.23597 (0.21502) | > loss_disc_real_5: 0.23929 (0.21399) | > loss_0: 2.38874 (2.32216) | > grad_norm_0: 6.32835 (16.78413) | > loss_gen: 2.37367 (2.55523) | > loss_kl: 2.60982 (2.65729) | > loss_feat: 8.72663 (8.66252) | > loss_mel: 17.93895 (17.76574) | > loss_duration: 1.73858 (1.70502) | > loss_1: 33.38766 (33.34569) | > grad_norm_1: 127.90462 (136.75249) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.80640 (2.14071) | > loader_time: 0.03370 (0.03672)  --> STEP: 8800/15287 -- GLOBAL_STEP: 989375 | > loss_disc: 2.33535 (2.32211) | > loss_disc_real_0: 0.12563 (0.12284) | > loss_disc_real_1: 0.21251 (0.21141) | > loss_disc_real_2: 0.21874 (0.21579) | > loss_disc_real_3: 0.22185 (0.21922) | > loss_disc_real_4: 0.18304 (0.21502) | > loss_disc_real_5: 0.21956 (0.21397) | > loss_0: 2.33535 (2.32211) | > grad_norm_0: 9.04050 (16.77652) | > loss_gen: 2.44749 (2.55526) | > loss_kl: 2.62483 (2.65736) | > loss_feat: 8.24425 (8.66257) | > loss_mel: 17.74931 (17.76546) | > loss_duration: 1.72343 (1.70503) | > loss_1: 32.78931 (33.34558) | > grad_norm_1: 55.45875 (136.72395) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.84840 (2.14013) | > loader_time: 0.03110 (0.03671)  --> STEP: 8825/15287 -- GLOBAL_STEP: 989400 | > loss_disc: 2.30231 (2.32213) | > loss_disc_real_0: 0.16625 (0.12284) | > loss_disc_real_1: 0.18128 (0.21143) | > loss_disc_real_2: 0.20485 (0.21581) | > loss_disc_real_3: 0.19712 (0.21922) | > loss_disc_real_4: 0.18720 (0.21501) | > loss_disc_real_5: 0.21935 (0.21397) | > loss_0: 2.30231 (2.32213) | > grad_norm_0: 14.90253 (16.77403) | > loss_gen: 2.48519 (2.55520) | > loss_kl: 2.65565 (2.65746) | > loss_feat: 7.84259 (8.66226) | > loss_mel: 16.99087 (17.76561) | > loss_duration: 1.71910 (1.70506) | > loss_1: 31.69341 (33.34547) | > grad_norm_1: 132.85075 (136.68877) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23160 (2.13970) | > loader_time: 0.03560 (0.03671)  --> STEP: 8850/15287 -- GLOBAL_STEP: 989425 | > loss_disc: 2.36200 (2.32213) | > loss_disc_real_0: 0.09192 (0.12283) | > loss_disc_real_1: 0.22813 (0.21142) | > loss_disc_real_2: 0.20562 (0.21581) | > loss_disc_real_3: 0.23215 (0.21923) | > loss_disc_real_4: 0.22642 (0.21501) | > loss_disc_real_5: 0.20454 (0.21396) | > loss_0: 2.36200 (2.32213) | > grad_norm_0: 18.73365 (16.76416) | > loss_gen: 2.42409 (2.55516) | > loss_kl: 2.81096 (2.65742) | > loss_feat: 8.81975 (8.66224) | > loss_mel: 17.95061 (17.76543) | > loss_duration: 1.69223 (1.70510) | > loss_1: 33.69765 (33.34521) | > grad_norm_1: 119.92747 (136.64215) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90550 (2.13944) | > loader_time: 0.03140 (0.03670)  --> STEP: 8875/15287 -- GLOBAL_STEP: 989450 | > loss_disc: 2.27572 (2.32212) | > loss_disc_real_0: 0.13772 (0.12282) | > loss_disc_real_1: 0.21873 (0.21142) | > loss_disc_real_2: 0.20264 (0.21580) | > loss_disc_real_3: 0.23263 (0.21922) | > loss_disc_real_4: 0.18658 (0.21501) | > loss_disc_real_5: 0.20443 (0.21395) | > loss_0: 2.27572 (2.32212) | > grad_norm_0: 8.72961 (16.74909) | > loss_gen: 2.68840 (2.55516) | > loss_kl: 2.75613 (2.65758) | > loss_feat: 8.46282 (8.66248) | > loss_mel: 18.07438 (17.76563) | > loss_duration: 1.68025 (1.70513) | > loss_1: 33.66199 (33.34583) | > grad_norm_1: 57.53407 (136.56583) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10190 (2.13896) | > loader_time: 0.03230 (0.03670)  --> STEP: 8900/15287 -- GLOBAL_STEP: 989475 | > loss_disc: 2.24381 (2.32216) | > loss_disc_real_0: 0.10157 (0.12281) | > loss_disc_real_1: 0.19977 (0.21140) | > loss_disc_real_2: 0.20144 (0.21581) | > loss_disc_real_3: 0.21198 (0.21922) | > loss_disc_real_4: 0.22661 (0.21501) | > loss_disc_real_5: 0.20209 (0.21396) | > loss_0: 2.24381 (2.32216) | > grad_norm_0: 9.19883 (16.74874) | > loss_gen: 2.66656 (2.55507) | > loss_kl: 2.63334 (2.65771) | > loss_feat: 8.45908 (8.66245) | > loss_mel: 17.97155 (17.76550) | > loss_duration: 1.68987 (1.70512) | > loss_1: 33.42039 (33.34573) | > grad_norm_1: 62.45916 (136.53009) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93440 (2.13845) | > loader_time: 0.03230 (0.03669)  --> STEP: 8925/15287 -- GLOBAL_STEP: 989500 | > loss_disc: 2.34286 (2.32208) | > loss_disc_real_0: 0.15243 (0.12279) | > loss_disc_real_1: 0.23830 (0.21140) | > loss_disc_real_2: 0.20957 (0.21580) | > loss_disc_real_3: 0.25001 (0.21922) | > loss_disc_real_4: 0.22329 (0.21499) | > loss_disc_real_5: 0.24186 (0.21396) | > loss_0: 2.34286 (2.32208) | > grad_norm_0: 21.62813 (16.74404) | > loss_gen: 2.70948 (2.55516) | > loss_kl: 2.52130 (2.65757) | > loss_feat: 8.22737 (8.66253) | > loss_mel: 17.31711 (17.76525) | > loss_duration: 1.72257 (1.70514) | > loss_1: 32.49784 (33.34552) | > grad_norm_1: 183.33789 (136.56308) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89350 (2.13787) | > loader_time: 0.03260 (0.03668)  --> STEP: 8950/15287 -- GLOBAL_STEP: 989525 | > loss_disc: 2.22945 (2.32204) | > loss_disc_real_0: 0.10003 (0.12280) | > loss_disc_real_1: 0.19415 (0.21139) | > loss_disc_real_2: 0.16929 (0.21578) | > loss_disc_real_3: 0.21914 (0.21922) | > loss_disc_real_4: 0.21066 (0.21500) | > loss_disc_real_5: 0.25504 (0.21397) | > loss_0: 2.22945 (2.32204) | > grad_norm_0: 12.05112 (16.75197) | > loss_gen: 2.69430 (2.55508) | > loss_kl: 2.63244 (2.65765) | > loss_feat: 9.07012 (8.66238) | > loss_mel: 17.62296 (17.76509) | > loss_duration: 1.70348 (1.70517) | > loss_1: 33.72329 (33.34525) | > grad_norm_1: 163.05048 (136.55229) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43180 (2.13820) | > loader_time: 0.04830 (0.03670)  --> STEP: 8975/15287 -- GLOBAL_STEP: 989550 | > loss_disc: 2.33054 (2.32198) | > loss_disc_real_0: 0.09338 (0.12278) | > loss_disc_real_1: 0.23925 (0.21138) | > loss_disc_real_2: 0.23567 (0.21577) | > loss_disc_real_3: 0.23021 (0.21920) | > loss_disc_real_4: 0.25242 (0.21499) | > loss_disc_real_5: 0.19991 (0.21395) | > loss_0: 2.33054 (2.32198) | > grad_norm_0: 5.54487 (16.75294) | > loss_gen: 2.60174 (2.55504) | > loss_kl: 2.63074 (2.65764) | > loss_feat: 8.93840 (8.66250) | > loss_mel: 17.52104 (17.76479) | > loss_duration: 1.72248 (1.70517) | > loss_1: 33.41439 (33.34503) | > grad_norm_1: 178.72906 (136.60477) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.81760 (2.13805) | > loader_time: 0.03300 (0.03670)  --> STEP: 9000/15287 -- GLOBAL_STEP: 989575 | > loss_disc: 2.35199 (2.32196) | > loss_disc_real_0: 0.07653 (0.12279) | > loss_disc_real_1: 0.19959 (0.21136) | > loss_disc_real_2: 0.19039 (0.21576) | > loss_disc_real_3: 0.23093 (0.21918) | > loss_disc_real_4: 0.21564 (0.21496) | > loss_disc_real_5: 0.22340 (0.21396) | > loss_0: 2.35199 (2.32196) | > grad_norm_0: 15.26221 (16.75258) | > loss_gen: 2.45219 (2.55495) | > loss_kl: 2.82374 (2.65758) | > loss_feat: 8.31847 (8.66216) | > loss_mel: 17.58652 (17.76455) | > loss_duration: 1.71176 (1.70515) | > loss_1: 32.89268 (33.34428) | > grad_norm_1: 165.23026 (136.60231) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92680 (2.13766) | > loader_time: 0.03250 (0.03669)  --> STEP: 9025/15287 -- GLOBAL_STEP: 989600 | > loss_disc: 2.30443 (2.32195) | > loss_disc_real_0: 0.11019 (0.12281) | > loss_disc_real_1: 0.22137 (0.21136) | > loss_disc_real_2: 0.21239 (0.21576) | > loss_disc_real_3: 0.19689 (0.21919) | > loss_disc_real_4: 0.18913 (0.21495) | > loss_disc_real_5: 0.22543 (0.21396) | > loss_0: 2.30443 (2.32195) | > grad_norm_0: 10.74142 (16.73995) | > loss_gen: 2.52210 (2.55499) | > loss_kl: 2.60672 (2.65762) | > loss_feat: 8.34436 (8.66213) | > loss_mel: 17.70102 (17.76447) | > loss_duration: 1.66413 (1.70515) | > loss_1: 32.83833 (33.34426) | > grad_norm_1: 71.01086 (136.54681) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89180 (2.13737) | > loader_time: 0.03670 (0.03669)  --> STEP: 9050/15287 -- GLOBAL_STEP: 989625 | > loss_disc: 2.37295 (2.32192) | > loss_disc_real_0: 0.14411 (0.12281) | > loss_disc_real_1: 0.18906 (0.21135) | > loss_disc_real_2: 0.19141 (0.21575) | > loss_disc_real_3: 0.17284 (0.21918) | > loss_disc_real_4: 0.19597 (0.21493) | > loss_disc_real_5: 0.27554 (0.21396) | > loss_0: 2.37295 (2.32192) | > grad_norm_0: 13.36160 (16.72940) | > loss_gen: 2.47636 (2.55492) | > loss_kl: 2.84596 (2.65763) | > loss_feat: 9.07926 (8.66201) | > loss_mel: 17.82058 (17.76460) | > loss_duration: 1.72559 (1.70517) | > loss_1: 33.94775 (33.34422) | > grad_norm_1: 147.49081 (136.48169) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15610 (2.13692) | > loader_time: 0.03630 (0.03668)  --> STEP: 9075/15287 -- GLOBAL_STEP: 989650 | > loss_disc: 2.29077 (2.32184) | > loss_disc_real_0: 0.16216 (0.12280) | > loss_disc_real_1: 0.20352 (0.21134) | > loss_disc_real_2: 0.21005 (0.21575) | > loss_disc_real_3: 0.21721 (0.21917) | > loss_disc_real_4: 0.22146 (0.21493) | > loss_disc_real_5: 0.22369 (0.21394) | > loss_0: 2.29077 (2.32184) | > grad_norm_0: 14.67738 (16.71773) | > loss_gen: 2.65779 (2.55499) | > loss_kl: 2.67499 (2.65763) | > loss_feat: 8.77690 (8.66236) | > loss_mel: 18.44452 (17.76489) | > loss_duration: 1.70903 (1.70520) | > loss_1: 34.26323 (33.34497) | > grad_norm_1: 61.35355 (136.38443) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.82770 (2.13636) | > loader_time: 0.03250 (0.03668)  --> STEP: 9100/15287 -- GLOBAL_STEP: 989675 | > loss_disc: 2.21647 (2.32180) | > loss_disc_real_0: 0.09629 (0.12279) | > loss_disc_real_1: 0.19417 (0.21133) | > loss_disc_real_2: 0.19347 (0.21573) | > loss_disc_real_3: 0.20353 (0.21917) | > loss_disc_real_4: 0.18330 (0.21493) | > loss_disc_real_5: 0.20486 (0.21394) | > loss_0: 2.21647 (2.32180) | > grad_norm_0: 10.12052 (16.70809) | > loss_gen: 2.74471 (2.55497) | > loss_kl: 2.64887 (2.65760) | > loss_feat: 9.14456 (8.66272) | > loss_mel: 17.58376 (17.76474) | > loss_duration: 1.67292 (1.70522) | > loss_1: 33.79482 (33.34515) | > grad_norm_1: 175.62479 (136.39308) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90530 (2.13592) | > loader_time: 0.04030 (0.03667)  --> STEP: 9125/15287 -- GLOBAL_STEP: 989700 | > loss_disc: 2.26139 (2.32177) | > loss_disc_real_0: 0.09929 (0.12278) | > loss_disc_real_1: 0.19821 (0.21132) | > loss_disc_real_2: 0.17656 (0.21574) | > loss_disc_real_3: 0.20080 (0.21916) | > loss_disc_real_4: 0.18572 (0.21492) | > loss_disc_real_5: 0.20723 (0.21394) | > loss_0: 2.26139 (2.32177) | > grad_norm_0: 10.06769 (16.70452) | > loss_gen: 2.65307 (2.55490) | > loss_kl: 2.79794 (2.65761) | > loss_feat: 9.24399 (8.66292) | > loss_mel: 17.86961 (17.76461) | > loss_duration: 1.76280 (1.70521) | > loss_1: 34.32740 (33.34514) | > grad_norm_1: 106.74011 (136.40863) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96430 (2.13563) | > loader_time: 0.03160 (0.03667)  --> STEP: 9150/15287 -- GLOBAL_STEP: 989725 | > loss_disc: 2.35322 (2.32176) | > loss_disc_real_0: 0.07627 (0.12280) | > loss_disc_real_1: 0.19706 (0.21131) | > loss_disc_real_2: 0.22767 (0.21573) | > loss_disc_real_3: 0.25709 (0.21917) | > loss_disc_real_4: 0.21377 (0.21493) | > loss_disc_real_5: 0.23923 (0.21393) | > loss_0: 2.35322 (2.32176) | > grad_norm_0: 26.54409 (16.70138) | > loss_gen: 2.39332 (2.55487) | > loss_kl: 2.65282 (2.65764) | > loss_feat: 8.17123 (8.66264) | > loss_mel: 17.58209 (17.76438) | > loss_duration: 1.65060 (1.70517) | > loss_1: 32.45006 (33.34459) | > grad_norm_1: 165.81496 (136.38972) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22910 (2.13516) | > loader_time: 0.04690 (0.03667)  --> STEP: 9175/15287 -- GLOBAL_STEP: 989750 | > loss_disc: 2.30243 (2.32167) | > loss_disc_real_0: 0.11126 (0.12277) | > loss_disc_real_1: 0.22309 (0.21131) | > loss_disc_real_2: 0.19385 (0.21572) | > loss_disc_real_3: 0.23141 (0.21915) | > loss_disc_real_4: 0.20389 (0.21492) | > loss_disc_real_5: 0.24198 (0.21392) | > loss_0: 2.30243 (2.32167) | > grad_norm_0: 16.08109 (16.69461) | > loss_gen: 2.56262 (2.55491) | > loss_kl: 2.64694 (2.65766) | > loss_feat: 8.90738 (8.66294) | > loss_mel: 17.79855 (17.76433) | > loss_duration: 1.69594 (1.70514) | > loss_1: 33.61143 (33.34488) | > grad_norm_1: 169.77592 (136.40329) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04710 (2.13491) | > loader_time: 0.03360 (0.03667)  --> STEP: 9200/15287 -- GLOBAL_STEP: 989775 | > loss_disc: 2.27287 (2.32164) | > loss_disc_real_0: 0.08731 (0.12276) | > loss_disc_real_1: 0.24491 (0.21133) | > loss_disc_real_2: 0.23428 (0.21573) | > loss_disc_real_3: 0.22804 (0.21915) | > loss_disc_real_4: 0.23022 (0.21494) | > loss_disc_real_5: 0.19671 (0.21392) | > loss_0: 2.27287 (2.32164) | > grad_norm_0: 24.51534 (16.70868) | > loss_gen: 2.56754 (2.55497) | > loss_kl: 2.68466 (2.65767) | > loss_feat: 8.96830 (8.66295) | > loss_mel: 17.92035 (17.76400) | > loss_duration: 1.70283 (1.70510) | > loss_1: 33.84369 (33.34460) | > grad_norm_1: 206.02647 (136.45091) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96670 (2.13437) | > loader_time: 0.03740 (0.03666)  --> STEP: 9225/15287 -- GLOBAL_STEP: 989800 | > loss_disc: 2.31948 (2.32157) | > loss_disc_real_0: 0.10033 (0.12274) | > loss_disc_real_1: 0.22001 (0.21133) | > loss_disc_real_2: 0.23561 (0.21573) | > loss_disc_real_3: 0.24531 (0.21917) | > loss_disc_real_4: 0.21371 (0.21493) | > loss_disc_real_5: 0.21706 (0.21393) | > loss_0: 2.31948 (2.32157) | > grad_norm_0: 19.16946 (16.71352) | > loss_gen: 2.44958 (2.55504) | > loss_kl: 2.58434 (2.65773) | > loss_feat: 8.12506 (8.66297) | > loss_mel: 17.47830 (17.76346) | > loss_duration: 1.71249 (1.70508) | > loss_1: 32.34977 (33.34418) | > grad_norm_1: 176.07649 (136.53368) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.84470 (2.13403) | > loader_time: 0.03300 (0.03666)  --> STEP: 9250/15287 -- GLOBAL_STEP: 989825 | > loss_disc: 2.34652 (2.32151) | > loss_disc_real_0: 0.15290 (0.12273) | > loss_disc_real_1: 0.23296 (0.21134) | > loss_disc_real_2: 0.22080 (0.21573) | > loss_disc_real_3: 0.23774 (0.21915) | > loss_disc_real_4: 0.20028 (0.21492) | > loss_disc_real_5: 0.22735 (0.21393) | > loss_0: 2.34652 (2.32151) | > grad_norm_0: 12.15031 (16.72152) | > loss_gen: 2.54403 (2.55504) | > loss_kl: 2.70098 (2.65789) | > loss_feat: 8.27475 (8.66342) | > loss_mel: 17.16124 (17.76343) | > loss_duration: 1.69212 (1.70507) | > loss_1: 32.37312 (33.34478) | > grad_norm_1: 182.41193 (136.63680) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.81320 (2.13344) | > loader_time: 0.03380 (0.03665)  --> STEP: 9275/15287 -- GLOBAL_STEP: 989850 | > loss_disc: 2.27324 (2.32143) | > loss_disc_real_0: 0.10610 (0.12271) | > loss_disc_real_1: 0.20244 (0.21133) | > loss_disc_real_2: 0.20772 (0.21572) | > loss_disc_real_3: 0.22818 (0.21914) | > loss_disc_real_4: 0.22333 (0.21492) | > loss_disc_real_5: 0.22143 (0.21392) | > loss_0: 2.27324 (2.32143) | > grad_norm_0: 13.38258 (16.72583) | > loss_gen: 2.52687 (2.55496) | > loss_kl: 2.80567 (2.65790) | > loss_feat: 9.29068 (8.66365) | > loss_mel: 17.85510 (17.76328) | > loss_duration: 1.69316 (1.70508) | > loss_1: 34.17148 (33.34481) | > grad_norm_1: 170.74289 (136.63181) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87250 (2.13329) | > loader_time: 0.03310 (0.03665)  --> STEP: 9300/15287 -- GLOBAL_STEP: 989875 | > loss_disc: 2.38249 (2.32132) | > loss_disc_real_0: 0.12283 (0.12269) | > loss_disc_real_1: 0.20609 (0.21131) | > loss_disc_real_2: 0.21360 (0.21571) | > loss_disc_real_3: 0.23629 (0.21914) | > loss_disc_real_4: 0.19761 (0.21490) | > loss_disc_real_5: 0.22034 (0.21392) | > loss_0: 2.38249 (2.32132) | > grad_norm_0: 30.93442 (16.73030) | > loss_gen: 2.45314 (2.55506) | > loss_kl: 2.71697 (2.65794) | > loss_feat: 8.59180 (8.66445) | > loss_mel: 16.89773 (17.76277) | > loss_duration: 1.66573 (1.70507) | > loss_1: 32.32537 (33.34523) | > grad_norm_1: 202.06752 (136.70479) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85320 (2.13288) | > loader_time: 0.03230 (0.03665)  --> STEP: 9325/15287 -- GLOBAL_STEP: 989900 | > loss_disc: 2.29460 (2.32134) | > loss_disc_real_0: 0.07522 (0.12274) | > loss_disc_real_1: 0.19087 (0.21132) | > loss_disc_real_2: 0.20035 (0.21572) | > loss_disc_real_3: 0.21517 (0.21915) | > loss_disc_real_4: 0.21314 (0.21491) | > loss_disc_real_5: 0.19571 (0.21393) | > loss_0: 2.29460 (2.32134) | > grad_norm_0: 15.56912 (16.73920) | > loss_gen: 2.18771 (2.55515) | > loss_kl: 2.75510 (2.65802) | > loss_feat: 9.10121 (8.66454) | > loss_mel: 18.11013 (17.76249) | > loss_duration: 1.71274 (1.70506) | > loss_1: 33.86690 (33.34518) | > grad_norm_1: 121.28387 (136.71521) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40520 (2.13275) | > loader_time: 0.03540 (0.03665)  --> STEP: 9350/15287 -- GLOBAL_STEP: 989925 | > loss_disc: 2.36997 (2.32135) | > loss_disc_real_0: 0.13498 (0.12278) | > loss_disc_real_1: 0.23712 (0.21132) | > loss_disc_real_2: 0.20337 (0.21571) | > loss_disc_real_3: 0.23749 (0.21915) | > loss_disc_real_4: 0.23826 (0.21491) | > loss_disc_real_5: 0.20675 (0.21393) | > loss_0: 2.36997 (2.32135) | > grad_norm_0: 8.28502 (16.74175) | > loss_gen: 2.62355 (2.55516) | > loss_kl: 2.72099 (2.65812) | > loss_feat: 8.08209 (8.66483) | > loss_mel: 17.29134 (17.76252) | > loss_duration: 1.66869 (1.70506) | > loss_1: 32.38665 (33.34563) | > grad_norm_1: 142.81955 (136.70537) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03870 (2.13263) | > loader_time: 0.03740 (0.03665)  --> STEP: 9375/15287 -- GLOBAL_STEP: 989950 | > loss_disc: 2.39263 (2.32149) | > loss_disc_real_0: 0.13299 (0.12279) | > loss_disc_real_1: 0.19876 (0.21133) | > loss_disc_real_2: 0.23083 (0.21573) | > loss_disc_real_3: 0.21969 (0.21917) | > loss_disc_real_4: 0.19476 (0.21491) | > loss_disc_real_5: 0.24044 (0.21394) | > loss_0: 2.39263 (2.32149) | > grad_norm_0: 33.97726 (16.75001) | > loss_gen: 2.27724 (2.55510) | > loss_kl: 2.76616 (2.65816) | > loss_feat: 8.07058 (8.66448) | > loss_mel: 17.66683 (17.76272) | > loss_duration: 1.67337 (1.70505) | > loss_1: 32.45419 (33.34545) | > grad_norm_1: 200.02675 (136.73758) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.80990 (2.13244) | > loader_time: 0.03290 (0.03666)  --> STEP: 9400/15287 -- GLOBAL_STEP: 989975 | > loss_disc: 2.25692 (2.32146) | > loss_disc_real_0: 0.11886 (0.12279) | > loss_disc_real_1: 0.18125 (0.21131) | > loss_disc_real_2: 0.19595 (0.21572) | > loss_disc_real_3: 0.23330 (0.21917) | > loss_disc_real_4: 0.21211 (0.21489) | > loss_disc_real_5: 0.21963 (0.21394) | > loss_0: 2.25692 (2.32146) | > grad_norm_0: 28.75673 (16.75425) | > loss_gen: 2.52339 (2.55507) | > loss_kl: 2.73831 (2.65815) | > loss_feat: 9.56069 (8.66474) | > loss_mel: 18.19048 (17.76282) | > loss_duration: 1.65288 (1.70503) | > loss_1: 34.66576 (33.34575) | > grad_norm_1: 249.09003 (136.75887) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42980 (2.13240) | > loader_time: 0.05470 (0.03667)  --> STEP: 9425/15287 -- GLOBAL_STEP: 990000 | > loss_disc: 2.25127 (2.32142) | > loss_disc_real_0: 0.10263 (0.12277) | > loss_disc_real_1: 0.21891 (0.21131) | > loss_disc_real_2: 0.20558 (0.21572) | > loss_disc_real_3: 0.21998 (0.21917) | > loss_disc_real_4: 0.19272 (0.21490) | > loss_disc_real_5: 0.19214 (0.21394) | > loss_0: 2.25127 (2.32142) | > grad_norm_0: 9.23995 (16.75070) | > loss_gen: 2.65473 (2.55513) | > loss_kl: 2.66484 (2.65818) | > loss_feat: 9.03016 (8.66512) | > loss_mel: 18.15275 (17.76280) | > loss_duration: 1.66820 (1.70503) | > loss_1: 34.17069 (33.34622) | > grad_norm_1: 165.80457 (136.80501) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.82710 (2.13205) | > loader_time: 0.03240 (0.03667) > CHECKPOINT : ./checkpoints/yourtts_multilingual/yourtts-du_en_fr_ge_it_pl_ptbr_sp-November-08-2022_12+19PM-0cbaa0f6/checkpoint_990000.pth  --> STEP: 9450/15287 -- GLOBAL_STEP: 990025 | > loss_disc: 2.30190 (2.32139) | > loss_disc_real_0: 0.15863 (0.12276) | > loss_disc_real_1: 0.20155 (0.21130) | > loss_disc_real_2: 0.18557 (0.21572) | > loss_disc_real_3: 0.22663 (0.21916) | > loss_disc_real_4: 0.20958 (0.21491) | > loss_disc_real_5: 0.20323 (0.21393) | > loss_0: 2.30190 (2.32139) | > grad_norm_0: 17.53638 (16.75794) | > loss_gen: 2.56326 (2.55518) | > loss_kl: 2.63591 (2.65825) | > loss_feat: 8.44762 (8.66567) | > loss_mel: 17.84805 (17.76325) | > loss_duration: 1.70459 (1.70503) | > loss_1: 33.19942 (33.34732) | > grad_norm_1: 184.44710 (136.86232) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17410 (2.13189) | > loader_time: 0.03800 (0.03667)  --> STEP: 9475/15287 -- GLOBAL_STEP: 990050 | > loss_disc: 2.21855 (2.32137) | > loss_disc_real_0: 0.07426 (0.12274) | > loss_disc_real_1: 0.22358 (0.21129) | > loss_disc_real_2: 0.21453 (0.21571) | > loss_disc_real_3: 0.20483 (0.21917) | > loss_disc_real_4: 0.21137 (0.21492) | > loss_disc_real_5: 0.19359 (0.21394) | > loss_0: 2.21855 (2.32137) | > grad_norm_0: 11.28303 (16.77172) | > loss_gen: 2.84086 (2.55525) | > loss_kl: 2.75968 (2.65823) | > loss_feat: 8.81637 (8.66579) | > loss_mel: 17.54503 (17.76322) | > loss_duration: 1.71796 (1.70501) | > loss_1: 33.67990 (33.34746) | > grad_norm_1: 169.99948 (136.93678) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86450 (2.13156) | > loader_time: 0.03340 (0.03666)  --> STEP: 9500/15287 -- GLOBAL_STEP: 990075 | > loss_disc: 2.30829 (2.32131) | > loss_disc_real_0: 0.13859 (0.12272) | > loss_disc_real_1: 0.21342 (0.21128) | > loss_disc_real_2: 0.24752 (0.21572) | > loss_disc_real_3: 0.20711 (0.21917) | > loss_disc_real_4: 0.20905 (0.21492) | > loss_disc_real_5: 0.20748 (0.21392) | > loss_0: 2.30829 (2.32131) | > grad_norm_0: 9.64291 (16.78440) | > loss_gen: 2.64648 (2.55524) | > loss_kl: 2.70888 (2.65828) | > loss_feat: 8.72796 (8.66620) | > loss_mel: 18.07300 (17.76354) | > loss_duration: 1.75952 (1.70503) | > loss_1: 33.91585 (33.34827) | > grad_norm_1: 220.34802 (137.07759) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85420 (2.13113) | > loader_time: 0.03870 (0.03666)  --> STEP: 9525/15287 -- GLOBAL_STEP: 990100 | > loss_disc: 2.21848 (2.32122) | > loss_disc_real_0: 0.06957 (0.12270) | > loss_disc_real_1: 0.16957 (0.21127) | > loss_disc_real_2: 0.19633 (0.21571) | > loss_disc_real_3: 0.20480 (0.21917) | > loss_disc_real_4: 0.18293 (0.21492) | > loss_disc_real_5: 0.23464 (0.21392) | > loss_0: 2.21848 (2.32122) | > grad_norm_0: 23.89223 (16.79185) | > loss_gen: 2.54769 (2.55521) | > loss_kl: 2.63692 (2.65835) | > loss_feat: 9.19038 (8.66642) | > loss_mel: 18.13650 (17.76349) | > loss_duration: 1.71392 (1.70506) | > loss_1: 34.22542 (33.34850) | > grad_norm_1: 211.56920 (137.15535) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14600 (2.13076) | > loader_time: 0.03230 (0.03665)  --> STEP: 9550/15287 -- GLOBAL_STEP: 990125 | > loss_disc: 2.28095 (2.32116) | > loss_disc_real_0: 0.10866 (0.12268) | > loss_disc_real_1: 0.18302 (0.21125) | > loss_disc_real_2: 0.19812 (0.21569) | > loss_disc_real_3: 0.20532 (0.21917) | > loss_disc_real_4: 0.23244 (0.21491) | > loss_disc_real_5: 0.20241 (0.21392) | > loss_0: 2.28095 (2.32116) | > grad_norm_0: 19.19901 (16.79144) | > loss_gen: 2.47094 (2.55519) | > loss_kl: 2.75906 (2.65848) | > loss_feat: 9.15239 (8.66678) | > loss_mel: 17.70736 (17.76338) | > loss_duration: 1.73019 (1.70506) | > loss_1: 33.81995 (33.34886) | > grad_norm_1: 131.31627 (137.23204) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33850 (2.13056) | > loader_time: 0.05890 (0.03665)  --> STEP: 9575/15287 -- GLOBAL_STEP: 990150 | > loss_disc: 2.34772 (2.32115) | > loss_disc_real_0: 0.20935 (0.12268) | > loss_disc_real_1: 0.18888 (0.21124) | > loss_disc_real_2: 0.17803 (0.21568) | > loss_disc_real_3: 0.24305 (0.21917) | > loss_disc_real_4: 0.21538 (0.21491) | > loss_disc_real_5: 0.21168 (0.21392) | > loss_0: 2.34772 (2.32115) | > grad_norm_0: 32.79889 (16.78490) | > loss_gen: 2.74291 (2.55524) | > loss_kl: 2.58401 (2.65869) | > loss_feat: 8.34031 (8.66706) | > loss_mel: 17.67715 (17.76349) | > loss_duration: 1.69448 (1.70508) | > loss_1: 33.03886 (33.34953) | > grad_norm_1: 60.83930 (137.20708) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06920 (2.13037) | > loader_time: 0.04120 (0.03666)  --> STEP: 9600/15287 -- GLOBAL_STEP: 990175 | > loss_disc: 2.34717 (2.32118) | > loss_disc_real_0: 0.10282 (0.12269) | > loss_disc_real_1: 0.23490 (0.21124) | > loss_disc_real_2: 0.22320 (0.21567) | > loss_disc_real_3: 0.20616 (0.21917) | > loss_disc_real_4: 0.20054 (0.21491) | > loss_disc_real_5: 0.18544 (0.21391) | > loss_0: 2.34717 (2.32118) | > grad_norm_0: 20.29435 (16.78971) | > loss_gen: 2.49616 (2.55517) | > loss_kl: 2.83912 (2.65885) | > loss_feat: 8.60111 (8.66698) | > loss_mel: 17.88306 (17.76356) | > loss_duration: 1.71103 (1.70509) | > loss_1: 33.53048 (33.34962) | > grad_norm_1: 207.63770 (137.25426) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94240 (2.13065) | > loader_time: 0.03410 (0.03667)  --> STEP: 9625/15287 -- GLOBAL_STEP: 990200 | > loss_disc: 2.37988 (2.32119) | > loss_disc_real_0: 0.11417 (0.12268) | > loss_disc_real_1: 0.20759 (0.21124) | > loss_disc_real_2: 0.22918 (0.21567) | > loss_disc_real_3: 0.23526 (0.21916) | > loss_disc_real_4: 0.22818 (0.21490) | > loss_disc_real_5: 0.19681 (0.21392) | > loss_0: 2.37988 (2.32119) | > grad_norm_0: 7.45867 (16.78978) | > loss_gen: 2.46247 (2.55517) | > loss_kl: 2.67579 (2.65889) | > loss_feat: 8.70684 (8.66712) | > loss_mel: 17.56444 (17.76370) | > loss_duration: 1.67512 (1.70507) | > loss_1: 33.08466 (33.34993) | > grad_norm_1: 87.35781 (137.25241) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17280 (2.13035) | > loader_time: 0.03440 (0.03668)  --> STEP: 9650/15287 -- GLOBAL_STEP: 990225 | > loss_disc: 2.43144 (2.32123) | > loss_disc_real_0: 0.10734 (0.12267) | > loss_disc_real_1: 0.25970 (0.21124) | > loss_disc_real_2: 0.27105 (0.21568) | > loss_disc_real_3: 0.20872 (0.21916) | > loss_disc_real_4: 0.24507 (0.21490) | > loss_disc_real_5: 0.24148 (0.21393) | > loss_0: 2.43144 (2.32123) | > grad_norm_0: 7.55769 (16.77333) | > loss_gen: 2.63353 (2.55530) | > loss_kl: 2.68463 (2.65905) | > loss_feat: 8.26448 (8.66719) | > loss_mel: 17.85592 (17.76408) | > loss_duration: 1.70629 (1.70508) | > loss_1: 33.14485 (33.35067) | > grad_norm_1: 86.97437 (137.10555) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00530 (2.13009) | > loader_time: 0.04120 (0.03668)  --> STEP: 9675/15287 -- GLOBAL_STEP: 990250 | > loss_disc: 2.37381 (2.32149) | > loss_disc_real_0: 0.11528 (0.12271) | > loss_disc_real_1: 0.22081 (0.21126) | > loss_disc_real_2: 0.23187 (0.21570) | > loss_disc_real_3: 0.19745 (0.21919) | > loss_disc_real_4: 0.21725 (0.21491) | > loss_disc_real_5: 0.20679 (0.21395) | > loss_0: 2.37381 (2.32149) | > grad_norm_0: 12.38584 (16.76238) | > loss_gen: 2.40316 (2.55513) | > loss_kl: 2.67612 (2.65902) | > loss_feat: 7.77716 (8.66653) | > loss_mel: 17.21228 (17.76461) | > loss_duration: 1.66518 (1.70510) | > loss_1: 31.73389 (33.35036) | > grad_norm_1: 102.60310 (137.01462) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33660 (2.13017) | > loader_time: 0.03670 (0.03668)  --> STEP: 9700/15287 -- GLOBAL_STEP: 990275 | > loss_disc: 2.22385 (2.32156) | > loss_disc_real_0: 0.16282 (0.12271) | > loss_disc_real_1: 0.19244 (0.21127) | > loss_disc_real_2: 0.19077 (0.21570) | > loss_disc_real_3: 0.21358 (0.21920) | > loss_disc_real_4: 0.24159 (0.21492) | > loss_disc_real_5: 0.21150 (0.21396) | > loss_0: 2.22385 (2.32156) | > grad_norm_0: 16.33680 (16.76217) | > loss_gen: 2.65674 (2.55505) | > loss_kl: 2.68639 (2.65899) | > loss_feat: 8.90732 (8.66618) | > loss_mel: 17.61901 (17.76455) | > loss_duration: 1.73452 (1.70514) | > loss_1: 33.60398 (33.34985) | > grad_norm_1: 86.93044 (137.01575) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21150 (2.13018) | > loader_time: 0.03270 (0.03668)  --> STEP: 9725/15287 -- GLOBAL_STEP: 990300 | > loss_disc: 2.27960 (2.32157) | > loss_disc_real_0: 0.11090 (0.12270) | > loss_disc_real_1: 0.23680 (0.21127) | > loss_disc_real_2: 0.21607 (0.21570) | > loss_disc_real_3: 0.21579 (0.21921) | > loss_disc_real_4: 0.21259 (0.21493) | > loss_disc_real_5: 0.21160 (0.21397) | > loss_0: 2.27960 (2.32157) | > grad_norm_0: 14.64346 (16.76889) | > loss_gen: 2.58622 (2.55503) | > loss_kl: 2.64004 (2.65888) | > loss_feat: 8.64017 (8.66621) | > loss_mel: 17.67315 (17.76435) | > loss_duration: 1.68784 (1.70511) | > loss_1: 33.22742 (33.34953) | > grad_norm_1: 67.74374 (137.04787) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10450 (2.12996) | > loader_time: 0.03100 (0.03668)  --> STEP: 9750/15287 -- GLOBAL_STEP: 990325 | > loss_disc: 2.27631 (2.32150) | > loss_disc_real_0: 0.08324 (0.12270) | > loss_disc_real_1: 0.22359 (0.21127) | > loss_disc_real_2: 0.20063 (0.21569) | > loss_disc_real_3: 0.22004 (0.21920) | > loss_disc_real_4: 0.19448 (0.21493) | > loss_disc_real_5: 0.23040 (0.21396) | > loss_0: 2.27631 (2.32150) | > grad_norm_0: 6.14153 (16.76515) | > loss_gen: 2.83169 (2.55512) | > loss_kl: 2.72596 (2.65889) | > loss_feat: 8.34132 (8.66611) | > loss_mel: 17.78186 (17.76413) | > loss_duration: 1.76925 (1.70510) | > loss_1: 33.45008 (33.34929) | > grad_norm_1: 80.85354 (137.03035) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.54910 (2.13039) | > loader_time: 0.03720 (0.03669)  --> STEP: 9775/15287 -- GLOBAL_STEP: 990350 | > loss_disc: 2.26520 (2.32146) | > loss_disc_real_0: 0.16250 (0.12270) | > loss_disc_real_1: 0.23342 (0.21126) | > loss_disc_real_2: 0.23639 (0.21569) | > loss_disc_real_3: 0.21409 (0.21920) | > loss_disc_real_4: 0.23142 (0.21493) | > loss_disc_real_5: 0.22927 (0.21396) | > loss_0: 2.26520 (2.32146) | > grad_norm_0: 10.72060 (16.76847) | > loss_gen: 2.61294 (2.55509) | > loss_kl: 2.56127 (2.65885) | > loss_feat: 8.80440 (8.66627) | > loss_mel: 17.64253 (17.76394) | > loss_duration: 1.71446 (1.70511) | > loss_1: 33.33561 (33.34920) | > grad_norm_1: 75.39702 (137.08156) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.08370 (2.13171) | > loader_time: 0.04170 (0.03670)  --> STEP: 9800/15287 -- GLOBAL_STEP: 990375 | > loss_disc: 2.26572 (2.32142) | > loss_disc_real_0: 0.10301 (0.12272) | > loss_disc_real_1: 0.22027 (0.21126) | > loss_disc_real_2: 0.22058 (0.21570) | > loss_disc_real_3: 0.23696 (0.21919) | > loss_disc_real_4: 0.21337 (0.21493) | > loss_disc_real_5: 0.19380 (0.21394) | > loss_0: 2.26572 (2.32142) | > grad_norm_0: 4.99395 (16.76434) | > loss_gen: 2.79665 (2.55517) | > loss_kl: 2.64293 (2.65886) | > loss_feat: 9.25492 (8.66661) | > loss_mel: 17.71803 (17.76400) | > loss_duration: 1.66650 (1.70513) | > loss_1: 34.07903 (33.34972) | > grad_norm_1: 164.94028 (137.07648) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13180 (2.13210) | > loader_time: 0.03330 (0.03672)  --> STEP: 9825/15287 -- GLOBAL_STEP: 990400 | > loss_disc: 2.28272 (2.32139) | > loss_disc_real_0: 0.09028 (0.12269) | > loss_disc_real_1: 0.20416 (0.21126) | > loss_disc_real_2: 0.20895 (0.21570) | > loss_disc_real_3: 0.20253 (0.21918) | > loss_disc_real_4: 0.19902 (0.21492) | > loss_disc_real_5: 0.22836 (0.21396) | > loss_0: 2.28272 (2.32139) | > grad_norm_0: 22.37365 (16.77541) | > loss_gen: 2.61391 (2.55513) | > loss_kl: 2.54240 (2.65885) | > loss_feat: 9.34461 (8.66696) | > loss_mel: 18.30565 (17.76414) | > loss_duration: 1.69922 (1.70515) | > loss_1: 34.50579 (33.35019) | > grad_norm_1: 181.60327 (137.09279) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.93320 (2.13252) | > loader_time: 0.03560 (0.03672)  --> STEP: 9850/15287 -- GLOBAL_STEP: 990425 | > loss_disc: 2.40322 (2.32140) | > loss_disc_real_0: 0.22135 (0.12270) | > loss_disc_real_1: 0.21287 (0.21126) | > loss_disc_real_2: 0.23047 (0.21571) | > loss_disc_real_3: 0.24058 (0.21918) | > loss_disc_real_4: 0.21573 (0.21491) | > loss_disc_real_5: 0.21540 (0.21396) | > loss_0: 2.40322 (2.32140) | > grad_norm_0: 25.21316 (16.76725) | > loss_gen: 2.55797 (2.55514) | > loss_kl: 2.72829 (2.65892) | > loss_feat: 8.81138 (8.66710) | > loss_mel: 17.81352 (17.76447) | > loss_duration: 1.72661 (1.70515) | > loss_1: 33.63776 (33.35073) | > grad_norm_1: 81.36205 (137.07547) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03100 (2.13297) | > loader_time: 0.04820 (0.03673)  --> STEP: 9875/15287 -- GLOBAL_STEP: 990450 | > loss_disc: 2.31548 (2.32134) | > loss_disc_real_0: 0.10387 (0.12269) | > loss_disc_real_1: 0.20330 (0.21127) | > loss_disc_real_2: 0.21125 (0.21571) | > loss_disc_real_3: 0.20810 (0.21918) | > loss_disc_real_4: 0.20893 (0.21491) | > loss_disc_real_5: 0.22138 (0.21396) | > loss_0: 2.31548 (2.32134) | > grad_norm_0: 7.34331 (16.76274) | > loss_gen: 2.65369 (2.55514) | > loss_kl: 2.69900 (2.65895) | > loss_feat: 9.20860 (8.66744) | > loss_mel: 18.26400 (17.76461) | > loss_duration: 1.73147 (1.70517) | > loss_1: 34.55677 (33.35123) | > grad_norm_1: 167.06924 (137.07860) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25850 (2.13427) | > loader_time: 0.04470 (0.03675)  --> STEP: 9900/15287 -- GLOBAL_STEP: 990475 | > loss_disc: 2.36536 (2.32127) | > loss_disc_real_0: 0.11020 (0.12267) | > loss_disc_real_1: 0.18557 (0.21125) | > loss_disc_real_2: 0.21749 (0.21570) | > loss_disc_real_3: 0.21886 (0.21917) | > loss_disc_real_4: 0.20398 (0.21490) | > loss_disc_real_5: 0.24643 (0.21396) | > loss_0: 2.36536 (2.32127) | > grad_norm_0: 21.36355 (16.76627) | > loss_gen: 2.45815 (2.55515) | > loss_kl: 2.62348 (2.65893) | > loss_feat: 9.05004 (8.66772) | > loss_mel: 17.75264 (17.76460) | > loss_duration: 1.69709 (1.70517) | > loss_1: 33.58141 (33.35149) | > grad_norm_1: 184.17104 (137.08968) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.49140 (2.13425) | > loader_time: 0.03950 (0.03676)  --> STEP: 9925/15287 -- GLOBAL_STEP: 990500 | > loss_disc: 2.25777 (2.32128) | > loss_disc_real_0: 0.10192 (0.12268) | > loss_disc_real_1: 0.20955 (0.21125) | > loss_disc_real_2: 0.15977 (0.21571) | > loss_disc_real_3: 0.16734 (0.21918) | > loss_disc_real_4: 0.20841 (0.21489) | > loss_disc_real_5: 0.20266 (0.21397) | > loss_0: 2.25777 (2.32128) | > grad_norm_0: 15.69063 (16.77227) | > loss_gen: 2.61850 (2.55519) | > loss_kl: 2.60427 (2.65901) | > loss_feat: 8.79597 (8.66802) | > loss_mel: 17.64201 (17.76433) | > loss_duration: 1.70812 (1.70518) | > loss_1: 33.36888 (33.35165) | > grad_norm_1: 120.65446 (137.07614) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.84470 (2.13539) | > loader_time: 0.03380 (0.03676)  --> STEP: 9950/15287 -- GLOBAL_STEP: 990525 | > loss_disc: 2.23970 (2.32134) | > loss_disc_real_0: 0.15567 (0.12272) | > loss_disc_real_1: 0.19646 (0.21127) | > loss_disc_real_2: 0.19672 (0.21571) | > loss_disc_real_3: 0.20539 (0.21918) | > loss_disc_real_4: 0.20790 (0.21490) | > loss_disc_real_5: 0.21575 (0.21397) | > loss_0: 2.23970 (2.32134) | > grad_norm_0: 13.81324 (16.78119) | > loss_gen: 2.47096 (2.55522) | > loss_kl: 2.73199 (2.65898) | > loss_feat: 8.77261 (8.66802) | > loss_mel: 17.52907 (17.76389) | > loss_duration: 1.63521 (1.70518) | > loss_1: 33.13984 (33.35121) | > grad_norm_1: 180.69843 (137.11066) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.92280 (2.13646) | > loader_time: 0.03500 (0.03675)  --> STEP: 9975/15287 -- GLOBAL_STEP: 990550 | > loss_disc: 2.29193 (2.32144) | > loss_disc_real_0: 0.13784 (0.12278) | > loss_disc_real_1: 0.16668 (0.21125) | > loss_disc_real_2: 0.21830 (0.21571) | > loss_disc_real_3: 0.19837 (0.21919) | > loss_disc_real_4: 0.20632 (0.21490) | > loss_disc_real_5: 0.18930 (0.21397) | > loss_0: 2.29193 (2.32144) | > grad_norm_0: 16.00599 (16.77991) | > loss_gen: 2.43864 (2.55513) | > loss_kl: 2.66239 (2.65897) | > loss_feat: 8.76576 (8.66742) | > loss_mel: 17.76819 (17.76364) | > loss_duration: 1.72523 (1.70515) | > loss_1: 33.36021 (33.35022) | > grad_norm_1: 66.26952 (137.00363) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.81800 (2.13801) | > loader_time: 0.04990 (0.03675)  --> STEP: 10000/15287 -- GLOBAL_STEP: 990575 | > loss_disc: 2.33173 (2.32147) | > loss_disc_real_0: 0.11749 (0.12277) | > loss_disc_real_1: 0.21729 (0.21126) | > loss_disc_real_2: 0.22011 (0.21573) | > loss_disc_real_3: 0.24990 (0.21919) | > loss_disc_real_4: 0.20641 (0.21490) | > loss_disc_real_5: 0.20670 (0.21396) | > loss_0: 2.33173 (2.32147) | > grad_norm_0: 11.98451 (16.77305) | > loss_gen: 2.39308 (2.55506) | > loss_kl: 2.59182 (2.65895) | > loss_feat: 8.24225 (8.66714) | > loss_mel: 17.57162 (17.76342) | > loss_duration: 1.71337 (1.70516) | > loss_1: 32.51215 (33.34965) | > grad_norm_1: 86.55028 (136.95436) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25570 (2.13939) | > loader_time: 0.03380 (0.03675)  --> STEP: 10025/15287 -- GLOBAL_STEP: 990600 | > loss_disc: 2.28460 (2.32146) | > loss_disc_real_0: 0.08999 (0.12276) | > loss_disc_real_1: 0.19422 (0.21124) | > loss_disc_real_2: 0.20385 (0.21573) | > loss_disc_real_3: 0.25577 (0.21920) | > loss_disc_real_4: 0.20594 (0.21490) | > loss_disc_real_5: 0.20078 (0.21395) | > loss_0: 2.28460 (2.32146) | > grad_norm_0: 7.58633 (16.77831) | > loss_gen: 2.82882 (2.55506) | > loss_kl: 2.68655 (2.65891) | > loss_feat: 8.92140 (8.66725) | > loss_mel: 17.87972 (17.76324) | > loss_duration: 1.69602 (1.70517) | > loss_1: 34.01250 (33.34956) | > grad_norm_1: 201.78996 (136.98734) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55230 (2.14046) | > loader_time: 0.03170 (0.03675)  --> STEP: 10050/15287 -- GLOBAL_STEP: 990625 | > loss_disc: 2.32823 (2.32143) | > loss_disc_real_0: 0.12051 (0.12275) | > loss_disc_real_1: 0.20808 (0.21125) | > loss_disc_real_2: 0.20000 (0.21572) | > loss_disc_real_3: 0.22954 (0.21919) | > loss_disc_real_4: 0.21725 (0.21490) | > loss_disc_real_5: 0.22813 (0.21395) | > loss_0: 2.32823 (2.32143) | > grad_norm_0: 28.45523 (16.78541) | > loss_gen: 2.55512 (2.55504) | > loss_kl: 2.73927 (2.65892) | > loss_feat: 8.72159 (8.66715) | > loss_mel: 17.78409 (17.76280) | > loss_duration: 1.72131 (1.70517) | > loss_1: 33.52139 (33.34904) | > grad_norm_1: 184.32071 (137.02745) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29130 (2.14092) | > loader_time: 0.04570 (0.03675)  --> STEP: 10075/15287 -- GLOBAL_STEP: 990650 | > loss_disc: 2.30328 (2.32132) | > loss_disc_real_0: 0.13149 (0.12273) | > loss_disc_real_1: 0.19558 (0.21125) | > loss_disc_real_2: 0.23166 (0.21571) | > loss_disc_real_3: 0.22691 (0.21918) | > loss_disc_real_4: 0.23144 (0.21490) | > loss_disc_real_5: 0.21590 (0.21395) | > loss_0: 2.30328 (2.32132) | > grad_norm_0: 19.84078 (16.79027) | > loss_gen: 2.59824 (2.55510) | > loss_kl: 2.65221 (2.65890) | > loss_feat: 9.28034 (8.66739) | > loss_mel: 17.66267 (17.76291) | > loss_duration: 1.66420 (1.70519) | > loss_1: 33.85767 (33.34943) | > grad_norm_1: 166.87933 (137.07381) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01860 (2.14090) | > loader_time: 0.03880 (0.03676)  --> STEP: 10100/15287 -- GLOBAL_STEP: 990675 | > loss_disc: 2.31476 (2.32136) | > loss_disc_real_0: 0.09517 (0.12271) | > loss_disc_real_1: 0.18497 (0.21126) | > loss_disc_real_2: 0.20030 (0.21571) | > loss_disc_real_3: 0.22928 (0.21918) | > loss_disc_real_4: 0.23230 (0.21490) | > loss_disc_real_5: 0.23382 (0.21396) | > loss_0: 2.31476 (2.32136) | > grad_norm_0: 20.80665 (16.78722) | > loss_gen: 2.52778 (2.55504) | > loss_kl: 2.67966 (2.65894) | > loss_feat: 8.53009 (8.66744) | > loss_mel: 17.40068 (17.76298) | > loss_duration: 1.68528 (1.70517) | > loss_1: 32.82349 (33.34954) | > grad_norm_1: 168.88971 (137.06731) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.46260 (2.14095) | > loader_time: 0.03870 (0.03677)  --> STEP: 10125/15287 -- GLOBAL_STEP: 990700 | > loss_disc: 2.29831 (2.32142) | > loss_disc_real_0: 0.09946 (0.12272) | > loss_disc_real_1: 0.21858 (0.21125) | > loss_disc_real_2: 0.19262 (0.21568) | > loss_disc_real_3: 0.21286 (0.21916) | > loss_disc_real_4: 0.20504 (0.21489) | > loss_disc_real_5: 0.24422 (0.21397) | > loss_0: 2.29831 (2.32142) | > grad_norm_0: 16.58624 (16.79085) | > loss_gen: 2.54937 (2.55493) | > loss_kl: 2.67814 (2.65905) | > loss_feat: 8.80442 (8.66743) | > loss_mel: 17.79892 (17.76293) | > loss_duration: 1.71377 (1.70515) | > loss_1: 33.54462 (33.34948) | > grad_norm_1: 157.28203 (137.10629) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.67990 (2.14208) | > loader_time: 0.03230 (0.03677)  --> STEP: 10150/15287 -- GLOBAL_STEP: 990725 | > loss_disc: 2.36820 (2.32144) | > loss_disc_real_0: 0.12341 (0.12273) | > loss_disc_real_1: 0.20886 (0.21125) | > loss_disc_real_2: 0.22797 (0.21569) | > loss_disc_real_3: 0.22942 (0.21917) | > loss_disc_real_4: 0.18228 (0.21490) | > loss_disc_real_5: 0.22050 (0.21397) | > loss_0: 2.36820 (2.32144) | > grad_norm_0: 13.05093 (16.78662) | > loss_gen: 2.46113 (2.55489) | > loss_kl: 2.72223 (2.65913) | > loss_feat: 8.95888 (8.66726) | > loss_mel: 17.89160 (17.76297) | > loss_duration: 1.72381 (1.70518) | > loss_1: 33.75765 (33.34942) | > grad_norm_1: 136.25984 (137.02565) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.74010 (2.14306) | > loader_time: 0.03300 (0.03676)  --> STEP: 10175/15287 -- GLOBAL_STEP: 990750 | > loss_disc: 2.38071 (2.32146) | > loss_disc_real_0: 0.14340 (0.12273) | > loss_disc_real_1: 0.22695 (0.21125) | > loss_disc_real_2: 0.24181 (0.21570) | > loss_disc_real_3: 0.20890 (0.21918) | > loss_disc_real_4: 0.21818 (0.21489) | > loss_disc_real_5: 0.22848 (0.21397) | > loss_0: 2.38071 (2.32146) | > grad_norm_0: 7.24324 (16.77520) | > loss_gen: 2.47320 (2.55498) | > loss_kl: 2.55428 (2.65918) | > loss_feat: 8.60517 (8.66742) | > loss_mel: 17.67010 (17.76314) | > loss_duration: 1.73392 (1.70519) | > loss_1: 33.03667 (33.34991) | > grad_norm_1: 77.01944 (136.99144) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52340 (2.14404) | > loader_time: 0.03980 (0.03676)  --> STEP: 10200/15287 -- GLOBAL_STEP: 990775 | > loss_disc: 2.35719 (2.32149) | > loss_disc_real_0: 0.08225 (0.12272) | > loss_disc_real_1: 0.23187 (0.21124) | > loss_disc_real_2: 0.21635 (0.21568) | > loss_disc_real_3: 0.24361 (0.21918) | > loss_disc_real_4: 0.21482 (0.21490) | > loss_disc_real_5: 0.21846 (0.21397) | > loss_0: 2.35719 (2.32149) | > grad_norm_0: 31.39785 (16.77620) | > loss_gen: 2.53226 (2.55492) | > loss_kl: 2.58415 (2.65916) | > loss_feat: 8.72529 (8.66745) | > loss_mel: 17.54584 (17.76331) | > loss_duration: 1.69154 (1.70520) | > loss_1: 33.07908 (33.35003) | > grad_norm_1: 236.14485 (137.04239) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08010 (2.14497) | > loader_time: 0.04330 (0.03677)  --> STEP: 10225/15287 -- GLOBAL_STEP: 990800 | > loss_disc: 2.29880 (2.32147) | > loss_disc_real_0: 0.10085 (0.12271) | > loss_disc_real_1: 0.19817 (0.21124) | > loss_disc_real_2: 0.21617 (0.21569) | > loss_disc_real_3: 0.22495 (0.21918) | > loss_disc_real_4: 0.19835 (0.21489) | > loss_disc_real_5: 0.22584 (0.21397) | > loss_0: 2.29880 (2.32147) | > grad_norm_0: 21.10538 (16.77921) | > loss_gen: 2.55428 (2.55486) | > loss_kl: 2.60822 (2.65914) | > loss_feat: 8.62827 (8.66753) | > loss_mel: 18.23725 (17.76308) | > loss_duration: 1.77810 (1.70523) | > loss_1: 33.80612 (33.34983) | > grad_norm_1: 178.65053 (137.04182) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.50800 (2.14531) | > loader_time: 0.03330 (0.03678)  --> STEP: 10250/15287 -- GLOBAL_STEP: 990825 | > loss_disc: 2.39236 (2.32144) | > loss_disc_real_0: 0.18603 (0.12271) | > loss_disc_real_1: 0.22834 (0.21125) | > loss_disc_real_2: 0.21342 (0.21568) | > loss_disc_real_3: 0.22554 (0.21918) | > loss_disc_real_4: 0.21981 (0.21489) | > loss_disc_real_5: 0.22411 (0.21397) | > loss_0: 2.39236 (2.32144) | > grad_norm_0: 19.90068 (16.77987) | > loss_gen: 2.53239 (2.55494) | > loss_kl: 2.74965 (2.65921) | > loss_feat: 8.59026 (8.66791) | > loss_mel: 17.97545 (17.76306) | > loss_duration: 1.68920 (1.70522) | > loss_1: 33.53695 (33.35036) | > grad_norm_1: 157.00371 (137.04721) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96190 (2.14585) | > loader_time: 0.03880 (0.03678)  --> STEP: 10275/15287 -- GLOBAL_STEP: 990850 | > loss_disc: 2.33510 (2.32147) | > loss_disc_real_0: 0.14392 (0.12271) | > loss_disc_real_1: 0.20516 (0.21127) | > loss_disc_real_2: 0.22998 (0.21568) | > loss_disc_real_3: 0.23227 (0.21921) | > loss_disc_real_4: 0.22308 (0.21488) | > loss_disc_real_5: 0.20183 (0.21398) | > loss_0: 2.33510 (2.32147) | > grad_norm_0: 21.60364 (16.78629) | > loss_gen: 2.57884 (2.55493) | > loss_kl: 2.78401 (2.65921) | > loss_feat: 8.70002 (8.66798) | > loss_mel: 17.44420 (17.76319) | > loss_duration: 1.72473 (1.70523) | > loss_1: 33.23181 (33.35057) | > grad_norm_1: 206.20903 (137.08733) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52270 (2.14626) | > loader_time: 0.03170 (0.03679)  --> STEP: 10300/15287 -- GLOBAL_STEP: 990875 | > loss_disc: 2.36372 (2.32147) | > loss_disc_real_0: 0.12238 (0.12270) | > loss_disc_real_1: 0.19693 (0.21128) | > loss_disc_real_2: 0.21580 (0.21569) | > loss_disc_real_3: 0.21519 (0.21921) | > loss_disc_real_4: 0.21337 (0.21489) | > loss_disc_real_5: 0.22849 (0.21397) | > loss_0: 2.36372 (2.32147) | > grad_norm_0: 8.49102 (16.78783) | > loss_gen: 2.58201 (2.55501) | > loss_kl: 2.53631 (2.65924) | > loss_feat: 8.69603 (8.66814) | > loss_mel: 17.60876 (17.76328) | > loss_duration: 1.72693 (1.70524) | > loss_1: 33.15005 (33.35092) | > grad_norm_1: 68.44360 (137.12553) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27730 (2.14734) | > loader_time: 0.03360 (0.03679)  --> STEP: 10325/15287 -- GLOBAL_STEP: 990900 | > loss_disc: 2.31827 (2.32142) | > loss_disc_real_0: 0.12364 (0.12269) | > loss_disc_real_1: 0.22551 (0.21127) | > loss_disc_real_2: 0.22062 (0.21569) | > loss_disc_real_3: 0.20987 (0.21921) | > loss_disc_real_4: 0.21444 (0.21489) | > loss_disc_real_5: 0.22169 (0.21397) | > loss_0: 2.31827 (2.32142) | > grad_norm_0: 8.10391 (16.79243) | > loss_gen: 2.52457 (2.55500) | > loss_kl: 2.63050 (2.65921) | > loss_feat: 8.92820 (8.66844) | > loss_mel: 17.92602 (17.76321) | > loss_duration: 1.73408 (1.70525) | > loss_1: 33.74335 (33.35112) | > grad_norm_1: 148.56233 (137.16512) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.70830 (2.14850) | > loader_time: 0.03320 (0.03678)  --> STEP: 10350/15287 -- GLOBAL_STEP: 990925 | > loss_disc: 2.33340 (2.32143) | > loss_disc_real_0: 0.11385 (0.12268) | > loss_disc_real_1: 0.21547 (0.21127) | > loss_disc_real_2: 0.22368 (0.21569) | > loss_disc_real_3: 0.21646 (0.21921) | > loss_disc_real_4: 0.22389 (0.21489) | > loss_disc_real_5: 0.21019 (0.21397) | > loss_0: 2.33340 (2.32143) | > grad_norm_0: 15.22404 (16.79108) | > loss_gen: 2.61080 (2.55507) | > loss_kl: 2.65494 (2.65923) | > loss_feat: 8.71336 (8.66859) | > loss_mel: 17.85108 (17.76311) | > loss_duration: 1.69399 (1.70525) | > loss_1: 33.52417 (33.35126) | > grad_norm_1: 171.81351 (137.11880) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55750 (2.14914) | > loader_time: 0.04160 (0.03679)  --> STEP: 10375/15287 -- GLOBAL_STEP: 990950 | > loss_disc: 2.32254 (2.32143) | > loss_disc_real_0: 0.13152 (0.12268) | > loss_disc_real_1: 0.20827 (0.21126) | > loss_disc_real_2: 0.22936 (0.21570) | > loss_disc_real_3: 0.24183 (0.21921) | > loss_disc_real_4: 0.21378 (0.21488) | > loss_disc_real_5: 0.19357 (0.21396) | > loss_0: 2.32254 (2.32143) | > grad_norm_0: 34.65136 (16.80082) | > loss_gen: 2.47705 (2.55503) | > loss_kl: 2.79381 (2.65940) | > loss_feat: 8.88728 (8.66860) | > loss_mel: 17.84299 (17.76293) | > loss_duration: 1.70803 (1.70526) | > loss_1: 33.70916 (33.35122) | > grad_norm_1: 263.51172 (137.18727) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.97050 (2.14991) | > loader_time: 0.03610 (0.03679)  --> STEP: 10400/15287 -- GLOBAL_STEP: 990975 | > loss_disc: 2.30218 (2.32142) | > loss_disc_real_0: 0.08164 (0.12268) | > loss_disc_real_1: 0.19914 (0.21125) | > loss_disc_real_2: 0.22032 (0.21569) | > loss_disc_real_3: 0.21725 (0.21921) | > loss_disc_real_4: 0.23770 (0.21489) | > loss_disc_real_5: 0.20944 (0.21397) | > loss_0: 2.30218 (2.32142) | > grad_norm_0: 6.10442 (16.81212) | > loss_gen: 2.88558 (2.55503) | > loss_kl: 2.74083 (2.65947) | > loss_feat: 8.96680 (8.66838) | > loss_mel: 17.95731 (17.76251) | > loss_duration: 1.71441 (1.70525) | > loss_1: 34.26494 (33.35063) | > grad_norm_1: 114.07178 (137.28168) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34830 (2.15092) | > loader_time: 0.03540 (0.03678)  --> STEP: 10425/15287 -- GLOBAL_STEP: 991000 | > loss_disc: 2.31940 (2.32147) | > loss_disc_real_0: 0.15676 (0.12273) | > loss_disc_real_1: 0.24540 (0.21125) | > loss_disc_real_2: 0.24863 (0.21569) | > loss_disc_real_3: 0.21572 (0.21922) | > loss_disc_real_4: 0.20085 (0.21487) | > loss_disc_real_5: 0.20575 (0.21397) | > loss_0: 2.31940 (2.32147) | > grad_norm_0: 28.01722 (16.80858) | > loss_gen: 2.80037 (2.55510) | > loss_kl: 2.70650 (2.65955) | > loss_feat: 8.35522 (8.66840) | > loss_mel: 17.61777 (17.76216) | > loss_duration: 1.69737 (1.70523) | > loss_1: 33.17723 (33.35045) | > grad_norm_1: 64.94779 (137.21492) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.66550 (2.15190) | > loader_time: 0.03930 (0.03678)  --> STEP: 10450/15287 -- GLOBAL_STEP: 991025 | > loss_disc: 2.31284 (2.32150) | > loss_disc_real_0: 0.09683 (0.12274) | > loss_disc_real_1: 0.20225 (0.21126) | > loss_disc_real_2: 0.21618 (0.21570) | > loss_disc_real_3: 0.19994 (0.21922) | > loss_disc_real_4: 0.19040 (0.21487) | > loss_disc_real_5: 0.22365 (0.21399) | > loss_0: 2.31284 (2.32150) | > grad_norm_0: 16.41351 (16.81214) | > loss_gen: 2.48963 (2.55509) | > loss_kl: 2.63252 (2.65951) | > loss_feat: 8.81329 (8.66835) | > loss_mel: 17.69311 (17.76240) | > loss_duration: 1.70955 (1.70525) | > loss_1: 33.33811 (33.35062) | > grad_norm_1: 194.85869 (137.18126) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.62760 (2.15270) | > loader_time: 0.04100 (0.03678)  --> STEP: 10475/15287 -- GLOBAL_STEP: 991050 | > loss_disc: 2.34430 (2.32150) | > loss_disc_real_0: 0.10142 (0.12276) | > loss_disc_real_1: 0.19935 (0.21126) | > loss_disc_real_2: 0.20377 (0.21570) | > loss_disc_real_3: 0.21119 (0.21924) | > loss_disc_real_4: 0.21634 (0.21488) | > loss_disc_real_5: 0.20309 (0.21398) | > loss_0: 2.34430 (2.32150) | > grad_norm_0: 12.55373 (16.81037) | > loss_gen: 2.60950 (2.55516) | > loss_kl: 2.70245 (2.65951) | > loss_feat: 8.52229 (8.66818) | > loss_mel: 17.65690 (17.76238) | > loss_duration: 1.75066 (1.70526) | > loss_1: 33.24179 (33.35050) | > grad_norm_1: 80.16791 (137.10905) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.54730 (2.15353) | > loader_time: 0.03260 (0.03678)  --> STEP: 10500/15287 -- GLOBAL_STEP: 991075 | > loss_disc: 2.30932 (2.32150) | > loss_disc_real_0: 0.13393 (0.12275) | > loss_disc_real_1: 0.24458 (0.21126) | > loss_disc_real_2: 0.23206 (0.21570) | > loss_disc_real_3: 0.20858 (0.21924) | > loss_disc_real_4: 0.21210 (0.21488) | > loss_disc_real_5: 0.20709 (0.21397) | > loss_0: 2.30932 (2.32150) | > grad_norm_0: 20.19750 (16.81068) | > loss_gen: 2.72260 (2.55513) | > loss_kl: 2.60863 (2.65948) | > loss_feat: 8.84982 (8.66812) | > loss_mel: 18.03759 (17.76253) | > loss_duration: 1.71145 (1.70527) | > loss_1: 33.93009 (33.35055) | > grad_norm_1: 155.86414 (137.12737) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27000 (2.15448) | > loader_time: 0.03190 (0.03677)  --> STEP: 10525/15287 -- GLOBAL_STEP: 991100 | > loss_disc: 2.33124 (2.32152) | > loss_disc_real_0: 0.10140 (0.12275) | > loss_disc_real_1: 0.24036 (0.21127) | > loss_disc_real_2: 0.24357 (0.21570) | > loss_disc_real_3: 0.20610 (0.21923) | > loss_disc_real_4: 0.24753 (0.21488) | > loss_disc_real_5: 0.21579 (0.21397) | > loss_0: 2.33124 (2.32152) | > grad_norm_0: 15.16758 (16.80740) | > loss_gen: 2.55640 (2.55505) | > loss_kl: 2.65291 (2.65945) | > loss_feat: 9.37556 (8.66826) | > loss_mel: 18.03161 (17.76255) | > loss_duration: 1.71563 (1.70526) | > loss_1: 34.33210 (33.35061) | > grad_norm_1: 138.81187 (137.11789) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.81650 (2.15535) | > loader_time: 0.03800 (0.03677)  --> STEP: 10550/15287 -- GLOBAL_STEP: 991125 | > loss_disc: 2.24546 (2.32151) | > loss_disc_real_0: 0.11288 (0.12273) | > loss_disc_real_1: 0.20046 (0.21127) | > loss_disc_real_2: 0.22420 (0.21571) | > loss_disc_real_3: 0.21298 (0.21924) | > loss_disc_real_4: 0.22121 (0.21488) | > loss_disc_real_5: 0.21600 (0.21395) | > loss_0: 2.24546 (2.32151) | > grad_norm_0: 21.21369 (16.81215) | > loss_gen: 2.64048 (2.55505) | > loss_kl: 2.59186 (2.65938) | > loss_feat: 8.86099 (8.66832) | > loss_mel: 17.95954 (17.76245) | > loss_duration: 1.71414 (1.70528) | > loss_1: 33.76701 (33.35050) | > grad_norm_1: 93.07979 (137.15935) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42890 (2.15627) | > loader_time: 0.03130 (0.03676)  --> STEP: 10575/15287 -- GLOBAL_STEP: 991150 | > loss_disc: 2.36385 (2.32146) | > loss_disc_real_0: 0.11053 (0.12273) | > loss_disc_real_1: 0.23453 (0.21127) | > loss_disc_real_2: 0.24035 (0.21570) | > loss_disc_real_3: 0.22776 (0.21923) | > loss_disc_real_4: 0.23543 (0.21488) | > loss_disc_real_5: 0.21860 (0.21396) | > loss_0: 2.36385 (2.32146) | > grad_norm_0: 18.71971 (16.81704) | > loss_gen: 2.52058 (2.55501) | > loss_kl: 2.81538 (2.65938) | > loss_feat: 8.39552 (8.66821) | > loss_mel: 17.30194 (17.76208) | > loss_duration: 1.66862 (1.70528) | > loss_1: 32.70205 (33.34999) | > grad_norm_1: 147.06450 (137.18202) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38320 (2.15698) | > loader_time: 0.03440 (0.03676)  --> STEP: 10600/15287 -- GLOBAL_STEP: 991175 | > loss_disc: 2.29893 (2.32138) | > loss_disc_real_0: 0.09326 (0.12272) | > loss_disc_real_1: 0.20715 (0.21126) | > loss_disc_real_2: 0.23270 (0.21570) | > loss_disc_real_3: 0.21135 (0.21923) | > loss_disc_real_4: 0.19202 (0.21488) | > loss_disc_real_5: 0.19415 (0.21395) | > loss_0: 2.29893 (2.32138) | > grad_norm_0: 19.53292 (16.81808) | > loss_gen: 2.57208 (2.55498) | > loss_kl: 2.56564 (2.65939) | > loss_feat: 8.41354 (8.66835) | > loss_mel: 17.58639 (17.76184) | > loss_duration: 1.68597 (1.70527) | > loss_1: 32.82363 (33.34987) | > grad_norm_1: 241.29025 (137.19984) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.49760 (2.15798) | > loader_time: 0.03130 (0.03676)  --> STEP: 10625/15287 -- GLOBAL_STEP: 991200 | > loss_disc: 2.37926 (2.32135) | > loss_disc_real_0: 0.11554 (0.12271) | > loss_disc_real_1: 0.24003 (0.21126) | > loss_disc_real_2: 0.23006 (0.21570) | > loss_disc_real_3: 0.23017 (0.21924) | > loss_disc_real_4: 0.22395 (0.21489) | > loss_disc_real_5: 0.19434 (0.21395) | > loss_0: 2.37926 (2.32135) | > grad_norm_0: 13.66022 (16.81506) | > loss_gen: 2.54806 (2.55505) | > loss_kl: 2.77321 (2.65939) | > loss_feat: 9.12279 (8.66868) | > loss_mel: 17.81517 (17.76155) | > loss_duration: 1.69554 (1.70525) | > loss_1: 33.95477 (33.34995) | > grad_norm_1: 110.57921 (137.19769) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.19780 (2.15890) | > loader_time: 0.03640 (0.03676)  --> STEP: 10650/15287 -- GLOBAL_STEP: 991225 | > loss_disc: 2.36557 (2.32133) | > loss_disc_real_0: 0.12503 (0.12271) | > loss_disc_real_1: 0.24033 (0.21125) | > loss_disc_real_2: 0.22528 (0.21569) | > loss_disc_real_3: 0.22862 (0.21923) | > loss_disc_real_4: 0.20924 (0.21489) | > loss_disc_real_5: 0.21033 (0.21395) | > loss_0: 2.36557 (2.32133) | > grad_norm_0: 14.08262 (16.82563) | > loss_gen: 2.52780 (2.55505) | > loss_kl: 2.63146 (2.65933) | > loss_feat: 8.66199 (8.66878) | > loss_mel: 17.58618 (17.76149) | > loss_duration: 1.70795 (1.70528) | > loss_1: 33.11538 (33.34997) | > grad_norm_1: 146.69916 (137.27396) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56950 (2.15997) | > loader_time: 0.03870 (0.03675)  --> STEP: 10675/15287 -- GLOBAL_STEP: 991250 | > loss_disc: 2.37664 (2.32138) | > loss_disc_real_0: 0.15407 (0.12273) | > loss_disc_real_1: 0.20498 (0.21125) | > loss_disc_real_2: 0.21469 (0.21569) | > loss_disc_real_3: 0.24680 (0.21923) | > loss_disc_real_4: 0.23346 (0.21490) | > loss_disc_real_5: 0.22870 (0.21395) | > loss_0: 2.37664 (2.32138) | > grad_norm_0: 7.46121 (16.82161) | > loss_gen: 2.36452 (2.55498) | > loss_kl: 2.70308 (2.65944) | > loss_feat: 8.90264 (8.66881) | > loss_mel: 18.13495 (17.76133) | > loss_duration: 1.73137 (1.70530) | > loss_1: 33.83656 (33.34989) | > grad_norm_1: 71.66589 (137.16357) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24920 (2.16075) | > loader_time: 0.03890 (0.03675)  --> STEP: 10700/15287 -- GLOBAL_STEP: 991275 | > loss_disc: 2.41151 (2.32145) | > loss_disc_real_0: 0.14918 (0.12274) | > loss_disc_real_1: 0.22989 (0.21125) | > loss_disc_real_2: 0.20029 (0.21569) | > loss_disc_real_3: 0.25253 (0.21923) | > loss_disc_real_4: 0.26670 (0.21490) | > loss_disc_real_5: 0.21572 (0.21394) | > loss_0: 2.41151 (2.32145) | > grad_norm_0: 15.66361 (16.81219) | > loss_gen: 2.57356 (2.55501) | > loss_kl: 2.68742 (2.65952) | > loss_feat: 8.42713 (8.66898) | > loss_mel: 18.45451 (17.76182) | > loss_duration: 1.70643 (1.70533) | > loss_1: 33.84905 (33.35069) | > grad_norm_1: 208.83890 (137.07927) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72950 (2.16168) | > loader_time: 0.04290 (0.03675)  --> STEP: 10725/15287 -- GLOBAL_STEP: 991300 | > loss_disc: 2.44881 (2.32143) | > loss_disc_real_0: 0.11521 (0.12272) | > loss_disc_real_1: 0.21355 (0.21126) | > loss_disc_real_2: 0.20315 (0.21570) | > loss_disc_real_3: 0.21097 (0.21923) | > loss_disc_real_4: 0.22650 (0.21490) | > loss_disc_real_5: 0.22147 (0.21395) | > loss_0: 2.44881 (2.32143) | > grad_norm_0: 12.84371 (16.81170) | > loss_gen: 2.48070 (2.55509) | > loss_kl: 2.59970 (2.65947) | > loss_feat: 8.90211 (8.66896) | > loss_mel: 17.46413 (17.76189) | > loss_duration: 1.71953 (1.70533) | > loss_1: 33.16616 (33.35078) | > grad_norm_1: 100.77591 (137.05620) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.75890 (2.16273) | > loader_time: 0.03280 (0.03675)  --> STEP: 10750/15287 -- GLOBAL_STEP: 991325 | > loss_disc: 2.34075 (2.32149) | > loss_disc_real_0: 0.10767 (0.12273) | > loss_disc_real_1: 0.20076 (0.21128) | > loss_disc_real_2: 0.23709 (0.21571) | > loss_disc_real_3: 0.22795 (0.21924) | > loss_disc_real_4: 0.23188 (0.21491) | > loss_disc_real_5: 0.19826 (0.21396) | > loss_0: 2.34075 (2.32149) | > grad_norm_0: 16.14921 (16.81804) | > loss_gen: 2.54783 (2.55508) | > loss_kl: 2.65726 (2.65947) | > loss_feat: 8.54010 (8.66869) | > loss_mel: 17.67668 (17.76215) | > loss_duration: 1.66565 (1.70535) | > loss_1: 33.08752 (33.35079) | > grad_norm_1: 184.54182 (137.05463) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56700 (2.16378) | > loader_time: 0.03590 (0.03675)  --> STEP: 10775/15287 -- GLOBAL_STEP: 991350 | > loss_disc: 2.21910 (2.32140) | > loss_disc_real_0: 0.11228 (0.12271) | > loss_disc_real_1: 0.22234 (0.21127) | > loss_disc_real_2: 0.22515 (0.21571) | > loss_disc_real_3: 0.22826 (0.21923) | > loss_disc_real_4: 0.22224 (0.21489) | > loss_disc_real_5: 0.20819 (0.21395) | > loss_0: 2.21910 (2.32140) | > grad_norm_0: 13.63639 (16.82633) | > loss_gen: 2.71902 (2.55507) | > loss_kl: 2.65811 (2.65941) | > loss_feat: 8.88587 (8.66857) | > loss_mel: 17.37143 (17.76171) | > loss_duration: 1.68627 (1.70535) | > loss_1: 33.32071 (33.35016) | > grad_norm_1: 217.30902 (137.13838) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38780 (2.16470) | > loader_time: 0.03690 (0.03674)  --> STEP: 10800/15287 -- GLOBAL_STEP: 991375 | > loss_disc: 2.25142 (2.32131) | > loss_disc_real_0: 0.10570 (0.12268) | > loss_disc_real_1: 0.19636 (0.21127) | > loss_disc_real_2: 0.21433 (0.21570) | > loss_disc_real_3: 0.20162 (0.21923) | > loss_disc_real_4: 0.21059 (0.21489) | > loss_disc_real_5: 0.20169 (0.21396) | > loss_0: 2.25142 (2.32131) | > grad_norm_0: 19.08611 (16.82611) | > loss_gen: 2.59255 (2.55513) | > loss_kl: 2.66674 (2.65947) | > loss_feat: 8.76736 (8.66895) | > loss_mel: 17.80306 (17.76143) | > loss_duration: 1.74852 (1.70536) | > loss_1: 33.57824 (33.35040) | > grad_norm_1: 63.57903 (137.19281) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.65350 (2.16578) | > loader_time: 0.03500 (0.03674)  --> STEP: 10825/15287 -- GLOBAL_STEP: 991400 | > loss_disc: 2.29626 (2.32129) | > loss_disc_real_0: 0.13707 (0.12269) | > loss_disc_real_1: 0.18052 (0.21126) | > loss_disc_real_2: 0.22106 (0.21570) | > loss_disc_real_3: 0.20074 (0.21924) | > loss_disc_real_4: 0.21950 (0.21489) | > loss_disc_real_5: 0.19724 (0.21400) | > loss_0: 2.29626 (2.32129) | > grad_norm_0: 12.92731 (16.82034) | > loss_gen: 2.51391 (2.55524) | > loss_kl: 2.71455 (2.65955) | > loss_feat: 8.84436 (8.66934) | > loss_mel: 18.09194 (17.76164) | > loss_duration: 1.74732 (1.70537) | > loss_1: 33.91208 (33.35123) | > grad_norm_1: 86.47707 (137.13463) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52010 (2.16672) | > loader_time: 0.03850 (0.03674)  --> STEP: 10850/15287 -- GLOBAL_STEP: 991425 | > loss_disc: 2.38963 (2.32133) | > loss_disc_real_0: 0.10757 (0.12269) | > loss_disc_real_1: 0.20606 (0.21127) | > loss_disc_real_2: 0.25491 (0.21568) | > loss_disc_real_3: 0.21684 (0.21923) | > loss_disc_real_4: 0.23728 (0.21489) | > loss_disc_real_5: 0.26473 (0.21399) | > loss_0: 2.38963 (2.32133) | > grad_norm_0: 16.29292 (16.81543) | > loss_gen: 2.60698 (2.55521) | > loss_kl: 2.64040 (2.65964) | > loss_feat: 8.05080 (8.66908) | > loss_mel: 17.18216 (17.76143) | > loss_duration: 1.69655 (1.70535) | > loss_1: 32.17689 (33.35079) | > grad_norm_1: 78.46001 (137.11526) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37930 (2.16780) | > loader_time: 0.03690 (0.03673)  --> STEP: 10875/15287 -- GLOBAL_STEP: 991450 | > loss_disc: 2.27593 (2.32141) | > loss_disc_real_0: 0.10352 (0.12269) | > loss_disc_real_1: 0.21947 (0.21127) | > loss_disc_real_2: 0.25931 (0.21571) | > loss_disc_real_3: 0.23302 (0.21925) | > loss_disc_real_4: 0.22021 (0.21492) | > loss_disc_real_5: 0.24133 (0.21399) | > loss_0: 2.27593 (2.32141) | > grad_norm_0: 16.91600 (16.81078) | > loss_gen: 2.66563 (2.55521) | > loss_kl: 2.83535 (2.65958) | > loss_feat: 8.92425 (8.66883) | > loss_mel: 18.19909 (17.76144) | > loss_duration: 1.70811 (1.70535) | > loss_1: 34.33243 (33.35048) | > grad_norm_1: 131.53024 (137.10252) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20730 (2.16859) | > loader_time: 0.03510 (0.03674)  --> STEP: 10900/15287 -- GLOBAL_STEP: 991475 | > loss_disc: 2.35763 (2.32143) | > loss_disc_real_0: 0.18061 (0.12270) | > loss_disc_real_1: 0.20621 (0.21127) | > loss_disc_real_2: 0.17495 (0.21571) | > loss_disc_real_3: 0.23838 (0.21926) | > loss_disc_real_4: 0.24689 (0.21492) | > loss_disc_real_5: 0.22897 (0.21400) | > loss_0: 2.35763 (2.32143) | > grad_norm_0: 18.38571 (16.79966) | > loss_gen: 2.55111 (2.55520) | > loss_kl: 2.66929 (2.65958) | > loss_feat: 8.52560 (8.66889) | > loss_mel: 18.16976 (17.76140) | > loss_duration: 1.69633 (1.70537) | > loss_1: 33.61209 (33.35051) | > grad_norm_1: 115.95886 (137.00066) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.78750 (2.16952) | > loader_time: 0.03590 (0.03674)  --> STEP: 10925/15287 -- GLOBAL_STEP: 991500 | > loss_disc: 2.32910 (2.32153) | > loss_disc_real_0: 0.15532 (0.12272) | > loss_disc_real_1: 0.19318 (0.21129) | > loss_disc_real_2: 0.22662 (0.21573) | > loss_disc_real_3: 0.23663 (0.21926) | > loss_disc_real_4: 0.22836 (0.21494) | > loss_disc_real_5: 0.29864 (0.21401) | > loss_0: 2.32910 (2.32153) | > grad_norm_0: 15.87815 (16.78899) | > loss_gen: 2.57688 (2.55523) | > loss_kl: 2.71704 (2.65967) | > loss_feat: 9.05946 (8.66872) | > loss_mel: 18.35427 (17.76152) | > loss_duration: 1.66314 (1.70536) | > loss_1: 34.37079 (33.35057) | > grad_norm_1: 154.26472 (136.91936) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.57820 (2.17048) | > loader_time: 0.02980 (0.03673)  --> STEP: 10950/15287 -- GLOBAL_STEP: 991525 | > loss_disc: 2.33763 (2.32153) | > loss_disc_real_0: 0.10841 (0.12272) | > loss_disc_real_1: 0.20366 (0.21128) | > loss_disc_real_2: 0.23655 (0.21573) | > loss_disc_real_3: 0.23621 (0.21927) | > loss_disc_real_4: 0.21485 (0.21494) | > loss_disc_real_5: 0.19938 (0.21400) | > loss_0: 2.33763 (2.32153) | > grad_norm_0: 6.42717 (16.79128) | > loss_gen: 2.53898 (2.55521) | > loss_kl: 2.70819 (2.65965) | > loss_feat: 8.60735 (8.66855) | > loss_mel: 17.80767 (17.76153) | > loss_duration: 1.77769 (1.70535) | > loss_1: 33.43989 (33.35035) | > grad_norm_1: 170.63927 (136.94199) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33130 (2.17131) | > loader_time: 0.03680 (0.03673)  --> STEP: 10975/15287 -- GLOBAL_STEP: 991550 | > loss_disc: 2.29196 (2.32149) | > loss_disc_real_0: 0.10262 (0.12272) | > loss_disc_real_1: 0.24601 (0.21129) | > loss_disc_real_2: 0.19456 (0.21572) | > loss_disc_real_3: 0.23460 (0.21925) | > loss_disc_real_4: 0.20755 (0.21493) | > loss_disc_real_5: 0.19110 (0.21402) | > loss_0: 2.29196 (2.32149) | > grad_norm_0: 8.01270 (16.79819) | > loss_gen: 2.65525 (2.55520) | > loss_kl: 2.69833 (2.65960) | > loss_feat: 9.15170 (8.66850) | > loss_mel: 18.25816 (17.76145) | > loss_duration: 1.70223 (1.70537) | > loss_1: 34.46568 (33.35020) | > grad_norm_1: 108.18999 (136.93660) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98870 (2.17145) | > loader_time: 0.03860 (0.03673)  --> STEP: 11000/15287 -- GLOBAL_STEP: 991575 | > loss_disc: 2.36913 (2.32149) | > loss_disc_real_0: 0.15449 (0.12273) | > loss_disc_real_1: 0.19444 (0.21128) | > loss_disc_real_2: 0.23314 (0.21572) | > loss_disc_real_3: 0.17686 (0.21924) | > loss_disc_real_4: 0.18869 (0.21493) | > loss_disc_real_5: 0.20776 (0.21402) | > loss_0: 2.36913 (2.32149) | > grad_norm_0: 17.21669 (16.79054) | > loss_gen: 2.38913 (2.55520) | > loss_kl: 2.72631 (2.65955) | > loss_feat: 8.09662 (8.66832) | > loss_mel: 17.93747 (17.76140) | > loss_duration: 1.70436 (1.70536) | > loss_1: 32.85389 (33.34991) | > grad_norm_1: 170.98389 (136.94505) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.49060 (2.17182) | > loader_time: 0.03620 (0.03674)  --> STEP: 11025/15287 -- GLOBAL_STEP: 991600 | > loss_disc: 2.35598 (2.32147) | > loss_disc_real_0: 0.10815 (0.12272) | > loss_disc_real_1: 0.22224 (0.21128) | > loss_disc_real_2: 0.21181 (0.21572) | > loss_disc_real_3: 0.22943 (0.21925) | > loss_disc_real_4: 0.23892 (0.21493) | > loss_disc_real_5: 0.22531 (0.21401) | > loss_0: 2.35598 (2.32147) | > grad_norm_0: 24.36151 (16.78840) | > loss_gen: 2.37889 (2.55514) | > loss_kl: 2.50465 (2.65948) | > loss_feat: 8.10635 (8.66800) | > loss_mel: 17.15862 (17.76147) | > loss_duration: 1.64313 (1.70536) | > loss_1: 31.79164 (33.34953) | > grad_norm_1: 91.70364 (136.95110) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.77780 (2.17288) | > loader_time: 0.03310 (0.03674)  --> STEP: 11050/15287 -- GLOBAL_STEP: 991625 | > loss_disc: 2.36197 (2.32145) | > loss_disc_real_0: 0.07933 (0.12272) | > loss_disc_real_1: 0.18964 (0.21128) | > loss_disc_real_2: 0.24711 (0.21572) | > loss_disc_real_3: 0.21558 (0.21925) | > loss_disc_real_4: 0.21513 (0.21494) | > loss_disc_real_5: 0.21516 (0.21402) | > loss_0: 2.36197 (2.32145) | > grad_norm_0: 14.68660 (16.79537) | > loss_gen: 2.46251 (2.55516) | > loss_kl: 2.70479 (2.65944) | > loss_feat: 8.59108 (8.66814) | > loss_mel: 17.95025 (17.76148) | > loss_duration: 1.68202 (1.70535) | > loss_1: 33.39065 (33.34966) | > grad_norm_1: 113.21818 (136.97670) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.80780 (2.17356) | > loader_time: 0.03400 (0.03674)  --> STEP: 11075/15287 -- GLOBAL_STEP: 991650 | > loss_disc: 2.40125 (2.32147) | > loss_disc_real_0: 0.10075 (0.12274) | > loss_disc_real_1: 0.20245 (0.21128) | > loss_disc_real_2: 0.21922 (0.21572) | > loss_disc_real_3: 0.20118 (0.21924) | > loss_disc_real_4: 0.18132 (0.21493) | > loss_disc_real_5: 0.22873 (0.21402) | > loss_0: 2.40125 (2.32147) | > grad_norm_0: 11.14358 (16.79048) | > loss_gen: 2.25212 (2.55512) | > loss_kl: 2.80807 (2.65954) | > loss_feat: 8.14226 (8.66805) | > loss_mel: 18.04034 (17.76147) | > loss_duration: 1.70028 (1.70535) | > loss_1: 32.94307 (33.34964) | > grad_norm_1: 129.47522 (136.90288) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.11760 (2.17451) | > loader_time: 0.04120 (0.03674)  --> STEP: 11100/15287 -- GLOBAL_STEP: 991675 | > loss_disc: 2.38929 (2.32150) | > loss_disc_real_0: 0.17726 (0.12274) | > loss_disc_real_1: 0.23776 (0.21128) | > loss_disc_real_2: 0.20751 (0.21572) | > loss_disc_real_3: 0.22269 (0.21925) | > loss_disc_real_4: 0.17672 (0.21493) | > loss_disc_real_5: 0.23911 (0.21403) | > loss_0: 2.38929 (2.32150) | > grad_norm_0: 10.87054 (16.77935) | > loss_gen: 2.62526 (2.55515) | > loss_kl: 2.74040 (2.65960) | > loss_feat: 8.52042 (8.66835) | > loss_mel: 18.26978 (17.76203) | > loss_duration: 1.66722 (1.70537) | > loss_1: 33.82307 (33.35058) | > grad_norm_1: 95.79711 (136.82924) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.53850 (2.17530) | > loader_time: 0.03420 (0.03673)  --> STEP: 11125/15287 -- GLOBAL_STEP: 991700 | > loss_disc: 2.37440 (2.32155) | > loss_disc_real_0: 0.09564 (0.12275) | > loss_disc_real_1: 0.21649 (0.21128) | > loss_disc_real_2: 0.21502 (0.21572) | > loss_disc_real_3: 0.22123 (0.21925) | > loss_disc_real_4: 0.20318 (0.21493) | > loss_disc_real_5: 0.22628 (0.21402) | > loss_0: 2.37440 (2.32155) | > grad_norm_0: 22.82096 (16.77826) | > loss_gen: 2.47353 (2.55505) | > loss_kl: 2.59770 (2.65960) | > loss_feat: 8.80351 (8.66826) | > loss_mel: 18.08705 (17.76238) | > loss_duration: 1.70308 (1.70535) | > loss_1: 33.66486 (33.35071) | > grad_norm_1: 142.51633 (136.80124) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.89720 (2.17614) | > loader_time: 0.03590 (0.03673)  --> STEP: 11150/15287 -- GLOBAL_STEP: 991725 | > loss_disc: 2.23675 (2.32151) | > loss_disc_real_0: 0.10947 (0.12272) | > loss_disc_real_1: 0.22158 (0.21128) | > loss_disc_real_2: 0.21424 (0.21573) | > loss_disc_real_3: 0.21227 (0.21925) | > loss_disc_real_4: 0.23559 (0.21493) | > loss_disc_real_5: 0.19184 (0.21401) | > loss_0: 2.23675 (2.32151) | > grad_norm_0: 10.53743 (16.78186) | > loss_gen: 2.67069 (2.55501) | > loss_kl: 2.65545 (2.65955) | > loss_feat: 8.73516 (8.66821) | > loss_mel: 17.82093 (17.76252) | > loss_duration: 1.73697 (1.70535) | > loss_1: 33.61920 (33.35073) | > grad_norm_1: 128.83607 (136.81461) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.63170 (2.17690) | > loader_time: 0.04020 (0.03672)  --> STEP: 11175/15287 -- GLOBAL_STEP: 991750 | > loss_disc: 2.39574 (2.32145) | > loss_disc_real_0: 0.23347 (0.12271) | > loss_disc_real_1: 0.21485 (0.21127) | > loss_disc_real_2: 0.25525 (0.21572) | > loss_disc_real_3: 0.24266 (0.21925) | > loss_disc_real_4: 0.21687 (0.21493) | > loss_disc_real_5: 0.23212 (0.21401) | > loss_0: 2.39574 (2.32145) | > grad_norm_0: 27.75496 (16.78680) | > loss_gen: 2.89688 (2.55508) | > loss_kl: 2.57469 (2.65946) | > loss_feat: 8.10187 (8.66836) | > loss_mel: 17.46565 (17.76237) | > loss_duration: 1.70358 (1.70537) | > loss_1: 32.74268 (33.35073) | > grad_norm_1: 60.42886 (136.87994) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.74520 (2.17793) | > loader_time: 0.04280 (0.03672)  --> STEP: 11200/15287 -- GLOBAL_STEP: 991775 | > loss_disc: 2.33098 (2.32142) | > loss_disc_real_0: 0.10374 (0.12271) | > loss_disc_real_1: 0.20206 (0.21126) | > loss_disc_real_2: 0.21215 (0.21573) | > loss_disc_real_3: 0.21600 (0.21927) | > loss_disc_real_4: 0.22488 (0.21494) | > loss_disc_real_5: 0.23826 (0.21401) | > loss_0: 2.33098 (2.32142) | > grad_norm_0: 15.64371 (16.78617) | > loss_gen: 2.53087 (2.55503) | > loss_kl: 2.53833 (2.65956) | > loss_feat: 8.56782 (8.66841) | > loss_mel: 18.12011 (17.76210) | > loss_duration: 1.69648 (1.70536) | > loss_1: 33.45362 (33.35057) | > grad_norm_1: 178.94142 (136.87914) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.49370 (2.17897) | > loader_time: 0.03340 (0.03671)  --> STEP: 11225/15287 -- GLOBAL_STEP: 991800 | > loss_disc: 2.35390 (2.32135) | > loss_disc_real_0: 0.13411 (0.12269) | > loss_disc_real_1: 0.22949 (0.21127) | > loss_disc_real_2: 0.25950 (0.21573) | > loss_disc_real_3: 0.23572 (0.21926) | > loss_disc_real_4: 0.22449 (0.21493) | > loss_disc_real_5: 0.18526 (0.21400) | > loss_0: 2.35390 (2.32135) | > grad_norm_0: 16.95430 (16.78454) | > loss_gen: 2.52194 (2.55506) | > loss_kl: 2.71425 (2.65956) | > loss_feat: 8.82116 (8.66871) | > loss_mel: 18.04906 (17.76206) | > loss_duration: 1.70264 (1.70536) | > loss_1: 33.80906 (33.35085) | > grad_norm_1: 195.32739 (136.90033) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.51010 (2.17966) | > loader_time: 0.03080 (0.03671)  --> STEP: 11250/15287 -- GLOBAL_STEP: 991825 | > loss_disc: 2.27562 (2.32133) | > loss_disc_real_0: 0.12756 (0.12267) | > loss_disc_real_1: 0.20838 (0.21126) | > loss_disc_real_2: 0.24489 (0.21573) | > loss_disc_real_3: 0.23904 (0.21926) | > loss_disc_real_4: 0.21889 (0.21493) | > loss_disc_real_5: 0.17249 (0.21401) | > loss_0: 2.27562 (2.32133) | > grad_norm_0: 39.40417 (16.79315) | > loss_gen: 2.53811 (2.55505) | > loss_kl: 2.51797 (2.65954) | > loss_feat: 8.56931 (8.66865) | > loss_mel: 17.59372 (17.76214) | > loss_duration: 1.71575 (1.70537) | > loss_1: 32.93485 (33.35083) | > grad_norm_1: 168.31398 (136.93097) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.47280 (2.18020) | > loader_time: 0.03250 (0.03670)  --> STEP: 11275/15287 -- GLOBAL_STEP: 991850 | > loss_disc: 2.30239 (2.32130) | > loss_disc_real_0: 0.08244 (0.12266) | > loss_disc_real_1: 0.18114 (0.21127) | > loss_disc_real_2: 0.22557 (0.21573) | > loss_disc_real_3: 0.21831 (0.21927) | > loss_disc_real_4: 0.19335 (0.21492) | > loss_disc_real_5: 0.18662 (0.21401) | > loss_0: 2.30239 (2.32130) | > grad_norm_0: 26.89410 (16.80351) | > loss_gen: 2.53405 (2.55505) | > loss_kl: 2.69311 (2.65949) | > loss_feat: 8.91503 (8.66868) | > loss_mel: 17.91274 (17.76188) | > loss_duration: 1.71697 (1.70536) | > loss_1: 33.77190 (33.35055) | > grad_norm_1: 157.57701 (137.01460) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.79100 (2.18106) | > loader_time: 0.03110 (0.03669)  --> STEP: 11300/15287 -- GLOBAL_STEP: 991875 | > loss_disc: 2.32524 (2.32134) | > loss_disc_real_0: 0.06226 (0.12267) | > loss_disc_real_1: 0.21042 (0.21127) | > loss_disc_real_2: 0.20927 (0.21575) | > loss_disc_real_3: 0.19188 (0.21927) | > loss_disc_real_4: 0.21062 (0.21493) | > loss_disc_real_5: 0.21614 (0.21401) | > loss_0: 2.32524 (2.32134) | > grad_norm_0: 22.03251 (16.80376) | > loss_gen: 2.37598 (2.55506) | > loss_kl: 2.58625 (2.65957) | > loss_feat: 9.22680 (8.66882) | > loss_mel: 17.88288 (17.76166) | > loss_duration: 1.67728 (1.70536) | > loss_1: 33.74919 (33.35056) | > grad_norm_1: 153.11835 (137.00407) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91110 (2.18105) | > loader_time: 0.04270 (0.03670)  --> STEP: 11325/15287 -- GLOBAL_STEP: 991900 | > loss_disc: 2.29011 (2.32131) | > loss_disc_real_0: 0.09656 (0.12265) | > loss_disc_real_1: 0.23188 (0.21127) | > loss_disc_real_2: 0.18778 (0.21574) | > loss_disc_real_3: 0.21978 (0.21927) | > loss_disc_real_4: 0.20192 (0.21493) | > loss_disc_real_5: 0.24763 (0.21402) | > loss_0: 2.29011 (2.32131) | > grad_norm_0: 14.57465 (16.80497) | > loss_gen: 2.57002 (2.55506) | > loss_kl: 2.73363 (2.65960) | > loss_feat: 8.97664 (8.66871) | > loss_mel: 17.91818 (17.76179) | > loss_duration: 1.69710 (1.70537) | > loss_1: 33.89558 (33.35060) | > grad_norm_1: 196.75667 (137.06238) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.57770 (2.18205) | > loader_time: 0.03130 (0.03670)  --> STEP: 11350/15287 -- GLOBAL_STEP: 991925 | > loss_disc: 2.36496 (2.32131) | > loss_disc_real_0: 0.13451 (0.12264) | > loss_disc_real_1: 0.21049 (0.21129) | > loss_disc_real_2: 0.23046 (0.21575) | > loss_disc_real_3: 0.24937 (0.21928) | > loss_disc_real_4: 0.27025 (0.21493) | > loss_disc_real_5: 0.23724 (0.21402) | > loss_0: 2.36496 (2.32131) | > grad_norm_0: 18.67685 (16.79623) | > loss_gen: 2.46287 (2.55512) | > loss_kl: 2.68819 (2.65965) | > loss_feat: 7.73726 (8.66867) | > loss_mel: 17.30459 (17.76145) | > loss_duration: 1.74122 (1.70537) | > loss_1: 31.93413 (33.35032) | > grad_norm_1: 70.80986 (137.02753) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21460 (2.18275) | > loader_time: 0.03630 (0.03670)  --> STEP: 11375/15287 -- GLOBAL_STEP: 991950 | > loss_disc: 2.33010 (2.32137) | > loss_disc_real_0: 0.11539 (0.12264) | > loss_disc_real_1: 0.22658 (0.21131) | > loss_disc_real_2: 0.23157 (0.21576) | > loss_disc_real_3: 0.19463 (0.21928) | > loss_disc_real_4: 0.22972 (0.21493) | > loss_disc_real_5: 0.18735 (0.21401) | > loss_0: 2.33010 (2.32137) | > grad_norm_0: 22.73492 (16.79129) | > loss_gen: 2.59067 (2.55507) | > loss_kl: 2.66849 (2.65965) | > loss_feat: 8.55263 (8.66846) | > loss_mel: 17.65062 (17.76157) | > loss_duration: 1.68458 (1.70538) | > loss_1: 33.14700 (33.35018) | > grad_norm_1: 222.46741 (137.02716) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55220 (2.18381) | > loader_time: 0.03800 (0.03669)  --> STEP: 11400/15287 -- GLOBAL_STEP: 991975 | > loss_disc: 2.26506 (2.32138) | > loss_disc_real_0: 0.07398 (0.12263) | > loss_disc_real_1: 0.22739 (0.21132) | > loss_disc_real_2: 0.20619 (0.21576) | > loss_disc_real_3: 0.22809 (0.21929) | > loss_disc_real_4: 0.22058 (0.21493) | > loss_disc_real_5: 0.19669 (0.21401) | > loss_0: 2.26506 (2.32138) | > grad_norm_0: 7.73861 (16.78226) | > loss_gen: 2.81234 (2.55507) | > loss_kl: 2.64391 (2.65967) | > loss_feat: 8.59729 (8.66849) | > loss_mel: 17.92426 (17.76176) | > loss_duration: 1.76281 (1.70539) | > loss_1: 33.74061 (33.35045) | > grad_norm_1: 105.72021 (136.96980) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.64210 (2.18469) | > loader_time: 0.03490 (0.03669)  --> STEP: 11425/15287 -- GLOBAL_STEP: 992000 | > loss_disc: 2.24928 (2.32140) | > loss_disc_real_0: 0.11257 (0.12266) | > loss_disc_real_1: 0.26388 (0.21132) | > loss_disc_real_2: 0.23753 (0.21576) | > loss_disc_real_3: 0.21167 (0.21929) | > loss_disc_real_4: 0.18519 (0.21493) | > loss_disc_real_5: 0.22179 (0.21401) | > loss_0: 2.24928 (2.32140) | > grad_norm_0: 22.84265 (16.77584) | > loss_gen: 2.55470 (2.55513) | > loss_kl: 2.61686 (2.65969) | > loss_feat: 8.49475 (8.66859) | > loss_mel: 17.50363 (17.76215) | > loss_duration: 1.71800 (1.70539) | > loss_1: 32.88794 (33.35102) | > grad_norm_1: 117.07766 (136.87091) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.51370 (2.18562) | > loader_time: 0.03110 (0.03669)  --> STEP: 11450/15287 -- GLOBAL_STEP: 992025 | > loss_disc: 2.36750 (2.32139) | > loss_disc_real_0: 0.14265 (0.12265) | > loss_disc_real_1: 0.19531 (0.21133) | > loss_disc_real_2: 0.19889 (0.21576) | > loss_disc_real_3: 0.19943 (0.21928) | > loss_disc_real_4: 0.17984 (0.21493) | > loss_disc_real_5: 0.20808 (0.21401) | > loss_0: 2.36750 (2.32139) | > grad_norm_0: 13.28044 (16.77099) | > loss_gen: 2.46881 (2.55515) | > loss_kl: 2.78845 (2.65969) | > loss_feat: 9.08131 (8.66853) | > loss_mel: 17.55223 (17.76206) | > loss_duration: 1.67954 (1.70539) | > loss_1: 33.57034 (33.35088) | > grad_norm_1: 72.55277 (136.85986) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32710 (2.18620) | > loader_time: 0.03380 (0.03669)  --> STEP: 11475/15287 -- GLOBAL_STEP: 992050 | > loss_disc: 2.36253 (2.32136) | > loss_disc_real_0: 0.12530 (0.12264) | > loss_disc_real_1: 0.22879 (0.21132) | > loss_disc_real_2: 0.23715 (0.21575) | > loss_disc_real_3: 0.22946 (0.21928) | > loss_disc_real_4: 0.25960 (0.21492) | > loss_disc_real_5: 0.20727 (0.21400) | > loss_0: 2.36253 (2.32136) | > grad_norm_0: 9.55362 (16.77115) | > loss_gen: 2.48464 (2.55519) | > loss_kl: 2.62990 (2.65975) | > loss_feat: 8.92159 (8.66871) | > loss_mel: 18.34539 (17.76206) | > loss_duration: 1.71300 (1.70540) | > loss_1: 34.09452 (33.35117) | > grad_norm_1: 90.38744 (136.86208) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.48140 (2.18693) | > loader_time: 0.03630 (0.03668)  --> STEP: 11500/15287 -- GLOBAL_STEP: 992075 | > loss_disc: 2.35472 (2.32127) | > loss_disc_real_0: 0.11943 (0.12262) | > loss_disc_real_1: 0.20220 (0.21130) | > loss_disc_real_2: 0.22923 (0.21574) | > loss_disc_real_3: 0.21221 (0.21927) | > loss_disc_real_4: 0.21997 (0.21490) | > loss_disc_real_5: 0.20114 (0.21401) | > loss_0: 2.35472 (2.32127) | > grad_norm_0: 20.70188 (16.77674) | > loss_gen: 2.51070 (2.55516) | > loss_kl: 2.55606 (2.65978) | > loss_feat: 8.49059 (8.66901) | > loss_mel: 17.14029 (17.76195) | > loss_duration: 1.67550 (1.70537) | > loss_1: 32.37314 (33.35135) | > grad_norm_1: 149.44289 (136.91083) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95590 (2.18773) | > loader_time: 0.04330 (0.03668)  --> STEP: 11525/15287 -- GLOBAL_STEP: 992100 | > loss_disc: 2.30113 (2.32122) | > loss_disc_real_0: 0.13397 (0.12261) | > loss_disc_real_1: 0.23361 (0.21130) | > loss_disc_real_2: 0.19094 (0.21573) | > loss_disc_real_3: 0.25206 (0.21927) | > loss_disc_real_4: 0.22364 (0.21490) | > loss_disc_real_5: 0.22034 (0.21401) | > loss_0: 2.30113 (2.32122) | > grad_norm_0: 17.17725 (16.77721) | > loss_gen: 2.47480 (2.55516) | > loss_kl: 2.67715 (2.65979) | > loss_feat: 8.28674 (8.66907) | > loss_mel: 17.51975 (17.76150) | > loss_duration: 1.74984 (1.70536) | > loss_1: 32.70827 (33.35095) | > grad_norm_1: 143.63104 (136.94862) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94810 (2.18728) | > loader_time: 0.04740 (0.03669)  --> STEP: 11550/15287 -- GLOBAL_STEP: 992125 | > loss_disc: 2.34440 (2.32119) | > loss_disc_real_0: 0.17038 (0.12261) | > loss_disc_real_1: 0.20509 (0.21129) | > loss_disc_real_2: 0.21407 (0.21572) | > loss_disc_real_3: 0.22556 (0.21929) | > loss_disc_real_4: 0.19223 (0.21490) | > loss_disc_real_5: 0.22822 (0.21403) | > loss_0: 2.34440 (2.32119) | > grad_norm_0: 12.74535 (16.77995) | > loss_gen: 2.54762 (2.55521) | > loss_kl: 2.67865 (2.65986) | > loss_feat: 8.85291 (8.66933) | > loss_mel: 17.60908 (17.76159) | > loss_duration: 1.71834 (1.70536) | > loss_1: 33.40660 (33.35141) | > grad_norm_1: 94.08862 (136.99855) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92720 (2.18707) | > loader_time: 0.03800 (0.03670)  --> STEP: 11575/15287 -- GLOBAL_STEP: 992150 | > loss_disc: 2.37429 (2.32117) | > loss_disc_real_0: 0.12063 (0.12260) | > loss_disc_real_1: 0.20474 (0.21129) | > loss_disc_real_2: 0.23596 (0.21572) | > loss_disc_real_3: 0.21610 (0.21929) | > loss_disc_real_4: 0.20017 (0.21490) | > loss_disc_real_5: 0.21553 (0.21404) | > loss_0: 2.37429 (2.32117) | > grad_norm_0: 25.04493 (16.78709) | > loss_gen: 2.47587 (2.55523) | > loss_kl: 2.65354 (2.65988) | > loss_feat: 8.06217 (8.66956) | > loss_mel: 17.60029 (17.76155) | > loss_duration: 1.71759 (1.70534) | > loss_1: 32.50946 (33.35162) | > grad_norm_1: 103.85797 (137.01979) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.67490 (2.18697) | > loader_time: 0.03590 (0.03671)  --> STEP: 11600/15287 -- GLOBAL_STEP: 992175 | > loss_disc: 2.41259 (2.32118) | > loss_disc_real_0: 0.09796 (0.12260) | > loss_disc_real_1: 0.20005 (0.21127) | > loss_disc_real_2: 0.19955 (0.21571) | > loss_disc_real_3: 0.21520 (0.21928) | > loss_disc_real_4: 0.25027 (0.21491) | > loss_disc_real_5: 0.23671 (0.21405) | > loss_0: 2.41259 (2.32118) | > grad_norm_0: 24.11619 (16.79278) | > loss_gen: 2.45785 (2.55519) | > loss_kl: 2.60392 (2.65983) | > loss_feat: 8.13690 (8.66948) | > loss_mel: 17.61558 (17.76154) | > loss_duration: 1.73374 (1.70537) | > loss_1: 32.54799 (33.35147) | > grad_norm_1: 193.44058 (137.06171) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.73940 (2.18802) | > loader_time: 0.03310 (0.03671)  --> STEP: 11625/15287 -- GLOBAL_STEP: 992200 | > loss_disc: 2.36254 (2.32121) | > loss_disc_real_0: 0.17032 (0.12262) | > loss_disc_real_1: 0.21552 (0.21127) | > loss_disc_real_2: 0.22454 (0.21571) | > loss_disc_real_3: 0.25240 (0.21928) | > loss_disc_real_4: 0.22425 (0.21491) | > loss_disc_real_5: 0.23339 (0.21404) | > loss_0: 2.36254 (2.32121) | > grad_norm_0: 10.12658 (16.78923) | > loss_gen: 2.46510 (2.55519) | > loss_kl: 2.81080 (2.65982) | > loss_feat: 8.24332 (8.66922) | > loss_mel: 17.66615 (17.76142) | > loss_duration: 1.74452 (1.70538) | > loss_1: 32.92989 (33.35109) | > grad_norm_1: 80.29438 (137.07877) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.65450 (2.18883) | > loader_time: 0.03150 (0.03671)  --> STEP: 11650/15287 -- GLOBAL_STEP: 992225 | > loss_disc: 2.35762 (2.32119) | > loss_disc_real_0: 0.14148 (0.12262) | > loss_disc_real_1: 0.20382 (0.21127) | > loss_disc_real_2: 0.22911 (0.21571) | > loss_disc_real_3: 0.21895 (0.21928) | > loss_disc_real_4: 0.24488 (0.21491) | > loss_disc_real_5: 0.21946 (0.21405) | > loss_0: 2.35762 (2.32119) | > grad_norm_0: 8.33366 (16.77856) | > loss_gen: 2.41933 (2.55522) | > loss_kl: 2.80200 (2.65989) | > loss_feat: 8.52246 (8.66937) | > loss_mel: 17.72963 (17.76142) | > loss_duration: 1.71605 (1.70538) | > loss_1: 33.18946 (33.35133) | > grad_norm_1: 99.24136 (137.04567) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.47960 (2.18920) | > loader_time: 0.04270 (0.03672)  --> STEP: 11675/15287 -- GLOBAL_STEP: 992250 | > loss_disc: 2.40660 (2.32127) | > loss_disc_real_0: 0.19626 (0.12264) | > loss_disc_real_1: 0.24169 (0.21127) | > loss_disc_real_2: 0.20698 (0.21571) | > loss_disc_real_3: 0.21972 (0.21928) | > loss_disc_real_4: 0.17471 (0.21491) | > loss_disc_real_5: 0.18312 (0.21406) | > loss_0: 2.40660 (2.32127) | > grad_norm_0: 17.92327 (16.77550) | > loss_gen: 2.54805 (2.55521) | > loss_kl: 2.52124 (2.65988) | > loss_feat: 8.72875 (8.66908) | > loss_mel: 18.20090 (17.76171) | > loss_duration: 1.70581 (1.70539) | > loss_1: 33.70476 (33.35134) | > grad_norm_1: 71.63968 (136.96426) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36040 (2.18967) | > loader_time: 0.03890 (0.03673)  --> STEP: 11700/15287 -- GLOBAL_STEP: 992275 | > loss_disc: 2.31539 (2.32131) | > loss_disc_real_0: 0.10648 (0.12264) | > loss_disc_real_1: 0.24638 (0.21128) | > loss_disc_real_2: 0.24310 (0.21572) | > loss_disc_real_3: 0.21726 (0.21929) | > loss_disc_real_4: 0.19458 (0.21491) | > loss_disc_real_5: 0.24908 (0.21406) | > loss_0: 2.31539 (2.32131) | > grad_norm_0: 10.10972 (16.76228) | > loss_gen: 2.47504 (2.55520) | > loss_kl: 2.58257 (2.65994) | > loss_feat: 8.64686 (8.66913) | > loss_mel: 17.35892 (17.76167) | > loss_duration: 1.74452 (1.70539) | > loss_1: 32.80792 (33.35140) | > grad_norm_1: 118.70016 (136.86208) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22360 (2.18989) | > loader_time: 0.03100 (0.03674)  --> STEP: 11725/15287 -- GLOBAL_STEP: 992300 | > loss_disc: 2.24194 (2.32135) | > loss_disc_real_0: 0.12053 (0.12265) | > loss_disc_real_1: 0.21340 (0.21129) | > loss_disc_real_2: 0.26030 (0.21573) | > loss_disc_real_3: 0.21935 (0.21929) | > loss_disc_real_4: 0.21071 (0.21492) | > loss_disc_real_5: 0.23050 (0.21405) | > loss_0: 2.24194 (2.32135) | > grad_norm_0: 20.76764 (16.75762) | > loss_gen: 2.71435 (2.55525) | > loss_kl: 2.54122 (2.65992) | > loss_feat: 9.00231 (8.66911) | > loss_mel: 17.88708 (17.76164) | > loss_duration: 1.68957 (1.70538) | > loss_1: 33.83454 (33.35137) | > grad_norm_1: 159.98515 (136.85252) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52650 (2.19032) | > loader_time: 0.03270 (0.03674)  --> STEP: 11750/15287 -- GLOBAL_STEP: 992325 | > loss_disc: 2.35680 (2.32133) | > loss_disc_real_0: 0.08775 (0.12262) | > loss_disc_real_1: 0.18845 (0.21128) | > loss_disc_real_2: 0.20847 (0.21574) | > loss_disc_real_3: 0.20191 (0.21928) | > loss_disc_real_4: 0.18883 (0.21490) | > loss_disc_real_5: 0.19891 (0.21405) | > loss_0: 2.35680 (2.32133) | > grad_norm_0: 32.75043 (16.76343) | > loss_gen: 2.25831 (2.55516) | > loss_kl: 2.50706 (2.65975) | > loss_feat: 8.45001 (8.66916) | > loss_mel: 17.74369 (17.76152) | > loss_duration: 1.76261 (1.70540) | > loss_1: 32.72168 (33.35107) | > grad_norm_1: 178.25081 (136.86748) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86970 (2.19026) | > loader_time: 0.03620 (0.03675)  --> STEP: 11775/15287 -- GLOBAL_STEP: 992350 | > loss_disc: 2.27561 (2.32129) | > loss_disc_real_0: 0.10472 (0.12262) | > loss_disc_real_1: 0.20294 (0.21128) | > loss_disc_real_2: 0.21883 (0.21574) | > loss_disc_real_3: 0.22077 (0.21928) | > loss_disc_real_4: 0.25016 (0.21489) | > loss_disc_real_5: 0.21314 (0.21404) | > loss_0: 2.27561 (2.32129) | > grad_norm_0: 11.52538 (16.75243) | > loss_gen: 2.63420 (2.55520) | > loss_kl: 2.69109 (2.65984) | > loss_feat: 9.03020 (8.66936) | > loss_mel: 17.44228 (17.76146) | > loss_duration: 1.72796 (1.70539) | > loss_1: 33.52573 (33.35133) | > grad_norm_1: 167.30952 (136.83511) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93200 (2.18985) | > loader_time: 0.03780 (0.03676)  --> STEP: 11800/15287 -- GLOBAL_STEP: 992375 | > loss_disc: 2.33067 (2.32133) | > loss_disc_real_0: 0.11637 (0.12261) | > loss_disc_real_1: 0.19876 (0.21128) | > loss_disc_real_2: 0.21243 (0.21575) | > loss_disc_real_3: 0.22241 (0.21927) | > loss_disc_real_4: 0.17934 (0.21489) | > loss_disc_real_5: 0.27325 (0.21405) | > loss_0: 2.33067 (2.32133) | > grad_norm_0: 5.82034 (16.75444) | > loss_gen: 2.54784 (2.55511) | > loss_kl: 2.68271 (2.65988) | > loss_feat: 8.13398 (8.66947) | > loss_mel: 17.47115 (17.76128) | > loss_duration: 1.74318 (1.70539) | > loss_1: 32.57887 (33.35121) | > grad_norm_1: 89.94024 (136.77553) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88500 (2.18985) | > loader_time: 0.04430 (0.03677)  --> STEP: 11825/15287 -- GLOBAL_STEP: 992400 | > loss_disc: 2.30654 (2.32135) | > loss_disc_real_0: 0.15608 (0.12260) | > loss_disc_real_1: 0.21039 (0.21129) | > loss_disc_real_2: 0.21192 (0.21575) | > loss_disc_real_3: 0.22202 (0.21927) | > loss_disc_real_4: 0.22830 (0.21489) | > loss_disc_real_5: 0.21177 (0.21404) | > loss_0: 2.30654 (2.32135) | > grad_norm_0: 22.74328 (16.75290) | > loss_gen: 2.57973 (2.55508) | > loss_kl: 2.72592 (2.65980) | > loss_feat: 8.75974 (8.66946) | > loss_mel: 17.63624 (17.76144) | > loss_duration: 1.72611 (1.70539) | > loss_1: 33.42774 (33.35126) | > grad_norm_1: 85.62850 (136.74095) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41320 (2.19045) | > loader_time: 0.04400 (0.03678)  --> STEP: 11850/15287 -- GLOBAL_STEP: 992425 | > loss_disc: 2.28582 (2.32130) | > loss_disc_real_0: 0.12589 (0.12260) | > loss_disc_real_1: 0.21872 (0.21129) | > loss_disc_real_2: 0.22103 (0.21575) | > loss_disc_real_3: 0.22568 (0.21927) | > loss_disc_real_4: 0.20677 (0.21489) | > loss_disc_real_5: 0.21479 (0.21404) | > loss_0: 2.28582 (2.32130) | > grad_norm_0: 21.45736 (16.75340) | > loss_gen: 2.44291 (2.55506) | > loss_kl: 2.60558 (2.65970) | > loss_feat: 8.78146 (8.66945) | > loss_mel: 17.59198 (17.76136) | > loss_duration: 1.72838 (1.70540) | > loss_1: 33.15030 (33.35106) | > grad_norm_1: 177.87895 (136.76112) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.84750 (2.19106) | > loader_time: 0.03370 (0.03678)  --> STEP: 11875/15287 -- GLOBAL_STEP: 992450 | > loss_disc: 2.43499 (2.32129) | > loss_disc_real_0: 0.10753 (0.12260) | > loss_disc_real_1: 0.24347 (0.21128) | > loss_disc_real_2: 0.20664 (0.21574) | > loss_disc_real_3: 0.24013 (0.21927) | > loss_disc_real_4: 0.23146 (0.21488) | > loss_disc_real_5: 0.22586 (0.21404) | > loss_0: 2.43499 (2.32129) | > grad_norm_0: 9.03068 (16.74905) | > loss_gen: 2.60439 (2.55506) | > loss_kl: 2.73591 (2.65972) | > loss_feat: 8.21660 (8.66956) | > loss_mel: 17.30826 (17.76114) | > loss_duration: 1.69926 (1.70539) | > loss_1: 32.56443 (33.35099) | > grad_norm_1: 103.06503 (136.75491) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.75930 (2.19214) | > loader_time: 0.03890 (0.03678)  --> STEP: 11900/15287 -- GLOBAL_STEP: 992475 | > loss_disc: 2.29515 (2.32129) | > loss_disc_real_0: 0.09622 (0.12260) | > loss_disc_real_1: 0.20700 (0.21129) | > loss_disc_real_2: 0.19645 (0.21575) | > loss_disc_real_3: 0.24131 (0.21928) | > loss_disc_real_4: 0.19615 (0.21488) | > loss_disc_real_5: 0.21290 (0.21403) | > loss_0: 2.29515 (2.32129) | > grad_norm_0: 20.41452 (16.74691) | > loss_gen: 2.54621 (2.55501) | > loss_kl: 2.56961 (2.65955) | > loss_feat: 8.39953 (8.66980) | > loss_mel: 17.83277 (17.76138) | > loss_duration: 1.70942 (1.70540) | > loss_1: 33.05754 (33.35125) | > grad_norm_1: 178.10127 (136.75476) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95380 (2.19275) | > loader_time: 0.04030 (0.03678)  --> STEP: 11925/15287 -- GLOBAL_STEP: 992500 | > loss_disc: 2.39063 (2.32132) | > loss_disc_real_0: 0.13813 (0.12260) | > loss_disc_real_1: 0.25063 (0.21130) | > loss_disc_real_2: 0.21487 (0.21573) | > loss_disc_real_3: 0.21820 (0.21928) | > loss_disc_real_4: 0.22312 (0.21488) | > loss_disc_real_5: 0.17371 (0.21404) | > loss_0: 2.39063 (2.32132) | > grad_norm_0: 26.04524 (16.75403) | > loss_gen: 2.53998 (2.55503) | > loss_kl: 2.62010 (2.65950) | > loss_feat: 8.81121 (8.66953) | > loss_mel: 16.85659 (17.76115) | > loss_duration: 1.69951 (1.70540) | > loss_1: 32.52739 (33.35073) | > grad_norm_1: 180.76479 (136.78831) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88480 (2.19251) | > loader_time: 0.03990 (0.03679)  --> STEP: 11950/15287 -- GLOBAL_STEP: 992525 | > loss_disc: 2.38145 (2.32132) | > loss_disc_real_0: 0.15148 (0.12258) | > loss_disc_real_1: 0.20856 (0.21131) | > loss_disc_real_2: 0.22189 (0.21573) | > loss_disc_real_3: 0.22120 (0.21930) | > loss_disc_real_4: 0.21877 (0.21489) | > loss_disc_real_5: 0.21153 (0.21403) | > loss_0: 2.38145 (2.32132) | > grad_norm_0: 11.76789 (16.75014) | > loss_gen: 2.50604 (2.55502) | > loss_kl: 2.69505 (2.65948) | > loss_feat: 8.78634 (8.66953) | > loss_mel: 18.40363 (17.76091) | > loss_duration: 1.69419 (1.70540) | > loss_1: 34.08525 (33.35046) | > grad_norm_1: 189.52979 (136.79820) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01790 (2.19229) | > loader_time: 0.04070 (0.03679)  --> STEP: 11975/15287 -- GLOBAL_STEP: 992550 | > loss_disc: 2.33594 (2.32131) | > loss_disc_real_0: 0.11883 (0.12257) | > loss_disc_real_1: 0.21322 (0.21131) | > loss_disc_real_2: 0.20289 (0.21572) | > loss_disc_real_3: 0.20889 (0.21929) | > loss_disc_real_4: 0.22297 (0.21488) | > loss_disc_real_5: 0.18732 (0.21403) | > loss_0: 2.33594 (2.32131) | > grad_norm_0: 14.42011 (16.75012) | > loss_gen: 2.40006 (2.55494) | > loss_kl: 2.74851 (2.65959) | > loss_feat: 8.35502 (8.66939) | > loss_mel: 17.67982 (17.76079) | > loss_duration: 1.71954 (1.70540) | > loss_1: 32.90294 (33.35023) | > grad_norm_1: 129.80696 (136.81499) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.94680 (2.19257) | > loader_time: 0.04770 (0.03681)  --> STEP: 12000/15287 -- GLOBAL_STEP: 992575 | > loss_disc: 2.31651 (2.32130) | > loss_disc_real_0: 0.16615 (0.12257) | > loss_disc_real_1: 0.20277 (0.21130) | > loss_disc_real_2: 0.20928 (0.21571) | > loss_disc_real_3: 0.19804 (0.21929) | > loss_disc_real_4: 0.22464 (0.21488) | > loss_disc_real_5: 0.20014 (0.21404) | > loss_0: 2.31651 (2.32130) | > grad_norm_0: 7.49188 (16.75502) | > loss_gen: 2.46344 (2.55491) | > loss_kl: 2.60333 (2.65955) | > loss_feat: 8.71572 (8.66912) | > loss_mel: 17.63188 (17.76055) | > loss_duration: 1.67792 (1.70542) | > loss_1: 33.09229 (33.34967) | > grad_norm_1: 50.67135 (136.77664) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.91820 (2.19372) | > loader_time: 0.03180 (0.03681)  --> STEP: 12025/15287 -- GLOBAL_STEP: 992600 | > loss_disc: 2.23952 (2.32126) | > loss_disc_real_0: 0.12155 (0.12255) | > loss_disc_real_1: 0.21767 (0.21130) | > loss_disc_real_2: 0.21639 (0.21570) | > loss_disc_real_3: 0.22737 (0.21929) | > loss_disc_real_4: 0.20810 (0.21489) | > loss_disc_real_5: 0.17993 (0.21403) | > loss_0: 2.23952 (2.32126) | > grad_norm_0: 14.06785 (16.75369) | > loss_gen: 2.57153 (2.55496) | > loss_kl: 2.55394 (2.65954) | > loss_feat: 8.69639 (8.66927) | > loss_mel: 17.32441 (17.76070) | > loss_duration: 1.70759 (1.70543) | > loss_1: 32.85386 (33.35003) | > grad_norm_1: 147.16168 (136.78439) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.75310 (2.19413) | > loader_time: 0.03230 (0.03682)  --> STEP: 12050/15287 -- GLOBAL_STEP: 992625 | > loss_disc: 2.21733 (2.32121) | > loss_disc_real_0: 0.10046 (0.12253) | > loss_disc_real_1: 0.22318 (0.21130) | > loss_disc_real_2: 0.21713 (0.21571) | > loss_disc_real_3: 0.20767 (0.21929) | > loss_disc_real_4: 0.22069 (0.21489) | > loss_disc_real_5: 0.16469 (0.21402) | > loss_0: 2.21733 (2.32121) | > grad_norm_0: 27.08439 (16.75443) | > loss_gen: 2.70086 (2.55496) | > loss_kl: 2.63259 (2.65957) | > loss_feat: 8.88238 (8.66938) | > loss_mel: 17.94411 (17.76069) | > loss_duration: 1.69274 (1.70543) | > loss_1: 33.85269 (33.35017) | > grad_norm_1: 232.74896 (136.81235) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89280 (2.19455) | > loader_time: 0.04350 (0.03683)  --> STEP: 12075/15287 -- GLOBAL_STEP: 992650 | > loss_disc: 2.24696 (2.32118) | > loss_disc_real_0: 0.12764 (0.12252) | > loss_disc_real_1: 0.20226 (0.21130) | > loss_disc_real_2: 0.20572 (0.21571) | > loss_disc_real_3: 0.21001 (0.21930) | > loss_disc_real_4: 0.20303 (0.21488) | > loss_disc_real_5: 0.20836 (0.21401) | > loss_0: 2.24696 (2.32118) | > grad_norm_0: 7.12087 (16.75333) | > loss_gen: 2.54379 (2.55497) | > loss_kl: 2.79644 (2.65958) | > loss_feat: 8.41834 (8.66943) | > loss_mel: 17.11650 (17.76059) | > loss_duration: 1.67700 (1.70541) | > loss_1: 32.55207 (33.35012) | > grad_norm_1: 176.32372 (136.84282) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01730 (2.19503) | > loader_time: 0.04490 (0.03683)  --> STEP: 12100/15287 -- GLOBAL_STEP: 992675 | > loss_disc: 2.28802 (2.32115) | > loss_disc_real_0: 0.13503 (0.12251) | > loss_disc_real_1: 0.22870 (0.21130) | > loss_disc_real_2: 0.20107 (0.21570) | > loss_disc_real_3: 0.20756 (0.21930) | > loss_disc_real_4: 0.21670 (0.21488) | > loss_disc_real_5: 0.23398 (0.21401) | > loss_0: 2.28802 (2.32115) | > grad_norm_0: 16.78074 (16.76201) | > loss_gen: 2.48600 (2.55499) | > loss_kl: 2.79938 (2.65956) | > loss_feat: 8.57218 (8.66954) | > loss_mel: 17.47987 (17.76043) | > loss_duration: 1.70577 (1.70540) | > loss_1: 33.04321 (33.35006) | > grad_norm_1: 212.90302 (136.88564) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.51950 (2.19475) | > loader_time: 0.05270 (0.03684)  --> STEP: 12125/15287 -- GLOBAL_STEP: 992700 | > loss_disc: 2.34184 (2.32119) | > loss_disc_real_0: 0.08652 (0.12254) | > loss_disc_real_1: 0.23298 (0.21130) | > loss_disc_real_2: 0.22190 (0.21570) | > loss_disc_real_3: 0.21479 (0.21930) | > loss_disc_real_4: 0.22670 (0.21488) | > loss_disc_real_5: 0.19034 (0.21401) | > loss_0: 2.34184 (2.32119) | > grad_norm_0: 16.66888 (16.75190) | > loss_gen: 2.42184 (2.55497) | > loss_kl: 2.66442 (2.65964) | > loss_feat: 8.30526 (8.66965) | > loss_mel: 17.37889 (17.76060) | > loss_duration: 1.70621 (1.70542) | > loss_1: 32.47662 (33.35043) | > grad_norm_1: 115.59412 (136.81256) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93080 (2.19490) | > loader_time: 0.04300 (0.03685)  --> STEP: 12150/15287 -- GLOBAL_STEP: 992725 | > loss_disc: 2.24807 (2.32120) | > loss_disc_real_0: 0.10105 (0.12253) | > loss_disc_real_1: 0.19706 (0.21130) | > loss_disc_real_2: 0.22131 (0.21570) | > loss_disc_real_3: 0.22837 (0.21929) | > loss_disc_real_4: 0.22433 (0.21488) | > loss_disc_real_5: 0.19520 (0.21400) | > loss_0: 2.24807 (2.32120) | > grad_norm_0: 12.19652 (16.74170) | > loss_gen: 2.72831 (2.55500) | > loss_kl: 2.74899 (2.65972) | > loss_feat: 9.16678 (8.66968) | > loss_mel: 17.55360 (17.76066) | > loss_duration: 1.69064 (1.70543) | > loss_1: 33.88832 (33.35063) | > grad_norm_1: 112.48372 (136.76317) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07810 (2.19451) | > loader_time: 0.04480 (0.03686)  --> STEP: 12175/15287 -- GLOBAL_STEP: 992750 | > loss_disc: 2.22768 (2.32120) | > loss_disc_real_0: 0.12360 (0.12253) | > loss_disc_real_1: 0.18961 (0.21132) | > loss_disc_real_2: 0.20535 (0.21570) | > loss_disc_real_3: 0.21214 (0.21929) | > loss_disc_real_4: 0.20743 (0.21488) | > loss_disc_real_5: 0.20657 (0.21400) | > loss_0: 2.22768 (2.32120) | > grad_norm_0: 5.89558 (16.74248) | > loss_gen: 2.55073 (2.55506) | > loss_kl: 2.62888 (2.65973) | > loss_feat: 8.78727 (8.66991) | > loss_mel: 17.81652 (17.76061) | > loss_duration: 1.67916 (1.70541) | > loss_1: 33.46255 (33.35086) | > grad_norm_1: 202.55489 (136.79840) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08580 (2.19418) | > loader_time: 0.04220 (0.03688)  --> STEP: 12200/15287 -- GLOBAL_STEP: 992775 | > loss_disc: 2.45177 (2.32127) | > loss_disc_real_0: 0.18568 (0.12255) | > loss_disc_real_1: 0.23642 (0.21133) | > loss_disc_real_2: 0.23601 (0.21570) | > loss_disc_real_3: 0.21680 (0.21930) | > loss_disc_real_4: 0.25514 (0.21489) | > loss_disc_real_5: 0.23101 (0.21401) | > loss_0: 2.45177 (2.32127) | > grad_norm_0: 9.23723 (16.74529) | > loss_gen: 2.26338 (2.55500) | > loss_kl: 2.72814 (2.65971) | > loss_feat: 7.83425 (8.66949) | > loss_mel: 17.51504 (17.76044) | > loss_duration: 1.70646 (1.70539) | > loss_1: 32.04728 (33.35016) | > grad_norm_1: 140.80397 (136.77403) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16150 (2.19383) | > loader_time: 0.04170 (0.03689)  --> STEP: 12225/15287 -- GLOBAL_STEP: 992800 | > loss_disc: 2.32669 (2.32129) | > loss_disc_real_0: 0.11823 (0.12255) | > loss_disc_real_1: 0.21433 (0.21134) | > loss_disc_real_2: 0.24169 (0.21570) | > loss_disc_real_3: 0.23290 (0.21931) | > loss_disc_real_4: 0.22806 (0.21489) | > loss_disc_real_5: 0.17716 (0.21401) | > loss_0: 2.32669 (2.32129) | > grad_norm_0: 31.83717 (16.74275) | > loss_gen: 2.42403 (2.55500) | > loss_kl: 2.75699 (2.65975) | > loss_feat: 9.28777 (8.66982) | > loss_mel: 18.18437 (17.76084) | > loss_duration: 1.71392 (1.70539) | > loss_1: 34.36708 (33.35093) | > grad_norm_1: 173.01375 (136.80048) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17440 (2.19348) | > loader_time: 0.03670 (0.03689)  --> STEP: 12250/15287 -- GLOBAL_STEP: 992825 | > loss_disc: 2.25727 (2.32127) | > loss_disc_real_0: 0.11674 (0.12255) | > loss_disc_real_1: 0.20201 (0.21133) | > loss_disc_real_2: 0.21437 (0.21569) | > loss_disc_real_3: 0.24675 (0.21932) | > loss_disc_real_4: 0.23104 (0.21489) | > loss_disc_real_5: 0.21890 (0.21400) | > loss_0: 2.25727 (2.32127) | > grad_norm_0: 20.87248 (16.75366) | > loss_gen: 2.61895 (2.55499) | > loss_kl: 2.49272 (2.65979) | > loss_feat: 9.04578 (8.66987) | > loss_mel: 17.52547 (17.76087) | > loss_duration: 1.70162 (1.70536) | > loss_1: 33.38455 (33.35100) | > grad_norm_1: 118.36075 (136.84995) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85490 (2.19314) | > loader_time: 0.03770 (0.03690)  --> STEP: 12275/15287 -- GLOBAL_STEP: 992850 | > loss_disc: 2.38298 (2.32123) | > loss_disc_real_0: 0.17180 (0.12255) | > loss_disc_real_1: 0.22016 (0.21133) | > loss_disc_real_2: 0.26457 (0.21570) | > loss_disc_real_3: 0.25236 (0.21932) | > loss_disc_real_4: 0.26957 (0.21490) | > loss_disc_real_5: 0.23083 (0.21400) | > loss_0: 2.38298 (2.32123) | > grad_norm_0: 34.41889 (16.75602) | > loss_gen: 2.58297 (2.55508) | > loss_kl: 2.77442 (2.65976) | > loss_feat: 8.56380 (8.66978) | > loss_mel: 17.95343 (17.76058) | > loss_duration: 1.68364 (1.70535) | > loss_1: 33.55827 (33.35065) | > grad_norm_1: 194.77417 (136.85786) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97770 (2.19276) | > loader_time: 0.04240 (0.03691)  --> STEP: 12300/15287 -- GLOBAL_STEP: 992875 | > loss_disc: 2.32181 (2.32124) | > loss_disc_real_0: 0.11844 (0.12255) | > loss_disc_real_1: 0.20205 (0.21133) | > loss_disc_real_2: 0.22991 (0.21570) | > loss_disc_real_3: 0.21478 (0.21932) | > loss_disc_real_4: 0.21086 (0.21490) | > loss_disc_real_5: 0.21502 (0.21399) | > loss_0: 2.32181 (2.32124) | > grad_norm_0: 6.27092 (16.75091) | > loss_gen: 2.65169 (2.55505) | > loss_kl: 2.79432 (2.65982) | > loss_feat: 9.06057 (8.66976) | > loss_mel: 18.12609 (17.76064) | > loss_duration: 1.72396 (1.70537) | > loss_1: 34.35663 (33.35074) | > grad_norm_1: 134.14839 (136.88963) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.46370 (2.19286) | > loader_time: 0.03990 (0.03692)  --> STEP: 12325/15287 -- GLOBAL_STEP: 992900 | > loss_disc: 2.33768 (2.32131) | > loss_disc_real_0: 0.10188 (0.12254) | > loss_disc_real_1: 0.24765 (0.21134) | > loss_disc_real_2: 0.24286 (0.21569) | > loss_disc_real_3: 0.20346 (0.21933) | > loss_disc_real_4: 0.18673 (0.21490) | > loss_disc_real_5: 0.22078 (0.21401) | > loss_0: 2.33768 (2.32131) | > grad_norm_0: 9.98043 (16.75506) | > loss_gen: 2.60109 (2.55498) | > loss_kl: 2.62863 (2.65988) | > loss_feat: 8.84906 (8.66945) | > loss_mel: 17.71056 (17.76076) | > loss_duration: 1.73013 (1.70536) | > loss_1: 33.51947 (33.35056) | > grad_norm_1: 184.56880 (136.93752) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42260 (2.19290) | > loader_time: 0.03680 (0.03693)  --> STEP: 12350/15287 -- GLOBAL_STEP: 992925 | > loss_disc: 2.35351 (2.32128) | > loss_disc_real_0: 0.11117 (0.12254) | > loss_disc_real_1: 0.24074 (0.21134) | > loss_disc_real_2: 0.24841 (0.21568) | > loss_disc_real_3: 0.21699 (0.21934) | > loss_disc_real_4: 0.19760 (0.21493) | > loss_disc_real_5: 0.22466 (0.21401) | > loss_0: 2.35351 (2.32128) | > grad_norm_0: 7.30964 (16.75746) | > loss_gen: 2.36620 (2.55505) | > loss_kl: 2.71924 (2.65992) | > loss_feat: 8.78983 (8.66930) | > loss_mel: 18.19629 (17.76063) | > loss_duration: 1.69530 (1.70537) | > loss_1: 33.76686 (33.35040) | > grad_norm_1: 42.64392 (136.94514) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04550 (2.19293) | > loader_time: 0.04600 (0.03694)  --> STEP: 12375/15287 -- GLOBAL_STEP: 992950 | > loss_disc: 2.32711 (2.32127) | > loss_disc_real_0: 0.10530 (0.12253) | > loss_disc_real_1: 0.20852 (0.21133) | > loss_disc_real_2: 0.22135 (0.21568) | > loss_disc_real_3: 0.19373 (0.21934) | > loss_disc_real_4: 0.22642 (0.21493) | > loss_disc_real_5: 0.21944 (0.21402) | > loss_0: 2.32711 (2.32127) | > grad_norm_0: 18.61306 (16.75193) | > loss_gen: 2.47531 (2.55506) | > loss_kl: 2.56452 (2.65997) | > loss_feat: 8.03378 (8.66928) | > loss_mel: 17.45273 (17.76076) | > loss_duration: 1.71290 (1.70536) | > loss_1: 32.23924 (33.35057) | > grad_norm_1: 144.41965 (136.96458) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88870 (2.19270) | > loader_time: 0.04030 (0.03696)  --> STEP: 12400/15287 -- GLOBAL_STEP: 992975 | > loss_disc: 2.32225 (2.32127) | > loss_disc_real_0: 0.09574 (0.12251) | > loss_disc_real_1: 0.19078 (0.21133) | > loss_disc_real_2: 0.17458 (0.21568) | > loss_disc_real_3: 0.24585 (0.21935) | > loss_disc_real_4: 0.22675 (0.21494) | > loss_disc_real_5: 0.25778 (0.21403) | > loss_0: 2.32225 (2.32127) | > grad_norm_0: 10.52682 (16.75115) | > loss_gen: 2.70066 (2.55504) | > loss_kl: 2.69240 (2.65995) | > loss_feat: 8.67798 (8.66918) | > loss_mel: 18.03256 (17.76090) | > loss_duration: 1.67113 (1.70537) | > loss_1: 33.77473 (33.35056) | > grad_norm_1: 58.08232 (136.97861) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07230 (2.19231) | > loader_time: 0.03690 (0.03696)  --> STEP: 12425/15287 -- GLOBAL_STEP: 993000 | > loss_disc: 2.33288 (2.32129) | > loss_disc_real_0: 0.12176 (0.12252) | > loss_disc_real_1: 0.22937 (0.21133) | > loss_disc_real_2: 0.22530 (0.21569) | > loss_disc_real_3: 0.19605 (0.21935) | > loss_disc_real_4: 0.21765 (0.21493) | > loss_disc_real_5: 0.19813 (0.21403) | > loss_0: 2.33288 (2.32129) | > grad_norm_0: 14.82038 (16.75264) | > loss_gen: 2.45576 (2.55498) | > loss_kl: 2.59135 (2.65993) | > loss_feat: 8.32674 (8.66920) | > loss_mel: 17.30997 (17.76092) | > loss_duration: 1.71842 (1.70538) | > loss_1: 32.40224 (33.35051) | > grad_norm_1: 196.13763 (136.98993) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90530 (2.19193) | > loader_time: 0.03970 (0.03697)  --> STEP: 12450/15287 -- GLOBAL_STEP: 993025 | > loss_disc: 2.21370 (2.32122) | > loss_disc_real_0: 0.09512 (0.12251) | > loss_disc_real_1: 0.19719 (0.21132) | > loss_disc_real_2: 0.18507 (0.21568) | > loss_disc_real_3: 0.19427 (0.21934) | > loss_disc_real_4: 0.19559 (0.21492) | > loss_disc_real_5: 0.19436 (0.21401) | > loss_0: 2.21370 (2.32122) | > grad_norm_0: 7.02443 (16.75186) | > loss_gen: 2.92404 (2.55500) | > loss_kl: 2.59986 (2.65991) | > loss_feat: 9.06923 (8.66943) | > loss_mel: 17.99057 (17.76098) | > loss_duration: 1.69801 (1.70536) | > loss_1: 34.28172 (33.35080) | > grad_norm_1: 204.43695 (137.05009) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91170 (2.19195) | > loader_time: 0.03830 (0.03698)  --> STEP: 12475/15287 -- GLOBAL_STEP: 993050 | > loss_disc: 2.26749 (2.32123) | > loss_disc_real_0: 0.11163 (0.12250) | > loss_disc_real_1: 0.20191 (0.21132) | > loss_disc_real_2: 0.23067 (0.21569) | > loss_disc_real_3: 0.23744 (0.21935) | > loss_disc_real_4: 0.21732 (0.21493) | > loss_disc_real_5: 0.20671 (0.21402) | > loss_0: 2.26749 (2.32123) | > grad_norm_0: 25.37307 (16.75825) | > loss_gen: 2.69829 (2.55499) | > loss_kl: 2.62345 (2.65989) | > loss_feat: 8.98530 (8.66946) | > loss_mel: 17.63342 (17.76079) | > loss_duration: 1.75828 (1.70537) | > loss_1: 33.69875 (33.35062) | > grad_norm_1: 94.70774 (137.09340) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.63540 (2.19166) | > loader_time: 0.05080 (0.03698)  --> STEP: 12500/15287 -- GLOBAL_STEP: 993075 | > loss_disc: 2.29074 (2.32120) | > loss_disc_real_0: 0.10187 (0.12249) | > loss_disc_real_1: 0.21242 (0.21132) | > loss_disc_real_2: 0.17158 (0.21568) | > loss_disc_real_3: 0.22278 (0.21935) | > loss_disc_real_4: 0.21337 (0.21493) | > loss_disc_real_5: 0.22130 (0.21403) | > loss_0: 2.29074 (2.32120) | > grad_norm_0: 14.22085 (16.76180) | > loss_gen: 2.56975 (2.55499) | > loss_kl: 2.66129 (2.65994) | > loss_feat: 8.71557 (8.66965) | > loss_mel: 17.49405 (17.76082) | > loss_duration: 1.73979 (1.70537) | > loss_1: 33.18045 (33.35088) | > grad_norm_1: 114.00103 (137.11119) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43620 (2.19211) | > loader_time: 0.03840 (0.03700)  --> STEP: 12525/15287 -- GLOBAL_STEP: 993100 | > loss_disc: 2.41227 (2.32127) | > loss_disc_real_0: 0.08427 (0.12250) | > loss_disc_real_1: 0.21774 (0.21132) | > loss_disc_real_2: 0.16427 (0.21567) | > loss_disc_real_3: 0.25253 (0.21934) | > loss_disc_real_4: 0.21016 (0.21492) | > loss_disc_real_5: 0.28559 (0.21403) | > loss_0: 2.41227 (2.32127) | > grad_norm_0: 11.65529 (16.75619) | > loss_gen: 2.64094 (2.55489) | > loss_kl: 2.76884 (2.66004) | > loss_feat: 8.58940 (8.66985) | > loss_mel: 17.97454 (17.76097) | > loss_duration: 1.70891 (1.70538) | > loss_1: 33.68262 (33.35123) | > grad_norm_1: 86.52122 (137.03781) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03330 (2.19205) | > loader_time: 0.03810 (0.03700)  --> STEP: 12550/15287 -- GLOBAL_STEP: 993125 | > loss_disc: 2.27764 (2.32128) | > loss_disc_real_0: 0.15067 (0.12252) | > loss_disc_real_1: 0.24355 (0.21132) | > loss_disc_real_2: 0.21028 (0.21568) | > loss_disc_real_3: 0.24850 (0.21933) | > loss_disc_real_4: 0.23468 (0.21492) | > loss_disc_real_5: 0.22063 (0.21404) | > loss_0: 2.27764 (2.32128) | > grad_norm_0: 15.41408 (16.75035) | > loss_gen: 2.84956 (2.55500) | > loss_kl: 2.69160 (2.66011) | > loss_feat: 8.76016 (8.67006) | > loss_mel: 17.73339 (17.76149) | > loss_duration: 1.69317 (1.70540) | > loss_1: 33.72787 (33.35214) | > grad_norm_1: 94.78653 (136.99564) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.84310 (2.19170) | > loader_time: 0.04680 (0.03701)  --> STEP: 12575/15287 -- GLOBAL_STEP: 993150 | > loss_disc: 2.35417 (2.32134) | > loss_disc_real_0: 0.12358 (0.12252) | > loss_disc_real_1: 0.22618 (0.21134) | > loss_disc_real_2: 0.20154 (0.21568) | > loss_disc_real_3: 0.20813 (0.21935) | > loss_disc_real_4: 0.18496 (0.21493) | > loss_disc_real_5: 0.22347 (0.21404) | > loss_0: 2.35417 (2.32134) | > grad_norm_0: 11.11140 (16.74548) | > loss_gen: 2.57058 (2.55500) | > loss_kl: 2.71078 (2.66005) | > loss_feat: 8.49845 (8.66998) | > loss_mel: 17.82371 (17.76186) | > loss_duration: 1.72403 (1.70542) | > loss_1: 33.32754 (33.35241) | > grad_norm_1: 125.61974 (137.01045) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92530 (2.19133) | > loader_time: 0.03780 (0.03702)  --> STEP: 12600/15287 -- GLOBAL_STEP: 993175 | > loss_disc: 2.34027 (2.32135) | > loss_disc_real_0: 0.16996 (0.12253) | > loss_disc_real_1: 0.22042 (0.21134) | > loss_disc_real_2: 0.23682 (0.21568) | > loss_disc_real_3: 0.20957 (0.21934) | > loss_disc_real_4: 0.21716 (0.21492) | > loss_disc_real_5: 0.22434 (0.21405) | > loss_0: 2.34027 (2.32135) | > grad_norm_0: 13.02186 (16.74402) | > loss_gen: 2.64718 (2.55499) | > loss_kl: 2.76189 (2.65999) | > loss_feat: 8.57033 (8.67010) | > loss_mel: 17.70592 (17.76179) | > loss_duration: 1.73751 (1.70543) | > loss_1: 33.42282 (33.35241) | > grad_norm_1: 99.61593 (137.00804) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95040 (2.19102) | > loader_time: 0.04290 (0.03703)  --> STEP: 12625/15287 -- GLOBAL_STEP: 993200 | > loss_disc: 2.45264 (2.32131) | > loss_disc_real_0: 0.16388 (0.12251) | > loss_disc_real_1: 0.18302 (0.21132) | > loss_disc_real_2: 0.20670 (0.21567) | > loss_disc_real_3: 0.20752 (0.21934) | > loss_disc_real_4: 0.23138 (0.21493) | > loss_disc_real_5: 0.20238 (0.21405) | > loss_0: 2.45264 (2.32131) | > grad_norm_0: 52.58155 (16.74647) | > loss_gen: 2.37381 (2.55499) | > loss_kl: 2.57122 (2.65997) | > loss_feat: 8.63613 (8.67015) | > loss_mel: 17.61744 (17.76144) | > loss_duration: 1.70753 (1.70544) | > loss_1: 32.90614 (33.35208) | > grad_norm_1: 177.58231 (137.04453) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99380 (2.19059) | > loader_time: 0.04090 (0.03703)  --> STEP: 12650/15287 -- GLOBAL_STEP: 993225 | > loss_disc: 2.33020 (2.32132) | > loss_disc_real_0: 0.09797 (0.12252) | > loss_disc_real_1: 0.20457 (0.21131) | > loss_disc_real_2: 0.19722 (0.21567) | > loss_disc_real_3: 0.21585 (0.21934) | > loss_disc_real_4: 0.18759 (0.21493) | > loss_disc_real_5: 0.20586 (0.21405) | > loss_0: 2.33020 (2.32132) | > grad_norm_0: 10.65828 (16.75090) | > loss_gen: 2.51456 (2.55496) | > loss_kl: 2.70609 (2.65996) | > loss_feat: 8.05086 (8.67015) | > loss_mel: 16.85745 (17.76138) | > loss_duration: 1.70436 (1.70545) | > loss_1: 31.83332 (33.35202) | > grad_norm_1: 146.93645 (137.07100) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95040 (2.19021) | > loader_time: 0.03860 (0.03704)  --> STEP: 12675/15287 -- GLOBAL_STEP: 993250 | > loss_disc: 2.27936 (2.32132) | > loss_disc_real_0: 0.13223 (0.12255) | > loss_disc_real_1: 0.21270 (0.21133) | > loss_disc_real_2: 0.25006 (0.21568) | > loss_disc_real_3: 0.26285 (0.21935) | > loss_disc_real_4: 0.26032 (0.21494) | > loss_disc_real_5: 0.20809 (0.21405) | > loss_0: 2.27936 (2.32132) | > grad_norm_0: 21.06848 (16.74761) | > loss_gen: 2.65587 (2.55509) | > loss_kl: 2.72771 (2.65997) | > loss_feat: 8.67529 (8.67022) | > loss_mel: 18.30357 (17.76138) | > loss_duration: 1.74913 (1.70545) | > loss_1: 34.11157 (33.35222) | > grad_norm_1: 165.28944 (137.06487) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34990 (2.19014) | > loader_time: 0.05110 (0.03705)  --> STEP: 12700/15287 -- GLOBAL_STEP: 993275 | > loss_disc: 2.28814 (2.32130) | > loss_disc_real_0: 0.11053 (0.12254) | > loss_disc_real_1: 0.22539 (0.21133) | > loss_disc_real_2: 0.21624 (0.21569) | > loss_disc_real_3: 0.20636 (0.21935) | > loss_disc_real_4: 0.19924 (0.21494) | > loss_disc_real_5: 0.19119 (0.21405) | > loss_0: 2.28814 (2.32130) | > grad_norm_0: 9.76658 (16.73807) | > loss_gen: 2.52115 (2.55510) | > loss_kl: 2.60948 (2.66000) | > loss_feat: 8.38727 (8.67043) | > loss_mel: 17.44562 (17.76150) | > loss_duration: 1.67733 (1.70548) | > loss_1: 32.64084 (33.35264) | > grad_norm_1: 106.58364 (136.99600) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05520 (2.18974) | > loader_time: 0.03490 (0.03706)  --> STEP: 12725/15287 -- GLOBAL_STEP: 993300 | > loss_disc: 2.40055 (2.32133) | > loss_disc_real_0: 0.13231 (0.12254) | > loss_disc_real_1: 0.22002 (0.21134) | > loss_disc_real_2: 0.23148 (0.21569) | > loss_disc_real_3: 0.24308 (0.21935) | > loss_disc_real_4: 0.23784 (0.21494) | > loss_disc_real_5: 0.21999 (0.21405) | > loss_0: 2.40055 (2.32133) | > grad_norm_0: 30.18530 (16.72910) | > loss_gen: 2.54581 (2.55509) | > loss_kl: 2.68673 (2.65998) | > loss_feat: 8.04638 (8.67062) | > loss_mel: 17.66685 (17.76183) | > loss_duration: 1.68357 (1.70548) | > loss_1: 32.62934 (33.35311) | > grad_norm_1: 141.50903 (136.90579) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05560 (2.18942) | > loader_time: 0.03700 (0.03707)  --> STEP: 12750/15287 -- GLOBAL_STEP: 993325 | > loss_disc: 2.31977 (2.32135) | > loss_disc_real_0: 0.11364 (0.12254) | > loss_disc_real_1: 0.19153 (0.21134) | > loss_disc_real_2: 0.25480 (0.21569) | > loss_disc_real_3: 0.21977 (0.21935) | > loss_disc_real_4: 0.23063 (0.21495) | > loss_disc_real_5: 0.21214 (0.21405) | > loss_0: 2.31977 (2.32135) | > grad_norm_0: 16.01218 (16.71985) | > loss_gen: 2.53941 (2.55510) | > loss_kl: 2.48442 (2.65988) | > loss_feat: 8.75509 (8.67070) | > loss_mel: 17.96537 (17.76200) | > loss_duration: 1.66971 (1.70548) | > loss_1: 33.41401 (33.35329) | > grad_norm_1: 57.25803 (136.84540) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99960 (2.18902) | > loader_time: 0.03710 (0.03707)  --> STEP: 12775/15287 -- GLOBAL_STEP: 993350 | > loss_disc: 2.31379 (2.32135) | > loss_disc_real_0: 0.12673 (0.12254) | > loss_disc_real_1: 0.20194 (0.21134) | > loss_disc_real_2: 0.21235 (0.21570) | > loss_disc_real_3: 0.20904 (0.21935) | > loss_disc_real_4: 0.20999 (0.21495) | > loss_disc_real_5: 0.21518 (0.21404) | > loss_0: 2.31379 (2.32135) | > grad_norm_0: 6.95498 (16.70755) | > loss_gen: 2.55473 (2.55509) | > loss_kl: 2.61325 (2.65990) | > loss_feat: 8.89661 (8.67059) | > loss_mel: 17.15872 (17.76188) | > loss_duration: 1.66877 (1.70547) | > loss_1: 32.89208 (33.35306) | > grad_norm_1: 112.75864 (136.78119) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97850 (2.18857) | > loader_time: 0.03380 (0.03707)  --> STEP: 12800/15287 -- GLOBAL_STEP: 993375 | > loss_disc: 2.32055 (2.32131) | > loss_disc_real_0: 0.10095 (0.12253) | > loss_disc_real_1: 0.21647 (0.21133) | > loss_disc_real_2: 0.22660 (0.21570) | > loss_disc_real_3: 0.20801 (0.21935) | > loss_disc_real_4: 0.19463 (0.21494) | > loss_disc_real_5: 0.21803 (0.21404) | > loss_0: 2.32055 (2.32131) | > grad_norm_0: 22.22825 (16.70263) | > loss_gen: 2.40123 (2.55504) | > loss_kl: 2.63335 (2.65986) | > loss_feat: 8.55629 (8.67081) | > loss_mel: 17.74526 (17.76209) | > loss_duration: 1.71865 (1.70546) | > loss_1: 33.05478 (33.35338) | > grad_norm_1: 151.43683 (136.76338) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05780 (2.18833) | > loader_time: 0.04410 (0.03707)  --> STEP: 12825/15287 -- GLOBAL_STEP: 993400 | > loss_disc: 2.27867 (2.32128) | > loss_disc_real_0: 0.07992 (0.12253) | > loss_disc_real_1: 0.22422 (0.21132) | > loss_disc_real_2: 0.21703 (0.21570) | > loss_disc_real_3: 0.23249 (0.21934) | > loss_disc_real_4: 0.21283 (0.21494) | > loss_disc_real_5: 0.23718 (0.21405) | > loss_0: 2.27867 (2.32128) | > grad_norm_0: 16.93133 (16.69901) | > loss_gen: 2.51904 (2.55503) | > loss_kl: 2.69822 (2.65980) | > loss_feat: 8.43426 (8.67085) | > loss_mel: 17.84254 (17.76229) | > loss_duration: 1.71690 (1.70545) | > loss_1: 33.21097 (33.35354) | > grad_norm_1: 156.50641 (136.77654) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97140 (2.18808) | > loader_time: 0.03430 (0.03707)  --> STEP: 12850/15287 -- GLOBAL_STEP: 993425 | > loss_disc: 2.28076 (2.32119) | > loss_disc_real_0: 0.08732 (0.12250) | > loss_disc_real_1: 0.18673 (0.21132) | > loss_disc_real_2: 0.18983 (0.21569) | > loss_disc_real_3: 0.22097 (0.21933) | > loss_disc_real_4: 0.21548 (0.21493) | > loss_disc_real_5: 0.22757 (0.21405) | > loss_0: 2.28076 (2.32119) | > grad_norm_0: 9.28159 (16.70272) | > loss_gen: 2.53412 (2.55506) | > loss_kl: 2.66351 (2.65977) | > loss_feat: 8.89477 (8.67107) | > loss_mel: 17.42444 (17.76213) | > loss_duration: 1.74286 (1.70545) | > loss_1: 33.25970 (33.35357) | > grad_norm_1: 141.53955 (136.81229) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14990 (2.18773) | > loader_time: 0.04210 (0.03708)  --> STEP: 12875/15287 -- GLOBAL_STEP: 993450 | > loss_disc: 2.29678 (2.32115) | > loss_disc_real_0: 0.13280 (0.12249) | > loss_disc_real_1: 0.22559 (0.21131) | > loss_disc_real_2: 0.23592 (0.21569) | > loss_disc_real_3: 0.22743 (0.21934) | > loss_disc_real_4: 0.21406 (0.21494) | > loss_disc_real_5: 0.20352 (0.21405) | > loss_0: 2.29678 (2.32115) | > grad_norm_0: 7.25392 (16.69938) | > loss_gen: 2.43413 (2.55505) | > loss_kl: 2.66058 (2.65976) | > loss_feat: 8.07891 (8.67105) | > loss_mel: 17.46199 (17.76210) | > loss_duration: 1.66430 (1.70543) | > loss_1: 32.29991 (33.35349) | > grad_norm_1: 124.99149 (136.82246) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08260 (2.18735) | > loader_time: 0.03270 (0.03707)  --> STEP: 12900/15287 -- GLOBAL_STEP: 993475 | > loss_disc: 2.23839 (2.32113) | > loss_disc_real_0: 0.11619 (0.12251) | > loss_disc_real_1: 0.20382 (0.21131) | > loss_disc_real_2: 0.22239 (0.21569) | > loss_disc_real_3: 0.21458 (0.21933) | > loss_disc_real_4: 0.19496 (0.21494) | > loss_disc_real_5: 0.20257 (0.21405) | > loss_0: 2.23839 (2.32113) | > grad_norm_0: 19.85350 (16.69506) | > loss_gen: 2.65346 (2.55511) | > loss_kl: 2.66013 (2.65978) | > loss_feat: 8.83527 (8.67101) | > loss_mel: 17.90182 (17.76194) | > loss_duration: 1.74122 (1.70545) | > loss_1: 33.79189 (33.35338) | > grad_norm_1: 138.57494 (136.75908) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05310 (2.18703) | > loader_time: 0.03270 (0.03707)  --> STEP: 12925/15287 -- GLOBAL_STEP: 993500 | > loss_disc: 2.33129 (2.32111) | > loss_disc_real_0: 0.12062 (0.12252) | > loss_disc_real_1: 0.23521 (0.21131) | > loss_disc_real_2: 0.22206 (0.21570) | > loss_disc_real_3: 0.22061 (0.21933) | > loss_disc_real_4: 0.24249 (0.21494) | > loss_disc_real_5: 0.26862 (0.21405) | > loss_0: 2.33129 (2.32111) | > grad_norm_0: 9.47294 (16.69179) | > loss_gen: 2.52770 (2.55515) | > loss_kl: 2.53648 (2.65975) | > loss_feat: 8.59882 (8.67112) | > loss_mel: 17.76044 (17.76222) | > loss_duration: 1.71018 (1.70544) | > loss_1: 33.13362 (33.35377) | > grad_norm_1: 92.30633 (136.76732) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94010 (2.18662) | > loader_time: 0.03860 (0.03707)  --> STEP: 12950/15287 -- GLOBAL_STEP: 993525 | > loss_disc: 2.29343 (2.32112) | > loss_disc_real_0: 0.11752 (0.12252) | > loss_disc_real_1: 0.17655 (0.21131) | > loss_disc_real_2: 0.19843 (0.21570) | > loss_disc_real_3: 0.19733 (0.21932) | > loss_disc_real_4: 0.17464 (0.21493) | > loss_disc_real_5: 0.20268 (0.21404) | > loss_0: 2.29343 (2.32112) | > grad_norm_0: 18.74024 (16.68973) | > loss_gen: 2.60637 (2.55509) | > loss_kl: 2.63589 (2.65966) | > loss_feat: 9.04331 (8.67100) | > loss_mel: 17.84758 (17.76214) | > loss_duration: 1.70936 (1.70544) | > loss_1: 33.84251 (33.35343) | > grad_norm_1: 175.48563 (136.76317) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99780 (2.18632) | > loader_time: 0.03250 (0.03707)  --> STEP: 12975/15287 -- GLOBAL_STEP: 993550 | > loss_disc: 2.39059 (2.32120) | > loss_disc_real_0: 0.17036 (0.12256) | > loss_disc_real_1: 0.20928 (0.21131) | > loss_disc_real_2: 0.21345 (0.21570) | > loss_disc_real_3: 0.21675 (0.21933) | > loss_disc_real_4: 0.22057 (0.21494) | > loss_disc_real_5: 0.19946 (0.21404) | > loss_0: 2.39059 (2.32120) | > grad_norm_0: 11.86255 (16.68663) | > loss_gen: 2.41709 (2.55507) | > loss_kl: 2.66294 (2.65969) | > loss_feat: 8.45281 (8.67092) | > loss_mel: 17.56834 (17.76201) | > loss_duration: 1.68124 (1.70545) | > loss_1: 32.78242 (33.35323) | > grad_norm_1: 70.86862 (136.71579) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94810 (2.18595) | > loader_time: 0.03240 (0.03706)  --> STEP: 13000/15287 -- GLOBAL_STEP: 993575 | > loss_disc: 2.38295 (2.32121) | > loss_disc_real_0: 0.13005 (0.12258) | > loss_disc_real_1: 0.22309 (0.21131) | > loss_disc_real_2: 0.19313 (0.21569) | > loss_disc_real_3: 0.23481 (0.21933) | > loss_disc_real_4: 0.24188 (0.21494) | > loss_disc_real_5: 0.24246 (0.21404) | > loss_0: 2.38295 (2.32121) | > grad_norm_0: 16.56577 (16.68351) | > loss_gen: 2.49170 (2.55508) | > loss_kl: 2.67265 (2.65969) | > loss_feat: 8.55251 (8.67106) | > loss_mel: 17.56514 (17.76202) | > loss_duration: 1.68173 (1.70547) | > loss_1: 32.96373 (33.35340) | > grad_norm_1: 164.12915 (136.69623) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07030 (2.18563) | > loader_time: 0.03750 (0.03706)  --> STEP: 13025/15287 -- GLOBAL_STEP: 993600 | > loss_disc: 2.15457 (2.32115) | > loss_disc_real_0: 0.07463 (0.12257) | > loss_disc_real_1: 0.19538 (0.21130) | > loss_disc_real_2: 0.19822 (0.21569) | > loss_disc_real_3: 0.23050 (0.21933) | > loss_disc_real_4: 0.22148 (0.21494) | > loss_disc_real_5: 0.20407 (0.21403) | > loss_0: 2.15457 (2.32115) | > grad_norm_0: 14.85042 (16.68374) | > loss_gen: 2.73279 (2.55510) | > loss_kl: 2.63954 (2.65965) | > loss_feat: 9.68213 (8.67103) | > loss_mel: 17.59842 (17.76199) | > loss_duration: 1.68797 (1.70546) | > loss_1: 34.34086 (33.35331) | > grad_norm_1: 109.49554 (136.73228) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89830 (2.18532) | > loader_time: 0.03830 (0.03706)  --> STEP: 13050/15287 -- GLOBAL_STEP: 993625 | > loss_disc: 2.27967 (2.32116) | > loss_disc_real_0: 0.13782 (0.12257) | > loss_disc_real_1: 0.22597 (0.21131) | > loss_disc_real_2: 0.24774 (0.21570) | > loss_disc_real_3: 0.21362 (0.21933) | > loss_disc_real_4: 0.22590 (0.21495) | > loss_disc_real_5: 0.19291 (0.21403) | > loss_0: 2.27967 (2.32116) | > grad_norm_0: 26.19982 (16.68981) | > loss_gen: 2.62312 (2.55511) | > loss_kl: 2.58047 (2.65967) | > loss_feat: 8.76058 (8.67086) | > loss_mel: 17.30424 (17.76174) | > loss_duration: 1.68317 (1.70548) | > loss_1: 32.95159 (33.35291) | > grad_norm_1: 112.61403 (136.75996) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11550 (2.18503) | > loader_time: 0.03110 (0.03706)  --> STEP: 13075/15287 -- GLOBAL_STEP: 993650 | > loss_disc: 2.29991 (2.32114) | > loss_disc_real_0: 0.13197 (0.12258) | > loss_disc_real_1: 0.21985 (0.21131) | > loss_disc_real_2: 0.21169 (0.21569) | > loss_disc_real_3: 0.23824 (0.21932) | > loss_disc_real_4: 0.23728 (0.21495) | > loss_disc_real_5: 0.19008 (0.21404) | > loss_0: 2.29991 (2.32114) | > grad_norm_0: 15.02244 (16.69425) | > loss_gen: 2.49389 (2.55510) | > loss_kl: 2.68046 (2.65961) | > loss_feat: 8.84995 (8.67115) | > loss_mel: 18.11527 (17.76165) | > loss_duration: 1.70367 (1.70548) | > loss_1: 33.84323 (33.35303) | > grad_norm_1: 104.77808 (136.79118) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97670 (2.18471) | > loader_time: 0.03220 (0.03706)  --> STEP: 13100/15287 -- GLOBAL_STEP: 993675 | > loss_disc: 2.32543 (2.32110) | > loss_disc_real_0: 0.07269 (0.12257) | > loss_disc_real_1: 0.23261 (0.21130) | > loss_disc_real_2: 0.20337 (0.21569) | > loss_disc_real_3: 0.21832 (0.21932) | > loss_disc_real_4: 0.23561 (0.21494) | > loss_disc_real_5: 0.18539 (0.21404) | > loss_0: 2.32543 (2.32110) | > grad_norm_0: 10.45558 (16.69075) | > loss_gen: 2.78419 (2.55511) | > loss_kl: 2.82994 (2.65959) | > loss_feat: 8.77766 (8.67123) | > loss_mel: 18.08931 (17.76169) | > loss_duration: 1.73443 (1.70548) | > loss_1: 34.21553 (33.35315) | > grad_norm_1: 117.84090 (136.76541) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16830 (2.18435) | > loader_time: 0.03580 (0.03706)  --> STEP: 13125/15287 -- GLOBAL_STEP: 993700 | > loss_disc: 2.44580 (2.32105) | > loss_disc_real_0: 0.17512 (0.12256) | > loss_disc_real_1: 0.22810 (0.21130) | > loss_disc_real_2: 0.23917 (0.21569) | > loss_disc_real_3: 0.22572 (0.21931) | > loss_disc_real_4: 0.22093 (0.21493) | > loss_disc_real_5: 0.29519 (0.21405) | > loss_0: 2.44580 (2.32105) | > grad_norm_0: 33.16067 (16.69213) | > loss_gen: 2.56721 (2.55517) | > loss_kl: 2.71313 (2.65957) | > loss_feat: 9.06832 (8.67166) | > loss_mel: 17.96165 (17.76160) | > loss_duration: 1.68346 (1.70549) | > loss_1: 33.99378 (33.35353) | > grad_norm_1: 206.97392 (136.80203) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11960 (2.18411) | > loader_time: 0.03200 (0.03706)  --> STEP: 13150/15287 -- GLOBAL_STEP: 993725 | > loss_disc: 2.27691 (2.32106) | > loss_disc_real_0: 0.12033 (0.12257) | > loss_disc_real_1: 0.20112 (0.21131) | > loss_disc_real_2: 0.20710 (0.21568) | > loss_disc_real_3: 0.21755 (0.21931) | > loss_disc_real_4: 0.20051 (0.21493) | > loss_disc_real_5: 0.19584 (0.21405) | > loss_0: 2.27691 (2.32106) | > grad_norm_0: 16.25268 (16.69063) | > loss_gen: 2.53958 (2.55516) | > loss_kl: 2.69678 (2.65962) | > loss_feat: 8.68500 (8.67186) | > loss_mel: 17.85051 (17.76170) | > loss_duration: 1.73738 (1.70550) | > loss_1: 33.50924 (33.35389) | > grad_norm_1: 175.48825 (136.80548) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86790 (2.18386) | > loader_time: 0.04000 (0.03706)  --> STEP: 13175/15287 -- GLOBAL_STEP: 993750 | > loss_disc: 2.33668 (2.32106) | > loss_disc_real_0: 0.08777 (0.12257) | > loss_disc_real_1: 0.22500 (0.21130) | > loss_disc_real_2: 0.23632 (0.21569) | > loss_disc_real_3: 0.26918 (0.21931) | > loss_disc_real_4: 0.23436 (0.21492) | > loss_disc_real_5: 0.25356 (0.21404) | > loss_0: 2.33668 (2.32106) | > grad_norm_0: 9.00337 (16.68496) | > loss_gen: 2.49125 (2.55512) | > loss_kl: 2.62329 (2.65963) | > loss_feat: 8.62505 (8.67176) | > loss_mel: 17.71027 (17.76170) | > loss_duration: 1.73270 (1.70551) | > loss_1: 33.18254 (33.35377) | > grad_norm_1: 129.25613 (136.80315) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89770 (2.18351) | > loader_time: 0.03480 (0.03706)  --> STEP: 13200/15287 -- GLOBAL_STEP: 993775 | > loss_disc: 2.35352 (2.32108) | > loss_disc_real_0: 0.15890 (0.12257) | > loss_disc_real_1: 0.19504 (0.21131) | > loss_disc_real_2: 0.23915 (0.21570) | > loss_disc_real_3: 0.24509 (0.21931) | > loss_disc_real_4: 0.22555 (0.21493) | > loss_disc_real_5: 0.22553 (0.21405) | > loss_0: 2.35352 (2.32108) | > grad_norm_0: 23.14826 (16.68550) | > loss_gen: 2.61439 (2.55515) | > loss_kl: 2.72221 (2.65967) | > loss_feat: 8.71658 (8.67186) | > loss_mel: 17.94469 (17.76179) | > loss_duration: 1.68213 (1.70550) | > loss_1: 33.68000 (33.35403) | > grad_norm_1: 111.35482 (136.78023) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95610 (2.18317) | > loader_time: 0.03160 (0.03706)  --> STEP: 13225/15287 -- GLOBAL_STEP: 993800 | > loss_disc: 2.30141 (2.32106) | > loss_disc_real_0: 0.17927 (0.12257) | > loss_disc_real_1: 0.16734 (0.21129) | > loss_disc_real_2: 0.18678 (0.21570) | > loss_disc_real_3: 0.20905 (0.21932) | > loss_disc_real_4: 0.20381 (0.21492) | > loss_disc_real_5: 0.19245 (0.21406) | > loss_0: 2.30141 (2.32106) | > grad_norm_0: 27.97112 (16.69529) | > loss_gen: 2.45179 (2.55509) | > loss_kl: 2.57992 (2.65966) | > loss_feat: 9.16418 (8.67179) | > loss_mel: 17.46980 (17.76182) | > loss_duration: 1.72983 (1.70551) | > loss_1: 33.39552 (33.35395) | > grad_norm_1: 201.43237 (136.84067) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90560 (2.18283) | > loader_time: 0.03190 (0.03706)  --> STEP: 13250/15287 -- GLOBAL_STEP: 993825 | > loss_disc: 2.31561 (2.32100) | > loss_disc_real_0: 0.10492 (0.12255) | > loss_disc_real_1: 0.22443 (0.21128) | > loss_disc_real_2: 0.20449 (0.21569) | > loss_disc_real_3: 0.19200 (0.21932) | > loss_disc_real_4: 0.17894 (0.21493) | > loss_disc_real_5: 0.24038 (0.21406) | > loss_0: 2.31561 (2.32100) | > grad_norm_0: 14.58871 (16.69243) | > loss_gen: 2.56227 (2.55511) | > loss_kl: 2.63597 (2.65965) | > loss_feat: 8.56314 (8.67182) | > loss_mel: 17.64314 (17.76147) | > loss_duration: 1.70614 (1.70552) | > loss_1: 33.11066 (33.35366) | > grad_norm_1: 63.14132 (136.85710) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17250 (2.18277) | > loader_time: 0.03850 (0.03706)  --> STEP: 13275/15287 -- GLOBAL_STEP: 993850 | > loss_disc: 2.32466 (2.32097) | > loss_disc_real_0: 0.15744 (0.12256) | > loss_disc_real_1: 0.23806 (0.21128) | > loss_disc_real_2: 0.25269 (0.21569) | > loss_disc_real_3: 0.24548 (0.21932) | > loss_disc_real_4: 0.23880 (0.21493) | > loss_disc_real_5: 0.20943 (0.21406) | > loss_0: 2.32466 (2.32097) | > grad_norm_0: 19.89084 (16.68942) | > loss_gen: 2.63061 (2.55518) | > loss_kl: 2.73644 (2.65962) | > loss_feat: 9.02355 (8.67219) | > loss_mel: 17.23539 (17.76154) | > loss_duration: 1.69829 (1.70552) | > loss_1: 33.32428 (33.35413) | > grad_norm_1: 95.16983 (136.80705) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87120 (2.18268) | > loader_time: 0.03430 (0.03706)  --> STEP: 13300/15287 -- GLOBAL_STEP: 993875 | > loss_disc: 2.31897 (2.32101) | > loss_disc_real_0: 0.14375 (0.12258) | > loss_disc_real_1: 0.18596 (0.21128) | > loss_disc_real_2: 0.23587 (0.21570) | > loss_disc_real_3: 0.22139 (0.21932) | > loss_disc_real_4: 0.21822 (0.21493) | > loss_disc_real_5: 0.23509 (0.21406) | > loss_0: 2.31897 (2.32101) | > grad_norm_0: 15.40924 (16.68036) | > loss_gen: 2.72896 (2.55521) | > loss_kl: 2.54401 (2.65968) | > loss_feat: 8.30821 (8.67234) | > loss_mel: 17.38859 (17.76175) | > loss_duration: 1.70026 (1.70553) | > loss_1: 32.67004 (33.35458) | > grad_norm_1: 92.42327 (136.71756) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16390 (2.18255) | > loader_time: 0.04320 (0.03707)  --> STEP: 13325/15287 -- GLOBAL_STEP: 993900 | > loss_disc: 2.39368 (2.32104) | > loss_disc_real_0: 0.14372 (0.12259) | > loss_disc_real_1: 0.23060 (0.21127) | > loss_disc_real_2: 0.26071 (0.21571) | > loss_disc_real_3: 0.22157 (0.21932) | > loss_disc_real_4: 0.23119 (0.21494) | > loss_disc_real_5: 0.23367 (0.21407) | > loss_0: 2.39368 (2.32104) | > grad_norm_0: 10.18800 (16.67968) | > loss_gen: 2.45868 (2.55521) | > loss_kl: 2.52791 (2.65964) | > loss_feat: 8.50548 (8.67242) | > loss_mel: 17.54403 (17.76199) | > loss_duration: 1.69760 (1.70551) | > loss_1: 32.73370 (33.35484) | > grad_norm_1: 178.40979 (136.70833) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94740 (2.18243) | > loader_time: 0.03210 (0.03707)  --> STEP: 13350/15287 -- GLOBAL_STEP: 993925 | > loss_disc: 2.34765 (2.32105) | > loss_disc_real_0: 0.13378 (0.12260) | > loss_disc_real_1: 0.19590 (0.21127) | > loss_disc_real_2: 0.19339 (0.21570) | > loss_disc_real_3: 0.20976 (0.21933) | > loss_disc_real_4: 0.19309 (0.21494) | > loss_disc_real_5: 0.22140 (0.21406) | > loss_0: 2.34765 (2.32105) | > grad_norm_0: 19.61426 (16.67377) | > loss_gen: 2.42017 (2.55521) | > loss_kl: 2.58945 (2.65956) | > loss_feat: 8.18405 (8.67227) | > loss_mel: 17.83779 (17.76203) | > loss_duration: 1.72732 (1.70552) | > loss_1: 32.75879 (33.35466) | > grad_norm_1: 88.86944 (136.67201) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85430 (2.18216) | > loader_time: 0.03260 (0.03707)  --> STEP: 13375/15287 -- GLOBAL_STEP: 993950 | > loss_disc: 2.30496 (2.32104) | > loss_disc_real_0: 0.09683 (0.12260) | > loss_disc_real_1: 0.21477 (0.21127) | > loss_disc_real_2: 0.21309 (0.21571) | > loss_disc_real_3: 0.19599 (0.21932) | > loss_disc_real_4: 0.19295 (0.21493) | > loss_disc_real_5: 0.21086 (0.21405) | > loss_0: 2.30496 (2.32104) | > grad_norm_0: 7.28308 (16.66493) | > loss_gen: 2.47820 (2.55521) | > loss_kl: 2.65079 (2.65953) | > loss_feat: 8.50310 (8.67220) | > loss_mel: 17.72832 (17.76196) | > loss_duration: 1.71334 (1.70553) | > loss_1: 33.07375 (33.35449) | > grad_norm_1: 57.26640 (136.58209) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06080 (2.18174) | > loader_time: 0.03500 (0.03706)  --> STEP: 13400/15287 -- GLOBAL_STEP: 993975 | > loss_disc: 2.23192 (2.32097) | > loss_disc_real_0: 0.12421 (0.12259) | > loss_disc_real_1: 0.19763 (0.21126) | > loss_disc_real_2: 0.19086 (0.21570) | > loss_disc_real_3: 0.19861 (0.21932) | > loss_disc_real_4: 0.20285 (0.21493) | > loss_disc_real_5: 0.17600 (0.21404) | > loss_0: 2.23192 (2.32097) | > grad_norm_0: 15.88225 (16.66450) | > loss_gen: 2.68911 (2.55524) | > loss_kl: 2.58922 (2.65946) | > loss_feat: 9.32983 (8.67244) | > loss_mel: 17.90885 (17.76194) | > loss_duration: 1.68566 (1.70553) | > loss_1: 34.20268 (33.35468) | > grad_norm_1: 191.38159 (136.58777) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07330 (2.18162) | > loader_time: 0.03670 (0.03707)  --> STEP: 13425/15287 -- GLOBAL_STEP: 994000 | > loss_disc: 2.32287 (2.32094) | > loss_disc_real_0: 0.11824 (0.12257) | > loss_disc_real_1: 0.18745 (0.21126) | > loss_disc_real_2: 0.23163 (0.21570) | > loss_disc_real_3: 0.21281 (0.21933) | > loss_disc_real_4: 0.22429 (0.21493) | > loss_disc_real_5: 0.21071 (0.21405) | > loss_0: 2.32287 (2.32094) | > grad_norm_0: 20.66843 (16.67228) | > loss_gen: 2.54321 (2.55528) | > loss_kl: 2.62119 (2.65936) | > loss_feat: 8.92534 (8.67245) | > loss_mel: 17.33663 (17.76167) | > loss_duration: 1.69688 (1.70552) | > loss_1: 33.12325 (33.35434) | > grad_norm_1: 231.92216 (136.60066) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03430 (2.18139) | > loader_time: 0.03310 (0.03707)  --> STEP: 13450/15287 -- GLOBAL_STEP: 994025 | > loss_disc: 2.29241 (2.32086) | > loss_disc_real_0: 0.11321 (0.12256) | > loss_disc_real_1: 0.21434 (0.21126) | > loss_disc_real_2: 0.21029 (0.21570) | > loss_disc_real_3: 0.20556 (0.21932) | > loss_disc_real_4: 0.22870 (0.21493) | > loss_disc_real_5: 0.18524 (0.21405) | > loss_0: 2.29241 (2.32086) | > grad_norm_0: 13.75050 (16.67472) | > loss_gen: 2.72529 (2.55533) | > loss_kl: 2.57164 (2.65929) | > loss_feat: 8.62093 (8.67270) | > loss_mel: 17.55717 (17.76162) | > loss_duration: 1.69281 (1.70553) | > loss_1: 33.16783 (33.35453) | > grad_norm_1: 246.53793 (136.63789) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91760 (2.18109) | > loader_time: 0.04310 (0.03707)  --> STEP: 13475/15287 -- GLOBAL_STEP: 994050 | > loss_disc: 2.29361 (2.32082) | > loss_disc_real_0: 0.12103 (0.12255) | > loss_disc_real_1: 0.22455 (0.21126) | > loss_disc_real_2: 0.23763 (0.21570) | > loss_disc_real_3: 0.22333 (0.21932) | > loss_disc_real_4: 0.21009 (0.21493) | > loss_disc_real_5: 0.19495 (0.21405) | > loss_0: 2.29361 (2.32082) | > grad_norm_0: 9.69186 (16.67798) | > loss_gen: 2.58174 (2.55537) | > loss_kl: 2.63414 (2.65926) | > loss_feat: 8.38081 (8.67288) | > loss_mel: 17.23654 (17.76152) | > loss_duration: 1.71826 (1.70552) | > loss_1: 32.55148 (33.35460) | > grad_norm_1: 149.85057 (136.67180) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00070 (2.18101) | > loader_time: 0.03620 (0.03707)  --> STEP: 13500/15287 -- GLOBAL_STEP: 994075 | > loss_disc: 2.31057 (2.32078) | > loss_disc_real_0: 0.17341 (0.12254) | > loss_disc_real_1: 0.27384 (0.21126) | > loss_disc_real_2: 0.18543 (0.21570) | > loss_disc_real_3: 0.18546 (0.21931) | > loss_disc_real_4: 0.19856 (0.21493) | > loss_disc_real_5: 0.20229 (0.21405) | > loss_0: 2.31057 (2.32078) | > grad_norm_0: 41.18135 (16.68422) | > loss_gen: 2.59594 (2.55540) | > loss_kl: 2.58683 (2.65928) | > loss_feat: 8.14749 (8.67301) | > loss_mel: 16.91028 (17.76127) | > loss_duration: 1.66437 (1.70552) | > loss_1: 31.90492 (33.35451) | > grad_norm_1: 228.02235 (136.71466) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.71290 (2.18140) | > loader_time: 0.04340 (0.03708)  --> STEP: 13525/15287 -- GLOBAL_STEP: 994100 | > loss_disc: 2.33025 (2.32081) | > loss_disc_real_0: 0.12634 (0.12254) | > loss_disc_real_1: 0.19506 (0.21128) | > loss_disc_real_2: 0.21262 (0.21570) | > loss_disc_real_3: 0.20464 (0.21931) | > loss_disc_real_4: 0.20806 (0.21492) | > loss_disc_real_5: 0.23774 (0.21405) | > loss_0: 2.33025 (2.32081) | > grad_norm_0: 8.46594 (16.68651) | > loss_gen: 2.48615 (2.55535) | > loss_kl: 2.85119 (2.65925) | > loss_feat: 9.39044 (8.67307) | > loss_mel: 17.87352 (17.76116) | > loss_duration: 1.71673 (1.70552) | > loss_1: 34.31803 (33.35440) | > grad_norm_1: 155.18279 (136.71329) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.75570 (2.18219) | > loader_time: 0.04560 (0.03708)  --> STEP: 13550/15287 -- GLOBAL_STEP: 994125 | > loss_disc: 2.40773 (2.32084) | > loss_disc_real_0: 0.11496 (0.12254) | > loss_disc_real_1: 0.23476 (0.21128) | > loss_disc_real_2: 0.24951 (0.21570) | > loss_disc_real_3: 0.21358 (0.21932) | > loss_disc_real_4: 0.22837 (0.21493) | > loss_disc_real_5: 0.21971 (0.21405) | > loss_0: 2.40773 (2.32084) | > grad_norm_0: 7.53324 (16.68481) | > loss_gen: 2.47211 (2.55542) | > loss_kl: 2.63144 (2.65930) | > loss_feat: 7.87874 (8.67304) | > loss_mel: 17.74043 (17.76148) | > loss_duration: 1.70265 (1.70553) | > loss_1: 32.42538 (33.35480) | > grad_norm_1: 97.97839 (136.68164) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10970 (2.18280) | > loader_time: 0.03610 (0.03709)  --> STEP: 13575/15287 -- GLOBAL_STEP: 994150 | > loss_disc: 2.46901 (2.32098) | > loss_disc_real_0: 0.12933 (0.12255) | > loss_disc_real_1: 0.23918 (0.21128) | > loss_disc_real_2: 0.24229 (0.21571) | > loss_disc_real_3: 0.26711 (0.21933) | > loss_disc_real_4: 0.25423 (0.21494) | > loss_disc_real_5: 0.23605 (0.21406) | > loss_0: 2.46901 (2.32098) | > grad_norm_0: 26.59461 (16.68581) | > loss_gen: 2.39107 (2.55532) | > loss_kl: 2.58981 (2.65923) | > loss_feat: 8.31323 (8.67258) | > loss_mel: 17.91242 (17.76163) | > loss_duration: 1.71021 (1.70553) | > loss_1: 32.91674 (33.35435) | > grad_norm_1: 141.35495 (136.65298) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.45490 (2.18316) | > loader_time: 0.03680 (0.03709)  --> STEP: 13600/15287 -- GLOBAL_STEP: 994175 | > loss_disc: 2.34907 (2.32097) | > loss_disc_real_0: 0.14931 (0.12255) | > loss_disc_real_1: 0.21087 (0.21129) | > loss_disc_real_2: 0.19563 (0.21571) | > loss_disc_real_3: 0.25059 (0.21933) | > loss_disc_real_4: 0.22432 (0.21493) | > loss_disc_real_5: 0.23239 (0.21405) | > loss_0: 2.34907 (2.32097) | > grad_norm_0: 33.43166 (16.69218) | > loss_gen: 2.57318 (2.55531) | > loss_kl: 2.64203 (2.65916) | > loss_feat: 8.84999 (8.67258) | > loss_mel: 18.04746 (17.76166) | > loss_duration: 1.67298 (1.70552) | > loss_1: 33.78563 (33.35429) | > grad_norm_1: 192.37636 (136.66167) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.90870 (2.18454) | > loader_time: 0.03210 (0.03709)  --> STEP: 13625/15287 -- GLOBAL_STEP: 994200 | > loss_disc: 2.29798 (2.32094) | > loss_disc_real_0: 0.13419 (0.12254) | > loss_disc_real_1: 0.17482 (0.21129) | > loss_disc_real_2: 0.18142 (0.21570) | > loss_disc_real_3: 0.20802 (0.21933) | > loss_disc_real_4: 0.21621 (0.21493) | > loss_disc_real_5: 0.19442 (0.21405) | > loss_0: 2.29798 (2.32094) | > grad_norm_0: 14.94100 (16.69704) | > loss_gen: 2.49819 (2.55531) | > loss_kl: 2.62820 (2.65925) | > loss_feat: 8.69378 (8.67282) | > loss_mel: 17.62681 (17.76166) | > loss_duration: 1.69918 (1.70553) | > loss_1: 33.14617 (33.35463) | > grad_norm_1: 104.30418 (136.69620) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.64670 (2.18579) | > loader_time: 0.03640 (0.03709)  --> STEP: 13650/15287 -- GLOBAL_STEP: 994225 | > loss_disc: 2.27266 (2.32096) | > loss_disc_real_0: 0.11626 (0.12257) | > loss_disc_real_1: 0.18164 (0.21129) | > loss_disc_real_2: 0.19384 (0.21571) | > loss_disc_real_3: 0.23957 (0.21933) | > loss_disc_real_4: 0.23378 (0.21493) | > loss_disc_real_5: 0.22879 (0.21404) | > loss_0: 2.27266 (2.32096) | > grad_norm_0: 20.00269 (16.70628) | > loss_gen: 2.47061 (2.55527) | > loss_kl: 2.68213 (2.65926) | > loss_feat: 8.80080 (8.67268) | > loss_mel: 17.88550 (17.76147) | > loss_duration: 1.68404 (1.70551) | > loss_1: 33.52307 (33.35426) | > grad_norm_1: 150.54329 (136.72809) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04220 (2.18679) | > loader_time: 0.03870 (0.03709)  --> STEP: 13675/15287 -- GLOBAL_STEP: 994250 | > loss_disc: 2.37992 (2.32089) | > loss_disc_real_0: 0.12648 (0.12255) | > loss_disc_real_1: 0.22445 (0.21129) | > loss_disc_real_2: 0.21885 (0.21570) | > loss_disc_real_3: 0.24985 (0.21933) | > loss_disc_real_4: 0.25239 (0.21492) | > loss_disc_real_5: 0.24689 (0.21404) | > loss_0: 2.37992 (2.32089) | > grad_norm_0: 33.32898 (16.70602) | > loss_gen: 2.48098 (2.55531) | > loss_kl: 2.72014 (2.65932) | > loss_feat: 8.45288 (8.67284) | > loss_mel: 17.56316 (17.76151) | > loss_duration: 1.68037 (1.70552) | > loss_1: 32.89753 (33.35457) | > grad_norm_1: 145.52098 (136.74631) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55920 (2.18793) | > loader_time: 0.03710 (0.03709)  --> STEP: 13700/15287 -- GLOBAL_STEP: 994275 | > loss_disc: 2.23923 (2.32086) | > loss_disc_real_0: 0.13141 (0.12254) | > loss_disc_real_1: 0.20471 (0.21128) | > loss_disc_real_2: 0.22382 (0.21570) | > loss_disc_real_3: 0.23322 (0.21932) | > loss_disc_real_4: 0.20816 (0.21493) | > loss_disc_real_5: 0.21900 (0.21404) | > loss_0: 2.23923 (2.32086) | > grad_norm_0: 14.61670 (16.70638) | > loss_gen: 2.80808 (2.55535) | > loss_kl: 2.93289 (2.65935) | > loss_feat: 9.35998 (8.67302) | > loss_mel: 18.40075 (17.76165) | > loss_duration: 1.70521 (1.70553) | > loss_1: 35.20692 (33.35495) | > grad_norm_1: 200.80597 (136.77505) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.11870 (2.18868) | > loader_time: 0.03710 (0.03709)  --> STEP: 13725/15287 -- GLOBAL_STEP: 994300 | > loss_disc: 2.31374 (2.32090) | > loss_disc_real_0: 0.09264 (0.12254) | > loss_disc_real_1: 0.20568 (0.21128) | > loss_disc_real_2: 0.22779 (0.21570) | > loss_disc_real_3: 0.20895 (0.21934) | > loss_disc_real_4: 0.18183 (0.21494) | > loss_disc_real_5: 0.22636 (0.21405) | > loss_0: 2.31374 (2.32090) | > grad_norm_0: 13.23674 (16.71114) | > loss_gen: 2.59806 (2.55540) | > loss_kl: 2.68225 (2.65938) | > loss_feat: 8.80728 (8.67313) | > loss_mel: 17.52890 (17.76147) | > loss_duration: 1.71934 (1.70554) | > loss_1: 33.33583 (33.35498) | > grad_norm_1: 134.83458 (136.79155) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98800 (2.18933) | > loader_time: 0.04240 (0.03708)  --> STEP: 13750/15287 -- GLOBAL_STEP: 994325 | > loss_disc: 2.31203 (2.32091) | > loss_disc_real_0: 0.06360 (0.12255) | > loss_disc_real_1: 0.23483 (0.21129) | > loss_disc_real_2: 0.19951 (0.21570) | > loss_disc_real_3: 0.23279 (0.21935) | > loss_disc_real_4: 0.18132 (0.21494) | > loss_disc_real_5: 0.22147 (0.21405) | > loss_0: 2.31203 (2.32091) | > grad_norm_0: 19.17649 (16.70934) | > loss_gen: 2.38198 (2.55546) | > loss_kl: 2.71809 (2.65943) | > loss_feat: 8.94944 (8.67329) | > loss_mel: 17.96882 (17.76171) | > loss_duration: 1.71357 (1.70553) | > loss_1: 33.73190 (33.35548) | > grad_norm_1: 156.55696 (136.79787) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99200 (2.18922) | > loader_time: 0.05150 (0.03709)  --> STEP: 13775/15287 -- GLOBAL_STEP: 994350 | > loss_disc: 2.32035 (2.32094) | > loss_disc_real_0: 0.08398 (0.12257) | > loss_disc_real_1: 0.22517 (0.21129) | > loss_disc_real_2: 0.22589 (0.21571) | > loss_disc_real_3: 0.21690 (0.21934) | > loss_disc_real_4: 0.24938 (0.21494) | > loss_disc_real_5: 0.22755 (0.21405) | > loss_0: 2.32035 (2.32094) | > grad_norm_0: 8.35633 (16.71205) | > loss_gen: 2.69515 (2.55543) | > loss_kl: 2.79264 (2.65947) | > loss_feat: 8.81272 (8.67305) | > loss_mel: 17.44356 (17.76147) | > loss_duration: 1.69612 (1.70553) | > loss_1: 33.44019 (33.35501) | > grad_norm_1: 116.67226 (136.80089) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42280 (2.19001) | > loader_time: 0.03620 (0.03709)  --> STEP: 13800/15287 -- GLOBAL_STEP: 994375 | > loss_disc: 2.36194 (2.32096) | > loss_disc_real_0: 0.12540 (0.12259) | > loss_disc_real_1: 0.20705 (0.21128) | > loss_disc_real_2: 0.22638 (0.21570) | > loss_disc_real_3: 0.18132 (0.21935) | > loss_disc_real_4: 0.21202 (0.21493) | > loss_disc_real_5: 0.20528 (0.21405) | > loss_0: 2.36194 (2.32096) | > grad_norm_0: 22.25192 (16.71719) | > loss_gen: 2.31145 (2.55540) | > loss_kl: 2.74673 (2.65947) | > loss_feat: 7.72482 (8.67304) | > loss_mel: 16.74042 (17.76118) | > loss_duration: 1.68226 (1.70552) | > loss_1: 31.20569 (33.35467) | > grad_norm_1: 137.83487 (136.81577) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.65080 (2.19113) | > loader_time: 0.03140 (0.03709)  --> STEP: 13825/15287 -- GLOBAL_STEP: 994400 | > loss_disc: 2.33199 (2.32096) | > loss_disc_real_0: 0.13594 (0.12258) | > loss_disc_real_1: 0.20047 (0.21129) | > loss_disc_real_2: 0.23363 (0.21570) | > loss_disc_real_3: 0.21283 (0.21935) | > loss_disc_real_4: 0.21688 (0.21493) | > loss_disc_real_5: 0.19735 (0.21404) | > loss_0: 2.33199 (2.32096) | > grad_norm_0: 17.68184 (16.71981) | > loss_gen: 2.48441 (2.55533) | > loss_kl: 2.55759 (2.65946) | > loss_feat: 8.55077 (8.67307) | > loss_mel: 16.97500 (17.76107) | > loss_duration: 1.70272 (1.70553) | > loss_1: 32.27049 (33.35452) | > grad_norm_1: 105.41633 (136.83786) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.78100 (2.19180) | > loader_time: 0.03440 (0.03709)  --> STEP: 13850/15287 -- GLOBAL_STEP: 994425 | > loss_disc: 2.35494 (2.32096) | > loss_disc_real_0: 0.10084 (0.12258) | > loss_disc_real_1: 0.24914 (0.21130) | > loss_disc_real_2: 0.20516 (0.21569) | > loss_disc_real_3: 0.20320 (0.21934) | > loss_disc_real_4: 0.20212 (0.21493) | > loss_disc_real_5: 0.23440 (0.21405) | > loss_0: 2.35494 (2.32096) | > grad_norm_0: 15.67133 (16.71551) | > loss_gen: 2.34353 (2.55532) | > loss_kl: 2.66223 (2.65946) | > loss_feat: 8.58695 (8.67286) | > loss_mel: 17.32016 (17.76093) | > loss_duration: 1.73791 (1.70553) | > loss_1: 32.65077 (33.35416) | > grad_norm_1: 147.25659 (136.86011) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34590 (2.19274) | > loader_time: 0.03710 (0.03708)  --> STEP: 13875/15287 -- GLOBAL_STEP: 994450 | > loss_disc: 2.34193 (2.32100) | > loss_disc_real_0: 0.11363 (0.12258) | > loss_disc_real_1: 0.22973 (0.21129) | > loss_disc_real_2: 0.16057 (0.21569) | > loss_disc_real_3: 0.17962 (0.21934) | > loss_disc_real_4: 0.19093 (0.21493) | > loss_disc_real_5: 0.23798 (0.21405) | > loss_0: 2.34193 (2.32100) | > grad_norm_0: 11.47464 (16.71349) | > loss_gen: 2.31152 (2.55521) | > loss_kl: 2.57001 (2.65942) | > loss_feat: 8.14944 (8.67270) | > loss_mel: 17.23942 (17.76076) | > loss_duration: 1.68000 (1.70553) | > loss_1: 31.95039 (33.35366) | > grad_norm_1: 81.11790 (136.86543) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.73470 (2.19379) | > loader_time: 0.03840 (0.03708)  --> STEP: 13900/15287 -- GLOBAL_STEP: 994475 | > loss_disc: 2.34629 (2.32099) | > loss_disc_real_0: 0.16539 (0.12258) | > loss_disc_real_1: 0.20535 (0.21129) | > loss_disc_real_2: 0.19739 (0.21568) | > loss_disc_real_3: 0.22948 (0.21934) | > loss_disc_real_4: 0.23843 (0.21494) | > loss_disc_real_5: 0.24834 (0.21406) | > loss_0: 2.34629 (2.32099) | > grad_norm_0: 19.87548 (16.71181) | > loss_gen: 2.45064 (2.55526) | > loss_kl: 2.64838 (2.65945) | > loss_feat: 8.73001 (8.67280) | > loss_mel: 17.96157 (17.76077) | > loss_duration: 1.69842 (1.70554) | > loss_1: 33.48903 (33.35386) | > grad_norm_1: 158.81058 (136.88710) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.54430 (2.19485) | > loader_time: 0.03620 (0.03708)  --> STEP: 13925/15287 -- GLOBAL_STEP: 994500 | > loss_disc: 2.35097 (2.32102) | > loss_disc_real_0: 0.11474 (0.12261) | > loss_disc_real_1: 0.23711 (0.21130) | > loss_disc_real_2: 0.19135 (0.21567) | > loss_disc_real_3: 0.22513 (0.21935) | > loss_disc_real_4: 0.26598 (0.21494) | > loss_disc_real_5: 0.20423 (0.21406) | > loss_0: 2.35097 (2.32102) | > grad_norm_0: 26.34937 (16.70926) | > loss_gen: 2.55911 (2.55525) | > loss_kl: 2.65790 (2.65944) | > loss_feat: 8.26573 (8.67270) | > loss_mel: 18.12920 (17.76077) | > loss_duration: 1.70203 (1.70556) | > loss_1: 33.31396 (33.35377) | > grad_norm_1: 197.72772 (136.86060) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.46630 (2.19544) | > loader_time: 0.03330 (0.03707)  --> STEP: 13950/15287 -- GLOBAL_STEP: 994525 | > loss_disc: 2.40562 (2.32106) | > loss_disc_real_0: 0.13450 (0.12261) | > loss_disc_real_1: 0.22418 (0.21131) | > loss_disc_real_2: 0.20649 (0.21568) | > loss_disc_real_3: 0.25366 (0.21934) | > loss_disc_real_4: 0.18218 (0.21494) | > loss_disc_real_5: 0.24489 (0.21406) | > loss_0: 2.40562 (2.32106) | > grad_norm_0: 8.72785 (16.70259) | > loss_gen: 2.50155 (2.55523) | > loss_kl: 2.79992 (2.65946) | > loss_feat: 8.86641 (8.67272) | > loss_mel: 18.17279 (17.76083) | > loss_duration: 1.69358 (1.70557) | > loss_1: 34.03425 (33.35387) | > grad_norm_1: 206.16849 (136.81006) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.94150 (2.19606) | > loader_time: 0.03760 (0.03707)  --> STEP: 13975/15287 -- GLOBAL_STEP: 994550 | > loss_disc: 2.28466 (2.32108) | > loss_disc_real_0: 0.14099 (0.12262) | > loss_disc_real_1: 0.21584 (0.21131) | > loss_disc_real_2: 0.23990 (0.21568) | > loss_disc_real_3: 0.23606 (0.21935) | > loss_disc_real_4: 0.20980 (0.21494) | > loss_disc_real_5: 0.18807 (0.21405) | > loss_0: 2.28466 (2.32108) | > grad_norm_0: 24.01909 (16.70867) | > loss_gen: 2.78757 (2.55518) | > loss_kl: 2.41994 (2.65945) | > loss_feat: 8.97987 (8.67258) | > loss_mel: 17.73091 (17.76092) | > loss_duration: 1.70296 (1.70557) | > loss_1: 33.62124 (33.35375) | > grad_norm_1: 157.50352 (136.83273) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.91840 (2.19712) | > loader_time: 0.03560 (0.03706)  --> STEP: 14000/15287 -- GLOBAL_STEP: 994575 | > loss_disc: 2.32666 (2.32107) | > loss_disc_real_0: 0.14316 (0.12262) | > loss_disc_real_1: 0.20945 (0.21130) | > loss_disc_real_2: 0.21821 (0.21568) | > loss_disc_real_3: 0.21691 (0.21934) | > loss_disc_real_4: 0.21324 (0.21494) | > loss_disc_real_5: 0.18967 (0.21406) | > loss_0: 2.32666 (2.32107) | > grad_norm_0: 30.55856 (16.71312) | > loss_gen: 2.40530 (2.55517) | > loss_kl: 2.61021 (2.65944) | > loss_feat: 8.55373 (8.67275) | > loss_mel: 17.47523 (17.76073) | > loss_duration: 1.69888 (1.70556) | > loss_1: 32.74336 (33.35368) | > grad_norm_1: 121.91383 (136.85655) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.98570 (2.19762) | > loader_time: 0.04930 (0.03707)  --> STEP: 14025/15287 -- GLOBAL_STEP: 994600 | > loss_disc: 2.31832 (2.32104) | > loss_disc_real_0: 0.08547 (0.12261) | > loss_disc_real_1: 0.19684 (0.21130) | > loss_disc_real_2: 0.18716 (0.21567) | > loss_disc_real_3: 0.23404 (0.21934) | > loss_disc_real_4: 0.23114 (0.21494) | > loss_disc_real_5: 0.22892 (0.21406) | > loss_0: 2.31832 (2.32104) | > grad_norm_0: 4.77227 (16.71476) | > loss_gen: 2.82024 (2.55517) | > loss_kl: 2.76169 (2.65943) | > loss_feat: 8.78514 (8.67288) | > loss_mel: 18.52350 (17.76058) | > loss_duration: 1.69727 (1.70557) | > loss_1: 34.58784 (33.35367) | > grad_norm_1: 138.88387 (136.83755) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.09860 (2.19868) | > loader_time: 0.04060 (0.03707)  --> STEP: 14050/15287 -- GLOBAL_STEP: 994625 | > loss_disc: 2.29415 (2.32108) | > loss_disc_real_0: 0.08828 (0.12264) | > loss_disc_real_1: 0.24453 (0.21130) | > loss_disc_real_2: 0.24100 (0.21569) | > loss_disc_real_3: 0.21866 (0.21934) | > loss_disc_real_4: 0.21386 (0.21494) | > loss_disc_real_5: 0.19248 (0.21405) | > loss_0: 2.29415 (2.32108) | > grad_norm_0: 14.37866 (16.71417) | > loss_gen: 2.56383 (2.55516) | > loss_kl: 2.62959 (2.65947) | > loss_feat: 8.79776 (8.67286) | > loss_mel: 17.90346 (17.76053) | > loss_duration: 1.71274 (1.70557) | > loss_1: 33.60739 (33.35363) | > grad_norm_1: 59.05990 (136.82434) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89180 (2.19971) | > loader_time: 0.04250 (0.03707)  --> STEP: 14075/15287 -- GLOBAL_STEP: 994650 | > loss_disc: 2.27453 (2.32111) | > loss_disc_real_0: 0.12847 (0.12265) | > loss_disc_real_1: 0.20029 (0.21128) | > loss_disc_real_2: 0.20091 (0.21568) | > loss_disc_real_3: 0.21139 (0.21934) | > loss_disc_real_4: 0.20616 (0.21494) | > loss_disc_real_5: 0.20219 (0.21405) | > loss_0: 2.27453 (2.32111) | > grad_norm_0: 6.00546 (16.71452) | > loss_gen: 2.49390 (2.55508) | > loss_kl: 2.58242 (2.65949) | > loss_feat: 8.06188 (8.67280) | > loss_mel: 17.33263 (17.76060) | > loss_duration: 1.77402 (1.70557) | > loss_1: 32.24485 (33.35357) | > grad_norm_1: 84.65135 (136.79900) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55090 (2.20084) | > loader_time: 0.03520 (0.03706)  --> STEP: 14100/15287 -- GLOBAL_STEP: 994675 | > loss_disc: 2.29796 (2.32111) | > loss_disc_real_0: 0.14885 (0.12267) | > loss_disc_real_1: 0.21148 (0.21128) | > loss_disc_real_2: 0.22319 (0.21568) | > loss_disc_real_3: 0.21089 (0.21934) | > loss_disc_real_4: 0.23300 (0.21494) | > loss_disc_real_5: 0.22854 (0.21405) | > loss_0: 2.29796 (2.32111) | > grad_norm_0: 14.39180 (16.71354) | > loss_gen: 2.43083 (2.55510) | > loss_kl: 2.75230 (2.65951) | > loss_feat: 9.06827 (8.67286) | > loss_mel: 17.74771 (17.76044) | > loss_duration: 1.69068 (1.70558) | > loss_1: 33.68979 (33.35353) | > grad_norm_1: 109.87873 (136.77728) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.48240 (2.20158) | > loader_time: 0.03530 (0.03706)  --> STEP: 14125/15287 -- GLOBAL_STEP: 994700 | > loss_disc: 2.30202 (2.32114) | > loss_disc_real_0: 0.09989 (0.12269) | > loss_disc_real_1: 0.19995 (0.21128) | > loss_disc_real_2: 0.25137 (0.21568) | > loss_disc_real_3: 0.21679 (0.21934) | > loss_disc_real_4: 0.19721 (0.21493) | > loss_disc_real_5: 0.23220 (0.21405) | > loss_0: 2.30202 (2.32114) | > grad_norm_0: 19.76234 (16.71001) | > loss_gen: 2.60972 (2.55514) | > loss_kl: 2.58781 (2.65952) | > loss_feat: 8.77864 (8.67287) | > loss_mel: 18.30545 (17.76035) | > loss_duration: 1.70544 (1.70557) | > loss_1: 33.98705 (33.35349) | > grad_norm_1: 135.99373 (136.73744) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.83770 (2.20256) | > loader_time: 0.03180 (0.03706)  --> STEP: 14150/15287 -- GLOBAL_STEP: 994725 | > loss_disc: 2.42418 (2.32118) | > loss_disc_real_0: 0.13896 (0.12269) | > loss_disc_real_1: 0.20221 (0.21128) | > loss_disc_real_2: 0.16592 (0.21568) | > loss_disc_real_3: 0.19708 (0.21934) | > loss_disc_real_4: 0.12967 (0.21492) | > loss_disc_real_5: 0.24291 (0.21404) | > loss_0: 2.42418 (2.32118) | > grad_norm_0: 24.80196 (16.70556) | > loss_gen: 2.15283 (2.55504) | > loss_kl: 2.78187 (2.65960) | > loss_feat: 8.55229 (8.67289) | > loss_mel: 17.89728 (17.76058) | > loss_duration: 1.69402 (1.70558) | > loss_1: 33.07829 (33.35373) | > grad_norm_1: 83.54520 (136.70569) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.17780 (2.20381) | > loader_time: 0.03450 (0.03705)  --> STEP: 14175/15287 -- GLOBAL_STEP: 994750 | > loss_disc: 2.30991 (2.32121) | > loss_disc_real_0: 0.10310 (0.12269) | > loss_disc_real_1: 0.22881 (0.21128) | > loss_disc_real_2: 0.23345 (0.21568) | > loss_disc_real_3: 0.21608 (0.21934) | > loss_disc_real_4: 0.23202 (0.21492) | > loss_disc_real_5: 0.23969 (0.21404) | > loss_0: 2.30991 (2.32121) | > grad_norm_0: 7.14515 (16.70385) | > loss_gen: 2.74296 (2.55500) | > loss_kl: 2.65679 (2.65966) | > loss_feat: 8.77723 (8.67277) | > loss_mel: 18.24195 (17.76041) | > loss_duration: 1.69557 (1.70559) | > loss_1: 34.11449 (33.35345) | > grad_norm_1: 86.55031 (136.69786) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.75620 (2.20520) | > loader_time: 0.03530 (0.03705)  --> STEP: 14200/15287 -- GLOBAL_STEP: 994775 | > loss_disc: 2.40834 (2.32127) | > loss_disc_real_0: 0.10051 (0.12269) | > loss_disc_real_1: 0.25265 (0.21129) | > loss_disc_real_2: 0.22677 (0.21568) | > loss_disc_real_3: 0.19484 (0.21934) | > loss_disc_real_4: 0.21406 (0.21492) | > loss_disc_real_5: 0.23478 (0.21404) | > loss_0: 2.40834 (2.32127) | > grad_norm_0: 7.08017 (16.69353) | > loss_gen: 2.53600 (2.55501) | > loss_kl: 2.57647 (2.65974) | > loss_feat: 8.55975 (8.67265) | > loss_mel: 18.15417 (17.76044) | > loss_duration: 1.70289 (1.70559) | > loss_1: 33.52929 (33.35349) | > grad_norm_1: 148.42801 (136.63959) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33120 (2.20584) | > loader_time: 0.03820 (0.03704)  --> STEP: 14225/15287 -- GLOBAL_STEP: 994800 | > loss_disc: 2.51225 (2.32134) | > loss_disc_real_0: 0.12156 (0.12271) | > loss_disc_real_1: 0.19359 (0.21129) | > loss_disc_real_2: 0.20909 (0.21569) | > loss_disc_real_3: 0.21832 (0.21934) | > loss_disc_real_4: 0.23866 (0.21492) | > loss_disc_real_5: 0.21667 (0.21404) | > loss_0: 2.51225 (2.32134) | > grad_norm_0: 6.17210 (16.69216) | > loss_gen: 2.56846 (2.55495) | > loss_kl: 2.83393 (2.65974) | > loss_feat: 8.69496 (8.67246) | > loss_mel: 17.81478 (17.76052) | > loss_duration: 1.69804 (1.70560) | > loss_1: 33.61017 (33.35334) | > grad_norm_1: 61.55573 (136.56635) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00210 (2.20607) | > loader_time: 0.03510 (0.03704)  --> STEP: 14250/15287 -- GLOBAL_STEP: 994825 | > loss_disc: 2.37759 (2.32135) | > loss_disc_real_0: 0.11993 (0.12271) | > loss_disc_real_1: 0.18533 (0.21130) | > loss_disc_real_2: 0.23359 (0.21569) | > loss_disc_real_3: 0.24531 (0.21935) | > loss_disc_real_4: 0.24371 (0.21492) | > loss_disc_real_5: 0.21421 (0.21404) | > loss_0: 2.37759 (2.32135) | > grad_norm_0: 17.31763 (16.68242) | > loss_gen: 2.65750 (2.55499) | > loss_kl: 2.64825 (2.65976) | > loss_feat: 8.78659 (8.67240) | > loss_mel: 18.16175 (17.76061) | > loss_duration: 1.72261 (1.70562) | > loss_1: 33.97669 (33.35345) | > grad_norm_1: 119.11762 (136.45247) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23420 (2.20611) | > loader_time: 0.04090 (0.03704)  --> STEP: 14275/15287 -- GLOBAL_STEP: 994850 | > loss_disc: 2.34780 (2.32144) | > loss_disc_real_0: 0.10585 (0.12273) | > loss_disc_real_1: 0.20296 (0.21131) | > loss_disc_real_2: 0.24783 (0.21571) | > loss_disc_real_3: 0.20244 (0.21935) | > loss_disc_real_4: 0.22651 (0.21493) | > loss_disc_real_5: 0.22877 (0.21405) | > loss_0: 2.34780 (2.32144) | > grad_norm_0: 24.60392 (16.68200) | > loss_gen: 2.40808 (2.55497) | > loss_kl: 2.56966 (2.65972) | > loss_feat: 8.27724 (8.67220) | > loss_mel: 17.69302 (17.76086) | > loss_duration: 1.73180 (1.70563) | > loss_1: 32.67979 (33.35343) | > grad_norm_1: 104.86608 (136.41962) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05070 (2.20582) | > loader_time: 0.03770 (0.03705)  --> STEP: 14300/15287 -- GLOBAL_STEP: 994875 | > loss_disc: 2.26633 (2.32140) | > loss_disc_real_0: 0.12050 (0.12272) | > loss_disc_real_1: 0.19872 (0.21130) | > loss_disc_real_2: 0.19273 (0.21572) | > loss_disc_real_3: 0.23351 (0.21935) | > loss_disc_real_4: 0.19145 (0.21493) | > loss_disc_real_5: 0.22483 (0.21405) | > loss_0: 2.26633 (2.32140) | > grad_norm_0: 14.94201 (16.68203) | > loss_gen: 2.57065 (2.55494) | > loss_kl: 2.45213 (2.65976) | > loss_feat: 9.14897 (8.67211) | > loss_mel: 18.00717 (17.76087) | > loss_duration: 1.74406 (1.70564) | > loss_1: 33.92298 (33.35338) | > grad_norm_1: 93.86480 (136.42274) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99440 (2.20562) | > loader_time: 0.03590 (0.03705)  --> STEP: 14325/15287 -- GLOBAL_STEP: 994900 | > loss_disc: 2.32813 (2.32137) | > loss_disc_real_0: 0.20262 (0.12273) | > loss_disc_real_1: 0.23494 (0.21130) | > loss_disc_real_2: 0.18179 (0.21572) | > loss_disc_real_3: 0.23525 (0.21934) | > loss_disc_real_4: 0.20209 (0.21492) | > loss_disc_real_5: 0.21330 (0.21404) | > loss_0: 2.32813 (2.32137) | > grad_norm_0: 26.29066 (16.67962) | > loss_gen: 2.76357 (2.55494) | > loss_kl: 2.56715 (2.65976) | > loss_feat: 8.54649 (8.67212) | > loss_mel: 17.57159 (17.76087) | > loss_duration: 1.71264 (1.70564) | > loss_1: 33.16145 (33.35336) | > grad_norm_1: 119.18540 (136.41153) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08690 (2.20553) | > loader_time: 0.02980 (0.03705)  --> STEP: 14350/15287 -- GLOBAL_STEP: 994925 | > loss_disc: 2.32466 (2.32135) | > loss_disc_real_0: 0.13197 (0.12272) | > loss_disc_real_1: 0.23233 (0.21130) | > loss_disc_real_2: 0.22776 (0.21572) | > loss_disc_real_3: 0.22360 (0.21934) | > loss_disc_real_4: 0.21204 (0.21492) | > loss_disc_real_5: 0.24436 (0.21404) | > loss_0: 2.32466 (2.32135) | > grad_norm_0: 7.09333 (16.66854) | > loss_gen: 2.41206 (2.55492) | > loss_kl: 2.66106 (2.65978) | > loss_feat: 9.00624 (8.67222) | > loss_mel: 17.61675 (17.76103) | > loss_duration: 1.72291 (1.70566) | > loss_1: 33.41901 (33.35361) | > grad_norm_1: 173.08490 (136.34059) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04380 (2.20514) | > loader_time: 0.03700 (0.03705)  --> STEP: 14375/15287 -- GLOBAL_STEP: 994950 | > loss_disc: 2.32584 (2.32134) | > loss_disc_real_0: 0.15746 (0.12272) | > loss_disc_real_1: 0.20289 (0.21129) | > loss_disc_real_2: 0.21607 (0.21571) | > loss_disc_real_3: 0.20749 (0.21934) | > loss_disc_real_4: 0.24258 (0.21492) | > loss_disc_real_5: 0.20910 (0.21403) | > loss_0: 2.32584 (2.32134) | > grad_norm_0: 14.33765 (16.65992) | > loss_gen: 2.62366 (2.55491) | > loss_kl: 2.62101 (2.65978) | > loss_feat: 8.80243 (8.67225) | > loss_mel: 18.69868 (17.76111) | > loss_duration: 1.68876 (1.70568) | > loss_1: 34.43454 (33.35374) | > grad_norm_1: 111.80711 (136.26555) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98180 (2.20483) | > loader_time: 0.04140 (0.03705)  --> STEP: 14400/15287 -- GLOBAL_STEP: 994975 | > loss_disc: 2.29729 (2.32135) | > loss_disc_real_0: 0.12061 (0.12271) | > loss_disc_real_1: 0.21885 (0.21130) | > loss_disc_real_2: 0.21122 (0.21571) | > loss_disc_real_3: 0.20100 (0.21934) | > loss_disc_real_4: 0.21015 (0.21491) | > loss_disc_real_5: 0.21392 (0.21403) | > loss_0: 2.29729 (2.32135) | > grad_norm_0: 11.87691 (16.65363) | > loss_gen: 2.61803 (2.55488) | > loss_kl: 2.63380 (2.65983) | > loss_feat: 8.66860 (8.67225) | > loss_mel: 17.67691 (17.76109) | > loss_duration: 1.69277 (1.70569) | > loss_1: 33.29010 (33.35376) | > grad_norm_1: 100.43909 (136.23489) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40610 (2.20475) | > loader_time: 0.03260 (0.03704)  --> STEP: 14425/15287 -- GLOBAL_STEP: 995000 | > loss_disc: 2.32523 (2.32129) | > loss_disc_real_0: 0.14270 (0.12270) | > loss_disc_real_1: 0.18354 (0.21129) | > loss_disc_real_2: 0.19238 (0.21572) | > loss_disc_real_3: 0.22515 (0.21935) | > loss_disc_real_4: 0.22641 (0.21491) | > loss_disc_real_5: 0.25186 (0.21402) | > loss_0: 2.32523 (2.32129) | > grad_norm_0: 29.16098 (16.65509) | > loss_gen: 2.51009 (2.55492) | > loss_kl: 2.66177 (2.65981) | > loss_feat: 8.57235 (8.67243) | > loss_mel: 17.49371 (17.76110) | > loss_duration: 1.73110 (1.70570) | > loss_1: 32.96902 (33.35399) | > grad_norm_1: 57.28978 (136.24881) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20950 (2.20505) | > loader_time: 0.03080 (0.03704)  --> STEP: 14450/15287 -- GLOBAL_STEP: 995025 | > loss_disc: 2.30501 (2.32124) | > loss_disc_real_0: 0.15948 (0.12269) | > loss_disc_real_1: 0.20257 (0.21129) | > loss_disc_real_2: 0.21267 (0.21570) | > loss_disc_real_3: 0.21764 (0.21933) | > loss_disc_real_4: 0.21923 (0.21491) | > loss_disc_real_5: 0.22271 (0.21403) | > loss_0: 2.30501 (2.32124) | > grad_norm_0: 13.21260 (16.65441) | > loss_gen: 2.48122 (2.55490) | > loss_kl: 2.65019 (2.65980) | > loss_feat: 8.07007 (8.67252) | > loss_mel: 17.43599 (17.76117) | > loss_duration: 1.72235 (1.70571) | > loss_1: 32.35983 (33.35413) | > grad_norm_1: 95.80877 (136.25960) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31990 (2.20529) | > loader_time: 0.03580 (0.03704)  --> STEP: 14475/15287 -- GLOBAL_STEP: 995050 | > loss_disc: 2.25400 (2.32121) | > loss_disc_real_0: 0.10403 (0.12267) | > loss_disc_real_1: 0.18822 (0.21130) | > loss_disc_real_2: 0.22630 (0.21570) | > loss_disc_real_3: 0.19084 (0.21935) | > loss_disc_real_4: 0.19749 (0.21491) | > loss_disc_real_5: 0.20487 (0.21403) | > loss_0: 2.25400 (2.32121) | > grad_norm_0: 18.40222 (16.65961) | > loss_gen: 2.56719 (2.55491) | > loss_kl: 2.52676 (2.65976) | > loss_feat: 8.76282 (8.67267) | > loss_mel: 17.69780 (17.76085) | > loss_duration: 1.70526 (1.70571) | > loss_1: 33.25984 (33.35391) | > grad_norm_1: 172.24629 (136.29640) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30550 (2.20563) | > loader_time: 0.03450 (0.03704)  --> STEP: 14500/15287 -- GLOBAL_STEP: 995075 | > loss_disc: 2.26526 (2.32115) | > loss_disc_real_0: 0.09840 (0.12265) | > loss_disc_real_1: 0.17814 (0.21129) | > loss_disc_real_2: 0.18010 (0.21569) | > loss_disc_real_3: 0.23966 (0.21934) | > loss_disc_real_4: 0.20512 (0.21491) | > loss_disc_real_5: 0.19741 (0.21403) | > loss_0: 2.26526 (2.32115) | > grad_norm_0: 17.98482 (16.66144) | > loss_gen: 2.62208 (2.55490) | > loss_kl: 2.71643 (2.65971) | > loss_feat: 8.89666 (8.67268) | > loss_mel: 18.05208 (17.76061) | > loss_duration: 1.67202 (1.70571) | > loss_1: 33.95927 (33.35361) | > grad_norm_1: 184.19089 (136.34619) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.03580 (2.20630) | > loader_time: 0.03210 (0.03704)  --> STEP: 14525/15287 -- GLOBAL_STEP: 995100 | > loss_disc: 2.25887 (2.32109) | > loss_disc_real_0: 0.10933 (0.12265) | > loss_disc_real_1: 0.22990 (0.21128) | > loss_disc_real_2: 0.20926 (0.21568) | > loss_disc_real_3: 0.20471 (0.21934) | > loss_disc_real_4: 0.20262 (0.21490) | > loss_disc_real_5: 0.18371 (0.21404) | > loss_0: 2.25887 (2.32109) | > grad_norm_0: 16.45970 (16.66237) | > loss_gen: 2.64568 (2.55493) | > loss_kl: 2.85082 (2.65975) | > loss_feat: 8.76394 (8.67297) | > loss_mel: 17.68343 (17.76042) | > loss_duration: 1.71896 (1.70569) | > loss_1: 33.66283 (33.35378) | > grad_norm_1: 154.42715 (136.37244) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32660 (2.20712) | > loader_time: 0.03810 (0.03703)  --> STEP: 14550/15287 -- GLOBAL_STEP: 995125 | > loss_disc: 2.36241 (2.32109) | > loss_disc_real_0: 0.09654 (0.12264) | > loss_disc_real_1: 0.18769 (0.21129) | > loss_disc_real_2: 0.21797 (0.21568) | > loss_disc_real_3: 0.21422 (0.21933) | > loss_disc_real_4: 0.23759 (0.21490) | > loss_disc_real_5: 0.22076 (0.21405) | > loss_0: 2.36241 (2.32109) | > grad_norm_0: 26.44849 (16.66922) | > loss_gen: 2.43706 (2.55492) | > loss_kl: 2.77711 (2.65984) | > loss_feat: 8.61769 (8.67305) | > loss_mel: 17.39453 (17.76021) | > loss_duration: 1.74472 (1.70569) | > loss_1: 32.97111 (33.35371) | > grad_norm_1: 142.41583 (136.41191) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56730 (2.20802) | > loader_time: 0.03550 (0.03703)  --> STEP: 14575/15287 -- GLOBAL_STEP: 995150 | > loss_disc: 2.28211 (2.32105) | > loss_disc_real_0: 0.13201 (0.12264) | > loss_disc_real_1: 0.21621 (0.21129) | > loss_disc_real_2: 0.21555 (0.21568) | > loss_disc_real_3: 0.20465 (0.21933) | > loss_disc_real_4: 0.21658 (0.21490) | > loss_disc_real_5: 0.20753 (0.21404) | > loss_0: 2.28211 (2.32105) | > grad_norm_0: 24.45521 (16.67414) | > loss_gen: 2.56320 (2.55492) | > loss_kl: 2.72781 (2.65981) | > loss_feat: 9.01135 (8.67319) | > loss_mel: 18.12164 (17.76007) | > loss_duration: 1.69367 (1.70568) | > loss_1: 34.11766 (33.35368) | > grad_norm_1: 214.18518 (136.43892) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 4.12820 (2.20873) | > loader_time: 0.03310 (0.03703)  --> STEP: 14600/15287 -- GLOBAL_STEP: 995175 | > loss_disc: 2.33504 (2.32099) | > loss_disc_real_0: 0.09617 (0.12262) | > loss_disc_real_1: 0.22604 (0.21130) | > loss_disc_real_2: 0.21747 (0.21568) | > loss_disc_real_3: 0.24878 (0.21933) | > loss_disc_real_4: 0.23286 (0.21490) | > loss_disc_real_5: 0.24938 (0.21404) | > loss_0: 2.33504 (2.32099) | > grad_norm_0: 16.58625 (16.67751) | > loss_gen: 2.68153 (2.55497) | > loss_kl: 2.75266 (2.65977) | > loss_feat: 9.23332 (8.67343) | > loss_mel: 18.24733 (17.75992) | > loss_duration: 1.70738 (1.70570) | > loss_1: 34.62222 (33.35378) | > grad_norm_1: 183.00443 (136.48193) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72000 (2.20962) | > loader_time: 0.03150 (0.03703)  --> STEP: 14625/15287 -- GLOBAL_STEP: 995200 | > loss_disc: 2.38297 (2.32103) | > loss_disc_real_0: 0.14672 (0.12263) | > loss_disc_real_1: 0.22435 (0.21130) | > loss_disc_real_2: 0.21623 (0.21569) | > loss_disc_real_3: 0.23213 (0.21933) | > loss_disc_real_4: 0.23553 (0.21490) | > loss_disc_real_5: 0.21474 (0.21404) | > loss_0: 2.38297 (2.32103) | > grad_norm_0: 11.69022 (16.68251) | > loss_gen: 2.55349 (2.55493) | > loss_kl: 2.62598 (2.65984) | > loss_feat: 8.01038 (8.67330) | > loss_mel: 17.48013 (17.75988) | > loss_duration: 1.73685 (1.70571) | > loss_1: 32.40682 (33.35366) | > grad_norm_1: 149.50066 (136.51872) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.04650 (2.21054) | > loader_time: 0.04180 (0.03702)  --> STEP: 14650/15287 -- GLOBAL_STEP: 995225 | > loss_disc: 2.32192 (2.32102) | > loss_disc_real_0: 0.15405 (0.12263) | > loss_disc_real_1: 0.22268 (0.21130) | > loss_disc_real_2: 0.21434 (0.21569) | > loss_disc_real_3: 0.21654 (0.21933) | > loss_disc_real_4: 0.21643 (0.21489) | > loss_disc_real_5: 0.20077 (0.21404) | > loss_0: 2.32192 (2.32102) | > grad_norm_0: 6.54012 (16.68854) | > loss_gen: 2.41716 (2.55489) | > loss_kl: 2.64317 (2.65983) | > loss_feat: 9.05006 (8.67339) | > loss_mel: 17.74010 (17.75978) | > loss_duration: 1.69638 (1.70571) | > loss_1: 33.54688 (33.35359) | > grad_norm_1: 135.47318 (136.55428) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.82820 (2.21082) | > loader_time: 0.03360 (0.03702)  --> STEP: 14675/15287 -- GLOBAL_STEP: 995250 | > loss_disc: 2.34627 (2.32095) | > loss_disc_real_0: 0.10007 (0.12260) | > loss_disc_real_1: 0.19862 (0.21129) | > loss_disc_real_2: 0.21352 (0.21569) | > loss_disc_real_3: 0.22044 (0.21932) | > loss_disc_real_4: 0.17664 (0.21488) | > loss_disc_real_5: 0.20039 (0.21402) | > loss_0: 2.34627 (2.32095) | > grad_norm_0: 15.21786 (16.68632) | > loss_gen: 2.78031 (2.55516) | > loss_kl: 2.71169 (2.65992) | > loss_feat: 8.85260 (8.67390) | > loss_mel: 18.25318 (17.76013) | > loss_duration: 1.70744 (1.70573) | > loss_1: 34.30522 (33.35482) | > grad_norm_1: 482.33630 (136.63345) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17580 (2.21067) | > loader_time: 0.03400 (0.03702)  --> STEP: 14700/15287 -- GLOBAL_STEP: 995275 | > loss_disc: 2.30621 (2.32123) | > loss_disc_real_0: 0.09998 (0.12262) | > loss_disc_real_1: 0.22163 (0.21131) | > loss_disc_real_2: 0.22219 (0.21570) | > loss_disc_real_3: 0.21780 (0.21934) | > loss_disc_real_4: 0.22359 (0.21491) | > loss_disc_real_5: 0.27011 (0.21409) | > loss_0: 2.30621 (2.32123) | > grad_norm_0: 13.08734 (16.73463) | > loss_gen: 2.50760 (2.55501) | > loss_kl: 2.64683 (2.65986) | > loss_feat: 8.36527 (8.67330) | > loss_mel: 17.59350 (17.76051) | > loss_duration: 1.70313 (1.70574) | > loss_1: 32.81633 (33.35442) | > grad_norm_1: 166.39839 (136.66354) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.49540 (2.21054) | > loader_time: 0.03880 (0.03702)  --> STEP: 14725/15287 -- GLOBAL_STEP: 995300 | > loss_disc: 2.27835 (2.32122) | > loss_disc_real_0: 0.08057 (0.12261) | > loss_disc_real_1: 0.21091 (0.21130) | > loss_disc_real_2: 0.20069 (0.21570) | > loss_disc_real_3: 0.21850 (0.21933) | > loss_disc_real_4: 0.20970 (0.21491) | > loss_disc_real_5: 0.20536 (0.21408) | > loss_0: 2.27835 (2.32122) | > grad_norm_0: 28.74171 (16.74331) | > loss_gen: 2.53375 (2.55495) | > loss_kl: 2.56356 (2.65982) | > loss_feat: 8.40448 (8.67326) | > loss_mel: 17.53044 (17.76055) | > loss_duration: 1.70354 (1.70574) | > loss_1: 32.73577 (33.35431) | > grad_norm_1: 245.85526 (136.68817) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19670 (2.21034) | > loader_time: 0.03770 (0.03702)  --> STEP: 14750/15287 -- GLOBAL_STEP: 995325 | > loss_disc: 2.26546 (2.32117) | > loss_disc_real_0: 0.08038 (0.12260) | > loss_disc_real_1: 0.22266 (0.21129) | > loss_disc_real_2: 0.21974 (0.21569) | > loss_disc_real_3: 0.21775 (0.21933) | > loss_disc_real_4: 0.21466 (0.21491) | > loss_disc_real_5: 0.24350 (0.21408) | > loss_0: 2.26546 (2.32117) | > grad_norm_0: 9.75179 (16.74283) | > loss_gen: 2.57537 (2.55496) | > loss_kl: 2.73694 (2.65986) | > loss_feat: 9.00443 (8.67343) | > loss_mel: 17.64370 (17.76076) | > loss_duration: 1.71129 (1.70575) | > loss_1: 33.67173 (33.35475) | > grad_norm_1: 110.69646 (136.71971) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06710 (2.21039) | > loader_time: 0.03370 (0.03703)  --> STEP: 14775/15287 -- GLOBAL_STEP: 995350 | > loss_disc: 2.30662 (2.32119) | > loss_disc_real_0: 0.09598 (0.12260) | > loss_disc_real_1: 0.19438 (0.21130) | > loss_disc_real_2: 0.20261 (0.21570) | > loss_disc_real_3: 0.20574 (0.21933) | > loss_disc_real_4: 0.22444 (0.21491) | > loss_disc_real_5: 0.20051 (0.21409) | > loss_0: 2.30662 (2.32119) | > grad_norm_0: 28.47036 (16.75650) | > loss_gen: 2.50422 (2.55495) | > loss_kl: 2.64741 (2.65993) | > loss_feat: 8.98577 (8.67328) | > loss_mel: 18.06571 (17.76059) | > loss_duration: 1.71649 (1.70576) | > loss_1: 33.91961 (33.35448) | > grad_norm_1: 242.71826 (136.82405) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.65240 (2.21055) | > loader_time: 0.03320 (0.03703)  --> STEP: 14800/15287 -- GLOBAL_STEP: 995375 | > loss_disc: 2.29399 (2.32117) | > loss_disc_real_0: 0.11463 (0.12260) | > loss_disc_real_1: 0.22344 (0.21128) | > loss_disc_real_2: 0.21959 (0.21569) | > loss_disc_real_3: 0.22301 (0.21932) | > loss_disc_real_4: 0.21409 (0.21490) | > loss_disc_real_5: 0.24172 (0.21408) | > loss_0: 2.29399 (2.32117) | > grad_norm_0: 21.15749 (16.76547) | > loss_gen: 2.79085 (2.55488) | > loss_kl: 2.62988 (2.65991) | > loss_feat: 8.68773 (8.67327) | > loss_mel: 17.77606 (17.76035) | > loss_duration: 1.73416 (1.70575) | > loss_1: 33.61868 (33.35414) | > grad_norm_1: 160.93880 (136.90034) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.83190 (2.21041) | > loader_time: 0.04840 (0.03704)  --> STEP: 14825/15287 -- GLOBAL_STEP: 995400 | > loss_disc: 2.34023 (2.32113) | > loss_disc_real_0: 0.13286 (0.12258) | > loss_disc_real_1: 0.24004 (0.21128) | > loss_disc_real_2: 0.20883 (0.21569) | > loss_disc_real_3: 0.22426 (0.21932) | > loss_disc_real_4: 0.17458 (0.21490) | > loss_disc_real_5: 0.20866 (0.21407) | > loss_0: 2.34023 (2.32113) | > grad_norm_0: 6.01194 (16.76558) | > loss_gen: 2.43442 (2.55486) | > loss_kl: 2.79223 (2.65995) | > loss_feat: 9.11099 (8.67333) | > loss_mel: 18.41965 (17.76022) | > loss_duration: 1.74901 (1.70576) | > loss_1: 34.50632 (33.35411) | > grad_norm_1: 166.13560 (136.93423) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99290 (2.21018) | > loader_time: 0.04330 (0.03704)  --> STEP: 14850/15287 -- GLOBAL_STEP: 995425 | > loss_disc: 2.28066 (2.32116) | > loss_disc_real_0: 0.09958 (0.12257) | > loss_disc_real_1: 0.23769 (0.21127) | > loss_disc_real_2: 0.22765 (0.21570) | > loss_disc_real_3: 0.23720 (0.21931) | > loss_disc_real_4: 0.19184 (0.21491) | > loss_disc_real_5: 0.20628 (0.21408) | > loss_0: 2.28066 (2.32116) | > grad_norm_0: 20.22082 (16.76707) | > loss_gen: 2.58433 (2.55481) | > loss_kl: 2.66382 (2.65996) | > loss_feat: 8.75612 (8.67328) | > loss_mel: 17.35823 (17.76029) | > loss_duration: 1.69951 (1.70576) | > loss_1: 33.06201 (33.35410) | > grad_norm_1: 62.21805 (136.96637) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72840 (2.21070) | > loader_time: 0.03210 (0.03704)  --> STEP: 14875/15287 -- GLOBAL_STEP: 995450 | > loss_disc: 2.27132 (2.32120) | > loss_disc_real_0: 0.15660 (0.12258) | > loss_disc_real_1: 0.20031 (0.21128) | > loss_disc_real_2: 0.22854 (0.21570) | > loss_disc_real_3: 0.22336 (0.21931) | > loss_disc_real_4: 0.20629 (0.21491) | > loss_disc_real_5: 0.19711 (0.21408) | > loss_0: 2.27132 (2.32120) | > grad_norm_0: 29.10234 (16.76460) | > loss_gen: 2.58214 (2.55479) | > loss_kl: 2.61322 (2.65994) | > loss_feat: 8.57865 (8.67300) | > loss_mel: 17.70355 (17.76021) | > loss_duration: 1.74037 (1.70576) | > loss_1: 33.21793 (33.35369) | > grad_norm_1: 99.47395 (136.91997) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09690 (2.21062) | > loader_time: 0.03430 (0.03704)  --> STEP: 14900/15287 -- GLOBAL_STEP: 995475 | > loss_disc: 2.28755 (2.32120) | > loss_disc_real_0: 0.08889 (0.12257) | > loss_disc_real_1: 0.20566 (0.21128) | > loss_disc_real_2: 0.21955 (0.21570) | > loss_disc_real_3: 0.22482 (0.21931) | > loss_disc_real_4: 0.22804 (0.21490) | > loss_disc_real_5: 0.21355 (0.21407) | > loss_0: 2.28755 (2.32120) | > grad_norm_0: 15.54075 (16.76082) | > loss_gen: 2.59721 (2.55480) | > loss_kl: 2.60453 (2.65992) | > loss_feat: 9.01386 (8.67318) | > loss_mel: 17.60364 (17.76027) | > loss_duration: 1.70374 (1.70578) | > loss_1: 33.52298 (33.35394) | > grad_norm_1: 145.55626 (136.91225) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09370 (2.21067) | > loader_time: 0.04530 (0.03705)  --> STEP: 14925/15287 -- GLOBAL_STEP: 995500 | > loss_disc: 2.36097 (2.32120) | > loss_disc_real_0: 0.10734 (0.12256) | > loss_disc_real_1: 0.22063 (0.21129) | > loss_disc_real_2: 0.23332 (0.21570) | > loss_disc_real_3: 0.21614 (0.21931) | > loss_disc_real_4: 0.23727 (0.21490) | > loss_disc_real_5: 0.20044 (0.21407) | > loss_0: 2.36097 (2.32120) | > grad_norm_0: 7.50702 (16.76708) | > loss_gen: 2.61124 (2.55483) | > loss_kl: 2.54492 (2.65990) | > loss_feat: 8.92460 (8.67327) | > loss_mel: 17.74599 (17.76041) | > loss_duration: 1.70743 (1.70578) | > loss_1: 33.53419 (33.35417) | > grad_norm_1: 175.61057 (136.94121) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02800 (2.21061) | > loader_time: 0.04200 (0.03705)  --> STEP: 14950/15287 -- GLOBAL_STEP: 995525 | > loss_disc: 2.30485 (2.32119) | > loss_disc_real_0: 0.09958 (0.12255) | > loss_disc_real_1: 0.22992 (0.21127) | > loss_disc_real_2: 0.23736 (0.21570) | > loss_disc_real_3: 0.19899 (0.21931) | > loss_disc_real_4: 0.19503 (0.21489) | > loss_disc_real_5: 0.18454 (0.21408) | > loss_0: 2.30485 (2.32119) | > grad_norm_0: 12.83249 (16.77285) | > loss_gen: 2.57422 (2.55481) | > loss_kl: 2.77044 (2.65986) | > loss_feat: 8.81778 (8.67328) | > loss_mel: 17.63484 (17.76047) | > loss_duration: 1.64528 (1.70578) | > loss_1: 33.44256 (33.35416) | > grad_norm_1: 184.90398 (136.98079) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.01150 (2.21081) | > loader_time: 0.05020 (0.03706)  --> STEP: 14975/15287 -- GLOBAL_STEP: 995550 | > loss_disc: 2.34855 (2.32113) | > loss_disc_real_0: 0.11363 (0.12254) | > loss_disc_real_1: 0.21023 (0.21126) | > loss_disc_real_2: 0.21969 (0.21570) | > loss_disc_real_3: 0.20582 (0.21932) | > loss_disc_real_4: 0.22377 (0.21489) | > loss_disc_real_5: 0.20259 (0.21408) | > loss_0: 2.34855 (2.32113) | > grad_norm_0: 26.83091 (16.77902) | > loss_gen: 2.52403 (2.55483) | > loss_kl: 2.74195 (2.65982) | > loss_feat: 9.37651 (8.67336) | > loss_mel: 17.79100 (17.76027) | > loss_duration: 1.70430 (1.70578) | > loss_1: 34.13779 (33.35403) | > grad_norm_1: 245.25482 (137.05597) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44510 (2.21124) | > loader_time: 0.03770 (0.03707)  --> STEP: 15000/15287 -- GLOBAL_STEP: 995575 | > loss_disc: 2.35730 (2.32114) | > loss_disc_real_0: 0.16717 (0.12254) | > loss_disc_real_1: 0.24978 (0.21127) | > loss_disc_real_2: 0.21908 (0.21570) | > loss_disc_real_3: 0.26769 (0.21932) | > loss_disc_real_4: 0.23597 (0.21489) | > loss_disc_real_5: 0.23957 (0.21408) | > loss_0: 2.35730 (2.32114) | > grad_norm_0: 12.66388 (16.78504) | > loss_gen: 2.72841 (2.55484) | > loss_kl: 2.52317 (2.65976) | > loss_feat: 8.27981 (8.67338) | > loss_mel: 17.61312 (17.76036) | > loss_duration: 1.74563 (1.70578) | > loss_1: 32.89014 (33.35408) | > grad_norm_1: 158.81084 (137.11516) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17760 (2.21092) | > loader_time: 0.05040 (0.03707)  --> STEP: 15025/15287 -- GLOBAL_STEP: 995600 | > loss_disc: 2.34061 (2.32116) | > loss_disc_real_0: 0.12444 (0.12253) | > loss_disc_real_1: 0.21974 (0.21127) | > loss_disc_real_2: 0.19683 (0.21571) | > loss_disc_real_3: 0.22060 (0.21932) | > loss_disc_real_4: 0.23820 (0.21490) | > loss_disc_real_5: 0.23228 (0.21409) | > loss_0: 2.34061 (2.32116) | > grad_norm_0: 27.23599 (16.79164) | > loss_gen: 2.56625 (2.55482) | > loss_kl: 2.62013 (2.65978) | > loss_feat: 8.44347 (8.67316) | > loss_mel: 17.88642 (17.76040) | > loss_duration: 1.71217 (1.70579) | > loss_1: 33.22844 (33.35391) | > grad_norm_1: 193.63663 (137.15646) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.79740 (2.21102) | > loader_time: 0.04490 (0.03708)  --> STEP: 15050/15287 -- GLOBAL_STEP: 995625 | > loss_disc: 2.29218 (2.32113) | > loss_disc_real_0: 0.11077 (0.12252) | > loss_disc_real_1: 0.20281 (0.21127) | > loss_disc_real_2: 0.19990 (0.21570) | > loss_disc_real_3: 0.19157 (0.21932) | > loss_disc_real_4: 0.20801 (0.21490) | > loss_disc_real_5: 0.22885 (0.21409) | > loss_0: 2.29218 (2.32113) | > grad_norm_0: 18.58426 (16.79004) | > loss_gen: 2.52981 (2.55480) | > loss_kl: 2.74365 (2.65974) | > loss_feat: 8.81298 (8.67303) | > loss_mel: 17.87790 (17.76048) | > loss_duration: 1.66753 (1.70580) | > loss_1: 33.63188 (33.35382) | > grad_norm_1: 166.48506 (137.17943) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31750 (2.21174) | > loader_time: 0.04340 (0.03708)  --> STEP: 15075/15287 -- GLOBAL_STEP: 995650 | > loss_disc: 2.26521 (2.32110) | > loss_disc_real_0: 0.09431 (0.12252) | > loss_disc_real_1: 0.19871 (0.21127) | > loss_disc_real_2: 0.19452 (0.21570) | > loss_disc_real_3: 0.21359 (0.21931) | > loss_disc_real_4: 0.17168 (0.21489) | > loss_disc_real_5: 0.24000 (0.21409) | > loss_0: 2.26521 (2.32110) | > grad_norm_0: 23.66784 (16.78456) | > loss_gen: 2.50241 (2.55480) | > loss_kl: 2.80910 (2.65972) | > loss_feat: 9.54494 (8.67300) | > loss_mel: 18.08857 (17.76034) | > loss_duration: 1.66725 (1.70581) | > loss_1: 34.61228 (33.35363) | > grad_norm_1: 101.99254 (137.19623) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02540 (2.21158) | > loader_time: 0.04430 (0.03708)  --> STEP: 15100/15287 -- GLOBAL_STEP: 995675 | > loss_disc: 2.32594 (2.32110) | > loss_disc_real_0: 0.09162 (0.12252) | > loss_disc_real_1: 0.20431 (0.21127) | > loss_disc_real_2: 0.22205 (0.21570) | > loss_disc_real_3: 0.23156 (0.21932) | > loss_disc_real_4: 0.21133 (0.21490) | > loss_disc_real_5: 0.21223 (0.21409) | > loss_0: 2.32594 (2.32110) | > grad_norm_0: 14.16650 (16.79069) | > loss_gen: 2.75997 (2.55484) | > loss_kl: 2.86336 (2.65978) | > loss_feat: 8.97243 (8.67305) | > loss_mel: 17.55310 (17.76021) | > loss_duration: 1.66107 (1.70579) | > loss_1: 33.80993 (33.35363) | > grad_norm_1: 162.82848 (137.21394) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.94530 (2.21138) | > loader_time: 0.03760 (0.03708)  --> STEP: 15125/15287 -- GLOBAL_STEP: 995700 | > loss_disc: 2.37175 (2.32108) | > loss_disc_real_0: 0.12367 (0.12251) | > loss_disc_real_1: 0.23641 (0.21126) | > loss_disc_real_2: 0.23996 (0.21569) | > loss_disc_real_3: 0.19329 (0.21931) | > loss_disc_real_4: 0.21991 (0.21490) | > loss_disc_real_5: 0.19248 (0.21409) | > loss_0: 2.37175 (2.32108) | > grad_norm_0: 19.76334 (16.79455) | > loss_gen: 2.53780 (2.55482) | > loss_kl: 2.73263 (2.65983) | > loss_feat: 8.61423 (8.67312) | > loss_mel: 17.21362 (17.76028) | > loss_duration: 1.71134 (1.70579) | > loss_1: 32.80962 (33.35379) | > grad_norm_1: 235.70950 (137.25897) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.81210 (2.21149) | > loader_time: 0.04310 (0.03709)  --> STEP: 15150/15287 -- GLOBAL_STEP: 995725 | > loss_disc: 2.31398 (2.32108) | > loss_disc_real_0: 0.14835 (0.12251) | > loss_disc_real_1: 0.17687 (0.21128) | > loss_disc_real_2: 0.19033 (0.21570) | > loss_disc_real_3: 0.21383 (0.21932) | > loss_disc_real_4: 0.21894 (0.21490) | > loss_disc_real_5: 0.22791 (0.21409) | > loss_0: 2.31398 (2.32108) | > grad_norm_0: 13.46095 (16.79781) | > loss_gen: 2.47646 (2.55491) | > loss_kl: 2.59664 (2.65980) | > loss_feat: 8.61004 (8.67320) | > loss_mel: 17.18406 (17.76026) | > loss_duration: 1.70358 (1.70579) | > loss_1: 32.57079 (33.35391) | > grad_norm_1: 153.15099 (137.30246) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01250 (2.21128) | > loader_time: 0.04160 (0.03709)  --> STEP: 15175/15287 -- GLOBAL_STEP: 995750 | > loss_disc: 2.32753 (2.32106) | > loss_disc_real_0: 0.12498 (0.12250) | > loss_disc_real_1: 0.20442 (0.21129) | > loss_disc_real_2: 0.18211 (0.21569) | > loss_disc_real_3: 0.21916 (0.21931) | > loss_disc_real_4: 0.21104 (0.21490) | > loss_disc_real_5: 0.22750 (0.21409) | > loss_0: 2.32753 (2.32106) | > grad_norm_0: 9.85432 (16.80116) | > loss_gen: 2.51130 (2.55491) | > loss_kl: 2.68239 (2.65982) | > loss_feat: 9.61931 (8.67338) | > loss_mel: 18.53206 (17.76021) | > loss_duration: 1.69608 (1.70578) | > loss_1: 35.04113 (33.35406) | > grad_norm_1: 99.51153 (137.35542) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.84000 (2.21110) | > loader_time: 0.04480 (0.03710)  --> STEP: 15200/15287 -- GLOBAL_STEP: 995775 | > loss_disc: 2.32298 (2.32105) | > loss_disc_real_0: 0.18337 (0.12250) | > loss_disc_real_1: 0.20832 (0.21128) | > loss_disc_real_2: 0.20662 (0.21570) | > loss_disc_real_3: 0.21196 (0.21931) | > loss_disc_real_4: 0.19326 (0.21489) | > loss_disc_real_5: 0.21075 (0.21409) | > loss_0: 2.32298 (2.32105) | > grad_norm_0: 29.77632 (16.80137) | > loss_gen: 2.74572 (2.55490) | > loss_kl: 2.57028 (2.65983) | > loss_feat: 8.60645 (8.67335) | > loss_mel: 17.54728 (17.76022) | > loss_duration: 1.65165 (1.70578) | > loss_1: 33.12137 (33.35404) | > grad_norm_1: 197.03333 (137.38313) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.69240 (2.21113) | > loader_time: 0.04630 (0.03710)  --> STEP: 15225/15287 -- GLOBAL_STEP: 995800 | > loss_disc: 2.35045 (2.32105) | > loss_disc_real_0: 0.16334 (0.12250) | > loss_disc_real_1: 0.18692 (0.21129) | > loss_disc_real_2: 0.22161 (0.21569) | > loss_disc_real_3: 0.20370 (0.21931) | > loss_disc_real_4: 0.22170 (0.21489) | > loss_disc_real_5: 0.21125 (0.21408) | > loss_0: 2.35045 (2.32105) | > grad_norm_0: 11.34047 (16.80021) | > loss_gen: 2.51795 (2.55492) | > loss_kl: 2.56487 (2.65983) | > loss_feat: 8.62037 (8.67342) | > loss_mel: 17.86193 (17.76026) | > loss_duration: 1.73083 (1.70577) | > loss_1: 33.29594 (33.35418) | > grad_norm_1: 159.18178 (137.39308) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05050 (2.21155) | > loader_time: 0.04500 (0.03710)  --> STEP: 15250/15287 -- GLOBAL_STEP: 995825 | > loss_disc: 2.32027 (2.32108) | > loss_disc_real_0: 0.12256 (0.12250) | > loss_disc_real_1: 0.20691 (0.21129) | > loss_disc_real_2: 0.21213 (0.21569) | > loss_disc_real_3: 0.22316 (0.21931) | > loss_disc_real_4: 0.21525 (0.21490) | > loss_disc_real_5: 0.21293 (0.21408) | > loss_0: 2.32027 (2.32108) | > grad_norm_0: 5.62882 (16.80264) | > loss_gen: 2.60365 (2.55489) | > loss_kl: 2.67761 (2.65983) | > loss_feat: 8.82037 (8.67324) | > loss_mel: 17.47537 (17.76035) | > loss_duration: 1.67930 (1.70577) | > loss_1: 33.25630 (33.35404) | > grad_norm_1: 158.26395 (137.43059) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91390 (2.21120) | > loader_time: 0.03630 (0.03711)  --> STEP: 15275/15287 -- GLOBAL_STEP: 995850 | > loss_disc: 2.42311 (2.32108) | > loss_disc_real_0: 0.14795 (0.12249) | > loss_disc_real_1: 0.25591 (0.21129) | > loss_disc_real_2: 0.24195 (0.21568) | > loss_disc_real_3: 0.21556 (0.21930) | > loss_disc_real_4: 0.22390 (0.21490) | > loss_disc_real_5: 0.20225 (0.21410) | > loss_0: 2.42311 (2.32108) | > grad_norm_0: 6.23681 (16.80314) | > loss_gen: 2.36191 (2.55487) | > loss_kl: 2.62900 (2.65982) | > loss_feat: 7.87834 (8.67328) | > loss_mel: 17.51174 (17.76031) | > loss_duration: 1.69138 (1.70577) | > loss_1: 32.07238 (33.35403) | > grad_norm_1: 116.13625 (137.45721) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99390 (2.21075) | > loader_time: 0.03870 (0.03712)  > EVALUATION   --> STEP: 0 | > loss_disc: 2.32476 (2.32476) | > loss_disc_real_0: 0.09553 (0.09553) | > loss_disc_real_1: 0.22666 (0.22666) | > loss_disc_real_2: 0.22928 (0.22928) | > loss_disc_real_3: 0.23661 (0.23661) | > loss_disc_real_4: 0.24004 (0.24004) | > loss_disc_real_5: 0.21747 (0.21747) | > loss_0: 2.32476 (2.32476) | > loss_gen: 2.51101 (2.51101) | > loss_kl: 2.77866 (2.77866) | > loss_feat: 8.73833 (8.73833) | > loss_mel: 18.19351 (18.19351) | > loss_duration: 1.73581 (1.73581) | > loss_1: 33.95732 (33.95732)  --> STEP: 1 | > loss_disc: 2.36894 (2.36894) | > loss_disc_real_0: 0.11390 (0.11390) | > loss_disc_real_1: 0.23116 (0.23116) | > loss_disc_real_2: 0.23626 (0.23626) | > loss_disc_real_3: 0.24086 (0.24086) | > loss_disc_real_4: 0.23545 (0.23545) | > loss_disc_real_5: 0.20918 (0.20918) | > loss_0: 2.36894 (2.36894) | > loss_gen: 2.40247 (2.40247) | > loss_kl: 2.76842 (2.76842) | > loss_feat: 7.61686 (7.61686) | > loss_mel: 17.72628 (17.72628) | > loss_duration: 1.68892 (1.68892) | > loss_1: 32.20296 (32.20296)  --> STEP: 2 | > loss_disc: 2.37691 (2.37292) | > loss_disc_real_0: 0.11306 (0.11348) | > loss_disc_real_1: 0.21901 (0.22508) | > loss_disc_real_2: 0.23530 (0.23578) | > loss_disc_real_3: 0.22431 (0.23258) | > loss_disc_real_4: 0.22300 (0.22923) | > loss_disc_real_5: 0.22699 (0.21809) | > loss_0: 2.37691 (2.37292) | > loss_gen: 2.43813 (2.42030) | > loss_kl: 2.68960 (2.72901) | > loss_feat: 8.60443 (8.11065) | > loss_mel: 17.54593 (17.63611) | > loss_duration: 1.65207 (1.67050) | > loss_1: 32.93018 (32.56657)  --> STEP: 3 | > loss_disc: 2.33769 (2.36118) | > loss_disc_real_0: 0.12324 (0.11673) | > loss_disc_real_1: 0.21734 (0.22250) | > loss_disc_real_2: 0.24177 (0.23777) | > loss_disc_real_3: 0.22172 (0.22896) | > loss_disc_real_4: 0.22471 (0.22772) | > loss_disc_real_5: 0.20879 (0.21499) | > loss_0: 2.33769 (2.36118) | > loss_gen: 2.43707 (2.42589) | > loss_kl: 2.67678 (2.71160) | > loss_feat: 8.24321 (8.15483) | > loss_mel: 18.02637 (17.76620) | > loss_duration: 1.71814 (1.68638) | > loss_1: 33.10157 (32.74490)  --> STEP: 4 | > loss_disc: 2.35193 (2.35887) | > loss_disc_real_0: 0.12142 (0.11790) | > loss_disc_real_1: 0.22266 (0.22254) | > loss_disc_real_2: 0.24085 (0.23854) | > loss_disc_real_3: 0.23317 (0.23001) | > loss_disc_real_4: 0.23602 (0.22980) | > loss_disc_real_5: 0.21797 (0.21573) | > loss_0: 2.35193 (2.35887) | > loss_gen: 2.50341 (2.44527) | > loss_kl: 2.85131 (2.74653) | > loss_feat: 8.32617 (8.19767) | > loss_mel: 17.97474 (17.81833) | > loss_duration: 1.77176 (1.70773) | > loss_1: 33.42740 (32.91553)  --> STEP: 5 | > loss_disc: 2.30358 (2.34781) | > loss_disc_real_0: 0.11270 (0.11686) | > loss_disc_real_1: 0.21708 (0.22145) | > loss_disc_real_2: 0.23586 (0.23801) | > loss_disc_real_3: 0.21196 (0.22640) | > loss_disc_real_4: 0.23598 (0.23103) | > loss_disc_real_5: 0.20549 (0.21368) | > loss_0: 2.30358 (2.34781) | > loss_gen: 2.51229 (2.45867) | > loss_kl: 2.81967 (2.76116) | > loss_feat: 8.67028 (8.29219) | > loss_mel: 18.35281 (17.92523) | > loss_duration: 1.72723 (1.71163) | > loss_1: 34.08228 (33.14888)  --> STEP: 6 | > loss_disc: 2.29423 (2.33888) | > loss_disc_real_0: 0.11179 (0.11602) | > loss_disc_real_1: 0.19991 (0.21786) | > loss_disc_real_2: 0.22115 (0.23520) | > loss_disc_real_3: 0.21723 (0.22487) | > loss_disc_real_4: 0.22549 (0.23011) | > loss_disc_real_5: 0.19933 (0.21129) | > loss_0: 2.29423 (2.33888) | > loss_gen: 2.42378 (2.45286) | > loss_kl: 2.79154 (2.76622) | > loss_feat: 8.57328 (8.33904) | > loss_mel: 18.21935 (17.97425) | > loss_duration: 1.68878 (1.70782) | > loss_1: 33.69674 (33.24019)  --> STEP: 7 | > loss_disc: 2.28362 (2.33099) | > loss_disc_real_0: 0.09921 (0.11362) | > loss_disc_real_1: 0.22148 (0.21838) | > loss_disc_real_2: 0.22938 (0.23437) | > loss_disc_real_3: 0.21710 (0.22376) | > loss_disc_real_4: 0.22578 (0.22949) | > loss_disc_real_5: 0.20167 (0.20992) | > loss_0: 2.28362 (2.33099) | > loss_gen: 2.51545 (2.46180) | > loss_kl: 2.82822 (2.77508) | > loss_feat: 8.99786 (8.43316) | > loss_mel: 18.04897 (17.98492) | > loss_duration: 1.75436 (1.71447) | > loss_1: 34.14486 (33.36943)  --> STEP: 8 | > loss_disc: 2.30402 (2.32761) | > loss_disc_real_0: 0.10876 (0.11301) | > loss_disc_real_1: 0.21402 (0.21783) | > loss_disc_real_2: 0.22640 (0.23337) | > loss_disc_real_3: 0.21528 (0.22270) | > loss_disc_real_4: 0.21659 (0.22788) | > loss_disc_real_5: 0.23430 (0.21296) | > loss_0: 2.30402 (2.32761) | > loss_gen: 2.47353 (2.46327) | > loss_kl: 2.76737 (2.77412) | > loss_feat: 8.71795 (8.46876) | > loss_mel: 17.73139 (17.95323) | > loss_duration: 1.71113 (1.71405) | > loss_1: 33.40138 (33.37342)  --> STEP: 9 | > loss_disc: 2.30527 (2.32513) | > loss_disc_real_0: 0.10534 (0.11216) | > loss_disc_real_1: 0.22825 (0.21899) | > loss_disc_real_2: 0.23497 (0.23355) | > loss_disc_real_3: 0.23524 (0.22410) | > loss_disc_real_4: 0.23004 (0.22812) | > loss_disc_real_5: 0.21505 (0.21320) | > loss_0: 2.30527 (2.32513) | > loss_gen: 2.52283 (2.46988) | > loss_kl: 2.69725 (2.76558) | > loss_feat: 8.36274 (8.45698) | > loss_mel: 17.68536 (17.92347) | > loss_duration: 1.67976 (1.71024) | > loss_1: 32.94793 (33.32615)  --> STEP: 10 | > loss_disc: 2.36453 (2.32907) | > loss_disc_real_0: 0.11651 (0.11259) | > loss_disc_real_1: 0.22066 (0.21916) | > loss_disc_real_2: 0.24397 (0.23459) | > loss_disc_real_3: 0.24319 (0.22600) | > loss_disc_real_4: 0.23877 (0.22918) | > loss_disc_real_5: 0.20846 (0.21272) | > loss_0: 2.36453 (2.32907) | > loss_gen: 2.43469 (2.46636) | > loss_kl: 2.75718 (2.76474) | > loss_feat: 8.33024 (8.44430) | > loss_mel: 17.83672 (17.91479) | > loss_duration: 1.75184 (1.71440) | > loss_1: 33.11067 (33.30460)  --> STEP: 11 | > loss_disc: 2.31613 (2.32790) | > loss_disc_real_0: 0.09592 (0.11108) | > loss_disc_real_1: 0.23125 (0.22026) | > loss_disc_real_2: 0.24644 (0.23567) | > loss_disc_real_3: 0.23861 (0.22715) | > loss_disc_real_4: 0.23146 (0.22939) | > loss_disc_real_5: 0.20879 (0.21237) | > loss_0: 2.31613 (2.32790) | > loss_gen: 2.49818 (2.46926) | > loss_kl: 2.76962 (2.76518) | > loss_feat: 8.18646 (8.42086) | > loss_mel: 17.90339 (17.91376) | > loss_duration: 1.73874 (1.71661) | > loss_1: 33.09638 (33.28567)  --> STEP: 12 | > loss_disc: 2.32074 (2.32730) | > loss_disc_real_0: 0.11425 (0.11134) | > loss_disc_real_1: 0.22527 (0.22067) | > loss_disc_real_2: 0.23242 (0.23540) | > loss_disc_real_3: 0.23649 (0.22793) | > loss_disc_real_4: 0.21894 (0.22852) | > loss_disc_real_5: 0.22895 (0.21375) | > loss_0: 2.32074 (2.32730) | > loss_gen: 2.51218 (2.47283) | > loss_kl: 2.73122 (2.76235) | > loss_feat: 8.86234 (8.45765) | > loss_mel: 18.03995 (17.92427) | > loss_duration: 1.74503 (1.71898) | > loss_1: 33.89071 (33.33609)  --> STEP: 13 | > loss_disc: 2.31786 (2.32657) | > loss_disc_real_0: 0.11314 (0.11148) | > loss_disc_real_1: 0.22640 (0.22112) | > loss_disc_real_2: 0.22290 (0.23444) | > loss_disc_real_3: 0.22716 (0.22787) | > loss_disc_real_4: 0.20290 (0.22655) | > loss_disc_real_5: 0.20627 (0.21317) | > loss_0: 2.31786 (2.32657) | > loss_gen: 2.41649 (2.46850) | > loss_kl: 2.75724 (2.76196) | > loss_feat: 8.03409 (8.42507) | > loss_mel: 17.68296 (17.90571) | > loss_duration: 1.71874 (1.71896) | > loss_1: 32.60952 (33.28020)  --> STEP: 14 | > loss_disc: 2.28424 (2.32355) | > loss_disc_real_0: 0.11442 (0.11169) | > loss_disc_real_1: 0.22035 (0.22106) | > loss_disc_real_2: 0.21865 (0.23331) | > loss_disc_real_3: 0.21974 (0.22729) | > loss_disc_real_4: 0.21777 (0.22592) | > loss_disc_real_5: 0.19267 (0.21171) | > loss_0: 2.28424 (2.32355) | > loss_gen: 2.43171 (2.46587) | > loss_kl: 2.72123 (2.75905) | > loss_feat: 8.64914 (8.44108) | > loss_mel: 18.11043 (17.92034) | > loss_duration: 1.76676 (1.72238) | > loss_1: 33.67926 (33.30871)  --> STEP: 15 | > loss_disc: 2.35510 (2.32565) | > loss_disc_real_0: 0.12527 (0.11259) | > loss_disc_real_1: 0.21115 (0.22040) | > loss_disc_real_2: 0.21858 (0.23233) | > loss_disc_real_3: 0.21613 (0.22655) | > loss_disc_real_4: 0.21849 (0.22543) | > loss_disc_real_5: 0.22087 (0.21232) | > loss_0: 2.35510 (2.32565) | > loss_gen: 2.42490 (2.46314) | > loss_kl: 2.87622 (2.76686) | > loss_feat: 9.29381 (8.49793) | > loss_mel: 17.95544 (17.92268) | > loss_duration: 1.70601 (1.72129) | > loss_1: 34.25639 (33.37189)  --> STEP: 16 | > loss_disc: 2.27268 (2.32234) | > loss_disc_real_0: 0.10069 (0.11185) | > loss_disc_real_1: 0.21927 (0.22033) | > loss_disc_real_2: 0.23649 (0.23259) | > loss_disc_real_3: 0.21814 (0.22602) | > loss_disc_real_4: 0.22139 (0.22517) | > loss_disc_real_5: 0.21987 (0.21279) | > loss_0: 2.27268 (2.32234) | > loss_gen: 2.51955 (2.46667) | > loss_kl: 2.70471 (2.76297) | > loss_feat: 8.35735 (8.48914) | > loss_mel: 17.83598 (17.91726) | > loss_duration: 1.73612 (1.72221) | > loss_1: 33.15370 (33.35825)  --> STEP: 17 | > loss_disc: 2.33076 (2.32284) | > loss_disc_real_0: 0.10419 (0.11140) | > loss_disc_real_1: 0.22217 (0.22044) | > loss_disc_real_2: 0.22349 (0.23205) | > loss_disc_real_3: 0.22758 (0.22611) | > loss_disc_real_4: 0.22630 (0.22524) | > loss_disc_real_5: 0.22050 (0.21324) | > loss_0: 2.33076 (2.32284) | > loss_gen: 2.42946 (2.46448) | > loss_kl: 2.83109 (2.76698) | > loss_feat: 8.39681 (8.48371) | > loss_mel: 18.07524 (17.92655) | > loss_duration: 1.71590 (1.72184) | > loss_1: 33.44851 (33.36356)  --> STEP: 18 | > loss_disc: 2.40146 (2.32720) | > loss_disc_real_0: 0.11875 (0.11181) | > loss_disc_real_1: 0.21930 (0.22037) | > loss_disc_real_2: 0.22946 (0.23191) | > loss_disc_real_3: 0.23172 (0.22642) | > loss_disc_real_4: 0.23094 (0.22556) | > loss_disc_real_5: 0.22045 (0.21364) | > loss_0: 2.40146 (2.32720) | > loss_gen: 2.36520 (2.45896) | > loss_kl: 2.81157 (2.76946) | > loss_feat: 7.87230 (8.44974) | > loss_mel: 17.69351 (17.91361) | > loss_duration: 1.69995 (1.72062) | > loss_1: 32.44254 (33.31239)  --> STEP: 19 | > loss_disc: 2.31354 (2.32649) | > loss_disc_real_0: 0.09629 (0.11099) | > loss_disc_real_1: 0.21764 (0.22023) | > loss_disc_real_2: 0.23207 (0.23192) | > loss_disc_real_3: 0.22885 (0.22655) | > loss_disc_real_4: 0.23149 (0.22587) | > loss_disc_real_5: 0.20298 (0.21308) | > loss_0: 2.31354 (2.32649) | > loss_gen: 2.44493 (2.45822) | > loss_kl: 2.59959 (2.76052) | > loss_feat: 8.22987 (8.43817) | > loss_mel: 17.88288 (17.91199) | > loss_duration: 1.72579 (1.72090) | > loss_1: 32.88306 (33.28979)  --> STEP: 20 | > loss_disc: 2.30000 (2.32516) | > loss_disc_real_0: 0.08718 (0.10980) | > loss_disc_real_1: 0.22986 (0.22071) | > loss_disc_real_2: 0.23480 (0.23206) | > loss_disc_real_3: 0.22870 (0.22666) | > loss_disc_real_4: 0.22485 (0.22582) | > loss_disc_real_5: 0.20691 (0.21277) | > loss_0: 2.30000 (2.32516) | > loss_gen: 2.46072 (2.45835) | > loss_kl: 2.62963 (2.75397) | > loss_feat: 8.13234 (8.42288) | > loss_mel: 17.49238 (17.89101) | > loss_duration: 1.76284 (1.72299) | > loss_1: 32.47790 (33.24920)  --> STEP: 21 | > loss_disc: 2.38017 (2.32778) | > loss_disc_real_0: 0.11987 (0.11028) | > loss_disc_real_1: 0.22567 (0.22095) | > loss_disc_real_2: 0.22937 (0.23193) | > loss_disc_real_3: 0.23793 (0.22720) | > loss_disc_real_4: 0.22709 (0.22588) | > loss_disc_real_5: 0.22881 (0.21354) | > loss_0: 2.38017 (2.32778) | > loss_gen: 2.41299 (2.45619) | > loss_kl: 2.67493 (2.75021) | > loss_feat: 7.80112 (8.39327) | > loss_mel: 17.90194 (17.89153) | > loss_duration: 1.72971 (1.72331) | > loss_1: 32.52069 (33.21451)  --> STEP: 22 | > loss_disc: 2.32812 (2.32780) | > loss_disc_real_0: 0.12878 (0.11112) | > loss_disc_real_1: 0.22784 (0.22126) | > loss_disc_real_2: 0.23045 (0.23186) | > loss_disc_real_3: 0.22524 (0.22711) | > loss_disc_real_4: 0.22470 (0.22582) | > loss_disc_real_5: 0.19200 (0.21256) | > loss_0: 2.32812 (2.32780) | > loss_gen: 2.51588 (2.45890) | > loss_kl: 2.89545 (2.75681) | > loss_feat: 8.85873 (8.41443) | > loss_mel: 17.99673 (17.89631) | > loss_duration: 1.69965 (1.72224) | > loss_1: 33.96644 (33.24869)  --> STEP: 23 | > loss_disc: 2.34813 (2.32868) | > loss_disc_real_0: 0.09184 (0.11028) | > loss_disc_real_1: 0.22358 (0.22136) | > loss_disc_real_2: 0.23746 (0.23211) | > loss_disc_real_3: 0.23436 (0.22742) | > loss_disc_real_4: 0.24055 (0.22647) | > loss_disc_real_5: 0.22482 (0.21309) | > loss_0: 2.34813 (2.32868) | > loss_gen: 2.48232 (2.45992) | > loss_kl: 2.74985 (2.75651) | > loss_feat: 8.34503 (8.41141) | > loss_mel: 18.05487 (17.90321) | > loss_duration: 1.71406 (1.72188) | > loss_1: 33.34614 (33.25293)  --> STEP: 24 | > loss_disc: 2.32844 (2.32867) | > loss_disc_real_0: 0.12022 (0.11070) | > loss_disc_real_1: 0.22162 (0.22137) | > loss_disc_real_2: 0.22732 (0.23191) | > loss_disc_real_3: 0.23385 (0.22769) | > loss_disc_real_4: 0.21702 (0.22607) | > loss_disc_real_5: 0.20845 (0.21290) | > loss_0: 2.32844 (2.32867) | > loss_gen: 2.42057 (2.45828) | > loss_kl: 2.78293 (2.75761) | > loss_feat: 7.66148 (8.38017) | > loss_mel: 17.61636 (17.89125) | > loss_duration: 1.70746 (1.72128) | > loss_1: 32.18879 (33.20859)  --> STEP: 25 | > loss_disc: 2.36216 (2.33001) | > loss_disc_real_0: 0.10728 (0.11056) | > loss_disc_real_1: 0.22992 (0.22171) | > loss_disc_real_2: 0.22916 (0.23180) | > loss_disc_real_3: 0.22620 (0.22763) | > loss_disc_real_4: 0.21760 (0.22573) | > loss_disc_real_5: 0.21070 (0.21281) | > loss_0: 2.36216 (2.33001) | > loss_gen: 2.43168 (2.45722) | > loss_kl: 2.83292 (2.76062) | > loss_feat: 8.43909 (8.38252) | > loss_mel: 18.12552 (17.90063) | > loss_duration: 1.76238 (1.72293) | > loss_1: 33.59159 (33.22391)  --> STEP: 26 | > loss_disc: 2.34608 (2.33063) | > loss_disc_real_0: 0.11829 (0.11086) | > loss_disc_real_1: 0.22301 (0.22176) | > loss_disc_real_2: 0.23720 (0.23201) | > loss_disc_real_3: 0.22630 (0.22758) | > loss_disc_real_4: 0.22452 (0.22569) | > loss_disc_real_5: 0.22517 (0.21329) | > loss_0: 2.34608 (2.33063) | > loss_gen: 2.44401 (2.45671) | > loss_kl: 2.81425 (2.76268) | > loss_feat: 8.56872 (8.38968) | > loss_mel: 17.99306 (17.90418) | > loss_duration: 1.70608 (1.72228) | > loss_1: 33.52612 (33.23553)  --> STEP: 27 | > loss_disc: 2.31341 (2.32999) | > loss_disc_real_0: 0.11640 (0.11106) | > loss_disc_real_1: 0.22237 (0.22179) | > loss_disc_real_2: 0.23071 (0.23196) | > loss_disc_real_3: 0.23856 (0.22799) | > loss_disc_real_4: 0.22873 (0.22580) | > loss_disc_real_5: 0.20974 (0.21315) | > loss_0: 2.31341 (2.32999) | > loss_gen: 2.51355 (2.45881) | > loss_kl: 2.80451 (2.76423) | > loss_feat: 8.34661 (8.38809) | > loss_mel: 17.57307 (17.89192) | > loss_duration: 1.71888 (1.72215) | > loss_1: 32.95662 (33.22520)  --> STEP: 28 | > loss_disc: 2.33256 (2.33008) | > loss_disc_real_0: 0.11436 (0.11118) | > loss_disc_real_1: 0.21822 (0.22166) | > loss_disc_real_2: 0.21983 (0.23153) | > loss_disc_real_3: 0.23044 (0.22807) | > loss_disc_real_4: 0.22606 (0.22581) | > loss_disc_real_5: 0.23032 (0.21377) | > loss_0: 2.33256 (2.33008) | > loss_gen: 2.50138 (2.46033) | > loss_kl: 2.84783 (2.76722) | > loss_feat: 8.86484 (8.40512) | > loss_mel: 18.17629 (17.90207) | > loss_duration: 1.70945 (1.72170) | > loss_1: 34.09979 (33.25644)  --> STEP: 29 | > loss_disc: 2.36376 (2.33124) | > loss_disc_real_0: 0.13213 (0.11190) | > loss_disc_real_1: 0.21944 (0.22158) | > loss_disc_real_2: 0.24271 (0.23191) | > loss_disc_real_3: 0.22742 (0.22805) | > loss_disc_real_4: 0.22115 (0.22565) | > loss_disc_real_5: 0.23867 (0.21463) | > loss_0: 2.36376 (2.33124) | > loss_gen: 2.51041 (2.46206) | > loss_kl: 2.80029 (2.76836) | > loss_feat: 8.16780 (8.39693) | > loss_mel: 17.99385 (17.90524) | > loss_duration: 1.70991 (1.72129) | > loss_1: 33.18226 (33.25388)  --> STEP: 30 | > loss_disc: 2.31969 (2.33086) | > loss_disc_real_0: 0.12179 (0.11223) | > loss_disc_real_1: 0.21004 (0.22120) | > loss_disc_real_2: 0.22539 (0.23169) | > loss_disc_real_3: 0.22451 (0.22793) | > loss_disc_real_4: 0.22500 (0.22563) | > loss_disc_real_5: 0.22770 (0.21506) | > loss_0: 2.31969 (2.33086) | > loss_gen: 2.49290 (2.46309) | > loss_kl: 2.89965 (2.77274) | > loss_feat: 9.20476 (8.42386) | > loss_mel: 18.10936 (17.91204) | > loss_duration: 1.71273 (1.72101) | > loss_1: 34.41941 (33.29273)  --> STEP: 31 | > loss_disc: 2.35115 (2.33151) | > loss_disc_real_0: 0.12855 (0.11276) | > loss_disc_real_1: 0.22070 (0.22118) | > loss_disc_real_2: 0.23216 (0.23171) | > loss_disc_real_3: 0.23000 (0.22800) | > loss_disc_real_4: 0.23298 (0.22586) | > loss_disc_real_5: 0.21835 (0.21517) | > loss_0: 2.35115 (2.33151) | > loss_gen: 2.47377 (2.46343) | > loss_kl: 2.86828 (2.77582) | > loss_feat: 8.35371 (8.42160) | > loss_mel: 17.58824 (17.90160) | > loss_duration: 1.71786 (1.72091) | > loss_1: 33.00185 (33.28335)  --> STEP: 32 | > loss_disc: 2.27823 (2.32985) | > loss_disc_real_0: 0.10983 (0.11267) | > loss_disc_real_1: 0.21274 (0.22092) | > loss_disc_real_2: 0.21956 (0.23133) | > loss_disc_real_3: 0.21817 (0.22769) | > loss_disc_real_4: 0.22875 (0.22595) | > loss_disc_real_5: 0.19176 (0.21444) | > loss_0: 2.27823 (2.32985) | > loss_gen: 2.47106 (2.46367) | > loss_kl: 2.84094 (2.77785) | > loss_feat: 9.01261 (8.44007) | > loss_mel: 18.50072 (17.92032) | > loss_duration: 1.73971 (1.72149) | > loss_1: 34.56504 (33.32340)  --> STEP: 33 | > loss_disc: 2.34241 (2.33023) | > loss_disc_real_0: 0.11486 (0.11273) | > loss_disc_real_1: 0.22702 (0.22110) | > loss_disc_real_2: 0.24068 (0.23161) | > loss_disc_real_3: 0.21695 (0.22737) | > loss_disc_real_4: 0.23144 (0.22612) | > loss_disc_real_5: 0.21339 (0.21441) | > loss_0: 2.34241 (2.33023) | > loss_gen: 2.46584 (2.46374) | > loss_kl: 2.76100 (2.77734) | > loss_feat: 8.84834 (8.45244) | > loss_mel: 17.87278 (17.91888) | > loss_duration: 1.74360 (1.72216) | > loss_1: 33.69157 (33.33456)  --> STEP: 34 | > loss_disc: 2.32965 (2.33021) | > loss_disc_real_0: 0.10482 (0.11250) | > loss_disc_real_1: 0.21945 (0.22105) | > loss_disc_real_2: 0.22674 (0.23147) | > loss_disc_real_3: 0.23100 (0.22747) | > loss_disc_real_4: 0.22968 (0.22622) | > loss_disc_real_5: 0.23084 (0.21489) | > loss_0: 2.32965 (2.33021) | > loss_gen: 2.48705 (2.46442) | > loss_kl: 2.74764 (2.77647) | > loss_feat: 8.31163 (8.44830) | > loss_mel: 17.88464 (17.91787) | > loss_duration: 1.73609 (1.72257) | > loss_1: 33.16705 (33.32963)  --> STEP: 35 | > loss_disc: 2.31896 (2.32989) | > loss_disc_real_0: 0.13072 (0.11302) | > loss_disc_real_1: 0.21487 (0.22088) | > loss_disc_real_2: 0.22200 (0.23120) | > loss_disc_real_3: 0.22017 (0.22727) | > loss_disc_real_4: 0.21304 (0.22585) | > loss_disc_real_5: 0.20788 (0.21469) | > loss_0: 2.31896 (2.32989) | > loss_gen: 2.43025 (2.46345) | > loss_kl: 2.73627 (2.77532) | > loss_feat: 8.57972 (8.45205) | > loss_mel: 17.60373 (17.90890) | > loss_duration: 1.70476 (1.72206) | > loss_1: 33.05474 (33.32178)  --> STEP: 36 | > loss_disc: 2.28887 (2.32875) | > loss_disc_real_0: 0.10679 (0.11285) | > loss_disc_real_1: 0.20620 (0.22047) | > loss_disc_real_2: 0.22575 (0.23105) | > loss_disc_real_3: 0.22509 (0.22720) | > loss_disc_real_4: 0.22760 (0.22590) | > loss_disc_real_5: 0.20314 (0.21437) | > loss_0: 2.28887 (2.32875) | > loss_gen: 2.52034 (2.46503) | > loss_kl: 2.63661 (2.77147) | > loss_feat: 8.58346 (8.45570) | > loss_mel: 17.99298 (17.91123) | > loss_duration: 1.70688 (1.72164) | > loss_1: 33.44026 (33.32507)  --> STEP: 37 | > loss_disc: 2.29229 (2.32777) | > loss_disc_real_0: 0.09768 (0.11244) | > loss_disc_real_1: 0.21829 (0.22041) | > loss_disc_real_2: 0.22828 (0.23097) | > loss_disc_real_3: 0.24223 (0.22761) | > loss_disc_real_4: 0.23540 (0.22615) | > loss_disc_real_5: 0.22965 (0.21478) | > loss_0: 2.29229 (2.32777) | > loss_gen: 2.59036 (2.46841) | > loss_kl: 2.80924 (2.77249) | > loss_feat: 8.83223 (8.46588) | > loss_mel: 18.43294 (17.92533) | > loss_duration: 1.67829 (1.72047) | > loss_1: 34.34307 (33.35258)  --> STEP: 38 | > loss_disc: 2.33871 (2.32805) | > loss_disc_real_0: 0.10986 (0.11237) | > loss_disc_real_1: 0.22029 (0.22041) | > loss_disc_real_2: 0.21496 (0.23055) | > loss_disc_real_3: 0.24044 (0.22795) | > loss_disc_real_4: 0.22295 (0.22607) | > loss_disc_real_5: 0.23545 (0.21532) | > loss_0: 2.33871 (2.32805) | > loss_gen: 2.45222 (2.46799) | > loss_kl: 2.81427 (2.77359) | > loss_feat: 7.99412 (8.45346) | > loss_mel: 18.16028 (17.93152) | > loss_duration: 1.71208 (1.72025) | > loss_1: 33.13298 (33.34680)  --> STEP: 39 | > loss_disc: 2.30305 (2.32741) | > loss_disc_real_0: 0.10193 (0.11210) | > loss_disc_real_1: 0.22238 (0.22046) | > loss_disc_real_2: 0.22982 (0.23053) | > loss_disc_real_3: 0.23416 (0.22811) | > loss_disc_real_4: 0.22104 (0.22594) | > loss_disc_real_5: 0.21321 (0.21527) | > loss_0: 2.30305 (2.32741) | > loss_gen: 2.49500 (2.46868) | > loss_kl: 2.65799 (2.77062) | > loss_feat: 8.20704 (8.44715) | > loss_mel: 17.70872 (17.92580) | > loss_duration: 1.74916 (1.72099) | > loss_1: 32.81792 (33.33324)  --> STEP: 40 | > loss_disc: 2.31599 (2.32713) | > loss_disc_real_0: 0.10990 (0.11205) | > loss_disc_real_1: 0.21456 (0.22031) | > loss_disc_real_2: 0.23644 (0.23068) | > loss_disc_real_3: 0.21854 (0.22787) | > loss_disc_real_4: 0.23178 (0.22609) | > loss_disc_real_5: 0.22099 (0.21541) | > loss_0: 2.31599 (2.32713) | > loss_gen: 2.49139 (2.46925) | > loss_kl: 2.76880 (2.77058) | > loss_feat: 8.69347 (8.45331) | > loss_mel: 18.21093 (17.93293) | > loss_duration: 1.70406 (1.72057) | > loss_1: 33.86866 (33.34663)  --> STEP: 41 | > loss_disc: 2.30570 (2.32660) | > loss_disc_real_0: 0.10383 (0.11185) | > loss_disc_real_1: 0.22535 (0.22043) | > loss_disc_real_2: 0.23157 (0.23070) | > loss_disc_real_3: 0.23247 (0.22798) | > loss_disc_real_4: 0.24000 (0.22642) | > loss_disc_real_5: 0.20595 (0.21518) | > loss_0: 2.30570 (2.32660) | > loss_gen: 2.53510 (2.47085) | > loss_kl: 2.73558 (2.76973) | > loss_feat: 8.46520 (8.45360) | > loss_mel: 17.61732 (17.92524) | > loss_duration: 1.72453 (1.72066) | > loss_1: 33.07772 (33.34007)  --> STEP: 42 | > loss_disc: 2.26696 (2.32518) | > loss_disc_real_0: 0.09164 (0.11137) | > loss_disc_real_1: 0.21194 (0.22023) | > loss_disc_real_2: 0.22661 (0.23060) | > loss_disc_real_3: 0.21877 (0.22776) | > loss_disc_real_4: 0.21906 (0.22625) | > loss_disc_real_5: 0.19634 (0.21473) | > loss_0: 2.26696 (2.32518) | > loss_gen: 2.46523 (2.47072) | > loss_kl: 2.76248 (2.76955) | > loss_feat: 8.60784 (8.45727) | > loss_mel: 17.92309 (17.92519) | > loss_duration: 1.72745 (1.72083) | > loss_1: 33.48610 (33.34354)  --> STEP: 43 | > loss_disc: 2.26143 (2.32370) | > loss_disc_real_0: 0.10599 (0.11124) | > loss_disc_real_1: 0.22030 (0.22023) | > loss_disc_real_2: 0.21605 (0.23027) | > loss_disc_real_3: 0.22951 (0.22780) | > loss_disc_real_4: 0.21414 (0.22597) | > loss_disc_real_5: 0.19452 (0.21426) | > loss_0: 2.26143 (2.32370) | > loss_gen: 2.50293 (2.47147) | > loss_kl: 2.77217 (2.76961) | > loss_feat: 8.47203 (8.45761) | > loss_mel: 18.33659 (17.93475) | > loss_duration: 1.72308 (1.72088) | > loss_1: 33.80679 (33.35431)  --> STEP: 44 | > loss_disc: 2.31144 (2.32342) | > loss_disc_real_0: 0.10073 (0.11100) | > loss_disc_real_1: 0.22479 (0.22034) | > loss_disc_real_2: 0.23334 (0.23034) | > loss_disc_real_3: 0.21705 (0.22756) | > loss_disc_real_4: 0.21127 (0.22563) | > loss_disc_real_5: 0.20624 (0.21408) | > loss_0: 2.31144 (2.32342) | > loss_gen: 2.46330 (2.47128) | > loss_kl: 2.77479 (2.76973) | > loss_feat: 8.76655 (8.46463) | > loss_mel: 18.04693 (17.93730) | > loss_duration: 1.72146 (1.72089) | > loss_1: 33.77303 (33.36383)  --> STEP: 45 | > loss_disc: 2.33884 (2.32377) | > loss_disc_real_0: 0.11693 (0.11113) | > loss_disc_real_1: 0.21317 (0.22018) | > loss_disc_real_2: 0.22178 (0.23015) | > loss_disc_real_3: 0.22406 (0.22748) | > loss_disc_real_4: 0.22254 (0.22556) | > loss_disc_real_5: 0.20925 (0.21397) | > loss_0: 2.33884 (2.32377) | > loss_gen: 2.41385 (2.47001) | > loss_kl: 2.70723 (2.76834) | > loss_feat: 8.20072 (8.45877) | > loss_mel: 17.32556 (17.92371) | > loss_duration: 1.70453 (1.72053) | > loss_1: 32.35190 (33.34134)  --> STEP: 46 | > loss_disc: 2.34794 (2.32429) | > loss_disc_real_0: 0.11113 (0.11113) | > loss_disc_real_1: 0.22917 (0.22037) | > loss_disc_real_2: 0.23092 (0.23016) | > loss_disc_real_3: 0.23605 (0.22767) | > loss_disc_real_4: 0.22854 (0.22563) | > loss_disc_real_5: 0.21018 (0.21389) | > loss_0: 2.34794 (2.32429) | > loss_gen: 2.44071 (2.46937) | > loss_kl: 2.82380 (2.76955) | > loss_feat: 8.29070 (8.45511) | > loss_mel: 18.51718 (17.93661) | > loss_duration: 1.72260 (1.72057) | > loss_1: 33.79499 (33.35121)  --> STEP: 47 | > loss_disc: 2.30432 (2.32387) | > loss_disc_real_0: 0.10227 (0.11095) | > loss_disc_real_1: 0.22725 (0.22052) | > loss_disc_real_2: 0.22749 (0.23011) | > loss_disc_real_3: 0.23259 (0.22777) | > loss_disc_real_4: 0.21559 (0.22542) | > loss_disc_real_5: 0.21258 (0.21386) | > loss_0: 2.30432 (2.32387) | > loss_gen: 2.48406 (2.46968) | > loss_kl: 2.72126 (2.76852) | > loss_feat: 8.14949 (8.44861) | > loss_mel: 17.86385 (17.93506) | > loss_duration: 1.71476 (1.72045) | > loss_1: 32.93341 (33.34232)  --> STEP: 48 | > loss_disc: 2.27775 (2.32291) | > loss_disc_real_0: 0.10966 (0.11092) | > loss_disc_real_1: 0.21866 (0.22048) | > loss_disc_real_2: 0.23433 (0.23019) | > loss_disc_real_3: 0.22806 (0.22778) | > loss_disc_real_4: 0.22097 (0.22532) | > loss_disc_real_5: 0.21201 (0.21383) | > loss_0: 2.27775 (2.32291) | > loss_gen: 2.56636 (2.47170) | > loss_kl: 2.73601 (2.76784) | > loss_feat: 8.45299 (8.44870) | > loss_mel: 17.77310 (17.93169) | > loss_duration: 1.73286 (1.72071) | > loss_1: 33.26132 (33.34063)  --> STEP: 49 | > loss_disc: 2.32175 (2.32288) | > loss_disc_real_0: 0.11924 (0.11109) | > loss_disc_real_1: 0.21331 (0.22033) | > loss_disc_real_2: 0.23968 (0.23039) | > loss_disc_real_3: 0.21773 (0.22757) | > loss_disc_real_4: 0.23028 (0.22542) | > loss_disc_real_5: 0.20862 (0.21372) | > loss_0: 2.32175 (2.32288) | > loss_gen: 2.44358 (2.47112) | > loss_kl: 2.70637 (2.76659) | > loss_feat: 8.30138 (8.44570) | > loss_mel: 17.60665 (17.92506) | > loss_duration: 1.74550 (1.72121) | > loss_1: 32.80349 (33.32967)  --> STEP: 50 | > loss_disc: 2.33379 (2.32310) | > loss_disc_real_0: 0.10283 (0.11092) | > loss_disc_real_1: 0.22418 (0.22041) | > loss_disc_real_2: 0.22464 (0.23027) | > loss_disc_real_3: 0.22562 (0.22753) | > loss_disc_real_4: 0.22466 (0.22541) | > loss_disc_real_5: 0.20614 (0.21357) | > loss_0: 2.33379 (2.32310) | > loss_gen: 2.39209 (2.46954) | > loss_kl: 2.76066 (2.76647) | > loss_feat: 8.33866 (8.44355) | > loss_mel: 17.55783 (17.91771) | > loss_duration: 1.66696 (1.72013) | > loss_1: 32.71621 (33.31740)  --> STEP: 51 | > loss_disc: 2.31969 (2.32303) | > loss_disc_real_0: 0.12934 (0.11128) | > loss_disc_real_1: 0.21108 (0.22023) | > loss_disc_real_2: 0.23042 (0.23028) | > loss_disc_real_3: 0.21697 (0.22733) | > loss_disc_real_4: 0.22872 (0.22547) | > loss_disc_real_5: 0.21786 (0.21365) | > loss_0: 2.31969 (2.32303) | > loss_gen: 2.46385 (2.46943) | > loss_kl: 2.74998 (2.76615) | > loss_feat: 8.52504 (8.44515) | > loss_mel: 17.83412 (17.91607) | > loss_duration: 1.72360 (1.72020) | > loss_1: 33.29658 (33.31699)  --> STEP: 52 | > loss_disc: 2.38559 (2.32424) | > loss_disc_real_0: 0.12355 (0.11152) | > loss_disc_real_1: 0.21267 (0.22008) | > loss_disc_real_2: 0.24256 (0.23051) | > loss_disc_real_3: 0.22719 (0.22732) | > loss_disc_real_4: 0.22007 (0.22537) | > loss_disc_real_5: 0.22082 (0.21379) | > loss_0: 2.38559 (2.32424) | > loss_gen: 2.39896 (2.46808) | > loss_kl: 2.66006 (2.76411) | > loss_feat: 8.24583 (8.44132) | > loss_mel: 17.61716 (17.91033) | > loss_duration: 1.73882 (1.72056) | > loss_1: 32.66083 (33.30437)  --> STEP: 53 | > loss_disc: 2.32540 (2.32426) | > loss_disc_real_0: 0.11169 (0.11152) | > loss_disc_real_1: 0.21856 (0.22005) | > loss_disc_real_2: 0.22870 (0.23048) | > loss_disc_real_3: 0.24361 (0.22763) | > loss_disc_real_4: 0.22950 (0.22545) | > loss_disc_real_5: 0.22026 (0.21391) | > loss_0: 2.32540 (2.32426) | > loss_gen: 2.51060 (2.46888) | > loss_kl: 2.79212 (2.76464) | > loss_feat: 8.20910 (8.43694) | > loss_mel: 17.58205 (17.90413) | > loss_duration: 1.68223 (1.71983) | > loss_1: 32.77609 (33.29441)  --> STEP: 54 | > loss_disc: 2.30128 (2.32383) | > loss_disc_real_0: 0.09605 (0.11124) | > loss_disc_real_1: 0.21788 (0.22001) | > loss_disc_real_2: 0.23071 (0.23048) | > loss_disc_real_3: 0.22805 (0.22764) | > loss_disc_real_4: 0.22599 (0.22546) | > loss_disc_real_5: 0.20499 (0.21375) | > loss_0: 2.30128 (2.32383) | > loss_gen: 2.47330 (2.46896) | > loss_kl: 2.68948 (2.76324) | > loss_feat: 8.62335 (8.44039) | > loss_mel: 18.12851 (17.90829) | > loss_duration: 1.70733 (1.71960) | > loss_1: 33.62198 (33.30047)  --> STEP: 55 | > loss_disc: 2.35430 (2.32439) | > loss_disc_real_0: 0.10947 (0.11121) | > loss_disc_real_1: 0.21254 (0.21988) | > loss_disc_real_2: 0.22208 (0.23033) | > loss_disc_real_3: 0.22666 (0.22762) | > loss_disc_real_4: 0.22535 (0.22546) | > loss_disc_real_5: 0.23460 (0.21413) | > loss_0: 2.35430 (2.32439) | > loss_gen: 2.39891 (2.46769) | > loss_kl: 2.75183 (2.76304) | > loss_feat: 8.21126 (8.43622) | > loss_mel: 17.97593 (17.90952) | > loss_duration: 1.71360 (1.71949) | > loss_1: 33.05153 (33.29594)  --> STEP: 56 | > loss_disc: 2.35024 (2.32485) | > loss_disc_real_0: 0.09800 (0.11097) | > loss_disc_real_1: 0.21969 (0.21987) | > loss_disc_real_2: 0.23869 (0.23048) | > loss_disc_real_3: 0.23409 (0.22774) | > loss_disc_real_4: 0.23160 (0.22557) | > loss_disc_real_5: 0.20602 (0.21398) | > loss_0: 2.35024 (2.32485) | > loss_gen: 2.42698 (2.46696) | > loss_kl: 2.65552 (2.76112) | > loss_feat: 8.02760 (8.42893) | > loss_mel: 17.93584 (17.90999) | > loss_duration: 1.71090 (1.71934) | > loss_1: 32.75684 (33.28632)  --> STEP: 57 | > loss_disc: 2.29491 (2.32432) | > loss_disc_real_0: 0.10500 (0.11086) | > loss_disc_real_1: 0.20851 (0.21968) | > loss_disc_real_2: 0.22106 (0.23031) | > loss_disc_real_3: 0.21195 (0.22746) | > loss_disc_real_4: 0.22749 (0.22560) | > loss_disc_real_5: 0.18350 (0.21345) | > loss_0: 2.29491 (2.32432) | > loss_gen: 2.43043 (2.46632) | > loss_kl: 2.68632 (2.75980) | > loss_feat: 8.44650 (8.42924) | > loss_mel: 17.79764 (17.90802) | > loss_duration: 1.71807 (1.71932) | > loss_1: 33.07896 (33.28268)  --> STEP: 58 | > loss_disc: 2.27131 (2.32341) | > loss_disc_real_0: 0.09797 (0.11064) | > loss_disc_real_1: 0.21484 (0.21959) | > loss_disc_real_2: 0.22773 (0.23027) | > loss_disc_real_3: 0.21629 (0.22727) | > loss_disc_real_4: 0.20923 (0.22532) | > loss_disc_real_5: 0.19957 (0.21321) | > loss_0: 2.27131 (2.32341) | > loss_gen: 2.45146 (2.46606) | > loss_kl: 2.75550 (2.75973) | > loss_feat: 8.33396 (8.42759) | > loss_mel: 17.62562 (17.90315) | > loss_duration: 1.68644 (1.71875) | > loss_1: 32.85297 (33.27528)  --> STEP: 59 | > loss_disc: 2.37533 (2.32429) | > loss_disc_real_0: 0.11275 (0.11068) | > loss_disc_real_1: 0.21957 (0.21959) | > loss_disc_real_2: 0.22639 (0.23020) | > loss_disc_real_3: 0.23787 (0.22745) | > loss_disc_real_4: 0.23649 (0.22551) | > loss_disc_real_5: 0.22004 (0.21332) | > loss_0: 2.37533 (2.32429) | > loss_gen: 2.41644 (2.46522) | > loss_kl: 2.79875 (2.76039) | > loss_feat: 8.28902 (8.42525) | > loss_mel: 18.09581 (17.90642) | > loss_duration: 1.69723 (1.71838) | > loss_1: 33.29726 (33.27565)  --> STEP: 60 | > loss_disc: 2.37525 (2.32514) | > loss_disc_real_0: 0.12097 (0.11085) | > loss_disc_real_1: 0.21837 (0.21957) | > loss_disc_real_2: 0.23748 (0.23032) | > loss_disc_real_3: 0.23680 (0.22760) | > loss_disc_real_4: 0.22783 (0.22555) | > loss_disc_real_5: 0.23159 (0.21363) | > loss_0: 2.37525 (2.32514) | > loss_gen: 2.40897 (2.46429) | > loss_kl: 2.79980 (2.76105) | > loss_feat: 8.15579 (8.42076) | > loss_mel: 17.91063 (17.90649) | > loss_duration: 1.69991 (1.71808) | > loss_1: 32.97510 (33.27064)  --> STEP: 61 | > loss_disc: 2.30208 (2.32476) | > loss_disc_real_0: 0.09565 (0.11060) | > loss_disc_real_1: 0.22012 (0.21958) | > loss_disc_real_2: 0.24020 (0.23049) | > loss_disc_real_3: 0.23060 (0.22765) | > loss_disc_real_4: 0.23875 (0.22576) | > loss_disc_real_5: 0.19840 (0.21338) | > loss_0: 2.30208 (2.32476) | > loss_gen: 2.52860 (2.46534) | > loss_kl: 2.61424 (2.75864) | > loss_feat: 8.11967 (8.41582) | > loss_mel: 18.00864 (17.90816) | > loss_duration: 1.71712 (1.71806) | > loss_1: 32.98826 (33.26601)  --> STEP: 62 | > loss_disc: 2.25860 (2.32369) | > loss_disc_real_0: 0.10250 (0.11047) | > loss_disc_real_1: 0.21449 (0.21950) | > loss_disc_real_2: 0.21894 (0.23030) | > loss_disc_real_3: 0.22159 (0.22755) | > loss_disc_real_4: 0.21085 (0.22552) | > loss_disc_real_5: 0.21106 (0.21334) | > loss_0: 2.25860 (2.32369) | > loss_gen: 2.50631 (2.46600) | > loss_kl: 2.81459 (2.75954) | > loss_feat: 8.79871 (8.42200) | > loss_mel: 18.78600 (17.92232) | > loss_duration: 1.75959 (1.71873) | > loss_1: 34.66521 (33.28858)  --> STEP: 63 | > loss_disc: 2.34343 (2.32401) | > loss_disc_real_0: 0.11325 (0.11051) | > loss_disc_real_1: 0.23413 (0.21973) | > loss_disc_real_2: 0.22993 (0.23029) | > loss_disc_real_3: 0.23794 (0.22772) | > loss_disc_real_4: 0.23858 (0.22573) | > loss_disc_real_5: 0.22860 (0.21358) | > loss_0: 2.34343 (2.32401) | > loss_gen: 2.46388 (2.46597) | > loss_kl: 2.83317 (2.76071) | > loss_feat: 8.00831 (8.41543) | > loss_mel: 17.53096 (17.91611) | > loss_duration: 1.72607 (1.71885) | > loss_1: 32.56240 (33.27705)  --> STEP: 64 | > loss_disc: 2.30768 (2.32375) | > loss_disc_real_0: 0.10443 (0.11042) | > loss_disc_real_1: 0.21870 (0.21971) | > loss_disc_real_2: 0.22864 (0.23027) | > loss_disc_real_3: 0.22170 (0.22762) | > loss_disc_real_4: 0.23256 (0.22584) | > loss_disc_real_5: 0.20017 (0.21337) | > loss_0: 2.30768 (2.32375) | > loss_gen: 2.46228 (2.46591) | > loss_kl: 2.71057 (2.75993) | > loss_feat: 7.90267 (8.40742) | > loss_mel: 17.70018 (17.91273) | > loss_duration: 1.68634 (1.71834) | > loss_1: 32.46204 (33.26432)  --> STEP: 65 | > loss_disc: 2.28445 (2.32315) | > loss_disc_real_0: 0.09948 (0.11025) | > loss_disc_real_1: 0.22527 (0.21980) | > loss_disc_real_2: 0.23072 (0.23027) | > loss_disc_real_3: 0.21970 (0.22750) | > loss_disc_real_4: 0.21080 (0.22560) | > loss_disc_real_5: 0.21986 (0.21347) | > loss_0: 2.28445 (2.32315) | > loss_gen: 2.45440 (2.46573) | > loss_kl: 2.61755 (2.75774) | > loss_feat: 8.23668 (8.40479) | > loss_mel: 17.73018 (17.90993) | > loss_duration: 1.72412 (1.71843) | > loss_1: 32.76294 (33.25661)  --> STEP: 66 | > loss_disc: 2.34713 (2.32351) | > loss_disc_real_0: 0.11512 (0.11032) | > loss_disc_real_1: 0.22398 (0.21986) | > loss_disc_real_2: 0.22557 (0.23020) | > loss_disc_real_3: 0.21881 (0.22737) | > loss_disc_real_4: 0.22790 (0.22564) | > loss_disc_real_5: 0.21184 (0.21345) | > loss_0: 2.34713 (2.32351) | > loss_gen: 2.43096 (2.46520) | > loss_kl: 2.70673 (2.75697) | > loss_feat: 8.41671 (8.40497) | > loss_mel: 17.71106 (17.90691) | > loss_duration: 1.70492 (1.71822) | > loss_1: 32.97037 (33.25227)  --> STEP: 67 | > loss_disc: 2.34226 (2.32379) | > loss_disc_real_0: 0.11298 (0.11036) | > loss_disc_real_1: 0.22394 (0.21992) | > loss_disc_real_2: 0.23465 (0.23027) | > loss_disc_real_3: 0.23348 (0.22746) | > loss_disc_real_4: 0.23153 (0.22573) | > loss_disc_real_5: 0.21773 (0.21351) | > loss_0: 2.34226 (2.32379) | > loss_gen: 2.52528 (2.46610) | > loss_kl: 2.67585 (2.75576) | > loss_feat: 8.77954 (8.41056) | > loss_mel: 17.87644 (17.90646) | > loss_duration: 1.69969 (1.71795) | > loss_1: 33.55681 (33.25682)  --> STEP: 68 | > loss_disc: 2.31595 (2.32368) | > loss_disc_real_0: 0.11593 (0.11045) | > loss_disc_real_1: 0.21245 (0.21981) | > loss_disc_real_2: 0.23004 (0.23027) | > loss_disc_real_3: 0.22132 (0.22737) | > loss_disc_real_4: 0.21170 (0.22552) | > loss_disc_real_5: 0.19901 (0.21330) | > loss_0: 2.31595 (2.32368) | > loss_gen: 2.44874 (2.46585) | > loss_kl: 2.81372 (2.75661) | > loss_feat: 8.90772 (8.41787) | > loss_mel: 18.12151 (17.90962) | > loss_duration: 1.67417 (1.71730) | > loss_1: 33.96585 (33.26725)  --> STEP: 69 | > loss_disc: 2.30433 (2.32340) | > loss_disc_real_0: 0.10961 (0.11043) | > loss_disc_real_1: 0.22349 (0.21987) | > loss_disc_real_2: 0.22404 (0.23018) | > loss_disc_real_3: 0.22958 (0.22740) | > loss_disc_real_4: 0.21467 (0.22536) | > loss_disc_real_5: 0.21363 (0.21330) | > loss_0: 2.30433 (2.32340) | > loss_gen: 2.49036 (2.46620) | > loss_kl: 2.82304 (2.75757) | > loss_feat: 8.70879 (8.42209) | > loss_mel: 17.88556 (17.90927) | > loss_duration: 1.71407 (1.71726) | > loss_1: 33.62183 (33.27239)  --> STEP: 70 | > loss_disc: 2.33968 (2.32363) | > loss_disc_real_0: 0.09455 (0.11021) | > loss_disc_real_1: 0.22393 (0.21993) | > loss_disc_real_2: 0.24775 (0.23043) | > loss_disc_real_3: 0.24355 (0.22763) | > loss_disc_real_4: 0.21845 (0.22526) | > loss_disc_real_5: 0.19620 (0.21306) | > loss_0: 2.33968 (2.32363) | > loss_gen: 2.40068 (2.46527) | > loss_kl: 2.76804 (2.75772) | > loss_feat: 8.17042 (8.41849) | > loss_mel: 18.00639 (17.91066) | > loss_duration: 1.76552 (1.71795) | > loss_1: 33.11105 (33.27008)  --> STEP: 71 | > loss_disc: 2.35511 (2.32407) | > loss_disc_real_0: 0.10002 (0.11006) | > loss_disc_real_1: 0.21646 (0.21988) | > loss_disc_real_2: 0.22998 (0.23042) | > loss_disc_real_3: 0.24830 (0.22793) | > loss_disc_real_4: 0.23446 (0.22539) | > loss_disc_real_5: 0.22665 (0.21325) | > loss_0: 2.35511 (2.32407) | > loss_gen: 2.42702 (2.46473) | > loss_kl: 2.89951 (2.75972) | > loss_feat: 7.95766 (8.41200) | > loss_mel: 17.75174 (17.90842) | > loss_duration: 1.69931 (1.71768) | > loss_1: 32.73523 (33.26255)  --> STEP: 72 | > loss_disc: 2.29569 (2.32368) | > loss_disc_real_0: 0.09997 (0.10992) | > loss_disc_real_1: 0.22591 (0.21996) | > loss_disc_real_2: 0.23288 (0.23046) | > loss_disc_real_3: 0.23471 (0.22802) | > loss_disc_real_4: 0.22058 (0.22533) | > loss_disc_real_5: 0.20865 (0.21319) | > loss_0: 2.29569 (2.32368) | > loss_gen: 2.52531 (2.46557) | > loss_kl: 2.76733 (2.75982) | > loss_feat: 8.41669 (8.41207) | > loss_mel: 17.91533 (17.90852) | > loss_duration: 1.75379 (1.71819) | > loss_1: 33.37845 (33.26416)  --> STEP: 73 | > loss_disc: 2.33888 (2.32389) | > loss_disc_real_0: 0.10058 (0.10979) | > loss_disc_real_1: 0.21845 (0.21994) | > loss_disc_real_2: 0.23386 (0.23050) | > loss_disc_real_3: 0.22574 (0.22799) | > loss_disc_real_4: 0.22593 (0.22534) | > loss_disc_real_5: 0.22570 (0.21336) | > loss_0: 2.33888 (2.32389) | > loss_gen: 2.47114 (2.46564) | > loss_kl: 2.84654 (2.76101) | > loss_feat: 8.94057 (8.41931) | > loss_mel: 17.91163 (17.90856) | > loss_duration: 1.73400 (1.71840) | > loss_1: 33.90389 (33.27293)  --> STEP: 74 | > loss_disc: 2.30654 (2.32365) | > loss_disc_real_0: 0.10550 (0.10974) | > loss_disc_real_1: 0.21312 (0.21985) | > loss_disc_real_2: 0.23238 (0.23053) | > loss_disc_real_3: 0.22770 (0.22798) | > loss_disc_real_4: 0.23455 (0.22546) | > loss_disc_real_5: 0.21315 (0.21335) | > loss_0: 2.30654 (2.32365) | > loss_gen: 2.48591 (2.46592) | > loss_kl: 2.82219 (2.76184) | > loss_feat: 8.50055 (8.42041) | > loss_mel: 18.20724 (17.91259) | > loss_duration: 1.76016 (1.71897) | > loss_1: 33.77604 (33.27973)  --> STEP: 75 | > loss_disc: 2.32274 (2.32364) | > loss_disc_real_0: 0.10618 (0.10969) | > loss_disc_real_1: 0.21038 (0.21972) | > loss_disc_real_2: 0.23420 (0.23058) | > loss_disc_real_3: 0.22922 (0.22800) | > loss_disc_real_4: 0.24205 (0.22568) | > loss_disc_real_5: 0.20063 (0.21319) | > loss_0: 2.32274 (2.32364) | > loss_gen: 2.45489 (2.46577) | > loss_kl: 2.93661 (2.76417) | > loss_feat: 8.54770 (8.42210) | > loss_mel: 18.15491 (17.91582) | > loss_duration: 1.73316 (1.71916) | > loss_1: 33.82725 (33.28703)  --> STEP: 76 | > loss_disc: 2.32783 (2.32369) | > loss_disc_real_0: 0.11539 (0.10976) | > loss_disc_real_1: 0.21047 (0.21960) | > loss_disc_real_2: 0.24168 (0.23072) | > loss_disc_real_3: 0.23642 (0.22811) | > loss_disc_real_4: 0.22773 (0.22571) | > loss_disc_real_5: 0.23596 (0.21349) | > loss_0: 2.32783 (2.32369) | > loss_gen: 2.53153 (2.46664) | > loss_kl: 2.77202 (2.76427) | > loss_feat: 8.87982 (8.42812) | > loss_mel: 17.70089 (17.91300) | > loss_duration: 1.73233 (1.71933) | > loss_1: 33.61658 (33.29137)  --> STEP: 77 | > loss_disc: 2.30628 (2.32347) | > loss_disc_real_0: 0.12576 (0.10997) | > loss_disc_real_1: 0.22954 (0.21973) | > loss_disc_real_2: 0.23182 (0.23074) | > loss_disc_real_3: 0.23168 (0.22816) | > loss_disc_real_4: 0.23155 (0.22578) | > loss_disc_real_5: 0.21229 (0.21347) | > loss_0: 2.30628 (2.32347) | > loss_gen: 2.53670 (2.46755) | > loss_kl: 2.83000 (2.76513) | > loss_feat: 8.44018 (8.42828) | > loss_mel: 17.84443 (17.91211) | > loss_duration: 1.76019 (1.71986) | > loss_1: 33.41150 (33.29292)  --> STEP: 78 | > loss_disc: 2.29582 (2.32311) | > loss_disc_real_0: 0.11104 (0.10999) | > loss_disc_real_1: 0.22767 (0.21983) | > loss_disc_real_2: 0.22691 (0.23069) | > loss_disc_real_3: 0.22551 (0.22812) | > loss_disc_real_4: 0.23001 (0.22584) | > loss_disc_real_5: 0.20332 (0.21334) | > loss_0: 2.29582 (2.32311) | > loss_gen: 2.48791 (2.46781) | > loss_kl: 2.84049 (2.76609) | > loss_feat: 8.24245 (8.42590) | > loss_mel: 18.13024 (17.91491) | > loss_duration: 1.70955 (1.71973) | > loss_1: 33.41064 (33.29443)  --> STEP: 79 | > loss_disc: 2.31257 (2.32298) | > loss_disc_real_0: 0.11249 (0.11002) | > loss_disc_real_1: 0.22150 (0.21985) | > loss_disc_real_2: 0.22482 (0.23061) | > loss_disc_real_3: 0.21434 (0.22795) | > loss_disc_real_4: 0.22710 (0.22585) | > loss_disc_real_5: 0.20875 (0.21328) | > loss_0: 2.31257 (2.32298) | > loss_gen: 2.48133 (2.46798) | > loss_kl: 2.71147 (2.76540) | > loss_feat: 9.02553 (8.43349) | > loss_mel: 18.15231 (17.91791) | > loss_duration: 1.71818 (1.71971) | > loss_1: 34.08882 (33.30449)  --> STEP: 80 | > loss_disc: 2.36043 (2.32345) | > loss_disc_real_0: 0.10983 (0.11002) | > loss_disc_real_1: 0.22333 (0.21990) | > loss_disc_real_2: 0.24788 (0.23083) | > loss_disc_real_3: 0.24359 (0.22815) | > loss_disc_real_4: 0.25170 (0.22618) | > loss_disc_real_5: 0.21857 (0.21335) | > loss_0: 2.36043 (2.32345) | > loss_gen: 2.52279 (2.46866) | > loss_kl: 2.81400 (2.76601) | > loss_feat: 8.60114 (8.43558) | > loss_mel: 17.57627 (17.91364) | > loss_duration: 1.76928 (1.72033) | > loss_1: 33.28347 (33.30423)  --> STEP: 81 | > loss_disc: 2.31611 (2.32336) | > loss_disc_real_0: 0.11095 (0.11003) | > loss_disc_real_1: 0.21499 (0.21983) | > loss_disc_real_2: 0.22383 (0.23074) | > loss_disc_real_3: 0.20555 (0.22787) | > loss_disc_real_4: 0.21790 (0.22608) | > loss_disc_real_5: 0.19734 (0.21315) | > loss_0: 2.31611 (2.32336) | > loss_gen: 2.42265 (2.46810) | > loss_kl: 2.84121 (2.76694) | > loss_feat: 8.80027 (8.44009) | > loss_mel: 18.61785 (17.92233) | > loss_duration: 1.70660 (1.72016) | > loss_1: 34.38858 (33.31762)  --> STEP: 82 | > loss_disc: 2.38488 (2.32411) | > loss_disc_real_0: 0.11504 (0.11009) | > loss_disc_real_1: 0.21625 (0.21979) | > loss_disc_real_2: 0.24128 (0.23087) | > loss_disc_real_3: 0.23215 (0.22792) | > loss_disc_real_4: 0.23494 (0.22618) | > loss_disc_real_5: 0.22838 (0.21334) | > loss_0: 2.38488 (2.32411) | > loss_gen: 2.44257 (2.46779) | > loss_kl: 2.77707 (2.76706) | > loss_feat: 8.54420 (8.44136) | > loss_mel: 17.93442 (17.92248) | > loss_duration: 1.69979 (1.71991) | > loss_1: 33.39806 (33.31859)  --> STEP: 83 | > loss_disc: 2.30277 (2.32385) | > loss_disc_real_0: 0.11383 (0.11013) | > loss_disc_real_1: 0.21015 (0.21967) | > loss_disc_real_2: 0.21628 (0.23070) | > loss_disc_real_3: 0.21856 (0.22781) | > loss_disc_real_4: 0.21362 (0.22603) | > loss_disc_real_5: 0.21722 (0.21338) | > loss_0: 2.30277 (2.32385) | > loss_gen: 2.42800 (2.46731) | > loss_kl: 2.89206 (2.76857) | > loss_feat: 8.18011 (8.43821) | > loss_mel: 17.36570 (17.91577) | > loss_duration: 1.69248 (1.71958) | > loss_1: 32.55833 (33.30943)  --> STEP: 84 | > loss_disc: 2.31361 (2.32373) | > loss_disc_real_0: 0.11105 (0.11014) | > loss_disc_real_1: 0.21597 (0.21963) | > loss_disc_real_2: 0.22668 (0.23065) | > loss_disc_real_3: 0.22102 (0.22773) | > loss_disc_real_4: 0.22316 (0.22600) | > loss_disc_real_5: 0.20172 (0.21324) | > loss_0: 2.31361 (2.32373) | > loss_gen: 2.43663 (2.46694) | > loss_kl: 2.68441 (2.76756) | > loss_feat: 8.67258 (8.44100) | > loss_mel: 17.86250 (17.91514) | > loss_duration: 1.73140 (1.71972) | > loss_1: 33.38753 (33.31036)  --> STEP: 85 | > loss_disc: 2.31460 (2.32362) | > loss_disc_real_0: 0.09473 (0.10996) | > loss_disc_real_1: 0.22541 (0.21970) | > loss_disc_real_2: 0.23556 (0.23071) | > loss_disc_real_3: 0.23425 (0.22780) | > loss_disc_real_4: 0.22934 (0.22604) | > loss_disc_real_5: 0.22620 (0.21340) | > loss_0: 2.31460 (2.32362) | > loss_gen: 2.47881 (2.46708) | > loss_kl: 2.70533 (2.76683) | > loss_feat: 8.14254 (8.43749) | > loss_mel: 17.74121 (17.91309) | > loss_duration: 1.75825 (1.72017) | > loss_1: 32.82614 (33.30466)  --> STEP: 86 | > loss_disc: 2.35352 (2.32397) | > loss_disc_real_0: 0.11392 (0.11001) | > loss_disc_real_1: 0.22074 (0.21971) | > loss_disc_real_2: 0.23297 (0.23073) | > loss_disc_real_3: 0.23037 (0.22783) | > loss_disc_real_4: 0.21575 (0.22592) | > loss_disc_real_5: 0.22121 (0.21349) | > loss_0: 2.35352 (2.32397) | > loss_gen: 2.43323 (2.46669) | > loss_kl: 2.66360 (2.76563) | > loss_feat: 8.18650 (8.43457) | > loss_mel: 16.99803 (17.90245) | > loss_duration: 1.71224 (1.72008) | > loss_1: 31.99360 (33.28942)  --> STEP: 87 | > loss_disc: 2.32737 (2.32401) | > loss_disc_real_0: 0.12084 (0.11013) | > loss_disc_real_1: 0.21488 (0.21966) | > loss_disc_real_2: 0.22794 (0.23070) | > loss_disc_real_3: 0.22329 (0.22778) | > loss_disc_real_4: 0.22205 (0.22587) | > loss_disc_real_5: 0.21484 (0.21350) | > loss_0: 2.32737 (2.32401) | > loss_gen: 2.49384 (2.46700) | > loss_kl: 2.81533 (2.76620) | > loss_feat: 8.79801 (8.43875) | > loss_mel: 18.51882 (17.90954) | > loss_duration: 1.70138 (1.71987) | > loss_1: 34.32739 (33.30135)  --> STEP: 88 | > loss_disc: 2.36714 (2.32450) | > loss_disc_real_0: 0.10305 (0.11005) | > loss_disc_real_1: 0.21586 (0.21961) | > loss_disc_real_2: 0.23299 (0.23073) | > loss_disc_real_3: 0.22557 (0.22775) | > loss_disc_real_4: 0.22880 (0.22591) | > loss_disc_real_5: 0.20610 (0.21342) | > loss_0: 2.36714 (2.32450) | > loss_gen: 2.39420 (2.46617) | > loss_kl: 2.74229 (2.76593) | > loss_feat: 8.48824 (8.43931) | > loss_mel: 17.51090 (17.90501) | > loss_duration: 1.66894 (1.71929) | > loss_1: 32.80458 (33.29571)  --> STEP: 89 | > loss_disc: 2.36580 (2.32496) | > loss_disc_real_0: 0.11891 (0.11015) | > loss_disc_real_1: 0.21676 (0.21958) | > loss_disc_real_2: 0.22366 (0.23065) | > loss_disc_real_3: 0.22431 (0.22772) | > loss_disc_real_4: 0.21728 (0.22581) | > loss_disc_real_5: 0.21399 (0.21342) | > loss_0: 2.36580 (2.32496) | > loss_gen: 2.40748 (2.46551) | > loss_kl: 2.76135 (2.76588) | > loss_feat: 8.43827 (8.43930) | > loss_mel: 18.09012 (17.90709) | > loss_duration: 1.70369 (1.71911) | > loss_1: 33.40091 (33.29689)  --> STEP: 90 | > loss_disc: 2.35105 (2.32525) | > loss_disc_real_0: 0.12991 (0.11037) | > loss_disc_real_1: 0.21591 (0.21954) | > loss_disc_real_2: 0.22233 (0.23055) | > loss_disc_real_3: 0.23397 (0.22779) | > loss_disc_real_4: 0.22310 (0.22578) | > loss_disc_real_5: 0.20609 (0.21334) | > loss_0: 2.35105 (2.32525) | > loss_gen: 2.47040 (2.46557) | > loss_kl: 2.88144 (2.76716) | > loss_feat: 9.06207 (8.44622) | > loss_mel: 18.22902 (17.91066) | > loss_duration: 1.69728 (1.71887) | > loss_1: 34.34021 (33.30849)  --> STEP: 91 | > loss_disc: 2.38530 (2.32591) | > loss_disc_real_0: 0.11780 (0.11045) | > loss_disc_real_1: 0.22323 (0.21958) | > loss_disc_real_2: 0.24500 (0.23071) | > loss_disc_real_3: 0.23855 (0.22790) | > loss_disc_real_4: 0.26599 (0.22622) | > loss_disc_real_5: 0.21791 (0.21339) | > loss_0: 2.38530 (2.32591) | > loss_gen: 2.47705 (2.46569) | > loss_kl: 2.56365 (2.76493) | > loss_feat: 7.95623 (8.44083) | > loss_mel: 17.51149 (17.90628) | > loss_duration: 1.71309 (1.71881) | > loss_1: 32.22151 (33.29654)  --> STEP: 92 | > loss_disc: 2.36201 (2.32630) | > loss_disc_real_0: 0.11960 (0.11055) | > loss_disc_real_1: 0.22880 (0.21968) | > loss_disc_real_2: 0.23318 (0.23074) | > loss_disc_real_3: 0.24431 (0.22808) | > loss_disc_real_4: 0.24771 (0.22645) | > loss_disc_real_5: 0.22346 (0.21350) | > loss_0: 2.36201 (2.32630) | > loss_gen: 2.50221 (2.46609) | > loss_kl: 2.91516 (2.76656) | > loss_feat: 8.77032 (8.44442) | > loss_mel: 18.63973 (17.91425) | > loss_duration: 1.74783 (1.71912) | > loss_1: 34.57525 (33.31044)  --> STEP: 93 | > loss_disc: 2.39065 (2.32700) | > loss_disc_real_0: 0.13282 (0.11079) | > loss_disc_real_1: 0.22391 (0.21973) | > loss_disc_real_2: 0.24659 (0.23091) | > loss_disc_real_3: 0.23038 (0.22811) | > loss_disc_real_4: 0.25145 (0.22672) | > loss_disc_real_5: 0.21671 (0.21354) | > loss_0: 2.39065 (2.32700) | > loss_gen: 2.45830 (2.46601) | > loss_kl: 2.71049 (2.76596) | > loss_feat: 8.11401 (8.44086) | > loss_mel: 17.58613 (17.91072) | > loss_duration: 1.72795 (1.71922) | > loss_1: 32.59689 (33.30277)  --> STEP: 94 | > loss_disc: 2.39245 (2.32769) | > loss_disc_real_0: 0.11987 (0.11089) | > loss_disc_real_1: 0.21533 (0.21968) | > loss_disc_real_2: 0.23677 (0.23097) | > loss_disc_real_3: 0.23695 (0.22820) | > loss_disc_real_4: 0.23753 (0.22684) | > loss_disc_real_5: 0.22068 (0.21361) | > loss_0: 2.39245 (2.32769) | > loss_gen: 2.42270 (2.46555) | > loss_kl: 2.73752 (2.76565) | > loss_feat: 8.55746 (8.44210) | > loss_mel: 17.63340 (17.90777) | > loss_duration: 1.73101 (1.71934) | > loss_1: 33.08209 (33.30042)  --> STEP: 95 | > loss_disc: 2.37922 (2.32824) | > loss_disc_real_0: 0.10949 (0.11087) | > loss_disc_real_1: 0.23073 (0.21979) | > loss_disc_real_2: 0.22970 (0.23096) | > loss_disc_real_3: 0.22737 (0.22819) | > loss_disc_real_4: 0.23044 (0.22688) | > loss_disc_real_5: 0.20461 (0.21352) | > loss_0: 2.37922 (2.32824) | > loss_gen: 2.33875 (2.46421) | > loss_kl: 2.78427 (2.76585) | > loss_feat: 7.96367 (8.43707) | > loss_mel: 18.34449 (17.91237) | > loss_duration: 1.74773 (1.71964) | > loss_1: 33.17892 (33.29914)  --> STEP: 96 | > loss_disc: 2.26912 (2.32762) | > loss_disc_real_0: 0.08740 (0.11063) | > loss_disc_real_1: 0.22197 (0.21982) | > loss_disc_real_2: 0.22091 (0.23085) | > loss_disc_real_3: 0.22957 (0.22821) | > loss_disc_real_4: 0.22447 (0.22685) | > loss_disc_real_5: 0.21315 (0.21351) | > loss_0: 2.26912 (2.32762) | > loss_gen: 2.51366 (2.46473) | > loss_kl: 2.68867 (2.76505) | > loss_feat: 8.45943 (8.43730) | > loss_mel: 17.86099 (17.91183) | > loss_duration: 1.70577 (1.71950) | > loss_1: 33.22853 (33.29841)  --> STEP: 97 | > loss_disc: 2.30008 (2.32734) | > loss_disc_real_0: 0.10071 (0.11053) | > loss_disc_real_1: 0.21189 (0.21974) | > loss_disc_real_2: 0.21809 (0.23072) | > loss_disc_real_3: 0.23361 (0.22826) | > loss_disc_real_4: 0.21711 (0.22675) | > loss_disc_real_5: 0.20950 (0.21347) | > loss_0: 2.30008 (2.32734) | > loss_gen: 2.40567 (2.46412) | > loss_kl: 2.74265 (2.76482) | > loss_feat: 8.35916 (8.43650) | > loss_mel: 18.01113 (17.91286) | > loss_duration: 1.72179 (1.71952) | > loss_1: 33.24040 (33.29781)  --> STEP: 98 | > loss_disc: 2.35344 (2.32760) | > loss_disc_real_0: 0.10907 (0.11051) | > loss_disc_real_1: 0.21849 (0.21972) | > loss_disc_real_2: 0.22611 (0.23068) | > loss_disc_real_3: 0.24427 (0.22843) | > loss_disc_real_4: 0.24119 (0.22690) | > loss_disc_real_5: 0.22995 (0.21364) | > loss_0: 2.35344 (2.32760) | > loss_gen: 2.45491 (2.46402) | > loss_kl: 2.76902 (2.76486) | > loss_feat: 7.63087 (8.42828) | > loss_mel: 16.98443 (17.90338) | > loss_duration: 1.69613 (1.71928) | > loss_1: 31.53535 (33.27982)  --> STEP: 99 | > loss_disc: 2.28308 (2.32715) | > loss_disc_real_0: 0.09824 (0.11039) | > loss_disc_real_1: 0.21468 (0.21967) | > loss_disc_real_2: 0.23422 (0.23071) | > loss_disc_real_3: 0.23530 (0.22849) | > loss_disc_real_4: 0.22037 (0.22683) | > loss_disc_real_5: 0.22487 (0.21375) | > loss_0: 2.28308 (2.32715) | > loss_gen: 2.49769 (2.46436) | > loss_kl: 2.77592 (2.76497) | > loss_feat: 8.42719 (8.42826) | > loss_mel: 17.82637 (17.90260) | > loss_duration: 1.72307 (1.71932) | > loss_1: 33.25024 (33.27952)  --> STEP: 100 | > loss_disc: 2.26699 (2.32655) | > loss_disc_real_0: 0.10470 (0.11033) | > loss_disc_real_1: 0.21648 (0.21964) | > loss_disc_real_2: 0.22143 (0.23062) | > loss_disc_real_3: 0.22581 (0.22847) | > loss_disc_real_4: 0.21845 (0.22675) | > loss_disc_real_5: 0.21395 (0.21376) | > loss_0: 2.26699 (2.32655) | > loss_gen: 2.51014 (2.46482) | > loss_kl: 2.82172 (2.76554) | > loss_feat: 8.59011 (8.42988) | > loss_mel: 17.89860 (17.90256) | > loss_duration: 1.71836 (1.71931) | > loss_1: 33.53893 (33.28211)  --> STEP: 101 | > loss_disc: 2.34718 (2.32676) | > loss_disc_real_0: 0.12614 (0.11049) | > loss_disc_real_1: 0.22394 (0.21968) | > loss_disc_real_2: 0.24216 (0.23073) | > loss_disc_real_3: 0.23832 (0.22857) | > loss_disc_real_4: 0.22668 (0.22675) | > loss_disc_real_5: 0.22489 (0.21387) | > loss_0: 2.34718 (2.32676) | > loss_gen: 2.53296 (2.46550) | > loss_kl: 2.66092 (2.76450) | > loss_feat: 9.00439 (8.43557) | > loss_mel: 17.86466 (17.90219) | > loss_duration: 1.69231 (1.71904) | > loss_1: 33.75524 (33.28679)  --> STEP: 102 | > loss_disc: 2.29276 (2.32642) | > loss_disc_real_0: 0.09221 (0.11031) | > loss_disc_real_1: 0.20914 (0.21958) | > loss_disc_real_2: 0.22575 (0.23068) | > loss_disc_real_3: 0.21664 (0.22845) | > loss_disc_real_4: 0.21668 (0.22665) | > loss_disc_real_5: 0.20652 (0.21379) | > loss_0: 2.29276 (2.32642) | > loss_gen: 2.46175 (2.46546) | > loss_kl: 2.81558 (2.76500) | > loss_feat: 8.68364 (8.43800) | > loss_mel: 18.46760 (17.90773) | > loss_duration: 1.69791 (1.71883) | > loss_1: 34.12647 (33.29502)  --> STEP: 103 | > loss_disc: 2.29357 (2.32610) | > loss_disc_real_0: 0.08939 (0.11011) | > loss_disc_real_1: 0.20414 (0.21943) | > loss_disc_real_2: 0.22126 (0.23059) | > loss_disc_real_3: 0.23420 (0.22850) | > loss_disc_real_4: 0.21681 (0.22655) | > loss_disc_real_5: 0.21323 (0.21379) | > loss_0: 2.29357 (2.32610) | > loss_gen: 2.46013 (2.46541) | > loss_kl: 2.70473 (2.76442) | > loss_feat: 8.84306 (8.44194) | > loss_mel: 18.34251 (17.91195) | > loss_duration: 1.71607 (1.71881) | > loss_1: 34.06651 (33.30251)  --> STEP: 104 | > loss_disc: 2.39182 (2.32674) | > loss_disc_real_0: 0.11250 (0.11013) | > loss_disc_real_1: 0.23431 (0.21957) | > loss_disc_real_2: 0.25073 (0.23079) | > loss_disc_real_3: 0.24062 (0.22862) | > loss_disc_real_4: 0.23541 (0.22664) | > loss_disc_real_5: 0.22275 (0.21388) | > loss_0: 2.39182 (2.32674) | > loss_gen: 2.45238 (2.46528) | > loss_kl: 2.59764 (2.76281) | > loss_feat: 7.83171 (8.43607) | > loss_mel: 17.54576 (17.90843) | > loss_duration: 1.73113 (1.71893) | > loss_1: 32.15863 (33.29152)  --> STEP: 105 | > loss_disc: 2.31453 (2.32662) | > loss_disc_real_0: 0.12128 (0.11024) | > loss_disc_real_1: 0.22358 (0.21961) | > loss_disc_real_2: 0.23371 (0.23081) | > loss_disc_real_3: 0.22629 (0.22860) | > loss_disc_real_4: 0.22612 (0.22663) | > loss_disc_real_5: 0.22984 (0.21403) | > loss_0: 2.31453 (2.32662) | > loss_gen: 2.54022 (2.46600) | > loss_kl: 2.77250 (2.76291) | > loss_feat: 8.42255 (8.43594) | > loss_mel: 17.85379 (17.90791) | > loss_duration: 1.71580 (1.71890) | > loss_1: 33.30487 (33.29165)  --> STEP: 106 | > loss_disc: 2.35494 (2.32689) | > loss_disc_real_0: 0.10850 (0.11022) | > loss_disc_real_1: 0.22045 (0.21962) | > loss_disc_real_2: 0.24252 (0.23092) | > loss_disc_real_3: 0.24415 (0.22875) | > loss_disc_real_4: 0.24979 (0.22685) | > loss_disc_real_5: 0.23733 (0.21425) | > loss_0: 2.35494 (2.32689) | > loss_gen: 2.50725 (2.46638) | > loss_kl: 2.83983 (2.76363) | > loss_feat: 7.71409 (8.42913) | > loss_mel: 17.86688 (17.90752) | > loss_duration: 1.66471 (1.71839) | > loss_1: 32.59276 (33.28505)  --> STEP: 107 | > loss_disc: 2.30916 (2.32672) | > loss_disc_real_0: 0.11148 (0.11023) | > loss_disc_real_1: 0.21549 (0.21958) | > loss_disc_real_2: 0.21868 (0.23081) | > loss_disc_real_3: 0.23349 (0.22879) | > loss_disc_real_4: 0.22156 (0.22680) | > loss_disc_real_5: 0.22543 (0.21435) | > loss_0: 2.30916 (2.32672) | > loss_gen: 2.48746 (2.46658) | > loss_kl: 2.78468 (2.76383) | > loss_feat: 8.38456 (8.42871) | > loss_mel: 18.16709 (17.90995) | > loss_duration: 1.72860 (1.71848) | > loss_1: 33.55238 (33.28755)  --> STEP: 108 | > loss_disc: 2.36242 (2.32705) | > loss_disc_real_0: 0.12211 (0.11034) | > loss_disc_real_1: 0.23008 (0.21968) | > loss_disc_real_2: 0.24235 (0.23092) | > loss_disc_real_3: 0.23419 (0.22884) | > loss_disc_real_4: 0.24117 (0.22694) | > loss_disc_real_5: 0.21531 (0.21436) | > loss_0: 2.36242 (2.32705) | > loss_gen: 2.48900 (2.46679) | > loss_kl: 2.56812 (2.76202) | > loss_feat: 7.79056 (8.42280) | > loss_mel: 17.39518 (17.90518) | > loss_duration: 1.72651 (1.71856) | > loss_1: 31.96936 (33.27535)  --> STEP: 109 | > loss_disc: 2.30396 (2.32684) | > loss_disc_real_0: 0.11160 (0.11035) | > loss_disc_real_1: 0.21464 (0.21963) | > loss_disc_real_2: 0.23253 (0.23093) | > loss_disc_real_3: 0.23131 (0.22886) | > loss_disc_real_4: 0.23313 (0.22699) | > loss_disc_real_5: 0.21898 (0.21440) | > loss_0: 2.30396 (2.32684) | > loss_gen: 2.53475 (2.46741) | > loss_kl: 2.93879 (2.76364) | > loss_feat: 8.58575 (8.42430) | > loss_mel: 17.87775 (17.90493) | > loss_duration: 1.71001 (1.71848) | > loss_1: 33.64705 (33.27876)  --> STEP: 110 | > loss_disc: 2.34696 (2.32702) | > loss_disc_real_0: 0.12671 (0.11050) | > loss_disc_real_1: 0.22292 (0.21966) | > loss_disc_real_2: 0.23558 (0.23097) | > loss_disc_real_3: 0.23664 (0.22893) | > loss_disc_real_4: 0.22871 (0.22701) | > loss_disc_real_5: 0.22621 (0.21451) | > loss_0: 2.34696 (2.32702) | > loss_gen: 2.48694 (2.46759) | > loss_kl: 2.72530 (2.76329) | > loss_feat: 8.34500 (8.42358) | > loss_mel: 17.74089 (17.90344) | > loss_duration: 1.71932 (1.71848) | > loss_1: 33.01744 (33.27638)  --> STEP: 111 | > loss_disc: 2.36717 (2.32738) | > loss_disc_real_0: 0.10714 (0.11047) | > loss_disc_real_1: 0.23196 (0.21977) | > loss_disc_real_2: 0.23958 (0.23105) | > loss_disc_real_3: 0.25014 (0.22912) | > loss_disc_real_4: 0.24110 (0.22714) | > loss_disc_real_5: 0.22391 (0.21460) | > loss_0: 2.36717 (2.32738) | > loss_gen: 2.46007 (2.46752) | > loss_kl: 2.58281 (2.76166) | > loss_feat: 7.61186 (8.41626) | > loss_mel: 17.62257 (17.90091) | > loss_duration: 1.75280 (1.71879) | > loss_1: 32.03011 (33.26515)  --> STEP: 112 | > loss_disc: 2.27593 (2.32692) | > loss_disc_real_0: 0.10672 (0.11044) | > loss_disc_real_1: 0.21708 (0.21975) | > loss_disc_real_2: 0.22654 (0.23101) | > loss_disc_real_3: 0.22663 (0.22910) | > loss_disc_real_4: 0.22185 (0.22709) | > loss_disc_real_5: 0.21022 (0.21456) | > loss_0: 2.27593 (2.32692) | > loss_gen: 2.48442 (2.46767) | > loss_kl: 2.70474 (2.76116) | > loss_feat: 8.35992 (8.41576) | > loss_mel: 17.88278 (17.90075) | > loss_duration: 1.69344 (1.71857) | > loss_1: 33.12531 (33.26390)  --> STEP: 113 | > loss_disc: 2.36093 (2.32723) | > loss_disc_real_0: 0.10899 (0.11042) | > loss_disc_real_1: 0.22603 (0.21980) | > loss_disc_real_2: 0.24202 (0.23111) | > loss_disc_real_3: 0.23987 (0.22920) | > loss_disc_real_4: 0.23233 (0.22713) | > loss_disc_real_5: 0.21681 (0.21458) | > loss_0: 2.36093 (2.32723) | > loss_gen: 2.43349 (2.46737) | > loss_kl: 2.86684 (2.76209) | > loss_feat: 8.43597 (8.41594) | > loss_mel: 17.80624 (17.89991) | > loss_duration: 1.69725 (1.71838) | > loss_1: 33.23978 (33.26369)  --> STEP: 114 | > loss_disc: 2.33795 (2.32732) | > loss_disc_real_0: 0.10583 (0.11038) | > loss_disc_real_1: 0.21542 (0.21977) | > loss_disc_real_2: 0.23540 (0.23115) | > loss_disc_real_3: 0.24370 (0.22932) | > loss_disc_real_4: 0.22594 (0.22712) | > loss_disc_real_5: 0.20650 (0.21451) | > loss_0: 2.33795 (2.32732) | > loss_gen: 2.43963 (2.46713) | > loss_kl: 2.93334 (2.76359) | > loss_feat: 8.18729 (8.41393) | > loss_mel: 18.04800 (17.90121) | > loss_duration: 1.72797 (1.71846) | > loss_1: 33.33623 (33.26433)  --> STEP: 115 | > loss_disc: 2.33404 (2.32738) | > loss_disc_real_0: 0.11430 (0.11042) | > loss_disc_real_1: 0.22477 (0.21981) | > loss_disc_real_2: 0.22682 (0.23111) | > loss_disc_real_3: 0.23016 (0.22933) | > loss_disc_real_4: 0.21232 (0.22700) | > loss_disc_real_5: 0.18332 (0.21423) | > loss_0: 2.33404 (2.32738) | > loss_gen: 2.40422 (2.46658) | > loss_kl: 2.82155 (2.76410) | > loss_feat: 8.17418 (8.41185) | > loss_mel: 17.73277 (17.89974) | > loss_duration: 1.68592 (1.71818) | > loss_1: 32.81864 (33.26045)  --> STEP: 116 | > loss_disc: 2.34146 (2.32750) | > loss_disc_real_0: 0.10587 (0.11038) | > loss_disc_real_1: 0.23256 (0.21992) | > loss_disc_real_2: 0.23488 (0.23114) | > loss_disc_real_3: 0.23669 (0.22939) | > loss_disc_real_4: 0.23647 (0.22708) | > loss_disc_real_5: 0.21244 (0.21422) | > loss_0: 2.34146 (2.32750) | > loss_gen: 2.45069 (2.46644) | > loss_kl: 2.64010 (2.76303) | > loss_feat: 8.11082 (8.40925) | > loss_mel: 17.27688 (17.89437) | > loss_duration: 1.73521 (1.71833) | > loss_1: 32.21369 (33.25142)  --> STEP: 117 | > loss_disc: 2.36601 (2.32783) | > loss_disc_real_0: 0.13876 (0.11062) | > loss_disc_real_1: 0.21321 (0.21986) | > loss_disc_real_2: 0.22951 (0.23113) | > loss_disc_real_3: 0.23497 (0.22944) | > loss_disc_real_4: 0.22950 (0.22710) | > loss_disc_real_5: 0.21367 (0.21421) | > loss_0: 2.36601 (2.32783) | > loss_gen: 2.45994 (2.46639) | > loss_kl: 2.75724 (2.76298) | > loss_feat: 8.33908 (8.40866) | > loss_mel: 17.72964 (17.89297) | > loss_duration: 1.70702 (1.71823) | > loss_1: 32.99292 (33.24921)  --> STEP: 118 | > loss_disc: 2.32364 (2.32779) | > loss_disc_real_0: 0.11654 (0.11067) | > loss_disc_real_1: 0.22789 (0.21993) | > loss_disc_real_2: 0.23373 (0.23115) | > loss_disc_real_3: 0.22598 (0.22941) | > loss_disc_real_4: 0.23246 (0.22714) | > loss_disc_real_5: 0.20380 (0.21413) | > loss_0: 2.32364 (2.32779) | > loss_gen: 2.47258 (2.46644) | > loss_kl: 2.77952 (2.76312) | > loss_feat: 8.94551 (8.41321) | > loss_mel: 18.33111 (17.89668) | > loss_duration: 1.73202 (1.71835) | > loss_1: 34.26075 (33.25779)  --> STEP: 119 | > loss_disc: 2.28965 (2.32747) | > loss_disc_real_0: 0.10230 (0.11060) | > loss_disc_real_1: 0.22126 (0.21994) | > loss_disc_real_2: 0.23500 (0.23118) | > loss_disc_real_3: 0.23214 (0.22944) | > loss_disc_real_4: 0.21870 (0.22707) | > loss_disc_real_5: 0.18999 (0.21392) | > loss_0: 2.28965 (2.32747) | > loss_gen: 2.48002 (2.46655) | > loss_kl: 2.72828 (2.76283) | > loss_feat: 8.63783 (8.41509) | > loss_mel: 17.80026 (17.89587) | > loss_duration: 1.73308 (1.71847) | > loss_1: 33.37949 (33.25881)  --> STEP: 120 | > loss_disc: 2.30610 (2.32729) | > loss_disc_real_0: 0.10621 (0.11056) | > loss_disc_real_1: 0.22242 (0.21996) | > loss_disc_real_2: 0.22452 (0.23113) | > loss_disc_real_3: 0.22871 (0.22943) | > loss_disc_real_4: 0.21539 (0.22697) | > loss_disc_real_5: 0.22019 (0.21398) | > loss_0: 2.30610 (2.32729) | > loss_gen: 2.48939 (2.46675) | > loss_kl: 2.79189 (2.76307) | > loss_feat: 8.87317 (8.41891) | > loss_mel: 18.18570 (17.89829) | > loss_duration: 1.68210 (1.71817) | > loss_1: 34.02224 (33.26517)  --> STEP: 121 | > loss_disc: 2.39316 (2.32784) | > loss_disc_real_0: 0.13007 (0.11073) | > loss_disc_real_1: 0.22793 (0.22003) | > loss_disc_real_2: 0.23472 (0.23116) | > loss_disc_real_3: 0.24172 (0.22953) | > loss_disc_real_4: 0.23497 (0.22704) | > loss_disc_real_5: 0.22008 (0.21403) | > loss_0: 2.39316 (2.32784) | > loss_gen: 2.39429 (2.46615) | > loss_kl: 2.87355 (2.76398) | > loss_feat: 7.95132 (8.41505) | > loss_mel: 17.54266 (17.89535) | > loss_duration: 1.71954 (1.71818) | > loss_1: 32.48135 (33.25869)  --> STEP: 122 | > loss_disc: 2.28765 (2.32751) | > loss_disc_real_0: 0.10112 (0.11065) | > loss_disc_real_1: 0.21669 (0.22000) | > loss_disc_real_2: 0.23134 (0.23116) | > loss_disc_real_3: 0.21251 (0.22939) | > loss_disc_real_4: 0.21286 (0.22692) | > loss_disc_real_5: 0.19225 (0.21385) | > loss_0: 2.28765 (2.32751) | > loss_gen: 2.43710 (2.46591) | > loss_kl: 2.74044 (2.76379) | > loss_feat: 8.49729 (8.41572) | > loss_mel: 18.02119 (17.89638) | > loss_duration: 1.69690 (1.71800) | > loss_1: 33.39291 (33.25979)  --> STEP: 123 | > loss_disc: 2.27103 (2.32705) | > loss_disc_real_0: 0.09766 (0.11054) | > loss_disc_real_1: 0.20633 (0.21989) | > loss_disc_real_2: 0.22341 (0.23109) | > loss_disc_real_3: 0.22286 (0.22934) | > loss_disc_real_4: 0.21407 (0.22682) | > loss_disc_real_5: 0.21740 (0.21388) | > loss_0: 2.27103 (2.32705) | > loss_gen: 2.50294 (2.46621) | > loss_kl: 2.69231 (2.76321) | > loss_feat: 9.18486 (8.42197) | > loss_mel: 17.93573 (17.89670) | > loss_duration: 1.72951 (1.71810) | > loss_1: 34.04536 (33.26618)  --> STEP: 124 | > loss_disc: 2.31619 (2.32696) | > loss_disc_real_0: 0.10536 (0.11050) | > loss_disc_real_1: 0.21970 (0.21989) | > loss_disc_real_2: 0.23085 (0.23109) | > loss_disc_real_3: 0.21545 (0.22923) | > loss_disc_real_4: 0.23029 (0.22685) | > loss_disc_real_5: 0.20819 (0.21383) | > loss_0: 2.31619 (2.32696) | > loss_gen: 2.49238 (2.46642) | > loss_kl: 2.69013 (2.76262) | > loss_feat: 8.83740 (8.42532) | > loss_mel: 18.34527 (17.90032) | > loss_duration: 1.75906 (1.71843) | > loss_1: 34.12425 (33.27310)  --> STEP: 125 | > loss_disc: 2.36621 (2.32728) | > loss_disc_real_0: 0.12718 (0.11063) | > loss_disc_real_1: 0.21425 (0.21984) | > loss_disc_real_2: 0.22595 (0.23105) | > loss_disc_real_3: 0.22846 (0.22922) | > loss_disc_real_4: 0.23637 (0.22692) | > loss_disc_real_5: 0.21270 (0.21382) | > loss_0: 2.36621 (2.32728) | > loss_gen: 2.41431 (2.46600) | > loss_kl: 2.76391 (2.76263) | > loss_feat: 8.17173 (8.42329) | > loss_mel: 17.59146 (17.89785) | > loss_duration: 1.71783 (1.71842) | > loss_1: 32.65924 (33.26819)  --> STEP: 126 | > loss_disc: 2.33253 (2.32732) | > loss_disc_real_0: 0.09926 (0.11054) | > loss_disc_real_1: 0.21955 (0.21984) | > loss_disc_real_2: 0.21637 (0.23093) | > loss_disc_real_3: 0.21958 (0.22914) | > loss_disc_real_4: 0.22392 (0.22690) | > loss_disc_real_5: 0.21250 (0.21381) | > loss_0: 2.33253 (2.32732) | > loss_gen: 2.38023 (2.46532) | > loss_kl: 2.68851 (2.76204) | > loss_feat: 7.98524 (8.41982) | > loss_mel: 17.52435 (17.89489) | > loss_duration: 1.69227 (1.71822) | > loss_1: 32.27060 (33.26027)  --> STEP: 127 | > loss_disc: 2.33581 (2.32738) | > loss_disc_real_0: 0.10725 (0.11052) | > loss_disc_real_1: 0.21241 (0.21978) | > loss_disc_real_2: 0.22982 (0.23093) | > loss_disc_real_3: 0.21594 (0.22904) | > loss_disc_real_4: 0.21779 (0.22683) | > loss_disc_real_5: 0.22130 (0.21387) | > loss_0: 2.33581 (2.32738) | > loss_gen: 2.41855 (2.46495) | > loss_kl: 2.90110 (2.76313) | > loss_feat: 8.78444 (8.42269) | > loss_mel: 18.06706 (17.89624) | > loss_duration: 1.68454 (1.71795) | > loss_1: 33.85569 (33.26496)  --> STEP: 128 | > loss_disc: 2.33900 (2.32748) | > loss_disc_real_0: 0.12559 (0.11063) | > loss_disc_real_1: 0.22026 (0.21978) | > loss_disc_real_2: 0.23646 (0.23097) | > loss_disc_real_3: 0.23780 (0.22911) | > loss_disc_real_4: 0.22862 (0.22684) | > loss_disc_real_5: 0.21468 (0.21388) | > loss_0: 2.33900 (2.32748) | > loss_gen: 2.52606 (2.46543) | > loss_kl: 2.79291 (2.76337) | > loss_feat: 8.38277 (8.42238) | > loss_mel: 18.23263 (17.89887) | > loss_duration: 1.70565 (1.71785) | > loss_1: 33.64001 (33.26789)  --> STEP: 129 | > loss_disc: 2.30187 (2.32728) | > loss_disc_real_0: 0.09940 (0.11055) | > loss_disc_real_1: 0.22885 (0.21985) | > loss_disc_real_2: 0.22767 (0.23094) | > loss_disc_real_3: 0.24146 (0.22920) | > loss_disc_real_4: 0.22227 (0.22681) | > loss_disc_real_5: 0.20702 (0.21382) | > loss_0: 2.30187 (2.32728) | > loss_gen: 2.46939 (2.46546) | > loss_kl: 2.85023 (2.76404) | > loss_feat: 8.11449 (8.41999) | > loss_mel: 18.36311 (17.90247) | > loss_duration: 1.67323 (1.71751) | > loss_1: 33.47045 (33.26946)  --> STEP: 130 | > loss_disc: 2.29675 (2.32704) | > loss_disc_real_0: 0.10545 (0.11051) | > loss_disc_real_1: 0.21469 (0.21982) | > loss_disc_real_2: 0.23800 (0.23100) | > loss_disc_real_3: 0.23648 (0.22926) | > loss_disc_real_4: 0.24432 (0.22694) | > loss_disc_real_5: 0.20608 (0.21376) | > loss_0: 2.29675 (2.32704) | > loss_gen: 2.50224 (2.46575) | > loss_kl: 2.76857 (2.76408) | > loss_feat: 8.33484 (8.41934) | > loss_mel: 18.14183 (17.90431) | > loss_duration: 1.72000 (1.71753) | > loss_1: 33.46748 (33.27098)  --> STEP: 131 | > loss_disc: 2.32104 (2.32700) | > loss_disc_real_0: 0.10352 (0.11046) | > loss_disc_real_1: 0.22798 (0.21988) | > loss_disc_real_2: 0.23953 (0.23106) | > loss_disc_real_3: 0.22869 (0.22926) | > loss_disc_real_4: 0.22009 (0.22689) | > loss_disc_real_5: 0.21918 (0.21380) | > loss_0: 2.32104 (2.32700) | > loss_gen: 2.48587 (2.46590) | > loss_kl: 2.66633 (2.76333) | > loss_feat: 8.27958 (8.41827) | > loss_mel: 17.86448 (17.90401) | > loss_duration: 1.72392 (1.71758) | > loss_1: 33.02019 (33.26907)  --> STEP: 132 | > loss_disc: 2.31391 (2.32690) | > loss_disc_real_0: 0.09698 (0.11035) | > loss_disc_real_1: 0.22061 (0.21988) | > loss_disc_real_2: 0.22526 (0.23102) | > loss_disc_real_3: 0.22205 (0.22920) | > loss_disc_real_4: 0.23678 (0.22696) | > loss_disc_real_5: 0.21769 (0.21383) | > loss_0: 2.31391 (2.32690) | > loss_gen: 2.49340 (2.46611) | > loss_kl: 2.75770 (2.76329) | > loss_feat: 8.63417 (8.41990) | > loss_mel: 18.08496 (17.90538) | > loss_duration: 1.72429 (1.71763) | > loss_1: 33.69452 (33.27229)  --> STEP: 133 | > loss_disc: 2.35192 (2.32709) | > loss_disc_real_0: 0.11613 (0.11040) | > loss_disc_real_1: 0.21363 (0.21984) | > loss_disc_real_2: 0.22669 (0.23099) | > loss_disc_real_3: 0.21928 (0.22913) | > loss_disc_real_4: 0.22104 (0.22692) | > loss_disc_real_5: 0.20204 (0.21375) | > loss_0: 2.35192 (2.32709) | > loss_gen: 2.37453 (2.46542) | > loss_kl: 2.68726 (2.76272) | > loss_feat: 8.10383 (8.41753) | > loss_mel: 17.52867 (17.90255) | > loss_duration: 1.69112 (1.71743) | > loss_1: 32.38541 (33.26562)  --> STEP: 134 | > loss_disc: 2.28433 (2.32677) | > loss_disc_real_0: 0.09863 (0.11031) | > loss_disc_real_1: 0.21462 (0.21980) | > loss_disc_real_2: 0.22338 (0.23093) | > loss_disc_real_3: 0.21278 (0.22900) | > loss_disc_real_4: 0.21605 (0.22684) | > loss_disc_real_5: 0.19901 (0.21364) | > loss_0: 2.28433 (2.32677) | > loss_gen: 2.41233 (2.46502) | > loss_kl: 2.67776 (2.76208) | > loss_feat: 8.55778 (8.41857) | > loss_mel: 17.89672 (17.90250) | > loss_duration: 1.71738 (1.71743) | > loss_1: 33.26198 (33.26559)  --> STEP: 135 | > loss_disc: 2.25564 (2.32624) | > loss_disc_real_0: 0.11084 (0.11031) | > loss_disc_real_1: 0.20706 (0.21970) | > loss_disc_real_2: 0.22054 (0.23085) | > loss_disc_real_3: 0.22354 (0.22896) | > loss_disc_real_4: 0.23304 (0.22688) | > loss_disc_real_5: 0.22835 (0.21374) | > loss_0: 2.25564 (2.32624) | > loss_gen: 2.60145 (2.46603) | > loss_kl: 2.75370 (2.76202) | > loss_feat: 8.71829 (8.42079) | > loss_mel: 17.90261 (17.90250) | > loss_duration: 1.72824 (1.71751) | > loss_1: 33.70429 (33.26884)  --> STEP: 136 | > loss_disc: 2.32015 (2.32620) | > loss_disc_real_0: 0.10764 (0.11029) | > loss_disc_real_1: 0.22440 (0.21974) | > loss_disc_real_2: 0.22866 (0.23084) | > loss_disc_real_3: 0.24640 (0.22909) | > loss_disc_real_4: 0.22745 (0.22689) | > loss_disc_real_5: 0.20425 (0.21367) | > loss_0: 2.32015 (2.32620) | > loss_gen: 2.46649 (2.46604) | > loss_kl: 2.78567 (2.76219) | > loss_feat: 7.92738 (8.41717) | > loss_mel: 17.42917 (17.89902) | > loss_duration: 1.72327 (1.71755) | > loss_1: 32.33198 (33.26196)  --> STEP: 137 | > loss_disc: 2.39602 (2.32670) | > loss_disc_real_0: 0.14326 (0.11053) | > loss_disc_real_1: 0.21628 (0.21971) | > loss_disc_real_2: 0.22482 (0.23079) | > loss_disc_real_3: 0.23480 (0.22913) | > loss_disc_real_4: 0.22878 (0.22690) | > loss_disc_real_5: 0.21411 (0.21368) | > loss_0: 2.39602 (2.32670) | > loss_gen: 2.38982 (2.46548) | > loss_kl: 2.78637 (2.76237) | > loss_feat: 7.98685 (8.41403) | > loss_mel: 17.62830 (17.89705) | > loss_duration: 1.69983 (1.71742) | > loss_1: 32.49117 (33.25633)  --> STEP: 138 | > loss_disc: 2.30004 (2.32651) | > loss_disc_real_0: 0.10062 (0.11046) | > loss_disc_real_1: 0.21609 (0.21969) | > loss_disc_real_2: 0.22359 (0.23074) | > loss_disc_real_3: 0.21784 (0.22905) | > loss_disc_real_4: 0.20904 (0.22677) | > loss_disc_real_5: 0.21977 (0.21372) | > loss_0: 2.30004 (2.32651) | > loss_gen: 2.43600 (2.46527) | > loss_kl: 2.90821 (2.76343) | > loss_feat: 8.55255 (8.41503) | > loss_mel: 18.05465 (17.89819) | > loss_duration: 1.73333 (1.71754) | > loss_1: 33.68475 (33.25943)  --> STEP: 139 | > loss_disc: 2.27609 (2.32615) | > loss_disc_real_0: 0.09720 (0.11037) | > loss_disc_real_1: 0.22181 (0.21970) | > loss_disc_real_2: 0.22174 (0.23068) | > loss_disc_real_3: 0.22957 (0.22906) | > loss_disc_real_4: 0.21630 (0.22670) | > loss_disc_real_5: 0.21822 (0.21375) | > loss_0: 2.27609 (2.32615) | > loss_gen: 2.53753 (2.46579) | > loss_kl: 2.70950 (2.76304) | > loss_feat: 8.93169 (8.41875) | > loss_mel: 18.53175 (17.90275) | > loss_duration: 1.75895 (1.71783) | > loss_1: 34.46943 (33.26814)  --> STEP: 140 | > loss_disc: 2.34050 (2.32625) | > loss_disc_real_0: 0.11312 (0.11039) | > loss_disc_real_1: 0.21558 (0.21967) | > loss_disc_real_2: 0.23704 (0.23072) | > loss_disc_real_3: 0.23545 (0.22910) | > loss_disc_real_4: 0.22723 (0.22670) | > loss_disc_real_5: 0.22084 (0.21380) | > loss_0: 2.34050 (2.32625) | > loss_gen: 2.48144 (2.46590) | > loss_kl: 2.80302 (2.76332) | > loss_feat: 8.13394 (8.41671) | > loss_mel: 17.93349 (17.90297) | > loss_duration: 1.68111 (1.71757) | > loss_1: 33.03299 (33.26646)  --> STEP: 141 | > loss_disc: 2.28183 (2.32594) | > loss_disc_real_0: 0.09493 (0.11028) | > loss_disc_real_1: 0.21071 (0.21961) | > loss_disc_real_2: 0.23625 (0.23076) | > loss_disc_real_3: 0.22760 (0.22909) | > loss_disc_real_4: 0.23057 (0.22673) | > loss_disc_real_5: 0.18947 (0.21363) | > loss_0: 2.28183 (2.32594) | > loss_gen: 2.46457 (2.46589) | > loss_kl: 2.68530 (2.76277) | > loss_feat: 8.39017 (8.41652) | > loss_mel: 18.06932 (17.90415) | > loss_duration: 1.64855 (1.71708) | > loss_1: 33.25790 (33.26640)  --> STEP: 142 | > loss_disc: 2.31619 (2.32587) | > loss_disc_real_0: 0.09887 (0.11020) | > loss_disc_real_1: 0.23313 (0.21970) | > loss_disc_real_2: 0.24644 (0.23087) | > loss_disc_real_3: 0.23142 (0.22911) | > loss_disc_real_4: 0.21037 (0.22661) | > loss_disc_real_5: 0.19958 (0.21353) | > loss_0: 2.31619 (2.32587) | > loss_gen: 2.45938 (2.46584) | > loss_kl: 2.59343 (2.76158) | > loss_feat: 7.94587 (8.41321) | > loss_mel: 17.45868 (17.90101) | > loss_duration: 1.68888 (1.71688) | > loss_1: 32.14624 (33.25851)  --> STEP: 143 | > loss_disc: 2.27307 (2.32550) | > loss_disc_real_0: 0.10312 (0.11015) | > loss_disc_real_1: 0.21898 (0.21970) | > loss_disc_real_2: 0.23145 (0.23087) | > loss_disc_real_3: 0.22526 (0.22908) | > loss_disc_real_4: 0.20574 (0.22647) | > loss_disc_real_5: 0.20469 (0.21347) | > loss_0: 2.27307 (2.32550) | > loss_gen: 2.48856 (2.46600) | > loss_kl: 2.77382 (2.76166) | > loss_feat: 8.55861 (8.41422) | > loss_mel: 17.69005 (17.89953) | > loss_duration: 1.72414 (1.71693) | > loss_1: 33.23517 (33.25835)  --> STEP: 144 | > loss_disc: 2.30213 (2.32534) | > loss_disc_real_0: 0.10639 (0.11012) | > loss_disc_real_1: 0.23588 (0.21981) | > loss_disc_real_2: 0.22087 (0.23081) | > loss_disc_real_3: 0.21677 (0.22900) | > loss_disc_real_4: 0.21102 (0.22636) | > loss_disc_real_5: 0.20150 (0.21339) | > loss_0: 2.30213 (2.32534) | > loss_gen: 2.46207 (2.46597) | > loss_kl: 2.67000 (2.76103) | > loss_feat: 8.26773 (8.41321) | > loss_mel: 17.83772 (17.89910) | > loss_duration: 1.70339 (1.71684) | > loss_1: 32.94092 (33.25615)  --> STEP: 145 | > loss_disc: 2.24170 (2.32476) | > loss_disc_real_0: 0.08236 (0.10993) | > loss_disc_real_1: 0.21385 (0.21977) | > loss_disc_real_2: 0.22928 (0.23079) | > loss_disc_real_3: 0.22915 (0.22900) | > loss_disc_real_4: 0.21647 (0.22629) | > loss_disc_real_5: 0.20558 (0.21333) | > loss_0: 2.24170 (2.32476) | > loss_gen: 2.50483 (2.46624) | > loss_kl: 2.74008 (2.76088) | > loss_feat: 8.66434 (8.41494) | > loss_mel: 18.10982 (17.90056) | > loss_duration: 1.72601 (1.71690) | > loss_1: 33.74506 (33.25952)  --> STEP: 146 | > loss_disc: 2.33449 (2.32483) | > loss_disc_real_0: 0.13293 (0.11009) | > loss_disc_real_1: 0.21616 (0.21974) | > loss_disc_real_2: 0.23353 (0.23081) | > loss_disc_real_3: 0.23118 (0.22901) | > loss_disc_real_4: 0.23025 (0.22632) | > loss_disc_real_5: 0.22056 (0.21338) | > loss_0: 2.33449 (2.32483) | > loss_gen: 2.47956 (2.46633) | > loss_kl: 2.91828 (2.76196) | > loss_feat: 7.97965 (8.41196) | > loss_mel: 17.94144 (17.90084) | > loss_duration: 1.72256 (1.71694) | > loss_1: 33.04150 (33.25803)  --> STEP: 147 | > loss_disc: 2.30621 (2.32470) | > loss_disc_real_0: 0.09620 (0.10999) | > loss_disc_real_1: 0.21958 (0.21974) | > loss_disc_real_2: 0.24529 (0.23091) | > loss_disc_real_3: 0.23048 (0.22902) | > loss_disc_real_4: 0.22049 (0.22628) | > loss_disc_real_5: 0.22144 (0.21344) | > loss_0: 2.30621 (2.32470) | > loss_gen: 2.47351 (2.46638) | > loss_kl: 2.68984 (2.76147) | > loss_feat: 8.48568 (8.41246) | > loss_mel: 18.10289 (17.90221) | > loss_duration: 1.70335 (1.71685) | > loss_1: 33.45526 (33.25937)  --> STEP: 148 | > loss_disc: 2.29381 (2.32449) | > loss_disc_real_0: 0.10760 (0.10998) | > loss_disc_real_1: 0.22161 (0.21976) | > loss_disc_real_2: 0.24565 (0.23101) | > loss_disc_real_3: 0.24139 (0.22910) | > loss_disc_real_4: 0.23762 (0.22636) | > loss_disc_real_5: 0.21771 (0.21347) | > loss_0: 2.29381 (2.32449) | > loss_gen: 2.57686 (2.46713) | > loss_kl: 2.76603 (2.76150) | > loss_feat: 8.39453 (8.41234) | > loss_mel: 17.92572 (17.90237) | > loss_duration: 1.73927 (1.71700) | > loss_1: 33.40241 (33.26034)  --> STEP: 149 | > loss_disc: 2.33422 (2.32456) | > loss_disc_real_0: 0.12158 (0.11005) | > loss_disc_real_1: 0.20592 (0.21966) | > loss_disc_real_2: 0.22234 (0.23095) | > loss_disc_real_3: 0.22198 (0.22906) | > loss_disc_real_4: 0.24146 (0.22646) | > loss_disc_real_5: 0.23185 (0.21359) | > loss_0: 2.33422 (2.32456) | > loss_gen: 2.48166 (2.46723) | > loss_kl: 2.79692 (2.76174) | > loss_feat: 8.65218 (8.41395) | > loss_mel: 18.04597 (17.90333) | > loss_duration: 1.70933 (1.71695) | > loss_1: 33.68607 (33.26320)  --> STEP: 150 | > loss_disc: 2.31985 (2.32452) | > loss_disc_real_0: 0.09490 (0.10995) | > loss_disc_real_1: 0.22151 (0.21968) | > loss_disc_real_2: 0.23384 (0.23097) | > loss_disc_real_3: 0.23056 (0.22907) | > loss_disc_real_4: 0.22379 (0.22644) | > loss_disc_real_5: 0.21742 (0.21362) | > loss_0: 2.31985 (2.32452) | > loss_gen: 2.48996 (2.46738) | > loss_kl: 2.73291 (2.76155) | > loss_feat: 8.54839 (8.41484) | > loss_mel: 18.62812 (17.90817) | > loss_duration: 1.72494 (1.71700) | > loss_1: 34.12433 (33.26894)  --> STEP: 151 | > loss_disc: 2.38984 (2.32496) | > loss_disc_real_0: 0.12969 (0.11008) | > loss_disc_real_1: 0.21693 (0.21966) | > loss_disc_real_2: 0.23627 (0.23101) | > loss_disc_real_3: 0.24500 (0.22917) | > loss_disc_real_4: 0.24227 (0.22654) | > loss_disc_real_5: 0.24776 (0.21384) | > loss_0: 2.38984 (2.32496) | > loss_gen: 2.46061 (2.46733) | > loss_kl: 2.74641 (2.76145) | > loss_feat: 8.29467 (8.41405) | > loss_mel: 17.60608 (17.90617) | > loss_duration: 1.73734 (1.71714) | > loss_1: 32.84511 (33.26613)  --> STEP: 152 | > loss_disc: 2.34193 (2.32507) | > loss_disc_real_0: 0.11162 (0.11009) | > loss_disc_real_1: 0.20943 (0.21959) | > loss_disc_real_2: 0.22686 (0.23098) | > loss_disc_real_3: 0.21073 (0.22905) | > loss_disc_real_4: 0.24142 (0.22664) | > loss_disc_real_5: 0.22386 (0.21391) | > loss_0: 2.34193 (2.32507) | > loss_gen: 2.44079 (2.46716) | > loss_kl: 2.79412 (2.76166) | > loss_feat: 8.34988 (8.41363) | > loss_mel: 17.76245 (17.90522) | > loss_duration: 1.68412 (1.71692) | > loss_1: 33.03136 (33.26458)  --> STEP: 153 | > loss_disc: 2.37274 (2.32538) | > loss_disc_real_0: 0.09910 (0.11002) | > loss_disc_real_1: 0.22463 (0.21962) | > loss_disc_real_2: 0.24014 (0.23104) | > loss_disc_real_3: 0.24425 (0.22915) | > loss_disc_real_4: 0.23054 (0.22667) | > loss_disc_real_5: 0.21003 (0.21388) | > loss_0: 2.37274 (2.32538) | > loss_gen: 2.44856 (2.46704) | > loss_kl: 2.69228 (2.76121) | > loss_feat: 8.08475 (8.41148) | > loss_mel: 17.58692 (17.90314) | > loss_duration: 1.73704 (1.71705) | > loss_1: 32.54954 (33.25991)  --> STEP: 154 | > loss_disc: 2.37785 (2.32572) | > loss_disc_real_0: 0.08748 (0.10988) | > loss_disc_real_1: 0.22771 (0.21968) | > loss_disc_real_2: 0.24398 (0.23112) | > loss_disc_real_3: 0.24974 (0.22928) | > loss_disc_real_4: 0.23402 (0.22672) | > loss_disc_real_5: 0.19842 (0.21378) | > loss_0: 2.37785 (2.32572) | > loss_gen: 2.42166 (2.46674) | > loss_kl: 2.63606 (2.76040) | > loss_feat: 7.54586 (8.40586) | > loss_mel: 17.21626 (17.89868) | > loss_duration: 1.70592 (1.71698) | > loss_1: 31.52575 (33.24865) --> EVAL PERFORMANCE | > avg_loader_time: 0.03963 (+0.00433) | > avg_loss_disc: 2.32572 (+0.03510) | > avg_loss_disc_real_0: 0.10988 (+0.02147) | > avg_loss_disc_real_1: 0.21968 (+0.04743) | > avg_loss_disc_real_2: 0.23112 (+0.01463) | > avg_loss_disc_real_3: 0.22928 (-0.00422) | > avg_loss_disc_real_4: 0.22672 (+0.00916) | > avg_loss_disc_real_5: 0.21378 (+0.03898) | > avg_loss_0: 2.32572 (+0.03510) | > avg_loss_gen: 2.46674 (+0.12740) | > avg_loss_kl: 2.76040 (+0.09266) | > avg_loss_feat: 8.40586 (-0.28204) | > avg_loss_mel: 17.89868 (+0.19944) | > avg_loss_duration: 1.71698 (+0.01491) | > avg_loss_1: 33.24865 (+0.15236)  > EPOCH: 3/1000 --> ./checkpoints/yourtts_multilingual/yourtts-du_en_fr_ge_it_pl_ptbr_sp-November-08-2022_12+19PM-0cbaa0f6  > TRAINING (2022-11-09 17:26:49)   --> STEP: 13/15287 -- GLOBAL_STEP: 995875 | > loss_disc: 2.40188 (2.35119) | > loss_disc_real_0: 0.21643 (0.13463) | > loss_disc_real_1: 0.23233 (0.21345) | > loss_disc_real_2: 0.23362 (0.21875) | > loss_disc_real_3: 0.22020 (0.22367) | > loss_disc_real_4: 0.26066 (0.22126) | > loss_disc_real_5: 0.22428 (0.20958) | > loss_0: 2.40188 (2.35119) | > grad_norm_0: 17.03613 (16.81895) | > loss_gen: 2.78111 (2.56485) | > loss_kl: 2.68994 (2.68428) | > loss_feat: 8.35626 (8.58131) | > loss_mel: 17.48544 (17.65956) | > loss_duration: 1.68619 (1.70640) | > loss_1: 32.99894 (33.19640) | > grad_norm_1: 115.65296 (150.61723) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16310 (2.83649) | > loader_time: 0.04020 (0.04057)  --> STEP: 38/15287 -- GLOBAL_STEP: 995900 | > loss_disc: 2.26839 (2.33943) | > loss_disc_real_0: 0.11184 (0.13669) | > loss_disc_real_1: 0.20834 (0.21035) | > loss_disc_real_2: 0.21729 (0.21626) | > loss_disc_real_3: 0.23698 (0.22085) | > loss_disc_real_4: 0.24687 (0.21722) | > loss_disc_real_5: 0.21275 (0.20910) | > loss_0: 2.26839 (2.33943) | > grad_norm_0: 18.67103 (13.88967) | > loss_gen: 2.61540 (2.55304) | > loss_kl: 2.64047 (2.67851) | > loss_feat: 8.24956 (8.56406) | > loss_mel: 17.47695 (17.81400) | > loss_duration: 1.67922 (1.70779) | > loss_1: 32.66159 (33.31740) | > grad_norm_1: 167.28810 (118.71804) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.94000 (2.79932) | > loader_time: 0.04130 (0.04012)  --> STEP: 63/15287 -- GLOBAL_STEP: 995925 | > loss_disc: 2.31704 (2.33689) | > loss_disc_real_0: 0.13256 (0.12947) | > loss_disc_real_1: 0.20431 (0.21506) | > loss_disc_real_2: 0.21417 (0.21697) | > loss_disc_real_3: 0.25214 (0.22008) | > loss_disc_real_4: 0.21857 (0.21781) | > loss_disc_real_5: 0.23014 (0.21219) | > loss_0: 2.31704 (2.33689) | > grad_norm_0: 6.92349 (14.03627) | > loss_gen: 2.48522 (2.56309) | > loss_kl: 2.64548 (2.66559) | > loss_feat: 8.39434 (8.64218) | > loss_mel: 17.53086 (17.82557) | > loss_duration: 1.68208 (1.70421) | > loss_1: 32.73798 (33.40064) | > grad_norm_1: 128.09390 (126.22070) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22470 (2.68565) | > loader_time: 0.03850 (0.04090)  --> STEP: 88/15287 -- GLOBAL_STEP: 995950 | > loss_disc: 2.27596 (2.33923) | > loss_disc_real_0: 0.11155 (0.13235) | > loss_disc_real_1: 0.19101 (0.21499) | > loss_disc_real_2: 0.19185 (0.21929) | > loss_disc_real_3: 0.20811 (0.21940) | > loss_disc_real_4: 0.20985 (0.21582) | > loss_disc_real_5: 0.20015 (0.21122) | > loss_0: 2.27596 (2.33923) | > grad_norm_0: 17.31629 (15.19569) | > loss_gen: 2.61369 (2.57048) | > loss_kl: 2.73809 (2.65685) | > loss_feat: 8.67546 (8.64638) | > loss_mel: 18.11204 (17.82670) | > loss_duration: 1.73087 (1.70425) | > loss_1: 33.87014 (33.40467) | > grad_norm_1: 74.49598 (129.81282) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.61020 (2.64971) | > loader_time: 0.04350 (0.04054)  --> STEP: 113/15287 -- GLOBAL_STEP: 995975 | > loss_disc: 2.34209 (2.33492) | > loss_disc_real_0: 0.11743 (0.13146) | > loss_disc_real_1: 0.19681 (0.21429) | > loss_disc_real_2: 0.21457 (0.21955) | > loss_disc_real_3: 0.20473 (0.21943) | > loss_disc_real_4: 0.21816 (0.21569) | > loss_disc_real_5: 0.24895 (0.21340) | > loss_0: 2.34209 (2.33492) | > grad_norm_0: 6.33997 (14.85744) | > loss_gen: 2.57632 (2.57592) | > loss_kl: 2.75726 (2.66314) | > loss_feat: 8.71044 (8.64983) | > loss_mel: 18.02715 (17.83520) | > loss_duration: 1.67306 (1.70624) | > loss_1: 33.74423 (33.43036) | > grad_norm_1: 169.70067 (130.22380) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.65170 (2.67083) | > loader_time: 0.04310 (0.04039)  --> STEP: 138/15287 -- GLOBAL_STEP: 996000 | > loss_disc: 2.34107 (2.32866) | > loss_disc_real_0: 0.12025 (0.12942) | > loss_disc_real_1: 0.24423 (0.21416) | > loss_disc_real_2: 0.20275 (0.21870) | > loss_disc_real_3: 0.23878 (0.21963) | > loss_disc_real_4: 0.20320 (0.21478) | > loss_disc_real_5: 0.22854 (0.21332) | > loss_0: 2.34107 (2.32866) | > grad_norm_0: 14.49498 (14.40376) | > loss_gen: 2.44225 (2.57839) | > loss_kl: 2.63954 (2.67121) | > loss_feat: 8.20094 (8.68733) | > loss_mel: 17.59382 (17.84089) | > loss_duration: 1.75196 (1.70693) | > loss_1: 32.62851 (33.48476) | > grad_norm_1: 108.17650 (128.23857) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06320 (2.58771) | > loader_time: 0.04400 (0.04023)  --> STEP: 163/15287 -- GLOBAL_STEP: 996025 | > loss_disc: 2.31737 (2.33067) | > loss_disc_real_0: 0.11004 (0.12980) | > loss_disc_real_1: 0.20741 (0.21433) | > loss_disc_real_2: 0.21782 (0.21843) | > loss_disc_real_3: 0.20349 (0.21987) | > loss_disc_real_4: 0.22540 (0.21526) | > loss_disc_real_5: 0.23278 (0.21358) | > loss_0: 2.31737 (2.33067) | > grad_norm_0: 15.56573 (14.47448) | > loss_gen: 2.48260 (2.57226) | > loss_kl: 2.66791 (2.67185) | > loss_feat: 8.35496 (8.66653) | > loss_mel: 17.98078 (17.82237) | > loss_duration: 1.71222 (1.70767) | > loss_1: 33.19847 (33.44070) | > grad_norm_1: 142.06093 (127.76362) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14960 (2.54393) | > loader_time: 0.03750 (0.03986)  --> STEP: 188/15287 -- GLOBAL_STEP: 996050 | > loss_disc: 2.25607 (2.33177) | > loss_disc_real_0: 0.08174 (0.13038) | > loss_disc_real_1: 0.19820 (0.21528) | > loss_disc_real_2: 0.23495 (0.21749) | > loss_disc_real_3: 0.24575 (0.22099) | > loss_disc_real_4: 0.21762 (0.21479) | > loss_disc_real_5: 0.21864 (0.21343) | > loss_0: 2.25607 (2.33177) | > grad_norm_0: 13.54033 (14.91454) | > loss_gen: 2.59059 (2.56815) | > loss_kl: 2.66948 (2.66911) | > loss_feat: 8.51093 (8.64687) | > loss_mel: 17.96764 (17.81394) | > loss_duration: 1.70467 (1.70653) | > loss_1: 33.44331 (33.40462) | > grad_norm_1: 181.32130 (130.25517) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04260 (2.49389) | > loader_time: 0.03750 (0.03945)  --> STEP: 213/15287 -- GLOBAL_STEP: 996075 | > loss_disc: 2.33801 (2.32909) | > loss_disc_real_0: 0.11827 (0.12904) | > loss_disc_real_1: 0.21451 (0.21442) | > loss_disc_real_2: 0.24406 (0.21778) | > loss_disc_real_3: 0.26236 (0.22167) | > loss_disc_real_4: 0.25954 (0.21594) | > loss_disc_real_5: 0.21495 (0.21373) | > loss_0: 2.33801 (2.32909) | > grad_norm_0: 33.22491 (15.14796) | > loss_gen: 2.55070 (2.57248) | > loss_kl: 2.64719 (2.66935) | > loss_feat: 8.83834 (8.65521) | > loss_mel: 18.59788 (17.82523) | > loss_duration: 1.68555 (1.70615) | > loss_1: 34.31966 (33.42844) | > grad_norm_1: 129.78795 (130.83643) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22120 (2.45328) | > loader_time: 0.03440 (0.03917)  --> STEP: 238/15287 -- GLOBAL_STEP: 996100 | > loss_disc: 2.38835 (2.33036) | > loss_disc_real_0: 0.09718 (0.12809) | > loss_disc_real_1: 0.23467 (0.21392) | > loss_disc_real_2: 0.21641 (0.21732) | > loss_disc_real_3: 0.18617 (0.22162) | > loss_disc_real_4: 0.16825 (0.21611) | > loss_disc_real_5: 0.22029 (0.21443) | > loss_0: 2.38835 (2.33036) | > grad_norm_0: 12.27079 (14.75911) | > loss_gen: 2.40978 (2.56715) | > loss_kl: 2.56100 (2.67296) | > loss_feat: 8.54075 (8.64486) | > loss_mel: 17.77134 (17.81741) | > loss_duration: 1.68827 (1.70594) | > loss_1: 32.97114 (33.40835) | > grad_norm_1: 76.62775 (126.10448) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22030 (2.42662) | > loader_time: 0.03160 (0.03893)  --> STEP: 263/15287 -- GLOBAL_STEP: 996125 | > loss_disc: 2.43059 (2.33307) | > loss_disc_real_0: 0.21187 (0.12871) | > loss_disc_real_1: 0.22323 (0.21366) | > loss_disc_real_2: 0.23837 (0.21780) | > loss_disc_real_3: 0.20026 (0.22144) | > loss_disc_real_4: 0.19034 (0.21594) | > loss_disc_real_5: 0.21713 (0.21414) | > loss_0: 2.43059 (2.33307) | > grad_norm_0: 25.41790 (14.55334) | > loss_gen: 2.55128 (2.56683) | > loss_kl: 2.42968 (2.66952) | > loss_feat: 7.66775 (8.64190) | > loss_mel: 16.89094 (17.82051) | > loss_duration: 1.71719 (1.70622) | > loss_1: 31.25684 (33.40501) | > grad_norm_1: 109.67805 (124.00508) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00590 (2.39992) | > loader_time: 0.03350 (0.03861)  --> STEP: 288/15287 -- GLOBAL_STEP: 996150 | > loss_disc: 2.36205 (2.33452) | > loss_disc_real_0: 0.14152 (0.12870) | > loss_disc_real_1: 0.22204 (0.21394) | > loss_disc_real_2: 0.22011 (0.21795) | > loss_disc_real_3: 0.21765 (0.22130) | > loss_disc_real_4: 0.21474 (0.21593) | > loss_disc_real_5: 0.20360 (0.21406) | > loss_0: 2.36205 (2.33452) | > grad_norm_0: 11.81306 (14.29253) | > loss_gen: 2.59219 (2.56312) | > loss_kl: 2.75467 (2.67055) | > loss_feat: 8.96804 (8.63522) | > loss_mel: 18.21547 (17.81462) | > loss_duration: 1.72656 (1.70638) | > loss_1: 34.25693 (33.38992) | > grad_norm_1: 141.77681 (122.25883) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02880 (2.37851) | > loader_time: 0.03920 (0.03858)  --> STEP: 313/15287 -- GLOBAL_STEP: 996175 | > loss_disc: 2.30224 (2.33514) | > loss_disc_real_0: 0.09046 (0.12852) | > loss_disc_real_1: 0.22544 (0.21318) | > loss_disc_real_2: 0.21348 (0.21771) | > loss_disc_real_3: 0.23538 (0.22171) | > loss_disc_real_4: 0.20456 (0.21628) | > loss_disc_real_5: 0.20108 (0.21424) | > loss_0: 2.30224 (2.33514) | > grad_norm_0: 13.39318 (14.49663) | > loss_gen: 2.54502 (2.55944) | > loss_kl: 2.63736 (2.67191) | > loss_feat: 8.57416 (8.62570) | > loss_mel: 17.95426 (17.81363) | > loss_duration: 1.71187 (1.70675) | > loss_1: 33.42267 (33.37747) | > grad_norm_1: 179.51367 (122.90890) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29110 (2.37661) | > loader_time: 0.04000 (0.03867)  --> STEP: 338/15287 -- GLOBAL_STEP: 996200 | > loss_disc: 2.26227 (2.33277) | > loss_disc_real_0: 0.09713 (0.12774) | > loss_disc_real_1: 0.19853 (0.21242) | > loss_disc_real_2: 0.19407 (0.21727) | > loss_disc_real_3: 0.20063 (0.22165) | > loss_disc_real_4: 0.18080 (0.21592) | > loss_disc_real_5: 0.22267 (0.21458) | > loss_0: 2.26227 (2.33277) | > grad_norm_0: 27.50642 (14.90274) | > loss_gen: 2.34474 (2.55721) | > loss_kl: 2.67701 (2.67259) | > loss_feat: 8.49811 (8.62431) | > loss_mel: 17.13609 (17.81379) | > loss_duration: 1.72834 (1.70705) | > loss_1: 32.38430 (33.37500) | > grad_norm_1: 217.37154 (124.27725) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35520 (2.38078) | > loader_time: 0.03540 (0.03865)  --> STEP: 363/15287 -- GLOBAL_STEP: 996225 | > loss_disc: 2.48509 (2.32986) | > loss_disc_real_0: 0.19818 (0.12732) | > loss_disc_real_1: 0.20662 (0.21198) | > loss_disc_real_2: 0.22064 (0.21685) | > loss_disc_real_3: 0.20693 (0.22109) | > loss_disc_real_4: 0.22744 (0.21555) | > loss_disc_real_5: 0.19110 (0.21433) | > loss_0: 2.48509 (2.32986) | > grad_norm_0: 37.69485 (15.08081) | > loss_gen: 2.26357 (2.55722) | > loss_kl: 2.60281 (2.67346) | > loss_feat: 7.43454 (8.63280) | > loss_mel: 17.13253 (17.80859) | > loss_duration: 1.75008 (1.70754) | > loss_1: 31.18353 (33.37964) | > grad_norm_1: 91.57059 (124.93096) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13030 (2.37509) | > loader_time: 0.03600 (0.03853)  --> STEP: 388/15287 -- GLOBAL_STEP: 996250 | > loss_disc: 2.42849 (2.33055) | > loss_disc_real_0: 0.08848 (0.12710) | > loss_disc_real_1: 0.24123 (0.21195) | > loss_disc_real_2: 0.22421 (0.21682) | > loss_disc_real_3: 0.21024 (0.22052) | > loss_disc_real_4: 0.21474 (0.21561) | > loss_disc_real_5: 0.19138 (0.21389) | > loss_0: 2.42849 (2.33055) | > grad_norm_0: 13.56029 (15.06598) | > loss_gen: 2.53823 (2.55437) | > loss_kl: 2.72968 (2.67563) | > loss_feat: 7.82464 (8.62877) | > loss_mel: 17.21809 (17.80811) | > loss_duration: 1.72376 (1.70768) | > loss_1: 32.03441 (33.37460) | > grad_norm_1: 172.24252 (125.00395) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22280 (2.37337) | > loader_time: 0.03690 (0.03870)  --> STEP: 413/15287 -- GLOBAL_STEP: 996275 | > loss_disc: 2.38373 (2.32935) | > loss_disc_real_0: 0.22178 (0.12720) | > loss_disc_real_1: 0.23954 (0.21135) | > loss_disc_real_2: 0.24214 (0.21643) | > loss_disc_real_3: 0.19893 (0.22025) | > loss_disc_real_4: 0.21520 (0.21542) | > loss_disc_real_5: 0.20391 (0.21374) | > loss_0: 2.38373 (2.32935) | > grad_norm_0: 11.34279 (15.26550) | > loss_gen: 2.49384 (2.55294) | > loss_kl: 2.66768 (2.67596) | > loss_feat: 8.07576 (8.62140) | > loss_mel: 17.10035 (17.79476) | > loss_duration: 1.72921 (1.70844) | > loss_1: 32.06684 (33.35353) | > grad_norm_1: 145.69940 (126.49796) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36870 (2.36880) | > loader_time: 0.03700 (0.03872)  --> STEP: 438/15287 -- GLOBAL_STEP: 996300 | > loss_disc: 2.29840 (2.32987) | > loss_disc_real_0: 0.09863 (0.12827) | > loss_disc_real_1: 0.22037 (0.21124) | > loss_disc_real_2: 0.20320 (0.21619) | > loss_disc_real_3: 0.21875 (0.22018) | > loss_disc_real_4: 0.22816 (0.21568) | > loss_disc_real_5: 0.20771 (0.21390) | > loss_0: 2.29840 (2.32987) | > grad_norm_0: 16.38940 (15.61112) | > loss_gen: 2.50847 (2.55309) | > loss_kl: 2.82975 (2.67550) | > loss_feat: 8.14216 (8.62710) | > loss_mel: 17.20628 (17.79162) | > loss_duration: 1.72249 (1.70871) | > loss_1: 32.40915 (33.35604) | > grad_norm_1: 182.23799 (128.58244) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03360 (2.35724) | > loader_time: 0.04250 (0.03878)  --> STEP: 463/15287 -- GLOBAL_STEP: 996325 | > loss_disc: 2.31716 (2.32731) | > loss_disc_real_0: 0.11633 (0.12764) | > loss_disc_real_1: 0.18626 (0.21071) | > loss_disc_real_2: 0.22715 (0.21611) | > loss_disc_real_3: 0.22245 (0.21990) | > loss_disc_real_4: 0.20017 (0.21525) | > loss_disc_real_5: 0.17523 (0.21387) | > loss_0: 2.31716 (2.32731) | > grad_norm_0: 17.61287 (15.76116) | > loss_gen: 2.45504 (2.55384) | > loss_kl: 2.57651 (2.67580) | > loss_feat: 8.65524 (8.63596) | > loss_mel: 17.83784 (17.78528) | > loss_duration: 1.70437 (1.70887) | > loss_1: 33.22899 (33.35977) | > grad_norm_1: 189.95337 (129.92470) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07530 (2.34775) | > loader_time: 0.03420 (0.03886)  --> STEP: 488/15287 -- GLOBAL_STEP: 996350 | > loss_disc: 2.31931 (2.32518) | > loss_disc_real_0: 0.12319 (0.12715) | > loss_disc_real_1: 0.20533 (0.21051) | > loss_disc_real_2: 0.18657 (0.21594) | > loss_disc_real_3: 0.20688 (0.21978) | > loss_disc_real_4: 0.19616 (0.21521) | > loss_disc_real_5: 0.20848 (0.21387) | > loss_0: 2.31931 (2.32518) | > grad_norm_0: 16.24169 (15.88865) | > loss_gen: 2.62751 (2.55473) | > loss_kl: 2.56611 (2.67594) | > loss_feat: 8.15112 (8.63823) | > loss_mel: 17.29628 (17.77956) | > loss_duration: 1.72006 (1.70916) | > loss_1: 32.36108 (33.35762) | > grad_norm_1: 179.01898 (131.50598) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04610 (2.33613) | > loader_time: 0.03760 (0.03878)  --> STEP: 513/15287 -- GLOBAL_STEP: 996375 | > loss_disc: 2.28645 (2.32455) | > loss_disc_real_0: 0.14561 (0.12665) | > loss_disc_real_1: 0.17071 (0.21052) | > loss_disc_real_2: 0.18075 (0.21591) | > loss_disc_real_3: 0.20868 (0.21981) | > loss_disc_real_4: 0.22161 (0.21511) | > loss_disc_real_5: 0.24302 (0.21391) | > loss_0: 2.28645 (2.32455) | > grad_norm_0: 15.66779 (15.94948) | > loss_gen: 2.60417 (2.55381) | > loss_kl: 2.64590 (2.67582) | > loss_feat: 8.51733 (8.63932) | > loss_mel: 17.49048 (17.77637) | > loss_duration: 1.71713 (1.70980) | > loss_1: 32.97501 (33.35513) | > grad_norm_1: 195.55959 (132.17607) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98620 (2.32002) | > loader_time: 0.03360 (0.03872)  --> STEP: 538/15287 -- GLOBAL_STEP: 996400 | > loss_disc: 2.30224 (2.32484) | > loss_disc_real_0: 0.12218 (0.12701) | > loss_disc_real_1: 0.17898 (0.21016) | > loss_disc_real_2: 0.17259 (0.21567) | > loss_disc_real_3: 0.23272 (0.21966) | > loss_disc_real_4: 0.23485 (0.21497) | > loss_disc_real_5: 0.19711 (0.21390) | > loss_0: 2.30224 (2.32484) | > grad_norm_0: 36.63435 (16.37393) | > loss_gen: 2.45150 (2.55298) | > loss_kl: 2.70259 (2.67464) | > loss_feat: 9.25417 (8.64337) | > loss_mel: 17.78066 (17.77668) | > loss_duration: 1.72428 (1.70973) | > loss_1: 33.91321 (33.35741) | > grad_norm_1: 192.24623 (132.78217) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29850 (2.31743) | > loader_time: 0.04430 (0.03881)  --> STEP: 563/15287 -- GLOBAL_STEP: 996425 | > loss_disc: 2.42401 (2.32560) | > loss_disc_real_0: 0.13902 (0.12708) | > loss_disc_real_1: 0.18587 (0.21007) | > loss_disc_real_2: 0.23526 (0.21587) | > loss_disc_real_3: 0.23495 (0.21975) | > loss_disc_real_4: 0.24467 (0.21514) | > loss_disc_real_5: 0.24288 (0.21386) | > loss_0: 2.42401 (2.32560) | > grad_norm_0: 17.13097 (16.35118) | > loss_gen: 2.38406 (2.55270) | > loss_kl: 2.70514 (2.67412) | > loss_feat: 8.08159 (8.64382) | > loss_mel: 17.34440 (17.77369) | > loss_duration: 1.63844 (1.70944) | > loss_1: 32.15363 (33.35377) | > grad_norm_1: 187.47775 (132.90468) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25640 (2.31527) | > loader_time: 0.03390 (0.03885)  --> STEP: 588/15287 -- GLOBAL_STEP: 996450 | > loss_disc: 2.29675 (2.32564) | > loss_disc_real_0: 0.08926 (0.12671) | > loss_disc_real_1: 0.18963 (0.21024) | > loss_disc_real_2: 0.22766 (0.21592) | > loss_disc_real_3: 0.21242 (0.21973) | > loss_disc_real_4: 0.25057 (0.21497) | > loss_disc_real_5: 0.18212 (0.21387) | > loss_0: 2.29675 (2.32564) | > grad_norm_0: 17.52673 (16.21896) | > loss_gen: 2.59369 (2.55320) | > loss_kl: 2.52948 (2.67392) | > loss_feat: 8.25765 (8.64460) | > loss_mel: 17.77707 (17.77821) | > loss_duration: 1.73064 (1.70977) | > loss_1: 32.88853 (33.35971) | > grad_norm_1: 160.34624 (133.17183) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 8.28520 (2.33239) | > loader_time: 0.03860 (0.03886)  --> STEP: 613/15287 -- GLOBAL_STEP: 996475 | > loss_disc: 2.32670 (2.32558) | > loss_disc_real_0: 0.09909 (0.12630) | > loss_disc_real_1: 0.19886 (0.21030) | > loss_disc_real_2: 0.19184 (0.21581) | > loss_disc_real_3: 0.22461 (0.21980) | > loss_disc_real_4: 0.19766 (0.21500) | > loss_disc_real_5: 0.24519 (0.21399) | > loss_0: 2.32670 (2.32558) | > grad_norm_0: 21.77835 (16.10833) | > loss_gen: 2.56999 (2.55242) | > loss_kl: 2.62192 (2.67326) | > loss_feat: 8.39769 (8.64648) | > loss_mel: 17.75899 (17.77673) | > loss_duration: 1.72928 (1.70966) | > loss_1: 33.07786 (33.35855) | > grad_norm_1: 137.26851 (132.92340) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.16470 (2.33281) | > loader_time: 0.05090 (0.03882)  --> STEP: 638/15287 -- GLOBAL_STEP: 996500 | > loss_disc: 2.26715 (2.32714) | > loss_disc_real_0: 0.10802 (0.12733) | > loss_disc_real_1: 0.19944 (0.21016) | > loss_disc_real_2: 0.23749 (0.21581) | > loss_disc_real_3: 0.22554 (0.21988) | > loss_disc_real_4: 0.20866 (0.21522) | > loss_disc_real_5: 0.19880 (0.21404) | > loss_0: 2.26715 (2.32714) | > grad_norm_0: 15.80384 (16.18329) | > loss_gen: 2.54186 (2.55306) | > loss_kl: 2.75351 (2.67296) | > loss_feat: 8.42825 (8.64459) | > loss_mel: 17.97668 (17.77627) | > loss_duration: 1.69239 (1.70970) | > loss_1: 33.39269 (33.35659) | > grad_norm_1: 207.66768 (132.06717) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32850 (2.33142) | > loader_time: 0.03320 (0.03878)  --> STEP: 663/15287 -- GLOBAL_STEP: 996525 | > loss_disc: 2.26422 (2.32685) | > loss_disc_real_0: 0.11682 (0.12706) | > loss_disc_real_1: 0.24740 (0.21027) | > loss_disc_real_2: 0.24272 (0.21583) | > loss_disc_real_3: 0.25678 (0.21996) | > loss_disc_real_4: 0.26488 (0.21540) | > loss_disc_real_5: 0.19856 (0.21402) | > loss_0: 2.26422 (2.32685) | > grad_norm_0: 16.75487 (16.08914) | > loss_gen: 2.89153 (2.55439) | > loss_kl: 2.72386 (2.67384) | > loss_feat: 9.06238 (8.64990) | > loss_mel: 17.76074 (17.78073) | > loss_duration: 1.71798 (1.70968) | > loss_1: 34.15649 (33.36854) | > grad_norm_1: 91.00400 (130.70854) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36480 (2.33150) | > loader_time: 0.04320 (0.03881)  --> STEP: 688/15287 -- GLOBAL_STEP: 996550 | > loss_disc: 2.39013 (2.32758) | > loss_disc_real_0: 0.11382 (0.12722) | > loss_disc_real_1: 0.26338 (0.21046) | > loss_disc_real_2: 0.24001 (0.21584) | > loss_disc_real_3: 0.21473 (0.22008) | > loss_disc_real_4: 0.23936 (0.21546) | > loss_disc_real_5: 0.21939 (0.21412) | > loss_0: 2.39013 (2.32758) | > grad_norm_0: 10.09760 (15.98019) | > loss_gen: 2.50463 (2.55428) | > loss_kl: 2.61129 (2.67295) | > loss_feat: 8.15721 (8.64667) | > loss_mel: 17.76411 (17.77791) | > loss_duration: 1.74708 (1.70976) | > loss_1: 32.78433 (33.36158) | > grad_norm_1: 128.14388 (129.91747) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32910 (2.33010) | > loader_time: 0.03640 (0.03879)  --> STEP: 713/15287 -- GLOBAL_STEP: 996575 | > loss_disc: 2.23768 (2.32822) | > loss_disc_real_0: 0.09976 (0.12744) | > loss_disc_real_1: 0.18707 (0.21052) | > loss_disc_real_2: 0.19762 (0.21585) | > loss_disc_real_3: 0.22243 (0.22029) | > loss_disc_real_4: 0.18139 (0.21552) | > loss_disc_real_5: 0.20790 (0.21402) | > loss_0: 2.23768 (2.32822) | > grad_norm_0: 15.65147 (15.81900) | > loss_gen: 2.46288 (2.55448) | > loss_kl: 2.55816 (2.67167) | > loss_feat: 8.75616 (8.64322) | > loss_mel: 18.25290 (17.78068) | > loss_duration: 1.70216 (1.70976) | > loss_1: 33.73225 (33.35982) | > grad_norm_1: 160.84210 (128.79730) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27110 (2.33047) | > loader_time: 0.03950 (0.03878)  --> STEP: 738/15287 -- GLOBAL_STEP: 996600 | > loss_disc: 2.28793 (2.32760) | > loss_disc_real_0: 0.12724 (0.12719) | > loss_disc_real_1: 0.20546 (0.21059) | > loss_disc_real_2: 0.23339 (0.21599) | > loss_disc_real_3: 0.20723 (0.22024) | > loss_disc_real_4: 0.21470 (0.21557) | > loss_disc_real_5: 0.20774 (0.21404) | > loss_0: 2.28793 (2.32760) | > grad_norm_0: 14.18111 (15.81201) | > loss_gen: 2.58556 (2.55554) | > loss_kl: 2.69747 (2.66954) | > loss_feat: 8.65655 (8.64618) | > loss_mel: 17.99333 (17.78140) | > loss_duration: 1.71558 (1.70971) | > loss_1: 33.64848 (33.36239) | > grad_norm_1: 101.52966 (128.81432) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.51230 (2.33104) | > loader_time: 0.04200 (0.03883)  --> STEP: 763/15287 -- GLOBAL_STEP: 996625 | > loss_disc: 2.35750 (2.32696) | > loss_disc_real_0: 0.18294 (0.12694) | > loss_disc_real_1: 0.20161 (0.21043) | > loss_disc_real_2: 0.21351 (0.21576) | > loss_disc_real_3: 0.21186 (0.22009) | > loss_disc_real_4: 0.21640 (0.21540) | > loss_disc_real_5: 0.24888 (0.21383) | > loss_0: 2.35750 (2.32696) | > grad_norm_0: 20.81881 (15.68476) | > loss_gen: 2.68099 (2.55558) | > loss_kl: 2.53381 (2.66846) | > loss_feat: 8.22001 (8.64847) | > loss_mel: 17.04840 (17.78109) | > loss_duration: 1.70922 (1.70960) | > loss_1: 32.19242 (33.36324) | > grad_norm_1: 147.67410 (128.64796) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55710 (2.33234) | > loader_time: 0.03360 (0.03877)  --> STEP: 788/15287 -- GLOBAL_STEP: 996650 | > loss_disc: 2.35573 (2.32658) | > loss_disc_real_0: 0.11352 (0.12683) | > loss_disc_real_1: 0.21057 (0.21039) | > loss_disc_real_2: 0.20130 (0.21574) | > loss_disc_real_3: 0.21124 (0.21997) | > loss_disc_real_4: 0.19603 (0.21540) | > loss_disc_real_5: 0.20776 (0.21403) | > loss_0: 2.35573 (2.32658) | > grad_norm_0: 21.95164 (15.66016) | > loss_gen: 2.42610 (2.55605) | > loss_kl: 2.63788 (2.66761) | > loss_feat: 8.32820 (8.65187) | > loss_mel: 17.61117 (17.77862) | > loss_duration: 1.71834 (1.70953) | > loss_1: 32.72169 (33.36374) | > grad_norm_1: 130.09987 (129.12624) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11070 (2.33041) | > loader_time: 0.03810 (0.03873)  --> STEP: 813/15287 -- GLOBAL_STEP: 996675 | > loss_disc: 2.36452 (2.32720) | > loss_disc_real_0: 0.08924 (0.12692) | > loss_disc_real_1: 0.16494 (0.21044) | > loss_disc_real_2: 0.19739 (0.21577) | > loss_disc_real_3: 0.22539 (0.22022) | > loss_disc_real_4: 0.21655 (0.21545) | > loss_disc_real_5: 0.23472 (0.21393) | > loss_0: 2.36452 (2.32720) | > grad_norm_0: 15.47499 (15.53022) | > loss_gen: 2.37657 (2.55515) | > loss_kl: 2.66012 (2.66711) | > loss_feat: 8.70324 (8.65102) | > loss_mel: 17.43761 (17.77611) | > loss_duration: 1.70178 (1.70938) | > loss_1: 32.87933 (33.35881) | > grad_norm_1: 129.72548 (127.82465) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28370 (2.32793) | > loader_time: 0.03840 (0.03870)  --> STEP: 838/15287 -- GLOBAL_STEP: 996700 | > loss_disc: 2.28151 (2.32585) | > loss_disc_real_0: 0.12057 (0.12649) | > loss_disc_real_1: 0.23639 (0.21051) | > loss_disc_real_2: 0.19161 (0.21572) | > loss_disc_real_3: 0.22735 (0.22010) | > loss_disc_real_4: 0.20216 (0.21534) | > loss_disc_real_5: 0.21700 (0.21376) | > loss_0: 2.28151 (2.32585) | > grad_norm_0: 9.21669 (15.46297) | > loss_gen: 2.58996 (2.55653) | > loss_kl: 2.63439 (2.66668) | > loss_feat: 8.76488 (8.65523) | > loss_mel: 17.92122 (17.78124) | > loss_duration: 1.69651 (1.70952) | > loss_1: 33.60697 (33.36923) | > grad_norm_1: 38.56060 (128.17247) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29330 (2.32876) | > loader_time: 0.03630 (0.03872)  --> STEP: 863/15287 -- GLOBAL_STEP: 996725 | > loss_disc: 2.27662 (2.32544) | > loss_disc_real_0: 0.11958 (0.12627) | > loss_disc_real_1: 0.21627 (0.21052) | > loss_disc_real_2: 0.21848 (0.21575) | > loss_disc_real_3: 0.22961 (0.21990) | > loss_disc_real_4: 0.18625 (0.21507) | > loss_disc_real_5: 0.21920 (0.21361) | > loss_0: 2.27662 (2.32544) | > grad_norm_0: 7.94386 (15.44907) | > loss_gen: 2.66131 (2.55621) | > loss_kl: 2.56142 (2.66659) | > loss_feat: 9.27272 (8.65895) | > loss_mel: 18.01449 (17.78419) | > loss_duration: 1.73903 (1.70934) | > loss_1: 34.24897 (33.37531) | > grad_norm_1: 80.66333 (128.27213) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16790 (2.32816) | > loader_time: 0.03230 (0.03870)  --> STEP: 888/15287 -- GLOBAL_STEP: 996750 | > loss_disc: 2.30745 (2.32543) | > loss_disc_real_0: 0.09063 (0.12602) | > loss_disc_real_1: 0.21901 (0.21060) | > loss_disc_real_2: 0.20143 (0.21580) | > loss_disc_real_3: 0.22177 (0.21978) | > loss_disc_real_4: 0.18990 (0.21512) | > loss_disc_real_5: 0.18803 (0.21371) | > loss_0: 2.30745 (2.32543) | > grad_norm_0: 6.57892 (15.42019) | > loss_gen: 2.66764 (2.55558) | > loss_kl: 2.66212 (2.66615) | > loss_feat: 9.00600 (8.65805) | > loss_mel: 17.99478 (17.78276) | > loss_duration: 1.70141 (1.70924) | > loss_1: 34.03194 (33.37181) | > grad_norm_1: 54.77858 (127.93634) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38320 (2.32691) | > loader_time: 0.03820 (0.03873)  --> STEP: 913/15287 -- GLOBAL_STEP: 996775 | > loss_disc: 2.30458 (2.32495) | > loss_disc_real_0: 0.11201 (0.12582) | > loss_disc_real_1: 0.21610 (0.21069) | > loss_disc_real_2: 0.22251 (0.21596) | > loss_disc_real_3: 0.21165 (0.21964) | > loss_disc_real_4: 0.23802 (0.21512) | > loss_disc_real_5: 0.19447 (0.21366) | > loss_0: 2.30458 (2.32495) | > grad_norm_0: 20.23318 (15.36377) | > loss_gen: 2.48191 (2.55588) | > loss_kl: 2.76589 (2.66586) | > loss_feat: 8.40114 (8.65835) | > loss_mel: 17.58010 (17.78366) | > loss_duration: 1.68348 (1.70959) | > loss_1: 32.91252 (33.37336) | > grad_norm_1: 118.19003 (127.79809) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04650 (2.32432) | > loader_time: 0.03870 (0.03872)  --> STEP: 938/15287 -- GLOBAL_STEP: 996800 | > loss_disc: 2.35069 (2.32508) | > loss_disc_real_0: 0.10305 (0.12568) | > loss_disc_real_1: 0.25473 (0.21086) | > loss_disc_real_2: 0.23883 (0.21604) | > loss_disc_real_3: 0.28372 (0.21980) | > loss_disc_real_4: 0.19772 (0.21516) | > loss_disc_real_5: 0.26813 (0.21382) | > loss_0: 2.35069 (2.32508) | > grad_norm_0: 7.53735 (15.27653) | > loss_gen: 2.30090 (2.55623) | > loss_kl: 2.65313 (2.66525) | > loss_feat: 8.35140 (8.65958) | > loss_mel: 17.72004 (17.78472) | > loss_duration: 1.70242 (1.70945) | > loss_1: 32.72788 (33.37526) | > grad_norm_1: 79.32314 (126.96471) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93970 (2.32326) | > loader_time: 0.03800 (0.03871)  --> STEP: 963/15287 -- GLOBAL_STEP: 996825 | > loss_disc: 2.42463 (2.32623) | > loss_disc_real_0: 0.20011 (0.12608) | > loss_disc_real_1: 0.22229 (0.21087) | > loss_disc_real_2: 0.22978 (0.21607) | > loss_disc_real_3: 0.22635 (0.21974) | > loss_disc_real_4: 0.23561 (0.21524) | > loss_disc_real_5: 0.22386 (0.21377) | > loss_0: 2.42463 (2.32623) | > grad_norm_0: 12.10914 (15.15331) | > loss_gen: 2.50161 (2.55605) | > loss_kl: 2.68332 (2.66544) | > loss_feat: 7.78720 (8.65751) | > loss_mel: 17.52301 (17.78592) | > loss_duration: 1.70280 (1.70951) | > loss_1: 32.19793 (33.37446) | > grad_norm_1: 74.30238 (125.94956) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.49550 (2.31734) | > loader_time: 0.03730 (0.03867)  --> STEP: 988/15287 -- GLOBAL_STEP: 996850 | > loss_disc: 2.36395 (2.32661) | > loss_disc_real_0: 0.11918 (0.12592) | > loss_disc_real_1: 0.20320 (0.21094) | > loss_disc_real_2: 0.19985 (0.21611) | > loss_disc_real_3: 0.20407 (0.21978) | > loss_disc_real_4: 0.19571 (0.21519) | > loss_disc_real_5: 0.19204 (0.21370) | > loss_0: 2.36395 (2.32661) | > grad_norm_0: 8.24533 (15.06218) | > loss_gen: 2.57009 (2.55544) | > loss_kl: 2.55226 (2.66391) | > loss_feat: 8.54182 (8.65347) | > loss_mel: 17.98534 (17.78559) | > loss_duration: 1.74252 (1.70944) | > loss_1: 33.39203 (33.36788) | > grad_norm_1: 68.48331 (125.03351) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.60430 (2.31701) | > loader_time: 0.03880 (0.03870)  --> STEP: 1013/15287 -- GLOBAL_STEP: 996875 | > loss_disc: 2.29588 (2.32639) | > loss_disc_real_0: 0.13653 (0.12577) | > loss_disc_real_1: 0.21462 (0.21112) | > loss_disc_real_2: 0.26536 (0.21621) | > loss_disc_real_3: 0.20405 (0.21970) | > loss_disc_real_4: 0.22574 (0.21519) | > loss_disc_real_5: 0.20537 (0.21372) | > loss_0: 2.29588 (2.32639) | > grad_norm_0: 21.98358 (14.98380) | > loss_gen: 2.69320 (2.55618) | > loss_kl: 2.50333 (2.66272) | > loss_feat: 9.53406 (8.65350) | > loss_mel: 17.81853 (17.78828) | > loss_duration: 1.71181 (1.70935) | > loss_1: 34.26093 (33.37008) | > grad_norm_1: 128.92921 (124.37344) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41930 (2.31978) | > loader_time: 0.03820 (0.03871)  --> STEP: 1038/15287 -- GLOBAL_STEP: 996900 | > loss_disc: 2.26223 (2.32591) | > loss_disc_real_0: 0.13065 (0.12578) | > loss_disc_real_1: 0.20514 (0.21105) | > loss_disc_real_2: 0.20215 (0.21607) | > loss_disc_real_3: 0.19860 (0.21965) | > loss_disc_real_4: 0.20625 (0.21508) | > loss_disc_real_5: 0.17757 (0.21359) | > loss_0: 2.26223 (2.32591) | > grad_norm_0: 15.61610 (14.96225) | > loss_gen: 2.61629 (2.55638) | > loss_kl: 2.69369 (2.66260) | > loss_feat: 8.38436 (8.65426) | > loss_mel: 17.53518 (17.78639) | > loss_duration: 1.69776 (1.70950) | > loss_1: 32.92729 (33.36921) | > grad_norm_1: 179.04272 (123.92125) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21280 (2.31933) | > loader_time: 0.03290 (0.03867)  --> STEP: 1063/15287 -- GLOBAL_STEP: 996925 | > loss_disc: 2.36494 (2.32604) | > loss_disc_real_0: 0.15543 (0.12570) | > loss_disc_real_1: 0.24334 (0.21109) | > loss_disc_real_2: 0.22531 (0.21612) | > loss_disc_real_3: 0.22553 (0.21971) | > loss_disc_real_4: 0.22366 (0.21509) | > loss_disc_real_5: 0.20790 (0.21359) | > loss_0: 2.36494 (2.32604) | > grad_norm_0: 12.34937 (14.94839) | > loss_gen: 2.63719 (2.55655) | > loss_kl: 2.52706 (2.66245) | > loss_feat: 9.12561 (8.65335) | > loss_mel: 17.83630 (17.78539) | > loss_duration: 1.73849 (1.70943) | > loss_1: 33.86465 (33.36727) | > grad_norm_1: 139.70485 (124.21450) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18920 (2.32072) | > loader_time: 0.03640 (0.03869)  --> STEP: 1088/15287 -- GLOBAL_STEP: 996950 | > loss_disc: 2.24316 (2.32570) | > loss_disc_real_0: 0.10144 (0.12562) | > loss_disc_real_1: 0.21195 (0.21100) | > loss_disc_real_2: 0.20142 (0.21606) | > loss_disc_real_3: 0.21725 (0.21968) | > loss_disc_real_4: 0.24266 (0.21518) | > loss_disc_real_5: 0.21502 (0.21358) | > loss_0: 2.24316 (2.32570) | > grad_norm_0: 30.02780 (15.02425) | > loss_gen: 2.71442 (2.55554) | > loss_kl: 2.54730 (2.66181) | > loss_feat: 9.09013 (8.65086) | > loss_mel: 17.98203 (17.78197) | > loss_duration: 1.72659 (1.70927) | > loss_1: 34.06046 (33.35951) | > grad_norm_1: 137.33377 (124.04504) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27420 (2.32146) | > loader_time: 0.03520 (0.03879)  --> STEP: 1113/15287 -- GLOBAL_STEP: 996975 | > loss_disc: 2.17617 (2.32453) | > loss_disc_real_0: 0.08341 (0.12525) | > loss_disc_real_1: 0.20454 (0.21101) | > loss_disc_real_2: 0.22594 (0.21603) | > loss_disc_real_3: 0.22342 (0.21957) | > loss_disc_real_4: 0.23020 (0.21510) | > loss_disc_real_5: 0.18366 (0.21358) | > loss_0: 2.17617 (2.32453) | > grad_norm_0: 11.80344 (15.13351) | > loss_gen: 2.65275 (2.55588) | > loss_kl: 2.63432 (2.66105) | > loss_feat: 9.37657 (8.65631) | > loss_mel: 17.86599 (17.78168) | > loss_duration: 1.69932 (1.70912) | > loss_1: 34.22894 (33.36411) | > grad_norm_1: 193.18240 (124.84520) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11110 (2.32620) | > loader_time: 0.04030 (0.03891)  --> STEP: 1138/15287 -- GLOBAL_STEP: 997000 | > loss_disc: 2.28304 (2.32350) | > loss_disc_real_0: 0.06268 (0.12489) | > loss_disc_real_1: 0.19179 (0.21096) | > loss_disc_real_2: 0.20560 (0.21590) | > loss_disc_real_3: 0.22401 (0.21966) | > loss_disc_real_4: 0.21507 (0.21504) | > loss_disc_real_5: 0.22926 (0.21350) | > loss_0: 2.28304 (2.32350) | > grad_norm_0: 15.61760 (15.18448) | > loss_gen: 2.51535 (2.55598) | > loss_kl: 2.65127 (2.66007) | > loss_feat: 8.57768 (8.65782) | > loss_mel: 17.42361 (17.77681) | > loss_duration: 1.68275 (1.70913) | > loss_1: 32.85067 (33.35987) | > grad_norm_1: 67.64559 (125.52802) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34110 (2.32773) | > loader_time: 0.03670 (0.03896)  --> STEP: 1163/15287 -- GLOBAL_STEP: 997025 | > loss_disc: 2.26802 (2.32258) | > loss_disc_real_0: 0.10393 (0.12469) | > loss_disc_real_1: 0.18877 (0.21087) | > loss_disc_real_2: 0.21883 (0.21575) | > loss_disc_real_3: 0.19731 (0.21963) | > loss_disc_real_4: 0.22050 (0.21495) | > loss_disc_real_5: 0.23081 (0.21346) | > loss_0: 2.26802 (2.32258) | > grad_norm_0: 8.02926 (15.23975) | > loss_gen: 2.64839 (2.55608) | > loss_kl: 2.64692 (2.65956) | > loss_feat: 9.01769 (8.65936) | > loss_mel: 17.96158 (17.77354) | > loss_duration: 1.71382 (1.70925) | > loss_1: 33.98840 (33.35785) | > grad_norm_1: 147.32532 (126.16232) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26090 (2.32947) | > loader_time: 0.03870 (0.03902)  --> STEP: 1188/15287 -- GLOBAL_STEP: 997050 | > loss_disc: 2.30621 (2.32192) | > loss_disc_real_0: 0.10615 (0.12445) | > loss_disc_real_1: 0.21545 (0.21089) | > loss_disc_real_2: 0.22048 (0.21567) | > loss_disc_real_3: 0.22251 (0.21964) | > loss_disc_real_4: 0.20883 (0.21495) | > loss_disc_real_5: 0.27337 (0.21344) | > loss_0: 2.30621 (2.32192) | > grad_norm_0: 11.29558 (15.29144) | > loss_gen: 2.57058 (2.55567) | > loss_kl: 2.46992 (2.65914) | > loss_feat: 8.54079 (8.65881) | > loss_mel: 17.60361 (17.76895) | > loss_duration: 1.70172 (1.70900) | > loss_1: 32.88662 (33.35164) | > grad_norm_1: 166.65659 (126.69688) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16700 (2.33145) | > loader_time: 0.03440 (0.03902)  --> STEP: 1213/15287 -- GLOBAL_STEP: 997075 | > loss_disc: 2.35110 (2.32185) | > loss_disc_real_0: 0.15582 (0.12447) | > loss_disc_real_1: 0.19615 (0.21089) | > loss_disc_real_2: 0.21449 (0.21569) | > loss_disc_real_3: 0.20555 (0.21956) | > loss_disc_real_4: 0.22126 (0.21494) | > loss_disc_real_5: 0.22076 (0.21340) | > loss_0: 2.35110 (2.32185) | > grad_norm_0: 14.43685 (15.25267) | > loss_gen: 2.47065 (2.55498) | > loss_kl: 2.67218 (2.65923) | > loss_feat: 8.46576 (8.65667) | > loss_mel: 17.52272 (17.76628) | > loss_duration: 1.73008 (1.70897) | > loss_1: 32.86140 (33.34620) | > grad_norm_1: 135.40953 (126.63671) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.60170 (2.33393) | > loader_time: 0.04280 (0.03905)  --> STEP: 1238/15287 -- GLOBAL_STEP: 997100 | > loss_disc: 2.30143 (2.32226) | > loss_disc_real_0: 0.14304 (0.12449) | > loss_disc_real_1: 0.22604 (0.21097) | > loss_disc_real_2: 0.21537 (0.21577) | > loss_disc_real_3: 0.20854 (0.21958) | > loss_disc_real_4: 0.21605 (0.21502) | > loss_disc_real_5: 0.20932 (0.21340) | > loss_0: 2.30143 (2.32226) | > grad_norm_0: 13.52947 (15.22063) | > loss_gen: 2.64710 (2.55474) | > loss_kl: 2.65863 (2.65965) | > loss_feat: 8.35011 (8.65715) | > loss_mel: 17.61027 (17.76616) | > loss_duration: 1.65967 (1.70878) | > loss_1: 32.92577 (33.34655) | > grad_norm_1: 176.26646 (126.44917) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28230 (2.33574) | > loader_time: 0.03340 (0.03900)  --> STEP: 1263/15287 -- GLOBAL_STEP: 997125 | > loss_disc: 2.38843 (2.32243) | > loss_disc_real_0: 0.14513 (0.12433) | > loss_disc_real_1: 0.24145 (0.21102) | > loss_disc_real_2: 0.21764 (0.21581) | > loss_disc_real_3: 0.20855 (0.21963) | > loss_disc_real_4: 0.20996 (0.21500) | > loss_disc_real_5: 0.21516 (0.21353) | > loss_0: 2.38843 (2.32243) | > grad_norm_0: 7.69040 (15.20744) | > loss_gen: 2.48730 (2.55439) | > loss_kl: 2.72137 (2.65908) | > loss_feat: 8.29806 (8.65558) | > loss_mel: 17.42814 (17.76511) | > loss_duration: 1.70724 (1.70880) | > loss_1: 32.64211 (33.34303) | > grad_norm_1: 176.24434 (126.35402) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44730 (2.33564) | > loader_time: 0.03890 (0.03903)  --> STEP: 1288/15287 -- GLOBAL_STEP: 997150 | > loss_disc: 2.27536 (2.32224) | > loss_disc_real_0: 0.09920 (0.12414) | > loss_disc_real_1: 0.21908 (0.21093) | > loss_disc_real_2: 0.20268 (0.21575) | > loss_disc_real_3: 0.20784 (0.21968) | > loss_disc_real_4: 0.19142 (0.21507) | > loss_disc_real_5: 0.17193 (0.21341) | > loss_0: 2.27536 (2.32224) | > grad_norm_0: 8.10054 (15.20224) | > loss_gen: 2.76101 (2.55411) | > loss_kl: 2.47309 (2.65978) | > loss_feat: 8.84600 (8.65439) | > loss_mel: 17.54112 (17.76365) | > loss_duration: 1.72654 (1.70879) | > loss_1: 33.34777 (33.34079) | > grad_norm_1: 173.35934 (126.72181) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43750 (2.33565) | > loader_time: 0.03870 (0.03900)  --> STEP: 1313/15287 -- GLOBAL_STEP: 997175 | > loss_disc: 2.36001 (2.32209) | > loss_disc_real_0: 0.11190 (0.12406) | > loss_disc_real_1: 0.21025 (0.21097) | > loss_disc_real_2: 0.21924 (0.21582) | > loss_disc_real_3: 0.22016 (0.21969) | > loss_disc_real_4: 0.21996 (0.21515) | > loss_disc_real_5: 0.19934 (0.21335) | > loss_0: 2.36001 (2.32209) | > grad_norm_0: 16.47375 (15.24624) | > loss_gen: 2.61887 (2.55424) | > loss_kl: 2.76898 (2.65941) | > loss_feat: 8.80313 (8.65560) | > loss_mel: 17.71526 (17.75995) | > loss_duration: 1.65976 (1.70852) | > loss_1: 33.56601 (33.33779) | > grad_norm_1: 212.03632 (127.14674) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39050 (2.33212) | > loader_time: 0.03420 (0.03897)  --> STEP: 1338/15287 -- GLOBAL_STEP: 997200 | > loss_disc: 2.26978 (2.32196) | > loss_disc_real_0: 0.10306 (0.12433) | > loss_disc_real_1: 0.22795 (0.21088) | > loss_disc_real_2: 0.22551 (0.21577) | > loss_disc_real_3: 0.23215 (0.21973) | > loss_disc_real_4: 0.25423 (0.21510) | > loss_disc_real_5: 0.19201 (0.21344) | > loss_0: 2.26978 (2.32196) | > grad_norm_0: 15.11249 (15.31444) | > loss_gen: 2.56102 (2.55492) | > loss_kl: 2.64433 (2.65901) | > loss_feat: 8.92059 (8.65548) | > loss_mel: 17.66832 (17.75711) | > loss_duration: 1.70124 (1.70842) | > loss_1: 33.49551 (33.33502) | > grad_norm_1: 188.74831 (127.57489) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38190 (2.33159) | > loader_time: 0.04570 (0.03896)  --> STEP: 1363/15287 -- GLOBAL_STEP: 997225 | > loss_disc: 2.25722 (2.32196) | > loss_disc_real_0: 0.11428 (0.12428) | > loss_disc_real_1: 0.18246 (0.21076) | > loss_disc_real_2: 0.16936 (0.21575) | > loss_disc_real_3: 0.23932 (0.21981) | > loss_disc_real_4: 0.21020 (0.21505) | > loss_disc_real_5: 0.23673 (0.21347) | > loss_0: 2.25722 (2.32196) | > grad_norm_0: 4.53128 (15.30111) | > loss_gen: 2.69743 (2.55457) | > loss_kl: 2.68959 (2.65926) | > loss_feat: 9.45778 (8.65738) | > loss_mel: 18.21371 (17.75677) | > loss_duration: 1.72109 (1.70838) | > loss_1: 34.77960 (33.33644) | > grad_norm_1: 78.70152 (127.08582) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06670 (2.33054) | > loader_time: 0.03530 (0.03890)  --> STEP: 1388/15287 -- GLOBAL_STEP: 997250 | > loss_disc: 2.34344 (2.32258) | > loss_disc_real_0: 0.10964 (0.12423) | > loss_disc_real_1: 0.21641 (0.21083) | > loss_disc_real_2: 0.19498 (0.21591) | > loss_disc_real_3: 0.21122 (0.21987) | > loss_disc_real_4: 0.22080 (0.21506) | > loss_disc_real_5: 0.17996 (0.21345) | > loss_0: 2.34344 (2.32258) | > grad_norm_0: 5.94110 (15.24818) | > loss_gen: 2.66711 (2.55474) | > loss_kl: 2.69616 (2.65946) | > loss_feat: 9.04190 (8.65851) | > loss_mel: 18.00750 (17.76195) | > loss_duration: 1.76681 (1.70851) | > loss_1: 34.17948 (33.34326) | > grad_norm_1: 122.34333 (126.45223) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16010 (2.33275) | > loader_time: 0.03620 (0.03890)  --> STEP: 1413/15287 -- GLOBAL_STEP: 997275 | > loss_disc: 2.34147 (2.32290) | > loss_disc_real_0: 0.13950 (0.12423) | > loss_disc_real_1: 0.14265 (0.21075) | > loss_disc_real_2: 0.23674 (0.21598) | > loss_disc_real_3: 0.21082 (0.21994) | > loss_disc_real_4: 0.23252 (0.21507) | > loss_disc_real_5: 0.21075 (0.21347) | > loss_0: 2.34147 (2.32290) | > grad_norm_0: 21.35288 (15.19124) | > loss_gen: 2.50561 (2.55467) | > loss_kl: 2.40328 (2.65939) | > loss_feat: 8.80257 (8.65889) | > loss_mel: 17.80363 (17.76440) | > loss_duration: 1.69599 (1.70843) | > loss_1: 33.21109 (33.34588) | > grad_norm_1: 131.36502 (126.13746) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10130 (2.33456) | > loader_time: 0.04190 (0.03892)  --> STEP: 1438/15287 -- GLOBAL_STEP: 997300 | > loss_disc: 2.34042 (2.32320) | > loss_disc_real_0: 0.15333 (0.12420) | > loss_disc_real_1: 0.20791 (0.21080) | > loss_disc_real_2: 0.20846 (0.21610) | > loss_disc_real_3: 0.21996 (0.21989) | > loss_disc_real_4: 0.20383 (0.21507) | > loss_disc_real_5: 0.20026 (0.21341) | > loss_0: 2.34042 (2.32320) | > grad_norm_0: 13.34832 (15.25214) | > loss_gen: 2.44303 (2.55454) | > loss_kl: 2.75650 (2.65862) | > loss_feat: 8.00685 (8.65676) | > loss_mel: 17.39771 (17.76484) | > loss_duration: 1.68673 (1.70854) | > loss_1: 32.29083 (33.34339) | > grad_norm_1: 58.29152 (126.35307) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.89280 (2.33934) | > loader_time: 0.05060 (0.03891)  --> STEP: 1463/15287 -- GLOBAL_STEP: 997325 | > loss_disc: 2.25161 (2.32277) | > loss_disc_real_0: 0.11888 (0.12403) | > loss_disc_real_1: 0.20207 (0.21072) | > loss_disc_real_2: 0.19656 (0.21608) | > loss_disc_real_3: 0.20894 (0.21981) | > loss_disc_real_4: 0.20853 (0.21501) | > loss_disc_real_5: 0.22742 (0.21337) | > loss_0: 2.25161 (2.32277) | > grad_norm_0: 11.11086 (15.24941) | > loss_gen: 2.54874 (2.55399) | > loss_kl: 2.56276 (2.65832) | > loss_feat: 9.11076 (8.65737) | > loss_mel: 17.76365 (17.76393) | > loss_duration: 1.65858 (1.70870) | > loss_1: 33.64449 (33.34241) | > grad_norm_1: 161.33621 (126.44820) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25690 (2.33791) | > loader_time: 0.04290 (0.03889)  --> STEP: 1488/15287 -- GLOBAL_STEP: 997350 | > loss_disc: 2.35206 (2.32280) | > loss_disc_real_0: 0.08651 (0.12396) | > loss_disc_real_1: 0.21126 (0.21069) | > loss_disc_real_2: 0.24788 (0.21603) | > loss_disc_real_3: 0.23274 (0.21983) | > loss_disc_real_4: 0.26637 (0.21494) | > loss_disc_real_5: 0.23025 (0.21337) | > loss_0: 2.35206 (2.32280) | > grad_norm_0: 9.94078 (15.27969) | > loss_gen: 2.77442 (2.55363) | > loss_kl: 2.51684 (2.65839) | > loss_feat: 8.13829 (8.65849) | > loss_mel: 17.59774 (17.76534) | > loss_duration: 1.71424 (1.70863) | > loss_1: 32.74153 (33.34457) | > grad_norm_1: 76.75323 (126.20686) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32800 (2.33575) | > loader_time: 0.03460 (0.03887)  --> STEP: 1513/15287 -- GLOBAL_STEP: 997375 | > loss_disc: 2.30481 (2.32287) | > loss_disc_real_0: 0.12065 (0.12396) | > loss_disc_real_1: 0.21738 (0.21077) | > loss_disc_real_2: 0.20384 (0.21598) | > loss_disc_real_3: 0.20770 (0.21986) | > loss_disc_real_4: 0.22379 (0.21493) | > loss_disc_real_5: 0.19769 (0.21339) | > loss_0: 2.30481 (2.32287) | > grad_norm_0: 15.78150 (15.24354) | > loss_gen: 2.51856 (2.55378) | > loss_kl: 2.58417 (2.65876) | > loss_feat: 8.62909 (8.65993) | > loss_mel: 17.87128 (17.76881) | > loss_duration: 1.72485 (1.70849) | > loss_1: 33.32796 (33.34986) | > grad_norm_1: 64.35534 (125.70048) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37990 (2.33386) | > loader_time: 0.03860 (0.03885)  --> STEP: 1538/15287 -- GLOBAL_STEP: 997400 | > loss_disc: 2.28461 (2.32281) | > loss_disc_real_0: 0.13223 (0.12393) | > loss_disc_real_1: 0.18774 (0.21077) | > loss_disc_real_2: 0.17728 (0.21590) | > loss_disc_real_3: 0.19151 (0.21979) | > loss_disc_real_4: 0.18310 (0.21488) | > loss_disc_real_5: 0.20723 (0.21338) | > loss_0: 2.28461 (2.32281) | > grad_norm_0: 20.95427 (15.23937) | > loss_gen: 2.54688 (2.55338) | > loss_kl: 2.60187 (2.65821) | > loss_feat: 8.69883 (8.65966) | > loss_mel: 17.99901 (17.76794) | > loss_duration: 1.69950 (1.70849) | > loss_1: 33.54608 (33.34777) | > grad_norm_1: 194.65540 (125.81921) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04870 (2.33220) | > loader_time: 0.03710 (0.03882)  --> STEP: 1563/15287 -- GLOBAL_STEP: 997425 | > loss_disc: 2.40869 (2.32313) | > loss_disc_real_0: 0.16024 (0.12403) | > loss_disc_real_1: 0.23472 (0.21087) | > loss_disc_real_2: 0.22250 (0.21595) | > loss_disc_real_3: 0.21080 (0.21980) | > loss_disc_real_4: 0.20433 (0.21495) | > loss_disc_real_5: 0.18003 (0.21339) | > loss_0: 2.40869 (2.32313) | > grad_norm_0: 23.63287 (15.25330) | > loss_gen: 2.39201 (2.55377) | > loss_kl: 2.70583 (2.65781) | > loss_feat: 8.45348 (8.65805) | > loss_mel: 17.75793 (17.76688) | > loss_duration: 1.66139 (1.70856) | > loss_1: 32.97064 (33.34516) | > grad_norm_1: 152.85144 (125.69620) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22310 (2.33089) | > loader_time: 0.03310 (0.03879)  --> STEP: 1588/15287 -- GLOBAL_STEP: 997450 | > loss_disc: 2.33833 (2.32296) | > loss_disc_real_0: 0.13120 (0.12404) | > loss_disc_real_1: 0.21138 (0.21089) | > loss_disc_real_2: 0.21643 (0.21601) | > loss_disc_real_3: 0.23926 (0.21980) | > loss_disc_real_4: 0.22321 (0.21491) | > loss_disc_real_5: 0.23130 (0.21332) | > loss_0: 2.33833 (2.32296) | > grad_norm_0: 20.77971 (15.26851) | > loss_gen: 2.47907 (2.55389) | > loss_kl: 2.68015 (2.65781) | > loss_feat: 8.35653 (8.65875) | > loss_mel: 17.69979 (17.76668) | > loss_duration: 1.67724 (1.70841) | > loss_1: 32.89277 (33.34563) | > grad_norm_1: 128.88100 (125.72543) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18150 (2.32783) | > loader_time: 0.03530 (0.03879)  --> STEP: 1613/15287 -- GLOBAL_STEP: 997475 | > loss_disc: 2.37497 (2.32267) | > loss_disc_real_0: 0.11556 (0.12390) | > loss_disc_real_1: 0.22285 (0.21091) | > loss_disc_real_2: 0.21222 (0.21596) | > loss_disc_real_3: 0.22001 (0.21974) | > loss_disc_real_4: 0.21565 (0.21488) | > loss_disc_real_5: 0.21486 (0.21331) | > loss_0: 2.37497 (2.32267) | > grad_norm_0: 19.70589 (15.28963) | > loss_gen: 2.53030 (2.55372) | > loss_kl: 2.59415 (2.65750) | > loss_feat: 8.49147 (8.65967) | > loss_mel: 17.65335 (17.76758) | > loss_duration: 1.68480 (1.70849) | > loss_1: 32.95407 (33.34706) | > grad_norm_1: 203.09804 (125.97337) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03560 (2.32538) | > loader_time: 0.03940 (0.03876)  --> STEP: 1638/15287 -- GLOBAL_STEP: 997500 | > loss_disc: 2.29989 (2.32234) | > loss_disc_real_0: 0.11112 (0.12376) | > loss_disc_real_1: 0.19751 (0.21090) | > loss_disc_real_2: 0.20861 (0.21592) | > loss_disc_real_3: 0.22982 (0.21970) | > loss_disc_real_4: 0.24340 (0.21493) | > loss_disc_real_5: 0.21098 (0.21334) | > loss_0: 2.29989 (2.32234) | > grad_norm_0: 10.24042 (15.30809) | > loss_gen: 2.55201 (2.55391) | > loss_kl: 2.63580 (2.65770) | > loss_feat: 8.80509 (8.66194) | > loss_mel: 17.80417 (17.76638) | > loss_duration: 1.73009 (1.70855) | > loss_1: 33.52716 (33.34857) | > grad_norm_1: 169.12848 (126.17066) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23270 (2.32434) | > loader_time: 0.03390 (0.03875)  --> STEP: 1663/15287 -- GLOBAL_STEP: 997525 | > loss_disc: 2.31092 (2.32202) | > loss_disc_real_0: 0.11203 (0.12370) | > loss_disc_real_1: 0.20060 (0.21090) | > loss_disc_real_2: 0.20706 (0.21586) | > loss_disc_real_3: 0.21091 (0.21961) | > loss_disc_real_4: 0.25338 (0.21493) | > loss_disc_real_5: 0.22725 (0.21329) | > loss_0: 2.31092 (2.32202) | > grad_norm_0: 9.88567 (15.27257) | > loss_gen: 2.65152 (2.55413) | > loss_kl: 2.86615 (2.65760) | > loss_feat: 8.64582 (8.66450) | > loss_mel: 18.04703 (17.76576) | > loss_duration: 1.70743 (1.70853) | > loss_1: 33.91795 (33.35060) | > grad_norm_1: 142.85745 (126.20232) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19850 (2.32512) | > loader_time: 0.03500 (0.03874)  --> STEP: 1688/15287 -- GLOBAL_STEP: 997550 | > loss_disc: 2.37397 (2.32210) | > loss_disc_real_0: 0.13447 (0.12365) | > loss_disc_real_1: 0.20222 (0.21085) | > loss_disc_real_2: 0.23647 (0.21577) | > loss_disc_real_3: 0.24560 (0.21959) | > loss_disc_real_4: 0.21617 (0.21486) | > loss_disc_real_5: 0.23442 (0.21324) | > loss_0: 2.37397 (2.32210) | > grad_norm_0: 23.70269 (15.27578) | > loss_gen: 2.41441 (2.55339) | > loss_kl: 2.73691 (2.65716) | > loss_feat: 8.66790 (8.66397) | > loss_mel: 18.18997 (17.76500) | > loss_duration: 1.72110 (1.70863) | > loss_1: 33.73029 (33.34824) | > grad_norm_1: 113.07390 (126.33927) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03050 (2.32384) | > loader_time: 0.03480 (0.03873)  --> STEP: 1713/15287 -- GLOBAL_STEP: 997575 | > loss_disc: 2.29078 (2.32199) | > loss_disc_real_0: 0.09601 (0.12358) | > loss_disc_real_1: 0.22234 (0.21084) | > loss_disc_real_2: 0.23997 (0.21577) | > loss_disc_real_3: 0.24447 (0.21956) | > loss_disc_real_4: 0.20131 (0.21484) | > loss_disc_real_5: 0.21846 (0.21326) | > loss_0: 2.29078 (2.32199) | > grad_norm_0: 10.97253 (15.25269) | > loss_gen: 2.59318 (2.55326) | > loss_kl: 2.56256 (2.65755) | > loss_feat: 9.42136 (8.66407) | > loss_mel: 18.00154 (17.76422) | > loss_duration: 1.68915 (1.70867) | > loss_1: 34.26780 (33.34786) | > grad_norm_1: 77.90224 (126.11467) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33170 (2.32467) | > loader_time: 0.03660 (0.03873)  --> STEP: 1738/15287 -- GLOBAL_STEP: 997600 | > loss_disc: 2.26311 (2.32238) | > loss_disc_real_0: 0.11255 (0.12389) | > loss_disc_real_1: 0.20521 (0.21091) | > loss_disc_real_2: 0.20434 (0.21576) | > loss_disc_real_3: 0.20524 (0.21955) | > loss_disc_real_4: 0.21653 (0.21489) | > loss_disc_real_5: 0.19670 (0.21328) | > loss_0: 2.26311 (2.32238) | > grad_norm_0: 16.17024 (15.32224) | > loss_gen: 2.38395 (2.55347) | > loss_kl: 2.57168 (2.65792) | > loss_feat: 8.46782 (8.66253) | > loss_mel: 17.74059 (17.76529) | > loss_duration: 1.68813 (1.70866) | > loss_1: 32.85218 (33.34795) | > grad_norm_1: 204.50174 (126.39137) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29370 (2.32464) | > loader_time: 0.03590 (0.03877)  --> STEP: 1763/15287 -- GLOBAL_STEP: 997625 | > loss_disc: 2.38946 (2.32213) | > loss_disc_real_0: 0.12789 (0.12398) | > loss_disc_real_1: 0.20200 (0.21093) | > loss_disc_real_2: 0.21047 (0.21572) | > loss_disc_real_3: 0.24205 (0.21956) | > loss_disc_real_4: 0.24672 (0.21488) | > loss_disc_real_5: 0.25603 (0.21330) | > loss_0: 2.38946 (2.32213) | > grad_norm_0: 30.46062 (15.32014) | > loss_gen: 2.46506 (2.55421) | > loss_kl: 2.83520 (2.65843) | > loss_feat: 8.57625 (8.66351) | > loss_mel: 18.29959 (17.76618) | > loss_duration: 1.75145 (1.70876) | > loss_1: 33.92755 (33.35115) | > grad_norm_1: 185.04594 (126.52029) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.61850 (2.32392) | > loader_time: 0.03850 (0.03875)  --> STEP: 1788/15287 -- GLOBAL_STEP: 997650 | > loss_disc: 2.23296 (2.32222) | > loss_disc_real_0: 0.10520 (0.12392) | > loss_disc_real_1: 0.20026 (0.21099) | > loss_disc_real_2: 0.20205 (0.21567) | > loss_disc_real_3: 0.22855 (0.21956) | > loss_disc_real_4: 0.22293 (0.21492) | > loss_disc_real_5: 0.22621 (0.21337) | > loss_0: 2.23296 (2.32222) | > grad_norm_0: 18.69584 (15.31314) | > loss_gen: 2.58195 (2.55389) | > loss_kl: 2.74082 (2.65874) | > loss_feat: 9.10752 (8.66148) | > loss_mel: 18.46131 (17.76812) | > loss_duration: 1.70429 (1.70880) | > loss_1: 34.59589 (33.35107) | > grad_norm_1: 159.97713 (126.52316) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.49610 (2.32256) | > loader_time: 0.04230 (0.03873)  --> STEP: 1813/15287 -- GLOBAL_STEP: 997675 | > loss_disc: 2.34354 (2.32193) | > loss_disc_real_0: 0.15066 (0.12384) | > loss_disc_real_1: 0.16485 (0.21089) | > loss_disc_real_2: 0.16122 (0.21557) | > loss_disc_real_3: 0.20321 (0.21951) | > loss_disc_real_4: 0.18286 (0.21485) | > loss_disc_real_5: 0.18360 (0.21339) | > loss_0: 2.34354 (2.32193) | > grad_norm_0: 27.17946 (15.29673) | > loss_gen: 2.24262 (2.55384) | > loss_kl: 2.65213 (2.65903) | > loss_feat: 8.26010 (8.66256) | > loss_mel: 17.61282 (17.76823) | > loss_duration: 1.71508 (1.70878) | > loss_1: 32.48275 (33.35248) | > grad_norm_1: 82.57111 (126.79085) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27530 (2.32244) | > loader_time: 0.03120 (0.03875)  --> STEP: 1838/15287 -- GLOBAL_STEP: 997700 | > loss_disc: 2.32899 (2.32203) | > loss_disc_real_0: 0.11895 (0.12378) | > loss_disc_real_1: 0.21714 (0.21087) | > loss_disc_real_2: 0.20921 (0.21551) | > loss_disc_real_3: 0.20764 (0.21950) | > loss_disc_real_4: 0.21489 (0.21495) | > loss_disc_real_5: 0.21009 (0.21339) | > loss_0: 2.32899 (2.32203) | > grad_norm_0: 9.74517 (15.33365) | > loss_gen: 2.55684 (2.55356) | > loss_kl: 2.67461 (2.65911) | > loss_feat: 8.92838 (8.66308) | > loss_mel: 17.83656 (17.76714) | > loss_duration: 1.69302 (1.70862) | > loss_1: 33.68941 (33.35154) | > grad_norm_1: 51.98099 (126.76847) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21300 (2.32119) | > loader_time: 0.03410 (0.03871)  --> STEP: 1863/15287 -- GLOBAL_STEP: 997725 | > loss_disc: 2.34596 (2.32273) | > loss_disc_real_0: 0.16455 (0.12405) | > loss_disc_real_1: 0.22821 (0.21080) | > loss_disc_real_2: 0.20399 (0.21553) | > loss_disc_real_3: 0.23620 (0.21952) | > loss_disc_real_4: 0.21815 (0.21492) | > loss_disc_real_5: 0.21589 (0.21344) | > loss_0: 2.34596 (2.32273) | > grad_norm_0: 15.81971 (15.33804) | > loss_gen: 2.66046 (2.55381) | > loss_kl: 2.63627 (2.65976) | > loss_feat: 8.88534 (8.66414) | > loss_mel: 17.72165 (17.76873) | > loss_duration: 1.69826 (1.70844) | > loss_1: 33.60197 (33.35490) | > grad_norm_1: 80.51804 (126.57241) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42110 (2.32100) | > loader_time: 0.03500 (0.03870)  --> STEP: 1888/15287 -- GLOBAL_STEP: 997750 | > loss_disc: 2.36761 (2.32318) | > loss_disc_real_0: 0.12553 (0.12407) | > loss_disc_real_1: 0.22891 (0.21084) | > loss_disc_real_2: 0.22952 (0.21555) | > loss_disc_real_3: 0.24673 (0.21954) | > loss_disc_real_4: 0.21961 (0.21494) | > loss_disc_real_5: 0.23077 (0.21345) | > loss_0: 2.36761 (2.32318) | > grad_norm_0: 11.16701 (15.33598) | > loss_gen: 2.60817 (2.55329) | > loss_kl: 2.66929 (2.65910) | > loss_feat: 8.81343 (8.66072) | > loss_mel: 17.99365 (17.76741) | > loss_duration: 1.72029 (1.70838) | > loss_1: 33.80482 (33.34890) | > grad_norm_1: 87.81892 (126.40860) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.47990 (2.31986) | > loader_time: 0.03380 (0.03869)  --> STEP: 1913/15287 -- GLOBAL_STEP: 997775 | > loss_disc: 2.29665 (2.32275) | > loss_disc_real_0: 0.09670 (0.12402) | > loss_disc_real_1: 0.18107 (0.21082) | > loss_disc_real_2: 0.22422 (0.21555) | > loss_disc_real_3: 0.23644 (0.21961) | > loss_disc_real_4: 0.21663 (0.21491) | > loss_disc_real_5: 0.19919 (0.21346) | > loss_0: 2.29665 (2.32275) | > grad_norm_0: 22.52915 (15.31618) | > loss_gen: 2.49772 (2.55383) | > loss_kl: 2.54515 (2.65900) | > loss_feat: 8.96836 (8.66047) | > loss_mel: 17.82612 (17.76778) | > loss_duration: 1.69472 (1.70846) | > loss_1: 33.53208 (33.34954) | > grad_norm_1: 166.54234 (126.43520) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01010 (2.31688) | > loader_time: 0.04040 (0.03870)  --> STEP: 1938/15287 -- GLOBAL_STEP: 997800 | > loss_disc: 2.31690 (2.32254) | > loss_disc_real_0: 0.13089 (0.12384) | > loss_disc_real_1: 0.19428 (0.21076) | > loss_disc_real_2: 0.18401 (0.21552) | > loss_disc_real_3: 0.19070 (0.21966) | > loss_disc_real_4: 0.21916 (0.21491) | > loss_disc_real_5: 0.21322 (0.21351) | > loss_0: 2.31690 (2.32254) | > grad_norm_0: 8.60536 (15.34742) | > loss_gen: 2.66626 (2.55392) | > loss_kl: 2.63927 (2.65880) | > loss_feat: 8.50696 (8.66159) | > loss_mel: 17.29787 (17.76810) | > loss_duration: 1.72957 (1.70852) | > loss_1: 32.83994 (33.35093) | > grad_norm_1: 194.15688 (126.73991) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95360 (2.31291) | > loader_time: 0.03780 (0.03868)  --> STEP: 1963/15287 -- GLOBAL_STEP: 997825 | > loss_disc: 2.25350 (2.32223) | > loss_disc_real_0: 0.09227 (0.12372) | > loss_disc_real_1: 0.16747 (0.21069) | > loss_disc_real_2: 0.19472 (0.21551) | > loss_disc_real_3: 0.19278 (0.21969) | > loss_disc_real_4: 0.18532 (0.21490) | > loss_disc_real_5: 0.18829 (0.21346) | > loss_0: 2.25350 (2.32223) | > grad_norm_0: 24.71197 (15.36406) | > loss_gen: 2.46460 (2.55378) | > loss_kl: 2.47949 (2.65820) | > loss_feat: 8.78120 (8.66191) | > loss_mel: 17.97741 (17.76680) | > loss_duration: 1.74189 (1.70845) | > loss_1: 33.44460 (33.34914) | > grad_norm_1: 165.58896 (126.97823) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25280 (2.31130) | > loader_time: 0.03420 (0.03871)  --> STEP: 1988/15287 -- GLOBAL_STEP: 997850 | > loss_disc: 2.26545 (2.32211) | > loss_disc_real_0: 0.12202 (0.12363) | > loss_disc_real_1: 0.17746 (0.21071) | > loss_disc_real_2: 0.17661 (0.21551) | > loss_disc_real_3: 0.20332 (0.21972) | > loss_disc_real_4: 0.21744 (0.21492) | > loss_disc_real_5: 0.21055 (0.21349) | > loss_0: 2.26545 (2.32211) | > grad_norm_0: 23.27648 (15.36862) | > loss_gen: 2.57765 (2.55382) | > loss_kl: 2.64421 (2.65793) | > loss_feat: 8.78914 (8.66147) | > loss_mel: 17.99928 (17.76493) | > loss_duration: 1.66844 (1.70829) | > loss_1: 33.67871 (33.34648) | > grad_norm_1: 131.35974 (127.19483) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97300 (2.31009) | > loader_time: 0.03610 (0.03872)  --> STEP: 2013/15287 -- GLOBAL_STEP: 997875 | > loss_disc: 2.29706 (2.32235) | > loss_disc_real_0: 0.11729 (0.12382) | > loss_disc_real_1: 0.22555 (0.21060) | > loss_disc_real_2: 0.22739 (0.21548) | > loss_disc_real_3: 0.20437 (0.21965) | > loss_disc_real_4: 0.22097 (0.21495) | > loss_disc_real_5: 0.20621 (0.21348) | > loss_0: 2.29706 (2.32235) | > grad_norm_0: 20.67258 (15.47127) | > loss_gen: 2.45865 (2.55339) | > loss_kl: 2.60099 (2.65814) | > loss_feat: 8.28490 (8.65972) | > loss_mel: 16.98697 (17.76276) | > loss_duration: 1.69961 (1.70825) | > loss_1: 32.03113 (33.34229) | > grad_norm_1: 240.43378 (127.63329) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93830 (2.30760) | > loader_time: 0.03500 (0.03874)  --> STEP: 2038/15287 -- GLOBAL_STEP: 997900 | > loss_disc: 2.29429 (2.32211) | > loss_disc_real_0: 0.11698 (0.12381) | > loss_disc_real_1: 0.20677 (0.21057) | > loss_disc_real_2: 0.23154 (0.21547) | > loss_disc_real_3: 0.21863 (0.21962) | > loss_disc_real_4: 0.21114 (0.21491) | > loss_disc_real_5: 0.24152 (0.21352) | > loss_0: 2.29429 (2.32211) | > grad_norm_0: 9.42901 (15.46626) | > loss_gen: 2.41146 (2.55335) | > loss_kl: 2.65323 (2.65844) | > loss_feat: 8.66632 (8.66195) | > loss_mel: 17.92426 (17.76208) | > loss_duration: 1.68753 (1.70832) | > loss_1: 33.34281 (33.34418) | > grad_norm_1: 58.20861 (127.62286) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01160 (2.30625) | > loader_time: 0.03720 (0.03878)  --> STEP: 2063/15287 -- GLOBAL_STEP: 997925 | > loss_disc: 2.37544 (2.32188) | > loss_disc_real_0: 0.13507 (0.12378) | > loss_disc_real_1: 0.18357 (0.21056) | > loss_disc_real_2: 0.18956 (0.21547) | > loss_disc_real_3: 0.25372 (0.21958) | > loss_disc_real_4: 0.20139 (0.21489) | > loss_disc_real_5: 0.22276 (0.21348) | > loss_0: 2.37544 (2.32188) | > grad_norm_0: 16.05727 (15.48351) | > loss_gen: 2.40521 (2.55365) | > loss_kl: 2.59295 (2.65892) | > loss_feat: 8.24150 (8.66345) | > loss_mel: 17.32486 (17.76204) | > loss_duration: 1.70121 (1.70829) | > loss_1: 32.26572 (33.34638) | > grad_norm_1: 39.11512 (127.79481) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89720 (2.30610) | > loader_time: 0.03790 (0.03880)  --> STEP: 2088/15287 -- GLOBAL_STEP: 997950 | > loss_disc: 2.34410 (2.32188) | > loss_disc_real_0: 0.12910 (0.12371) | > loss_disc_real_1: 0.22658 (0.21054) | > loss_disc_real_2: 0.23756 (0.21548) | > loss_disc_real_3: 0.23868 (0.21962) | > loss_disc_real_4: 0.23342 (0.21489) | > loss_disc_real_5: 0.23082 (0.21348) | > loss_0: 2.34410 (2.32188) | > grad_norm_0: 10.64537 (15.49778) | > loss_gen: 2.46548 (2.55321) | > loss_kl: 2.64354 (2.65932) | > loss_feat: 9.14634 (8.66285) | > loss_mel: 17.87936 (17.76231) | > loss_duration: 1.75932 (1.70831) | > loss_1: 33.89405 (33.34605) | > grad_norm_1: 92.08597 (128.00290) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90430 (2.30481) | > loader_time: 0.03520 (0.03881)  --> STEP: 2113/15287 -- GLOBAL_STEP: 997975 | > loss_disc: 2.25805 (2.32165) | > loss_disc_real_0: 0.11286 (0.12364) | > loss_disc_real_1: 0.20321 (0.21050) | > loss_disc_real_2: 0.16627 (0.21536) | > loss_disc_real_3: 0.25009 (0.21971) | > loss_disc_real_4: 0.21247 (0.21486) | > loss_disc_real_5: 0.22158 (0.21350) | > loss_0: 2.25805 (2.32165) | > grad_norm_0: 7.97537 (15.49002) | > loss_gen: 2.68566 (2.55350) | > loss_kl: 2.75035 (2.65937) | > loss_feat: 8.93624 (8.66460) | > loss_mel: 17.87706 (17.76271) | > loss_duration: 1.70804 (1.70822) | > loss_1: 33.95734 (33.34844) | > grad_norm_1: 143.26649 (128.20012) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22930 (2.30205) | > loader_time: 0.03900 (0.03880)  --> STEP: 2138/15287 -- GLOBAL_STEP: 998000 | > loss_disc: 2.28492 (2.32141) | > loss_disc_real_0: 0.12520 (0.12361) | > loss_disc_real_1: 0.22316 (0.21046) | > loss_disc_real_2: 0.21364 (0.21538) | > loss_disc_real_3: 0.22146 (0.21973) | > loss_disc_real_4: 0.23152 (0.21484) | > loss_disc_real_5: 0.20726 (0.21348) | > loss_0: 2.28492 (2.32141) | > grad_norm_0: 20.38655 (15.50317) | > loss_gen: 2.59791 (2.55346) | > loss_kl: 2.65581 (2.65949) | > loss_feat: 9.26681 (8.66577) | > loss_mel: 17.50938 (17.76189) | > loss_duration: 1.70033 (1.70818) | > loss_1: 33.73023 (33.34883) | > grad_norm_1: 103.48617 (128.27985) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43330 (2.30310) | > loader_time: 0.04110 (0.03880)  --> STEP: 2163/15287 -- GLOBAL_STEP: 998025 | > loss_disc: 2.29555 (2.32160) | > loss_disc_real_0: 0.14344 (0.12378) | > loss_disc_real_1: 0.19763 (0.21046) | > loss_disc_real_2: 0.20168 (0.21537) | > loss_disc_real_3: 0.21208 (0.21969) | > loss_disc_real_4: 0.19969 (0.21481) | > loss_disc_real_5: 0.18113 (0.21347) | > loss_0: 2.29555 (2.32160) | > grad_norm_0: 7.31884 (15.53197) | > loss_gen: 2.80303 (2.55354) | > loss_kl: 2.79143 (2.65962) | > loss_feat: 9.25622 (8.66602) | > loss_mel: 18.03456 (17.76190) | > loss_duration: 1.66486 (1.70805) | > loss_1: 34.55009 (33.34918) | > grad_norm_1: 144.00146 (128.51488) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43670 (2.30451) | > loader_time: 0.04170 (0.03883)  --> STEP: 2188/15287 -- GLOBAL_STEP: 998050 | > loss_disc: 2.29208 (2.32136) | > loss_disc_real_0: 0.09926 (0.12370) | > loss_disc_real_1: 0.25742 (0.21048) | > loss_disc_real_2: 0.24165 (0.21536) | > loss_disc_real_3: 0.19606 (0.21967) | > loss_disc_real_4: 0.21563 (0.21480) | > loss_disc_real_5: 0.20665 (0.21352) | > loss_0: 2.29208 (2.32136) | > grad_norm_0: 13.29725 (15.54459) | > loss_gen: 2.74170 (2.55342) | > loss_kl: 2.64710 (2.65949) | > loss_feat: 9.06619 (8.66710) | > loss_mel: 17.97033 (17.76227) | > loss_duration: 1.68449 (1.70795) | > loss_1: 34.10981 (33.35025) | > grad_norm_1: 145.63828 (128.56021) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.45580 (2.30534) | > loader_time: 0.04210 (0.03887)  --> STEP: 2213/15287 -- GLOBAL_STEP: 998075 | > loss_disc: 2.33475 (2.32151) | > loss_disc_real_0: 0.11529 (0.12371) | > loss_disc_real_1: 0.23496 (0.21054) | > loss_disc_real_2: 0.21898 (0.21538) | > loss_disc_real_3: 0.21692 (0.21961) | > loss_disc_real_4: 0.23237 (0.21481) | > loss_disc_real_5: 0.21307 (0.21349) | > loss_0: 2.33475 (2.32151) | > grad_norm_0: 11.36296 (15.52511) | > loss_gen: 2.56861 (2.55319) | > loss_kl: 2.78316 (2.65959) | > loss_feat: 8.50648 (8.66626) | > loss_mel: 18.39991 (17.76141) | > loss_duration: 1.65505 (1.70779) | > loss_1: 33.91322 (33.34826) | > grad_norm_1: 104.62637 (128.44325) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.51980 (2.30566) | > loader_time: 0.04760 (0.03890)  --> STEP: 2238/15287 -- GLOBAL_STEP: 998100 | > loss_disc: 2.41220 (2.32138) | > loss_disc_real_0: 0.17039 (0.12362) | > loss_disc_real_1: 0.23495 (0.21057) | > loss_disc_real_2: 0.22145 (0.21539) | > loss_disc_real_3: 0.23063 (0.21957) | > loss_disc_real_4: 0.21109 (0.21480) | > loss_disc_real_5: 0.19581 (0.21347) | > loss_0: 2.41220 (2.32138) | > grad_norm_0: 23.33682 (15.53516) | > loss_gen: 2.51129 (2.55345) | > loss_kl: 2.56771 (2.65941) | > loss_feat: 8.76534 (8.66771) | > loss_mel: 17.89972 (17.76238) | > loss_duration: 1.78155 (1.70784) | > loss_1: 33.52562 (33.35081) | > grad_norm_1: 182.22728 (128.59854) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28140 (2.30533) | > loader_time: 0.03590 (0.03890)  --> STEP: 2263/15287 -- GLOBAL_STEP: 998125 | > loss_disc: 2.37980 (2.32133) | > loss_disc_real_0: 0.11851 (0.12355) | > loss_disc_real_1: 0.24482 (0.21058) | > loss_disc_real_2: 0.22405 (0.21539) | > loss_disc_real_3: 0.21760 (0.21957) | > loss_disc_real_4: 0.22848 (0.21485) | > loss_disc_real_5: 0.21909 (0.21348) | > loss_0: 2.37980 (2.32133) | > grad_norm_0: 18.15874 (15.53247) | > loss_gen: 2.57428 (2.55342) | > loss_kl: 2.82393 (2.65982) | > loss_feat: 8.78016 (8.66825) | > loss_mel: 17.07915 (17.76216) | > loss_duration: 1.68416 (1.70785) | > loss_1: 32.94168 (33.35152) | > grad_norm_1: 125.95612 (128.72519) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21280 (2.30578) | > loader_time: 0.03390 (0.03890)  --> STEP: 2288/15287 -- GLOBAL_STEP: 998150 | > loss_disc: 2.42605 (2.32149) | > loss_disc_real_0: 0.14746 (0.12352) | > loss_disc_real_1: 0.23384 (0.21064) | > loss_disc_real_2: 0.24189 (0.21545) | > loss_disc_real_3: 0.21970 (0.21955) | > loss_disc_real_4: 0.20800 (0.21481) | > loss_disc_real_5: 0.22533 (0.21348) | > loss_0: 2.42605 (2.32149) | > grad_norm_0: 24.53882 (15.52824) | > loss_gen: 2.52380 (2.55323) | > loss_kl: 2.66314 (2.65996) | > loss_feat: 7.76250 (8.66851) | > loss_mel: 17.58378 (17.76282) | > loss_duration: 1.70005 (1.70794) | > loss_1: 32.23326 (33.35248) | > grad_norm_1: 133.41223 (128.73051) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95680 (2.30532) | > loader_time: 0.04150 (0.03891)  --> STEP: 2313/15287 -- GLOBAL_STEP: 998175 | > loss_disc: 2.31054 (2.32179) | > loss_disc_real_0: 0.12846 (0.12351) | > loss_disc_real_1: 0.21383 (0.21072) | > loss_disc_real_2: 0.21133 (0.21545) | > loss_disc_real_3: 0.18670 (0.21956) | > loss_disc_real_4: 0.19988 (0.21481) | > loss_disc_real_5: 0.20933 (0.21353) | > loss_0: 2.31054 (2.32179) | > grad_norm_0: 6.68274 (15.51704) | > loss_gen: 2.64703 (2.55274) | > loss_kl: 2.68580 (2.65973) | > loss_feat: 9.01654 (8.66670) | > loss_mel: 17.86524 (17.76196) | > loss_duration: 1.73833 (1.70790) | > loss_1: 33.95293 (33.34903) | > grad_norm_1: 88.29249 (128.58530) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29690 (2.30638) | > loader_time: 0.03350 (0.03890)  --> STEP: 2338/15287 -- GLOBAL_STEP: 998200 | > loss_disc: 2.34389 (2.32219) | > loss_disc_real_0: 0.15040 (0.12362) | > loss_disc_real_1: 0.20474 (0.21075) | > loss_disc_real_2: 0.20587 (0.21544) | > loss_disc_real_3: 0.22656 (0.21961) | > loss_disc_real_4: 0.24391 (0.21487) | > loss_disc_real_5: 0.21129 (0.21357) | > loss_0: 2.34389 (2.32219) | > grad_norm_0: 15.24175 (15.46254) | > loss_gen: 2.57382 (2.55274) | > loss_kl: 2.59350 (2.65964) | > loss_feat: 8.76188 (8.66586) | > loss_mel: 17.96848 (17.76255) | > loss_duration: 1.70468 (1.70789) | > loss_1: 33.60237 (33.34869) | > grad_norm_1: 111.38650 (128.24800) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10850 (2.30737) | > loader_time: 0.03500 (0.03889)  --> STEP: 2363/15287 -- GLOBAL_STEP: 998225 | > loss_disc: 2.33499 (2.32242) | > loss_disc_real_0: 0.13165 (0.12364) | > loss_disc_real_1: 0.22777 (0.21076) | > loss_disc_real_2: 0.23234 (0.21545) | > loss_disc_real_3: 0.21048 (0.21965) | > loss_disc_real_4: 0.21353 (0.21484) | > loss_disc_real_5: 0.19292 (0.21355) | > loss_0: 2.33499 (2.32242) | > grad_norm_0: 10.10604 (15.44392) | > loss_gen: 2.66839 (2.55243) | > loss_kl: 2.72804 (2.65991) | > loss_feat: 8.65193 (8.66616) | > loss_mel: 18.05716 (17.76379) | > loss_duration: 1.72885 (1.70789) | > loss_1: 33.83437 (33.35020) | > grad_norm_1: 153.24452 (128.14380) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56000 (2.30718) | > loader_time: 0.04380 (0.03892)  --> STEP: 2388/15287 -- GLOBAL_STEP: 998250 | > loss_disc: 2.34018 (2.32230) | > loss_disc_real_0: 0.11840 (0.12357) | > loss_disc_real_1: 0.22500 (0.21073) | > loss_disc_real_2: 0.21275 (0.21545) | > loss_disc_real_3: 0.23028 (0.21968) | > loss_disc_real_4: 0.21988 (0.21480) | > loss_disc_real_5: 0.23943 (0.21354) | > loss_0: 2.34018 (2.32230) | > grad_norm_0: 28.92197 (15.42095) | > loss_gen: 2.64833 (2.55251) | > loss_kl: 2.72676 (2.66014) | > loss_feat: 9.32677 (8.66679) | > loss_mel: 18.03031 (17.76388) | > loss_duration: 1.67957 (1.70777) | > loss_1: 34.41173 (33.35111) | > grad_norm_1: 136.84055 (128.00027) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10510 (2.30988) | > loader_time: 0.03660 (0.03894)  --> STEP: 2413/15287 -- GLOBAL_STEP: 998275 | > loss_disc: 2.33369 (2.32226) | > loss_disc_real_0: 0.14231 (0.12363) | > loss_disc_real_1: 0.20618 (0.21080) | > loss_disc_real_2: 0.21825 (0.21550) | > loss_disc_real_3: 0.18950 (0.21968) | > loss_disc_real_4: 0.22477 (0.21483) | > loss_disc_real_5: 0.22130 (0.21350) | > loss_0: 2.33369 (2.32226) | > grad_norm_0: 13.80735 (15.44117) | > loss_gen: 2.70070 (2.55294) | > loss_kl: 2.58193 (2.65982) | > loss_feat: 8.41846 (8.66796) | > loss_mel: 17.77366 (17.76373) | > loss_duration: 1.75856 (1.70782) | > loss_1: 33.23331 (33.35231) | > grad_norm_1: 103.75788 (128.11035) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23950 (2.30821) | > loader_time: 0.04470 (0.03894)  --> STEP: 2438/15287 -- GLOBAL_STEP: 998300 | > loss_disc: 2.32610 (2.32215) | > loss_disc_real_0: 0.11261 (0.12354) | > loss_disc_real_1: 0.20887 (0.21075) | > loss_disc_real_2: 0.21952 (0.21547) | > loss_disc_real_3: 0.21411 (0.21965) | > loss_disc_real_4: 0.20956 (0.21485) | > loss_disc_real_5: 0.23169 (0.21352) | > loss_0: 2.32610 (2.32215) | > grad_norm_0: 18.80008 (15.40674) | > loss_gen: 2.50637 (2.55276) | > loss_kl: 2.68333 (2.65961) | > loss_feat: 8.41228 (8.66854) | > loss_mel: 17.87875 (17.76533) | > loss_duration: 1.66605 (1.70785) | > loss_1: 33.14679 (33.35411) | > grad_norm_1: 150.31508 (128.07278) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04670 (2.30640) | > loader_time: 0.03480 (0.03896)  --> STEP: 2463/15287 -- GLOBAL_STEP: 998325 | > loss_disc: 2.28018 (2.32194) | > loss_disc_real_0: 0.14616 (0.12355) | > loss_disc_real_1: 0.19796 (0.21074) | > loss_disc_real_2: 0.20923 (0.21550) | > loss_disc_real_3: 0.23783 (0.21963) | > loss_disc_real_4: 0.23718 (0.21481) | > loss_disc_real_5: 0.21197 (0.21343) | > loss_0: 2.28018 (2.32194) | > grad_norm_0: 26.38473 (15.42830) | > loss_gen: 2.68639 (2.55277) | > loss_kl: 2.66357 (2.65968) | > loss_feat: 8.76774 (8.66818) | > loss_mel: 17.53765 (17.76440) | > loss_duration: 1.69898 (1.70775) | > loss_1: 33.35434 (33.35280) | > grad_norm_1: 167.63338 (128.26747) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03810 (2.30470) | > loader_time: 0.03590 (0.03895)  --> STEP: 2488/15287 -- GLOBAL_STEP: 998350 | > loss_disc: 2.31695 (2.32177) | > loss_disc_real_0: 0.14549 (0.12356) | > loss_disc_real_1: 0.24535 (0.21072) | > loss_disc_real_2: 0.25418 (0.21551) | > loss_disc_real_3: 0.22371 (0.21960) | > loss_disc_real_4: 0.22267 (0.21475) | > loss_disc_real_5: 0.19635 (0.21345) | > loss_0: 2.31695 (2.32177) | > grad_norm_0: 16.12418 (15.40794) | > loss_gen: 2.59850 (2.55278) | > loss_kl: 2.57219 (2.65972) | > loss_feat: 8.02715 (8.66772) | > loss_mel: 17.54068 (17.76326) | > loss_duration: 1.70960 (1.70770) | > loss_1: 32.44812 (33.35119) | > grad_norm_1: 52.19000 (128.14072) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37360 (2.30494) | > loader_time: 0.04260 (0.03896)  --> STEP: 2513/15287 -- GLOBAL_STEP: 998375 | > loss_disc: 2.23182 (2.32162) | > loss_disc_real_0: 0.08201 (0.12353) | > loss_disc_real_1: 0.18964 (0.21066) | > loss_disc_real_2: 0.21053 (0.21548) | > loss_disc_real_3: 0.21576 (0.21956) | > loss_disc_real_4: 0.22106 (0.21473) | > loss_disc_real_5: 0.21130 (0.21340) | > loss_0: 2.23182 (2.32162) | > grad_norm_0: 12.45248 (15.40530) | > loss_gen: 2.70187 (2.55246) | > loss_kl: 2.56487 (2.65982) | > loss_feat: 9.09865 (8.66708) | > loss_mel: 18.35589 (17.76294) | > loss_duration: 1.73908 (1.70763) | > loss_1: 34.46037 (33.34996) | > grad_norm_1: 71.98949 (128.18159) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89170 (2.30473) | > loader_time: 0.03660 (0.03897)  --> STEP: 2538/15287 -- GLOBAL_STEP: 998400 | > loss_disc: 2.28315 (2.32173) | > loss_disc_real_0: 0.07973 (0.12357) | > loss_disc_real_1: 0.20450 (0.21069) | > loss_disc_real_2: 0.23208 (0.21551) | > loss_disc_real_3: 0.20156 (0.21966) | > loss_disc_real_4: 0.21719 (0.21478) | > loss_disc_real_5: 0.21399 (0.21349) | > loss_0: 2.28315 (2.32173) | > grad_norm_0: 16.77245 (15.43327) | > loss_gen: 2.49863 (2.55264) | > loss_kl: 2.73975 (2.66001) | > loss_feat: 8.50084 (8.66756) | > loss_mel: 17.50558 (17.76217) | > loss_duration: 1.69111 (1.70750) | > loss_1: 32.93591 (33.34990) | > grad_norm_1: 104.78338 (128.27237) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17780 (2.30481) | > loader_time: 0.04720 (0.03897)  --> STEP: 2563/15287 -- GLOBAL_STEP: 998425 | > loss_disc: 2.33168 (2.32156) | > loss_disc_real_0: 0.10873 (0.12350) | > loss_disc_real_1: 0.20700 (0.21066) | > loss_disc_real_2: 0.19149 (0.21545) | > loss_disc_real_3: 0.22483 (0.21961) | > loss_disc_real_4: 0.21302 (0.21478) | > loss_disc_real_5: 0.23162 (0.21348) | > loss_0: 2.33168 (2.32156) | > grad_norm_0: 24.53086 (15.44880) | > loss_gen: 2.47672 (2.55234) | > loss_kl: 2.56735 (2.66027) | > loss_feat: 8.21404 (8.66744) | > loss_mel: 17.47016 (17.76164) | > loss_duration: 1.69804 (1.70746) | > loss_1: 32.42630 (33.34919) | > grad_norm_1: 136.18292 (128.28185) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04340 (2.30362) | > loader_time: 0.03710 (0.03898)  --> STEP: 2588/15287 -- GLOBAL_STEP: 998450 | > loss_disc: 2.30754 (2.32144) | > loss_disc_real_0: 0.06802 (0.12344) | > loss_disc_real_1: 0.19274 (0.21062) | > loss_disc_real_2: 0.19867 (0.21544) | > loss_disc_real_3: 0.15668 (0.21957) | > loss_disc_real_4: 0.17128 (0.21475) | > loss_disc_real_5: 0.20593 (0.21346) | > loss_0: 2.30754 (2.32144) | > grad_norm_0: 12.49526 (15.44034) | > loss_gen: 2.68712 (2.55231) | > loss_kl: 2.64588 (2.66045) | > loss_feat: 8.64534 (8.66874) | > loss_mel: 17.74507 (17.76133) | > loss_duration: 1.71573 (1.70740) | > loss_1: 33.43914 (33.35023) | > grad_norm_1: 115.23650 (128.28947) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93620 (2.30477) | > loader_time: 0.04350 (0.03900)  --> STEP: 2613/15287 -- GLOBAL_STEP: 998475 | > loss_disc: 2.31286 (2.32134) | > loss_disc_real_0: 0.11184 (0.12341) | > loss_disc_real_1: 0.20239 (0.21061) | > loss_disc_real_2: 0.21458 (0.21542) | > loss_disc_real_3: 0.20330 (0.21957) | > loss_disc_real_4: 0.20904 (0.21473) | > loss_disc_real_5: 0.20406 (0.21349) | > loss_0: 2.31286 (2.32134) | > grad_norm_0: 12.01419 (15.47122) | > loss_gen: 2.65423 (2.55215) | > loss_kl: 2.66014 (2.66022) | > loss_feat: 8.82388 (8.66843) | > loss_mel: 17.25662 (17.76025) | > loss_duration: 1.69416 (1.70736) | > loss_1: 33.08903 (33.34838) | > grad_norm_1: 199.91347 (128.44395) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86690 (2.30408) | > loader_time: 0.03980 (0.03900)  --> STEP: 2638/15287 -- GLOBAL_STEP: 998500 | > loss_disc: 2.32715 (2.32112) | > loss_disc_real_0: 0.10742 (0.12333) | > loss_disc_real_1: 0.19754 (0.21058) | > loss_disc_real_2: 0.22317 (0.21538) | > loss_disc_real_3: 0.22497 (0.21956) | > loss_disc_real_4: 0.22699 (0.21476) | > loss_disc_real_5: 0.21306 (0.21351) | > loss_0: 2.32715 (2.32112) | > grad_norm_0: 7.80467 (15.49812) | > loss_gen: 2.58621 (2.55210) | > loss_kl: 2.54095 (2.66025) | > loss_feat: 8.06242 (8.66961) | > loss_mel: 17.44086 (17.75957) | > loss_duration: 1.69183 (1.70728) | > loss_1: 32.32227 (33.34879) | > grad_norm_1: 136.69514 (128.76057) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13620 (2.30363) | > loader_time: 0.03410 (0.03901)  --> STEP: 2663/15287 -- GLOBAL_STEP: 998525 | > loss_disc: 2.28442 (2.32054) | > loss_disc_real_0: 0.11271 (0.12325) | > loss_disc_real_1: 0.20101 (0.21055) | > loss_disc_real_2: 0.20361 (0.21534) | > loss_disc_real_3: 0.20131 (0.21950) | > loss_disc_real_4: 0.21590 (0.21472) | > loss_disc_real_5: 0.22948 (0.21345) | > loss_0: 2.28442 (2.32054) | > grad_norm_0: 13.07440 (15.55244) | > loss_gen: 2.41823 (2.55216) | > loss_kl: 2.59235 (2.66005) | > loss_feat: 8.76289 (8.67051) | > loss_mel: 17.61439 (17.75889) | > loss_duration: 1.66688 (1.70721) | > loss_1: 33.05475 (33.34881) | > grad_norm_1: 81.86082 (128.97601) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.12400 (2.30186) | > loader_time: 0.03570 (0.03901)  --> STEP: 2688/15287 -- GLOBAL_STEP: 998550 | > loss_disc: 2.27655 (2.32036) | > loss_disc_real_0: 0.09937 (0.12317) | > loss_disc_real_1: 0.19982 (0.21054) | > loss_disc_real_2: 0.20357 (0.21534) | > loss_disc_real_3: 0.21757 (0.21947) | > loss_disc_real_4: 0.19732 (0.21476) | > loss_disc_real_5: 0.22896 (0.21341) | > loss_0: 2.27655 (2.32036) | > grad_norm_0: 22.29278 (15.56421) | > loss_gen: 2.47231 (2.55226) | > loss_kl: 2.69777 (2.66047) | > loss_feat: 8.54243 (8.67085) | > loss_mel: 17.78998 (17.75816) | > loss_duration: 1.72209 (1.70721) | > loss_1: 33.22456 (33.34894) | > grad_norm_1: 111.25626 (129.06483) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22200 (2.30020) | > loader_time: 0.03510 (0.03903)  --> STEP: 2713/15287 -- GLOBAL_STEP: 998575 | > loss_disc: 2.28438 (2.32030) | > loss_disc_real_0: 0.14970 (0.12316) | > loss_disc_real_1: 0.20852 (0.21052) | > loss_disc_real_2: 0.21848 (0.21532) | > loss_disc_real_3: 0.22416 (0.21943) | > loss_disc_real_4: 0.21443 (0.21474) | > loss_disc_real_5: 0.21428 (0.21343) | > loss_0: 2.28438 (2.32030) | > grad_norm_0: 31.59356 (15.58635) | > loss_gen: 2.60333 (2.55229) | > loss_kl: 2.58685 (2.66061) | > loss_feat: 8.16685 (8.66992) | > loss_mel: 17.86545 (17.75781) | > loss_duration: 1.75431 (1.70724) | > loss_1: 32.97680 (33.34786) | > grad_norm_1: 103.63963 (129.25981) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01930 (2.29864) | > loader_time: 0.03490 (0.03901)  --> STEP: 2738/15287 -- GLOBAL_STEP: 998600 | > loss_disc: 2.26795 (2.32008) | > loss_disc_real_0: 0.08485 (0.12311) | > loss_disc_real_1: 0.19319 (0.21049) | > loss_disc_real_2: 0.21752 (0.21531) | > loss_disc_real_3: 0.23542 (0.21945) | > loss_disc_real_4: 0.24144 (0.21475) | > loss_disc_real_5: 0.22313 (0.21345) | > loss_0: 2.26795 (2.32008) | > grad_norm_0: 23.42295 (15.61143) | > loss_gen: 2.65006 (2.55263) | > loss_kl: 2.67165 (2.66056) | > loss_feat: 9.30215 (8.67148) | > loss_mel: 18.02863 (17.75827) | > loss_duration: 1.68941 (1.70720) | > loss_1: 34.34190 (33.35014) | > grad_norm_1: 179.55580 (129.55321) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97600 (2.29735) | > loader_time: 0.03440 (0.03900)  --> STEP: 2763/15287 -- GLOBAL_STEP: 998625 | > loss_disc: 2.29102 (2.32010) | > loss_disc_real_0: 0.12080 (0.12313) | > loss_disc_real_1: 0.22876 (0.21054) | > loss_disc_real_2: 0.20837 (0.21530) | > loss_disc_real_3: 0.24590 (0.21947) | > loss_disc_real_4: 0.22357 (0.21476) | > loss_disc_real_5: 0.20788 (0.21342) | > loss_0: 2.29102 (2.32010) | > grad_norm_0: 17.49493 (15.61563) | > loss_gen: 2.71058 (2.55268) | > loss_kl: 2.64999 (2.66057) | > loss_feat: 9.47286 (8.67101) | > loss_mel: 18.20510 (17.75794) | > loss_duration: 1.74033 (1.70720) | > loss_1: 34.77887 (33.34938) | > grad_norm_1: 190.54427 (129.64818) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99400 (2.29515) | > loader_time: 0.03100 (0.03897)  --> STEP: 2788/15287 -- GLOBAL_STEP: 998650 | > loss_disc: 2.30810 (2.32045) | > loss_disc_real_0: 0.11539 (0.12317) | > loss_disc_real_1: 0.22548 (0.21056) | > loss_disc_real_2: 0.22201 (0.21534) | > loss_disc_real_3: 0.20875 (0.21949) | > loss_disc_real_4: 0.20107 (0.21475) | > loss_disc_real_5: 0.23841 (0.21342) | > loss_0: 2.30810 (2.32045) | > grad_norm_0: 26.56601 (15.64316) | > loss_gen: 2.40606 (2.55232) | > loss_kl: 2.64668 (2.66085) | > loss_feat: 8.58935 (8.67084) | > loss_mel: 18.06102 (17.75905) | > loss_duration: 1.73337 (1.70718) | > loss_1: 33.43649 (33.35022) | > grad_norm_1: 174.90857 (129.71902) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95620 (2.29354) | > loader_time: 0.03320 (0.03895)  --> STEP: 2813/15287 -- GLOBAL_STEP: 998675 | > loss_disc: 2.26978 (2.32057) | > loss_disc_real_0: 0.14719 (0.12321) | > loss_disc_real_1: 0.19376 (0.21063) | > loss_disc_real_2: 0.19571 (0.21534) | > loss_disc_real_3: 0.21577 (0.21945) | > loss_disc_real_4: 0.17978 (0.21472) | > loss_disc_real_5: 0.22761 (0.21340) | > loss_0: 2.26978 (2.32057) | > grad_norm_0: 23.07944 (15.62946) | > loss_gen: 2.51113 (2.55218) | > loss_kl: 2.50011 (2.66094) | > loss_feat: 8.86735 (8.67014) | > loss_mel: 17.97763 (17.75950) | > loss_duration: 1.71823 (1.70725) | > loss_1: 33.57446 (33.34998) | > grad_norm_1: 177.25287 (129.68179) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38060 (2.29233) | > loader_time: 0.03600 (0.03896)  --> STEP: 2838/15287 -- GLOBAL_STEP: 998700 | > loss_disc: 2.24203 (2.32071) | > loss_disc_real_0: 0.10945 (0.12324) | > loss_disc_real_1: 0.20849 (0.21068) | > loss_disc_real_2: 0.21582 (0.21534) | > loss_disc_real_3: 0.21085 (0.21947) | > loss_disc_real_4: 0.21145 (0.21470) | > loss_disc_real_5: 0.21284 (0.21339) | > loss_0: 2.24203 (2.32071) | > grad_norm_0: 14.62932 (15.63074) | > loss_gen: 2.67795 (2.55216) | > loss_kl: 2.67714 (2.66088) | > loss_feat: 8.96215 (8.67030) | > loss_mel: 17.92309 (17.76082) | > loss_duration: 1.68008 (1.70732) | > loss_1: 33.92041 (33.35145) | > grad_norm_1: 168.15472 (129.75206) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14110 (2.29080) | > loader_time: 0.03890 (0.03894)  --> STEP: 2863/15287 -- GLOBAL_STEP: 998725 | > loss_disc: 2.24113 (2.32070) | > loss_disc_real_0: 0.10280 (0.12320) | > loss_disc_real_1: 0.18405 (0.21071) | > loss_disc_real_2: 0.22186 (0.21533) | > loss_disc_real_3: 0.20620 (0.21944) | > loss_disc_real_4: 0.19791 (0.21466) | > loss_disc_real_5: 0.22517 (0.21338) | > loss_0: 2.24113 (2.32070) | > grad_norm_0: 14.74649 (15.64459) | > loss_gen: 2.68028 (2.55228) | > loss_kl: 2.68388 (2.66072) | > loss_feat: 8.72931 (8.67171) | > loss_mel: 17.78559 (17.76108) | > loss_duration: 1.65698 (1.70731) | > loss_1: 33.53605 (33.35307) | > grad_norm_1: 172.21449 (129.82506) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10590 (2.28916) | > loader_time: 0.03460 (0.03893)  --> STEP: 2888/15287 -- GLOBAL_STEP: 998750 | > loss_disc: 2.30638 (2.32060) | > loss_disc_real_0: 0.10817 (0.12310) | > loss_disc_real_1: 0.20742 (0.21069) | > loss_disc_real_2: 0.20814 (0.21531) | > loss_disc_real_3: 0.21890 (0.21945) | > loss_disc_real_4: 0.21599 (0.21468) | > loss_disc_real_5: 0.20976 (0.21336) | > loss_0: 2.30638 (2.32060) | > grad_norm_0: 16.37145 (15.65717) | > loss_gen: 2.44212 (2.55198) | > loss_kl: 2.70868 (2.66050) | > loss_feat: 8.62565 (8.67193) | > loss_mel: 17.27726 (17.76035) | > loss_duration: 1.73062 (1.70732) | > loss_1: 32.78432 (33.35205) | > grad_norm_1: 202.86388 (130.07932) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20550 (2.28792) | > loader_time: 0.04190 (0.03891)  --> STEP: 2913/15287 -- GLOBAL_STEP: 998775 | > loss_disc: 2.26429 (2.32058) | > loss_disc_real_0: 0.11337 (0.12314) | > loss_disc_real_1: 0.19828 (0.21070) | > loss_disc_real_2: 0.21169 (0.21530) | > loss_disc_real_3: 0.20852 (0.21940) | > loss_disc_real_4: 0.21202 (0.21467) | > loss_disc_real_5: 0.20063 (0.21337) | > loss_0: 2.26429 (2.32058) | > grad_norm_0: 8.92192 (15.67253) | > loss_gen: 2.63823 (2.55214) | > loss_kl: 2.58509 (2.66094) | > loss_feat: 8.81876 (8.67270) | > loss_mel: 18.02550 (17.76109) | > loss_duration: 1.64898 (1.70732) | > loss_1: 33.71655 (33.35415) | > grad_norm_1: 148.77084 (130.16934) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27020 (2.28724) | > loader_time: 0.03910 (0.03891)  --> STEP: 2938/15287 -- GLOBAL_STEP: 998800 | > loss_disc: 2.40936 (2.32066) | > loss_disc_real_0: 0.10747 (0.12313) | > loss_disc_real_1: 0.19697 (0.21069) | > loss_disc_real_2: 0.20031 (0.21530) | > loss_disc_real_3: 0.19540 (0.21939) | > loss_disc_real_4: 0.19618 (0.21468) | > loss_disc_real_5: 0.23074 (0.21338) | > loss_0: 2.40936 (2.32066) | > grad_norm_0: 18.93241 (15.66127) | > loss_gen: 2.27848 (2.55197) | > loss_kl: 2.66716 (2.66089) | > loss_feat: 8.32221 (8.67337) | > loss_mel: 17.94575 (17.76131) | > loss_duration: 1.67867 (1.70734) | > loss_1: 32.89227 (33.35485) | > grad_norm_1: 116.55014 (130.25996) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29280 (2.28596) | > loader_time: 0.03420 (0.03890)  --> STEP: 2963/15287 -- GLOBAL_STEP: 998825 | > loss_disc: 2.33473 (2.32041) | > loss_disc_real_0: 0.11412 (0.12303) | > loss_disc_real_1: 0.21282 (0.21069) | > loss_disc_real_2: 0.20928 (0.21529) | > loss_disc_real_3: 0.18520 (0.21936) | > loss_disc_real_4: 0.23148 (0.21467) | > loss_disc_real_5: 0.19672 (0.21333) | > loss_0: 2.33473 (2.32041) | > grad_norm_0: 37.43188 (15.68702) | > loss_gen: 2.49834 (2.55201) | > loss_kl: 2.73307 (2.66097) | > loss_feat: 8.71600 (8.67460) | > loss_mel: 17.58754 (17.76090) | > loss_duration: 1.64568 (1.70728) | > loss_1: 33.18063 (33.35574) | > grad_norm_1: 152.19788 (130.44374) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02930 (2.28508) | > loader_time: 0.03980 (0.03890)  --> STEP: 2988/15287 -- GLOBAL_STEP: 998850 | > loss_disc: 2.49576 (2.32079) | > loss_disc_real_0: 0.27689 (0.12319) | > loss_disc_real_1: 0.13338 (0.21066) | > loss_disc_real_2: 0.16499 (0.21525) | > loss_disc_real_3: 0.21619 (0.21933) | > loss_disc_real_4: 0.16406 (0.21468) | > loss_disc_real_5: 0.22243 (0.21335) | > loss_0: 2.49576 (2.32079) | > grad_norm_0: 45.66310 (15.71490) | > loss_gen: 2.37219 (2.55206) | > loss_kl: 2.75526 (2.66108) | > loss_feat: 8.22618 (8.67359) | > loss_mel: 17.90766 (17.75972) | > loss_duration: 1.70363 (1.70722) | > loss_1: 32.96492 (33.35364) | > grad_norm_1: 154.16798 (130.68408) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01000 (2.28348) | > loader_time: 0.03490 (0.03889)  --> STEP: 3013/15287 -- GLOBAL_STEP: 998875 | > loss_disc: 2.33408 (2.32084) | > loss_disc_real_0: 0.11658 (0.12313) | > loss_disc_real_1: 0.23841 (0.21067) | > loss_disc_real_2: 0.23121 (0.21527) | > loss_disc_real_3: 0.23380 (0.21937) | > loss_disc_real_4: 0.22218 (0.21466) | > loss_disc_real_5: 0.29663 (0.21346) | > loss_0: 2.33408 (2.32084) | > grad_norm_0: 49.09426 (15.80506) | > loss_gen: 2.72286 (2.55229) | > loss_kl: 2.62456 (2.66116) | > loss_feat: 8.73960 (8.67357) | > loss_mel: 17.11257 (17.76086) | > loss_duration: 1.66910 (1.70720) | > loss_1: 32.86870 (33.35504) | > grad_norm_1: 383.44290 (130.89754) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31470 (2.28247) | > loader_time: 0.04000 (0.03888)  --> STEP: 3038/15287 -- GLOBAL_STEP: 998900 | > loss_disc: 2.42753 (2.32078) | > loss_disc_real_0: 0.15698 (0.12311) | > loss_disc_real_1: 0.20553 (0.21067) | > loss_disc_real_2: 0.20674 (0.21529) | > loss_disc_real_3: 0.21407 (0.21937) | > loss_disc_real_4: 0.20435 (0.21465) | > loss_disc_real_5: 0.19393 (0.21344) | > loss_0: 2.42753 (2.32078) | > grad_norm_0: 47.04457 (15.87178) | > loss_gen: 2.25059 (2.55216) | > loss_kl: 2.66823 (2.66104) | > loss_feat: 8.15141 (8.67259) | > loss_mel: 17.08514 (17.75953) | > loss_duration: 1.69644 (1.70717) | > loss_1: 31.85182 (33.35245) | > grad_norm_1: 75.50942 (131.43547) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22670 (2.28188) | > loader_time: 0.03870 (0.03886)  --> STEP: 3063/15287 -- GLOBAL_STEP: 998925 | > loss_disc: 2.37319 (2.32098) | > loss_disc_real_0: 0.12352 (0.12313) | > loss_disc_real_1: 0.21673 (0.21073) | > loss_disc_real_2: 0.22290 (0.21532) | > loss_disc_real_3: 0.23133 (0.21940) | > loss_disc_real_4: 0.23799 (0.21471) | > loss_disc_real_5: 0.22155 (0.21348) | > loss_0: 2.37319 (2.32098) | > grad_norm_0: 10.36315 (15.86553) | > loss_gen: 2.47971 (2.55222) | > loss_kl: 2.71634 (2.66134) | > loss_feat: 8.55030 (8.67298) | > loss_mel: 17.90465 (17.76037) | > loss_duration: 1.69846 (1.70719) | > loss_1: 33.34945 (33.35406) | > grad_norm_1: 45.42353 (131.26030) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21420 (2.28132) | > loader_time: 0.04240 (0.03889)  --> STEP: 3088/15287 -- GLOBAL_STEP: 998950 | > loss_disc: 2.36043 (2.32103) | > loss_disc_real_0: 0.11054 (0.12310) | > loss_disc_real_1: 0.20705 (0.21076) | > loss_disc_real_2: 0.22559 (0.21533) | > loss_disc_real_3: 0.23012 (0.21942) | > loss_disc_real_4: 0.22677 (0.21469) | > loss_disc_real_5: 0.21283 (0.21346) | > loss_0: 2.36043 (2.32103) | > grad_norm_0: 14.87709 (15.91842) | > loss_gen: 2.44713 (2.55221) | > loss_kl: 2.49170 (2.66102) | > loss_feat: 8.42929 (8.67307) | > loss_mel: 18.23560 (17.76120) | > loss_duration: 1.73505 (1.70725) | > loss_1: 33.33877 (33.35471) | > grad_norm_1: 82.20694 (131.70813) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.73380 (2.28158) | > loader_time: 0.04750 (0.03894)  --> STEP: 3113/15287 -- GLOBAL_STEP: 998975 | > loss_disc: 2.40431 (2.32096) | > loss_disc_real_0: 0.08942 (0.12310) | > loss_disc_real_1: 0.22960 (0.21076) | > loss_disc_real_2: 0.23565 (0.21536) | > loss_disc_real_3: 0.23922 (0.21949) | > loss_disc_real_4: 0.25760 (0.21478) | > loss_disc_real_5: 0.20815 (0.21344) | > loss_0: 2.40431 (2.32096) | > grad_norm_0: 22.02791 (15.96129) | > loss_gen: 2.39406 (2.55253) | > loss_kl: 2.70299 (2.66126) | > loss_feat: 8.43022 (8.67335) | > loss_mel: 18.04923 (17.76076) | > loss_duration: 1.67932 (1.70724) | > loss_1: 33.25582 (33.35511) | > grad_norm_1: 152.54961 (132.08592) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40180 (2.28147) | > loader_time: 0.03690 (0.03898)  --> STEP: 3138/15287 -- GLOBAL_STEP: 999000 | > loss_disc: 2.25645 (2.32116) | > loss_disc_real_0: 0.16572 (0.12322) | > loss_disc_real_1: 0.19824 (0.21083) | > loss_disc_real_2: 0.20729 (0.21544) | > loss_disc_real_3: 0.20555 (0.21948) | > loss_disc_real_4: 0.20273 (0.21475) | > loss_disc_real_5: 0.21075 (0.21344) | > loss_0: 2.25645 (2.32116) | > grad_norm_0: 13.85730 (16.01761) | > loss_gen: 2.73075 (2.55254) | > loss_kl: 2.71412 (2.66117) | > loss_feat: 8.13073 (8.67253) | > loss_mel: 17.67342 (17.76040) | > loss_duration: 1.70252 (1.70729) | > loss_1: 32.95154 (33.35389) | > grad_norm_1: 144.38730 (132.34471) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19820 (2.28112) | > loader_time: 0.03940 (0.03900)  --> STEP: 3163/15287 -- GLOBAL_STEP: 999025 | > loss_disc: 2.36336 (2.32106) | > loss_disc_real_0: 0.18358 (0.12323) | > loss_disc_real_1: 0.23214 (0.21084) | > loss_disc_real_2: 0.21662 (0.21547) | > loss_disc_real_3: 0.19587 (0.21950) | > loss_disc_real_4: 0.22243 (0.21474) | > loss_disc_real_5: 0.24210 (0.21347) | > loss_0: 2.36336 (2.32106) | > grad_norm_0: 22.37124 (16.03586) | > loss_gen: 2.58967 (2.55278) | > loss_kl: 2.61508 (2.66130) | > loss_feat: 8.11152 (8.67259) | > loss_mel: 17.19748 (17.75955) | > loss_duration: 1.68959 (1.70725) | > loss_1: 32.20333 (33.35344) | > grad_norm_1: 57.11198 (132.48563) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24280 (2.28169) | > loader_time: 0.03360 (0.03900)  --> STEP: 3188/15287 -- GLOBAL_STEP: 999050 | > loss_disc: 2.36234 (2.32109) | > loss_disc_real_0: 0.17228 (0.12323) | > loss_disc_real_1: 0.22776 (0.21083) | > loss_disc_real_2: 0.22112 (0.21544) | > loss_disc_real_3: 0.21949 (0.21951) | > loss_disc_real_4: 0.20556 (0.21473) | > loss_disc_real_5: 0.20456 (0.21345) | > loss_0: 2.36234 (2.32109) | > grad_norm_0: 15.44710 (16.02879) | > loss_gen: 2.64245 (2.55284) | > loss_kl: 2.57490 (2.66138) | > loss_feat: 7.84328 (8.67261) | > loss_mel: 17.15533 (17.76033) | > loss_duration: 1.67788 (1.70723) | > loss_1: 31.89384 (33.35433) | > grad_norm_1: 87.90102 (132.51390) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21280 (2.28150) | > loader_time: 0.04310 (0.03905)  --> STEP: 3213/15287 -- GLOBAL_STEP: 999075 | > loss_disc: 2.33720 (2.32106) | > loss_disc_real_0: 0.07761 (0.12317) | > loss_disc_real_1: 0.28653 (0.21087) | > loss_disc_real_2: 0.20247 (0.21542) | > loss_disc_real_3: 0.20801 (0.21950) | > loss_disc_real_4: 0.22744 (0.21475) | > loss_disc_real_5: 0.20948 (0.21346) | > loss_0: 2.33720 (2.32106) | > grad_norm_0: 16.06715 (16.04194) | > loss_gen: 2.64071 (2.55297) | > loss_kl: 2.43579 (2.66106) | > loss_feat: 8.83045 (8.67283) | > loss_mel: 17.47542 (17.76016) | > loss_duration: 1.73979 (1.70723) | > loss_1: 33.12216 (33.35419) | > grad_norm_1: 167.68088 (132.65221) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26540 (2.28027) | > loader_time: 0.04070 (0.03907)  --> STEP: 3238/15287 -- GLOBAL_STEP: 999100 | > loss_disc: 2.37573 (2.32109) | > loss_disc_real_0: 0.10479 (0.12313) | > loss_disc_real_1: 0.23078 (0.21091) | > loss_disc_real_2: 0.25619 (0.21535) | > loss_disc_real_3: 0.22081 (0.21946) | > loss_disc_real_4: 0.20278 (0.21476) | > loss_disc_real_5: 0.20057 (0.21343) | > loss_0: 2.37573 (2.32109) | > grad_norm_0: 6.96152 (16.05142) | > loss_gen: 2.66782 (2.55305) | > loss_kl: 2.55326 (2.66125) | > loss_feat: 8.47804 (8.67352) | > loss_mel: 17.93399 (17.76142) | > loss_duration: 1.74261 (1.70726) | > loss_1: 33.37572 (33.35643) | > grad_norm_1: 151.32962 (132.88815) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08390 (2.28006) | > loader_time: 0.04200 (0.03909)  --> STEP: 3263/15287 -- GLOBAL_STEP: 999125 | > loss_disc: 2.27445 (2.32102) | > loss_disc_real_0: 0.14017 (0.12308) | > loss_disc_real_1: 0.20890 (0.21092) | > loss_disc_real_2: 0.20297 (0.21534) | > loss_disc_real_3: 0.16739 (0.21942) | > loss_disc_real_4: 0.17949 (0.21473) | > loss_disc_real_5: 0.15947 (0.21343) | > loss_0: 2.27445 (2.32102) | > grad_norm_0: 23.88835 (16.05842) | > loss_gen: 2.63460 (2.55289) | > loss_kl: 2.74388 (2.66127) | > loss_feat: 9.22635 (8.67379) | > loss_mel: 18.10865 (17.76170) | > loss_duration: 1.72458 (1.70722) | > loss_1: 34.43805 (33.35679) | > grad_norm_1: 201.90451 (133.02094) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22910 (2.27949) | > loader_time: 0.03860 (0.03916)  --> STEP: 3288/15287 -- GLOBAL_STEP: 999150 | > loss_disc: 2.26511 (2.32132) | > loss_disc_real_0: 0.07667 (0.12315) | > loss_disc_real_1: 0.20064 (0.21095) | > loss_disc_real_2: 0.21108 (0.21531) | > loss_disc_real_3: 0.21611 (0.21944) | > loss_disc_real_4: 0.22098 (0.21477) | > loss_disc_real_5: 0.18095 (0.21345) | > loss_0: 2.26511 (2.32132) | > grad_norm_0: 16.47464 (16.10234) | > loss_gen: 2.57341 (2.55265) | > loss_kl: 2.56669 (2.66143) | > loss_feat: 9.17994 (8.67339) | > loss_mel: 17.95918 (17.76171) | > loss_duration: 1.70954 (1.70726) | > loss_1: 33.98874 (33.35637) | > grad_norm_1: 108.90854 (133.09363) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27920 (2.27850) | > loader_time: 0.03560 (0.03918)  --> STEP: 3313/15287 -- GLOBAL_STEP: 999175 | > loss_disc: 2.35361 (2.32119) | > loss_disc_real_0: 0.10862 (0.12311) | > loss_disc_real_1: 0.23380 (0.21098) | > loss_disc_real_2: 0.22683 (0.21531) | > loss_disc_real_3: 0.22676 (0.21943) | > loss_disc_real_4: 0.21518 (0.21475) | > loss_disc_real_5: 0.21970 (0.21345) | > loss_0: 2.35361 (2.32119) | > grad_norm_0: 13.75013 (16.09792) | > loss_gen: 2.43557 (2.55282) | > loss_kl: 2.57441 (2.66146) | > loss_feat: 8.20561 (8.67486) | > loss_mel: 17.81772 (17.76237) | > loss_duration: 1.72629 (1.70733) | > loss_1: 32.75961 (33.35876) | > grad_norm_1: 142.34607 (133.19434) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26440 (2.27713) | > loader_time: 0.04360 (0.03919)  --> STEP: 3338/15287 -- GLOBAL_STEP: 999200 | > loss_disc: 2.31407 (2.32131) | > loss_disc_real_0: 0.10470 (0.12311) | > loss_disc_real_1: 0.20679 (0.21100) | > loss_disc_real_2: 0.20948 (0.21531) | > loss_disc_real_3: 0.19872 (0.21944) | > loss_disc_real_4: 0.22027 (0.21476) | > loss_disc_real_5: 0.22762 (0.21349) | > loss_0: 2.31407 (2.32131) | > grad_norm_0: 16.28075 (16.06666) | > loss_gen: 2.48466 (2.55289) | > loss_kl: 2.67933 (2.66175) | > loss_feat: 8.49853 (8.67462) | > loss_mel: 17.74020 (17.76178) | > loss_duration: 1.70097 (1.70737) | > loss_1: 33.10370 (33.35832) | > grad_norm_1: 65.87400 (133.01654) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23460 (2.27668) | > loader_time: 0.04240 (0.03920)  --> STEP: 3363/15287 -- GLOBAL_STEP: 999225 | > loss_disc: 2.27582 (2.32144) | > loss_disc_real_0: 0.14308 (0.12310) | > loss_disc_real_1: 0.20038 (0.21104) | > loss_disc_real_2: 0.23442 (0.21532) | > loss_disc_real_3: 0.20742 (0.21947) | > loss_disc_real_4: 0.21066 (0.21477) | > loss_disc_real_5: 0.18852 (0.21345) | > loss_0: 2.27582 (2.32144) | > grad_norm_0: 12.47441 (16.04515) | > loss_gen: 2.62915 (2.55284) | > loss_kl: 2.71794 (2.66199) | > loss_feat: 8.25577 (8.67383) | > loss_mel: 17.36654 (17.76273) | > loss_duration: 1.69022 (1.70735) | > loss_1: 32.65963 (33.35865) | > grad_norm_1: 162.42700 (132.97298) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.47140 (2.27637) | > loader_time: 0.04840 (0.03923)  --> STEP: 3388/15287 -- GLOBAL_STEP: 999250 | > loss_disc: 2.43148 (2.32160) | > loss_disc_real_0: 0.09052 (0.12320) | > loss_disc_real_1: 0.20194 (0.21105) | > loss_disc_real_2: 0.22489 (0.21528) | > loss_disc_real_3: 0.21178 (0.21943) | > loss_disc_real_4: 0.20680 (0.21473) | > loss_disc_real_5: 0.20736 (0.21349) | > loss_0: 2.43148 (2.32160) | > grad_norm_0: 17.15178 (16.06398) | > loss_gen: 2.42501 (2.55260) | > loss_kl: 2.63694 (2.66193) | > loss_feat: 8.24169 (8.67358) | > loss_mel: 17.60214 (17.76274) | > loss_duration: 1.73455 (1.70738) | > loss_1: 32.64033 (33.35815) | > grad_norm_1: 78.35587 (132.99104) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04190 (2.27566) | > loader_time: 0.04430 (0.03925)  --> STEP: 3413/15287 -- GLOBAL_STEP: 999275 | > loss_disc: 2.31340 (2.32160) | > loss_disc_real_0: 0.11934 (0.12323) | > loss_disc_real_1: 0.18709 (0.21106) | > loss_disc_real_2: 0.21421 (0.21530) | > loss_disc_real_3: 0.23596 (0.21942) | > loss_disc_real_4: 0.22478 (0.21472) | > loss_disc_real_5: 0.24227 (0.21349) | > loss_0: 2.31340 (2.32160) | > grad_norm_0: 13.63443 (16.04941) | > loss_gen: 2.54587 (2.55254) | > loss_kl: 2.59558 (2.66203) | > loss_feat: 9.32648 (8.67329) | > loss_mel: 17.57211 (17.76257) | > loss_duration: 1.72243 (1.70743) | > loss_1: 33.76247 (33.35778) | > grad_norm_1: 150.08113 (133.00247) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.12050 (2.27502) | > loader_time: 0.03740 (0.03928)  --> STEP: 3438/15287 -- GLOBAL_STEP: 999300 | > loss_disc: 2.25880 (2.32157) | > loss_disc_real_0: 0.10741 (0.12317) | > loss_disc_real_1: 0.19985 (0.21105) | > loss_disc_real_2: 0.20528 (0.21528) | > loss_disc_real_3: 0.22707 (0.21942) | > loss_disc_real_4: 0.22653 (0.21475) | > loss_disc_real_5: 0.24455 (0.21351) | > loss_0: 2.25880 (2.32157) | > grad_norm_0: 21.65246 (16.05370) | > loss_gen: 2.66264 (2.55252) | > loss_kl: 2.55566 (2.66202) | > loss_feat: 8.72440 (8.67389) | > loss_mel: 17.60567 (17.76312) | > loss_duration: 1.74139 (1.70745) | > loss_1: 33.28975 (33.35891) | > grad_norm_1: 178.86581 (133.03717) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02170 (2.27448) | > loader_time: 0.04530 (0.03930)  --> STEP: 3463/15287 -- GLOBAL_STEP: 999325 | > loss_disc: 2.40095 (2.32160) | > loss_disc_real_0: 0.15392 (0.12315) | > loss_disc_real_1: 0.20063 (0.21108) | > loss_disc_real_2: 0.22930 (0.21531) | > loss_disc_real_3: 0.22850 (0.21942) | > loss_disc_real_4: 0.26418 (0.21475) | > loss_disc_real_5: 0.23540 (0.21349) | > loss_0: 2.40095 (2.32160) | > grad_norm_0: 4.63926 (16.04117) | > loss_gen: 2.48465 (2.55263) | > loss_kl: 2.82492 (2.66188) | > loss_feat: 8.28215 (8.67351) | > loss_mel: 17.76334 (17.76369) | > loss_duration: 1.74226 (1.70748) | > loss_1: 33.09731 (33.35909) | > grad_norm_1: 94.15786 (133.02257) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01960 (2.27422) | > loader_time: 0.04010 (0.03933)  --> STEP: 3488/15287 -- GLOBAL_STEP: 999350 | > loss_disc: 2.34710 (2.32164) | > loss_disc_real_0: 0.12092 (0.12312) | > loss_disc_real_1: 0.20634 (0.21108) | > loss_disc_real_2: 0.20594 (0.21531) | > loss_disc_real_3: 0.24566 (0.21944) | > loss_disc_real_4: 0.21579 (0.21475) | > loss_disc_real_5: 0.24368 (0.21350) | > loss_0: 2.34710 (2.32164) | > grad_norm_0: 17.54851 (16.03983) | > loss_gen: 2.61021 (2.55251) | > loss_kl: 2.48559 (2.66186) | > loss_feat: 8.80044 (8.67307) | > loss_mel: 17.98577 (17.76359) | > loss_duration: 1.73120 (1.70744) | > loss_1: 33.61322 (33.35840) | > grad_norm_1: 202.82466 (133.09538) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05650 (2.27403) | > loader_time: 0.04090 (0.03938)  --> STEP: 3513/15287 -- GLOBAL_STEP: 999375 | > loss_disc: 2.26246 (2.32149) | > loss_disc_real_0: 0.10755 (0.12310) | > loss_disc_real_1: 0.20621 (0.21105) | > loss_disc_real_2: 0.19659 (0.21528) | > loss_disc_real_3: 0.20831 (0.21944) | > loss_disc_real_4: 0.20274 (0.21473) | > loss_disc_real_5: 0.19263 (0.21347) | > loss_0: 2.26246 (2.32149) | > grad_norm_0: 15.50176 (16.05063) | > loss_gen: 2.56345 (2.55244) | > loss_kl: 2.58801 (2.66204) | > loss_feat: 9.08125 (8.67330) | > loss_mel: 17.44925 (17.76384) | > loss_duration: 1.72218 (1.70747) | > loss_1: 33.40414 (33.35901) | > grad_norm_1: 172.68474 (133.18738) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08570 (2.27339) | > loader_time: 0.03380 (0.03938)  --> STEP: 3538/15287 -- GLOBAL_STEP: 999400 | > loss_disc: 2.32272 (2.32130) | > loss_disc_real_0: 0.11715 (0.12306) | > loss_disc_real_1: 0.20242 (0.21105) | > loss_disc_real_2: 0.23369 (0.21528) | > loss_disc_real_3: 0.19728 (0.21940) | > loss_disc_real_4: 0.21977 (0.21471) | > loss_disc_real_5: 0.22638 (0.21345) | > loss_0: 2.32272 (2.32130) | > grad_norm_0: 10.83813 (16.06548) | > loss_gen: 2.48629 (2.55252) | > loss_kl: 2.59803 (2.66182) | > loss_feat: 8.22373 (8.67340) | > loss_mel: 17.29988 (17.76236) | > loss_duration: 1.73019 (1.70752) | > loss_1: 32.33811 (33.35756) | > grad_norm_1: 91.49776 (133.18428) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01150 (2.27206) | > loader_time: 0.04130 (0.03940)  --> STEP: 3563/15287 -- GLOBAL_STEP: 999425 | > loss_disc: 2.26810 (2.32118) | > loss_disc_real_0: 0.12193 (0.12304) | > loss_disc_real_1: 0.21075 (0.21110) | > loss_disc_real_2: 0.18316 (0.21524) | > loss_disc_real_3: 0.22328 (0.21940) | > loss_disc_real_4: 0.18761 (0.21469) | > loss_disc_real_5: 0.20526 (0.21346) | > loss_0: 2.26810 (2.32118) | > grad_norm_0: 15.78344 (16.05942) | > loss_gen: 2.46159 (2.55261) | > loss_kl: 2.77487 (2.66193) | > loss_feat: 8.89500 (8.67434) | > loss_mel: 18.09818 (17.76216) | > loss_duration: 1.67980 (1.70748) | > loss_1: 33.90944 (33.35845) | > grad_norm_1: 177.24889 (133.22719) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16480 (2.27236) | > loader_time: 0.04000 (0.03941)  --> STEP: 3588/15287 -- GLOBAL_STEP: 999450 | > loss_disc: 2.35399 (2.32119) | > loss_disc_real_0: 0.12930 (0.12301) | > loss_disc_real_1: 0.22956 (0.21110) | > loss_disc_real_2: 0.21590 (0.21525) | > loss_disc_real_3: 0.24412 (0.21939) | > loss_disc_real_4: 0.25126 (0.21467) | > loss_disc_real_5: 0.20780 (0.21346) | > loss_0: 2.35399 (2.32119) | > grad_norm_0: 16.05426 (16.06442) | > loss_gen: 2.57871 (2.55267) | > loss_kl: 2.56885 (2.66215) | > loss_feat: 8.46850 (8.67463) | > loss_mel: 16.97951 (17.76176) | > loss_duration: 1.71562 (1.70746) | > loss_1: 32.31120 (33.35861) | > grad_norm_1: 142.53476 (133.27147) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10600 (2.27159) | > loader_time: 0.03570 (0.03942)  --> STEP: 3613/15287 -- GLOBAL_STEP: 999475 | > loss_disc: 2.31965 (2.32108) | > loss_disc_real_0: 0.10048 (0.12295) | > loss_disc_real_1: 0.19720 (0.21110) | > loss_disc_real_2: 0.21323 (0.21524) | > loss_disc_real_3: 0.21252 (0.21937) | > loss_disc_real_4: 0.23305 (0.21466) | > loss_disc_real_5: 0.18776 (0.21345) | > loss_0: 2.31965 (2.32108) | > grad_norm_0: 18.76850 (16.05623) | > loss_gen: 2.53806 (2.55257) | > loss_kl: 2.68647 (2.66233) | > loss_feat: 8.92060 (8.67428) | > loss_mel: 17.38381 (17.76105) | > loss_duration: 1.69455 (1.70750) | > loss_1: 33.22348 (33.35766) | > grad_norm_1: 188.35059 (133.38219) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26040 (2.27187) | > loader_time: 0.04790 (0.03946)  --> STEP: 3638/15287 -- GLOBAL_STEP: 999500 | > loss_disc: 2.35734 (2.32095) | > loss_disc_real_0: 0.12724 (0.12293) | > loss_disc_real_1: 0.22357 (0.21109) | > loss_disc_real_2: 0.20866 (0.21524) | > loss_disc_real_3: 0.20261 (0.21936) | > loss_disc_real_4: 0.22843 (0.21466) | > loss_disc_real_5: 0.19630 (0.21343) | > loss_0: 2.35734 (2.32095) | > grad_norm_0: 17.15671 (16.05220) | > loss_gen: 2.49055 (2.55266) | > loss_kl: 2.75187 (2.66247) | > loss_feat: 9.05446 (8.67537) | > loss_mel: 17.78359 (17.76141) | > loss_duration: 1.69745 (1.70748) | > loss_1: 33.77792 (33.35933) | > grad_norm_1: 168.47968 (133.46695) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16110 (2.27116) | > loader_time: 0.04050 (0.03950)  --> STEP: 3663/15287 -- GLOBAL_STEP: 999525 | > loss_disc: 2.28138 (2.32101) | > loss_disc_real_0: 0.08760 (0.12292) | > loss_disc_real_1: 0.18512 (0.21111) | > loss_disc_real_2: 0.19304 (0.21526) | > loss_disc_real_3: 0.20931 (0.21938) | > loss_disc_real_4: 0.20699 (0.21467) | > loss_disc_real_5: 0.20206 (0.21344) | > loss_0: 2.28138 (2.32101) | > grad_norm_0: 8.62418 (16.05317) | > loss_gen: 2.54812 (2.55256) | > loss_kl: 2.61327 (2.66239) | > loss_feat: 8.35302 (8.67406) | > loss_mel: 17.78180 (17.76101) | > loss_duration: 1.72395 (1.70751) | > loss_1: 33.02016 (33.35744) | > grad_norm_1: 148.71860 (133.37231) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32640 (2.27112) | > loader_time: 0.04150 (0.03953)  --> STEP: 3688/15287 -- GLOBAL_STEP: 999550 | > loss_disc: 2.31722 (2.32098) | > loss_disc_real_0: 0.14107 (0.12295) | > loss_disc_real_1: 0.18970 (0.21112) | > loss_disc_real_2: 0.23068 (0.21532) | > loss_disc_real_3: 0.21966 (0.21936) | > loss_disc_real_4: 0.22161 (0.21464) | > loss_disc_real_5: 0.21511 (0.21341) | > loss_0: 2.31722 (2.32098) | > grad_norm_0: 20.58036 (16.05944) | > loss_gen: 2.55923 (2.55273) | > loss_kl: 2.72994 (2.66243) | > loss_feat: 8.64877 (8.67431) | > loss_mel: 17.71136 (17.76139) | > loss_duration: 1.68825 (1.70748) | > loss_1: 33.33755 (33.35826) | > grad_norm_1: 149.93758 (133.47650) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27130 (2.27100) | > loader_time: 0.04400 (0.03957)  --> STEP: 3713/15287 -- GLOBAL_STEP: 999575 | > loss_disc: 2.31042 (2.32107) | > loss_disc_real_0: 0.10431 (0.12299) | > loss_disc_real_1: 0.19595 (0.21113) | > loss_disc_real_2: 0.17871 (0.21531) | > loss_disc_real_3: 0.22059 (0.21938) | > loss_disc_real_4: 0.20493 (0.21468) | > loss_disc_real_5: 0.22606 (0.21341) | > loss_0: 2.31042 (2.32107) | > grad_norm_0: 14.34243 (16.05067) | > loss_gen: 2.50329 (2.55287) | > loss_kl: 2.66839 (2.66238) | > loss_feat: 8.84223 (8.67500) | > loss_mel: 18.51274 (17.76269) | > loss_duration: 1.76982 (1.70752) | > loss_1: 34.29647 (33.36038) | > grad_norm_1: 121.31541 (133.37576) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34470 (2.27092) | > loader_time: 0.04200 (0.03960)  --> STEP: 3738/15287 -- GLOBAL_STEP: 999600 | > loss_disc: 2.37952 (2.32137) | > loss_disc_real_0: 0.16919 (0.12304) | > loss_disc_real_1: 0.21731 (0.21117) | > loss_disc_real_2: 0.21408 (0.21536) | > loss_disc_real_3: 0.20616 (0.21937) | > loss_disc_real_4: 0.24174 (0.21469) | > loss_disc_real_5: 0.24848 (0.21343) | > loss_0: 2.37952 (2.32137) | > grad_norm_0: 14.23062 (16.01913) | > loss_gen: 2.58849 (2.55285) | > loss_kl: 2.59433 (2.66234) | > loss_feat: 8.40728 (8.67433) | > loss_mel: 17.82740 (17.76270) | > loss_duration: 1.71152 (1.70752) | > loss_1: 33.12902 (33.35966) | > grad_norm_1: 142.97488 (133.04147) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30630 (2.27045) | > loader_time: 0.04170 (0.03962)  --> STEP: 3763/15287 -- GLOBAL_STEP: 999625 | > loss_disc: 2.29917 (2.32139) | > loss_disc_real_0: 0.12130 (0.12306) | > loss_disc_real_1: 0.23999 (0.21119) | > loss_disc_real_2: 0.22343 (0.21536) | > loss_disc_real_3: 0.25397 (0.21938) | > loss_disc_real_4: 0.23353 (0.21468) | > loss_disc_real_5: 0.20256 (0.21342) | > loss_0: 2.29917 (2.32139) | > grad_norm_0: 20.14822 (16.01182) | > loss_gen: 2.66987 (2.55294) | > loss_kl: 2.64785 (2.66215) | > loss_feat: 8.76430 (8.67430) | > loss_mel: 18.17829 (17.76409) | > loss_duration: 1.69614 (1.70749) | > loss_1: 33.95646 (33.36091) | > grad_norm_1: 216.27870 (133.05992) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29420 (2.27159) | > loader_time: 0.03600 (0.03961)  --> STEP: 3788/15287 -- GLOBAL_STEP: 999650 | > loss_disc: 2.31163 (2.32141) | > loss_disc_real_0: 0.08974 (0.12305) | > loss_disc_real_1: 0.21214 (0.21121) | > loss_disc_real_2: 0.17124 (0.21538) | > loss_disc_real_3: 0.21965 (0.21939) | > loss_disc_real_4: 0.19386 (0.21466) | > loss_disc_real_5: 0.22872 (0.21342) | > loss_0: 2.31163 (2.32141) | > grad_norm_0: 8.99021 (16.00345) | > loss_gen: 2.54191 (2.55291) | > loss_kl: 2.70275 (2.66195) | > loss_feat: 9.16734 (8.67479) | > loss_mel: 18.41780 (17.76435) | > loss_duration: 1.68967 (1.70742) | > loss_1: 34.51947 (33.36137) | > grad_norm_1: 106.10357 (132.99684) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55930 (2.27054) | > loader_time: 0.04660 (0.03963)  --> STEP: 3813/15287 -- GLOBAL_STEP: 999675 | > loss_disc: 2.37368 (2.32133) | > loss_disc_real_0: 0.13448 (0.12305) | > loss_disc_real_1: 0.20759 (0.21120) | > loss_disc_real_2: 0.19936 (0.21540) | > loss_disc_real_3: 0.16672 (0.21938) | > loss_disc_real_4: 0.19013 (0.21465) | > loss_disc_real_5: 0.21890 (0.21340) | > loss_0: 2.37368 (2.32133) | > grad_norm_0: 6.69922 (15.98467) | > loss_gen: 2.74782 (2.55325) | > loss_kl: 2.71961 (2.66180) | > loss_feat: 9.15630 (8.67528) | > loss_mel: 17.88000 (17.76460) | > loss_duration: 1.68271 (1.70741) | > loss_1: 34.18644 (33.36228) | > grad_norm_1: 150.34024 (133.02834) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09120 (2.27022) | > loader_time: 0.04150 (0.03964)  --> STEP: 3838/15287 -- GLOBAL_STEP: 999700 | > loss_disc: 2.28601 (2.32132) | > loss_disc_real_0: 0.12309 (0.12303) | > loss_disc_real_1: 0.18957 (0.21121) | > loss_disc_real_2: 0.19502 (0.21538) | > loss_disc_real_3: 0.22903 (0.21948) | > loss_disc_real_4: 0.19275 (0.21471) | > loss_disc_real_5: 0.19951 (0.21343) | > loss_0: 2.28601 (2.32132) | > grad_norm_0: 14.38603 (15.98703) | > loss_gen: 2.60715 (2.55341) | > loss_kl: 2.58057 (2.66174) | > loss_feat: 9.13772 (8.67500) | > loss_mel: 17.40564 (17.76441) | > loss_duration: 1.70774 (1.70742) | > loss_1: 33.43882 (33.36193) | > grad_norm_1: 130.57576 (132.92709) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 4.10520 (2.27218) | > loader_time: 0.04150 (0.03966)  --> STEP: 3863/15287 -- GLOBAL_STEP: 999725 | > loss_disc: 2.34276 (2.32115) | > loss_disc_real_0: 0.12966 (0.12301) | > loss_disc_real_1: 0.18020 (0.21117) | > loss_disc_real_2: 0.17843 (0.21534) | > loss_disc_real_3: 0.21179 (0.21945) | > loss_disc_real_4: 0.21257 (0.21470) | > loss_disc_real_5: 0.21384 (0.21342) | > loss_0: 2.34276 (2.32115) | > grad_norm_0: 10.80074 (15.98373) | > loss_gen: 2.61547 (2.55345) | > loss_kl: 2.63563 (2.66155) | > loss_feat: 8.14295 (8.67507) | > loss_mel: 17.13816 (17.76446) | > loss_duration: 1.69261 (1.70740) | > loss_1: 32.22482 (33.36187) | > grad_norm_1: 193.50206 (133.09430) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96990 (2.27547) | > loader_time: 0.03850 (0.03966)  --> STEP: 3888/15287 -- GLOBAL_STEP: 999750 | > loss_disc: 2.26480 (2.32117) | > loss_disc_real_0: 0.11394 (0.12298) | > loss_disc_real_1: 0.21217 (0.21119) | > loss_disc_real_2: 0.20435 (0.21534) | > loss_disc_real_3: 0.20926 (0.21946) | > loss_disc_real_4: 0.18585 (0.21467) | > loss_disc_real_5: 0.22583 (0.21344) | > loss_0: 2.26480 (2.32117) | > grad_norm_0: 33.52221 (16.00603) | > loss_gen: 2.39026 (2.55327) | > loss_kl: 2.82064 (2.66174) | > loss_feat: 8.46009 (8.67512) | > loss_mel: 17.13811 (17.76420) | > loss_duration: 1.70632 (1.70736) | > loss_1: 32.51542 (33.36163) | > grad_norm_1: 235.79764 (133.24393) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99540 (2.27768) | > loader_time: 0.04610 (0.03966)  --> STEP: 3913/15287 -- GLOBAL_STEP: 999775 | > loss_disc: 2.33731 (2.32075) | > loss_disc_real_0: 0.14677 (0.12289) | > loss_disc_real_1: 0.22815 (0.21114) | > loss_disc_real_2: 0.21291 (0.21531) | > loss_disc_real_3: 0.19721 (0.21941) | > loss_disc_real_4: 0.23065 (0.21466) | > loss_disc_real_5: 0.20951 (0.21342) | > loss_0: 2.33731 (2.32075) | > grad_norm_0: 13.25466 (16.01766) | > loss_gen: 2.55352 (2.55348) | > loss_kl: 2.69633 (2.66179) | > loss_feat: 8.24822 (8.67639) | > loss_mel: 17.14653 (17.76389) | > loss_duration: 1.71622 (1.70742) | > loss_1: 32.36082 (33.36289) | > grad_norm_1: 187.44148 (133.43550) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35720 (2.27932) | > loader_time: 0.03310 (0.03968)  --> STEP: 3938/15287 -- GLOBAL_STEP: 999800 | > loss_disc: 2.35238 (2.32063) | > loss_disc_real_0: 0.13804 (0.12285) | > loss_disc_real_1: 0.22494 (0.21115) | > loss_disc_real_2: 0.21114 (0.21530) | > loss_disc_real_3: 0.23038 (0.21940) | > loss_disc_real_4: 0.22406 (0.21463) | > loss_disc_real_5: 0.23563 (0.21342) | > loss_0: 2.35238 (2.32063) | > grad_norm_0: 13.36505 (16.02095) | > loss_gen: 2.47807 (2.55343) | > loss_kl: 2.62307 (2.66184) | > loss_feat: 8.07919 (8.67677) | > loss_mel: 17.49291 (17.76370) | > loss_duration: 1.72298 (1.70739) | > loss_1: 32.39622 (33.36305) | > grad_norm_1: 160.38518 (133.49229) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19060 (2.28141) | > loader_time: 0.03690 (0.03970)  --> STEP: 3963/15287 -- GLOBAL_STEP: 999825 | > loss_disc: 2.34543 (2.32076) | > loss_disc_real_0: 0.09854 (0.12286) | > loss_disc_real_1: 0.20428 (0.21113) | > loss_disc_real_2: 0.20811 (0.21531) | > loss_disc_real_3: 0.22362 (0.21944) | > loss_disc_real_4: 0.21676 (0.21465) | > loss_disc_real_5: 0.19550 (0.21346) | > loss_0: 2.34543 (2.32076) | > grad_norm_0: 7.91282 (16.00976) | > loss_gen: 2.68182 (2.55358) | > loss_kl: 2.99011 (2.66210) | > loss_feat: 9.03130 (8.67676) | > loss_mel: 18.45484 (17.76411) | > loss_duration: 1.74922 (1.70737) | > loss_1: 34.90729 (33.36385) | > grad_norm_1: 153.29510 (133.47026) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.75410 (2.28359) | > loader_time: 0.04780 (0.03970)  --> STEP: 3988/15287 -- GLOBAL_STEP: 999850 | > loss_disc: 2.34095 (2.32084) | > loss_disc_real_0: 0.12417 (0.12291) | > loss_disc_real_1: 0.20306 (0.21114) | > loss_disc_real_2: 0.22513 (0.21533) | > loss_disc_real_3: 0.23908 (0.21943) | > loss_disc_real_4: 0.22152 (0.21464) | > loss_disc_real_5: 0.22521 (0.21343) | > loss_0: 2.34095 (2.32084) | > grad_norm_0: 5.66724 (16.00100) | > loss_gen: 2.58001 (2.55342) | > loss_kl: 2.71515 (2.66228) | > loss_feat: 8.56141 (8.67643) | > loss_mel: 17.50268 (17.76332) | > loss_duration: 1.73923 (1.70737) | > loss_1: 33.09846 (33.36272) | > grad_norm_1: 99.09168 (133.38676) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.74490 (2.28527) | > loader_time: 0.03660 (0.03971)  --> STEP: 4013/15287 -- GLOBAL_STEP: 999875 | > loss_disc: 2.26593 (2.32098) | > loss_disc_real_0: 0.12533 (0.12291) | > loss_disc_real_1: 0.17836 (0.21116) | > loss_disc_real_2: 0.19724 (0.21532) | > loss_disc_real_3: 0.21320 (0.21942) | > loss_disc_real_4: 0.20255 (0.21467) | > loss_disc_real_5: 0.20375 (0.21345) | > loss_0: 2.26593 (2.32098) | > grad_norm_0: 9.89400 (15.99520) | > loss_gen: 2.56659 (2.55333) | > loss_kl: 2.56095 (2.66227) | > loss_feat: 9.08078 (8.67621) | > loss_mel: 17.87048 (17.76306) | > loss_duration: 1.69416 (1.70735) | > loss_1: 33.77296 (33.36213) | > grad_norm_1: 117.24542 (133.36090) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04780 (2.28740) | > loader_time: 0.03640 (0.03971)  --> STEP: 4038/15287 -- GLOBAL_STEP: 999900 | > loss_disc: 2.26491 (2.32095) | > loss_disc_real_0: 0.10614 (0.12291) | > loss_disc_real_1: 0.21155 (0.21115) | > loss_disc_real_2: 0.23949 (0.21532) | > loss_disc_real_3: 0.20403 (0.21941) | > loss_disc_real_4: 0.22112 (0.21468) | > loss_disc_real_5: 0.23327 (0.21345) | > loss_0: 2.26491 (2.32095) | > grad_norm_0: 18.46406 (15.98438) | > loss_gen: 2.56329 (2.55332) | > loss_kl: 2.53794 (2.66224) | > loss_feat: 8.83945 (8.67634) | > loss_mel: 17.60050 (17.76325) | > loss_duration: 1.73361 (1.70741) | > loss_1: 33.27480 (33.36248) | > grad_norm_1: 187.36906 (133.30341) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32000 (2.28823) | > loader_time: 0.03550 (0.03972)  --> STEP: 4063/15287 -- GLOBAL_STEP: 999925 | > loss_disc: 2.34117 (2.32095) | > loss_disc_real_0: 0.16222 (0.12291) | > loss_disc_real_1: 0.19568 (0.21116) | > loss_disc_real_2: 0.20168 (0.21534) | > loss_disc_real_3: 0.21937 (0.21943) | > loss_disc_real_4: 0.21264 (0.21467) | > loss_disc_real_5: 0.22184 (0.21348) | > loss_0: 2.34117 (2.32095) | > grad_norm_0: 18.56841 (15.97191) | > loss_gen: 2.47519 (2.55349) | > loss_kl: 2.61672 (2.66229) | > loss_feat: 8.27454 (8.67647) | > loss_mel: 17.64700 (17.76334) | > loss_duration: 1.70739 (1.70744) | > loss_1: 32.72083 (33.36296) | > grad_norm_1: 156.27379 (133.34648) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87090 (2.29123) | > loader_time: 0.04580 (0.03974)  --> STEP: 4088/15287 -- GLOBAL_STEP: 999950 | > loss_disc: 2.26454 (2.32078) | > loss_disc_real_0: 0.12735 (0.12288) | > loss_disc_real_1: 0.19693 (0.21115) | > loss_disc_real_2: 0.22065 (0.21532) | > loss_disc_real_3: 0.22325 (0.21942) | > loss_disc_real_4: 0.20741 (0.21465) | > loss_disc_real_5: 0.21401 (0.21347) | > loss_0: 2.26454 (2.32078) | > grad_norm_0: 23.43153 (16.00505) | > loss_gen: 2.51803 (2.55344) | > loss_kl: 2.66124 (2.66235) | > loss_feat: 9.11851 (8.67723) | > loss_mel: 18.06484 (17.76292) | > loss_duration: 1.73422 (1.70752) | > loss_1: 34.09684 (33.36338) | > grad_norm_1: 199.80159 (133.57362) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.81410 (2.29243) | > loader_time: 0.03930 (0.03976)  --> STEP: 4113/15287 -- GLOBAL_STEP: 999975 | > loss_disc: 2.34530 (2.32068) | > loss_disc_real_0: 0.12838 (0.12287) | > loss_disc_real_1: 0.23598 (0.21115) | > loss_disc_real_2: 0.23625 (0.21529) | > loss_disc_real_3: 0.23260 (0.21941) | > loss_disc_real_4: 0.22062 (0.21464) | > loss_disc_real_5: 0.20916 (0.21348) | > loss_0: 2.34530 (2.32068) | > grad_norm_0: 15.19037 (16.03722) | > loss_gen: 2.38078 (2.55334) | > loss_kl: 2.64834 (2.66247) | > loss_feat: 8.58368 (8.67724) | > loss_mel: 17.09739 (17.76171) | > loss_duration: 1.67690 (1.70748) | > loss_1: 32.38708 (33.36217) | > grad_norm_1: 177.54819 (133.79001) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15200 (2.29241) | > loader_time: 0.04670 (0.03979)  --> STEP: 4138/15287 -- GLOBAL_STEP: 1000000 | > loss_disc: 2.38590 (2.32061) | > loss_disc_real_0: 0.22737 (0.12292) | > loss_disc_real_1: 0.18618 (0.21111) | > loss_disc_real_2: 0.20420 (0.21529) | > loss_disc_real_3: 0.22860 (0.21938) | > loss_disc_real_4: 0.20329 (0.21460) | > loss_disc_real_5: 0.17404 (0.21347) | > loss_0: 2.38590 (2.32061) | > grad_norm_0: 33.63216 (16.04292) | > loss_gen: 2.48164 (2.55350) | > loss_kl: 2.65324 (2.66258) | > loss_feat: 8.26717 (8.67788) | > loss_mel: 17.47980 (17.76170) | > loss_duration: 1.67063 (1.70748) | > loss_1: 32.55249 (33.36306) | > grad_norm_1: 116.77554 (133.91502) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17900 (2.29188) | > loader_time: 0.03410 (0.03979) > CHECKPOINT : ./checkpoints/yourtts_multilingual/yourtts-du_en_fr_ge_it_pl_ptbr_sp-November-08-2022_12+19PM-0cbaa0f6/checkpoint_1000000.pth  --> STEP: 4163/15287 -- GLOBAL_STEP: 1000025 | > loss_disc: 2.27147 (2.32065) | > loss_disc_real_0: 0.17504 (0.12292) | > loss_disc_real_1: 0.19929 (0.21110) | > loss_disc_real_2: 0.21578 (0.21527) | > loss_disc_real_3: 0.25177 (0.21941) | > loss_disc_real_4: 0.23864 (0.21461) | > loss_disc_real_5: 0.18417 (0.21349) | > loss_0: 2.27147 (2.32065) | > grad_norm_0: 28.81147 (16.04237) | > loss_gen: 2.70241 (2.55354) | > loss_kl: 2.52892 (2.66286) | > loss_feat: 8.67174 (8.67812) | > loss_mel: 17.41634 (17.76192) | > loss_duration: 1.71723 (1.70746) | > loss_1: 33.03662 (33.36382) | > grad_norm_1: 145.21878 (133.92596) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28230 (2.29204) | > loader_time: 0.04250 (0.03982)  --> STEP: 4188/15287 -- GLOBAL_STEP: 1000050 | > loss_disc: 2.34823 (2.32082) | > loss_disc_real_0: 0.11306 (0.12301) | > loss_disc_real_1: 0.20434 (0.21111) | > loss_disc_real_2: 0.18778 (0.21528) | > loss_disc_real_3: 0.24732 (0.21943) | > loss_disc_real_4: 0.23372 (0.21463) | > loss_disc_real_5: 0.20990 (0.21349) | > loss_0: 2.34823 (2.32082) | > grad_norm_0: 8.63445 (16.03285) | > loss_gen: 2.45232 (2.55346) | > loss_kl: 2.73995 (2.66302) | > loss_feat: 8.62296 (8.67760) | > loss_mel: 17.76871 (17.76204) | > loss_duration: 1.73145 (1.70742) | > loss_1: 33.31540 (33.36345) | > grad_norm_1: 92.86508 (133.62299) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22380 (2.29177) | > loader_time: 0.03370 (0.03981)  --> STEP: 4213/15287 -- GLOBAL_STEP: 1000075 | > loss_disc: 2.32474 (2.32088) | > loss_disc_real_0: 0.11325 (0.12299) | > loss_disc_real_1: 0.22574 (0.21112) | > loss_disc_real_2: 0.22035 (0.21529) | > loss_disc_real_3: 0.21336 (0.21944) | > loss_disc_real_4: 0.19814 (0.21463) | > loss_disc_real_5: 0.22431 (0.21350) | > loss_0: 2.32474 (2.32088) | > grad_norm_0: 8.24911 (16.00416) | > loss_gen: 2.63104 (2.55364) | > loss_kl: 2.62983 (2.66319) | > loss_feat: 8.53209 (8.67712) | > loss_mel: 17.49893 (17.76259) | > loss_duration: 1.67970 (1.70746) | > loss_1: 32.97158 (33.36390) | > grad_norm_1: 169.95016 (133.50755) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33670 (2.29266) | > loader_time: 0.05200 (0.03985)  --> STEP: 4238/15287 -- GLOBAL_STEP: 1000100 | > loss_disc: 2.32117 (2.32094) | > loss_disc_real_0: 0.10189 (0.12296) | > loss_disc_real_1: 0.23180 (0.21114) | > loss_disc_real_2: 0.22702 (0.21532) | > loss_disc_real_3: 0.20828 (0.21947) | > loss_disc_real_4: 0.17391 (0.21462) | > loss_disc_real_5: 0.21687 (0.21348) | > loss_0: 2.32117 (2.32094) | > grad_norm_0: 16.14627 (15.99750) | > loss_gen: 2.44299 (2.55371) | > loss_kl: 2.63737 (2.66296) | > loss_feat: 8.34285 (8.67716) | > loss_mel: 17.93807 (17.76330) | > loss_duration: 1.70929 (1.70746) | > loss_1: 33.07056 (33.36448) | > grad_norm_1: 102.50340 (133.52472) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32490 (2.29247) | > loader_time: 0.05670 (0.03988)  --> STEP: 4263/15287 -- GLOBAL_STEP: 1000125 | > loss_disc: 2.31166 (2.32078) | > loss_disc_real_0: 0.11174 (0.12288) | > loss_disc_real_1: 0.20278 (0.21111) | > loss_disc_real_2: 0.20601 (0.21532) | > loss_disc_real_3: 0.20862 (0.21943) | > loss_disc_real_4: 0.21860 (0.21463) | > loss_disc_real_5: 0.20830 (0.21348) | > loss_0: 2.31166 (2.32078) | > grad_norm_0: 9.88889 (16.00130) | > loss_gen: 2.62270 (2.55389) | > loss_kl: 2.66772 (2.66274) | > loss_feat: 8.75996 (8.67714) | > loss_mel: 17.87182 (17.76281) | > loss_duration: 1.69838 (1.70742) | > loss_1: 33.62058 (33.36390) | > grad_norm_1: 191.45518 (133.52084) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28710 (2.29304) | > loader_time: 0.03990 (0.03988)  --> STEP: 4288/15287 -- GLOBAL_STEP: 1000150 | > loss_disc: 2.21319 (2.32076) | > loss_disc_real_0: 0.10266 (0.12283) | > loss_disc_real_1: 0.20284 (0.21112) | > loss_disc_real_2: 0.22750 (0.21533) | > loss_disc_real_3: 0.21737 (0.21945) | > loss_disc_real_4: 0.21586 (0.21469) | > loss_disc_real_5: 0.22723 (0.21352) | > loss_0: 2.21319 (2.32076) | > grad_norm_0: 8.81518 (16.03588) | > loss_gen: 2.69669 (2.55401) | > loss_kl: 2.69853 (2.66249) | > loss_feat: 8.93250 (8.67737) | > loss_mel: 17.59458 (17.76303) | > loss_duration: 1.69303 (1.70746) | > loss_1: 33.61531 (33.36427) | > grad_norm_1: 90.40421 (133.73123) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30950 (2.29396) | > loader_time: 0.05170 (0.03991)  --> STEP: 4313/15287 -- GLOBAL_STEP: 1000175 | > loss_disc: 2.24649 (2.32070) | > loss_disc_real_0: 0.12116 (0.12278) | > loss_disc_real_1: 0.22276 (0.21116) | > loss_disc_real_2: 0.23907 (0.21531) | > loss_disc_real_3: 0.20621 (0.21943) | > loss_disc_real_4: 0.21377 (0.21468) | > loss_disc_real_5: 0.21327 (0.21355) | > loss_0: 2.24649 (2.32070) | > grad_norm_0: 13.13874 (16.04396) | > loss_gen: 2.60832 (2.55404) | > loss_kl: 2.57155 (2.66237) | > loss_feat: 8.73647 (8.67711) | > loss_mel: 17.41481 (17.76268) | > loss_duration: 1.76546 (1.70742) | > loss_1: 33.09662 (33.36354) | > grad_norm_1: 151.84566 (133.91968) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38280 (2.29502) | > loader_time: 0.04650 (0.03991)  --> STEP: 4338/15287 -- GLOBAL_STEP: 1000200 | > loss_disc: 2.29596 (2.32057) | > loss_disc_real_0: 0.07916 (0.12273) | > loss_disc_real_1: 0.19237 (0.21113) | > loss_disc_real_2: 0.21543 (0.21532) | > loss_disc_real_3: 0.22352 (0.21943) | > loss_disc_real_4: 0.23338 (0.21468) | > loss_disc_real_5: 0.22390 (0.21353) | > loss_0: 2.29596 (2.32057) | > grad_norm_0: 5.65574 (16.04006) | > loss_gen: 2.83561 (2.55417) | > loss_kl: 2.62800 (2.66240) | > loss_feat: 9.02450 (8.67819) | > loss_mel: 18.02775 (17.76283) | > loss_duration: 1.72566 (1.70745) | > loss_1: 34.24152 (33.36496) | > grad_norm_1: 110.90354 (134.05258) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.11020 (2.29559) | > loader_time: 0.04700 (0.03990)  --> STEP: 4363/15287 -- GLOBAL_STEP: 1000225 | > loss_disc: 2.36279 (2.32064) | > loss_disc_real_0: 0.07292 (0.12282) | > loss_disc_real_1: 0.20857 (0.21112) | > loss_disc_real_2: 0.19404 (0.21531) | > loss_disc_real_3: 0.23831 (0.21945) | > loss_disc_real_4: 0.24790 (0.21469) | > loss_disc_real_5: 0.21642 (0.21353) | > loss_0: 2.36279 (2.32064) | > grad_norm_0: 12.76743 (16.05624) | > loss_gen: 2.48084 (2.55416) | > loss_kl: 2.54005 (2.66228) | > loss_feat: 8.82659 (8.67825) | > loss_mel: 17.82615 (17.76240) | > loss_duration: 1.71442 (1.70742) | > loss_1: 33.38804 (33.36444) | > grad_norm_1: 77.40411 (134.06906) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07070 (2.29557) | > loader_time: 0.03210 (0.03990)  --> STEP: 4388/15287 -- GLOBAL_STEP: 1000250 | > loss_disc: 2.22468 (2.32064) | > loss_disc_real_0: 0.10036 (0.12279) | > loss_disc_real_1: 0.20486 (0.21111) | > loss_disc_real_2: 0.20021 (0.21530) | > loss_disc_real_3: 0.19642 (0.21944) | > loss_disc_real_4: 0.19726 (0.21469) | > loss_disc_real_5: 0.19306 (0.21351) | > loss_0: 2.22468 (2.32064) | > grad_norm_0: 11.73348 (16.04102) | > loss_gen: 2.72108 (2.55411) | > loss_kl: 2.76130 (2.66248) | > loss_feat: 9.45860 (8.67815) | > loss_mel: 18.75210 (17.76306) | > loss_duration: 1.72973 (1.70742) | > loss_1: 35.42282 (33.36514) | > grad_norm_1: 124.83992 (134.02257) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37670 (2.29571) | > loader_time: 0.03420 (0.03989)  --> STEP: 4413/15287 -- GLOBAL_STEP: 1000275 | > loss_disc: 2.30697 (2.32063) | > loss_disc_real_0: 0.09855 (0.12277) | > loss_disc_real_1: 0.19822 (0.21111) | > loss_disc_real_2: 0.20466 (0.21532) | > loss_disc_real_3: 0.28581 (0.21945) | > loss_disc_real_4: 0.24968 (0.21469) | > loss_disc_real_5: 0.19370 (0.21352) | > loss_0: 2.30697 (2.32063) | > grad_norm_0: 13.10156 (16.02054) | > loss_gen: 2.64734 (2.55420) | > loss_kl: 2.47692 (2.66227) | > loss_feat: 8.07925 (8.67861) | > loss_mel: 17.42375 (17.76410) | > loss_duration: 1.69976 (1.70743) | > loss_1: 32.32701 (33.36655) | > grad_norm_1: 129.03374 (133.94853) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.60800 (2.29575) | > loader_time: 0.03400 (0.03989)  --> STEP: 4438/15287 -- GLOBAL_STEP: 1000300 | > loss_disc: 2.38169 (2.32080) | > loss_disc_real_0: 0.16154 (0.12280) | > loss_disc_real_1: 0.20712 (0.21112) | > loss_disc_real_2: 0.22998 (0.21536) | > loss_disc_real_3: 0.22454 (0.21944) | > loss_disc_real_4: 0.23603 (0.21471) | > loss_disc_real_5: 0.22002 (0.21353) | > loss_0: 2.38169 (2.32080) | > grad_norm_0: 14.75431 (16.00876) | > loss_gen: 2.53309 (2.55416) | > loss_kl: 2.68590 (2.66231) | > loss_feat: 8.53631 (8.67809) | > loss_mel: 18.01970 (17.76417) | > loss_duration: 1.72147 (1.70741) | > loss_1: 33.49646 (33.36609) | > grad_norm_1: 118.25069 (133.83562) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32920 (2.29683) | > loader_time: 0.04140 (0.03989)  --> STEP: 4463/15287 -- GLOBAL_STEP: 1000325 | > loss_disc: 2.37626 (2.32087) | > loss_disc_real_0: 0.11360 (0.12282) | > loss_disc_real_1: 0.24367 (0.21114) | > loss_disc_real_2: 0.20921 (0.21537) | > loss_disc_real_3: 0.23956 (0.21946) | > loss_disc_real_4: 0.19667 (0.21471) | > loss_disc_real_5: 0.20135 (0.21355) | > loss_0: 2.37626 (2.32087) | > grad_norm_0: 31.35523 (16.01819) | > loss_gen: 2.36582 (2.55419) | > loss_kl: 2.78735 (2.66239) | > loss_feat: 8.31595 (8.67797) | > loss_mel: 17.33829 (17.76474) | > loss_duration: 1.71780 (1.70743) | > loss_1: 32.52522 (33.36669) | > grad_norm_1: 152.88182 (133.87990) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09390 (2.29750) | > loader_time: 0.04670 (0.03988)  --> STEP: 4488/15287 -- GLOBAL_STEP: 1000350 | > loss_disc: 2.43984 (2.32088) | > loss_disc_real_0: 0.14332 (0.12283) | > loss_disc_real_1: 0.25093 (0.21122) | > loss_disc_real_2: 0.22227 (0.21542) | > loss_disc_real_3: 0.22101 (0.21948) | > loss_disc_real_4: 0.23404 (0.21474) | > loss_disc_real_5: 0.23171 (0.21354) | > loss_0: 2.43984 (2.32088) | > grad_norm_0: 7.23386 (16.02295) | > loss_gen: 2.31396 (2.55455) | > loss_kl: 2.45625 (2.66258) | > loss_feat: 8.80173 (8.67889) | > loss_mel: 17.14088 (17.76475) | > loss_duration: 1.72252 (1.70747) | > loss_1: 32.43534 (33.36820) | > grad_norm_1: 115.13101 (133.94090) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18780 (2.29883) | > loader_time: 0.04100 (0.03989)  --> STEP: 4513/15287 -- GLOBAL_STEP: 1000375 | > loss_disc: 2.28961 (2.32088) | > loss_disc_real_0: 0.16934 (0.12282) | > loss_disc_real_1: 0.21216 (0.21122) | > loss_disc_real_2: 0.21842 (0.21542) | > loss_disc_real_3: 0.24177 (0.21948) | > loss_disc_real_4: 0.21886 (0.21474) | > loss_disc_real_5: 0.18585 (0.21354) | > loss_0: 2.28961 (2.32088) | > grad_norm_0: 33.43981 (16.02722) | > loss_gen: 2.62549 (2.55450) | > loss_kl: 2.65867 (2.66272) | > loss_feat: 8.79105 (8.67872) | > loss_mel: 18.04909 (17.76512) | > loss_duration: 1.72257 (1.70751) | > loss_1: 33.84687 (33.36853) | > grad_norm_1: 181.52191 (133.99539) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27290 (2.29926) | > loader_time: 0.04070 (0.03989)  --> STEP: 4538/15287 -- GLOBAL_STEP: 1000400 | > loss_disc: 2.32924 (2.32083) | > loss_disc_real_0: 0.08388 (0.12281) | > loss_disc_real_1: 0.23631 (0.21128) | > loss_disc_real_2: 0.24703 (0.21545) | > loss_disc_real_3: 0.20579 (0.21947) | > loss_disc_real_4: 0.21097 (0.21473) | > loss_disc_real_5: 0.21175 (0.21355) | > loss_0: 2.32924 (2.32083) | > grad_norm_0: 11.00399 (16.01203) | > loss_gen: 2.57975 (2.55466) | > loss_kl: 2.76990 (2.66279) | > loss_feat: 7.94853 (8.67858) | > loss_mel: 17.10426 (17.76474) | > loss_duration: 1.69728 (1.70751) | > loss_1: 32.09972 (33.36822) | > grad_norm_1: 49.51628 (133.91615) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.90280 (2.30177) | > loader_time: 0.04760 (0.03988)  --> STEP: 4563/15287 -- GLOBAL_STEP: 1000425 | > loss_disc: 2.36910 (2.32087) | > loss_disc_real_0: 0.10388 (0.12283) | > loss_disc_real_1: 0.20685 (0.21129) | > loss_disc_real_2: 0.20024 (0.21546) | > loss_disc_real_3: 0.21260 (0.21947) | > loss_disc_real_4: 0.22834 (0.21472) | > loss_disc_real_5: 0.21296 (0.21356) | > loss_0: 2.36910 (2.32087) | > grad_norm_0: 20.71818 (15.99237) | > loss_gen: 2.32660 (2.55469) | > loss_kl: 2.58684 (2.66302) | > loss_feat: 8.58294 (8.67895) | > loss_mel: 17.97367 (17.76478) | > loss_duration: 1.70827 (1.70748) | > loss_1: 33.17832 (33.36887) | > grad_norm_1: 108.79901 (133.81975) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35320 (2.30281) | > loader_time: 0.03640 (0.03989)  --> STEP: 4588/15287 -- GLOBAL_STEP: 1000450 | > loss_disc: 2.35991 (2.32103) | > loss_disc_real_0: 0.12319 (0.12286) | > loss_disc_real_1: 0.21068 (0.21132) | > loss_disc_real_2: 0.23496 (0.21548) | > loss_disc_real_3: 0.20352 (0.21947) | > loss_disc_real_4: 0.18955 (0.21473) | > loss_disc_real_5: 0.20776 (0.21359) | > loss_0: 2.35991 (2.32103) | > grad_norm_0: 6.02669 (15.97011) | > loss_gen: 2.62120 (2.55463) | > loss_kl: 2.59516 (2.66307) | > loss_feat: 8.75371 (8.67888) | > loss_mel: 18.13698 (17.76497) | > loss_duration: 1.70655 (1.70744) | > loss_1: 33.81361 (33.36893) | > grad_norm_1: 148.06120 (133.62679) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43940 (2.30349) | > loader_time: 0.04130 (0.03988)  --> STEP: 4613/15287 -- GLOBAL_STEP: 1000475 | > loss_disc: 2.32408 (2.32113) | > loss_disc_real_0: 0.10804 (0.12289) | > loss_disc_real_1: 0.20469 (0.21133) | > loss_disc_real_2: 0.20356 (0.21548) | > loss_disc_real_3: 0.22329 (0.21948) | > loss_disc_real_4: 0.18911 (0.21475) | > loss_disc_real_5: 0.19584 (0.21357) | > loss_0: 2.32408 (2.32113) | > grad_norm_0: 11.19711 (15.96590) | > loss_gen: 2.55052 (2.55449) | > loss_kl: 2.68865 (2.66320) | > loss_feat: 8.57024 (8.67843) | > loss_mel: 17.74889 (17.76571) | > loss_duration: 1.75357 (1.70752) | > loss_1: 33.31188 (33.36930) | > grad_norm_1: 112.63853 (133.59776) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 4.72250 (2.30363) | > loader_time: 0.04850 (0.03988)  --> STEP: 4638/15287 -- GLOBAL_STEP: 1000500 | > loss_disc: 2.34947 (2.32116) | > loss_disc_real_0: 0.11410 (0.12287) | > loss_disc_real_1: 0.18284 (0.21132) | > loss_disc_real_2: 0.19787 (0.21547) | > loss_disc_real_3: 0.20941 (0.21950) | > loss_disc_real_4: 0.22140 (0.21478) | > loss_disc_real_5: 0.21715 (0.21358) | > loss_0: 2.34947 (2.32116) | > grad_norm_0: 24.49379 (15.96094) | > loss_gen: 2.45944 (2.55435) | > loss_kl: 2.76169 (2.66327) | > loss_feat: 8.50979 (8.67813) | > loss_mel: 17.83458 (17.76560) | > loss_duration: 1.68473 (1.70755) | > loss_1: 33.25023 (33.36886) | > grad_norm_1: 114.17579 (133.61563) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06480 (2.30489) | > loader_time: 0.03680 (0.03988)  --> STEP: 4663/15287 -- GLOBAL_STEP: 1000525 | > loss_disc: 2.34658 (2.32115) | > loss_disc_real_0: 0.12864 (0.12286) | > loss_disc_real_1: 0.20649 (0.21131) | > loss_disc_real_2: 0.23026 (0.21547) | > loss_disc_real_3: 0.23881 (0.21950) | > loss_disc_real_4: 0.23136 (0.21479) | > loss_disc_real_5: 0.20295 (0.21360) | > loss_0: 2.34658 (2.32115) | > grad_norm_0: 10.51593 (15.97234) | > loss_gen: 2.54449 (2.55441) | > loss_kl: 2.73546 (2.66309) | > loss_feat: 8.77291 (8.67785) | > loss_mel: 18.59439 (17.76552) | > loss_duration: 1.69570 (1.70752) | > loss_1: 34.34296 (33.36835) | > grad_norm_1: 164.22003 (133.59846) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21790 (2.30516) | > loader_time: 0.03580 (0.03988)  --> STEP: 4688/15287 -- GLOBAL_STEP: 1000550 | > loss_disc: 2.35930 (2.32106) | > loss_disc_real_0: 0.10057 (0.12282) | > loss_disc_real_1: 0.17307 (0.21126) | > loss_disc_real_2: 0.18513 (0.21545) | > loss_disc_real_3: 0.25442 (0.21951) | > loss_disc_real_4: 0.23186 (0.21478) | > loss_disc_real_5: 0.25778 (0.21361) | > loss_0: 2.35930 (2.32106) | > grad_norm_0: 17.96470 (15.95445) | > loss_gen: 2.49390 (2.55432) | > loss_kl: 2.55134 (2.66302) | > loss_feat: 8.30804 (8.67822) | > loss_mel: 18.33728 (17.76592) | > loss_duration: 1.73756 (1.70753) | > loss_1: 33.42812 (33.36897) | > grad_norm_1: 216.40335 (133.60442) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15160 (2.30569) | > loader_time: 0.04220 (0.03988)  --> STEP: 4713/15287 -- GLOBAL_STEP: 1000575 | > loss_disc: 2.48079 (2.31994) | > loss_disc_real_0: 0.14897 (0.12268) | > loss_disc_real_1: 0.21098 (0.21122) | > loss_disc_real_2: 0.24884 (0.21541) | > loss_disc_real_3: 0.28283 (0.21942) | > loss_disc_real_4: 0.29293 (0.21468) | > loss_disc_real_5: 0.25866 (0.21344) | > loss_0: 2.48079 (2.31994) | > grad_norm_0: 34.44535 (15.98970) | > loss_gen: 3.33907 (2.55684) | > loss_kl: 2.67342 (2.66316) | > loss_feat: 8.98301 (8.68403) | > loss_mel: 18.23515 (17.76692) | > loss_duration: 1.69676 (1.70758) | > loss_1: 34.92741 (33.37851) | > grad_norm_1: 544.94727 (134.38701) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25640 (2.30567) | > loader_time: 0.04060 (0.03988)  --> STEP: 4738/15287 -- GLOBAL_STEP: 1000600 | > loss_disc: 3.35508 (2.32155) | > loss_disc_real_0: 0.50582 (0.12284) | > loss_disc_real_1: 0.23415 (0.21132) | > loss_disc_real_2: 0.22447 (0.21550) | > loss_disc_real_3: 0.27341 (0.21957) | > loss_disc_real_4: 0.26190 (0.21485) | > loss_disc_real_5: 0.47221 (0.21361) | > loss_0: 3.35508 (2.32155) | > grad_norm_0: 108.10643 (16.13384) | > loss_gen: 2.36527 (2.55735) | > loss_kl: 2.54098 (2.66301) | > loss_feat: 7.63514 (8.68419) | > loss_mel: 17.90411 (17.76830) | > loss_duration: 1.69431 (1.70759) | > loss_1: 32.13982 (33.38042) | > grad_norm_1: 134.09198 (135.01001) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.97470 (2.30579) | > loader_time: 0.06340 (0.03989)  --> STEP: 4763/15287 -- GLOBAL_STEP: 1000625 | > loss_disc: 2.33114 (2.32221) | > loss_disc_real_0: 0.12803 (0.12293) | > loss_disc_real_1: 0.21537 (0.21135) | > loss_disc_real_2: 0.20962 (0.21554) | > loss_disc_real_3: 0.22092 (0.21962) | > loss_disc_real_4: 0.19585 (0.21492) | > loss_disc_real_5: 0.24303 (0.21379) | > loss_0: 2.33114 (2.32221) | > grad_norm_0: 21.47046 (16.21210) | > loss_gen: 2.59064 (2.55663) | > loss_kl: 2.58152 (2.66277) | > loss_feat: 8.26981 (8.68181) | > loss_mel: 17.40067 (17.76799) | > loss_duration: 1.73470 (1.70764) | > loss_1: 32.57735 (33.37683) | > grad_norm_1: 162.58234 (135.16914) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24960 (2.30635) | > loader_time: 0.03830 (0.03988)  --> STEP: 4788/15287 -- GLOBAL_STEP: 1000650 | > loss_disc: 2.27392 (2.32226) | > loss_disc_real_0: 0.11659 (0.12292) | > loss_disc_real_1: 0.21523 (0.21135) | > loss_disc_real_2: 0.22597 (0.21555) | > loss_disc_real_3: 0.21693 (0.21964) | > loss_disc_real_4: 0.21040 (0.21494) | > loss_disc_real_5: 0.19556 (0.21383) | > loss_0: 2.27392 (2.32226) | > grad_norm_0: 13.39343 (16.24226) | > loss_gen: 2.54918 (2.55663) | > loss_kl: 2.46592 (2.66261) | > loss_feat: 8.61030 (8.68161) | > loss_mel: 17.68747 (17.76755) | > loss_duration: 1.72021 (1.70769) | > loss_1: 33.03308 (33.37607) | > grad_norm_1: 96.22105 (135.32623) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13340 (2.30576) | > loader_time: 0.03450 (0.03987)  --> STEP: 4813/15287 -- GLOBAL_STEP: 1000675 | > loss_disc: 2.36289 (2.32228) | > loss_disc_real_0: 0.11897 (0.12292) | > loss_disc_real_1: 0.24212 (0.21134) | > loss_disc_real_2: 0.21184 (0.21555) | > loss_disc_real_3: 0.24921 (0.21962) | > loss_disc_real_4: 0.21898 (0.21495) | > loss_disc_real_5: 0.22525 (0.21387) | > loss_0: 2.36289 (2.32228) | > grad_norm_0: 6.25290 (16.23814) | > loss_gen: 2.42845 (2.55652) | > loss_kl: 2.74022 (2.66268) | > loss_feat: 8.66749 (8.68108) | > loss_mel: 17.93172 (17.76698) | > loss_duration: 1.64981 (1.70770) | > loss_1: 33.41769 (33.37494) | > grad_norm_1: 85.56147 (135.35802) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17060 (2.30531) | > loader_time: 0.03790 (0.03987)  --> STEP: 4838/15287 -- GLOBAL_STEP: 1000700 | > loss_disc: 2.33038 (2.32230) | > loss_disc_real_0: 0.12040 (0.12293) | > loss_disc_real_1: 0.19393 (0.21128) | > loss_disc_real_2: 0.17602 (0.21553) | > loss_disc_real_3: 0.21462 (0.21958) | > loss_disc_real_4: 0.19627 (0.21494) | > loss_disc_real_5: 0.20839 (0.21388) | > loss_0: 2.33038 (2.32230) | > grad_norm_0: 11.32003 (16.23837) | > loss_gen: 2.47189 (2.55635) | > loss_kl: 2.59058 (2.66277) | > loss_feat: 8.20724 (8.68060) | > loss_mel: 17.65651 (17.76700) | > loss_duration: 1.71095 (1.70771) | > loss_1: 32.63717 (33.37440) | > grad_norm_1: 76.26881 (135.41446) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27240 (2.30462) | > loader_time: 0.03850 (0.03987)  --> STEP: 4863/15287 -- GLOBAL_STEP: 1000725 | > loss_disc: 2.27463 (2.32221) | > loss_disc_real_0: 0.15215 (0.12291) | > loss_disc_real_1: 0.21731 (0.21127) | > loss_disc_real_2: 0.21860 (0.21554) | > loss_disc_real_3: 0.22349 (0.21958) | > loss_disc_real_4: 0.21893 (0.21492) | > loss_disc_real_5: 0.22553 (0.21388) | > loss_0: 2.27463 (2.32221) | > grad_norm_0: 22.29847 (16.23862) | > loss_gen: 2.75261 (2.55642) | > loss_kl: 2.64344 (2.66283) | > loss_feat: 8.82562 (8.68108) | > loss_mel: 17.90335 (17.76704) | > loss_duration: 1.68161 (1.70772) | > loss_1: 33.80662 (33.37506) | > grad_norm_1: 82.97139 (135.50096) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08730 (2.30441) | > loader_time: 0.03850 (0.03985)  --> STEP: 4888/15287 -- GLOBAL_STEP: 1000750 | > loss_disc: 2.29295 (2.32224) | > loss_disc_real_0: 0.11189 (0.12289) | > loss_disc_real_1: 0.21863 (0.21128) | > loss_disc_real_2: 0.20778 (0.21553) | > loss_disc_real_3: 0.21808 (0.21955) | > loss_disc_real_4: 0.22720 (0.21491) | > loss_disc_real_5: 0.20803 (0.21390) | > loss_0: 2.29295 (2.32224) | > grad_norm_0: 16.25536 (16.26463) | > loss_gen: 2.51174 (2.55613) | > loss_kl: 2.64320 (2.66271) | > loss_feat: 9.06069 (8.68066) | > loss_mel: 17.67319 (17.76642) | > loss_duration: 1.73699 (1.70773) | > loss_1: 33.62581 (33.37364) | > grad_norm_1: 160.86990 (135.67975) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.00020 (2.30440) | > loader_time: 0.04940 (0.03987)  --> STEP: 4913/15287 -- GLOBAL_STEP: 1000775 | > loss_disc: 2.18886 (2.32221) | > loss_disc_real_0: 0.10675 (0.12287) | > loss_disc_real_1: 0.17148 (0.21129) | > loss_disc_real_2: 0.18214 (0.21552) | > loss_disc_real_3: 0.20249 (0.21955) | > loss_disc_real_4: 0.21082 (0.21491) | > loss_disc_real_5: 0.19110 (0.21390) | > loss_0: 2.18886 (2.32221) | > grad_norm_0: 14.29297 (16.24423) | > loss_gen: 2.66971 (2.55614) | > loss_kl: 2.63652 (2.66286) | > loss_feat: 9.08196 (8.68074) | > loss_mel: 17.69838 (17.76645) | > loss_duration: 1.72972 (1.70777) | > loss_1: 33.81629 (33.37395) | > grad_norm_1: 148.86842 (135.67113) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11290 (2.30448) | > loader_time: 0.03850 (0.03987)  --> STEP: 4938/15287 -- GLOBAL_STEP: 1000800 | > loss_disc: 2.28535 (2.32232) | > loss_disc_real_0: 0.13927 (0.12286) | > loss_disc_real_1: 0.19631 (0.21131) | > loss_disc_real_2: 0.20797 (0.21556) | > loss_disc_real_3: 0.20117 (0.21956) | > loss_disc_real_4: 0.17687 (0.21490) | > loss_disc_real_5: 0.19676 (0.21391) | > loss_0: 2.28535 (2.32232) | > grad_norm_0: 21.12686 (16.24565) | > loss_gen: 2.50711 (2.55604) | > loss_kl: 2.56028 (2.66291) | > loss_feat: 9.09092 (8.68029) | > loss_mel: 18.56817 (17.76661) | > loss_duration: 1.70031 (1.70780) | > loss_1: 34.42680 (33.37365) | > grad_norm_1: 190.58882 (135.69431) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13670 (2.30471) | > loader_time: 0.03700 (0.03988)  --> STEP: 4963/15287 -- GLOBAL_STEP: 1000825 | > loss_disc: 2.33385 (2.32255) | > loss_disc_real_0: 0.16286 (0.12290) | > loss_disc_real_1: 0.21121 (0.21133) | > loss_disc_real_2: 0.23559 (0.21559) | > loss_disc_real_3: 0.22506 (0.21958) | > loss_disc_real_4: 0.17308 (0.21495) | > loss_disc_real_5: 0.22386 (0.21390) | > loss_0: 2.33385 (2.32255) | > grad_norm_0: 26.73720 (16.24582) | > loss_gen: 2.67055 (2.55598) | > loss_kl: 2.68009 (2.66294) | > loss_feat: 8.20689 (8.67903) | > loss_mel: 17.51770 (17.76638) | > loss_duration: 1.68912 (1.70779) | > loss_1: 32.76435 (33.37211) | > grad_norm_1: 140.89879 (135.66907) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20370 (2.30401) | > loader_time: 0.03330 (0.03987)  --> STEP: 4988/15287 -- GLOBAL_STEP: 1000850 | > loss_disc: 2.32381 (2.32261) | > loss_disc_real_0: 0.13113 (0.12295) | > loss_disc_real_1: 0.23775 (0.21135) | > loss_disc_real_2: 0.24902 (0.21558) | > loss_disc_real_3: 0.23093 (0.21959) | > loss_disc_real_4: 0.23197 (0.21494) | > loss_disc_real_5: 0.22348 (0.21391) | > loss_0: 2.32381 (2.32261) | > grad_norm_0: 7.62942 (16.23547) | > loss_gen: 2.43998 (2.55593) | > loss_kl: 2.60849 (2.66291) | > loss_feat: 8.24471 (8.67903) | > loss_mel: 17.75567 (17.76708) | > loss_duration: 1.70383 (1.70774) | > loss_1: 32.75269 (33.37271) | > grad_norm_1: 66.64565 (135.71417) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14610 (2.30345) | > loader_time: 0.04170 (0.03988)  --> STEP: 5013/15287 -- GLOBAL_STEP: 1000875 | > loss_disc: 2.43561 (2.32269) | > loss_disc_real_0: 0.16807 (0.12294) | > loss_disc_real_1: 0.20352 (0.21134) | > loss_disc_real_2: 0.21590 (0.21556) | > loss_disc_real_3: 0.22226 (0.21961) | > loss_disc_real_4: 0.23856 (0.21494) | > loss_disc_real_5: 0.25611 (0.21394) | > loss_0: 2.43561 (2.32269) | > grad_norm_0: 16.69944 (16.23715) | > loss_gen: 2.39193 (2.55571) | > loss_kl: 2.78557 (2.66298) | > loss_feat: 8.50996 (8.67836) | > loss_mel: 17.70115 (17.76748) | > loss_duration: 1.71173 (1.70777) | > loss_1: 33.10035 (33.37230) | > grad_norm_1: 148.02032 (135.67821) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11680 (2.30338) | > loader_time: 0.03280 (0.03988)  --> STEP: 5038/15287 -- GLOBAL_STEP: 1000900 | > loss_disc: 2.31115 (2.32263) | > loss_disc_real_0: 0.16269 (0.12291) | > loss_disc_real_1: 0.19007 (0.21132) | > loss_disc_real_2: 0.22329 (0.21555) | > loss_disc_real_3: 0.23668 (0.21957) | > loss_disc_real_4: 0.22544 (0.21495) | > loss_disc_real_5: 0.23021 (0.21394) | > loss_0: 2.31115 (2.32263) | > grad_norm_0: 23.15865 (16.23590) | > loss_gen: 2.68280 (2.55579) | > loss_kl: 2.64180 (2.66285) | > loss_feat: 8.43362 (8.67862) | > loss_mel: 17.67035 (17.76734) | > loss_duration: 1.69463 (1.70777) | > loss_1: 33.12320 (33.37239) | > grad_norm_1: 112.24453 (135.59885) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35720 (2.30366) | > loader_time: 0.03310 (0.03987)  --> STEP: 5063/15287 -- GLOBAL_STEP: 1000925 | > loss_disc: 2.31735 (2.32274) | > loss_disc_real_0: 0.12324 (0.12297) | > loss_disc_real_1: 0.18727 (0.21132) | > loss_disc_real_2: 0.21667 (0.21556) | > loss_disc_real_3: 0.23704 (0.21958) | > loss_disc_real_4: 0.22253 (0.21496) | > loss_disc_real_5: 0.20498 (0.21394) | > loss_0: 2.31735 (2.32274) | > grad_norm_0: 10.99988 (16.21169) | > loss_gen: 2.53671 (2.55568) | > loss_kl: 2.63602 (2.66320) | > loss_feat: 9.17586 (8.67811) | > loss_mel: 17.82874 (17.76762) | > loss_duration: 1.68792 (1.70776) | > loss_1: 33.86524 (33.37239) | > grad_norm_1: 147.67690 (135.35344) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11070 (2.30412) | > loader_time: 0.03370 (0.03987)  --> STEP: 5088/15287 -- GLOBAL_STEP: 1000950 | > loss_disc: 2.24431 (2.32282) | > loss_disc_real_0: 0.12018 (0.12294) | > loss_disc_real_1: 0.19260 (0.21136) | > loss_disc_real_2: 0.22211 (0.21558) | > loss_disc_real_3: 0.22912 (0.21959) | > loss_disc_real_4: 0.22920 (0.21495) | > loss_disc_real_5: 0.19393 (0.21394) | > loss_0: 2.24431 (2.32282) | > grad_norm_0: 7.92960 (16.19147) | > loss_gen: 2.58182 (2.55567) | > loss_kl: 2.71683 (2.66328) | > loss_feat: 9.00226 (8.67812) | > loss_mel: 17.83605 (17.76840) | > loss_duration: 1.70353 (1.70777) | > loss_1: 33.84050 (33.37326) | > grad_norm_1: 110.68233 (135.24026) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.15470 (2.30441) | > loader_time: 0.84510 (0.04004)  --> STEP: 5113/15287 -- GLOBAL_STEP: 1000975 | > loss_disc: 2.35399 (2.32295) | > loss_disc_real_0: 0.14893 (0.12297) | > loss_disc_real_1: 0.22380 (0.21138) | > loss_disc_real_2: 0.23101 (0.21558) | > loss_disc_real_3: 0.17671 (0.21959) | > loss_disc_real_4: 0.21579 (0.21496) | > loss_disc_real_5: 0.18255 (0.21393) | > loss_0: 2.35399 (2.32295) | > grad_norm_0: 9.63612 (16.15898) | > loss_gen: 2.42795 (2.55546) | > loss_kl: 2.74873 (2.66337) | > loss_feat: 8.45074 (8.67710) | > loss_mel: 17.68206 (17.76896) | > loss_duration: 1.71942 (1.70777) | > loss_1: 33.02891 (33.37267) | > grad_norm_1: 73.91709 (134.90640) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58370 (2.30455) | > loader_time: 0.03860 (0.04004)  --> STEP: 5138/15287 -- GLOBAL_STEP: 1001000 | > loss_disc: 2.29377 (2.32300) | > loss_disc_real_0: 0.08146 (0.12297) | > loss_disc_real_1: 0.23166 (0.21138) | > loss_disc_real_2: 0.20209 (0.21560) | > loss_disc_real_3: 0.20051 (0.21959) | > loss_disc_real_4: 0.19482 (0.21496) | > loss_disc_real_5: 0.15991 (0.21393) | > loss_0: 2.29377 (2.32300) | > grad_norm_0: 13.68812 (16.12774) | > loss_gen: 2.45510 (2.55542) | > loss_kl: 2.69089 (2.66325) | > loss_feat: 8.49040 (8.67674) | > loss_mel: 18.13210 (17.76896) | > loss_duration: 1.70385 (1.70775) | > loss_1: 33.47234 (33.37215) | > grad_norm_1: 160.59752 (134.68707) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04770 (2.30430) | > loader_time: 0.03770 (0.04002)  --> STEP: 5163/15287 -- GLOBAL_STEP: 1001025 | > loss_disc: 2.34314 (2.32302) | > loss_disc_real_0: 0.07561 (0.12298) | > loss_disc_real_1: 0.23004 (0.21139) | > loss_disc_real_2: 0.22680 (0.21561) | > loss_disc_real_3: 0.22532 (0.21962) | > loss_disc_real_4: 0.21862 (0.21497) | > loss_disc_real_5: 0.20063 (0.21393) | > loss_0: 2.34314 (2.32302) | > grad_norm_0: 9.97414 (16.13354) | > loss_gen: 2.47255 (2.55549) | > loss_kl: 2.55552 (2.66301) | > loss_feat: 8.26368 (8.67677) | > loss_mel: 17.62449 (17.76855) | > loss_duration: 1.64539 (1.70774) | > loss_1: 32.56162 (33.37158) | > grad_norm_1: 144.89783 (134.70892) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35430 (2.30407) | > loader_time: 0.03420 (0.04002)  --> STEP: 5188/15287 -- GLOBAL_STEP: 1001050 | > loss_disc: 2.23184 (2.32281) | > loss_disc_real_0: 0.11043 (0.12294) | > loss_disc_real_1: 0.22498 (0.21134) | > loss_disc_real_2: 0.21602 (0.21559) | > loss_disc_real_3: 0.24550 (0.21959) | > loss_disc_real_4: 0.19386 (0.21496) | > loss_disc_real_5: 0.19867 (0.21390) | > loss_0: 2.23184 (2.32281) | > grad_norm_0: 15.26313 (16.14049) | > loss_gen: 2.71116 (2.55545) | > loss_kl: 2.64188 (2.66272) | > loss_feat: 9.44958 (8.67692) | > loss_mel: 18.32046 (17.76786) | > loss_duration: 1.68926 (1.70775) | > loss_1: 34.81233 (33.37071) | > grad_norm_1: 168.86015 (134.72237) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15530 (2.30392) | > loader_time: 0.04160 (0.04003)  --> STEP: 5213/15287 -- GLOBAL_STEP: 1001075 | > loss_disc: 2.28561 (2.32267) | > loss_disc_real_0: 0.11363 (0.12299) | > loss_disc_real_1: 0.23601 (0.21135) | > loss_disc_real_2: 0.29504 (0.21564) | > loss_disc_real_3: 0.23650 (0.21959) | > loss_disc_real_4: 0.22117 (0.21495) | > loss_disc_real_5: 0.19474 (0.21388) | > loss_0: 2.28561 (2.32267) | > grad_norm_0: 23.03330 (16.14482) | > loss_gen: 2.60792 (2.55575) | > loss_kl: 2.77578 (2.66272) | > loss_feat: 9.69804 (8.67729) | > loss_mel: 18.06858 (17.76794) | > loss_duration: 1.67689 (1.70776) | > loss_1: 34.82721 (33.37147) | > grad_norm_1: 149.66652 (134.64671) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25450 (2.30374) | > loader_time: 0.03640 (0.04003)  --> STEP: 5238/15287 -- GLOBAL_STEP: 1001100 | > loss_disc: 2.37260 (2.32253) | > loss_disc_real_0: 0.11424 (0.12299) | > loss_disc_real_1: 0.20390 (0.21132) | > loss_disc_real_2: 0.24266 (0.21563) | > loss_disc_real_3: 0.23685 (0.21958) | > loss_disc_real_4: 0.21847 (0.21493) | > loss_disc_real_5: 0.21268 (0.21388) | > loss_0: 2.37260 (2.32253) | > grad_norm_0: 6.44247 (16.13816) | > loss_gen: 2.31636 (2.55586) | > loss_kl: 2.58750 (2.66276) | > loss_feat: 8.21166 (8.67769) | > loss_mel: 17.64323 (17.76811) | > loss_duration: 1.70195 (1.70776) | > loss_1: 32.46071 (33.37219) | > grad_norm_1: 61.81952 (134.53493) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36810 (2.30359) | > loader_time: 0.04800 (0.04003)  --> STEP: 5263/15287 -- GLOBAL_STEP: 1001125 | > loss_disc: 2.45435 (2.32276) | > loss_disc_real_0: 0.11613 (0.12303) | > loss_disc_real_1: 0.21059 (0.21136) | > loss_disc_real_2: 0.25208 (0.21564) | > loss_disc_real_3: 0.25191 (0.21959) | > loss_disc_real_4: 0.24213 (0.21495) | > loss_disc_real_5: 0.22247 (0.21388) | > loss_0: 2.45435 (2.32276) | > grad_norm_0: 10.07705 (16.12151) | > loss_gen: 2.34237 (2.55574) | > loss_kl: 2.62230 (2.66275) | > loss_feat: 8.13435 (8.67748) | > loss_mel: 17.91779 (17.76898) | > loss_duration: 1.70887 (1.70777) | > loss_1: 32.72568 (33.37274) | > grad_norm_1: 100.77830 (134.30458) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25970 (2.30348) | > loader_time: 0.03830 (0.04003)  --> STEP: 5288/15287 -- GLOBAL_STEP: 1001150 | > loss_disc: 2.39184 (2.32282) | > loss_disc_real_0: 0.18255 (0.12302) | > loss_disc_real_1: 0.20819 (0.21139) | > loss_disc_real_2: 0.20649 (0.21564) | > loss_disc_real_3: 0.24471 (0.21958) | > loss_disc_real_4: 0.19720 (0.21496) | > loss_disc_real_5: 0.17465 (0.21387) | > loss_0: 2.39184 (2.32282) | > grad_norm_0: 29.44763 (16.11128) | > loss_gen: 2.50483 (2.55577) | > loss_kl: 2.53681 (2.66265) | > loss_feat: 8.16804 (8.67720) | > loss_mel: 17.87673 (17.76888) | > loss_duration: 1.73609 (1.70778) | > loss_1: 32.82251 (33.37231) | > grad_norm_1: 159.77048 (134.20728) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26290 (2.30331) | > loader_time: 0.04320 (0.04003)  --> STEP: 5313/15287 -- GLOBAL_STEP: 1001175 | > loss_disc: 2.26586 (2.32276) | > loss_disc_real_0: 0.10415 (0.12299) | > loss_disc_real_1: 0.20144 (0.21137) | > loss_disc_real_2: 0.22386 (0.21562) | > loss_disc_real_3: 0.20411 (0.21958) | > loss_disc_real_4: 0.20202 (0.21493) | > loss_disc_real_5: 0.18886 (0.21383) | > loss_0: 2.26586 (2.32276) | > grad_norm_0: 17.24174 (16.12037) | > loss_gen: 2.47360 (2.55548) | > loss_kl: 2.60679 (2.66270) | > loss_feat: 8.63124 (8.67659) | > loss_mel: 17.81072 (17.76919) | > loss_duration: 1.68451 (1.70778) | > loss_1: 33.20685 (33.37177) | > grad_norm_1: 168.88742 (134.32559) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21490 (2.30311) | > loader_time: 0.04260 (0.04003)  --> STEP: 5338/15287 -- GLOBAL_STEP: 1001200 | > loss_disc: 2.26379 (2.32270) | > loss_disc_real_0: 0.11846 (0.12296) | > loss_disc_real_1: 0.21205 (0.21136) | > loss_disc_real_2: 0.17339 (0.21560) | > loss_disc_real_3: 0.20027 (0.21958) | > loss_disc_real_4: 0.19730 (0.21493) | > loss_disc_real_5: 0.22833 (0.21385) | > loss_0: 2.26379 (2.32270) | > grad_norm_0: 13.10249 (16.10850) | > loss_gen: 2.46365 (2.55537) | > loss_kl: 2.55325 (2.66271) | > loss_feat: 8.47610 (8.67627) | > loss_mel: 17.11541 (17.76871) | > loss_duration: 1.69060 (1.70775) | > loss_1: 32.29902 (33.37084) | > grad_norm_1: 144.45483 (134.34370) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23500 (2.30298) | > loader_time: 0.03910 (0.04002)  --> STEP: 5363/15287 -- GLOBAL_STEP: 1001225 | > loss_disc: 2.22850 (2.32270) | > loss_disc_real_0: 0.09703 (0.12294) | > loss_disc_real_1: 0.24951 (0.21135) | > loss_disc_real_2: 0.24841 (0.21560) | > loss_disc_real_3: 0.23131 (0.21958) | > loss_disc_real_4: 0.24112 (0.21496) | > loss_disc_real_5: 0.19607 (0.21386) | > loss_0: 2.22850 (2.32270) | > grad_norm_0: 9.86977 (16.08342) | > loss_gen: 2.62567 (2.55539) | > loss_kl: 2.60003 (2.66272) | > loss_feat: 9.05744 (8.67664) | > loss_mel: 17.74021 (17.76880) | > loss_duration: 1.73994 (1.70769) | > loss_1: 33.76329 (33.37126) | > grad_norm_1: 132.96523 (134.25128) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.67760 (2.30356) | > loader_time: 0.03950 (0.04003)  --> STEP: 5388/15287 -- GLOBAL_STEP: 1001250 | > loss_disc: 2.26784 (2.32263) | > loss_disc_real_0: 0.11900 (0.12291) | > loss_disc_real_1: 0.21432 (0.21136) | > loss_disc_real_2: 0.20810 (0.21560) | > loss_disc_real_3: 0.20983 (0.21957) | > loss_disc_real_4: 0.20822 (0.21495) | > loss_disc_real_5: 0.22112 (0.21387) | > loss_0: 2.26784 (2.32263) | > grad_norm_0: 14.99751 (16.07128) | > loss_gen: 2.61968 (2.55529) | > loss_kl: 2.49366 (2.66272) | > loss_feat: 9.12890 (8.67679) | > loss_mel: 17.99527 (17.76884) | > loss_duration: 1.71897 (1.70772) | > loss_1: 33.95648 (33.37136) | > grad_norm_1: 117.83910 (134.17702) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95830 (2.30343) | > loader_time: 0.04090 (0.04002)  --> STEP: 5413/15287 -- GLOBAL_STEP: 1001275 | > loss_disc: 2.29356 (2.32256) | > loss_disc_real_0: 0.07932 (0.12289) | > loss_disc_real_1: 0.18849 (0.21136) | > loss_disc_real_2: 0.20861 (0.21561) | > loss_disc_real_3: 0.17488 (0.21955) | > loss_disc_real_4: 0.20475 (0.21496) | > loss_disc_real_5: 0.20857 (0.21387) | > loss_0: 2.29356 (2.32256) | > grad_norm_0: 14.87438 (16.05973) | > loss_gen: 2.45824 (2.55528) | > loss_kl: 2.65828 (2.66266) | > loss_feat: 9.30732 (8.67719) | > loss_mel: 17.87569 (17.76867) | > loss_duration: 1.71863 (1.70768) | > loss_1: 34.01817 (33.37149) | > grad_norm_1: 141.20769 (134.14449) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23480 (2.30400) | > loader_time: 0.04010 (0.04001)  --> STEP: 5438/15287 -- GLOBAL_STEP: 1001300 | > loss_disc: 2.36548 (2.32239) | > loss_disc_real_0: 0.11192 (0.12287) | > loss_disc_real_1: 0.19827 (0.21134) | > loss_disc_real_2: 0.21962 (0.21559) | > loss_disc_real_3: 0.23448 (0.21954) | > loss_disc_real_4: 0.21706 (0.21494) | > loss_disc_real_5: 0.24221 (0.21387) | > loss_0: 2.36548 (2.32239) | > grad_norm_0: 12.37872 (16.05074) | > loss_gen: 2.51785 (2.55525) | > loss_kl: 2.66207 (2.66272) | > loss_feat: 9.01686 (8.67757) | > loss_mel: 17.73962 (17.76829) | > loss_duration: 1.70041 (1.70764) | > loss_1: 33.63681 (33.37149) | > grad_norm_1: 169.18250 (134.13138) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44490 (2.30397) | > loader_time: 0.03390 (0.04000)  --> STEP: 5463/15287 -- GLOBAL_STEP: 1001325 | > loss_disc: 2.35559 (2.32229) | > loss_disc_real_0: 0.12508 (0.12287) | > loss_disc_real_1: 0.19305 (0.21132) | > loss_disc_real_2: 0.17876 (0.21556) | > loss_disc_real_3: 0.21914 (0.21952) | > loss_disc_real_4: 0.21588 (0.21492) | > loss_disc_real_5: 0.22597 (0.21385) | > loss_0: 2.35559 (2.32229) | > grad_norm_0: 8.84369 (16.03115) | > loss_gen: 2.66497 (2.55526) | > loss_kl: 2.87949 (2.66286) | > loss_feat: 9.01390 (8.67825) | > loss_mel: 18.09055 (17.76860) | > loss_duration: 1.70202 (1.70763) | > loss_1: 34.35094 (33.37264) | > grad_norm_1: 126.77249 (134.08902) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21440 (2.30376) | > loader_time: 0.04220 (0.03999)  --> STEP: 5488/15287 -- GLOBAL_STEP: 1001350 | > loss_disc: 2.30028 (2.32247) | > loss_disc_real_0: 0.13091 (0.12290) | > loss_disc_real_1: 0.21803 (0.21137) | > loss_disc_real_2: 0.18481 (0.21562) | > loss_disc_real_3: 0.19645 (0.21954) | > loss_disc_real_4: 0.21449 (0.21492) | > loss_disc_real_5: 0.20857 (0.21385) | > loss_0: 2.30028 (2.32247) | > grad_norm_0: 8.47749 (16.02194) | > loss_gen: 2.50646 (2.55516) | > loss_kl: 2.66533 (2.66302) | > loss_feat: 8.44788 (8.67746) | > loss_mel: 18.25231 (17.76866) | > loss_duration: 1.69454 (1.70761) | > loss_1: 33.56653 (33.37194) | > grad_norm_1: 202.33708 (134.09399) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04910 (2.30375) | > loader_time: 0.03270 (0.03997)  --> STEP: 5513/15287 -- GLOBAL_STEP: 1001375 | > loss_disc: 2.22147 (2.32241) | > loss_disc_real_0: 0.10147 (0.12291) | > loss_disc_real_1: 0.20783 (0.21137) | > loss_disc_real_2: 0.20034 (0.21562) | > loss_disc_real_3: 0.25348 (0.21955) | > loss_disc_real_4: 0.23376 (0.21493) | > loss_disc_real_5: 0.22127 (0.21386) | > loss_0: 2.22147 (2.32241) | > grad_norm_0: 16.00075 (16.01677) | > loss_gen: 2.61256 (2.55528) | > loss_kl: 2.65658 (2.66302) | > loss_feat: 9.23299 (8.67794) | > loss_mel: 17.85943 (17.76845) | > loss_duration: 1.70216 (1.70757) | > loss_1: 34.06372 (33.37229) | > grad_norm_1: 134.26453 (134.09239) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38200 (2.30376) | > loader_time: 0.03640 (0.03996)  --> STEP: 5538/15287 -- GLOBAL_STEP: 1001400 | > loss_disc: 2.36364 (2.32249) | > loss_disc_real_0: 0.11410 (0.12293) | > loss_disc_real_1: 0.23258 (0.21139) | > loss_disc_real_2: 0.22770 (0.21562) | > loss_disc_real_3: 0.23941 (0.21957) | > loss_disc_real_4: 0.20375 (0.21495) | > loss_disc_real_5: 0.22419 (0.21386) | > loss_0: 2.36364 (2.32249) | > grad_norm_0: 8.56044 (16.01250) | > loss_gen: 2.44324 (2.55536) | > loss_kl: 2.49576 (2.66286) | > loss_feat: 8.48024 (8.67807) | > loss_mel: 17.69639 (17.76816) | > loss_duration: 1.70644 (1.70754) | > loss_1: 32.82207 (33.37203) | > grad_norm_1: 130.15933 (134.07996) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24230 (2.30342) | > loader_time: 0.03610 (0.03996)  --> STEP: 5563/15287 -- GLOBAL_STEP: 1001425 | > loss_disc: 2.32084 (2.32255) | > loss_disc_real_0: 0.13555 (0.12294) | > loss_disc_real_1: 0.19567 (0.21140) | > loss_disc_real_2: 0.19762 (0.21561) | > loss_disc_real_3: 0.21505 (0.21957) | > loss_disc_real_4: 0.20322 (0.21496) | > loss_disc_real_5: 0.20749 (0.21386) | > loss_0: 2.32084 (2.32255) | > grad_norm_0: 16.17157 (16.00885) | > loss_gen: 2.43255 (2.55528) | > loss_kl: 2.57047 (2.66284) | > loss_feat: 8.56470 (8.67753) | > loss_mel: 17.94751 (17.76765) | > loss_duration: 1.70337 (1.70755) | > loss_1: 33.21861 (33.37089) | > grad_norm_1: 134.46774 (133.97775) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19590 (2.30362) | > loader_time: 0.03830 (0.03994)  --> STEP: 5588/15287 -- GLOBAL_STEP: 1001450 | > loss_disc: 2.42768 (2.32252) | > loss_disc_real_0: 0.17682 (0.12293) | > loss_disc_real_1: 0.22496 (0.21140) | > loss_disc_real_2: 0.21097 (0.21560) | > loss_disc_real_3: 0.24270 (0.21959) | > loss_disc_real_4: 0.23340 (0.21496) | > loss_disc_real_5: 0.23634 (0.21387) | > loss_0: 2.42768 (2.32252) | > grad_norm_0: 10.27197 (16.00958) | > loss_gen: 2.40333 (2.55519) | > loss_kl: 2.56836 (2.66273) | > loss_feat: 7.54345 (8.67706) | > loss_mel: 16.94593 (17.76704) | > loss_duration: 1.66194 (1.70753) | > loss_1: 31.12300 (33.36960) | > grad_norm_1: 80.43814 (134.00314) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.80130 (2.30256) | > loader_time: 0.04340 (0.03994)  --> STEP: 5613/15287 -- GLOBAL_STEP: 1001475 | > loss_disc: 2.25327 (2.32247) | > loss_disc_real_0: 0.14181 (0.12290) | > loss_disc_real_1: 0.19935 (0.21139) | > loss_disc_real_2: 0.20953 (0.21561) | > loss_disc_real_3: 0.20159 (0.21958) | > loss_disc_real_4: 0.19388 (0.21495) | > loss_disc_real_5: 0.19447 (0.21386) | > loss_0: 2.25327 (2.32247) | > grad_norm_0: 8.11942 (15.98826) | > loss_gen: 2.58834 (2.55513) | > loss_kl: 2.67929 (2.66261) | > loss_feat: 8.64080 (8.67741) | > loss_mel: 17.52315 (17.76654) | > loss_duration: 1.69915 (1.70751) | > loss_1: 33.13074 (33.36922) | > grad_norm_1: 111.96088 (133.93280) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19250 (2.30367) | > loader_time: 0.03820 (0.03994)  --> STEP: 5638/15287 -- GLOBAL_STEP: 1001500 | > loss_disc: 2.32583 (2.32240) | > loss_disc_real_0: 0.14621 (0.12289) | > loss_disc_real_1: 0.19847 (0.21137) | > loss_disc_real_2: 0.23175 (0.21561) | > loss_disc_real_3: 0.23601 (0.21956) | > loss_disc_real_4: 0.23237 (0.21495) | > loss_disc_real_5: 0.22840 (0.21385) | > loss_0: 2.32583 (2.32240) | > grad_norm_0: 29.31667 (15.98965) | > loss_gen: 2.77672 (2.55528) | > loss_kl: 2.66449 (2.66269) | > loss_feat: 8.94209 (8.67787) | > loss_mel: 17.97558 (17.76717) | > loss_duration: 1.71428 (1.70750) | > loss_1: 34.07316 (33.37053) | > grad_norm_1: 110.42568 (133.98402) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07750 (2.30339) | > loader_time: 0.04170 (0.03993)  --> STEP: 5663/15287 -- GLOBAL_STEP: 1001525 | > loss_disc: 2.25594 (2.32237) | > loss_disc_real_0: 0.15966 (0.12288) | > loss_disc_real_1: 0.21172 (0.21136) | > loss_disc_real_2: 0.21968 (0.21561) | > loss_disc_real_3: 0.19364 (0.21957) | > loss_disc_real_4: 0.23470 (0.21495) | > loss_disc_real_5: 0.24251 (0.21388) | > loss_0: 2.25594 (2.32237) | > grad_norm_0: 37.27182 (15.99844) | > loss_gen: 2.84196 (2.55530) | > loss_kl: 2.65674 (2.66267) | > loss_feat: 8.57202 (8.67821) | > loss_mel: 17.60381 (17.76673) | > loss_duration: 1.69304 (1.70747) | > loss_1: 33.36755 (33.37041) | > grad_norm_1: 152.93846 (134.00748) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.54270 (2.30333) | > loader_time: 0.04420 (0.03993)  --> STEP: 5688/15287 -- GLOBAL_STEP: 1001550 | > loss_disc: 2.28062 (2.32229) | > loss_disc_real_0: 0.11622 (0.12287) | > loss_disc_real_1: 0.22888 (0.21136) | > loss_disc_real_2: 0.22821 (0.21562) | > loss_disc_real_3: 0.22648 (0.21956) | > loss_disc_real_4: 0.19381 (0.21494) | > loss_disc_real_5: 0.20572 (0.21387) | > loss_0: 2.28062 (2.32229) | > grad_norm_0: 9.87101 (15.99073) | > loss_gen: 2.66328 (2.55541) | > loss_kl: 2.69847 (2.66278) | > loss_feat: 9.04996 (8.67808) | > loss_mel: 17.81254 (17.76597) | > loss_duration: 1.72309 (1.70748) | > loss_1: 33.94733 (33.36974) | > grad_norm_1: 52.98862 (133.95012) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06890 (2.30301) | > loader_time: 0.03530 (0.03994)  --> STEP: 5713/15287 -- GLOBAL_STEP: 1001575 | > loss_disc: 2.25880 (2.32222) | > loss_disc_real_0: 0.10447 (0.12285) | > loss_disc_real_1: 0.23611 (0.21136) | > loss_disc_real_2: 0.19391 (0.21563) | > loss_disc_real_3: 0.22070 (0.21954) | > loss_disc_real_4: 0.24002 (0.21493) | > loss_disc_real_5: 0.22524 (0.21384) | > loss_0: 2.25880 (2.32222) | > grad_norm_0: 14.22638 (15.98448) | > loss_gen: 2.74368 (2.55547) | > loss_kl: 2.53934 (2.66270) | > loss_feat: 8.66890 (8.67838) | > loss_mel: 17.46578 (17.76583) | > loss_duration: 1.72310 (1.70745) | > loss_1: 33.14079 (33.36987) | > grad_norm_1: 155.13858 (133.99283) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31220 (2.30253) | > loader_time: 0.03390 (0.03994)  --> STEP: 5738/15287 -- GLOBAL_STEP: 1001600 | > loss_disc: 2.20617 (2.32234) | > loss_disc_real_0: 0.10191 (0.12285) | > loss_disc_real_1: 0.18555 (0.21139) | > loss_disc_real_2: 0.19530 (0.21564) | > loss_disc_real_3: 0.21553 (0.21956) | > loss_disc_real_4: 0.22876 (0.21494) | > loss_disc_real_5: 0.17708 (0.21383) | > loss_0: 2.20617 (2.32234) | > grad_norm_0: 28.91484 (15.98709) | > loss_gen: 2.49377 (2.55533) | > loss_kl: 2.63577 (2.66266) | > loss_feat: 9.01262 (8.67836) | > loss_mel: 17.81893 (17.76610) | > loss_duration: 1.73317 (1.70745) | > loss_1: 33.69426 (33.36992) | > grad_norm_1: 201.92686 (134.04199) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56280 (2.30291) | > loader_time: 0.03710 (0.03993)  --> STEP: 5763/15287 -- GLOBAL_STEP: 1001625 | > loss_disc: 2.30075 (2.32223) | > loss_disc_real_0: 0.13136 (0.12280) | > loss_disc_real_1: 0.20606 (0.21139) | > loss_disc_real_2: 0.21557 (0.21562) | > loss_disc_real_3: 0.22342 (0.21955) | > loss_disc_real_4: 0.21871 (0.21494) | > loss_disc_real_5: 0.20372 (0.21383) | > loss_0: 2.30075 (2.32223) | > grad_norm_0: 18.47389 (16.01440) | > loss_gen: 2.47058 (2.55534) | > loss_kl: 2.59933 (2.66251) | > loss_feat: 9.46116 (8.67877) | > loss_mel: 18.05807 (17.76546) | > loss_duration: 1.68764 (1.70744) | > loss_1: 34.27678 (33.36955) | > grad_norm_1: 174.76804 (134.18575) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.67030 (2.30324) | > loader_time: 0.05280 (0.03995)  --> STEP: 5788/15287 -- GLOBAL_STEP: 1001650 | > loss_disc: 2.35537 (2.32218) | > loss_disc_real_0: 0.13501 (0.12279) | > loss_disc_real_1: 0.18979 (0.21138) | > loss_disc_real_2: 0.25257 (0.21562) | > loss_disc_real_3: 0.20176 (0.21954) | > loss_disc_real_4: 0.23309 (0.21495) | > loss_disc_real_5: 0.21348 (0.21383) | > loss_0: 2.35537 (2.32218) | > grad_norm_0: 20.12110 (16.01192) | > loss_gen: 2.66176 (2.55537) | > loss_kl: 2.78017 (2.66260) | > loss_feat: 9.65827 (8.67933) | > loss_mel: 18.07928 (17.76505) | > loss_duration: 1.72283 (1.70742) | > loss_1: 34.90231 (33.36980) | > grad_norm_1: 147.46686 (134.23007) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25900 (2.30405) | > loader_time: 0.03290 (0.03995)  --> STEP: 5813/15287 -- GLOBAL_STEP: 1001675 | > loss_disc: 2.26989 (2.32213) | > loss_disc_real_0: 0.11374 (0.12277) | > loss_disc_real_1: 0.22508 (0.21140) | > loss_disc_real_2: 0.21456 (0.21563) | > loss_disc_real_3: 0.19464 (0.21953) | > loss_disc_real_4: 0.18980 (0.21495) | > loss_disc_real_5: 0.20011 (0.21383) | > loss_0: 2.26989 (2.32213) | > grad_norm_0: 17.03711 (16.00582) | > loss_gen: 2.57564 (2.55534) | > loss_kl: 2.70351 (2.66267) | > loss_feat: 9.29953 (8.67905) | > loss_mel: 17.78243 (17.76463) | > loss_duration: 1.74086 (1.70743) | > loss_1: 34.10197 (33.36913) | > grad_norm_1: 196.27905 (134.28290) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01270 (2.30417) | > loader_time: 0.04090 (0.03994)  --> STEP: 5838/15287 -- GLOBAL_STEP: 1001700 | > loss_disc: 2.33474 (2.32216) | > loss_disc_real_0: 0.11999 (0.12277) | > loss_disc_real_1: 0.24019 (0.21142) | > loss_disc_real_2: 0.23155 (0.21564) | > loss_disc_real_3: 0.20514 (0.21953) | > loss_disc_real_4: 0.23834 (0.21496) | > loss_disc_real_5: 0.23817 (0.21384) | > loss_0: 2.33474 (2.32216) | > grad_norm_0: 17.41187 (15.99669) | > loss_gen: 2.45752 (2.55531) | > loss_kl: 2.51094 (2.66295) | > loss_feat: 8.48049 (8.67857) | > loss_mel: 17.63434 (17.76441) | > loss_duration: 1.68323 (1.70740) | > loss_1: 32.76652 (33.36868) | > grad_norm_1: 84.34521 (134.26755) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28240 (2.30414) | > loader_time: 0.03920 (0.03994)  --> STEP: 5863/15287 -- GLOBAL_STEP: 1001725 | > loss_disc: 2.34698 (2.32198) | > loss_disc_real_0: 0.10091 (0.12271) | > loss_disc_real_1: 0.21573 (0.21141) | > loss_disc_real_2: 0.21477 (0.21563) | > loss_disc_real_3: 0.22750 (0.21953) | > loss_disc_real_4: 0.21640 (0.21494) | > loss_disc_real_5: 0.24363 (0.21383) | > loss_0: 2.34698 (2.32198) | > grad_norm_0: 20.96143 (15.99652) | > loss_gen: 2.57063 (2.55543) | > loss_kl: 2.65534 (2.66293) | > loss_feat: 8.48487 (8.67866) | > loss_mel: 17.77481 (17.76418) | > loss_duration: 1.68301 (1.70738) | > loss_1: 33.16866 (33.36861) | > grad_norm_1: 143.56476 (134.36983) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15420 (2.30363) | > loader_time: 0.03630 (0.03994)  --> STEP: 5888/15287 -- GLOBAL_STEP: 1001750 | > loss_disc: 2.33685 (2.32202) | > loss_disc_real_0: 0.14055 (0.12269) | > loss_disc_real_1: 0.18818 (0.21142) | > loss_disc_real_2: 0.16608 (0.21563) | > loss_disc_real_3: 0.24055 (0.21955) | > loss_disc_real_4: 0.20673 (0.21494) | > loss_disc_real_5: 0.16696 (0.21385) | > loss_0: 2.33685 (2.32202) | > grad_norm_0: 23.28616 (15.99041) | > loss_gen: 2.45631 (2.55545) | > loss_kl: 2.67596 (2.66298) | > loss_feat: 9.01487 (8.67867) | > loss_mel: 17.75161 (17.76414) | > loss_duration: 1.69677 (1.70739) | > loss_1: 33.59552 (33.36868) | > grad_norm_1: 91.58471 (134.36342) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17460 (2.30387) | > loader_time: 0.03360 (0.03995)  --> STEP: 5913/15287 -- GLOBAL_STEP: 1001775 | > loss_disc: 2.33467 (2.32216) | > loss_disc_real_0: 0.12375 (0.12271) | > loss_disc_real_1: 0.22508 (0.21143) | > loss_disc_real_2: 0.19754 (0.21561) | > loss_disc_real_3: 0.23071 (0.21957) | > loss_disc_real_4: 0.21091 (0.21495) | > loss_disc_real_5: 0.21873 (0.21389) | > loss_0: 2.33467 (2.32216) | > grad_norm_0: 11.30820 (15.98745) | > loss_gen: 2.53404 (2.55543) | > loss_kl: 2.68649 (2.66309) | > loss_feat: 9.24772 (8.67863) | > loss_mel: 18.24489 (17.76483) | > loss_duration: 1.70314 (1.70740) | > loss_1: 34.41628 (33.36942) | > grad_norm_1: 56.50791 (134.34625) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36110 (2.30380) | > loader_time: 0.04980 (0.03994)  --> STEP: 5938/15287 -- GLOBAL_STEP: 1001800 | > loss_disc: 2.27411 (2.32212) | > loss_disc_real_0: 0.10527 (0.12270) | > loss_disc_real_1: 0.19200 (0.21142) | > loss_disc_real_2: 0.18867 (0.21561) | > loss_disc_real_3: 0.20513 (0.21956) | > loss_disc_real_4: 0.24124 (0.21494) | > loss_disc_real_5: 0.20686 (0.21388) | > loss_0: 2.27411 (2.32212) | > grad_norm_0: 18.39968 (15.98949) | > loss_gen: 2.46371 (2.55531) | > loss_kl: 2.60829 (2.66315) | > loss_feat: 8.41182 (8.67842) | > loss_mel: 17.55451 (17.76488) | > loss_duration: 1.75067 (1.70741) | > loss_1: 32.78901 (33.36921) | > grad_norm_1: 161.28197 (134.35948) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18060 (2.30382) | > loader_time: 0.04300 (0.03996)  --> STEP: 5963/15287 -- GLOBAL_STEP: 1001825 | > loss_disc: 2.35258 (2.32221) | > loss_disc_real_0: 0.13559 (0.12269) | > loss_disc_real_1: 0.20371 (0.21142) | > loss_disc_real_2: 0.21085 (0.21562) | > loss_disc_real_3: 0.20064 (0.21956) | > loss_disc_real_4: 0.20872 (0.21496) | > loss_disc_real_5: 0.20422 (0.21389) | > loss_0: 2.35258 (2.32221) | > grad_norm_0: 13.56433 (15.98485) | > loss_gen: 2.53871 (2.55531) | > loss_kl: 2.73415 (2.66316) | > loss_feat: 8.77901 (8.67840) | > loss_mel: 17.37482 (17.76508) | > loss_duration: 1.69619 (1.70740) | > loss_1: 33.12289 (33.36941) | > grad_norm_1: 145.89525 (134.38942) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28040 (2.30354) | > loader_time: 0.03290 (0.03996)  --> STEP: 5988/15287 -- GLOBAL_STEP: 1001850 | > loss_disc: 2.35561 (2.32230) | > loss_disc_real_0: 0.12524 (0.12271) | > loss_disc_real_1: 0.23296 (0.21145) | > loss_disc_real_2: 0.20378 (0.21565) | > loss_disc_real_3: 0.24053 (0.21958) | > loss_disc_real_4: 0.21183 (0.21498) | > loss_disc_real_5: 0.21850 (0.21389) | > loss_0: 2.35561 (2.32230) | > grad_norm_0: 17.74061 (15.97072) | > loss_gen: 2.50113 (2.55535) | > loss_kl: 2.62943 (2.66315) | > loss_feat: 8.60371 (8.67842) | > loss_mel: 18.10676 (17.76583) | > loss_duration: 1.67680 (1.70741) | > loss_1: 33.51783 (33.37020) | > grad_norm_1: 66.25861 (134.21265) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52990 (2.30362) | > loader_time: 0.03480 (0.03997)  --> STEP: 6013/15287 -- GLOBAL_STEP: 1001875 | > loss_disc: 2.35455 (2.32228) | > loss_disc_real_0: 0.11424 (0.12269) | > loss_disc_real_1: 0.22350 (0.21146) | > loss_disc_real_2: 0.19903 (0.21565) | > loss_disc_real_3: 0.25957 (0.21958) | > loss_disc_real_4: 0.22270 (0.21497) | > loss_disc_real_5: 0.28144 (0.21389) | > loss_0: 2.35455 (2.32228) | > grad_norm_0: 16.27109 (15.96748) | > loss_gen: 2.54654 (2.55541) | > loss_kl: 2.59561 (2.66303) | > loss_feat: 8.33395 (8.67833) | > loss_mel: 17.93079 (17.76620) | > loss_duration: 1.70291 (1.70741) | > loss_1: 33.10981 (33.37043) | > grad_norm_1: 121.56419 (134.22745) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41110 (2.30395) | > loader_time: 0.04090 (0.03997)  --> STEP: 6038/15287 -- GLOBAL_STEP: 1001900 | > loss_disc: 2.30970 (2.32226) | > loss_disc_real_0: 0.11532 (0.12268) | > loss_disc_real_1: 0.24582 (0.21145) | > loss_disc_real_2: 0.19942 (0.21563) | > loss_disc_real_3: 0.24175 (0.21958) | > loss_disc_real_4: 0.22609 (0.21495) | > loss_disc_real_5: 0.20090 (0.21388) | > loss_0: 2.30970 (2.32226) | > grad_norm_0: 7.05970 (15.95800) | > loss_gen: 2.60164 (2.55549) | > loss_kl: 2.66239 (2.66298) | > loss_feat: 8.83902 (8.67855) | > loss_mel: 18.16906 (17.76635) | > loss_duration: 1.67882 (1.70739) | > loss_1: 33.95094 (33.37079) | > grad_norm_1: 193.43095 (134.23506) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07870 (2.30369) | > loader_time: 0.05800 (0.03997)  --> STEP: 6063/15287 -- GLOBAL_STEP: 1001925 | > loss_disc: 2.30762 (2.32224) | > loss_disc_real_0: 0.14498 (0.12266) | > loss_disc_real_1: 0.21949 (0.21142) | > loss_disc_real_2: 0.22809 (0.21562) | > loss_disc_real_3: 0.23564 (0.21955) | > loss_disc_real_4: 0.22378 (0.21492) | > loss_disc_real_5: 0.19043 (0.21387) | > loss_0: 2.30762 (2.32224) | > grad_norm_0: 14.34863 (15.95597) | > loss_gen: 2.70331 (2.55539) | > loss_kl: 2.54283 (2.66285) | > loss_feat: 8.97958 (8.67859) | > loss_mel: 17.63419 (17.76661) | > loss_duration: 1.71116 (1.70739) | > loss_1: 33.57107 (33.37086) | > grad_norm_1: 160.04266 (134.26701) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10460 (2.30343) | > loader_time: 0.02910 (0.03996)  --> STEP: 6088/15287 -- GLOBAL_STEP: 1001950 | > loss_disc: 2.44714 (2.32238) | > loss_disc_real_0: 0.10420 (0.12269) | > loss_disc_real_1: 0.25671 (0.21143) | > loss_disc_real_2: 0.25471 (0.21564) | > loss_disc_real_3: 0.21345 (0.21952) | > loss_disc_real_4: 0.21868 (0.21489) | > loss_disc_real_5: 0.23184 (0.21390) | > loss_0: 2.44714 (2.32238) | > grad_norm_0: 14.72234 (15.96401) | > loss_gen: 2.48333 (2.55518) | > loss_kl: 2.48770 (2.66279) | > loss_feat: 8.47527 (8.67819) | > loss_mel: 17.62561 (17.76623) | > loss_duration: 1.72126 (1.70737) | > loss_1: 32.79318 (33.36978) | > grad_norm_1: 186.85696 (134.20291) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22700 (2.30348) | > loader_time: 0.04310 (0.03996)  --> STEP: 6113/15287 -- GLOBAL_STEP: 1001975 | > loss_disc: 2.35062 (2.32246) | > loss_disc_real_0: 0.11724 (0.12273) | > loss_disc_real_1: 0.20241 (0.21144) | > loss_disc_real_2: 0.22979 (0.21563) | > loss_disc_real_3: 0.18966 (0.21951) | > loss_disc_real_4: 0.22357 (0.21488) | > loss_disc_real_5: 0.21307 (0.21390) | > loss_0: 2.35062 (2.32246) | > grad_norm_0: 9.74786 (15.96154) | > loss_gen: 2.57027 (2.55508) | > loss_kl: 2.75120 (2.66266) | > loss_feat: 8.69827 (8.67779) | > loss_mel: 17.93178 (17.76656) | > loss_duration: 1.67249 (1.70735) | > loss_1: 33.62400 (33.36946) | > grad_norm_1: 92.68691 (134.16856) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.59620 (2.30349) | > loader_time: 0.04540 (0.03997)  --> STEP: 6138/15287 -- GLOBAL_STEP: 1002000 | > loss_disc: 2.29415 (2.32248) | > loss_disc_real_0: 0.09675 (0.12273) | > loss_disc_real_1: 0.18109 (0.21145) | > loss_disc_real_2: 0.19951 (0.21564) | > loss_disc_real_3: 0.23270 (0.21951) | > loss_disc_real_4: 0.22389 (0.21489) | > loss_disc_real_5: 0.23389 (0.21388) | > loss_0: 2.29415 (2.32248) | > grad_norm_0: 14.06917 (15.94671) | > loss_gen: 2.62372 (2.55507) | > loss_kl: 2.69739 (2.66268) | > loss_feat: 8.99273 (8.67777) | > loss_mel: 17.58293 (17.76610) | > loss_duration: 1.73953 (1.70734) | > loss_1: 33.63630 (33.36897) | > grad_norm_1: 165.80875 (134.07625) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02410 (2.30337) | > loader_time: 0.03790 (0.03996)  --> STEP: 6163/15287 -- GLOBAL_STEP: 1002025 | > loss_disc: 2.30720 (2.32248) | > loss_disc_real_0: 0.12337 (0.12271) | > loss_disc_real_1: 0.19692 (0.21146) | > loss_disc_real_2: 0.20855 (0.21563) | > loss_disc_real_3: 0.19979 (0.21951) | > loss_disc_real_4: 0.19428 (0.21490) | > loss_disc_real_5: 0.19380 (0.21387) | > loss_0: 2.30720 (2.32248) | > grad_norm_0: 17.05834 (15.93822) | > loss_gen: 2.46361 (2.55501) | > loss_kl: 2.72431 (2.66264) | > loss_feat: 8.33012 (8.67772) | > loss_mel: 17.19680 (17.76596) | > loss_duration: 1.70083 (1.70735) | > loss_1: 32.41567 (33.36869) | > grad_norm_1: 207.24239 (134.03018) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26770 (2.30324) | > loader_time: 0.03630 (0.03996)  --> STEP: 6188/15287 -- GLOBAL_STEP: 1002050 | > loss_disc: 2.29602 (2.32245) | > loss_disc_real_0: 0.12862 (0.12272) | > loss_disc_real_1: 0.21837 (0.21145) | > loss_disc_real_2: 0.22212 (0.21565) | > loss_disc_real_3: 0.19045 (0.21950) | > loss_disc_real_4: 0.18760 (0.21489) | > loss_disc_real_5: 0.19602 (0.21388) | > loss_0: 2.29602 (2.32245) | > grad_norm_0: 6.95666 (15.93448) | > loss_gen: 2.47239 (2.55505) | > loss_kl: 2.62815 (2.66268) | > loss_feat: 9.08438 (8.67765) | > loss_mel: 17.71459 (17.76592) | > loss_duration: 1.69812 (1.70734) | > loss_1: 33.59764 (33.36864) | > grad_norm_1: 141.40291 (134.06216) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35260 (2.30335) | > loader_time: 0.04230 (0.03996)  --> STEP: 6213/15287 -- GLOBAL_STEP: 1002075 | > loss_disc: 2.30420 (2.32241) | > loss_disc_real_0: 0.10453 (0.12271) | > loss_disc_real_1: 0.20446 (0.21144) | > loss_disc_real_2: 0.19666 (0.21564) | > loss_disc_real_3: 0.21106 (0.21950) | > loss_disc_real_4: 0.21705 (0.21490) | > loss_disc_real_5: 0.22255 (0.21388) | > loss_0: 2.30420 (2.32241) | > grad_norm_0: 21.09967 (15.93616) | > loss_gen: 2.41247 (2.55497) | > loss_kl: 2.76844 (2.66280) | > loss_feat: 8.52375 (8.67735) | > loss_mel: 18.17934 (17.76546) | > loss_duration: 1.67889 (1.70734) | > loss_1: 33.56289 (33.36794) | > grad_norm_1: 133.57162 (134.01659) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36000 (2.30347) | > loader_time: 0.04760 (0.03996)  --> STEP: 6238/15287 -- GLOBAL_STEP: 1002100 | > loss_disc: 2.32011 (2.32232) | > loss_disc_real_0: 0.13105 (0.12267) | > loss_disc_real_1: 0.23758 (0.21144) | > loss_disc_real_2: 0.19544 (0.21563) | > loss_disc_real_3: 0.20805 (0.21950) | > loss_disc_real_4: 0.23081 (0.21489) | > loss_disc_real_5: 0.20982 (0.21386) | > loss_0: 2.32011 (2.32232) | > grad_norm_0: 11.29215 (15.91978) | > loss_gen: 2.64832 (2.55505) | > loss_kl: 2.69029 (2.66287) | > loss_feat: 8.96930 (8.67796) | > loss_mel: 18.33244 (17.76611) | > loss_duration: 1.73826 (1.70736) | > loss_1: 34.37860 (33.36937) | > grad_norm_1: 153.18782 (133.98476) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38410 (2.30331) | > loader_time: 0.04290 (0.03996)  --> STEP: 6263/15287 -- GLOBAL_STEP: 1002125 | > loss_disc: 2.23088 (2.32245) | > loss_disc_real_0: 0.11713 (0.12266) | > loss_disc_real_1: 0.19640 (0.21146) | > loss_disc_real_2: 0.22683 (0.21567) | > loss_disc_real_3: 0.21338 (0.21951) | > loss_disc_real_4: 0.19217 (0.21493) | > loss_disc_real_5: 0.18416 (0.21387) | > loss_0: 2.23088 (2.32245) | > grad_norm_0: 17.50195 (15.93355) | > loss_gen: 2.45954 (2.55482) | > loss_kl: 2.62141 (2.66293) | > loss_feat: 8.72124 (8.67761) | > loss_mel: 17.98397 (17.76595) | > loss_duration: 1.72984 (1.70737) | > loss_1: 33.51600 (33.36870) | > grad_norm_1: 136.40933 (133.93346) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28960 (2.30317) | > loader_time: 0.03050 (0.03995)  --> STEP: 6288/15287 -- GLOBAL_STEP: 1002150 | > loss_disc: 2.33512 (2.32234) | > loss_disc_real_0: 0.12496 (0.12264) | > loss_disc_real_1: 0.21784 (0.21145) | > loss_disc_real_2: 0.23667 (0.21565) | > loss_disc_real_3: 0.21824 (0.21951) | > loss_disc_real_4: 0.23386 (0.21493) | > loss_disc_real_5: 0.24697 (0.21387) | > loss_0: 2.33512 (2.32234) | > grad_norm_0: 5.34007 (15.92939) | > loss_gen: 2.37925 (2.55481) | > loss_kl: 2.56839 (2.66274) | > loss_feat: 8.62676 (8.67813) | > loss_mel: 17.78105 (17.76573) | > loss_duration: 1.73671 (1.70740) | > loss_1: 33.09216 (33.36885) | > grad_norm_1: 79.45427 (133.92348) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18400 (2.30340) | > loader_time: 0.03430 (0.03996)  --> STEP: 6313/15287 -- GLOBAL_STEP: 1002175 | > loss_disc: 2.34983 (2.32236) | > loss_disc_real_0: 0.12048 (0.12262) | > loss_disc_real_1: 0.21304 (0.21146) | > loss_disc_real_2: 0.18536 (0.21565) | > loss_disc_real_3: 0.24817 (0.21950) | > loss_disc_real_4: 0.21157 (0.21493) | > loss_disc_real_5: 0.19142 (0.21386) | > loss_0: 2.34983 (2.32236) | > grad_norm_0: 17.28600 (15.91267) | > loss_gen: 2.51232 (2.55478) | > loss_kl: 2.68823 (2.66272) | > loss_feat: 8.61021 (8.67808) | > loss_mel: 17.98446 (17.76616) | > loss_duration: 1.69606 (1.70741) | > loss_1: 33.49128 (33.36918) | > grad_norm_1: 145.33290 (133.86078) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43080 (2.30358) | > loader_time: 0.04070 (0.03999)  --> STEP: 6338/15287 -- GLOBAL_STEP: 1002200 | > loss_disc: 2.37171 (2.32236) | > loss_disc_real_0: 0.11229 (0.12263) | > loss_disc_real_1: 0.19568 (0.21145) | > loss_disc_real_2: 0.22481 (0.21564) | > loss_disc_real_3: 0.23144 (0.21950) | > loss_disc_real_4: 0.22141 (0.21494) | > loss_disc_real_5: 0.19619 (0.21385) | > loss_0: 2.37171 (2.32236) | > grad_norm_0: 8.05416 (15.90379) | > loss_gen: 2.71982 (2.55488) | > loss_kl: 2.83824 (2.66283) | > loss_feat: 8.75635 (8.67838) | > loss_mel: 18.30762 (17.76647) | > loss_duration: 1.67536 (1.70740) | > loss_1: 34.29740 (33.37000) | > grad_norm_1: 86.56147 (133.71935) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22500 (2.30345) | > loader_time: 0.04580 (0.03999)  --> STEP: 6363/15287 -- GLOBAL_STEP: 1002225 | > loss_disc: 2.38599 (2.32252) | > loss_disc_real_0: 0.15102 (0.12266) | > loss_disc_real_1: 0.22610 (0.21148) | > loss_disc_real_2: 0.23101 (0.21566) | > loss_disc_real_3: 0.20843 (0.21951) | > loss_disc_real_4: 0.23404 (0.21494) | > loss_disc_real_5: 0.18461 (0.21385) | > loss_0: 2.38599 (2.32252) | > grad_norm_0: 10.03475 (15.88708) | > loss_gen: 2.43951 (2.55474) | > loss_kl: 2.71727 (2.66284) | > loss_feat: 8.70999 (8.67766) | > loss_mel: 18.17016 (17.76683) | > loss_duration: 1.74167 (1.70742) | > loss_1: 33.77861 (33.36952) | > grad_norm_1: 40.91473 (133.48021) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27240 (2.30322) | > loader_time: 0.03070 (0.03998)  --> STEP: 6388/15287 -- GLOBAL_STEP: 1002250 | > loss_disc: 2.41891 (2.32253) | > loss_disc_real_0: 0.13039 (0.12264) | > loss_disc_real_1: 0.19487 (0.21147) | > loss_disc_real_2: 0.20869 (0.21566) | > loss_disc_real_3: 0.22538 (0.21949) | > loss_disc_real_4: 0.19168 (0.21496) | > loss_disc_real_5: 0.20382 (0.21386) | > loss_0: 2.41891 (2.32253) | > grad_norm_0: 10.27769 (15.86783) | > loss_gen: 2.50747 (2.55481) | > loss_kl: 2.67095 (2.66287) | > loss_feat: 8.52631 (8.67802) | > loss_mel: 17.78292 (17.76765) | > loss_duration: 1.68701 (1.70746) | > loss_1: 33.17466 (33.37086) | > grad_norm_1: 75.85448 (133.32268) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21290 (2.30281) | > loader_time: 0.03980 (0.03998)  --> STEP: 6413/15287 -- GLOBAL_STEP: 1002275 | > loss_disc: 2.29811 (2.32263) | > loss_disc_real_0: 0.09058 (0.12266) | > loss_disc_real_1: 0.20384 (0.21149) | > loss_disc_real_2: 0.17737 (0.21568) | > loss_disc_real_3: 0.23430 (0.21950) | > loss_disc_real_4: 0.24853 (0.21496) | > loss_disc_real_5: 0.23712 (0.21384) | > loss_0: 2.29811 (2.32263) | > grad_norm_0: 8.90607 (15.85991) | > loss_gen: 2.61285 (2.55473) | > loss_kl: 2.62514 (2.66283) | > loss_feat: 8.84477 (8.67799) | > loss_mel: 16.92496 (17.76815) | > loss_duration: 1.67906 (1.70746) | > loss_1: 32.68678 (33.37121) | > grad_norm_1: 120.52798 (133.21620) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19900 (2.30286) | > loader_time: 0.03400 (0.03998)  --> STEP: 6438/15287 -- GLOBAL_STEP: 1002300 | > loss_disc: 2.23541 (2.32264) | > loss_disc_real_0: 0.08760 (0.12266) | > loss_disc_real_1: 0.18808 (0.21148) | > loss_disc_real_2: 0.19720 (0.21570) | > loss_disc_real_3: 0.18996 (0.21948) | > loss_disc_real_4: 0.19255 (0.21496) | > loss_disc_real_5: 0.16333 (0.21382) | > loss_0: 2.23541 (2.32264) | > grad_norm_0: 18.81659 (15.87626) | > loss_gen: 2.47892 (2.55455) | > loss_kl: 2.50495 (2.66260) | > loss_feat: 8.73298 (8.67739) | > loss_mel: 17.51889 (17.76776) | > loss_duration: 1.70984 (1.70745) | > loss_1: 32.94557 (33.36980) | > grad_norm_1: 164.56052 (133.20940) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32930 (2.30279) | > loader_time: 0.03650 (0.03997)  --> STEP: 6463/15287 -- GLOBAL_STEP: 1002325 | > loss_disc: 2.35327 (2.32242) | > loss_disc_real_0: 0.16696 (0.12263) | > loss_disc_real_1: 0.20872 (0.21147) | > loss_disc_real_2: 0.21762 (0.21569) | > loss_disc_real_3: 0.23320 (0.21948) | > loss_disc_real_4: 0.22790 (0.21494) | > loss_disc_real_5: 0.21807 (0.21383) | > loss_0: 2.35327 (2.32242) | > grad_norm_0: 28.48312 (15.88425) | > loss_gen: 2.49843 (2.55474) | > loss_kl: 2.50900 (2.66252) | > loss_feat: 8.37348 (8.67757) | > loss_mel: 17.40774 (17.76717) | > loss_duration: 1.71659 (1.70746) | > loss_1: 32.50526 (33.36952) | > grad_norm_1: 118.46599 (133.26886) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10930 (2.30251) | > loader_time: 0.03440 (0.03996)  --> STEP: 6488/15287 -- GLOBAL_STEP: 1002350 | > loss_disc: 2.22449 (2.32230) | > loss_disc_real_0: 0.11437 (0.12260) | > loss_disc_real_1: 0.18690 (0.21145) | > loss_disc_real_2: 0.20614 (0.21568) | > loss_disc_real_3: 0.20572 (0.21946) | > loss_disc_real_4: 0.19994 (0.21493) | > loss_disc_real_5: 0.19842 (0.21384) | > loss_0: 2.22449 (2.32230) | > grad_norm_0: 8.32526 (15.90154) | > loss_gen: 2.67975 (2.55473) | > loss_kl: 2.66668 (2.66249) | > loss_feat: 9.16816 (8.67795) | > loss_mel: 17.60530 (17.76679) | > loss_duration: 1.68977 (1.70747) | > loss_1: 33.80967 (33.36949) | > grad_norm_1: 72.94466 (133.32890) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25550 (2.30240) | > loader_time: 0.03280 (0.03997)  --> STEP: 6513/15287 -- GLOBAL_STEP: 1002375 | > loss_disc: 2.27620 (2.32221) | > loss_disc_real_0: 0.09356 (0.12258) | > loss_disc_real_1: 0.19583 (0.21142) | > loss_disc_real_2: 0.20094 (0.21565) | > loss_disc_real_3: 0.19633 (0.21946) | > loss_disc_real_4: 0.20508 (0.21495) | > loss_disc_real_5: 0.19116 (0.21384) | > loss_0: 2.27620 (2.32221) | > grad_norm_0: 12.63596 (15.90063) | > loss_gen: 2.66257 (2.55471) | > loss_kl: 2.53390 (2.66237) | > loss_feat: 8.57400 (8.67805) | > loss_mel: 17.24520 (17.76651) | > loss_duration: 1.67998 (1.70748) | > loss_1: 32.69564 (33.36920) | > grad_norm_1: 147.09622 (133.35909) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19500 (2.30226) | > loader_time: 0.03920 (0.03997)  --> STEP: 6538/15287 -- GLOBAL_STEP: 1002400 | > loss_disc: 2.30270 (2.32205) | > loss_disc_real_0: 0.17456 (0.12258) | > loss_disc_real_1: 0.18008 (0.21140) | > loss_disc_real_2: 0.15925 (0.21564) | > loss_disc_real_3: 0.23019 (0.21945) | > loss_disc_real_4: 0.22490 (0.21494) | > loss_disc_real_5: 0.18095 (0.21382) | > loss_0: 2.30270 (2.32205) | > grad_norm_0: 22.13148 (15.90654) | > loss_gen: 2.47316 (2.55480) | > loss_kl: 2.75511 (2.66263) | > loss_feat: 8.29592 (8.67855) | > loss_mel: 17.62432 (17.76649) | > loss_duration: 1.71261 (1.70749) | > loss_1: 32.86113 (33.37005) | > grad_norm_1: 153.08176 (133.39378) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28190 (2.30221) | > loader_time: 0.03920 (0.03998)  --> STEP: 6563/15287 -- GLOBAL_STEP: 1002425 | > loss_disc: 2.25991 (2.32204) | > loss_disc_real_0: 0.12647 (0.12254) | > loss_disc_real_1: 0.18082 (0.21139) | > loss_disc_real_2: 0.20425 (0.21564) | > loss_disc_real_3: 0.19181 (0.21945) | > loss_disc_real_4: 0.20518 (0.21495) | > loss_disc_real_5: 0.22017 (0.21383) | > loss_0: 2.25991 (2.32204) | > grad_norm_0: 19.21825 (15.90070) | > loss_gen: 2.54578 (2.55468) | > loss_kl: 2.69209 (2.66269) | > loss_feat: 9.09312 (8.67822) | > loss_mel: 17.64443 (17.76653) | > loss_duration: 1.70888 (1.70749) | > loss_1: 33.68429 (33.36969) | > grad_norm_1: 170.92674 (133.44688) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21970 (2.30189) | > loader_time: 0.04140 (0.03997)  --> STEP: 6588/15287 -- GLOBAL_STEP: 1002450 | > loss_disc: 2.33041 (2.32210) | > loss_disc_real_0: 0.15091 (0.12256) | > loss_disc_real_1: 0.21029 (0.21138) | > loss_disc_real_2: 0.21580 (0.21564) | > loss_disc_real_3: 0.25780 (0.21944) | > loss_disc_real_4: 0.22159 (0.21495) | > loss_disc_real_5: 0.21987 (0.21382) | > loss_0: 2.33041 (2.32210) | > grad_norm_0: 16.61068 (15.89916) | > loss_gen: 2.52300 (2.55455) | > loss_kl: 2.61050 (2.66271) | > loss_feat: 8.61265 (8.67797) | > loss_mel: 18.02810 (17.76585) | > loss_duration: 1.72148 (1.70750) | > loss_1: 33.49572 (33.36867) | > grad_norm_1: 86.41058 (133.41225) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17160 (2.30175) | > loader_time: 0.03840 (0.03998)  --> STEP: 6613/15287 -- GLOBAL_STEP: 1002475 | > loss_disc: 2.37493 (2.32202) | > loss_disc_real_0: 0.15115 (0.12254) | > loss_disc_real_1: 0.26379 (0.21138) | > loss_disc_real_2: 0.22057 (0.21562) | > loss_disc_real_3: 0.22873 (0.21941) | > loss_disc_real_4: 0.24236 (0.21496) | > loss_disc_real_5: 0.21372 (0.21382) | > loss_0: 2.37493 (2.32202) | > grad_norm_0: 26.63145 (15.89570) | > loss_gen: 2.51054 (2.55455) | > loss_kl: 2.77393 (2.66270) | > loss_feat: 8.55646 (8.67843) | > loss_mel: 18.35640 (17.76620) | > loss_duration: 1.67969 (1.70748) | > loss_1: 33.87703 (33.36945) | > grad_norm_1: 198.09839 (133.38051) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31900 (2.30154) | > loader_time: 0.03710 (0.03998)  --> STEP: 6638/15287 -- GLOBAL_STEP: 1002500 | > loss_disc: 2.33774 (2.32194) | > loss_disc_real_0: 0.10726 (0.12253) | > loss_disc_real_1: 0.21573 (0.21139) | > loss_disc_real_2: 0.18798 (0.21561) | > loss_disc_real_3: 0.24312 (0.21941) | > loss_disc_real_4: 0.23228 (0.21496) | > loss_disc_real_5: 0.19280 (0.21380) | > loss_0: 2.33774 (2.32194) | > grad_norm_0: 22.08016 (15.89676) | > loss_gen: 2.45773 (2.55457) | > loss_kl: 2.66049 (2.66269) | > loss_feat: 8.82087 (8.67847) | > loss_mel: 18.02106 (17.76595) | > loss_duration: 1.69603 (1.70751) | > loss_1: 33.65617 (33.36928) | > grad_norm_1: 188.51236 (133.42499) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36410 (2.30132) | > loader_time: 0.03540 (0.03997)  --> STEP: 6663/15287 -- GLOBAL_STEP: 1002525 | > loss_disc: 2.35668 (2.32191) | > loss_disc_real_0: 0.11614 (0.12253) | > loss_disc_real_1: 0.24982 (0.21140) | > loss_disc_real_2: 0.22279 (0.21561) | > loss_disc_real_3: 0.23900 (0.21941) | > loss_disc_real_4: 0.19454 (0.21495) | > loss_disc_real_5: 0.22364 (0.21379) | > loss_0: 2.35668 (2.32191) | > grad_norm_0: 13.26594 (15.89891) | > loss_gen: 2.55836 (2.55457) | > loss_kl: 2.79877 (2.66268) | > loss_feat: 9.43257 (8.67857) | > loss_mel: 18.50192 (17.76579) | > loss_duration: 1.73269 (1.70751) | > loss_1: 35.02431 (33.36920) | > grad_norm_1: 64.19032 (133.40321) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03960 (2.30126) | > loader_time: 0.03350 (0.03995)  --> STEP: 6688/15287 -- GLOBAL_STEP: 1002550 | > loss_disc: 2.32524 (2.32194) | > loss_disc_real_0: 0.16907 (0.12259) | > loss_disc_real_1: 0.20551 (0.21139) | > loss_disc_real_2: 0.21860 (0.21560) | > loss_disc_real_3: 0.25323 (0.21941) | > loss_disc_real_4: 0.22322 (0.21496) | > loss_disc_real_5: 0.19040 (0.21378) | > loss_0: 2.32524 (2.32194) | > grad_norm_0: 13.78741 (15.88816) | > loss_gen: 2.59949 (2.55475) | > loss_kl: 2.52636 (2.66276) | > loss_feat: 8.39668 (8.67865) | > loss_mel: 17.28442 (17.76607) | > loss_duration: 1.71872 (1.70752) | > loss_1: 32.52567 (33.36987) | > grad_norm_1: 78.02259 (133.25395) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06510 (2.30105) | > loader_time: 0.03770 (0.03995)  --> STEP: 6713/15287 -- GLOBAL_STEP: 1002575 | > loss_disc: 2.33872 (2.32197) | > loss_disc_real_0: 0.16061 (0.12257) | > loss_disc_real_1: 0.20167 (0.21141) | > loss_disc_real_2: 0.21435 (0.21561) | > loss_disc_real_3: 0.20273 (0.21942) | > loss_disc_real_4: 0.19336 (0.21495) | > loss_disc_real_5: 0.21276 (0.21378) | > loss_0: 2.33872 (2.32197) | > grad_norm_0: 16.94044 (15.88646) | > loss_gen: 2.61300 (2.55469) | > loss_kl: 2.70871 (2.66283) | > loss_feat: 8.75585 (8.67831) | > loss_mel: 17.45631 (17.76582) | > loss_duration: 1.70347 (1.70753) | > loss_1: 33.23735 (33.36929) | > grad_norm_1: 54.75222 (133.20985) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18400 (2.30085) | > loader_time: 0.03230 (0.03994)  --> STEP: 6738/15287 -- GLOBAL_STEP: 1002600 | > loss_disc: 2.34154 (2.32190) | > loss_disc_real_0: 0.16966 (0.12260) | > loss_disc_real_1: 0.25559 (0.21144) | > loss_disc_real_2: 0.27953 (0.21565) | > loss_disc_real_3: 0.21565 (0.21942) | > loss_disc_real_4: 0.19470 (0.21494) | > loss_disc_real_5: 0.20097 (0.21377) | > loss_0: 2.34154 (2.32190) | > grad_norm_0: 22.75108 (15.88249) | > loss_gen: 2.54610 (2.55502) | > loss_kl: 2.68187 (2.66274) | > loss_feat: 9.04154 (8.67879) | > loss_mel: 17.66269 (17.76574) | > loss_duration: 1.71472 (1.70755) | > loss_1: 33.64692 (33.36995) | > grad_norm_1: 209.40425 (133.22414) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.78300 (2.30071) | > loader_time: 0.04120 (0.03993)  --> STEP: 6763/15287 -- GLOBAL_STEP: 1002625 | > loss_disc: 2.37559 (2.32189) | > loss_disc_real_0: 0.13358 (0.12260) | > loss_disc_real_1: 0.21357 (0.21144) | > loss_disc_real_2: 0.23144 (0.21564) | > loss_disc_real_3: 0.23555 (0.21941) | > loss_disc_real_4: 0.22422 (0.21493) | > loss_disc_real_5: 0.21133 (0.21376) | > loss_0: 2.37559 (2.32189) | > grad_norm_0: 10.56689 (15.88611) | > loss_gen: 2.47847 (2.55489) | > loss_kl: 2.76709 (2.66284) | > loss_feat: 8.27256 (8.67858) | > loss_mel: 17.63649 (17.76534) | > loss_duration: 1.70462 (1.70758) | > loss_1: 32.85923 (33.36936) | > grad_norm_1: 140.62102 (133.21255) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22250 (2.30042) | > loader_time: 0.03000 (0.03992)  --> STEP: 6788/15287 -- GLOBAL_STEP: 1002650 | > loss_disc: 2.32523 (2.32180) | > loss_disc_real_0: 0.08439 (0.12258) | > loss_disc_real_1: 0.19814 (0.21143) | > loss_disc_real_2: 0.21546 (0.21563) | > loss_disc_real_3: 0.20805 (0.21942) | > loss_disc_real_4: 0.21112 (0.21493) | > loss_disc_real_5: 0.22894 (0.21378) | > loss_0: 2.32523 (2.32180) | > grad_norm_0: 12.21406 (15.89084) | > loss_gen: 2.62699 (2.55494) | > loss_kl: 2.81595 (2.66290) | > loss_feat: 8.74892 (8.67882) | > loss_mel: 17.81881 (17.76461) | > loss_duration: 1.73753 (1.70760) | > loss_1: 33.74820 (33.36901) | > grad_norm_1: 124.21639 (133.23763) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17980 (2.30026) | > loader_time: 0.03800 (0.03992)  --> STEP: 6813/15287 -- GLOBAL_STEP: 1002675 | > loss_disc: 2.32138 (2.32173) | > loss_disc_real_0: 0.09928 (0.12255) | > loss_disc_real_1: 0.20032 (0.21142) | > loss_disc_real_2: 0.22374 (0.21561) | > loss_disc_real_3: 0.19038 (0.21940) | > loss_disc_real_4: 0.18633 (0.21491) | > loss_disc_real_5: 0.21874 (0.21378) | > loss_0: 2.32138 (2.32173) | > grad_norm_0: 10.61964 (15.88649) | > loss_gen: 2.64913 (2.55483) | > loss_kl: 2.77593 (2.66293) | > loss_feat: 8.87923 (8.67908) | > loss_mel: 18.43524 (17.76471) | > loss_duration: 1.71896 (1.70763) | > loss_1: 34.45848 (33.36931) | > grad_norm_1: 126.10774 (133.21791) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26110 (2.30084) | > loader_time: 0.03270 (0.03992)  --> STEP: 6838/15287 -- GLOBAL_STEP: 1002700 | > loss_disc: 2.36767 (2.32169) | > loss_disc_real_0: 0.08856 (0.12254) | > loss_disc_real_1: 0.22372 (0.21141) | > loss_disc_real_2: 0.21279 (0.21560) | > loss_disc_real_3: 0.21444 (0.21939) | > loss_disc_real_4: 0.22515 (0.21490) | > loss_disc_real_5: 0.22398 (0.21378) | > loss_0: 2.36767 (2.32169) | > grad_norm_0: 12.54732 (15.88489) | > loss_gen: 2.52988 (2.55483) | > loss_kl: 2.69613 (2.66298) | > loss_feat: 8.65675 (8.67981) | > loss_mel: 17.96714 (17.76497) | > loss_duration: 1.69334 (1.70767) | > loss_1: 33.54324 (33.37037) | > grad_norm_1: 167.50902 (133.24867) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58470 (2.30058) | > loader_time: 0.03980 (0.03992)  --> STEP: 6863/15287 -- GLOBAL_STEP: 1002725 | > loss_disc: 2.30446 (2.32165) | > loss_disc_real_0: 0.10836 (0.12255) | > loss_disc_real_1: 0.21264 (0.21142) | > loss_disc_real_2: 0.22124 (0.21560) | > loss_disc_real_3: 0.22124 (0.21940) | > loss_disc_real_4: 0.22513 (0.21491) | > loss_disc_real_5: 0.21206 (0.21377) | > loss_0: 2.30446 (2.32165) | > grad_norm_0: 12.13464 (15.89209) | > loss_gen: 2.51535 (2.55480) | > loss_kl: 2.54634 (2.66297) | > loss_feat: 8.21905 (8.67979) | > loss_mel: 17.32964 (17.76478) | > loss_duration: 1.72035 (1.70767) | > loss_1: 32.33072 (33.37012) | > grad_norm_1: 112.99850 (133.29332) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95890 (2.30021) | > loader_time: 0.03810 (0.03991)  --> STEP: 6888/15287 -- GLOBAL_STEP: 1002750 | > loss_disc: 2.41617 (2.32178) | > loss_disc_real_0: 0.13453 (0.12257) | > loss_disc_real_1: 0.21073 (0.21145) | > loss_disc_real_2: 0.21337 (0.21562) | > loss_disc_real_3: 0.24301 (0.21941) | > loss_disc_real_4: 0.24143 (0.21493) | > loss_disc_real_5: 0.23112 (0.21378) | > loss_0: 2.41617 (2.32178) | > grad_norm_0: 15.03687 (15.88029) | > loss_gen: 2.38471 (2.55475) | > loss_kl: 2.65255 (2.66301) | > loss_feat: 8.35404 (8.67933) | > loss_mel: 17.35868 (17.76486) | > loss_duration: 1.71495 (1.70770) | > loss_1: 32.46494 (33.36975) | > grad_norm_1: 67.52348 (133.11617) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21990 (2.29951) | > loader_time: 0.03650 (0.03991)  --> STEP: 6913/15287 -- GLOBAL_STEP: 1002775 | > loss_disc: 2.35358 (2.32182) | > loss_disc_real_0: 0.08583 (0.12258) | > loss_disc_real_1: 0.24385 (0.21146) | > loss_disc_real_2: 0.21155 (0.21562) | > loss_disc_real_3: 0.20739 (0.21941) | > loss_disc_real_4: 0.22193 (0.21492) | > loss_disc_real_5: 0.21219 (0.21377) | > loss_0: 2.35358 (2.32182) | > grad_norm_0: 10.73188 (15.86413) | > loss_gen: 2.64171 (2.55483) | > loss_kl: 2.66258 (2.66300) | > loss_feat: 8.32547 (8.67920) | > loss_mel: 17.94847 (17.76543) | > loss_duration: 1.74443 (1.70770) | > loss_1: 33.32266 (33.37026) | > grad_norm_1: 157.46327 (132.98637) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.12240 (2.29932) | > loader_time: 0.03840 (0.03991)  --> STEP: 6938/15287 -- GLOBAL_STEP: 1002800 | > loss_disc: 2.40781 (2.32193) | > loss_disc_real_0: 0.12124 (0.12259) | > loss_disc_real_1: 0.22279 (0.21145) | > loss_disc_real_2: 0.23645 (0.21564) | > loss_disc_real_3: 0.19197 (0.21942) | > loss_disc_real_4: 0.21241 (0.21493) | > loss_disc_real_5: 0.22691 (0.21379) | > loss_0: 2.40781 (2.32193) | > grad_norm_0: 24.52649 (15.86876) | > loss_gen: 2.44151 (2.55473) | > loss_kl: 2.53475 (2.66291) | > loss_feat: 7.75754 (8.67861) | > loss_mel: 17.12367 (17.76558) | > loss_duration: 1.70996 (1.70771) | > loss_1: 31.56743 (33.36965) | > grad_norm_1: 75.39146 (132.97287) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15060 (2.29997) | > loader_time: 0.04870 (0.03991)  --> STEP: 6963/15287 -- GLOBAL_STEP: 1002825 | > loss_disc: 2.40917 (2.32188) | > loss_disc_real_0: 0.13645 (0.12258) | > loss_disc_real_1: 0.21980 (0.21146) | > loss_disc_real_2: 0.19923 (0.21565) | > loss_disc_real_3: 0.22684 (0.21941) | > loss_disc_real_4: 0.21564 (0.21493) | > loss_disc_real_5: 0.21359 (0.21378) | > loss_0: 2.40917 (2.32188) | > grad_norm_0: 21.72839 (15.85666) | > loss_gen: 2.51475 (2.55473) | > loss_kl: 2.62087 (2.66278) | > loss_feat: 8.83686 (8.67848) | > loss_mel: 18.07619 (17.76561) | > loss_duration: 1.71758 (1.70771) | > loss_1: 33.76626 (33.36943) | > grad_norm_1: 65.73085 (132.82942) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42440 (2.30003) | > loader_time: 0.03770 (0.03992)  --> STEP: 6988/15287 -- GLOBAL_STEP: 1002850 | > loss_disc: 2.33397 (2.32194) | > loss_disc_real_0: 0.12430 (0.12262) | > loss_disc_real_1: 0.17493 (0.21145) | > loss_disc_real_2: 0.20743 (0.21564) | > loss_disc_real_3: 0.22345 (0.21941) | > loss_disc_real_4: 0.20525 (0.21492) | > loss_disc_real_5: 0.17230 (0.21378) | > loss_0: 2.33397 (2.32194) | > grad_norm_0: 14.06608 (15.85594) | > loss_gen: 2.51612 (2.55471) | > loss_kl: 2.66244 (2.66300) | > loss_feat: 8.81775 (8.67827) | > loss_mel: 18.09264 (17.76575) | > loss_duration: 1.74152 (1.70769) | > loss_1: 33.83047 (33.36955) | > grad_norm_1: 161.13889 (132.81741) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03470 (2.30011) | > loader_time: 0.04390 (0.03991)  --> STEP: 7013/15287 -- GLOBAL_STEP: 1002875 | > loss_disc: 2.30511 (2.32205) | > loss_disc_real_0: 0.11729 (0.12262) | > loss_disc_real_1: 0.20189 (0.21145) | > loss_disc_real_2: 0.21429 (0.21565) | > loss_disc_real_3: 0.20948 (0.21943) | > loss_disc_real_4: 0.20905 (0.21491) | > loss_disc_real_5: 0.20297 (0.21378) | > loss_0: 2.30511 (2.32205) | > grad_norm_0: 7.24286 (15.85430) | > loss_gen: 2.61341 (2.55455) | > loss_kl: 2.71804 (2.66284) | > loss_feat: 9.09028 (8.67794) | > loss_mel: 18.21494 (17.76584) | > loss_duration: 1.71105 (1.70771) | > loss_1: 34.34772 (33.36901) | > grad_norm_1: 70.69292 (132.68993) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09520 (2.30045) | > loader_time: 0.03830 (0.03991)  --> STEP: 7038/15287 -- GLOBAL_STEP: 1002900 | > loss_disc: 2.26405 (2.32221) | > loss_disc_real_0: 0.12301 (0.12268) | > loss_disc_real_1: 0.21373 (0.21145) | > loss_disc_real_2: 0.20915 (0.21567) | > loss_disc_real_3: 0.21872 (0.21942) | > loss_disc_real_4: 0.21863 (0.21493) | > loss_disc_real_5: 0.20088 (0.21378) | > loss_0: 2.26405 (2.32221) | > grad_norm_0: 19.40255 (15.84262) | > loss_gen: 2.76015 (2.55448) | > loss_kl: 2.55612 (2.66276) | > loss_feat: 9.25922 (8.67745) | > loss_mel: 18.11364 (17.76614) | > loss_duration: 1.74428 (1.70775) | > loss_1: 34.43341 (33.36871) | > grad_norm_1: 63.19833 (132.46620) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.74730 (2.30007) | > loader_time: 0.04220 (0.03990)  --> STEP: 7063/15287 -- GLOBAL_STEP: 1002925 | > loss_disc: 2.24010 (2.32227) | > loss_disc_real_0: 0.08575 (0.12272) | > loss_disc_real_1: 0.20791 (0.21145) | > loss_disc_real_2: 0.23178 (0.21568) | > loss_disc_real_3: 0.19070 (0.21942) | > loss_disc_real_4: 0.19141 (0.21491) | > loss_disc_real_5: 0.20134 (0.21377) | > loss_0: 2.24010 (2.32227) | > grad_norm_0: 7.16505 (15.83659) | > loss_gen: 2.77938 (2.55455) | > loss_kl: 2.59029 (2.66280) | > loss_feat: 9.12992 (8.67728) | > loss_mel: 18.01851 (17.76699) | > loss_duration: 1.78226 (1.70781) | > loss_1: 34.30037 (33.36954) | > grad_norm_1: 76.38303 (132.36102) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11470 (2.30025) | > loader_time: 0.03300 (0.03990)  --> STEP: 7088/15287 -- GLOBAL_STEP: 1002950 | > loss_disc: 2.34532 (2.32230) | > loss_disc_real_0: 0.10650 (0.12275) | > loss_disc_real_1: 0.22825 (0.21148) | > loss_disc_real_2: 0.21351 (0.21568) | > loss_disc_real_3: 0.20549 (0.21942) | > loss_disc_real_4: 0.22465 (0.21492) | > loss_disc_real_5: 0.19201 (0.21378) | > loss_0: 2.34532 (2.32230) | > grad_norm_0: 19.26511 (15.84154) | > loss_gen: 2.47201 (2.55460) | > loss_kl: 2.75787 (2.66268) | > loss_feat: 9.02063 (8.67739) | > loss_mel: 17.41384 (17.76722) | > loss_duration: 1.69876 (1.70782) | > loss_1: 33.36311 (33.36983) | > grad_norm_1: 140.00354 (132.32227) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86470 (2.30001) | > loader_time: 0.03630 (0.03990)  --> STEP: 7113/15287 -- GLOBAL_STEP: 1002975 | > loss_disc: 2.33593 (2.32215) | > loss_disc_real_0: 0.09809 (0.12271) | > loss_disc_real_1: 0.21208 (0.21145) | > loss_disc_real_2: 0.23148 (0.21567) | > loss_disc_real_3: 0.22257 (0.21942) | > loss_disc_real_4: 0.22183 (0.21491) | > loss_disc_real_5: 0.23743 (0.21378) | > loss_0: 2.33593 (2.32215) | > grad_norm_0: 25.33968 (15.85361) | > loss_gen: 2.46666 (2.55464) | > loss_kl: 2.52676 (2.66244) | > loss_feat: 8.28046 (8.67766) | > loss_mel: 17.28106 (17.76671) | > loss_duration: 1.71705 (1.70782) | > loss_1: 32.27200 (33.36938) | > grad_norm_1: 154.74133 (132.33101) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09450 (2.29983) | > loader_time: 0.03390 (0.03989)  --> STEP: 7138/15287 -- GLOBAL_STEP: 1003000 | > loss_disc: 2.28947 (2.32201) | > loss_disc_real_0: 0.09932 (0.12266) | > loss_disc_real_1: 0.19813 (0.21143) | > loss_disc_real_2: 0.21160 (0.21565) | > loss_disc_real_3: 0.22225 (0.21941) | > loss_disc_real_4: 0.21159 (0.21491) | > loss_disc_real_5: 0.23219 (0.21378) | > loss_0: 2.28947 (2.32201) | > grad_norm_0: 16.93081 (15.86360) | > loss_gen: 2.52936 (2.55467) | > loss_kl: 2.67175 (2.66236) | > loss_feat: 9.09052 (8.67869) | > loss_mel: 17.34203 (17.76658) | > loss_duration: 1.71424 (1.70782) | > loss_1: 33.34789 (33.37024) | > grad_norm_1: 158.98427 (132.38776) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07690 (2.29976) | > loader_time: 0.03210 (0.03989)  --> STEP: 7163/15287 -- GLOBAL_STEP: 1003025 | > loss_disc: 2.24965 (2.32190) | > loss_disc_real_0: 0.11203 (0.12264) | > loss_disc_real_1: 0.23640 (0.21142) | > loss_disc_real_2: 0.23209 (0.21564) | > loss_disc_real_3: 0.22051 (0.21941) | > loss_disc_real_4: 0.23826 (0.21491) | > loss_disc_real_5: 0.18923 (0.21377) | > loss_0: 2.24965 (2.32190) | > grad_norm_0: 9.42325 (15.86839) | > loss_gen: 2.53973 (2.55464) | > loss_kl: 2.62981 (2.66239) | > loss_feat: 8.70410 (8.67897) | > loss_mel: 17.41088 (17.76615) | > loss_duration: 1.69244 (1.70783) | > loss_1: 32.97696 (33.37010) | > grad_norm_1: 157.97278 (132.46555) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.65200 (2.29988) | > loader_time: 0.05810 (0.03988)  --> STEP: 7188/15287 -- GLOBAL_STEP: 1003050 | > loss_disc: 2.25455 (2.32183) | > loss_disc_real_0: 0.11509 (0.12261) | > loss_disc_real_1: 0.19535 (0.21139) | > loss_disc_real_2: 0.19756 (0.21562) | > loss_disc_real_3: 0.20927 (0.21939) | > loss_disc_real_4: 0.19781 (0.21489) | > loss_disc_real_5: 0.19176 (0.21377) | > loss_0: 2.25455 (2.32183) | > grad_norm_0: 10.58543 (15.87407) | > loss_gen: 2.52252 (2.55451) | > loss_kl: 2.66732 (2.66238) | > loss_feat: 8.99377 (8.67898) | > loss_mel: 17.99761 (17.76567) | > loss_duration: 1.71999 (1.70783) | > loss_1: 33.90121 (33.36950) | > grad_norm_1: 105.75407 (132.48332) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10580 (2.29955) | > loader_time: 0.04980 (0.03988)  --> STEP: 7213/15287 -- GLOBAL_STEP: 1003075 | > loss_disc: 2.26885 (2.32193) | > loss_disc_real_0: 0.16111 (0.12268) | > loss_disc_real_1: 0.17499 (0.21138) | > loss_disc_real_2: 0.22976 (0.21562) | > loss_disc_real_3: 0.20038 (0.21940) | > loss_disc_real_4: 0.17405 (0.21489) | > loss_disc_real_5: 0.22169 (0.21377) | > loss_0: 2.26885 (2.32193) | > grad_norm_0: 26.44765 (15.87571) | > loss_gen: 2.73821 (2.55452) | > loss_kl: 2.66764 (2.66238) | > loss_feat: 8.86029 (8.67875) | > loss_mel: 18.09587 (17.76559) | > loss_duration: 1.69368 (1.70786) | > loss_1: 34.05568 (33.36926) | > grad_norm_1: 53.20986 (132.40244) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33040 (2.29990) | > loader_time: 0.03930 (0.03987)  --> STEP: 7238/15287 -- GLOBAL_STEP: 1003100 | > loss_disc: 2.29785 (2.32187) | > loss_disc_real_0: 0.11237 (0.12271) | > loss_disc_real_1: 0.19725 (0.21137) | > loss_disc_real_2: 0.21230 (0.21563) | > loss_disc_real_3: 0.22763 (0.21940) | > loss_disc_real_4: 0.19565 (0.21488) | > loss_disc_real_5: 0.19997 (0.21376) | > loss_0: 2.29785 (2.32187) | > grad_norm_0: 5.51352 (15.87647) | > loss_gen: 2.87517 (2.55464) | > loss_kl: 2.77607 (2.66234) | > loss_feat: 9.17507 (8.67931) | > loss_mel: 17.99287 (17.76543) | > loss_duration: 1.71100 (1.70789) | > loss_1: 34.53017 (33.36977) | > grad_norm_1: 76.61749 (132.40939) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15150 (2.29974) | > loader_time: 0.04910 (0.03987)  --> STEP: 7263/15287 -- GLOBAL_STEP: 1003125 | > loss_disc: 2.36342 (2.32205) | > loss_disc_real_0: 0.07298 (0.12280) | > loss_disc_real_1: 0.18951 (0.21139) | > loss_disc_real_2: 0.20303 (0.21566) | > loss_disc_real_3: 0.17287 (0.21940) | > loss_disc_real_4: 0.20943 (0.21491) | > loss_disc_real_5: 0.20384 (0.21376) | > loss_0: 2.36342 (2.32205) | > grad_norm_0: 6.60631 (15.87469) | > loss_gen: 2.49772 (2.55464) | > loss_kl: 2.64027 (2.66230) | > loss_feat: 8.37573 (8.67850) | > loss_mel: 17.98809 (17.76515) | > loss_duration: 1.70932 (1.70791) | > loss_1: 33.21113 (33.36865) | > grad_norm_1: 75.71281 (132.27652) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17030 (2.29982) | > loader_time: 0.03640 (0.03987)  --> STEP: 7288/15287 -- GLOBAL_STEP: 1003150 | > loss_disc: 2.33446 (2.32214) | > loss_disc_real_0: 0.11417 (0.12279) | > loss_disc_real_1: 0.22899 (0.21142) | > loss_disc_real_2: 0.24415 (0.21568) | > loss_disc_real_3: 0.23711 (0.21940) | > loss_disc_real_4: 0.22753 (0.21491) | > loss_disc_real_5: 0.24556 (0.21377) | > loss_0: 2.33446 (2.32214) | > grad_norm_0: 13.05565 (15.86642) | > loss_gen: 2.56975 (2.55463) | > loss_kl: 2.66187 (2.66232) | > loss_feat: 8.68159 (8.67829) | > loss_mel: 18.39811 (17.76460) | > loss_duration: 1.73188 (1.70795) | > loss_1: 34.04320 (33.36793) | > grad_norm_1: 76.90852 (132.20026) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13750 (2.30045) | > loader_time: 0.03630 (0.03987)  --> STEP: 7313/15287 -- GLOBAL_STEP: 1003175 | > loss_disc: 2.39184 (2.32213) | > loss_disc_real_0: 0.15949 (0.12277) | > loss_disc_real_1: 0.21095 (0.21142) | > loss_disc_real_2: 0.23335 (0.21568) | > loss_disc_real_3: 0.23541 (0.21939) | > loss_disc_real_4: 0.23776 (0.21489) | > loss_disc_real_5: 0.23827 (0.21376) | > loss_0: 2.39184 (2.32213) | > grad_norm_0: 9.20159 (15.86119) | > loss_gen: 2.56709 (2.55448) | > loss_kl: 2.63280 (2.66235) | > loss_feat: 8.48403 (8.67831) | > loss_mel: 17.32747 (17.76438) | > loss_duration: 1.73455 (1.70798) | > loss_1: 32.74595 (33.36765) | > grad_norm_1: 102.54626 (132.16212) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04270 (2.30047) | > loader_time: 0.04350 (0.03987)  --> STEP: 7338/15287 -- GLOBAL_STEP: 1003200 | > loss_disc: 2.31056 (2.32212) | > loss_disc_real_0: 0.12333 (0.12274) | > loss_disc_real_1: 0.19711 (0.21141) | > loss_disc_real_2: 0.23521 (0.21570) | > loss_disc_real_3: 0.23652 (0.21938) | > loss_disc_real_4: 0.25621 (0.21488) | > loss_disc_real_5: 0.18446 (0.21375) | > loss_0: 2.31056 (2.32212) | > grad_norm_0: 26.14591 (15.85305) | > loss_gen: 2.52849 (2.55442) | > loss_kl: 2.63255 (2.66233) | > loss_feat: 8.82360 (8.67829) | > loss_mel: 18.25870 (17.76412) | > loss_duration: 1.70441 (1.70798) | > loss_1: 33.94775 (33.36729) | > grad_norm_1: 196.54140 (132.10130) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94730 (2.30034) | > loader_time: 0.03240 (0.03986)  --> STEP: 7363/15287 -- GLOBAL_STEP: 1003225 | > loss_disc: 2.29525 (2.32199) | > loss_disc_real_0: 0.10809 (0.12271) | > loss_disc_real_1: 0.19144 (0.21140) | > loss_disc_real_2: 0.19258 (0.21569) | > loss_disc_real_3: 0.21936 (0.21936) | > loss_disc_real_4: 0.22221 (0.21489) | > loss_disc_real_5: 0.25981 (0.21373) | > loss_0: 2.29525 (2.32199) | > grad_norm_0: 8.09698 (15.85879) | > loss_gen: 2.56978 (2.55442) | > loss_kl: 2.75681 (2.66237) | > loss_feat: 8.97026 (8.67855) | > loss_mel: 18.19208 (17.76376) | > loss_duration: 1.69424 (1.70799) | > loss_1: 34.18317 (33.36724) | > grad_norm_1: 119.75501 (132.14458) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.57750 (2.30070) | > loader_time: 0.03420 (0.03986)  --> STEP: 7388/15287 -- GLOBAL_STEP: 1003250 | > loss_disc: 2.30759 (2.32200) | > loss_disc_real_0: 0.10468 (0.12274) | > loss_disc_real_1: 0.22548 (0.21140) | > loss_disc_real_2: 0.23809 (0.21569) | > loss_disc_real_3: 0.23863 (0.21936) | > loss_disc_real_4: 0.22769 (0.21489) | > loss_disc_real_5: 0.21636 (0.21373) | > loss_0: 2.30759 (2.32200) | > grad_norm_0: 24.88104 (15.86209) | > loss_gen: 2.50620 (2.55438) | > loss_kl: 2.73702 (2.66248) | > loss_feat: 9.02010 (8.67878) | > loss_mel: 17.62281 (17.76336) | > loss_duration: 1.68438 (1.70797) | > loss_1: 33.57051 (33.36713) | > grad_norm_1: 181.27077 (132.17674) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31030 (2.30092) | > loader_time: 0.04800 (0.03987)  --> STEP: 7413/15287 -- GLOBAL_STEP: 1003275 | > loss_disc: 2.23660 (2.32188) | > loss_disc_real_0: 0.12964 (0.12272) | > loss_disc_real_1: 0.20803 (0.21138) | > loss_disc_real_2: 0.19068 (0.21569) | > loss_disc_real_3: 0.22595 (0.21936) | > loss_disc_real_4: 0.21965 (0.21490) | > loss_disc_real_5: 0.21775 (0.21373) | > loss_0: 2.23660 (2.32188) | > grad_norm_0: 13.67545 (15.86323) | > loss_gen: 2.60681 (2.55446) | > loss_kl: 2.65838 (2.66245) | > loss_feat: 8.93940 (8.67925) | > loss_mel: 18.06485 (17.76304) | > loss_duration: 1.74910 (1.70802) | > loss_1: 34.01853 (33.36740) | > grad_norm_1: 155.07327 (132.24423) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86650 (2.30132) | > loader_time: 0.04600 (0.03987)  --> STEP: 7438/15287 -- GLOBAL_STEP: 1003300 | > loss_disc: 2.24984 (2.32180) | > loss_disc_real_0: 0.08578 (0.12272) | > loss_disc_real_1: 0.18936 (0.21138) | > loss_disc_real_2: 0.21308 (0.21568) | > loss_disc_real_3: 0.20526 (0.21936) | > loss_disc_real_4: 0.18581 (0.21489) | > loss_disc_real_5: 0.22600 (0.21376) | > loss_0: 2.24984 (2.32180) | > grad_norm_0: 16.96835 (15.87113) | > loss_gen: 2.36402 (2.55453) | > loss_kl: 2.78356 (2.66242) | > loss_feat: 8.80156 (8.67980) | > loss_mel: 18.03858 (17.76258) | > loss_duration: 1.71495 (1.70802) | > loss_1: 33.70267 (33.36752) | > grad_norm_1: 137.53767 (132.24480) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 4.09020 (2.30119) | > loader_time: 0.05110 (0.03988)  --> STEP: 7463/15287 -- GLOBAL_STEP: 1003325 | > loss_disc: 2.31076 (2.32176) | > loss_disc_real_0: 0.12609 (0.12271) | > loss_disc_real_1: 0.21799 (0.21135) | > loss_disc_real_2: 0.20729 (0.21567) | > loss_disc_real_3: 0.22256 (0.21934) | > loss_disc_real_4: 0.21429 (0.21488) | > loss_disc_real_5: 0.21144 (0.21374) | > loss_0: 2.31076 (2.32176) | > grad_norm_0: 10.01356 (15.86550) | > loss_gen: 2.57876 (2.55442) | > loss_kl: 2.69562 (2.66254) | > loss_feat: 8.77724 (8.67972) | > loss_mel: 17.55742 (17.76220) | > loss_duration: 1.69372 (1.70802) | > loss_1: 33.30276 (33.36705) | > grad_norm_1: 142.39592 (132.22392) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98920 (2.30124) | > loader_time: 0.04320 (0.03988)  --> STEP: 7488/15287 -- GLOBAL_STEP: 1003350 | > loss_disc: 2.35465 (2.32168) | > loss_disc_real_0: 0.13610 (0.12269) | > loss_disc_real_1: 0.23825 (0.21135) | > loss_disc_real_2: 0.24193 (0.21566) | > loss_disc_real_3: 0.19563 (0.21934) | > loss_disc_real_4: 0.21771 (0.21488) | > loss_disc_real_5: 0.22711 (0.21373) | > loss_0: 2.35465 (2.32168) | > grad_norm_0: 13.80343 (15.86188) | > loss_gen: 2.58568 (2.55441) | > loss_kl: 2.70963 (2.66250) | > loss_feat: 9.20981 (8.68007) | > loss_mel: 17.95090 (17.76218) | > loss_duration: 1.66647 (1.70800) | > loss_1: 34.12248 (33.36732) | > grad_norm_1: 58.44825 (132.20560) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14670 (2.30149) | > loader_time: 0.04160 (0.03989)  --> STEP: 7513/15287 -- GLOBAL_STEP: 1003375 | > loss_disc: 2.24179 (2.32163) | > loss_disc_real_0: 0.12415 (0.12268) | > loss_disc_real_1: 0.18864 (0.21134) | > loss_disc_real_2: 0.20920 (0.21567) | > loss_disc_real_3: 0.21272 (0.21933) | > loss_disc_real_4: 0.19726 (0.21487) | > loss_disc_real_5: 0.19302 (0.21372) | > loss_0: 2.24179 (2.32163) | > grad_norm_0: 7.53650 (15.85953) | > loss_gen: 2.77080 (2.55441) | > loss_kl: 2.67776 (2.66252) | > loss_feat: 9.08942 (8.67959) | > loss_mel: 17.67561 (17.76177) | > loss_duration: 1.71546 (1.70800) | > loss_1: 33.92905 (33.36646) | > grad_norm_1: 138.96297 (132.24023) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.82420 (2.30090) | > loader_time: 0.03720 (0.03989)  --> STEP: 7538/15287 -- GLOBAL_STEP: 1003400 | > loss_disc: 2.27314 (2.32164) | > loss_disc_real_0: 0.08746 (0.12267) | > loss_disc_real_1: 0.21128 (0.21133) | > loss_disc_real_2: 0.23014 (0.21567) | > loss_disc_real_3: 0.22030 (0.21934) | > loss_disc_real_4: 0.20337 (0.21487) | > loss_disc_real_5: 0.20864 (0.21373) | > loss_0: 2.27314 (2.32164) | > grad_norm_0: 12.85214 (15.86076) | > loss_gen: 2.42815 (2.55431) | > loss_kl: 2.76738 (2.66250) | > loss_feat: 8.91987 (8.67940) | > loss_mel: 18.03046 (17.76164) | > loss_duration: 1.71456 (1.70804) | > loss_1: 33.86042 (33.36604) | > grad_norm_1: 112.55507 (132.23355) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55390 (2.30055) | > loader_time: 0.05170 (0.03990)  --> STEP: 7563/15287 -- GLOBAL_STEP: 1003425 | > loss_disc: 2.32062 (2.32164) | > loss_disc_real_0: 0.15347 (0.12263) | > loss_disc_real_1: 0.22320 (0.21132) | > loss_disc_real_2: 0.21527 (0.21566) | > loss_disc_real_3: 0.21419 (0.21933) | > loss_disc_real_4: 0.19211 (0.21485) | > loss_disc_real_5: 0.21367 (0.21373) | > loss_0: 2.32062 (2.32164) | > grad_norm_0: 12.35770 (15.85002) | > loss_gen: 2.51092 (2.55424) | > loss_kl: 2.67717 (2.66245) | > loss_feat: 8.11058 (8.67956) | > loss_mel: 17.41850 (17.76153) | > loss_duration: 1.73073 (1.70803) | > loss_1: 32.44791 (33.36599) | > grad_norm_1: 166.67574 (132.19696) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.61240 (2.30021) | > loader_time: 0.03740 (0.03990)  --> STEP: 7588/15287 -- GLOBAL_STEP: 1003450 | > loss_disc: 2.43458 (2.32161) | > loss_disc_real_0: 0.18990 (0.12263) | > loss_disc_real_1: 0.21709 (0.21131) | > loss_disc_real_2: 0.21687 (0.21566) | > loss_disc_real_3: 0.22935 (0.21933) | > loss_disc_real_4: 0.21669 (0.21485) | > loss_disc_real_5: 0.23327 (0.21372) | > loss_0: 2.43458 (2.32161) | > grad_norm_0: 23.96071 (15.85550) | > loss_gen: 2.56349 (2.55429) | > loss_kl: 2.87883 (2.66248) | > loss_feat: 9.01475 (8.67968) | > loss_mel: 18.94745 (17.76193) | > loss_duration: 1.71225 (1.70804) | > loss_1: 35.11677 (33.36660) | > grad_norm_1: 162.77733 (132.20337) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.48380 (2.29976) | > loader_time: 0.04150 (0.04002)  --> STEP: 7613/15287 -- GLOBAL_STEP: 1003475 | > loss_disc: 2.40180 (2.32154) | > loss_disc_real_0: 0.13002 (0.12261) | > loss_disc_real_1: 0.20117 (0.21130) | > loss_disc_real_2: 0.20873 (0.21564) | > loss_disc_real_3: 0.21836 (0.21933) | > loss_disc_real_4: 0.23693 (0.21484) | > loss_disc_real_5: 0.24130 (0.21371) | > loss_0: 2.40180 (2.32154) | > grad_norm_0: 31.63502 (15.86860) | > loss_gen: 2.40696 (2.55429) | > loss_kl: 2.81678 (2.66250) | > loss_feat: 8.01708 (8.67954) | > loss_mel: 17.66671 (17.76170) | > loss_duration: 1.74161 (1.70808) | > loss_1: 32.64915 (33.36629) | > grad_norm_1: 163.59131 (132.23610) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20360 (2.29908) | > loader_time: 0.04540 (0.04002)  --> STEP: 7638/15287 -- GLOBAL_STEP: 1003500 | > loss_disc: 2.29965 (2.32143) | > loss_disc_real_0: 0.13171 (0.12260) | > loss_disc_real_1: 0.20819 (0.21130) | > loss_disc_real_2: 0.22010 (0.21563) | > loss_disc_real_3: 0.20829 (0.21932) | > loss_disc_real_4: 0.21284 (0.21483) | > loss_disc_real_5: 0.20801 (0.21370) | > loss_0: 2.29965 (2.32143) | > grad_norm_0: 7.42013 (15.88503) | > loss_gen: 2.56310 (2.55425) | > loss_kl: 2.65220 (2.66251) | > loss_feat: 9.20736 (8.67966) | > loss_mel: 18.02384 (17.76155) | > loss_duration: 1.69948 (1.70810) | > loss_1: 34.14597 (33.36623) | > grad_norm_1: 102.53540 (132.35127) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24010 (2.29858) | > loader_time: 0.03850 (0.04002)  --> STEP: 7663/15287 -- GLOBAL_STEP: 1003525 | > loss_disc: 2.22783 (2.32137) | > loss_disc_real_0: 0.13564 (0.12259) | > loss_disc_real_1: 0.19102 (0.21130) | > loss_disc_real_2: 0.20605 (0.21562) | > loss_disc_real_3: 0.19482 (0.21932) | > loss_disc_real_4: 0.19853 (0.21482) | > loss_disc_real_5: 0.20272 (0.21370) | > loss_0: 2.22783 (2.32137) | > grad_norm_0: 5.33854 (15.88119) | > loss_gen: 2.70614 (2.55429) | > loss_kl: 2.59321 (2.66246) | > loss_feat: 8.87501 (8.68027) | > loss_mel: 17.70016 (17.76141) | > loss_duration: 1.76776 (1.70814) | > loss_1: 33.64228 (33.36671) | > grad_norm_1: 68.16854 (132.36641) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18250 (2.29781) | > loader_time: 0.04220 (0.04003)  --> STEP: 7688/15287 -- GLOBAL_STEP: 1003550 | > loss_disc: 2.34555 (2.32142) | > loss_disc_real_0: 0.22949 (0.12259) | > loss_disc_real_1: 0.21399 (0.21132) | > loss_disc_real_2: 0.22680 (0.21566) | > loss_disc_real_3: 0.20269 (0.21933) | > loss_disc_real_4: 0.20730 (0.21482) | > loss_disc_real_5: 0.18032 (0.21370) | > loss_0: 2.34555 (2.32142) | > grad_norm_0: 25.65084 (15.87504) | > loss_gen: 2.60250 (2.55440) | > loss_kl: 2.53407 (2.66250) | > loss_feat: 8.67113 (8.68026) | > loss_mel: 17.90039 (17.76171) | > loss_duration: 1.67453 (1.70815) | > loss_1: 33.38262 (33.36716) | > grad_norm_1: 191.87152 (132.38454) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05200 (2.29725) | > loader_time: 0.03720 (0.04003)  --> STEP: 7713/15287 -- GLOBAL_STEP: 1003575 | > loss_disc: 2.26929 (2.32146) | > loss_disc_real_0: 0.16395 (0.12262) | > loss_disc_real_1: 0.20114 (0.21133) | > loss_disc_real_2: 0.24246 (0.21567) | > loss_disc_real_3: 0.20918 (0.21933) | > loss_disc_real_4: 0.21355 (0.21483) | > loss_disc_real_5: 0.20232 (0.21372) | > loss_0: 2.26929 (2.32146) | > grad_norm_0: 15.03542 (15.88960) | > loss_gen: 2.49049 (2.55434) | > loss_kl: 2.61007 (2.66254) | > loss_feat: 8.57125 (8.68012) | > loss_mel: 17.77594 (17.76187) | > loss_duration: 1.73168 (1.70818) | > loss_1: 33.17942 (33.36719) | > grad_norm_1: 61.29973 (132.39853) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98170 (2.29639) | > loader_time: 0.04400 (0.04002)  --> STEP: 7738/15287 -- GLOBAL_STEP: 1003600 | > loss_disc: 2.27663 (2.32140) | > loss_disc_real_0: 0.12519 (0.12259) | > loss_disc_real_1: 0.18204 (0.21132) | > loss_disc_real_2: 0.21917 (0.21566) | > loss_disc_real_3: 0.21014 (0.21933) | > loss_disc_real_4: 0.21400 (0.21485) | > loss_disc_real_5: 0.18403 (0.21371) | > loss_0: 2.27663 (2.32140) | > grad_norm_0: 12.75975 (15.89020) | > loss_gen: 2.43029 (2.55435) | > loss_kl: 2.77733 (2.66247) | > loss_feat: 9.00256 (8.68061) | > loss_mel: 17.99325 (17.76195) | > loss_duration: 1.74332 (1.70820) | > loss_1: 33.94674 (33.36774) | > grad_norm_1: 155.85141 (132.43463) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03370 (2.29620) | > loader_time: 0.03630 (0.04002)  --> STEP: 7763/15287 -- GLOBAL_STEP: 1003625 | > loss_disc: 2.39888 (2.32148) | > loss_disc_real_0: 0.20753 (0.12262) | > loss_disc_real_1: 0.26162 (0.21138) | > loss_disc_real_2: 0.24323 (0.21568) | > loss_disc_real_3: 0.21323 (0.21934) | > loss_disc_real_4: 0.17597 (0.21488) | > loss_disc_real_5: 0.20144 (0.21373) | > loss_0: 2.39888 (2.32148) | > grad_norm_0: 17.16347 (15.89233) | > loss_gen: 2.42256 (2.55454) | > loss_kl: 2.66247 (2.66255) | > loss_feat: 8.18787 (8.68017) | > loss_mel: 17.42438 (17.76202) | > loss_duration: 1.71185 (1.70820) | > loss_1: 32.40914 (33.36763) | > grad_norm_1: 91.94525 (132.34801) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14190 (2.29571) | > loader_time: 0.04210 (0.04002)  --> STEP: 7788/15287 -- GLOBAL_STEP: 1003650 | > loss_disc: 2.31277 (2.32162) | > loss_disc_real_0: 0.12882 (0.12267) | > loss_disc_real_1: 0.22188 (0.21140) | > loss_disc_real_2: 0.23410 (0.21569) | > loss_disc_real_3: 0.23610 (0.21936) | > loss_disc_real_4: 0.21933 (0.21489) | > loss_disc_real_5: 0.22411 (0.21375) | > loss_0: 2.31277 (2.32162) | > grad_norm_0: 13.80708 (15.88947) | > loss_gen: 2.45232 (2.55454) | > loss_kl: 2.68799 (2.66267) | > loss_feat: 8.17061 (8.67997) | > loss_mel: 17.14734 (17.76207) | > loss_duration: 1.67095 (1.70821) | > loss_1: 32.12921 (33.36763) | > grad_norm_1: 124.13586 (132.24713) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.12640 (2.29541) | > loader_time: 0.03960 (0.04002)  --> STEP: 7813/15287 -- GLOBAL_STEP: 1003675 | > loss_disc: 2.41070 (2.32159) | > loss_disc_real_0: 0.13172 (0.12264) | > loss_disc_real_1: 0.23653 (0.21139) | > loss_disc_real_2: 0.23399 (0.21570) | > loss_disc_real_3: 0.22881 (0.21935) | > loss_disc_real_4: 0.25470 (0.21490) | > loss_disc_real_5: 0.20431 (0.21375) | > loss_0: 2.41070 (2.32159) | > grad_norm_0: 17.98724 (15.87255) | > loss_gen: 2.46973 (2.55466) | > loss_kl: 2.59544 (2.66252) | > loss_feat: 7.92975 (8.68015) | > loss_mel: 17.63543 (17.76239) | > loss_duration: 1.66918 (1.70823) | > loss_1: 32.29954 (33.36811) | > grad_norm_1: 178.64424 (132.19902) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32250 (2.29519) | > loader_time: 0.03670 (0.04002)  --> STEP: 7838/15287 -- GLOBAL_STEP: 1003700 | > loss_disc: 2.27832 (2.32152) | > loss_disc_real_0: 0.11091 (0.12261) | > loss_disc_real_1: 0.20498 (0.21140) | > loss_disc_real_2: 0.20672 (0.21570) | > loss_disc_real_3: 0.20472 (0.21935) | > loss_disc_real_4: 0.23063 (0.21490) | > loss_disc_real_5: 0.21910 (0.21374) | > loss_0: 2.27832 (2.32152) | > grad_norm_0: 4.59211 (15.87255) | > loss_gen: 2.62477 (2.55463) | > loss_kl: 2.58629 (2.66246) | > loss_feat: 8.56153 (8.68013) | > loss_mel: 16.93808 (17.76233) | > loss_duration: 1.72113 (1.70824) | > loss_1: 32.43181 (33.36794) | > grad_norm_1: 131.64517 (132.22978) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39640 (2.29439) | > loader_time: 0.04240 (0.04001)  --> STEP: 7863/15287 -- GLOBAL_STEP: 1003725 | > loss_disc: 2.24863 (2.32153) | > loss_disc_real_0: 0.14500 (0.12260) | > loss_disc_real_1: 0.19031 (0.21140) | > loss_disc_real_2: 0.19585 (0.21569) | > loss_disc_real_3: 0.22588 (0.21935) | > loss_disc_real_4: 0.20718 (0.21488) | > loss_disc_real_5: 0.18773 (0.21374) | > loss_0: 2.24863 (2.32153) | > grad_norm_0: 26.94556 (15.88116) | > loss_gen: 2.59828 (2.55461) | > loss_kl: 2.74091 (2.66246) | > loss_feat: 9.12933 (8.68041) | > loss_mel: 17.95827 (17.76237) | > loss_duration: 1.70141 (1.70822) | > loss_1: 34.12819 (33.36822) | > grad_norm_1: 188.70976 (132.27290) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10590 (2.29386) | > loader_time: 0.04140 (0.04001)  --> STEP: 7888/15287 -- GLOBAL_STEP: 1003750 | > loss_disc: 2.26054 (2.32146) | > loss_disc_real_0: 0.08396 (0.12258) | > loss_disc_real_1: 0.20344 (0.21139) | > loss_disc_real_2: 0.20867 (0.21568) | > loss_disc_real_3: 0.20542 (0.21936) | > loss_disc_real_4: 0.20367 (0.21488) | > loss_disc_real_5: 0.18858 (0.21373) | > loss_0: 2.26054 (2.32146) | > grad_norm_0: 19.80656 (15.89036) | > loss_gen: 2.54733 (2.55465) | > loss_kl: 2.50957 (2.66251) | > loss_feat: 8.80791 (8.68021) | > loss_mel: 17.34291 (17.76211) | > loss_duration: 1.68995 (1.70822) | > loss_1: 32.89767 (33.36785) | > grad_norm_1: 213.45331 (132.32971) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00040 (2.29343) | > loader_time: 0.04370 (0.04002)  --> STEP: 7913/15287 -- GLOBAL_STEP: 1003775 | > loss_disc: 2.31231 (2.32143) | > loss_disc_real_0: 0.10788 (0.12257) | > loss_disc_real_1: 0.23775 (0.21138) | > loss_disc_real_2: 0.21802 (0.21567) | > loss_disc_real_3: 0.24901 (0.21937) | > loss_disc_real_4: 0.20750 (0.21488) | > loss_disc_real_5: 0.22284 (0.21373) | > loss_0: 2.31231 (2.32143) | > grad_norm_0: 11.40575 (15.89040) | > loss_gen: 2.77494 (2.55472) | > loss_kl: 2.69962 (2.66245) | > loss_feat: 9.40873 (8.68065) | > loss_mel: 17.72439 (17.76213) | > loss_duration: 1.71153 (1.70821) | > loss_1: 34.31921 (33.36829) | > grad_norm_1: 141.48320 (132.35802) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13220 (2.29300) | > loader_time: 0.04360 (0.04001)  --> STEP: 7938/15287 -- GLOBAL_STEP: 1003800 | > loss_disc: 2.16737 (2.32149) | > loss_disc_real_0: 0.07953 (0.12257) | > loss_disc_real_1: 0.18988 (0.21139) | > loss_disc_real_2: 0.18850 (0.21568) | > loss_disc_real_3: 0.23595 (0.21939) | > loss_disc_real_4: 0.19449 (0.21488) | > loss_disc_real_5: 0.21726 (0.21373) | > loss_0: 2.16737 (2.32149) | > grad_norm_0: 32.06215 (15.91432) | > loss_gen: 2.55933 (2.55459) | > loss_kl: 2.67465 (2.66245) | > loss_feat: 8.46780 (8.68018) | > loss_mel: 17.96261 (17.76159) | > loss_duration: 1.73492 (1.70822) | > loss_1: 33.39930 (33.36716) | > grad_norm_1: 240.34023 (132.45796) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11020 (2.29273) | > loader_time: 0.04300 (0.04001)  --> STEP: 7963/15287 -- GLOBAL_STEP: 1003825 | > loss_disc: 2.39408 (2.32141) | > loss_disc_real_0: 0.11547 (0.12255) | > loss_disc_real_1: 0.21448 (0.21139) | > loss_disc_real_2: 0.21942 (0.21568) | > loss_disc_real_3: 0.21469 (0.21938) | > loss_disc_real_4: 0.27406 (0.21488) | > loss_disc_real_5: 0.26531 (0.21371) | > loss_0: 2.39408 (2.32141) | > grad_norm_0: 11.90576 (15.91871) | > loss_gen: 2.39978 (2.55465) | > loss_kl: 2.44962 (2.66236) | > loss_feat: 8.63714 (8.68057) | > loss_mel: 17.19639 (17.76158) | > loss_duration: 1.72296 (1.70823) | > loss_1: 32.40588 (33.36751) | > grad_norm_1: 94.36723 (132.50815) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11770 (2.29298) | > loader_time: 0.03990 (0.04001)  --> STEP: 7988/15287 -- GLOBAL_STEP: 1003850 | > loss_disc: 2.41879 (2.32148) | > loss_disc_real_0: 0.13617 (0.12255) | > loss_disc_real_1: 0.23372 (0.21141) | > loss_disc_real_2: 0.24722 (0.21568) | > loss_disc_real_3: 0.23865 (0.21938) | > loss_disc_real_4: 0.24805 (0.21488) | > loss_disc_real_5: 0.23229 (0.21372) | > loss_0: 2.41879 (2.32148) | > grad_norm_0: 11.07603 (15.91928) | > loss_gen: 2.52483 (2.55457) | > loss_kl: 2.63803 (2.66239) | > loss_feat: 8.16728 (8.68033) | > loss_mel: 17.22811 (17.76134) | > loss_duration: 1.70953 (1.70824) | > loss_1: 32.26779 (33.36702) | > grad_norm_1: 55.41629 (132.52522) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95450 (2.29248) | > loader_time: 0.03650 (0.04000)  --> STEP: 8013/15287 -- GLOBAL_STEP: 1003875 | > loss_disc: 2.37102 (2.32160) | > loss_disc_real_0: 0.16288 (0.12255) | > loss_disc_real_1: 0.22057 (0.21143) | > loss_disc_real_2: 0.22307 (0.21569) | > loss_disc_real_3: 0.22470 (0.21939) | > loss_disc_real_4: 0.23668 (0.21488) | > loss_disc_real_5: 0.20236 (0.21371) | > loss_0: 2.37102 (2.32160) | > grad_norm_0: 6.27533 (15.90528) | > loss_gen: 2.43423 (2.55445) | > loss_kl: 2.65689 (2.66242) | > loss_feat: 8.53188 (8.68032) | > loss_mel: 18.00924 (17.76185) | > loss_duration: 1.71992 (1.70826) | > loss_1: 33.35215 (33.36745) | > grad_norm_1: 116.12268 (132.38652) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52530 (2.29161) | > loader_time: 0.03850 (0.03998)  --> STEP: 8038/15287 -- GLOBAL_STEP: 1003900 | > loss_disc: 2.32429 (2.32168) | > loss_disc_real_0: 0.13357 (0.12255) | > loss_disc_real_1: 0.21270 (0.21144) | > loss_disc_real_2: 0.21752 (0.21570) | > loss_disc_real_3: 0.21647 (0.21939) | > loss_disc_real_4: 0.18178 (0.21488) | > loss_disc_real_5: 0.21084 (0.21372) | > loss_0: 2.32429 (2.32168) | > grad_norm_0: 9.22205 (15.89265) | > loss_gen: 2.47948 (2.55442) | > loss_kl: 2.60881 (2.66240) | > loss_feat: 8.24661 (8.67996) | > loss_mel: 17.38144 (17.76217) | > loss_duration: 1.69194 (1.70828) | > loss_1: 32.40827 (33.36739) | > grad_norm_1: 95.18211 (132.25563) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26030 (2.29111) | > loader_time: 0.04990 (0.03997)  --> STEP: 8063/15287 -- GLOBAL_STEP: 1003925 | > loss_disc: 2.31409 (2.32176) | > loss_disc_real_0: 0.11167 (0.12255) | > loss_disc_real_1: 0.22596 (0.21144) | > loss_disc_real_2: 0.20804 (0.21571) | > loss_disc_real_3: 0.23048 (0.21940) | > loss_disc_real_4: 0.21379 (0.21489) | > loss_disc_real_5: 0.22152 (0.21372) | > loss_0: 2.31409 (2.32176) | > grad_norm_0: 6.89536 (15.87983) | > loss_gen: 2.67172 (2.55445) | > loss_kl: 2.74467 (2.66238) | > loss_feat: 8.95607 (8.68000) | > loss_mel: 18.17602 (17.76287) | > loss_duration: 1.69410 (1.70832) | > loss_1: 34.24259 (33.36816) | > grad_norm_1: 139.88390 (132.16643) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34380 (2.29066) | > loader_time: 0.04290 (0.03997)  --> STEP: 8088/15287 -- GLOBAL_STEP: 1003950 | > loss_disc: 2.26242 (2.32175) | > loss_disc_real_0: 0.11304 (0.12255) | > loss_disc_real_1: 0.21281 (0.21145) | > loss_disc_real_2: 0.23339 (0.21571) | > loss_disc_real_3: 0.19661 (0.21940) | > loss_disc_real_4: 0.21299 (0.21490) | > loss_disc_real_5: 0.20102 (0.21371) | > loss_0: 2.26242 (2.32175) | > grad_norm_0: 8.84978 (15.87467) | > loss_gen: 2.45627 (2.55447) | > loss_kl: 2.62845 (2.66233) | > loss_feat: 8.69989 (8.67987) | > loss_mel: 17.85518 (17.76265) | > loss_duration: 1.72207 (1.70833) | > loss_1: 33.36186 (33.36780) | > grad_norm_1: 123.92281 (132.15215) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14750 (2.29015) | > loader_time: 0.03190 (0.03996)  --> STEP: 8113/15287 -- GLOBAL_STEP: 1003975 | > loss_disc: 2.31294 (2.32181) | > loss_disc_real_0: 0.12625 (0.12254) | > loss_disc_real_1: 0.18713 (0.21146) | > loss_disc_real_2: 0.19116 (0.21571) | > loss_disc_real_3: 0.19465 (0.21940) | > loss_disc_real_4: 0.19262 (0.21489) | > loss_disc_real_5: 0.20029 (0.21372) | > loss_0: 2.31294 (2.32181) | > grad_norm_0: 9.89354 (15.86869) | > loss_gen: 2.35677 (2.55435) | > loss_kl: 2.51394 (2.66221) | > loss_feat: 8.46668 (8.67949) | > loss_mel: 17.98530 (17.76241) | > loss_duration: 1.74785 (1.70833) | > loss_1: 33.07054 (33.36695) | > grad_norm_1: 106.36339 (132.07646) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.83770 (2.28925) | > loader_time: 0.03490 (0.03995)  --> STEP: 8138/15287 -- GLOBAL_STEP: 1004000 | > loss_disc: 2.21925 (2.32179) | > loss_disc_real_0: 0.14456 (0.12254) | > loss_disc_real_1: 0.21743 (0.21145) | > loss_disc_real_2: 0.21136 (0.21570) | > loss_disc_real_3: 0.20915 (0.21940) | > loss_disc_real_4: 0.18843 (0.21489) | > loss_disc_real_5: 0.19155 (0.21372) | > loss_0: 2.21925 (2.32179) | > grad_norm_0: 9.85262 (15.86240) | > loss_gen: 2.59835 (2.55440) | > loss_kl: 2.55721 (2.66217) | > loss_feat: 8.50063 (8.67940) | > loss_mel: 17.91135 (17.76211) | > loss_duration: 1.73043 (1.70833) | > loss_1: 33.29796 (33.36658) | > grad_norm_1: 243.19199 (132.09811) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21350 (2.28835) | > loader_time: 0.03880 (0.03993)  --> STEP: 8163/15287 -- GLOBAL_STEP: 1004025 | > loss_disc: 2.30349 (2.32177) | > loss_disc_real_0: 0.13603 (0.12251) | > loss_disc_real_1: 0.22384 (0.21145) | > loss_disc_real_2: 0.20811 (0.21570) | > loss_disc_real_3: 0.19380 (0.21941) | > loss_disc_real_4: 0.19167 (0.21490) | > loss_disc_real_5: 0.19474 (0.21373) | > loss_0: 2.30349 (2.32177) | > grad_norm_0: 8.96573 (15.87323) | > loss_gen: 2.53678 (2.55441) | > loss_kl: 2.73760 (2.66218) | > loss_feat: 9.02536 (8.67938) | > loss_mel: 17.80986 (17.76178) | > loss_duration: 1.69501 (1.70833) | > loss_1: 33.80460 (33.36626) | > grad_norm_1: 192.12286 (132.21336) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.92050 (2.28821) | > loader_time: 0.04830 (0.03994)  --> STEP: 8188/15287 -- GLOBAL_STEP: 1004050 | > loss_disc: 2.38367 (2.32169) | > loss_disc_real_0: 0.15515 (0.12250) | > loss_disc_real_1: 0.24674 (0.21145) | > loss_disc_real_2: 0.21347 (0.21570) | > loss_disc_real_3: 0.21131 (0.21943) | > loss_disc_real_4: 0.20565 (0.21491) | > loss_disc_real_5: 0.24183 (0.21372) | > loss_0: 2.38367 (2.32169) | > grad_norm_0: 17.39914 (15.87748) | > loss_gen: 2.47912 (2.55447) | > loss_kl: 2.79878 (2.66211) | > loss_feat: 8.37711 (8.67947) | > loss_mel: 17.60716 (17.76172) | > loss_duration: 1.69529 (1.70837) | > loss_1: 32.95747 (33.36633) | > grad_norm_1: 57.83858 (132.28362) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23800 (2.28786) | > loader_time: 0.04150 (0.03994)  --> STEP: 8213/15287 -- GLOBAL_STEP: 1004075 | > loss_disc: 2.35258 (2.32164) | > loss_disc_real_0: 0.11388 (0.12247) | > loss_disc_real_1: 0.22880 (0.21144) | > loss_disc_real_2: 0.23180 (0.21569) | > loss_disc_real_3: 0.21179 (0.21942) | > loss_disc_real_4: 0.20782 (0.21490) | > loss_disc_real_5: 0.19431 (0.21371) | > loss_0: 2.35258 (2.32164) | > grad_norm_0: 5.28545 (15.86946) | > loss_gen: 2.68196 (2.55446) | > loss_kl: 2.76212 (2.66217) | > loss_feat: 8.87706 (8.67944) | > loss_mel: 18.45914 (17.76145) | > loss_duration: 1.70651 (1.70837) | > loss_1: 34.48680 (33.36610) | > grad_norm_1: 203.10875 (132.29497) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37240 (2.28748) | > loader_time: 0.05200 (0.03994)  --> STEP: 8238/15287 -- GLOBAL_STEP: 1004100 | > loss_disc: 2.35593 (2.32169) | > loss_disc_real_0: 0.12532 (0.12247) | > loss_disc_real_1: 0.19904 (0.21144) | > loss_disc_real_2: 0.21630 (0.21570) | > loss_disc_real_3: 0.24422 (0.21942) | > loss_disc_real_4: 0.23906 (0.21491) | > loss_disc_real_5: 0.20022 (0.21373) | > loss_0: 2.35593 (2.32169) | > grad_norm_0: 10.67899 (15.86341) | > loss_gen: 2.48647 (2.55441) | > loss_kl: 2.59577 (2.66226) | > loss_feat: 8.46331 (8.67915) | > loss_mel: 17.85935 (17.76157) | > loss_duration: 1.73163 (1.70838) | > loss_1: 33.13654 (33.36598) | > grad_norm_1: 77.18812 (132.27744) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29650 (2.28690) | > loader_time: 0.03790 (0.03993)  --> STEP: 8263/15287 -- GLOBAL_STEP: 1004125 | > loss_disc: 2.37418 (2.32175) | > loss_disc_real_0: 0.28466 (0.12253) | > loss_disc_real_1: 0.24746 (0.21143) | > loss_disc_real_2: 0.26569 (0.21570) | > loss_disc_real_3: 0.23241 (0.21942) | > loss_disc_real_4: 0.20785 (0.21493) | > loss_disc_real_5: 0.19433 (0.21373) | > loss_0: 2.37418 (2.32175) | > grad_norm_0: 35.03804 (15.87505) | > loss_gen: 2.92490 (2.55448) | > loss_kl: 2.59697 (2.66233) | > loss_feat: 8.43515 (8.67882) | > loss_mel: 17.36156 (17.76148) | > loss_duration: 1.70702 (1.70836) | > loss_1: 33.02560 (33.36567) | > grad_norm_1: 153.14600 (132.29808) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09280 (2.28608) | > loader_time: 0.03370 (0.03991)  --> STEP: 8288/15287 -- GLOBAL_STEP: 1004150 | > loss_disc: 2.30853 (2.32184) | > loss_disc_real_0: 0.09456 (0.12256) | > loss_disc_real_1: 0.23276 (0.21144) | > loss_disc_real_2: 0.21641 (0.21573) | > loss_disc_real_3: 0.23245 (0.21942) | > loss_disc_real_4: 0.20461 (0.21495) | > loss_disc_real_5: 0.25169 (0.21374) | > loss_0: 2.30853 (2.32184) | > grad_norm_0: 11.59350 (15.86756) | > loss_gen: 2.57617 (2.55447) | > loss_kl: 2.68702 (2.66246) | > loss_feat: 8.46715 (8.67850) | > loss_mel: 17.42557 (17.76121) | > loss_duration: 1.69214 (1.70838) | > loss_1: 32.84805 (33.36522) | > grad_norm_1: 76.26186 (132.24237) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06080 (2.28549) | > loader_time: 0.03700 (0.03989)  --> STEP: 8313/15287 -- GLOBAL_STEP: 1004175 | > loss_disc: 2.30318 (2.32180) | > loss_disc_real_0: 0.12053 (0.12256) | > loss_disc_real_1: 0.21010 (0.21143) | > loss_disc_real_2: 0.19405 (0.21572) | > loss_disc_real_3: 0.21613 (0.21943) | > loss_disc_real_4: 0.20493 (0.21495) | > loss_disc_real_5: 0.16705 (0.21374) | > loss_0: 2.30318 (2.32180) | > grad_norm_0: 15.56021 (15.86175) | > loss_gen: 2.38499 (2.55445) | > loss_kl: 2.65666 (2.66257) | > loss_feat: 8.93150 (8.67864) | > loss_mel: 17.73356 (17.76112) | > loss_duration: 1.71906 (1.70839) | > loss_1: 33.42577 (33.36538) | > grad_norm_1: 115.89550 (132.24945) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14800 (2.28543) | > loader_time: 0.03920 (0.03989)  --> STEP: 8338/15287 -- GLOBAL_STEP: 1004200 | > loss_disc: 2.38213 (2.32182) | > loss_disc_real_0: 0.10907 (0.12257) | > loss_disc_real_1: 0.19368 (0.21142) | > loss_disc_real_2: 0.20279 (0.21572) | > loss_disc_real_3: 0.22214 (0.21943) | > loss_disc_real_4: 0.22374 (0.21496) | > loss_disc_real_5: 0.23160 (0.21374) | > loss_0: 2.38213 (2.32182) | > grad_norm_0: 6.47784 (15.85996) | > loss_gen: 2.67332 (2.55447) | > loss_kl: 2.49683 (2.66249) | > loss_feat: 8.17591 (8.67832) | > loss_mel: 17.14925 (17.76052) | > loss_duration: 1.72003 (1.70841) | > loss_1: 32.21534 (33.36444) | > grad_norm_1: 33.85434 (132.25508) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90210 (2.28466) | > loader_time: 0.03280 (0.03988)  --> STEP: 8363/15287 -- GLOBAL_STEP: 1004225 | > loss_disc: 2.30370 (2.32183) | > loss_disc_real_0: 0.09997 (0.12259) | > loss_disc_real_1: 0.21675 (0.21142) | > loss_disc_real_2: 0.22028 (0.21572) | > loss_disc_real_3: 0.23390 (0.21944) | > loss_disc_real_4: 0.25432 (0.21497) | > loss_disc_real_5: 0.19683 (0.21373) | > loss_0: 2.30370 (2.32183) | > grad_norm_0: 5.56453 (15.85727) | > loss_gen: 2.59877 (2.55447) | > loss_kl: 2.64076 (2.66255) | > loss_feat: 8.42024 (8.67794) | > loss_mel: 17.63075 (17.76059) | > loss_duration: 1.69243 (1.70843) | > loss_1: 32.98295 (33.36421) | > grad_norm_1: 42.64169 (132.21323) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31240 (2.28399) | > loader_time: 0.03790 (0.03987)  --> STEP: 8388/15287 -- GLOBAL_STEP: 1004250 | > loss_disc: 2.36370 (2.32189) | > loss_disc_real_0: 0.15694 (0.12258) | > loss_disc_real_1: 0.21170 (0.21143) | > loss_disc_real_2: 0.21592 (0.21575) | > loss_disc_real_3: 0.23211 (0.21946) | > loss_disc_real_4: 0.22502 (0.21497) | > loss_disc_real_5: 0.21832 (0.21374) | > loss_0: 2.36370 (2.32189) | > grad_norm_0: 14.20962 (15.85376) | > loss_gen: 2.50076 (2.55447) | > loss_kl: 2.57904 (2.66247) | > loss_feat: 8.76818 (8.67762) | > loss_mel: 18.07928 (17.76064) | > loss_duration: 1.72166 (1.70845) | > loss_1: 33.64892 (33.36388) | > grad_norm_1: 214.61978 (132.20526) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38360 (2.28353) | > loader_time: 0.03380 (0.03987)  --> STEP: 8413/15287 -- GLOBAL_STEP: 1004275 | > loss_disc: 2.23626 (2.32187) | > loss_disc_real_0: 0.14113 (0.12256) | > loss_disc_real_1: 0.21167 (0.21145) | > loss_disc_real_2: 0.21360 (0.21576) | > loss_disc_real_3: 0.23142 (0.21947) | > loss_disc_real_4: 0.20995 (0.21497) | > loss_disc_real_5: 0.20426 (0.21375) | > loss_0: 2.23626 (2.32187) | > grad_norm_0: 30.43749 (15.86085) | > loss_gen: 2.61707 (2.55443) | > loss_kl: 2.74758 (2.66250) | > loss_feat: 8.78381 (8.67761) | > loss_mel: 17.72525 (17.76072) | > loss_duration: 1.71708 (1.70844) | > loss_1: 33.59079 (33.36391) | > grad_norm_1: 126.48448 (132.21289) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.57380 (2.28266) | > loader_time: 0.05450 (0.03986)  --> STEP: 8438/15287 -- GLOBAL_STEP: 1004300 | > loss_disc: 2.32613 (2.32179) | > loss_disc_real_0: 0.20761 (0.12261) | > loss_disc_real_1: 0.20924 (0.21143) | > loss_disc_real_2: 0.23824 (0.21574) | > loss_disc_real_3: 0.23189 (0.21948) | > loss_disc_real_4: 0.25319 (0.21498) | > loss_disc_real_5: 0.22119 (0.21375) | > loss_0: 2.32613 (2.32179) | > grad_norm_0: 22.52498 (15.87244) | > loss_gen: 2.52324 (2.55462) | > loss_kl: 2.54755 (2.66251) | > loss_feat: 8.34893 (8.67790) | > loss_mel: 17.30693 (17.76058) | > loss_duration: 1.70504 (1.70847) | > loss_1: 32.43168 (33.36430) | > grad_norm_1: 208.15196 (132.31691) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23940 (2.28203) | > loader_time: 0.03600 (0.03985)  --> STEP: 8463/15287 -- GLOBAL_STEP: 1004325 | > loss_disc: 2.36679 (2.32172) | > loss_disc_real_0: 0.11864 (0.12260) | > loss_disc_real_1: 0.24107 (0.21142) | > loss_disc_real_2: 0.20032 (0.21574) | > loss_disc_real_3: 0.22921 (0.21947) | > loss_disc_real_4: 0.22893 (0.21497) | > loss_disc_real_5: 0.22390 (0.21373) | > loss_0: 2.36679 (2.32172) | > grad_norm_0: 5.11152 (15.87325) | > loss_gen: 2.59961 (2.55462) | > loss_kl: 2.80121 (2.66262) | > loss_feat: 8.38586 (8.67818) | > loss_mel: 18.12917 (17.76032) | > loss_duration: 1.70160 (1.70847) | > loss_1: 33.61745 (33.36442) | > grad_norm_1: 63.79801 (132.34879) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20260 (2.28157) | > loader_time: 0.03730 (0.03985)  --> STEP: 8488/15287 -- GLOBAL_STEP: 1004350 | > loss_disc: 2.27620 (2.32171) | > loss_disc_real_0: 0.16331 (0.12260) | > loss_disc_real_1: 0.20112 (0.21142) | > loss_disc_real_2: 0.20532 (0.21573) | > loss_disc_real_3: 0.20220 (0.21947) | > loss_disc_real_4: 0.18842 (0.21498) | > loss_disc_real_5: 0.18704 (0.21373) | > loss_0: 2.27620 (2.32171) | > grad_norm_0: 11.55027 (15.86869) | > loss_gen: 2.64243 (2.55462) | > loss_kl: 2.62719 (2.66258) | > loss_feat: 9.48067 (8.67836) | > loss_mel: 18.46490 (17.76066) | > loss_duration: 1.73266 (1.70847) | > loss_1: 34.94785 (33.36488) | > grad_norm_1: 97.40182 (132.35669) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91690 (2.28097) | > loader_time: 0.03100 (0.03984)  --> STEP: 8513/15287 -- GLOBAL_STEP: 1004375 | > loss_disc: 2.25166 (2.32166) | > loss_disc_real_0: 0.11284 (0.12259) | > loss_disc_real_1: 0.18953 (0.21142) | > loss_disc_real_2: 0.20534 (0.21574) | > loss_disc_real_3: 0.23119 (0.21947) | > loss_disc_real_4: 0.19959 (0.21498) | > loss_disc_real_5: 0.20162 (0.21373) | > loss_0: 2.25166 (2.32166) | > grad_norm_0: 13.90258 (15.86383) | > loss_gen: 2.62373 (2.55463) | > loss_kl: 2.76066 (2.66256) | > loss_feat: 8.59025 (8.67842) | > loss_mel: 18.02212 (17.76069) | > loss_duration: 1.73157 (1.70851) | > loss_1: 33.72833 (33.36500) | > grad_norm_1: 131.02734 (132.32629) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94840 (2.28020) | > loader_time: 0.03130 (0.03983)  --> STEP: 8538/15287 -- GLOBAL_STEP: 1004400 | > loss_disc: 2.36559 (2.32179) | > loss_disc_real_0: 0.12904 (0.12260) | > loss_disc_real_1: 0.20844 (0.21145) | > loss_disc_real_2: 0.20450 (0.21575) | > loss_disc_real_3: 0.22451 (0.21951) | > loss_disc_real_4: 0.20931 (0.21500) | > loss_disc_real_5: 0.24945 (0.21374) | > loss_0: 2.36559 (2.32179) | > grad_norm_0: 14.40050 (15.86145) | > loss_gen: 2.51471 (2.55467) | > loss_kl: 2.69767 (2.66266) | > loss_feat: 8.71778 (8.67803) | > loss_mel: 17.98933 (17.76091) | > loss_duration: 1.70700 (1.70852) | > loss_1: 33.62649 (33.36497) | > grad_norm_1: 126.52899 (132.23694) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09540 (2.27974) | > loader_time: 0.03240 (0.03981)  --> STEP: 8563/15287 -- GLOBAL_STEP: 1004425 | > loss_disc: 2.37705 (2.32186) | > loss_disc_real_0: 0.16471 (0.12264) | > loss_disc_real_1: 0.21830 (0.21145) | > loss_disc_real_2: 0.23108 (0.21575) | > loss_disc_real_3: 0.24349 (0.21952) | > loss_disc_real_4: 0.20476 (0.21500) | > loss_disc_real_5: 0.22960 (0.21374) | > loss_0: 2.37705 (2.32186) | > grad_norm_0: 7.60476 (15.85160) | > loss_gen: 2.52560 (2.55458) | > loss_kl: 2.53101 (2.66262) | > loss_feat: 8.36719 (8.67740) | > loss_mel: 17.21621 (17.76105) | > loss_duration: 1.71345 (1.70853) | > loss_1: 32.35346 (33.36436) | > grad_norm_1: 120.24629 (132.17288) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02330 (2.27926) | > loader_time: 0.03360 (0.03980)  --> STEP: 8588/15287 -- GLOBAL_STEP: 1004450 | > loss_disc: 2.27720 (2.32187) | > loss_disc_real_0: 0.12975 (0.12264) | > loss_disc_real_1: 0.18103 (0.21145) | > loss_disc_real_2: 0.20717 (0.21575) | > loss_disc_real_3: 0.20229 (0.21952) | > loss_disc_real_4: 0.21570 (0.21500) | > loss_disc_real_5: 0.21419 (0.21374) | > loss_0: 2.27720 (2.32187) | > grad_norm_0: 5.59190 (15.84304) | > loss_gen: 2.53128 (2.55455) | > loss_kl: 2.66388 (2.66257) | > loss_feat: 9.00708 (8.67732) | > loss_mel: 17.66587 (17.76093) | > loss_duration: 1.70360 (1.70854) | > loss_1: 33.57171 (33.36409) | > grad_norm_1: 46.36708 (132.06836) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88860 (2.27846) | > loader_time: 0.03520 (0.03979)  --> STEP: 8613/15287 -- GLOBAL_STEP: 1004475 | > loss_disc: 2.36104 (2.32191) | > loss_disc_real_0: 0.15044 (0.12264) | > loss_disc_real_1: 0.23957 (0.21146) | > loss_disc_real_2: 0.24401 (0.21576) | > loss_disc_real_3: 0.23038 (0.21952) | > loss_disc_real_4: 0.21850 (0.21500) | > loss_disc_real_5: 0.19519 (0.21375) | > loss_0: 2.36104 (2.32191) | > grad_norm_0: 11.32905 (15.82554) | > loss_gen: 2.44435 (2.55457) | > loss_kl: 2.72440 (2.66265) | > loss_feat: 8.70365 (8.67741) | > loss_mel: 17.48420 (17.76088) | > loss_duration: 1.73638 (1.70853) | > loss_1: 33.09299 (33.36420) | > grad_norm_1: 74.81612 (131.92853) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14400 (2.27810) | > loader_time: 0.03480 (0.03979)  --> STEP: 8638/15287 -- GLOBAL_STEP: 1004500 | > loss_disc: 2.24736 (2.32198) | > loss_disc_real_0: 0.10819 (0.12264) | > loss_disc_real_1: 0.19972 (0.21145) | > loss_disc_real_2: 0.18298 (0.21576) | > loss_disc_real_3: 0.24042 (0.21951) | > loss_disc_real_4: 0.19250 (0.21499) | > loss_disc_real_5: 0.22188 (0.21376) | > loss_0: 2.24736 (2.32198) | > grad_norm_0: 16.54236 (15.81928) | > loss_gen: 2.56893 (2.55442) | > loss_kl: 2.59759 (2.66264) | > loss_feat: 8.67675 (8.67690) | > loss_mel: 17.84055 (17.76114) | > loss_duration: 1.69879 (1.70852) | > loss_1: 33.38261 (33.36377) | > grad_norm_1: 148.70476 (131.89272) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.84630 (2.27747) | > loader_time: 0.03510 (0.03978)  --> STEP: 8663/15287 -- GLOBAL_STEP: 1004525 | > loss_disc: 2.35000 (2.32195) | > loss_disc_real_0: 0.12316 (0.12264) | > loss_disc_real_1: 0.19230 (0.21147) | > loss_disc_real_2: 0.19017 (0.21577) | > loss_disc_real_3: 0.21512 (0.21951) | > loss_disc_real_4: 0.22066 (0.21500) | > loss_disc_real_5: 0.21333 (0.21376) | > loss_0: 2.35000 (2.32195) | > grad_norm_0: 3.21583 (15.82504) | > loss_gen: 2.62900 (2.55456) | > loss_kl: 2.58233 (2.66249) | > loss_feat: 9.25197 (8.67686) | > loss_mel: 18.09555 (17.76079) | > loss_duration: 1.69202 (1.70850) | > loss_1: 34.25087 (33.36334) | > grad_norm_1: 141.65921 (131.91821) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03690 (2.27675) | > loader_time: 0.03150 (0.03977)  --> STEP: 8688/15287 -- GLOBAL_STEP: 1004550 | > loss_disc: 2.31798 (2.32186) | > loss_disc_real_0: 0.16194 (0.12262) | > loss_disc_real_1: 0.21945 (0.21146) | > loss_disc_real_2: 0.21963 (0.21577) | > loss_disc_real_3: 0.21042 (0.21950) | > loss_disc_real_4: 0.20383 (0.21499) | > loss_disc_real_5: 0.19868 (0.21376) | > loss_0: 2.31798 (2.32186) | > grad_norm_0: 27.42670 (15.82754) | > loss_gen: 2.58834 (2.55459) | > loss_kl: 2.78047 (2.66253) | > loss_feat: 8.85852 (8.67719) | > loss_mel: 17.53969 (17.76048) | > loss_duration: 1.70603 (1.70850) | > loss_1: 33.47306 (33.36345) | > grad_norm_1: 149.32738 (131.95331) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.12000 (2.27592) | > loader_time: 0.04790 (0.03976)  --> STEP: 8713/15287 -- GLOBAL_STEP: 1004575 | > loss_disc: 2.31601 (2.32182) | > loss_disc_real_0: 0.12603 (0.12261) | > loss_disc_real_1: 0.21805 (0.21145) | > loss_disc_real_2: 0.19368 (0.21576) | > loss_disc_real_3: 0.22775 (0.21950) | > loss_disc_real_4: 0.21962 (0.21499) | > loss_disc_real_5: 0.22256 (0.21375) | > loss_0: 2.31601 (2.32182) | > grad_norm_0: 8.54225 (15.82355) | > loss_gen: 2.37853 (2.55449) | > loss_kl: 2.72957 (2.66260) | > loss_feat: 8.31891 (8.67730) | > loss_mel: 17.28583 (17.76004) | > loss_duration: 1.69268 (1.70850) | > loss_1: 32.40553 (33.36307) | > grad_norm_1: 56.44029 (131.91205) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96410 (2.27529) | > loader_time: 0.03870 (0.03975)  --> STEP: 8738/15287 -- GLOBAL_STEP: 1004600 | > loss_disc: 2.31070 (2.32180) | > loss_disc_real_0: 0.09084 (0.12260) | > loss_disc_real_1: 0.19950 (0.21145) | > loss_disc_real_2: 0.18506 (0.21575) | > loss_disc_real_3: 0.21114 (0.21950) | > loss_disc_real_4: 0.22566 (0.21500) | > loss_disc_real_5: 0.18549 (0.21375) | > loss_0: 2.31070 (2.32180) | > grad_norm_0: 12.47837 (15.81730) | > loss_gen: 2.55361 (2.55444) | > loss_kl: 2.68006 (2.66269) | > loss_feat: 9.18091 (8.67727) | > loss_mel: 18.18777 (17.75974) | > loss_duration: 1.66211 (1.70848) | > loss_1: 34.26445 (33.36277) | > grad_norm_1: 76.39349 (131.77844) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.83630 (2.27444) | > loader_time: 0.03410 (0.03974)  --> STEP: 8763/15287 -- GLOBAL_STEP: 1004625 | > loss_disc: 2.39439 (2.32183) | > loss_disc_real_0: 0.12080 (0.12261) | > loss_disc_real_1: 0.19017 (0.21145) | > loss_disc_real_2: 0.21652 (0.21577) | > loss_disc_real_3: 0.24967 (0.21951) | > loss_disc_real_4: 0.26973 (0.21502) | > loss_disc_real_5: 0.24171 (0.21376) | > loss_0: 2.39439 (2.32183) | > grad_norm_0: 8.92793 (15.80986) | > loss_gen: 2.46608 (2.55450) | > loss_kl: 2.77538 (2.66276) | > loss_feat: 8.90496 (8.67758) | > loss_mel: 18.36637 (17.75999) | > loss_duration: 1.70569 (1.70846) | > loss_1: 34.21848 (33.36343) | > grad_norm_1: 57.59314 (131.63573) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85540 (2.27423) | > loader_time: 0.04630 (0.03974)  --> STEP: 8788/15287 -- GLOBAL_STEP: 1004650 | > loss_disc: 2.36639 (2.32187) | > loss_disc_real_0: 0.11003 (0.12265) | > loss_disc_real_1: 0.21838 (0.21147) | > loss_disc_real_2: 0.24083 (0.21577) | > loss_disc_real_3: 0.20708 (0.21950) | > loss_disc_real_4: 0.21542 (0.21501) | > loss_disc_real_5: 0.22205 (0.21375) | > loss_0: 2.36639 (2.32187) | > grad_norm_0: 36.79791 (15.81528) | > loss_gen: 2.36048 (2.55448) | > loss_kl: 2.58756 (2.66268) | > loss_feat: 7.98164 (8.67726) | > loss_mel: 17.19652 (17.76021) | > loss_duration: 1.69676 (1.70845) | > loss_1: 31.82295 (33.36322) | > grad_norm_1: 128.44595 (131.60951) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85590 (2.27329) | > loader_time: 0.03600 (0.03973)  --> STEP: 8813/15287 -- GLOBAL_STEP: 1004675 | > loss_disc: 2.33613 (2.32178) | > loss_disc_real_0: 0.10271 (0.12263) | > loss_disc_real_1: 0.22331 (0.21147) | > loss_disc_real_2: 0.21693 (0.21577) | > loss_disc_real_3: 0.21733 (0.21950) | > loss_disc_real_4: 0.21184 (0.21501) | > loss_disc_real_5: 0.26805 (0.21375) | > loss_0: 2.33613 (2.32178) | > grad_norm_0: 26.96600 (15.81935) | > loss_gen: 2.46719 (2.55452) | > loss_kl: 2.53226 (2.66258) | > loss_feat: 8.63125 (8.67730) | > loss_mel: 17.49713 (17.75996) | > loss_duration: 1.72445 (1.70843) | > loss_1: 32.85228 (33.36293) | > grad_norm_1: 112.83787 (131.60773) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88230 (2.27237) | > loader_time: 0.03850 (0.03973)  --> STEP: 8838/15287 -- GLOBAL_STEP: 1004700 | > loss_disc: 2.28241 (2.32169) | > loss_disc_real_0: 0.09631 (0.12261) | > loss_disc_real_1: 0.22367 (0.21146) | > loss_disc_real_2: 0.23997 (0.21577) | > loss_disc_real_3: 0.24043 (0.21949) | > loss_disc_real_4: 0.20868 (0.21499) | > loss_disc_real_5: 0.20910 (0.21375) | > loss_0: 2.28241 (2.32169) | > grad_norm_0: 16.40236 (15.82406) | > loss_gen: 2.63494 (2.55455) | > loss_kl: 2.69538 (2.66244) | > loss_feat: 8.53753 (8.67737) | > loss_mel: 18.09657 (17.76008) | > loss_duration: 1.65496 (1.70842) | > loss_1: 33.61937 (33.36299) | > grad_norm_1: 172.46274 (131.58618) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02470 (2.27172) | > loader_time: 0.03370 (0.03972)  --> STEP: 8863/15287 -- GLOBAL_STEP: 1004725 | > loss_disc: 2.27001 (2.32165) | > loss_disc_real_0: 0.11391 (0.12259) | > loss_disc_real_1: 0.19027 (0.21146) | > loss_disc_real_2: 0.22645 (0.21577) | > loss_disc_real_3: 0.20187 (0.21949) | > loss_disc_real_4: 0.19710 (0.21500) | > loss_disc_real_5: 0.17940 (0.21375) | > loss_0: 2.27001 (2.32165) | > grad_norm_0: 7.00224 (15.82880) | > loss_gen: 2.53373 (2.55451) | > loss_kl: 2.61526 (2.66232) | > loss_feat: 8.81591 (8.67744) | > loss_mel: 18.07202 (17.75972) | > loss_duration: 1.73047 (1.70840) | > loss_1: 33.76740 (33.36254) | > grad_norm_1: 130.37791 (131.58807) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91050 (2.27105) | > loader_time: 0.03470 (0.03970)  --> STEP: 8888/15287 -- GLOBAL_STEP: 1004750 | > loss_disc: 2.28141 (2.32169) | > loss_disc_real_0: 0.11920 (0.12261) | > loss_disc_real_1: 0.18249 (0.21146) | > loss_disc_real_2: 0.21751 (0.21577) | > loss_disc_real_3: 0.23859 (0.21949) | > loss_disc_real_4: 0.25918 (0.21500) | > loss_disc_real_5: 0.21152 (0.21376) | > loss_0: 2.28141 (2.32169) | > grad_norm_0: 20.25348 (15.83316) | > loss_gen: 2.83663 (2.55451) | > loss_kl: 2.60448 (2.66235) | > loss_feat: 8.99041 (8.67727) | > loss_mel: 18.08591 (17.75981) | > loss_duration: 1.74632 (1.70842) | > loss_1: 34.26376 (33.36250) | > grad_norm_1: 97.32139 (131.49725) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36940 (2.27044) | > loader_time: 0.03740 (0.03969)  --> STEP: 8913/15287 -- GLOBAL_STEP: 1004775 | > loss_disc: 2.43975 (2.32177) | > loss_disc_real_0: 0.10869 (0.12261) | > loss_disc_real_1: 0.19270 (0.21146) | > loss_disc_real_2: 0.20639 (0.21579) | > loss_disc_real_3: 0.22957 (0.21949) | > loss_disc_real_4: 0.21458 (0.21500) | > loss_disc_real_5: 0.24515 (0.21377) | > loss_0: 2.43975 (2.32177) | > grad_norm_0: 20.28820 (15.82726) | > loss_gen: 2.48580 (2.55444) | > loss_kl: 2.76716 (2.66248) | > loss_feat: 8.35599 (8.67710) | > loss_mel: 17.79474 (17.76003) | > loss_duration: 1.69685 (1.70843) | > loss_1: 33.10054 (33.36263) | > grad_norm_1: 164.88393 (131.42256) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16760 (2.26969) | > loader_time: 0.04580 (0.03968)  --> STEP: 8938/15287 -- GLOBAL_STEP: 1004800 | > loss_disc: 2.36381 (2.32175) | > loss_disc_real_0: 0.10589 (0.12259) | > loss_disc_real_1: 0.21076 (0.21147) | > loss_disc_real_2: 0.22898 (0.21580) | > loss_disc_real_3: 0.20152 (0.21950) | > loss_disc_real_4: 0.19628 (0.21499) | > loss_disc_real_5: 0.21511 (0.21377) | > loss_0: 2.36381 (2.32175) | > grad_norm_0: 11.10341 (15.81750) | > loss_gen: 2.45696 (2.55452) | > loss_kl: 2.55443 (2.66240) | > loss_feat: 8.88401 (8.67737) | > loss_mel: 18.37060 (17.76021) | > loss_duration: 1.75153 (1.70843) | > loss_1: 34.01752 (33.36310) | > grad_norm_1: 149.37233 (131.41850) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11130 (2.26900) | > loader_time: 0.03330 (0.03968)  --> STEP: 8963/15287 -- GLOBAL_STEP: 1004825 | > loss_disc: 2.21829 (2.32177) | > loss_disc_real_0: 0.08695 (0.12260) | > loss_disc_real_1: 0.21047 (0.21148) | > loss_disc_real_2: 0.20666 (0.21581) | > loss_disc_real_3: 0.21081 (0.21949) | > loss_disc_real_4: 0.20093 (0.21499) | > loss_disc_real_5: 0.21319 (0.21379) | > loss_0: 2.21829 (2.32177) | > grad_norm_0: 20.14563 (15.81932) | > loss_gen: 2.72512 (2.55461) | > loss_kl: 2.57371 (2.66237) | > loss_feat: 9.23260 (8.67728) | > loss_mel: 18.30784 (17.76011) | > loss_duration: 1.70830 (1.70842) | > loss_1: 34.54756 (33.36296) | > grad_norm_1: 167.77187 (131.39156) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89220 (2.26824) | > loader_time: 0.03460 (0.03966)  --> STEP: 8988/15287 -- GLOBAL_STEP: 1004850 | > loss_disc: 2.33996 (2.32183) | > loss_disc_real_0: 0.11564 (0.12261) | > loss_disc_real_1: 0.22842 (0.21149) | > loss_disc_real_2: 0.22613 (0.21582) | > loss_disc_real_3: 0.21712 (0.21949) | > loss_disc_real_4: 0.22142 (0.21499) | > loss_disc_real_5: 0.21313 (0.21380) | > loss_0: 2.33996 (2.32183) | > grad_norm_0: 6.85417 (15.83979) | > loss_gen: 2.49581 (2.55451) | > loss_kl: 2.57021 (2.66225) | > loss_feat: 8.79930 (8.67697) | > loss_mel: 17.79798 (17.75998) | > loss_duration: 1.72539 (1.70841) | > loss_1: 33.38869 (33.36228) | > grad_norm_1: 112.13046 (131.44714) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.83870 (2.26756) | > loader_time: 0.03530 (0.03966)  --> STEP: 9013/15287 -- GLOBAL_STEP: 1004875 | > loss_disc: 2.26333 (2.32191) | > loss_disc_real_0: 0.14405 (0.12266) | > loss_disc_real_1: 0.19032 (0.21149) | > loss_disc_real_2: 0.23355 (0.21582) | > loss_disc_real_3: 0.20285 (0.21948) | > loss_disc_real_4: 0.16887 (0.21499) | > loss_disc_real_5: 0.20102 (0.21380) | > loss_0: 2.26333 (2.32191) | > grad_norm_0: 21.20604 (15.83081) | > loss_gen: 2.43481 (2.55442) | > loss_kl: 2.62155 (2.66229) | > loss_feat: 8.68922 (8.67690) | > loss_mel: 17.60407 (17.75992) | > loss_duration: 1.71253 (1.70838) | > loss_1: 33.06218 (33.36208) | > grad_norm_1: 53.78102 (131.32687) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02430 (2.26668) | > loader_time: 0.03270 (0.03964)  --> STEP: 9038/15287 -- GLOBAL_STEP: 1004900 | > loss_disc: 2.29097 (2.32181) | > loss_disc_real_0: 0.11500 (0.12263) | > loss_disc_real_1: 0.21578 (0.21148) | > loss_disc_real_2: 0.20525 (0.21581) | > loss_disc_real_3: 0.22605 (0.21947) | > loss_disc_real_4: 0.20227 (0.21497) | > loss_disc_real_5: 0.20016 (0.21379) | > loss_0: 2.29097 (2.32181) | > grad_norm_0: 30.45327 (15.84066) | > loss_gen: 2.56961 (2.55442) | > loss_kl: 2.87529 (2.66222) | > loss_feat: 8.93106 (8.67719) | > loss_mel: 18.03090 (17.75978) | > loss_duration: 1.67547 (1.70840) | > loss_1: 34.08233 (33.36216) | > grad_norm_1: 162.76785 (131.42917) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93830 (2.26568) | > loader_time: 0.03250 (0.03963)  --> STEP: 9063/15287 -- GLOBAL_STEP: 1004925 | > loss_disc: 2.27768 (2.32172) | > loss_disc_real_0: 0.10762 (0.12261) | > loss_disc_real_1: 0.20386 (0.21148) | > loss_disc_real_2: 0.22211 (0.21580) | > loss_disc_real_3: 0.21437 (0.21947) | > loss_disc_real_4: 0.20776 (0.21496) | > loss_disc_real_5: 0.21875 (0.21379) | > loss_0: 2.27768 (2.32172) | > grad_norm_0: 8.50331 (15.84357) | > loss_gen: 2.73744 (2.55444) | > loss_kl: 2.62349 (2.66227) | > loss_feat: 9.22204 (8.67738) | > loss_mel: 17.79173 (17.75942) | > loss_duration: 1.73166 (1.70838) | > loss_1: 34.10636 (33.36203) | > grad_norm_1: 151.35269 (131.50186) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.78100 (2.26491) | > loader_time: 0.03160 (0.03961)  --> STEP: 9088/15287 -- GLOBAL_STEP: 1004950 | > loss_disc: 2.33802 (2.32161) | > loss_disc_real_0: 0.14290 (0.12259) | > loss_disc_real_1: 0.20795 (0.21146) | > loss_disc_real_2: 0.20372 (0.21578) | > loss_disc_real_3: 0.20284 (0.21946) | > loss_disc_real_4: 0.21631 (0.21495) | > loss_disc_real_5: 0.21048 (0.21378) | > loss_0: 2.33802 (2.32161) | > grad_norm_0: 39.11514 (15.85975) | > loss_gen: 2.43293 (2.55444) | > loss_kl: 2.58830 (2.66219) | > loss_feat: 8.73093 (8.67773) | > loss_mel: 17.98457 (17.75923) | > loss_duration: 1.68139 (1.70835) | > loss_1: 33.41812 (33.36208) | > grad_norm_1: 157.56181 (131.58264) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19410 (2.26420) | > loader_time: 0.03400 (0.03960)  --> STEP: 9113/15287 -- GLOBAL_STEP: 1004975 | > loss_disc: 2.31485 (2.32150) | > loss_disc_real_0: 0.15364 (0.12257) | > loss_disc_real_1: 0.18150 (0.21144) | > loss_disc_real_2: 0.21495 (0.21578) | > loss_disc_real_3: 0.20917 (0.21945) | > loss_disc_real_4: 0.20538 (0.21494) | > loss_disc_real_5: 0.20807 (0.21378) | > loss_0: 2.31485 (2.32150) | > grad_norm_0: 44.06639 (15.87793) | > loss_gen: 2.41771 (2.55442) | > loss_kl: 2.68527 (2.66210) | > loss_feat: 8.91238 (8.67792) | > loss_mel: 17.56641 (17.75892) | > loss_duration: 1.68410 (1.70834) | > loss_1: 33.26587 (33.36184) | > grad_norm_1: 179.24779 (131.71239) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85780 (2.26329) | > loader_time: 0.03530 (0.03959)  --> STEP: 9138/15287 -- GLOBAL_STEP: 1005000 | > loss_disc: 2.30881 (2.32138) | > loss_disc_real_0: 0.09346 (0.12254) | > loss_disc_real_1: 0.19687 (0.21142) | > loss_disc_real_2: 0.19816 (0.21576) | > loss_disc_real_3: 0.21215 (0.21944) | > loss_disc_real_4: 0.20802 (0.21492) | > loss_disc_real_5: 0.21741 (0.21379) | > loss_0: 2.30881 (2.32138) | > grad_norm_0: 30.33930 (15.88757) | > loss_gen: 2.41651 (2.55445) | > loss_kl: 2.64022 (2.66203) | > loss_feat: 8.61334 (8.67847) | > loss_mel: 18.17143 (17.75856) | > loss_duration: 1.69199 (1.70833) | > loss_1: 33.53349 (33.36199) | > grad_norm_1: 212.15326 (131.82964) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.12550 (2.26252) | > loader_time: 0.03540 (0.03958)  --> STEP: 9163/15287 -- GLOBAL_STEP: 1005025 | > loss_disc: 2.32217 (2.32131) | > loss_disc_real_0: 0.15132 (0.12253) | > loss_disc_real_1: 0.21807 (0.21142) | > loss_disc_real_2: 0.23048 (0.21577) | > loss_disc_real_3: 0.23153 (0.21943) | > loss_disc_real_4: 0.24822 (0.21491) | > loss_disc_real_5: 0.23956 (0.21378) | > loss_0: 2.32217 (2.32131) | > grad_norm_0: 10.19281 (15.90424) | > loss_gen: 2.48483 (2.55455) | > loss_kl: 2.79116 (2.66202) | > loss_feat: 8.31960 (8.67888) | > loss_mel: 17.49401 (17.75830) | > loss_duration: 1.68551 (1.70833) | > loss_1: 32.77512 (33.36221) | > grad_norm_1: 159.71532 (131.90324) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14020 (2.26175) | > loader_time: 0.03550 (0.03957)  --> STEP: 9188/15287 -- GLOBAL_STEP: 1005050 | > loss_disc: 2.26027 (2.32122) | > loss_disc_real_0: 0.09690 (0.12251) | > loss_disc_real_1: 0.19406 (0.21140) | > loss_disc_real_2: 0.17872 (0.21575) | > loss_disc_real_3: 0.18534 (0.21942) | > loss_disc_real_4: 0.20880 (0.21490) | > loss_disc_real_5: 0.16174 (0.21378) | > loss_0: 2.26027 (2.32122) | > grad_norm_0: 9.21487 (15.91286) | > loss_gen: 2.78447 (2.55453) | > loss_kl: 2.74358 (2.66201) | > loss_feat: 9.45459 (8.67924) | > loss_mel: 17.97765 (17.75805) | > loss_duration: 1.71965 (1.70832) | > loss_1: 34.67995 (33.36226) | > grad_norm_1: 165.89943 (131.97670) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22530 (2.26115) | > loader_time: 0.04920 (0.03956)  --> STEP: 9213/15287 -- GLOBAL_STEP: 1005075 | > loss_disc: 2.33066 (2.32128) | > loss_disc_real_0: 0.08033 (0.12252) | > loss_disc_real_1: 0.19073 (0.21143) | > loss_disc_real_2: 0.23801 (0.21576) | > loss_disc_real_3: 0.21134 (0.21942) | > loss_disc_real_4: 0.21090 (0.21490) | > loss_disc_real_5: 0.22053 (0.21380) | > loss_0: 2.33066 (2.32128) | > grad_norm_0: 19.51531 (15.91664) | > loss_gen: 2.45535 (2.55459) | > loss_kl: 2.76764 (2.66202) | > loss_feat: 9.31648 (8.67932) | > loss_mel: 17.62109 (17.75801) | > loss_duration: 1.73060 (1.70834) | > loss_1: 33.89116 (33.36238) | > grad_norm_1: 224.92761 (132.02985) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97280 (2.26030) | > loader_time: 0.03940 (0.03955)  --> STEP: 9238/15287 -- GLOBAL_STEP: 1005100 | > loss_disc: 2.39328 (2.32138) | > loss_disc_real_0: 0.12495 (0.12254) | > loss_disc_real_1: 0.22023 (0.21145) | > loss_disc_real_2: 0.18803 (0.21577) | > loss_disc_real_3: 0.21789 (0.21943) | > loss_disc_real_4: 0.28563 (0.21492) | > loss_disc_real_5: 0.21010 (0.21381) | > loss_0: 2.39328 (2.32138) | > grad_norm_0: 16.96766 (15.92257) | > loss_gen: 2.44726 (2.55452) | > loss_kl: 2.78268 (2.66217) | > loss_feat: 8.46969 (8.67894) | > loss_mel: 17.89463 (17.75800) | > loss_duration: 1.70588 (1.70835) | > loss_1: 33.30013 (33.36211) | > grad_norm_1: 118.11314 (132.01962) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98170 (2.25957) | > loader_time: 0.03280 (0.03954)  --> STEP: 9263/15287 -- GLOBAL_STEP: 1005125 | > loss_disc: 2.38871 (2.32146) | > loss_disc_real_0: 0.16301 (0.12257) | > loss_disc_real_1: 0.22124 (0.21145) | > loss_disc_real_2: 0.25607 (0.21577) | > loss_disc_real_3: 0.19846 (0.21943) | > loss_disc_real_4: 0.21552 (0.21494) | > loss_disc_real_5: 0.19985 (0.21383) | > loss_0: 2.38871 (2.32146) | > grad_norm_0: 23.42681 (15.93252) | > loss_gen: 2.53098 (2.55457) | > loss_kl: 2.62269 (2.66214) | > loss_feat: 8.30149 (8.67873) | > loss_mel: 18.02185 (17.75824) | > loss_duration: 1.71183 (1.70837) | > loss_1: 33.18884 (33.36217) | > grad_norm_1: 43.53043 (132.06453) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23580 (2.25881) | > loader_time: 0.03390 (0.03953)  --> STEP: 9288/15287 -- GLOBAL_STEP: 1005150 | > loss_disc: 2.28064 (2.32155) | > loss_disc_real_0: 0.09246 (0.12258) | > loss_disc_real_1: 0.22459 (0.21146) | > loss_disc_real_2: 0.21854 (0.21578) | > loss_disc_real_3: 0.20568 (0.21943) | > loss_disc_real_4: 0.18848 (0.21495) | > loss_disc_real_5: 0.20775 (0.21384) | > loss_0: 2.28064 (2.32155) | > grad_norm_0: 16.44625 (15.92708) | > loss_gen: 2.53734 (2.55450) | > loss_kl: 2.63880 (2.66229) | > loss_feat: 9.09412 (8.67849) | > loss_mel: 18.27578 (17.75817) | > loss_duration: 1.73370 (1.70835) | > loss_1: 34.27973 (33.36193) | > grad_norm_1: 136.81944 (132.00742) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86390 (2.25821) | > loader_time: 0.03380 (0.03952)  --> STEP: 9313/15287 -- GLOBAL_STEP: 1005175 | > loss_disc: 2.34886 (2.32155) | > loss_disc_real_0: 0.15741 (0.12261) | > loss_disc_real_1: 0.20958 (0.21146) | > loss_disc_real_2: 0.21027 (0.21579) | > loss_disc_real_3: 0.19787 (0.21944) | > loss_disc_real_4: 0.19476 (0.21494) | > loss_disc_real_5: 0.22124 (0.21384) | > loss_0: 2.34886 (2.32155) | > grad_norm_0: 20.71750 (15.92569) | > loss_gen: 2.59743 (2.55460) | > loss_kl: 2.60306 (2.66221) | > loss_feat: 8.50775 (8.67859) | > loss_mel: 17.75479 (17.75784) | > loss_duration: 1.72537 (1.70836) | > loss_1: 33.18840 (33.36173) | > grad_norm_1: 92.17312 (132.01064) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98710 (2.25758) | > loader_time: 0.03630 (0.03951)  --> STEP: 9338/15287 -- GLOBAL_STEP: 1005200 | > loss_disc: 2.36030 (2.32155) | > loss_disc_real_0: 0.12685 (0.12261) | > loss_disc_real_1: 0.24321 (0.21146) | > loss_disc_real_2: 0.23858 (0.21579) | > loss_disc_real_3: 0.24065 (0.21944) | > loss_disc_real_4: 0.22545 (0.21494) | > loss_disc_real_5: 0.20632 (0.21384) | > loss_0: 2.36030 (2.32155) | > grad_norm_0: 8.82164 (15.92013) | > loss_gen: 2.57157 (2.55456) | > loss_kl: 2.71819 (2.66218) | > loss_feat: 7.99334 (8.67842) | > loss_mel: 17.38694 (17.75786) | > loss_duration: 1.74234 (1.70834) | > loss_1: 32.41238 (33.36150) | > grad_norm_1: 86.33005 (131.98718) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93430 (2.25676) | > loader_time: 0.03350 (0.03950)  --> STEP: 9363/15287 -- GLOBAL_STEP: 1005225 | > loss_disc: 2.40661 (2.32161) | > loss_disc_real_0: 0.22122 (0.12264) | > loss_disc_real_1: 0.22653 (0.21145) | > loss_disc_real_2: 0.18859 (0.21577) | > loss_disc_real_3: 0.22742 (0.21945) | > loss_disc_real_4: 0.21000 (0.21493) | > loss_disc_real_5: 0.23334 (0.21383) | > loss_0: 2.40661 (2.32161) | > grad_norm_0: 35.49516 (15.93772) | > loss_gen: 2.63426 (2.55458) | > loss_kl: 2.59402 (2.66206) | > loss_feat: 8.32493 (8.67859) | > loss_mel: 17.10876 (17.75804) | > loss_duration: 1.74122 (1.70834) | > loss_1: 32.40320 (33.36174) | > grad_norm_1: 124.54295 (132.01443) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34010 (2.25621) | > loader_time: 0.03770 (0.03949)  --> STEP: 9388/15287 -- GLOBAL_STEP: 1005250 | > loss_disc: 2.29107 (2.32167) | > loss_disc_real_0: 0.11336 (0.12265) | > loss_disc_real_1: 0.20230 (0.21145) | > loss_disc_real_2: 0.24596 (0.21578) | > loss_disc_real_3: 0.22372 (0.21946) | > loss_disc_real_4: 0.23740 (0.21494) | > loss_disc_real_5: 0.24940 (0.21384) | > loss_0: 2.29107 (2.32167) | > grad_norm_0: 19.33051 (15.93063) | > loss_gen: 2.57224 (2.55459) | > loss_kl: 2.59669 (2.66217) | > loss_feat: 8.62438 (8.67854) | > loss_mel: 17.81997 (17.75831) | > loss_duration: 1.64099 (1.70834) | > loss_1: 33.25427 (33.36208) | > grad_norm_1: 199.39169 (131.94995) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11980 (2.25591) | > loader_time: 0.03550 (0.03949)  --> STEP: 9413/15287 -- GLOBAL_STEP: 1005275 | > loss_disc: 2.28809 (2.32176) | > loss_disc_real_0: 0.15927 (0.12267) | > loss_disc_real_1: 0.24569 (0.21150) | > loss_disc_real_2: 0.19965 (0.21580) | > loss_disc_real_3: 0.22671 (0.21947) | > loss_disc_real_4: 0.21042 (0.21496) | > loss_disc_real_5: 0.22939 (0.21383) | > loss_0: 2.28809 (2.32176) | > grad_norm_0: 30.43669 (15.93612) | > loss_gen: 2.65145 (2.55459) | > loss_kl: 2.73141 (2.66208) | > loss_feat: 8.65667 (8.67771) | > loss_mel: 17.29159 (17.75786) | > loss_duration: 1.69085 (1.70833) | > loss_1: 33.02197 (33.36071) | > grad_norm_1: 206.35521 (131.92961) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88710 (2.25525) | > loader_time: 0.03610 (0.03948)  --> STEP: 9438/15287 -- GLOBAL_STEP: 1005300 | > loss_disc: 2.36942 (2.32170) | > loss_disc_real_0: 0.09912 (0.12265) | > loss_disc_real_1: 0.21047 (0.21150) | > loss_disc_real_2: 0.21916 (0.21581) | > loss_disc_real_3: 0.22606 (0.21946) | > loss_disc_real_4: 0.20747 (0.21496) | > loss_disc_real_5: 0.21449 (0.21384) | > loss_0: 2.36942 (2.32170) | > grad_norm_0: 10.82945 (15.94181) | > loss_gen: 2.56307 (2.55460) | > loss_kl: 2.69048 (2.66200) | > loss_feat: 8.41047 (8.67760) | > loss_mel: 17.80965 (17.75764) | > loss_duration: 1.70258 (1.70832) | > loss_1: 33.17626 (33.36029) | > grad_norm_1: 77.75897 (131.98474) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16070 (2.25458) | > loader_time: 0.03450 (0.03948)  --> STEP: 9463/15287 -- GLOBAL_STEP: 1005325 | > loss_disc: 2.28971 (2.32170) | > loss_disc_real_0: 0.11956 (0.12269) | > loss_disc_real_1: 0.22956 (0.21150) | > loss_disc_real_2: 0.21523 (0.21581) | > loss_disc_real_3: 0.19670 (0.21947) | > loss_disc_real_4: 0.21682 (0.21495) | > loss_disc_real_5: 0.20469 (0.21383) | > loss_0: 2.28971 (2.32170) | > grad_norm_0: 15.89632 (15.93806) | > loss_gen: 2.64902 (2.55459) | > loss_kl: 2.66525 (2.66214) | > loss_feat: 8.90703 (8.67756) | > loss_mel: 17.59922 (17.75718) | > loss_duration: 1.70459 (1.70831) | > loss_1: 33.52511 (33.35993) | > grad_norm_1: 89.11507 (131.88817) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52130 (2.25404) | > loader_time: 0.04120 (0.03947)  --> STEP: 9488/15287 -- GLOBAL_STEP: 1005350 | > loss_disc: 2.35956 (2.32169) | > loss_disc_real_0: 0.16557 (0.12270) | > loss_disc_real_1: 0.18237 (0.21150) | > loss_disc_real_2: 0.20772 (0.21581) | > loss_disc_real_3: 0.19758 (0.21945) | > loss_disc_real_4: 0.23197 (0.21495) | > loss_disc_real_5: 0.26188 (0.21383) | > loss_0: 2.35956 (2.32169) | > grad_norm_0: 33.07642 (15.94734) | > loss_gen: 2.44347 (2.55461) | > loss_kl: 2.49976 (2.66207) | > loss_feat: 8.06900 (8.67784) | > loss_mel: 17.17141 (17.75726) | > loss_duration: 1.72753 (1.70833) | > loss_1: 31.91117 (33.36024) | > grad_norm_1: 163.71776 (131.94426) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13640 (2.25332) | > loader_time: 0.04060 (0.03947)  --> STEP: 9513/15287 -- GLOBAL_STEP: 1005375 | > loss_disc: 2.34539 (2.32160) | > loss_disc_real_0: 0.15219 (0.12267) | > loss_disc_real_1: 0.23172 (0.21149) | > loss_disc_real_2: 0.25405 (0.21581) | > loss_disc_real_3: 0.23169 (0.21945) | > loss_disc_real_4: 0.25821 (0.21496) | > loss_disc_real_5: 0.23951 (0.21382) | > loss_0: 2.34539 (2.32160) | > grad_norm_0: 20.94679 (15.94646) | > loss_gen: 2.80981 (2.55469) | > loss_kl: 2.95168 (2.66202) | > loss_feat: 9.86464 (8.67850) | > loss_mel: 19.13838 (17.75744) | > loss_duration: 1.72614 (1.70833) | > loss_1: 36.49064 (33.36112) | > grad_norm_1: 48.40362 (131.93860) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94200 (2.25259) | > loader_time: 0.03590 (0.03946)  --> STEP: 9538/15287 -- GLOBAL_STEP: 1005400 | > loss_disc: 2.38969 (2.32165) | > loss_disc_real_0: 0.09755 (0.12268) | > loss_disc_real_1: 0.19675 (0.21149) | > loss_disc_real_2: 0.18769 (0.21582) | > loss_disc_real_3: 0.20136 (0.21946) | > loss_disc_real_4: 0.22310 (0.21496) | > loss_disc_real_5: 0.20371 (0.21383) | > loss_0: 2.38969 (2.32165) | > grad_norm_0: 10.99380 (15.94889) | > loss_gen: 2.43595 (2.55465) | > loss_kl: 2.67092 (2.66201) | > loss_feat: 8.68873 (8.67845) | > loss_mel: 17.86650 (17.75780) | > loss_duration: 1.72004 (1.70834) | > loss_1: 33.38214 (33.36138) | > grad_norm_1: 58.02512 (131.90414) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.73830 (2.25221) | > loader_time: 0.05230 (0.03946)  --> STEP: 9563/15287 -- GLOBAL_STEP: 1005425 | > loss_disc: 2.40543 (2.32175) | > loss_disc_real_0: 0.22100 (0.12270) | > loss_disc_real_1: 0.21181 (0.21149) | > loss_disc_real_2: 0.22817 (0.21583) | > loss_disc_real_3: 0.22395 (0.21946) | > loss_disc_real_4: 0.23176 (0.21496) | > loss_disc_real_5: 0.19248 (0.21383) | > loss_0: 2.40543 (2.32175) | > grad_norm_0: 14.96492 (15.93571) | > loss_gen: 2.66882 (2.55462) | > loss_kl: 2.52320 (2.66205) | > loss_feat: 8.38477 (8.67833) | > loss_mel: 17.74468 (17.75817) | > loss_duration: 1.69966 (1.70833) | > loss_1: 33.02111 (33.36165) | > grad_norm_1: 93.83985 (131.80988) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92770 (2.25158) | > loader_time: 0.04560 (0.03945)  --> STEP: 9588/15287 -- GLOBAL_STEP: 1005450 | > loss_disc: 2.36258 (2.32174) | > loss_disc_real_0: 0.13885 (0.12271) | > loss_disc_real_1: 0.21769 (0.21149) | > loss_disc_real_2: 0.23570 (0.21583) | > loss_disc_real_3: 0.25046 (0.21947) | > loss_disc_real_4: 0.21511 (0.21496) | > loss_disc_real_5: 0.24740 (0.21382) | > loss_0: 2.36258 (2.32174) | > grad_norm_0: 4.88477 (15.93065) | > loss_gen: 2.37172 (2.55459) | > loss_kl: 2.62888 (2.66213) | > loss_feat: 8.16785 (8.67839) | > loss_mel: 17.18004 (17.75832) | > loss_duration: 1.68862 (1.70832) | > loss_1: 32.03711 (33.36191) | > grad_norm_1: 124.41462 (131.76578) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24300 (2.25103) | > loader_time: 0.03220 (0.03945)  --> STEP: 9613/15287 -- GLOBAL_STEP: 1005475 | > loss_disc: 2.36405 (2.32170) | > loss_disc_real_0: 0.13282 (0.12269) | > loss_disc_real_1: 0.21635 (0.21149) | > loss_disc_real_2: 0.20823 (0.21582) | > loss_disc_real_3: 0.23435 (0.21945) | > loss_disc_real_4: 0.22383 (0.21494) | > loss_disc_real_5: 0.20091 (0.21381) | > loss_0: 2.36405 (2.32170) | > grad_norm_0: 11.19124 (15.93006) | > loss_gen: 2.45169 (2.55453) | > loss_kl: 2.71761 (2.66210) | > loss_feat: 8.45685 (8.67820) | > loss_mel: 17.06444 (17.75797) | > loss_duration: 1.72186 (1.70832) | > loss_1: 32.41245 (33.36126) | > grad_norm_1: 68.73294 (131.76686) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.61480 (2.25155) | > loader_time: 0.06340 (0.03945)  --> STEP: 9638/15287 -- GLOBAL_STEP: 1005500 | > loss_disc: 2.30733 (2.32165) | > loss_disc_real_0: 0.11616 (0.12268) | > loss_disc_real_1: 0.22289 (0.21148) | > loss_disc_real_2: 0.20776 (0.21582) | > loss_disc_real_3: 0.21425 (0.21944) | > loss_disc_real_4: 0.24068 (0.21494) | > loss_disc_real_5: 0.21901 (0.21381) | > loss_0: 2.30733 (2.32165) | > grad_norm_0: 10.98184 (15.92604) | > loss_gen: 2.62553 (2.55447) | > loss_kl: 2.59980 (2.66202) | > loss_feat: 8.44971 (8.67802) | > loss_mel: 17.71796 (17.75784) | > loss_duration: 1.69741 (1.70833) | > loss_1: 33.09041 (33.36083) | > grad_norm_1: 91.34911 (131.74086) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11840 (2.25148) | > loader_time: 0.03900 (0.03946)  --> STEP: 9663/15287 -- GLOBAL_STEP: 1005525 | > loss_disc: 2.34069 (2.32161) | > loss_disc_real_0: 0.18430 (0.12267) | > loss_disc_real_1: 0.21382 (0.21148) | > loss_disc_real_2: 0.19127 (0.21582) | > loss_disc_real_3: 0.21132 (0.21943) | > loss_disc_real_4: 0.18799 (0.21493) | > loss_disc_real_5: 0.17971 (0.21381) | > loss_0: 2.34069 (2.32161) | > grad_norm_0: 24.38661 (15.91851) | > loss_gen: 2.53012 (2.55449) | > loss_kl: 2.53451 (2.66203) | > loss_feat: 8.85820 (8.67809) | > loss_mel: 17.62700 (17.75771) | > loss_duration: 1.71288 (1.70832) | > loss_1: 33.26271 (33.36079) | > grad_norm_1: 165.67470 (131.70102) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94490 (2.25083) | > loader_time: 0.03530 (0.03945)  --> STEP: 9688/15287 -- GLOBAL_STEP: 1005550 | > loss_disc: 2.39700 (2.32170) | > loss_disc_real_0: 0.14980 (0.12271) | > loss_disc_real_1: 0.21127 (0.21149) | > loss_disc_real_2: 0.20416 (0.21582) | > loss_disc_real_3: 0.23026 (0.21946) | > loss_disc_real_4: 0.25133 (0.21495) | > loss_disc_real_5: 0.26477 (0.21382) | > loss_0: 2.39700 (2.32170) | > grad_norm_0: 6.10737 (15.91910) | > loss_gen: 2.16807 (2.55445) | > loss_kl: 2.75176 (2.66206) | > loss_feat: 8.69809 (8.67789) | > loss_mel: 17.78799 (17.75790) | > loss_duration: 1.71439 (1.70834) | > loss_1: 33.12030 (33.36078) | > grad_norm_1: 81.99625 (131.65118) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94740 (2.25013) | > loader_time: 0.03380 (0.03945)  --> STEP: 9713/15287 -- GLOBAL_STEP: 1005575 | > loss_disc: 2.37383 (2.32177) | > loss_disc_real_0: 0.21354 (0.12275) | > loss_disc_real_1: 0.16324 (0.21149) | > loss_disc_real_2: 0.17608 (0.21581) | > loss_disc_real_3: 0.16896 (0.21946) | > loss_disc_real_4: 0.21657 (0.21495) | > loss_disc_real_5: 0.18018 (0.21382) | > loss_0: 2.37383 (2.32177) | > grad_norm_0: 36.28341 (15.91854) | > loss_gen: 2.57658 (2.55441) | > loss_kl: 2.83174 (2.66206) | > loss_feat: 9.19296 (8.67764) | > loss_mel: 17.86548 (17.75756) | > loss_duration: 1.70978 (1.70834) | > loss_1: 34.17655 (33.36014) | > grad_norm_1: 119.68227 (131.52518) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88690 (2.24939) | > loader_time: 0.03530 (0.03944)  --> STEP: 9738/15287 -- GLOBAL_STEP: 1005600 | > loss_disc: 2.28384 (2.32178) | > loss_disc_real_0: 0.09151 (0.12280) | > loss_disc_real_1: 0.22592 (0.21148) | > loss_disc_real_2: 0.21535 (0.21580) | > loss_disc_real_3: 0.22603 (0.21947) | > loss_disc_real_4: 0.19483 (0.21494) | > loss_disc_real_5: 0.19859 (0.21381) | > loss_0: 2.28384 (2.32178) | > grad_norm_0: 14.53654 (15.91750) | > loss_gen: 2.44929 (2.55437) | > loss_kl: 2.65965 (2.66205) | > loss_feat: 8.20404 (8.67719) | > loss_mel: 17.44833 (17.75743) | > loss_duration: 1.66321 (1.70834) | > loss_1: 32.42453 (33.35950) | > grad_norm_1: 127.69215 (131.47673) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04260 (2.24868) | > loader_time: 0.03530 (0.03944)  --> STEP: 9763/15287 -- GLOBAL_STEP: 1005625 | > loss_disc: 2.36602 (2.32180) | > loss_disc_real_0: 0.10979 (0.12278) | > loss_disc_real_1: 0.21772 (0.21148) | > loss_disc_real_2: 0.22216 (0.21581) | > loss_disc_real_3: 0.21827 (0.21946) | > loss_disc_real_4: 0.20519 (0.21494) | > loss_disc_real_5: 0.23230 (0.21383) | > loss_0: 2.36602 (2.32180) | > grad_norm_0: 17.71388 (15.92159) | > loss_gen: 2.36811 (2.55435) | > loss_kl: 2.62152 (2.66203) | > loss_feat: 8.29325 (8.67697) | > loss_mel: 18.10947 (17.75724) | > loss_duration: 1.71678 (1.70835) | > loss_1: 33.10913 (33.35906) | > grad_norm_1: 68.38319 (131.44693) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92290 (2.24804) | > loader_time: 0.03370 (0.03943)  --> STEP: 9788/15287 -- GLOBAL_STEP: 1005650 | > loss_disc: 2.20103 (2.32168) | > loss_disc_real_0: 0.09401 (0.12275) | > loss_disc_real_1: 0.19529 (0.21148) | > loss_disc_real_2: 0.20387 (0.21580) | > loss_disc_real_3: 0.19556 (0.21944) | > loss_disc_real_4: 0.19938 (0.21492) | > loss_disc_real_5: 0.18584 (0.21383) | > loss_0: 2.20103 (2.32168) | > grad_norm_0: 5.09732 (15.93816) | > loss_gen: 2.87967 (2.55438) | > loss_kl: 2.42930 (2.66200) | > loss_feat: 9.51142 (8.67692) | > loss_mel: 17.15511 (17.75729) | > loss_duration: 1.72392 (1.70835) | > loss_1: 33.69942 (33.35906) | > grad_norm_1: 167.53540 (131.56412) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87980 (2.24744) | > loader_time: 0.03390 (0.03942)  --> STEP: 9813/15287 -- GLOBAL_STEP: 1005675 | > loss_disc: 2.25690 (2.32158) | > loss_disc_real_0: 0.12953 (0.12273) | > loss_disc_real_1: 0.21724 (0.21148) | > loss_disc_real_2: 0.20090 (0.21579) | > loss_disc_real_3: 0.19917 (0.21945) | > loss_disc_real_4: 0.19713 (0.21492) | > loss_disc_real_5: 0.18721 (0.21383) | > loss_0: 2.25690 (2.32158) | > grad_norm_0: 31.02191 (15.94966) | > loss_gen: 2.55543 (2.55445) | > loss_kl: 2.72470 (2.66198) | > loss_feat: 8.74764 (8.67724) | > loss_mel: 17.25638 (17.75709) | > loss_duration: 1.68799 (1.70836) | > loss_1: 32.97213 (33.35925) | > grad_norm_1: 68.20323 (131.62625) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19150 (2.24685) | > loader_time: 0.03700 (0.03941)  --> STEP: 9838/15287 -- GLOBAL_STEP: 1005700 | > loss_disc: 2.36508 (2.32153) | > loss_disc_real_0: 0.13612 (0.12272) | > loss_disc_real_1: 0.22870 (0.21147) | > loss_disc_real_2: 0.21184 (0.21579) | > loss_disc_real_3: 0.20476 (0.21944) | > loss_disc_real_4: 0.18401 (0.21491) | > loss_disc_real_5: 0.21064 (0.21383) | > loss_0: 2.36508 (2.32153) | > grad_norm_0: 10.37990 (15.95773) | > loss_gen: 2.72346 (2.55443) | > loss_kl: 2.66129 (2.66200) | > loss_feat: 8.44399 (8.67753) | > loss_mel: 18.16271 (17.75695) | > loss_duration: 1.70810 (1.70835) | > loss_1: 33.69955 (33.35937) | > grad_norm_1: 146.60658 (131.65903) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86020 (2.24610) | > loader_time: 0.03470 (0.03940)  --> STEP: 9863/15287 -- GLOBAL_STEP: 1005725 | > loss_disc: 2.34829 (2.32150) | > loss_disc_real_0: 0.12051 (0.12271) | > loss_disc_real_1: 0.23449 (0.21147) | > loss_disc_real_2: 0.22021 (0.21580) | > loss_disc_real_3: 0.21370 (0.21944) | > loss_disc_real_4: 0.21843 (0.21491) | > loss_disc_real_5: 0.22052 (0.21383) | > loss_0: 2.34829 (2.32150) | > grad_norm_0: 5.80939 (15.95507) | > loss_gen: 2.58175 (2.55452) | > loss_kl: 2.88260 (2.66202) | > loss_feat: 9.34221 (8.67813) | > loss_mel: 17.79595 (17.75673) | > loss_duration: 1.75145 (1.70836) | > loss_1: 34.35396 (33.35987) | > grad_norm_1: 153.57481 (131.63441) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89490 (2.24542) | > loader_time: 0.03440 (0.03939)  --> STEP: 9888/15287 -- GLOBAL_STEP: 1005750 | > loss_disc: 2.41288 (2.32161) | > loss_disc_real_0: 0.09165 (0.12272) | > loss_disc_real_1: 0.21511 (0.21149) | > loss_disc_real_2: 0.24279 (0.21582) | > loss_disc_real_3: 0.22065 (0.21944) | > loss_disc_real_4: 0.22720 (0.21492) | > loss_disc_real_5: 0.21054 (0.21383) | > loss_0: 2.41288 (2.32161) | > grad_norm_0: 9.61447 (15.94857) | > loss_gen: 2.47072 (2.55447) | > loss_kl: 2.78393 (2.66210) | > loss_feat: 8.08407 (8.67795) | > loss_mel: 17.45862 (17.75675) | > loss_duration: 1.71990 (1.70835) | > loss_1: 32.51724 (33.35974) | > grad_norm_1: 78.01646 (131.60831) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90360 (2.24466) | > loader_time: 0.03460 (0.03938)  --> STEP: 9913/15287 -- GLOBAL_STEP: 1005775 | > loss_disc: 2.31048 (2.32163) | > loss_disc_real_0: 0.09004 (0.12273) | > loss_disc_real_1: 0.19420 (0.21150) | > loss_disc_real_2: 0.21637 (0.21582) | > loss_disc_real_3: 0.19288 (0.21945) | > loss_disc_real_4: 0.19979 (0.21492) | > loss_disc_real_5: 0.21141 (0.21382) | > loss_0: 2.31048 (2.32163) | > grad_norm_0: 17.26634 (15.94443) | > loss_gen: 2.50523 (2.55449) | > loss_kl: 2.60186 (2.66207) | > loss_feat: 9.06903 (8.67797) | > loss_mel: 17.93351 (17.75698) | > loss_duration: 1.71789 (1.70835) | > loss_1: 33.82751 (33.35998) | > grad_norm_1: 138.60358 (131.55089) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94270 (2.24400) | > loader_time: 0.03510 (0.03938)  --> STEP: 9938/15287 -- GLOBAL_STEP: 1005800 | > loss_disc: 2.30524 (2.32164) | > loss_disc_real_0: 0.12390 (0.12272) | > loss_disc_real_1: 0.19769 (0.21150) | > loss_disc_real_2: 0.23031 (0.21582) | > loss_disc_real_3: 0.23355 (0.21945) | > loss_disc_real_4: 0.22997 (0.21493) | > loss_disc_real_5: 0.20286 (0.21382) | > loss_0: 2.30524 (2.32164) | > grad_norm_0: 19.01950 (15.93886) | > loss_gen: 2.64263 (2.55447) | > loss_kl: 2.71087 (2.66210) | > loss_feat: 8.95203 (8.67791) | > loss_mel: 18.28354 (17.75680) | > loss_duration: 1.69752 (1.70835) | > loss_1: 34.28659 (33.35971) | > grad_norm_1: 180.43742 (131.56493) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87900 (2.24343) | > loader_time: 0.03200 (0.03937)  --> STEP: 9963/15287 -- GLOBAL_STEP: 1005825 | > loss_disc: 2.29678 (2.32157) | > loss_disc_real_0: 0.12213 (0.12272) | > loss_disc_real_1: 0.21350 (0.21149) | > loss_disc_real_2: 0.22656 (0.21581) | > loss_disc_real_3: 0.24374 (0.21944) | > loss_disc_real_4: 0.23681 (0.21492) | > loss_disc_real_5: 0.19672 (0.21382) | > loss_0: 2.29678 (2.32157) | > grad_norm_0: 10.95257 (15.93771) | > loss_gen: 2.67140 (2.55449) | > loss_kl: 2.67159 (2.66209) | > loss_feat: 8.49280 (8.67813) | > loss_mel: 17.67413 (17.75671) | > loss_duration: 1.69872 (1.70836) | > loss_1: 33.20863 (33.35987) | > grad_norm_1: 226.85921 (131.61694) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92430 (2.24268) | > loader_time: 0.03700 (0.03936)  --> STEP: 9988/15287 -- GLOBAL_STEP: 1005850 | > loss_disc: 2.30841 (2.32152) | > loss_disc_real_0: 0.11899 (0.12270) | > loss_disc_real_1: 0.21416 (0.21149) | > loss_disc_real_2: 0.23178 (0.21581) | > loss_disc_real_3: 0.21116 (0.21944) | > loss_disc_real_4: 0.21296 (0.21491) | > loss_disc_real_5: 0.22135 (0.21383) | > loss_0: 2.30841 (2.32152) | > grad_norm_0: 25.26952 (15.94466) | > loss_gen: 2.49781 (2.55451) | > loss_kl: 2.72408 (2.66198) | > loss_feat: 8.81203 (8.67848) | > loss_mel: 17.25772 (17.75669) | > loss_duration: 1.71817 (1.70835) | > loss_1: 33.00980 (33.36011) | > grad_norm_1: 157.36923 (131.66512) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.81710 (2.24194) | > loader_time: 0.03510 (0.03935)  --> STEP: 10013/15287 -- GLOBAL_STEP: 1005875 | > loss_disc: 2.39053 (2.32143) | > loss_disc_real_0: 0.13693 (0.12268) | > loss_disc_real_1: 0.21596 (0.21149) | > loss_disc_real_2: 0.20766 (0.21580) | > loss_disc_real_3: 0.25713 (0.21943) | > loss_disc_real_4: 0.24241 (0.21491) | > loss_disc_real_5: 0.24165 (0.21382) | > loss_0: 2.39053 (2.32143) | > grad_norm_0: 26.59908 (15.94045) | > loss_gen: 2.44895 (2.55458) | > loss_kl: 2.63464 (2.66203) | > loss_feat: 8.82151 (8.67882) | > loss_mel: 17.95407 (17.75662) | > loss_duration: 1.71381 (1.70836) | > loss_1: 33.57299 (33.36052) | > grad_norm_1: 161.52255 (131.70473) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94800 (2.24115) | > loader_time: 0.03660 (0.03934)  --> STEP: 10038/15287 -- GLOBAL_STEP: 1005900 | > loss_disc: 2.27325 (2.32146) | > loss_disc_real_0: 0.12971 (0.12267) | > loss_disc_real_1: 0.20023 (0.21149) | > loss_disc_real_2: 0.22722 (0.21580) | > loss_disc_real_3: 0.24135 (0.21943) | > loss_disc_real_4: 0.22287 (0.21492) | > loss_disc_real_5: 0.21494 (0.21384) | > loss_0: 2.27325 (2.32146) | > grad_norm_0: 15.54223 (15.93394) | > loss_gen: 2.61797 (2.55454) | > loss_kl: 2.65055 (2.66201) | > loss_feat: 8.67802 (8.67883) | > loss_mel: 17.69533 (17.75671) | > loss_duration: 1.70117 (1.70835) | > loss_1: 33.34304 (33.36057) | > grad_norm_1: 155.02344 (131.69475) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94220 (2.24042) | > loader_time: 0.03400 (0.03933)  --> STEP: 10063/15287 -- GLOBAL_STEP: 1005925 | > loss_disc: 2.27271 (2.32149) | > loss_disc_real_0: 0.08624 (0.12266) | > loss_disc_real_1: 0.20161 (0.21149) | > loss_disc_real_2: 0.24783 (0.21581) | > loss_disc_real_3: 0.22470 (0.21943) | > loss_disc_real_4: 0.19245 (0.21492) | > loss_disc_real_5: 0.19429 (0.21384) | > loss_0: 2.27271 (2.32149) | > grad_norm_0: 9.33744 (15.93058) | > loss_gen: 2.51204 (2.55449) | > loss_kl: 2.60516 (2.66201) | > loss_feat: 8.66600 (8.67850) | > loss_mel: 17.97104 (17.75676) | > loss_duration: 1.73185 (1.70834) | > loss_1: 33.48609 (33.36024) | > grad_norm_1: 132.30826 (131.68716) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05610 (2.23976) | > loader_time: 0.03670 (0.03932)  --> STEP: 10088/15287 -- GLOBAL_STEP: 1005950 | > loss_disc: 2.29387 (2.32147) | > loss_disc_real_0: 0.13066 (0.12265) | > loss_disc_real_1: 0.24256 (0.21149) | > loss_disc_real_2: 0.20139 (0.21581) | > loss_disc_real_3: 0.20432 (0.21943) | > loss_disc_real_4: 0.20435 (0.21492) | > loss_disc_real_5: 0.19458 (0.21385) | > loss_0: 2.29387 (2.32147) | > grad_norm_0: 19.44378 (15.93538) | > loss_gen: 2.51472 (2.55449) | > loss_kl: 2.70903 (2.66196) | > loss_feat: 8.86626 (8.67848) | > loss_mel: 17.79654 (17.75662) | > loss_duration: 1.73716 (1.70834) | > loss_1: 33.62371 (33.36002) | > grad_norm_1: 184.80219 (131.70850) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90280 (2.23896) | > loader_time: 0.03980 (0.03931)  --> STEP: 10113/15287 -- GLOBAL_STEP: 1005975 | > loss_disc: 2.32495 (2.32146) | > loss_disc_real_0: 0.12039 (0.12267) | > loss_disc_real_1: 0.23127 (0.21149) | > loss_disc_real_2: 0.23842 (0.21582) | > loss_disc_real_3: 0.21500 (0.21942) | > loss_disc_real_4: 0.21073 (0.21492) | > loss_disc_real_5: 0.19469 (0.21385) | > loss_0: 2.32495 (2.32146) | > grad_norm_0: 3.86689 (15.93274) | > loss_gen: 2.43685 (2.55449) | > loss_kl: 2.81650 (2.66198) | > loss_feat: 8.91940 (8.67840) | > loss_mel: 18.06669 (17.75654) | > loss_duration: 1.68445 (1.70834) | > loss_1: 33.92389 (33.35986) | > grad_norm_1: 68.73338 (131.70753) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95130 (2.23835) | > loader_time: 0.03640 (0.03930)  --> STEP: 10138/15287 -- GLOBAL_STEP: 1006000 | > loss_disc: 2.32317 (2.32142) | > loss_disc_real_0: 0.10449 (0.12265) | > loss_disc_real_1: 0.20267 (0.21149) | > loss_disc_real_2: 0.20768 (0.21580) | > loss_disc_real_3: 0.24358 (0.21942) | > loss_disc_real_4: 0.18143 (0.21491) | > loss_disc_real_5: 0.26058 (0.21385) | > loss_0: 2.32317 (2.32142) | > grad_norm_0: 9.82803 (15.92568) | > loss_gen: 2.54089 (2.55451) | > loss_kl: 2.77483 (2.66207) | > loss_feat: 8.57791 (8.67874) | > loss_mel: 17.59656 (17.75682) | > loss_duration: 1.73054 (1.70836) | > loss_1: 33.22072 (33.36063) | > grad_norm_1: 138.85623 (131.69624) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09830 (2.23772) | > loader_time: 0.03440 (0.03929)  --> STEP: 10163/15287 -- GLOBAL_STEP: 1006025 | > loss_disc: 2.31586 (2.32152) | > loss_disc_real_0: 0.16655 (0.12268) | > loss_disc_real_1: 0.24388 (0.21150) | > loss_disc_real_2: 0.19965 (0.21580) | > loss_disc_real_3: 0.24609 (0.21943) | > loss_disc_real_4: 0.20178 (0.21492) | > loss_disc_real_5: 0.19530 (0.21387) | > loss_0: 2.31586 (2.32152) | > grad_norm_0: 17.37988 (15.92120) | > loss_gen: 2.39877 (2.55442) | > loss_kl: 2.75891 (2.66217) | > loss_feat: 8.50992 (8.67852) | > loss_mel: 17.28125 (17.75692) | > loss_duration: 1.72078 (1.70837) | > loss_1: 32.66963 (33.36052) | > grad_norm_1: 116.63764 (131.60410) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90290 (2.23705) | > loader_time: 0.03560 (0.03929)  --> STEP: 10188/15287 -- GLOBAL_STEP: 1006050 | > loss_disc: 2.34814 (2.32153) | > loss_disc_real_0: 0.11833 (0.12266) | > loss_disc_real_1: 0.22214 (0.21150) | > loss_disc_real_2: 0.24572 (0.21580) | > loss_disc_real_3: 0.20134 (0.21943) | > loss_disc_real_4: 0.25935 (0.21492) | > loss_disc_real_5: 0.19460 (0.21386) | > loss_0: 2.34814 (2.32153) | > grad_norm_0: 7.53436 (15.91153) | > loss_gen: 2.60501 (2.55444) | > loss_kl: 2.57359 (2.66215) | > loss_feat: 8.41279 (8.67844) | > loss_mel: 17.77526 (17.75678) | > loss_duration: 1.71673 (1.70837) | > loss_1: 33.08339 (33.36029) | > grad_norm_1: 76.75923 (131.55031) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09680 (2.23648) | > loader_time: 0.03600 (0.03927)  --> STEP: 10213/15287 -- GLOBAL_STEP: 1006075 | > loss_disc: 2.25785 (2.32167) | > loss_disc_real_0: 0.16664 (0.12268) | > loss_disc_real_1: 0.21181 (0.21151) | > loss_disc_real_2: 0.21149 (0.21581) | > loss_disc_real_3: 0.22892 (0.21944) | > loss_disc_real_4: 0.20806 (0.21492) | > loss_disc_real_5: 0.19842 (0.21387) | > loss_0: 2.25785 (2.32167) | > grad_norm_0: 8.74155 (15.90776) | > loss_gen: 2.58638 (2.55430) | > loss_kl: 2.63104 (2.66212) | > loss_feat: 8.55677 (8.67785) | > loss_mel: 17.68425 (17.75689) | > loss_duration: 1.71675 (1.70837) | > loss_1: 33.17518 (33.35965) | > grad_norm_1: 56.91777 (131.52156) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91450 (2.23574) | > loader_time: 0.03520 (0.03926)  --> STEP: 10238/15287 -- GLOBAL_STEP: 1006100 | > loss_disc: 2.26656 (2.32163) | > loss_disc_real_0: 0.12212 (0.12267) | > loss_disc_real_1: 0.19755 (0.21151) | > loss_disc_real_2: 0.22862 (0.21581) | > loss_disc_real_3: 0.20685 (0.21943) | > loss_disc_real_4: 0.20495 (0.21492) | > loss_disc_real_5: 0.25354 (0.21386) | > loss_0: 2.26656 (2.32163) | > grad_norm_0: 20.16660 (15.90697) | > loss_gen: 2.48853 (2.55423) | > loss_kl: 2.73143 (2.66208) | > loss_feat: 8.85154 (8.67778) | > loss_mel: 17.73993 (17.75689) | > loss_duration: 1.63584 (1.70840) | > loss_1: 33.44727 (33.35949) | > grad_norm_1: 98.31339 (131.51154) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06380 (2.23493) | > loader_time: 0.03230 (0.03925)  --> STEP: 10263/15287 -- GLOBAL_STEP: 1006125 | > loss_disc: 2.39078 (2.32163) | > loss_disc_real_0: 0.10446 (0.12267) | > loss_disc_real_1: 0.22544 (0.21149) | > loss_disc_real_2: 0.20987 (0.21581) | > loss_disc_real_3: 0.25400 (0.21942) | > loss_disc_real_4: 0.22498 (0.21492) | > loss_disc_real_5: 0.21577 (0.21386) | > loss_0: 2.39078 (2.32163) | > grad_norm_0: 10.53638 (15.89496) | > loss_gen: 2.55608 (2.55424) | > loss_kl: 2.58664 (2.66203) | > loss_feat: 7.97801 (8.67798) | > loss_mel: 17.41360 (17.75709) | > loss_duration: 1.71190 (1.70838) | > loss_1: 32.24622 (33.35982) | > grad_norm_1: 90.12637 (131.40770) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88850 (2.23434) | > loader_time: 0.03060 (0.03925)  --> STEP: 10288/15287 -- GLOBAL_STEP: 1006150 | > loss_disc: 2.31605 (2.32168) | > loss_disc_real_0: 0.08628 (0.12268) | > loss_disc_real_1: 0.21616 (0.21152) | > loss_disc_real_2: 0.23668 (0.21582) | > loss_disc_real_3: 0.21890 (0.21943) | > loss_disc_real_4: 0.25854 (0.21494) | > loss_disc_real_5: 0.20913 (0.21386) | > loss_0: 2.31605 (2.32168) | > grad_norm_0: 28.39640 (15.89688) | > loss_gen: 2.41140 (2.55427) | > loss_kl: 2.57293 (2.66199) | > loss_feat: 8.70512 (8.67778) | > loss_mel: 17.55628 (17.75712) | > loss_duration: 1.67741 (1.70835) | > loss_1: 32.92315 (33.35960) | > grad_norm_1: 153.03409 (131.39812) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89820 (2.23374) | > loader_time: 0.03500 (0.03924)  --> STEP: 10313/15287 -- GLOBAL_STEP: 1006175 | > loss_disc: 2.33131 (2.32164) | > loss_disc_real_0: 0.15631 (0.12267) | > loss_disc_real_1: 0.24645 (0.21152) | > loss_disc_real_2: 0.22424 (0.21581) | > loss_disc_real_3: 0.23782 (0.21943) | > loss_disc_real_4: 0.22956 (0.21493) | > loss_disc_real_5: 0.22703 (0.21386) | > loss_0: 2.33131 (2.32164) | > grad_norm_0: 12.89567 (15.90452) | > loss_gen: 2.65168 (2.55423) | > loss_kl: 2.63356 (2.66203) | > loss_feat: 8.85442 (8.67788) | > loss_mel: 17.69708 (17.75679) | > loss_duration: 1.70699 (1.70833) | > loss_1: 33.54374 (33.35934) | > grad_norm_1: 78.65440 (131.39342) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99350 (2.23317) | > loader_time: 0.03520 (0.03923)  --> STEP: 10338/15287 -- GLOBAL_STEP: 1006200 | > loss_disc: 2.32281 (2.32155) | > loss_disc_real_0: 0.14441 (0.12265) | > loss_disc_real_1: 0.19761 (0.21151) | > loss_disc_real_2: 0.21467 (0.21580) | > loss_disc_real_3: 0.20591 (0.21943) | > loss_disc_real_4: 0.20609 (0.21492) | > loss_disc_real_5: 0.24755 (0.21386) | > loss_0: 2.32281 (2.32155) | > grad_norm_0: 24.68349 (15.90048) | > loss_gen: 2.57020 (2.55430) | > loss_kl: 2.70693 (2.66212) | > loss_feat: 9.12040 (8.67829) | > loss_mel: 18.05084 (17.75690) | > loss_duration: 1.68369 (1.70833) | > loss_1: 34.13205 (33.36002) | > grad_norm_1: 188.41463 (131.40602) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16410 (2.23309) | > loader_time: 0.03400 (0.03922)  --> STEP: 10363/15287 -- GLOBAL_STEP: 1006225 | > loss_disc: 2.30320 (2.32152) | > loss_disc_real_0: 0.09921 (0.12264) | > loss_disc_real_1: 0.18889 (0.21151) | > loss_disc_real_2: 0.20798 (0.21582) | > loss_disc_real_3: 0.20587 (0.21943) | > loss_disc_real_4: 0.20109 (0.21492) | > loss_disc_real_5: 0.20126 (0.21387) | > loss_0: 2.30320 (2.32152) | > grad_norm_0: 17.40817 (15.90397) | > loss_gen: 2.46083 (2.55431) | > loss_kl: 2.87343 (2.66224) | > loss_feat: 9.06399 (8.67858) | > loss_mel: 18.07975 (17.75712) | > loss_duration: 1.68192 (1.70833) | > loss_1: 34.15992 (33.36067) | > grad_norm_1: 207.77414 (131.44379) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00300 (2.23245) | > loader_time: 0.03310 (0.03921)  --> STEP: 10388/15287 -- GLOBAL_STEP: 1006250 | > loss_disc: 2.35005 (2.32153) | > loss_disc_real_0: 0.11270 (0.12265) | > loss_disc_real_1: 0.23816 (0.21152) | > loss_disc_real_2: 0.23025 (0.21582) | > loss_disc_real_3: 0.23050 (0.21942) | > loss_disc_real_4: 0.19901 (0.21491) | > loss_disc_real_5: 0.20637 (0.21387) | > loss_0: 2.35005 (2.32153) | > grad_norm_0: 15.42163 (15.89852) | > loss_gen: 2.52164 (2.55423) | > loss_kl: 2.71080 (2.66234) | > loss_feat: 8.89536 (8.67818) | > loss_mel: 17.86488 (17.75720) | > loss_duration: 1.71127 (1.70834) | > loss_1: 33.70396 (33.36037) | > grad_norm_1: 89.72918 (131.38905) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04580 (2.23613) | > loader_time: 0.03500 (0.03920)  --> STEP: 10413/15287 -- GLOBAL_STEP: 1006275 | > loss_disc: 2.17171 (2.32147) | > loss_disc_real_0: 0.08917 (0.12263) | > loss_disc_real_1: 0.17834 (0.21150) | > loss_disc_real_2: 0.19603 (0.21581) | > loss_disc_real_3: 0.20651 (0.21942) | > loss_disc_real_4: 0.17810 (0.21490) | > loss_disc_real_5: 0.20998 (0.21386) | > loss_0: 2.17171 (2.32147) | > grad_norm_0: 20.58714 (15.90276) | > loss_gen: 2.60604 (2.55418) | > loss_kl: 2.52157 (2.66230) | > loss_feat: 9.24482 (8.67824) | > loss_mel: 18.14816 (17.75713) | > loss_duration: 1.72724 (1.70832) | > loss_1: 34.24783 (33.36025) | > grad_norm_1: 169.36400 (131.41844) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.83080 (2.23688) | > loader_time: 0.03930 (0.03920)  --> STEP: 10438/15287 -- GLOBAL_STEP: 1006300 | > loss_disc: 2.33708 (2.32140) | > loss_disc_real_0: 0.16718 (0.12261) | > loss_disc_real_1: 0.22004 (0.21149) | > loss_disc_real_2: 0.24787 (0.21580) | > loss_disc_real_3: 0.25917 (0.21942) | > loss_disc_real_4: 0.24096 (0.21491) | > loss_disc_real_5: 0.21817 (0.21386) | > loss_0: 2.33708 (2.32140) | > grad_norm_0: 12.82607 (15.90547) | > loss_gen: 2.70236 (2.55426) | > loss_kl: 2.84174 (2.66233) | > loss_feat: 9.29514 (8.67854) | > loss_mel: 17.83692 (17.75744) | > loss_duration: 1.68807 (1.70831) | > loss_1: 34.36422 (33.36098) | > grad_norm_1: 178.83986 (131.44743) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95680 (2.23625) | > loader_time: 0.03950 (0.03920)  --> STEP: 10463/15287 -- GLOBAL_STEP: 1006325 | > loss_disc: 2.31240 (2.32136) | > loss_disc_real_0: 0.10242 (0.12259) | > loss_disc_real_1: 0.21981 (0.21147) | > loss_disc_real_2: 0.21448 (0.21579) | > loss_disc_real_3: 0.23133 (0.21942) | > loss_disc_real_4: 0.23652 (0.21491) | > loss_disc_real_5: 0.23066 (0.21387) | > loss_0: 2.31240 (2.32136) | > grad_norm_0: 11.15455 (15.91867) | > loss_gen: 2.54375 (2.55426) | > loss_kl: 2.66596 (2.66235) | > loss_feat: 8.71411 (8.67866) | > loss_mel: 17.62251 (17.75733) | > loss_duration: 1.69234 (1.70831) | > loss_1: 33.23866 (33.36099) | > grad_norm_1: 182.80739 (131.48151) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43620 (2.23562) | > loader_time: 0.03830 (0.03920)  --> STEP: 10488/15287 -- GLOBAL_STEP: 1006350 | > loss_disc: 2.36690 (2.32132) | > loss_disc_real_0: 0.15106 (0.12258) | > loss_disc_real_1: 0.20724 (0.21147) | > loss_disc_real_2: 0.20429 (0.21578) | > loss_disc_real_3: 0.21172 (0.21941) | > loss_disc_real_4: 0.18500 (0.21490) | > loss_disc_real_5: 0.24115 (0.21386) | > loss_0: 2.36690 (2.32132) | > grad_norm_0: 28.85937 (15.91711) | > loss_gen: 2.34651 (2.55421) | > loss_kl: 2.86004 (2.66238) | > loss_feat: 8.45870 (8.67888) | > loss_mel: 17.29093 (17.75726) | > loss_duration: 1.73052 (1.70830) | > loss_1: 32.68669 (33.36111) | > grad_norm_1: 179.59735 (131.53581) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.59030 (2.23514) | > loader_time: 0.03320 (0.03920)  --> STEP: 10513/15287 -- GLOBAL_STEP: 1006375 | > loss_disc: 2.24567 (2.32128) | > loss_disc_real_0: 0.08973 (0.12257) | > loss_disc_real_1: 0.18978 (0.21147) | > loss_disc_real_2: 0.19997 (0.21578) | > loss_disc_real_3: 0.20068 (0.21941) | > loss_disc_real_4: 0.20294 (0.21489) | > loss_disc_real_5: 0.18978 (0.21387) | > loss_0: 2.24567 (2.32128) | > grad_norm_0: 12.96651 (15.92506) | > loss_gen: 2.75171 (2.55423) | > loss_kl: 2.57415 (2.66232) | > loss_feat: 8.66787 (8.67924) | > loss_mel: 17.88308 (17.75701) | > loss_duration: 1.75951 (1.70829) | > loss_1: 33.63632 (33.36118) | > grad_norm_1: 144.43991 (131.55348) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95090 (2.23470) | > loader_time: 0.03990 (0.03921)  --> STEP: 10538/15287 -- GLOBAL_STEP: 1006400 | > loss_disc: 2.22750 (2.32122) | > loss_disc_real_0: 0.10284 (0.12255) | > loss_disc_real_1: 0.21336 (0.21147) | > loss_disc_real_2: 0.22527 (0.21577) | > loss_disc_real_3: 0.17864 (0.21941) | > loss_disc_real_4: 0.21573 (0.21489) | > loss_disc_real_5: 0.19801 (0.21386) | > loss_0: 2.22750 (2.32122) | > grad_norm_0: 16.32817 (15.93333) | > loss_gen: 2.62923 (2.55421) | > loss_kl: 2.61131 (2.66229) | > loss_feat: 9.02564 (8.67963) | > loss_mel: 17.90252 (17.75681) | > loss_duration: 1.74507 (1.70828) | > loss_1: 33.91376 (33.36129) | > grad_norm_1: 197.96365 (131.62384) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86500 (2.23404) | > loader_time: 0.03770 (0.03920)  --> STEP: 10563/15287 -- GLOBAL_STEP: 1006425 | > loss_disc: 2.30475 (2.32116) | > loss_disc_real_0: 0.14534 (0.12253) | > loss_disc_real_1: 0.23057 (0.21146) | > loss_disc_real_2: 0.22671 (0.21577) | > loss_disc_real_3: 0.22359 (0.21941) | > loss_disc_real_4: 0.21439 (0.21487) | > loss_disc_real_5: 0.21986 (0.21386) | > loss_0: 2.30475 (2.32116) | > grad_norm_0: 9.59562 (15.93823) | > loss_gen: 2.44308 (2.55420) | > loss_kl: 2.49897 (2.66227) | > loss_feat: 8.79144 (8.67994) | > loss_mel: 18.14637 (17.75659) | > loss_duration: 1.76565 (1.70829) | > loss_1: 33.64550 (33.36138) | > grad_norm_1: 142.84259 (131.66367) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93580 (2.23348) | > loader_time: 0.03560 (0.03920)  --> STEP: 10588/15287 -- GLOBAL_STEP: 1006450 | > loss_disc: 2.38819 (2.32125) | > loss_disc_real_0: 0.16614 (0.12254) | > loss_disc_real_1: 0.22237 (0.21146) | > loss_disc_real_2: 0.21083 (0.21578) | > loss_disc_real_3: 0.20243 (0.21940) | > loss_disc_real_4: 0.20484 (0.21488) | > loss_disc_real_5: 0.21397 (0.21386) | > loss_0: 2.38819 (2.32125) | > grad_norm_0: 21.53785 (15.94160) | > loss_gen: 2.38687 (2.55417) | > loss_kl: 2.63050 (2.66238) | > loss_feat: 8.42561 (8.67994) | > loss_mel: 17.83145 (17.75723) | > loss_duration: 1.69860 (1.70832) | > loss_1: 32.97303 (33.36211) | > grad_norm_1: 129.02130 (131.67491) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13480 (2.23280) | > loader_time: 0.03560 (0.03920)  --> STEP: 10613/15287 -- GLOBAL_STEP: 1006475 | > loss_disc: 2.41882 (2.32130) | > loss_disc_real_0: 0.08804 (0.12255) | > loss_disc_real_1: 0.21475 (0.21147) | > loss_disc_real_2: 0.21027 (0.21578) | > loss_disc_real_3: 0.26877 (0.21942) | > loss_disc_real_4: 0.23778 (0.21488) | > loss_disc_real_5: 0.17900 (0.21387) | > loss_0: 2.41882 (2.32130) | > grad_norm_0: 11.55348 (15.92982) | > loss_gen: 2.50350 (2.55424) | > loss_kl: 2.76028 (2.66246) | > loss_feat: 8.21043 (8.68002) | > loss_mel: 17.78501 (17.75743) | > loss_duration: 1.70568 (1.70832) | > loss_1: 32.96489 (33.36254) | > grad_norm_1: 122.03796 (131.59492) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89300 (2.23224) | > loader_time: 0.03790 (0.03920)  --> STEP: 10638/15287 -- GLOBAL_STEP: 1006500 | > loss_disc: 2.22363 (2.32129) | > loss_disc_real_0: 0.09027 (0.12255) | > loss_disc_real_1: 0.21955 (0.21146) | > loss_disc_real_2: 0.24083 (0.21578) | > loss_disc_real_3: 0.22175 (0.21942) | > loss_disc_real_4: 0.19062 (0.21488) | > loss_disc_real_5: 0.17560 (0.21386) | > loss_0: 2.22363 (2.32129) | > grad_norm_0: 21.79465 (15.93076) | > loss_gen: 2.61756 (2.55425) | > loss_kl: 2.48053 (2.66249) | > loss_feat: 9.02758 (8.67995) | > loss_mel: 17.98861 (17.75743) | > loss_duration: 1.73352 (1.70834) | > loss_1: 33.84780 (33.36254) | > grad_norm_1: 252.00728 (131.63622) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85630 (2.23160) | > loader_time: 0.03590 (0.03919)  --> STEP: 10663/15287 -- GLOBAL_STEP: 1006525 | > loss_disc: 2.26966 (2.32129) | > loss_disc_real_0: 0.11541 (0.12253) | > loss_disc_real_1: 0.19289 (0.21146) | > loss_disc_real_2: 0.22680 (0.21579) | > loss_disc_real_3: 0.22124 (0.21942) | > loss_disc_real_4: 0.19792 (0.21488) | > loss_disc_real_5: 0.17175 (0.21386) | > loss_0: 2.26966 (2.32129) | > grad_norm_0: 6.75614 (15.93618) | > loss_gen: 2.62053 (2.55420) | > loss_kl: 2.57729 (2.66240) | > loss_feat: 7.92797 (8.67998) | > loss_mel: 16.86764 (17.75750) | > loss_duration: 1.67631 (1.70835) | > loss_1: 31.66974 (33.36250) | > grad_norm_1: 103.38737 (131.67371) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86790 (2.23091) | > loader_time: 0.03250 (0.03919)  --> STEP: 10688/15287 -- GLOBAL_STEP: 1006550 | > loss_disc: 2.20963 (2.32121) | > loss_disc_real_0: 0.11154 (0.12251) | > loss_disc_real_1: 0.20254 (0.21146) | > loss_disc_real_2: 0.19876 (0.21578) | > loss_disc_real_3: 0.23928 (0.21940) | > loss_disc_real_4: 0.19528 (0.21488) | > loss_disc_real_5: 0.18751 (0.21386) | > loss_0: 2.20963 (2.32121) | > grad_norm_0: 10.30159 (15.94562) | > loss_gen: 2.75980 (2.55427) | > loss_kl: 2.67178 (2.66237) | > loss_feat: 9.36057 (8.68037) | > loss_mel: 17.43415 (17.75746) | > loss_duration: 1.71786 (1.70835) | > loss_1: 33.94414 (33.36285) | > grad_norm_1: 141.48633 (131.72733) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94850 (2.23028) | > loader_time: 0.03730 (0.03918)  --> STEP: 10713/15287 -- GLOBAL_STEP: 1006575 | > loss_disc: 2.31138 (2.32119) | > loss_disc_real_0: 0.12705 (0.12250) | > loss_disc_real_1: 0.21144 (0.21146) | > loss_disc_real_2: 0.22763 (0.21577) | > loss_disc_real_3: 0.20482 (0.21940) | > loss_disc_real_4: 0.21192 (0.21488) | > loss_disc_real_5: 0.20548 (0.21387) | > loss_0: 2.31138 (2.32119) | > grad_norm_0: 12.00665 (15.95525) | > loss_gen: 2.50984 (2.55427) | > loss_kl: 2.82181 (2.66240) | > loss_feat: 8.21424 (8.68015) | > loss_mel: 17.37015 (17.75702) | > loss_duration: 1.72993 (1.70836) | > loss_1: 32.64596 (33.36224) | > grad_norm_1: 117.70037 (131.79550) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 16.88960 (2.23335) | > loader_time: 0.04220 (0.03917)  --> STEP: 10738/15287 -- GLOBAL_STEP: 1006600 | > loss_disc: 2.40517 (2.32116) | > loss_disc_real_0: 0.11729 (0.12249) | > loss_disc_real_1: 0.23485 (0.21145) | > loss_disc_real_2: 0.19930 (0.21576) | > loss_disc_real_3: 0.24348 (0.21939) | > loss_disc_real_4: 0.21905 (0.21488) | > loss_disc_real_5: 0.20736 (0.21387) | > loss_0: 2.40517 (2.32116) | > grad_norm_0: 27.55263 (15.96907) | > loss_gen: 2.46340 (2.55424) | > loss_kl: 2.73444 (2.66240) | > loss_feat: 8.84130 (8.68008) | > loss_mel: 17.79526 (17.75676) | > loss_duration: 1.73522 (1.70836) | > loss_1: 33.56961 (33.36190) | > grad_norm_1: 182.45877 (131.87918) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94050 (2.23312) | > loader_time: 0.03740 (0.03916)  --> STEP: 10763/15287 -- GLOBAL_STEP: 1006625 | > loss_disc: 2.19998 (2.32113) | > loss_disc_real_0: 0.10459 (0.12248) | > loss_disc_real_1: 0.20066 (0.21145) | > loss_disc_real_2: 0.21785 (0.21576) | > loss_disc_real_3: 0.24017 (0.21940) | > loss_disc_real_4: 0.20795 (0.21487) | > loss_disc_real_5: 0.18881 (0.21387) | > loss_0: 2.19998 (2.32113) | > grad_norm_0: 8.60108 (15.97275) | > loss_gen: 2.79032 (2.55426) | > loss_kl: 2.61979 (2.66237) | > loss_feat: 9.13108 (8.68050) | > loss_mel: 18.04034 (17.75672) | > loss_duration: 1.69394 (1.70834) | > loss_1: 34.27548 (33.36222) | > grad_norm_1: 182.44710 (131.95094) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93410 (2.24138) | > loader_time: 0.04160 (0.03916)  --> STEP: 10788/15287 -- GLOBAL_STEP: 1006650 | > loss_disc: 2.31588 (2.32114) | > loss_disc_real_0: 0.07879 (0.12247) | > loss_disc_real_1: 0.20466 (0.21145) | > loss_disc_real_2: 0.18833 (0.21575) | > loss_disc_real_3: 0.21499 (0.21939) | > loss_disc_real_4: 0.21280 (0.21488) | > loss_disc_real_5: 0.20283 (0.21388) | > loss_0: 2.31588 (2.32114) | > grad_norm_0: 23.56668 (15.97577) | > loss_gen: 2.36771 (2.55424) | > loss_kl: 2.59557 (2.66239) | > loss_feat: 8.70442 (8.68033) | > loss_mel: 18.37769 (17.75685) | > loss_duration: 1.71730 (1.70831) | > loss_1: 33.76270 (33.36216) | > grad_norm_1: 161.58322 (131.97871) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05330 (2.24259) | > loader_time: 0.03540 (0.03915)  --> STEP: 10813/15287 -- GLOBAL_STEP: 1006675 | > loss_disc: 2.28067 (2.32120) | > loss_disc_real_0: 0.12541 (0.12247) | > loss_disc_real_1: 0.24110 (0.21145) | > loss_disc_real_2: 0.21155 (0.21575) | > loss_disc_real_3: 0.20197 (0.21940) | > loss_disc_real_4: 0.21056 (0.21489) | > loss_disc_real_5: 0.22599 (0.21388) | > loss_0: 2.28067 (2.32120) | > grad_norm_0: 12.44605 (15.97190) | > loss_gen: 2.67160 (2.55420) | > loss_kl: 2.64085 (2.66238) | > loss_feat: 8.30524 (8.68030) | > loss_mel: 17.70166 (17.75697) | > loss_duration: 1.70392 (1.70831) | > loss_1: 33.02328 (33.36221) | > grad_norm_1: 53.67822 (131.93214) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91090 (2.24218) | > loader_time: 0.03590 (0.03914)  --> STEP: 10838/15287 -- GLOBAL_STEP: 1006700 | > loss_disc: 2.29747 (2.32118) | > loss_disc_real_0: 0.08928 (0.12247) | > loss_disc_real_1: 0.19221 (0.21146) | > loss_disc_real_2: 0.19238 (0.21575) | > loss_disc_real_3: 0.20599 (0.21940) | > loss_disc_real_4: 0.22060 (0.21490) | > loss_disc_real_5: 0.24175 (0.21390) | > loss_0: 2.29747 (2.32118) | > grad_norm_0: 14.93215 (15.97752) | > loss_gen: 2.62206 (2.55422) | > loss_kl: 2.57527 (2.66247) | > loss_feat: 9.46652 (8.68052) | > loss_mel: 17.64318 (17.75719) | > loss_duration: 1.73108 (1.70832) | > loss_1: 34.03811 (33.36276) | > grad_norm_1: 182.80434 (131.94951) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20270 (2.24194) | > loader_time: 0.03100 (0.03914)  --> STEP: 10863/15287 -- GLOBAL_STEP: 1006725 | > loss_disc: 2.31399 (2.32115) | > loss_disc_real_0: 0.08713 (0.12246) | > loss_disc_real_1: 0.22941 (0.21146) | > loss_disc_real_2: 0.22042 (0.21574) | > loss_disc_real_3: 0.23715 (0.21940) | > loss_disc_real_4: 0.21980 (0.21491) | > loss_disc_real_5: 0.20953 (0.21389) | > loss_0: 2.31399 (2.32115) | > grad_norm_0: 21.02902 (15.97553) | > loss_gen: 2.57738 (2.55428) | > loss_kl: 2.69359 (2.66254) | > loss_feat: 8.49860 (8.68073) | > loss_mel: 18.08848 (17.75764) | > loss_duration: 1.71140 (1.70833) | > loss_1: 33.56945 (33.36355) | > grad_norm_1: 127.17458 (131.95288) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22830 (2.24150) | > loader_time: 0.03530 (0.03913)  --> STEP: 10888/15287 -- GLOBAL_STEP: 1006750 | > loss_disc: 2.32790 (2.32118) | > loss_disc_real_0: 0.11431 (0.12244) | > loss_disc_real_1: 0.22817 (0.21147) | > loss_disc_real_2: 0.24314 (0.21574) | > loss_disc_real_3: 0.24233 (0.21940) | > loss_disc_real_4: 0.24377 (0.21492) | > loss_disc_real_5: 0.21321 (0.21390) | > loss_0: 2.32790 (2.32118) | > grad_norm_0: 16.50592 (15.98284) | > loss_gen: 2.66398 (2.55428) | > loss_kl: 2.71660 (2.66248) | > loss_feat: 8.60353 (8.68062) | > loss_mel: 17.95255 (17.75760) | > loss_duration: 1.69422 (1.70832) | > loss_1: 33.63089 (33.36331) | > grad_norm_1: 175.78787 (131.96747) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 4.21520 (2.24518) | > loader_time: 0.03410 (0.03912)  --> STEP: 10913/15287 -- GLOBAL_STEP: 1006775 | > loss_disc: 2.38776 (2.32118) | > loss_disc_real_0: 0.18797 (0.12244) | > loss_disc_real_1: 0.23812 (0.21147) | > loss_disc_real_2: 0.27211 (0.21575) | > loss_disc_real_3: 0.21507 (0.21941) | > loss_disc_real_4: 0.23713 (0.21492) | > loss_disc_real_5: 0.20094 (0.21390) | > loss_0: 2.38776 (2.32118) | > grad_norm_0: 24.00914 (15.99255) | > loss_gen: 2.56526 (2.55430) | > loss_kl: 2.67435 (2.66250) | > loss_feat: 8.36313 (8.68036) | > loss_mel: 17.81570 (17.75749) | > loss_duration: 1.73009 (1.70831) | > loss_1: 33.14851 (33.36299) | > grad_norm_1: 206.13310 (132.01036) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85280 (2.24631) | > loader_time: 0.03880 (0.03911)  --> STEP: 10938/15287 -- GLOBAL_STEP: 1006800 | > loss_disc: 2.28593 (2.32115) | > loss_disc_real_0: 0.12035 (0.12246) | > loss_disc_real_1: 0.24227 (0.21147) | > loss_disc_real_2: 0.21743 (0.21574) | > loss_disc_real_3: 0.22688 (0.21941) | > loss_disc_real_4: 0.23782 (0.21492) | > loss_disc_real_5: 0.20233 (0.21390) | > loss_0: 2.28593 (2.32115) | > grad_norm_0: 7.73551 (16.01174) | > loss_gen: 2.63459 (2.55429) | > loss_kl: 2.66728 (2.66251) | > loss_feat: 8.99721 (8.68018) | > loss_mel: 17.74353 (17.75743) | > loss_duration: 1.65792 (1.70830) | > loss_1: 33.70053 (33.36274) | > grad_norm_1: 141.39407 (132.08539) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24060 (2.24596) | > loader_time: 0.03440 (0.03910)  --> STEP: 10963/15287 -- GLOBAL_STEP: 1006825 | > loss_disc: 2.27685 (2.32112) | > loss_disc_real_0: 0.11289 (0.12245) | > loss_disc_real_1: 0.19404 (0.21145) | > loss_disc_real_2: 0.21920 (0.21574) | > loss_disc_real_3: 0.21843 (0.21940) | > loss_disc_real_4: 0.18483 (0.21492) | > loss_disc_real_5: 0.20567 (0.21390) | > loss_0: 2.27685 (2.32112) | > grad_norm_0: 23.00149 (16.02172) | > loss_gen: 2.48652 (2.55427) | > loss_kl: 2.59286 (2.66245) | > loss_feat: 8.88774 (8.68037) | > loss_mel: 17.23874 (17.75735) | > loss_duration: 1.68888 (1.70830) | > loss_1: 32.89473 (33.36277) | > grad_norm_1: 215.50258 (132.15837) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.80400 (2.24578) | > loader_time: 0.03660 (0.03909)  --> STEP: 10988/15287 -- GLOBAL_STEP: 1006850 | > loss_disc: 2.34034 (2.32111) | > loss_disc_real_0: 0.07533 (0.12244) | > loss_disc_real_1: 0.21405 (0.21145) | > loss_disc_real_2: 0.22390 (0.21574) | > loss_disc_real_3: 0.22775 (0.21940) | > loss_disc_real_4: 0.20588 (0.21492) | > loss_disc_real_5: 0.22416 (0.21389) | > loss_0: 2.34034 (2.32111) | > grad_norm_0: 15.52178 (16.02255) | > loss_gen: 2.55429 (2.55427) | > loss_kl: 2.49070 (2.66243) | > loss_feat: 8.74822 (8.68052) | > loss_mel: 17.82673 (17.75739) | > loss_duration: 1.69057 (1.70831) | > loss_1: 33.31052 (33.36297) | > grad_norm_1: 214.73975 (132.18120) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07740 (2.24529) | > loader_time: 0.03380 (0.03909)  --> STEP: 11013/15287 -- GLOBAL_STEP: 1006875 | > loss_disc: 2.34392 (2.32119) | > loss_disc_real_0: 0.17566 (0.12247) | > loss_disc_real_1: 0.24113 (0.21146) | > loss_disc_real_2: 0.22060 (0.21576) | > loss_disc_real_3: 0.22667 (0.21940) | > loss_disc_real_4: 0.16688 (0.21494) | > loss_disc_real_5: 0.22674 (0.21390) | > loss_0: 2.34392 (2.32119) | > grad_norm_0: 22.45311 (16.03939) | > loss_gen: 2.71060 (2.55436) | > loss_kl: 2.62603 (2.66241) | > loss_feat: 8.93779 (8.68056) | > loss_mel: 18.16535 (17.75753) | > loss_duration: 1.73177 (1.70832) | > loss_1: 34.17154 (33.36325) | > grad_norm_1: 72.24780 (132.17108) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86470 (2.24485) | > loader_time: 0.03430 (0.03908)  --> STEP: 11038/15287 -- GLOBAL_STEP: 1006900 | > loss_disc: 2.34040 (2.32126) | > loss_disc_real_0: 0.13349 (0.12248) | > loss_disc_real_1: 0.22236 (0.21148) | > loss_disc_real_2: 0.23775 (0.21577) | > loss_disc_real_3: 0.21374 (0.21941) | > loss_disc_real_4: 0.20649 (0.21494) | > loss_disc_real_5: 0.22364 (0.21390) | > loss_0: 2.34040 (2.32126) | > grad_norm_0: 15.04295 (16.03968) | > loss_gen: 2.72336 (2.55447) | > loss_kl: 2.62466 (2.66238) | > loss_feat: 8.36388 (8.68069) | > loss_mel: 18.17372 (17.75772) | > loss_duration: 1.69747 (1.70832) | > loss_1: 33.58309 (33.36366) | > grad_norm_1: 78.52140 (132.15630) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14130 (2.24429) | > loader_time: 0.03310 (0.03908)  --> STEP: 11063/15287 -- GLOBAL_STEP: 1006925 | > loss_disc: 2.37434 (2.32139) | > loss_disc_real_0: 0.12498 (0.12250) | > loss_disc_real_1: 0.24959 (0.21150) | > loss_disc_real_2: 0.23904 (0.21579) | > loss_disc_real_3: 0.24996 (0.21942) | > loss_disc_real_4: 0.25192 (0.21495) | > loss_disc_real_5: 0.22618 (0.21391) | > loss_0: 2.37434 (2.32139) | > grad_norm_0: 35.70945 (16.04944) | > loss_gen: 2.61703 (2.55437) | > loss_kl: 2.63839 (2.66229) | > loss_feat: 8.01535 (8.68014) | > loss_mel: 17.59974 (17.75813) | > loss_duration: 1.68068 (1.70832) | > loss_1: 32.55120 (33.36332) | > grad_norm_1: 145.00513 (132.12433) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95680 (2.24372) | > loader_time: 0.03570 (0.03907)  --> STEP: 11088/15287 -- GLOBAL_STEP: 1006950 | > loss_disc: 2.36560 (2.32147) | > loss_disc_real_0: 0.11723 (0.12251) | > loss_disc_real_1: 0.23165 (0.21151) | > loss_disc_real_2: 0.22364 (0.21580) | > loss_disc_real_3: 0.25454 (0.21944) | > loss_disc_real_4: 0.24979 (0.21497) | > loss_disc_real_5: 0.22554 (0.21391) | > loss_0: 2.36560 (2.32147) | > grad_norm_0: 17.22950 (16.05617) | > loss_gen: 2.44624 (2.55435) | > loss_kl: 2.50839 (2.66223) | > loss_feat: 7.79285 (8.67991) | > loss_mel: 17.72050 (17.75815) | > loss_duration: 1.73056 (1.70832) | > loss_1: 32.19854 (33.36303) | > grad_norm_1: 138.72462 (132.09711) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86230 (2.24323) | > loader_time: 0.03500 (0.03907)  --> STEP: 11113/15287 -- GLOBAL_STEP: 1006975 | > loss_disc: 2.44183 (2.32148) | > loss_disc_real_0: 0.11970 (0.12253) | > loss_disc_real_1: 0.24347 (0.21151) | > loss_disc_real_2: 0.22501 (0.21579) | > loss_disc_real_3: 0.24424 (0.21944) | > loss_disc_real_4: 0.23916 (0.21497) | > loss_disc_real_5: 0.22654 (0.21391) | > loss_0: 2.44183 (2.32148) | > grad_norm_0: 9.31289 (16.06536) | > loss_gen: 2.46831 (2.55441) | > loss_kl: 2.75196 (2.66217) | > loss_feat: 8.91717 (8.67993) | > loss_mel: 18.50688 (17.75844) | > loss_duration: 1.69139 (1.70832) | > loss_1: 34.33572 (33.36335) | > grad_norm_1: 88.14466 (132.14664) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.83710 (2.24271) | > loader_time: 0.03170 (0.03906)  --> STEP: 11138/15287 -- GLOBAL_STEP: 1007000 | > loss_disc: 2.27345 (2.32148) | > loss_disc_real_0: 0.11091 (0.12253) | > loss_disc_real_1: 0.20042 (0.21150) | > loss_disc_real_2: 0.19754 (0.21578) | > loss_disc_real_3: 0.20391 (0.21944) | > loss_disc_real_4: 0.21429 (0.21498) | > loss_disc_real_5: 0.20099 (0.21390) | > loss_0: 2.27345 (2.32148) | > grad_norm_0: 14.20640 (16.06799) | > loss_gen: 2.44728 (2.55433) | > loss_kl: 2.53374 (2.66215) | > loss_feat: 8.96726 (8.67975) | > loss_mel: 17.87424 (17.75826) | > loss_duration: 1.72320 (1.70833) | > loss_1: 33.54572 (33.36288) | > grad_norm_1: 52.50945 (132.11606) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91850 (2.24242) | > loader_time: 0.03110 (0.03905)  --> STEP: 11163/15287 -- GLOBAL_STEP: 1007025 | > loss_disc: 2.42311 (2.32159) | > loss_disc_real_0: 0.19686 (0.12257) | > loss_disc_real_1: 0.23245 (0.21150) | > loss_disc_real_2: 0.22952 (0.21578) | > loss_disc_real_3: 0.23372 (0.21944) | > loss_disc_real_4: 0.22677 (0.21499) | > loss_disc_real_5: 0.22523 (0.21391) | > loss_0: 2.42311 (2.32159) | > grad_norm_0: 10.83167 (16.06453) | > loss_gen: 2.38830 (2.55434) | > loss_kl: 2.65181 (2.66216) | > loss_feat: 8.29815 (8.67966) | > loss_mel: 17.82605 (17.75866) | > loss_duration: 1.70120 (1.70834) | > loss_1: 32.86551 (33.36322) | > grad_norm_1: 90.04899 (132.03462) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09390 (2.24197) | > loader_time: 0.03860 (0.03905)  --> STEP: 11188/15287 -- GLOBAL_STEP: 1007050 | > loss_disc: 2.34185 (2.32172) | > loss_disc_real_0: 0.13123 (0.12261) | > loss_disc_real_1: 0.21095 (0.21154) | > loss_disc_real_2: 0.20830 (0.21581) | > loss_disc_real_3: 0.20353 (0.21947) | > loss_disc_real_4: 0.19561 (0.21501) | > loss_disc_real_5: 0.20800 (0.21391) | > loss_0: 2.34185 (2.32172) | > grad_norm_0: 5.80328 (16.06595) | > loss_gen: 2.55834 (2.55434) | > loss_kl: 2.74919 (2.66214) | > loss_feat: 8.53397 (8.67904) | > loss_mel: 17.81433 (17.75904) | > loss_duration: 1.69687 (1.70834) | > loss_1: 33.35270 (33.36297) | > grad_norm_1: 106.40417 (131.96660) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15380 (2.24165) | > loader_time: 0.05180 (0.03904)  --> STEP: 11213/15287 -- GLOBAL_STEP: 1007075 | > loss_disc: 2.36827 (2.32174) | > loss_disc_real_0: 0.10296 (0.12260) | > loss_disc_real_1: 0.21629 (0.21155) | > loss_disc_real_2: 0.23175 (0.21582) | > loss_disc_real_3: 0.24394 (0.21946) | > loss_disc_real_4: 0.21490 (0.21500) | > loss_disc_real_5: 0.23458 (0.21391) | > loss_0: 2.36827 (2.32174) | > grad_norm_0: 19.11972 (16.07061) | > loss_gen: 2.49381 (2.55436) | > loss_kl: 2.53200 (2.66213) | > loss_feat: 8.08625 (8.67915) | > loss_mel: 17.22174 (17.75932) | > loss_duration: 1.68400 (1.70834) | > loss_1: 32.01780 (33.36338) | > grad_norm_1: 138.99335 (131.98950) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01510 (2.24152) | > loader_time: 0.03700 (0.03903)  --> STEP: 11238/15287 -- GLOBAL_STEP: 1007100 | > loss_disc: 2.35277 (2.32177) | > loss_disc_real_0: 0.08351 (0.12261) | > loss_disc_real_1: 0.21145 (0.21156) | > loss_disc_real_2: 0.21975 (0.21582) | > loss_disc_real_3: 0.22805 (0.21946) | > loss_disc_real_4: 0.21747 (0.21501) | > loss_disc_real_5: 0.21984 (0.21391) | > loss_0: 2.35277 (2.32177) | > grad_norm_0: 17.16260 (16.06359) | > loss_gen: 2.09780 (2.55432) | > loss_kl: 2.65156 (2.66211) | > loss_feat: 8.62159 (8.67926) | > loss_mel: 17.68594 (17.75972) | > loss_duration: 1.71913 (1.70834) | > loss_1: 32.77602 (33.36382) | > grad_norm_1: 128.09044 (131.89265) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11740 (2.24143) | > loader_time: 0.03200 (0.03902)  --> STEP: 11263/15287 -- GLOBAL_STEP: 1007125 | > loss_disc: 2.32995 (2.32185) | > loss_disc_real_0: 0.09740 (0.12266) | > loss_disc_real_1: 0.19663 (0.21159) | > loss_disc_real_2: 0.22364 (0.21583) | > loss_disc_real_3: 0.20792 (0.21946) | > loss_disc_real_4: 0.20917 (0.21502) | > loss_disc_real_5: 0.19181 (0.21390) | > loss_0: 2.32995 (2.32185) | > grad_norm_0: 24.82304 (16.07115) | > loss_gen: 2.54872 (2.55451) | > loss_kl: 2.63820 (2.66208) | > loss_feat: 8.97785 (8.67924) | > loss_mel: 17.97640 (17.75988) | > loss_duration: 1.69059 (1.70833) | > loss_1: 33.83176 (33.36413) | > grad_norm_1: 136.39975 (131.82394) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04710 (2.24109) | > loader_time: 0.03470 (0.03901)  --> STEP: 11288/15287 -- GLOBAL_STEP: 1007150 | > loss_disc: 2.32277 (2.32184) | > loss_disc_real_0: 0.09635 (0.12266) | > loss_disc_real_1: 0.19609 (0.21161) | > loss_disc_real_2: 0.20518 (0.21582) | > loss_disc_real_3: 0.22997 (0.21946) | > loss_disc_real_4: 0.22812 (0.21502) | > loss_disc_real_5: 0.20631 (0.21389) | > loss_0: 2.32277 (2.32184) | > grad_norm_0: 26.92850 (16.07668) | > loss_gen: 2.54115 (2.55452) | > loss_kl: 2.62502 (2.66202) | > loss_feat: 8.78496 (8.67913) | > loss_mel: 17.83985 (17.75971) | > loss_duration: 1.69098 (1.70832) | > loss_1: 33.48196 (33.36379) | > grad_norm_1: 131.92775 (131.82533) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08190 (2.24087) | > loader_time: 0.03590 (0.03901)  --> STEP: 11313/15287 -- GLOBAL_STEP: 1007175 | > loss_disc: 2.40254 (2.32185) | > loss_disc_real_0: 0.14878 (0.12267) | > loss_disc_real_1: 0.20492 (0.21160) | > loss_disc_real_2: 0.21916 (0.21582) | > loss_disc_real_3: 0.23753 (0.21948) | > loss_disc_real_4: 0.22964 (0.21502) | > loss_disc_real_5: 0.21767 (0.21389) | > loss_0: 2.40254 (2.32185) | > grad_norm_0: 8.19649 (16.07154) | > loss_gen: 2.32808 (2.55451) | > loss_kl: 2.85208 (2.66209) | > loss_feat: 8.56290 (8.67930) | > loss_mel: 17.61481 (17.75960) | > loss_duration: 1.69430 (1.70829) | > loss_1: 33.05217 (33.36386) | > grad_norm_1: 109.08089 (131.82971) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03440 (2.24055) | > loader_time: 0.03230 (0.03900)  --> STEP: 11338/15287 -- GLOBAL_STEP: 1007200 | > loss_disc: 2.32617 (2.32184) | > loss_disc_real_0: 0.16210 (0.12269) | > loss_disc_real_1: 0.21715 (0.21160) | > loss_disc_real_2: 0.24240 (0.21582) | > loss_disc_real_3: 0.23063 (0.21947) | > loss_disc_real_4: 0.25458 (0.21502) | > loss_disc_real_5: 0.23474 (0.21389) | > loss_0: 2.32617 (2.32184) | > grad_norm_0: 14.26799 (16.07212) | > loss_gen: 2.54128 (2.55454) | > loss_kl: 2.77283 (2.66211) | > loss_feat: 8.30382 (8.67885) | > loss_mel: 18.09786 (17.75925) | > loss_duration: 1.73431 (1.70832) | > loss_1: 33.45010 (33.36316) | > grad_norm_1: 110.96503 (131.83679) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07470 (2.24017) | > loader_time: 0.03310 (0.03899)  --> STEP: 11363/15287 -- GLOBAL_STEP: 1007225 | > loss_disc: 2.27864 (2.32177) | > loss_disc_real_0: 0.10601 (0.12267) | > loss_disc_real_1: 0.19733 (0.21159) | > loss_disc_real_2: 0.18287 (0.21581) | > loss_disc_real_3: 0.23126 (0.21946) | > loss_disc_real_4: 0.18156 (0.21500) | > loss_disc_real_5: 0.20842 (0.21388) | > loss_0: 2.27864 (2.32177) | > grad_norm_0: 14.45615 (16.07201) | > loss_gen: 2.60118 (2.55453) | > loss_kl: 2.74542 (2.66209) | > loss_feat: 9.29491 (8.67886) | > loss_mel: 18.09065 (17.75924) | > loss_duration: 1.73777 (1.70830) | > loss_1: 34.46994 (33.36312) | > grad_norm_1: 77.96686 (131.84911) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27880 (2.23979) | > loader_time: 0.03990 (0.03898)  --> STEP: 11388/15287 -- GLOBAL_STEP: 1007250 | > loss_disc: 2.28603 (2.32171) | > loss_disc_real_0: 0.08641 (0.12265) | > loss_disc_real_1: 0.19638 (0.21158) | > loss_disc_real_2: 0.20898 (0.21580) | > loss_disc_real_3: 0.21128 (0.21945) | > loss_disc_real_4: 0.21816 (0.21501) | > loss_disc_real_5: 0.23116 (0.21389) | > loss_0: 2.28603 (2.32171) | > grad_norm_0: 19.52604 (16.09097) | > loss_gen: 2.50751 (2.55452) | > loss_kl: 2.68454 (2.66202) | > loss_feat: 8.90287 (8.67887) | > loss_mel: 18.35584 (17.75896) | > loss_duration: 1.73298 (1.70829) | > loss_1: 34.18374 (33.36274) | > grad_norm_1: 223.33986 (131.97440) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98460 (2.23950) | > loader_time: 0.03430 (0.03898)  --> STEP: 11413/15287 -- GLOBAL_STEP: 1007275 | > loss_disc: 2.33216 (2.32165) | > loss_disc_real_0: 0.14015 (0.12265) | > loss_disc_real_1: 0.19003 (0.21157) | > loss_disc_real_2: 0.21068 (0.21580) | > loss_disc_real_3: 0.23809 (0.21945) | > loss_disc_real_4: 0.24936 (0.21502) | > loss_disc_real_5: 0.22582 (0.21388) | > loss_0: 2.33216 (2.32165) | > grad_norm_0: 22.97550 (16.08566) | > loss_gen: 2.44054 (2.55458) | > loss_kl: 3.01699 (2.66207) | > loss_feat: 8.57647 (8.67931) | > loss_mel: 17.75912 (17.75870) | > loss_duration: 1.74698 (1.70831) | > loss_1: 33.54009 (33.36304) | > grad_norm_1: 158.45638 (131.92694) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07100 (2.23907) | > loader_time: 0.03420 (0.03897)  --> STEP: 11438/15287 -- GLOBAL_STEP: 1007300 | > loss_disc: 2.33112 (2.32167) | > loss_disc_real_0: 0.14039 (0.12267) | > loss_disc_real_1: 0.19434 (0.21156) | > loss_disc_real_2: 0.19378 (0.21580) | > loss_disc_real_3: 0.23141 (0.21945) | > loss_disc_real_4: 0.21056 (0.21502) | > loss_disc_real_5: 0.22389 (0.21388) | > loss_0: 2.33112 (2.32167) | > grad_norm_0: 12.32907 (16.08297) | > loss_gen: 2.42039 (2.55457) | > loss_kl: 2.67021 (2.66212) | > loss_feat: 8.60185 (8.67923) | > loss_mel: 18.11366 (17.75881) | > loss_duration: 1.67867 (1.70831) | > loss_1: 33.48479 (33.36311) | > grad_norm_1: 49.34626 (131.93501) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15210 (2.23869) | > loader_time: 0.03340 (0.03896)  --> STEP: 11463/15287 -- GLOBAL_STEP: 1007325 | > loss_disc: 2.29427 (2.32164) | > loss_disc_real_0: 0.10976 (0.12266) | > loss_disc_real_1: 0.22752 (0.21156) | > loss_disc_real_2: 0.19625 (0.21580) | > loss_disc_real_3: 0.21264 (0.21945) | > loss_disc_real_4: 0.20147 (0.21502) | > loss_disc_real_5: 0.21265 (0.21388) | > loss_0: 2.29427 (2.32164) | > grad_norm_0: 6.29598 (16.08073) | > loss_gen: 2.61136 (2.55461) | > loss_kl: 2.57703 (2.66216) | > loss_feat: 8.38380 (8.67928) | > loss_mel: 17.68558 (17.75865) | > loss_duration: 1.72905 (1.70831) | > loss_1: 32.98683 (33.36309) | > grad_norm_1: 87.04262 (131.92155) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94870 (2.23828) | > loader_time: 0.03930 (0.03895)  --> STEP: 11488/15287 -- GLOBAL_STEP: 1007350 | > loss_disc: 2.29226 (2.32166) | > loss_disc_real_0: 0.15785 (0.12267) | > loss_disc_real_1: 0.21906 (0.21156) | > loss_disc_real_2: 0.20356 (0.21583) | > loss_disc_real_3: 0.21990 (0.21945) | > loss_disc_real_4: 0.16552 (0.21502) | > loss_disc_real_5: 0.20609 (0.21388) | > loss_0: 2.29226 (2.32166) | > grad_norm_0: 11.84807 (16.09905) | > loss_gen: 2.58746 (2.55457) | > loss_kl: 2.53676 (2.66211) | > loss_feat: 8.50257 (8.67877) | > loss_mel: 17.47847 (17.75844) | > loss_duration: 1.68910 (1.70831) | > loss_1: 32.79436 (33.36227) | > grad_norm_1: 48.30930 (131.98837) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15240 (2.23795) | > loader_time: 0.04190 (0.03894)  --> STEP: 11513/15287 -- GLOBAL_STEP: 1007375 | > loss_disc: 2.21663 (2.32166) | > loss_disc_real_0: 0.08729 (0.12271) | > loss_disc_real_1: 0.17644 (0.21155) | > loss_disc_real_2: 0.22298 (0.21583) | > loss_disc_real_3: 0.22650 (0.21946) | > loss_disc_real_4: 0.21322 (0.21501) | > loss_disc_real_5: 0.24022 (0.21389) | > loss_0: 2.21663 (2.32166) | > grad_norm_0: 23.41681 (16.10139) | > loss_gen: 2.47585 (2.55464) | > loss_kl: 2.48040 (2.66218) | > loss_feat: 9.60342 (8.67901) | > loss_mel: 18.07266 (17.75843) | > loss_duration: 1.69716 (1.70828) | > loss_1: 34.32949 (33.36260) | > grad_norm_1: 146.57584 (132.00087) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04340 (2.23755) | > loader_time: 0.03450 (0.03894)  --> STEP: 11538/15287 -- GLOBAL_STEP: 1007400 | > loss_disc: 2.28434 (2.32158) | > loss_disc_real_0: 0.11191 (0.12270) | > loss_disc_real_1: 0.20370 (0.21154) | > loss_disc_real_2: 0.22134 (0.21584) | > loss_disc_real_3: 0.21598 (0.21945) | > loss_disc_real_4: 0.19916 (0.21500) | > loss_disc_real_5: 0.25957 (0.21389) | > loss_0: 2.28434 (2.32158) | > grad_norm_0: 18.38817 (16.10850) | > loss_gen: 2.42596 (2.55469) | > loss_kl: 2.76150 (2.66216) | > loss_feat: 8.62057 (8.67915) | > loss_mel: 17.52329 (17.75830) | > loss_duration: 1.70663 (1.70828) | > loss_1: 33.03796 (33.36262) | > grad_norm_1: 131.49208 (132.06026) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19270 (2.23717) | > loader_time: 0.03570 (0.03893)  --> STEP: 11563/15287 -- GLOBAL_STEP: 1007425 | > loss_disc: 2.31890 (2.32152) | > loss_disc_real_0: 0.10457 (0.12267) | > loss_disc_real_1: 0.15308 (0.21152) | > loss_disc_real_2: 0.18341 (0.21582) | > loss_disc_real_3: 0.23777 (0.21946) | > loss_disc_real_4: 0.23442 (0.21501) | > loss_disc_real_5: 0.20067 (0.21388) | > loss_0: 2.31890 (2.32152) | > grad_norm_0: 27.77646 (16.11021) | > loss_gen: 2.47706 (2.55464) | > loss_kl: 2.54821 (2.66212) | > loss_feat: 9.24347 (8.67920) | > loss_mel: 18.18125 (17.75807) | > loss_duration: 1.70152 (1.70826) | > loss_1: 34.15151 (33.36237) | > grad_norm_1: 201.41678 (132.11162) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19140 (2.23689) | > loader_time: 0.03600 (0.03892)  --> STEP: 11588/15287 -- GLOBAL_STEP: 1007450 | > loss_disc: 2.45403 (2.32152) | > loss_disc_real_0: 0.14588 (0.12265) | > loss_disc_real_1: 0.23157 (0.21152) | > loss_disc_real_2: 0.21865 (0.21582) | > loss_disc_real_3: 0.28092 (0.21946) | > loss_disc_real_4: 0.26944 (0.21503) | > loss_disc_real_5: 0.23693 (0.21389) | > loss_0: 2.45403 (2.32152) | > grad_norm_0: 13.96323 (16.10398) | > loss_gen: 2.63078 (2.55467) | > loss_kl: 2.85826 (2.66215) | > loss_feat: 8.37331 (8.67940) | > loss_mel: 17.43208 (17.75783) | > loss_duration: 1.67008 (1.70824) | > loss_1: 32.96451 (33.36236) | > grad_norm_1: 127.21526 (132.14223) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98650 (2.23646) | > loader_time: 0.03830 (0.03891)  --> STEP: 11613/15287 -- GLOBAL_STEP: 1007475 | > loss_disc: 2.33382 (2.32156) | > loss_disc_real_0: 0.11267 (0.12266) | > loss_disc_real_1: 0.23401 (0.21152) | > loss_disc_real_2: 0.20242 (0.21582) | > loss_disc_real_3: 0.21420 (0.21946) | > loss_disc_real_4: 0.21580 (0.21503) | > loss_disc_real_5: 0.20045 (0.21389) | > loss_0: 2.33382 (2.32156) | > grad_norm_0: 10.25054 (16.09359) | > loss_gen: 2.59225 (2.55466) | > loss_kl: 2.58581 (2.66220) | > loss_feat: 8.81349 (8.67949) | > loss_mel: 18.54010 (17.75829) | > loss_duration: 1.70967 (1.70822) | > loss_1: 34.24131 (33.36294) | > grad_norm_1: 121.91405 (132.10080) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04490 (2.23610) | > loader_time: 0.03350 (0.03890)  --> STEP: 11638/15287 -- GLOBAL_STEP: 1007500 | > loss_disc: 2.38754 (2.32157) | > loss_disc_real_0: 0.15304 (0.12266) | > loss_disc_real_1: 0.21549 (0.21151) | > loss_disc_real_2: 0.19740 (0.21582) | > loss_disc_real_3: 0.24062 (0.21946) | > loss_disc_real_4: 0.22727 (0.21502) | > loss_disc_real_5: 0.22670 (0.21390) | > loss_0: 2.38754 (2.32157) | > grad_norm_0: 10.68534 (16.09295) | > loss_gen: 2.58961 (2.55464) | > loss_kl: 2.52879 (2.66218) | > loss_feat: 8.33588 (8.67936) | > loss_mel: 17.93459 (17.75843) | > loss_duration: 1.72490 (1.70821) | > loss_1: 33.11376 (33.36291) | > grad_norm_1: 122.27713 (132.10547) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20200 (2.23571) | > loader_time: 0.03360 (0.03889)  --> STEP: 11663/15287 -- GLOBAL_STEP: 1007525 | > loss_disc: 2.35126 (2.32156) | > loss_disc_real_0: 0.17600 (0.12265) | > loss_disc_real_1: 0.16849 (0.21152) | > loss_disc_real_2: 0.21804 (0.21583) | > loss_disc_real_3: 0.21181 (0.21946) | > loss_disc_real_4: 0.17756 (0.21503) | > loss_disc_real_5: 0.21403 (0.21391) | > loss_0: 2.35126 (2.32156) | > grad_norm_0: 8.12326 (16.09076) | > loss_gen: 2.40185 (2.55459) | > loss_kl: 2.64854 (2.66212) | > loss_feat: 8.59701 (8.67934) | > loss_mel: 17.54221 (17.75841) | > loss_duration: 1.75378 (1.70821) | > loss_1: 32.94340 (33.36275) | > grad_norm_1: 94.81094 (132.09564) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92950 (2.23530) | > loader_time: 0.03540 (0.03889)  --> STEP: 11688/15287 -- GLOBAL_STEP: 1007550 | > loss_disc: 2.30553 (2.32159) | > loss_disc_real_0: 0.14510 (0.12265) | > loss_disc_real_1: 0.20958 (0.21152) | > loss_disc_real_2: 0.20520 (0.21583) | > loss_disc_real_3: 0.20611 (0.21946) | > loss_disc_real_4: 0.20320 (0.21503) | > loss_disc_real_5: 0.17251 (0.21390) | > loss_0: 2.30553 (2.32159) | > grad_norm_0: 22.30280 (16.08283) | > loss_gen: 2.43805 (2.55452) | > loss_kl: 2.68153 (2.66217) | > loss_feat: 8.96400 (8.67940) | > loss_mel: 18.03941 (17.75853) | > loss_duration: 1.74792 (1.70821) | > loss_1: 33.87091 (33.36292) | > grad_norm_1: 111.77126 (132.07086) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01580 (2.23492) | > loader_time: 0.03430 (0.03888)  --> STEP: 11713/15287 -- GLOBAL_STEP: 1007575 | > loss_disc: 2.26162 (2.32158) | > loss_disc_real_0: 0.12076 (0.12264) | > loss_disc_real_1: 0.18949 (0.21152) | > loss_disc_real_2: 0.19673 (0.21584) | > loss_disc_real_3: 0.21131 (0.21946) | > loss_disc_real_4: 0.21154 (0.21502) | > loss_disc_real_5: 0.19957 (0.21390) | > loss_0: 2.26162 (2.32158) | > grad_norm_0: 21.18217 (16.08064) | > loss_gen: 2.41941 (2.55448) | > loss_kl: 2.73903 (2.66217) | > loss_feat: 9.00451 (8.67943) | > loss_mel: 17.73593 (17.75846) | > loss_duration: 1.69633 (1.70821) | > loss_1: 33.59522 (33.36283) | > grad_norm_1: 81.92213 (132.06819) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99880 (2.23463) | > loader_time: 0.03220 (0.03887)  --> STEP: 11738/15287 -- GLOBAL_STEP: 1007600 | > loss_disc: 2.37864 (2.32152) | > loss_disc_real_0: 0.18506 (0.12263) | > loss_disc_real_1: 0.20919 (0.21151) | > loss_disc_real_2: 0.23927 (0.21583) | > loss_disc_real_3: 0.24644 (0.21945) | > loss_disc_real_4: 0.25253 (0.21502) | > loss_disc_real_5: 0.23410 (0.21389) | > loss_0: 2.37864 (2.32152) | > grad_norm_0: 14.50794 (16.08474) | > loss_gen: 2.40571 (2.55451) | > loss_kl: 2.63676 (2.66231) | > loss_feat: 8.31737 (8.67984) | > loss_mel: 17.07939 (17.75864) | > loss_duration: 1.67094 (1.70821) | > loss_1: 32.11017 (33.36360) | > grad_norm_1: 137.56581 (132.11302) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.12340 (2.23423) | > loader_time: 0.03400 (0.03887)  --> STEP: 11763/15287 -- GLOBAL_STEP: 1007625 | > loss_disc: 2.37134 (2.32156) | > loss_disc_real_0: 0.12964 (0.12267) | > loss_disc_real_1: 0.25733 (0.21152) | > loss_disc_real_2: 0.25047 (0.21585) | > loss_disc_real_3: 0.21106 (0.21945) | > loss_disc_real_4: 0.24269 (0.21501) | > loss_disc_real_5: 0.23111 (0.21389) | > loss_0: 2.37134 (2.32156) | > grad_norm_0: 8.99100 (16.08465) | > loss_gen: 2.59929 (2.55454) | > loss_kl: 2.70170 (2.66236) | > loss_feat: 8.30194 (8.67964) | > loss_mel: 17.60421 (17.75858) | > loss_duration: 1.66364 (1.70821) | > loss_1: 32.87079 (33.36341) | > grad_norm_1: 80.99134 (132.03572) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98930 (2.23381) | > loader_time: 0.03840 (0.03886)  --> STEP: 11788/15287 -- GLOBAL_STEP: 1007650 | > loss_disc: 2.27413 (2.32160) | > loss_disc_real_0: 0.09034 (0.12269) | > loss_disc_real_1: 0.18782 (0.21152) | > loss_disc_real_2: 0.19484 (0.21585) | > loss_disc_real_3: 0.21290 (0.21945) | > loss_disc_real_4: 0.21971 (0.21501) | > loss_disc_real_5: 0.22276 (0.21388) | > loss_0: 2.27413 (2.32160) | > grad_norm_0: 7.70504 (16.08235) | > loss_gen: 2.64034 (2.55452) | > loss_kl: 2.64919 (2.66234) | > loss_feat: 8.70477 (8.67944) | > loss_mel: 18.63969 (17.75868) | > loss_duration: 1.73400 (1.70822) | > loss_1: 34.36799 (33.36327) | > grad_norm_1: 170.15158 (132.01118) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04910 (2.23331) | > loader_time: 0.03640 (0.03885)  --> STEP: 11813/15287 -- GLOBAL_STEP: 1007675 | > loss_disc: 2.34500 (2.32163) | > loss_disc_real_0: 0.14212 (0.12269) | > loss_disc_real_1: 0.21682 (0.21153) | > loss_disc_real_2: 0.21707 (0.21585) | > loss_disc_real_3: 0.22570 (0.21946) | > loss_disc_real_4: 0.21438 (0.21501) | > loss_disc_real_5: 0.20069 (0.21389) | > loss_0: 2.34500 (2.32163) | > grad_norm_0: 29.25828 (16.08626) | > loss_gen: 2.46018 (2.55449) | > loss_kl: 2.70838 (2.66240) | > loss_feat: 8.09759 (8.67918) | > loss_mel: 17.49586 (17.75869) | > loss_duration: 1.70414 (1.70822) | > loss_1: 32.46616 (33.36305) | > grad_norm_1: 84.93209 (132.00816) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93790 (2.23285) | > loader_time: 0.03240 (0.03884)  --> STEP: 11838/15287 -- GLOBAL_STEP: 1007700 | > loss_disc: 2.25292 (2.32157) | > loss_disc_real_0: 0.12461 (0.12267) | > loss_disc_real_1: 0.16892 (0.21151) | > loss_disc_real_2: 0.19959 (0.21584) | > loss_disc_real_3: 0.20365 (0.21945) | > loss_disc_real_4: 0.20823 (0.21502) | > loss_disc_real_5: 0.21454 (0.21389) | > loss_0: 2.25292 (2.32157) | > grad_norm_0: 28.29961 (16.09116) | > loss_gen: 2.42314 (2.55452) | > loss_kl: 2.59817 (2.66232) | > loss_feat: 8.42519 (8.67932) | > loss_mel: 17.54556 (17.75871) | > loss_duration: 1.69550 (1.70821) | > loss_1: 32.68756 (33.36314) | > grad_norm_1: 165.65227 (132.04172) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.12530 (2.23263) | > loader_time: 0.03300 (0.03884)  --> STEP: 11863/15287 -- GLOBAL_STEP: 1007725 | > loss_disc: 2.38270 (2.32154) | > loss_disc_real_0: 0.10938 (0.12266) | > loss_disc_real_1: 0.25685 (0.21152) | > loss_disc_real_2: 0.22570 (0.21583) | > loss_disc_real_3: 0.24257 (0.21945) | > loss_disc_real_4: 0.22522 (0.21501) | > loss_disc_real_5: 0.28536 (0.21389) | > loss_0: 2.38270 (2.32154) | > grad_norm_0: 19.39831 (16.09705) | > loss_gen: 2.45226 (2.55448) | > loss_kl: 2.48496 (2.66224) | > loss_feat: 7.85742 (8.67914) | > loss_mel: 17.07423 (17.75856) | > loss_duration: 1.72357 (1.70822) | > loss_1: 31.59243 (33.36270) | > grad_norm_1: 151.81291 (132.09590) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22620 (2.23223) | > loader_time: 0.03730 (0.03883)  --> STEP: 11888/15287 -- GLOBAL_STEP: 1007750 | > loss_disc: 2.31828 (2.32152) | > loss_disc_real_0: 0.11063 (0.12265) | > loss_disc_real_1: 0.17202 (0.21150) | > loss_disc_real_2: 0.17197 (0.21582) | > loss_disc_real_3: 0.23517 (0.21945) | > loss_disc_real_4: 0.18047 (0.21499) | > loss_disc_real_5: 0.18960 (0.21389) | > loss_0: 2.31828 (2.32152) | > grad_norm_0: 19.46883 (16.09889) | > loss_gen: 2.58021 (2.55441) | > loss_kl: 2.57216 (2.66214) | > loss_feat: 8.90348 (8.67905) | > loss_mel: 18.21743 (17.75848) | > loss_duration: 1.69464 (1.70822) | > loss_1: 33.96793 (33.36235) | > grad_norm_1: 156.11069 (132.12813) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01660 (2.23186) | > loader_time: 0.03620 (0.03882)  --> STEP: 11913/15287 -- GLOBAL_STEP: 1007775 | > loss_disc: 2.32201 (2.32153) | > loss_disc_real_0: 0.15292 (0.12266) | > loss_disc_real_1: 0.18036 (0.21150) | > loss_disc_real_2: 0.18758 (0.21582) | > loss_disc_real_3: 0.26116 (0.21945) | > loss_disc_real_4: 0.22115 (0.21500) | > loss_disc_real_5: 0.20593 (0.21389) | > loss_0: 2.32201 (2.32153) | > grad_norm_0: 19.15893 (16.10198) | > loss_gen: 2.49271 (2.55440) | > loss_kl: 2.80313 (2.66213) | > loss_feat: 8.47089 (8.67896) | > loss_mel: 17.64242 (17.75835) | > loss_duration: 1.70439 (1.70820) | > loss_1: 33.11354 (33.36213) | > grad_norm_1: 75.44466 (132.13490) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99610 (2.23149) | > loader_time: 0.03370 (0.03881)  --> STEP: 11938/15287 -- GLOBAL_STEP: 1007800 | > loss_disc: 2.29889 (2.32155) | > loss_disc_real_0: 0.10078 (0.12266) | > loss_disc_real_1: 0.22779 (0.21150) | > loss_disc_real_2: 0.22138 (0.21582) | > loss_disc_real_3: 0.20873 (0.21945) | > loss_disc_real_4: 0.19327 (0.21500) | > loss_disc_real_5: 0.21049 (0.21388) | > loss_0: 2.29889 (2.32155) | > grad_norm_0: 16.33804 (16.10092) | > loss_gen: 2.55452 (2.55441) | > loss_kl: 2.55707 (2.66212) | > loss_feat: 8.85787 (8.67899) | > loss_mel: 17.26809 (17.75822) | > loss_duration: 1.75099 (1.70820) | > loss_1: 32.98853 (33.36203) | > grad_norm_1: 160.15074 (132.14699) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02940 (2.23123) | > loader_time: 0.03310 (0.03881)  --> STEP: 11963/15287 -- GLOBAL_STEP: 1007825 | > loss_disc: 2.28244 (2.32154) | > loss_disc_real_0: 0.11129 (0.12265) | > loss_disc_real_1: 0.21391 (0.21149) | > loss_disc_real_2: 0.19546 (0.21582) | > loss_disc_real_3: 0.20195 (0.21945) | > loss_disc_real_4: 0.18797 (0.21500) | > loss_disc_real_5: 0.21238 (0.21388) | > loss_0: 2.28244 (2.32154) | > grad_norm_0: 16.50371 (16.10213) | > loss_gen: 2.54556 (2.55438) | > loss_kl: 2.49380 (2.66203) | > loss_feat: 8.92421 (8.67898) | > loss_mel: 17.79508 (17.75833) | > loss_duration: 1.75720 (1.70819) | > loss_1: 33.51585 (33.36200) | > grad_norm_1: 84.65955 (132.18190) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90600 (2.23103) | > loader_time: 0.03500 (0.03880)  --> STEP: 11988/15287 -- GLOBAL_STEP: 1007850 | > loss_disc: 2.30938 (2.32148) | > loss_disc_real_0: 0.14955 (0.12265) | > loss_disc_real_1: 0.24649 (0.21149) | > loss_disc_real_2: 0.25044 (0.21582) | > loss_disc_real_3: 0.21484 (0.21944) | > loss_disc_real_4: 0.21271 (0.21500) | > loss_disc_real_5: 0.18961 (0.21388) | > loss_0: 2.30938 (2.32148) | > grad_norm_0: 38.99894 (16.11160) | > loss_gen: 2.51396 (2.55442) | > loss_kl: 2.60839 (2.66192) | > loss_feat: 8.58564 (8.67916) | > loss_mel: 17.48656 (17.75809) | > loss_duration: 1.71550 (1.70817) | > loss_1: 32.91005 (33.36185) | > grad_norm_1: 195.63225 (132.24188) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.12630 (2.23074) | > loader_time: 0.03640 (0.03879)  --> STEP: 12013/15287 -- GLOBAL_STEP: 1007875 | > loss_disc: 2.36460 (2.32146) | > loss_disc_real_0: 0.15337 (0.12264) | > loss_disc_real_1: 0.22130 (0.21149) | > loss_disc_real_2: 0.22398 (0.21582) | > loss_disc_real_3: 0.24423 (0.21944) | > loss_disc_real_4: 0.23264 (0.21500) | > loss_disc_real_5: 0.21193 (0.21388) | > loss_0: 2.36460 (2.32146) | > grad_norm_0: 11.73773 (16.11092) | > loss_gen: 2.37647 (2.55441) | > loss_kl: 2.61220 (2.66191) | > loss_feat: 8.40856 (8.67934) | > loss_mel: 17.26518 (17.75822) | > loss_duration: 1.66922 (1.70817) | > loss_1: 32.33163 (33.36213) | > grad_norm_1: 89.74232 (132.24609) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10360 (2.23043) | > loader_time: 0.03360 (0.03879)  --> STEP: 12038/15287 -- GLOBAL_STEP: 1007900 | > loss_disc: 2.44587 (2.32148) | > loss_disc_real_0: 0.20145 (0.12264) | > loss_disc_real_1: 0.20967 (0.21147) | > loss_disc_real_2: 0.20979 (0.21582) | > loss_disc_real_3: 0.20594 (0.21944) | > loss_disc_real_4: 0.22452 (0.21500) | > loss_disc_real_5: 0.21199 (0.21388) | > loss_0: 2.44587 (2.32148) | > grad_norm_0: 10.48996 (16.10434) | > loss_gen: 2.23811 (2.55437) | > loss_kl: 2.73849 (2.66193) | > loss_feat: 7.92847 (8.67917) | > loss_mel: 17.20818 (17.75816) | > loss_duration: 1.72357 (1.70817) | > loss_1: 31.83682 (33.36189) | > grad_norm_1: 127.72635 (132.21878) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05990 (2.23013) | > loader_time: 0.03380 (0.03878)  --> STEP: 12063/15287 -- GLOBAL_STEP: 1007925 | > loss_disc: 2.34100 (2.32160) | > loss_disc_real_0: 0.15192 (0.12269) | > loss_disc_real_1: 0.19835 (0.21149) | > loss_disc_real_2: 0.21259 (0.21582) | > loss_disc_real_3: 0.22925 (0.21946) | > loss_disc_real_4: 0.23771 (0.21502) | > loss_disc_real_5: 0.20677 (0.21387) | > loss_0: 2.34100 (2.32160) | > grad_norm_0: 17.91829 (16.09931) | > loss_gen: 2.56398 (2.55442) | > loss_kl: 2.61084 (2.66194) | > loss_feat: 8.79665 (8.67901) | > loss_mel: 18.29620 (17.75838) | > loss_duration: 1.72993 (1.70817) | > loss_1: 33.99760 (33.36202) | > grad_norm_1: 146.73651 (132.14525) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97380 (2.22997) | > loader_time: 0.03670 (0.03877)  --> STEP: 12088/15287 -- GLOBAL_STEP: 1007950 | > loss_disc: 2.32001 (2.32166) | > loss_disc_real_0: 0.10609 (0.12268) | > loss_disc_real_1: 0.21078 (0.21150) | > loss_disc_real_2: 0.24135 (0.21583) | > loss_disc_real_3: 0.22558 (0.21946) | > loss_disc_real_4: 0.22019 (0.21504) | > loss_disc_real_5: 0.21712 (0.21388) | > loss_0: 2.32001 (2.32166) | > grad_norm_0: 7.50978 (16.10797) | > loss_gen: 2.65123 (2.55436) | > loss_kl: 2.76440 (2.66200) | > loss_feat: 9.35754 (8.67919) | > loss_mel: 18.01743 (17.75898) | > loss_duration: 1.70497 (1.70817) | > loss_1: 34.49557 (33.36280) | > grad_norm_1: 148.60645 (132.17722) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56080 (2.22983) | > loader_time: 0.04410 (0.03877)  --> STEP: 12113/15287 -- GLOBAL_STEP: 1007975 | > loss_disc: 2.32752 (2.32160) | > loss_disc_real_0: 0.09693 (0.12266) | > loss_disc_real_1: 0.21196 (0.21148) | > loss_disc_real_2: 0.22095 (0.21582) | > loss_disc_real_3: 0.20994 (0.21947) | > loss_disc_real_4: 0.22358 (0.21503) | > loss_disc_real_5: 0.23377 (0.21388) | > loss_0: 2.32752 (2.32160) | > grad_norm_0: 18.33009 (16.11688) | > loss_gen: 2.55406 (2.55435) | > loss_kl: 2.59196 (2.66202) | > loss_feat: 8.07912 (8.67907) | > loss_mel: 17.28844 (17.75902) | > loss_duration: 1.67416 (1.70815) | > loss_1: 32.18774 (33.36272) | > grad_norm_1: 181.86806 (132.24078) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10990 (2.22956) | > loader_time: 0.03580 (0.03876)  --> STEP: 12138/15287 -- GLOBAL_STEP: 1008000 | > loss_disc: 2.35011 (2.32160) | > loss_disc_real_0: 0.11313 (0.12266) | > loss_disc_real_1: 0.23419 (0.21148) | > loss_disc_real_2: 0.23005 (0.21582) | > loss_disc_real_3: 0.22457 (0.21948) | > loss_disc_real_4: 0.20016 (0.21504) | > loss_disc_real_5: 0.19077 (0.21388) | > loss_0: 2.35011 (2.32160) | > grad_norm_0: 13.65254 (16.11768) | > loss_gen: 2.57682 (2.55436) | > loss_kl: 2.78768 (2.66198) | > loss_feat: 8.29250 (8.67908) | > loss_mel: 17.68091 (17.75891) | > loss_duration: 1.72092 (1.70815) | > loss_1: 33.05884 (33.36258) | > grad_norm_1: 122.51118 (132.22710) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95740 (2.22919) | > loader_time: 0.03130 (0.03875)  --> STEP: 12163/15287 -- GLOBAL_STEP: 1008025 | > loss_disc: 2.31263 (2.32156) | > loss_disc_real_0: 0.11130 (0.12266) | > loss_disc_real_1: 0.21276 (0.21148) | > loss_disc_real_2: 0.22748 (0.21582) | > loss_disc_real_3: 0.22054 (0.21947) | > loss_disc_real_4: 0.21895 (0.21504) | > loss_disc_real_5: 0.21144 (0.21388) | > loss_0: 2.31263 (2.32156) | > grad_norm_0: 21.35837 (16.12012) | > loss_gen: 2.46341 (2.55440) | > loss_kl: 2.76276 (2.66202) | > loss_feat: 9.20512 (8.67940) | > loss_mel: 17.64878 (17.75904) | > loss_duration: 1.66739 (1.70815) | > loss_1: 33.74746 (33.36312) | > grad_norm_1: 143.12810 (132.26653) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92180 (2.22893) | > loader_time: 0.03360 (0.03875)  --> STEP: 12188/15287 -- GLOBAL_STEP: 1008050 | > loss_disc: 2.29398 (2.32154) | > loss_disc_real_0: 0.08815 (0.12267) | > loss_disc_real_1: 0.20882 (0.21148) | > loss_disc_real_2: 0.18617 (0.21582) | > loss_disc_real_3: 0.21316 (0.21948) | > loss_disc_real_4: 0.22020 (0.21504) | > loss_disc_real_5: 0.18860 (0.21387) | > loss_0: 2.29398 (2.32154) | > grad_norm_0: 19.30050 (16.12731) | > loss_gen: 2.43960 (2.55445) | > loss_kl: 2.71302 (2.66204) | > loss_feat: 8.87378 (8.67957) | > loss_mel: 18.00102 (17.75916) | > loss_duration: 1.70729 (1.70815) | > loss_1: 33.73470 (33.36349) | > grad_norm_1: 170.75983 (132.28543) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19660 (2.22872) | > loader_time: 0.03350 (0.03874)  --> STEP: 12213/15287 -- GLOBAL_STEP: 1008075 | > loss_disc: 2.40189 (2.32152) | > loss_disc_real_0: 0.14075 (0.12266) | > loss_disc_real_1: 0.19442 (0.21148) | > loss_disc_real_2: 0.24179 (0.21582) | > loss_disc_real_3: 0.21199 (0.21948) | > loss_disc_real_4: 0.18432 (0.21504) | > loss_disc_real_5: 0.19323 (0.21387) | > loss_0: 2.40189 (2.32152) | > grad_norm_0: 14.79886 (16.12508) | > loss_gen: 2.49618 (2.55448) | > loss_kl: 2.65274 (2.66201) | > loss_feat: 9.01102 (8.67952) | > loss_mel: 17.52708 (17.75895) | > loss_duration: 1.74801 (1.70815) | > loss_1: 33.43504 (33.36322) | > grad_norm_1: 145.94392 (132.32040) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26480 (2.22834) | > loader_time: 0.03970 (0.03874)  --> STEP: 12238/15287 -- GLOBAL_STEP: 1008100 | > loss_disc: 2.26800 (2.32153) | > loss_disc_real_0: 0.10198 (0.12267) | > loss_disc_real_1: 0.19995 (0.21147) | > loss_disc_real_2: 0.21484 (0.21582) | > loss_disc_real_3: 0.22387 (0.21948) | > loss_disc_real_4: 0.19568 (0.21505) | > loss_disc_real_5: 0.22347 (0.21387) | > loss_0: 2.26800 (2.32153) | > grad_norm_0: 18.84591 (16.12800) | > loss_gen: 2.45664 (2.55446) | > loss_kl: 2.71941 (2.66207) | > loss_feat: 8.87423 (8.67958) | > loss_mel: 18.06375 (17.75912) | > loss_duration: 1.73063 (1.70815) | > loss_1: 33.84466 (33.36350) | > grad_norm_1: 173.47455 (132.31055) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.66090 (2.22791) | > loader_time: 0.04890 (0.03875)  --> STEP: 12263/15287 -- GLOBAL_STEP: 1008125 | > loss_disc: 2.37080 (2.32152) | > loss_disc_real_0: 0.13719 (0.12266) | > loss_disc_real_1: 0.15890 (0.21145) | > loss_disc_real_2: 0.19001 (0.21581) | > loss_disc_real_3: 0.20987 (0.21948) | > loss_disc_real_4: 0.21211 (0.21505) | > loss_disc_real_5: 0.23071 (0.21387) | > loss_0: 2.37080 (2.32152) | > grad_norm_0: 27.56381 (16.12534) | > loss_gen: 2.32242 (2.55441) | > loss_kl: 2.68294 (2.66205) | > loss_feat: 8.00253 (8.67977) | > loss_mel: 17.33148 (17.75906) | > loss_duration: 1.70653 (1.70816) | > loss_1: 32.04590 (33.36356) | > grad_norm_1: 195.31686 (132.33423) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85590 (2.22740) | > loader_time: 0.03710 (0.03875)  --> STEP: 12288/15287 -- GLOBAL_STEP: 1008150 | > loss_disc: 2.30003 (2.32153) | > loss_disc_real_0: 0.10127 (0.12268) | > loss_disc_real_1: 0.19639 (0.21143) | > loss_disc_real_2: 0.20985 (0.21580) | > loss_disc_real_3: 0.19916 (0.21946) | > loss_disc_real_4: 0.21597 (0.21505) | > loss_disc_real_5: 0.21008 (0.21386) | > loss_0: 2.30003 (2.32153) | > grad_norm_0: 9.61401 (16.12645) | > loss_gen: 2.65085 (2.55436) | > loss_kl: 2.64069 (2.66199) | > loss_feat: 9.10917 (8.67987) | > loss_mel: 17.94053 (17.75899) | > loss_duration: 1.68942 (1.70815) | > loss_1: 34.03065 (33.36348) | > grad_norm_1: 184.16393 (132.35220) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14380 (2.22690) | > loader_time: 0.03690 (0.03875)  --> STEP: 12313/15287 -- GLOBAL_STEP: 1008175 | > loss_disc: 2.29713 (2.32153) | > loss_disc_real_0: 0.10574 (0.12269) | > loss_disc_real_1: 0.18110 (0.21143) | > loss_disc_real_2: 0.20288 (0.21580) | > loss_disc_real_3: 0.23185 (0.21947) | > loss_disc_real_4: 0.20639 (0.21505) | > loss_disc_real_5: 0.24643 (0.21388) | > loss_0: 2.29713 (2.32153) | > grad_norm_0: 11.59521 (16.12377) | > loss_gen: 2.61266 (2.55437) | > loss_kl: 2.77415 (2.66205) | > loss_feat: 8.69378 (8.67992) | > loss_mel: 17.70941 (17.75866) | > loss_duration: 1.72459 (1.70814) | > loss_1: 33.51458 (33.36325) | > grad_norm_1: 125.91376 (132.36154) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88670 (2.22646) | > loader_time: 0.03680 (0.03876)  --> STEP: 12338/15287 -- GLOBAL_STEP: 1008200 | > loss_disc: 2.25149 (2.32157) | > loss_disc_real_0: 0.12656 (0.12269) | > loss_disc_real_1: 0.20043 (0.21144) | > loss_disc_real_2: 0.20911 (0.21580) | > loss_disc_real_3: 0.22616 (0.21947) | > loss_disc_real_4: 0.21514 (0.21506) | > loss_disc_real_5: 0.20293 (0.21388) | > loss_0: 2.25149 (2.32157) | > grad_norm_0: 14.96088 (16.12650) | > loss_gen: 2.60432 (2.55438) | > loss_kl: 2.64808 (2.66200) | > loss_feat: 9.41790 (8.68008) | > loss_mel: 17.97779 (17.75888) | > loss_duration: 1.72445 (1.70815) | > loss_1: 34.37254 (33.36361) | > grad_norm_1: 167.65765 (132.37053) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95070 (2.22604) | > loader_time: 0.03780 (0.03876)  --> STEP: 12363/15287 -- GLOBAL_STEP: 1008225 | > loss_disc: 2.34805 (2.32154) | > loss_disc_real_0: 0.11470 (0.12268) | > loss_disc_real_1: 0.21720 (0.21143) | > loss_disc_real_2: 0.22992 (0.21579) | > loss_disc_real_3: 0.22865 (0.21946) | > loss_disc_real_4: 0.22590 (0.21505) | > loss_disc_real_5: 0.24246 (0.21389) | > loss_0: 2.34805 (2.32154) | > grad_norm_0: 13.13377 (16.12706) | > loss_gen: 2.63027 (2.55437) | > loss_kl: 2.77576 (2.66200) | > loss_feat: 8.39078 (8.68026) | > loss_mel: 17.34886 (17.75898) | > loss_duration: 1.72268 (1.70815) | > loss_1: 32.86834 (33.36388) | > grad_norm_1: 182.73418 (132.39891) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01220 (2.22560) | > loader_time: 0.04700 (0.03876)  --> STEP: 12388/15287 -- GLOBAL_STEP: 1008250 | > loss_disc: 2.32201 (2.32155) | > loss_disc_real_0: 0.09385 (0.12268) | > loss_disc_real_1: 0.19776 (0.21143) | > loss_disc_real_2: 0.22047 (0.21579) | > loss_disc_real_3: 0.21041 (0.21948) | > loss_disc_real_4: 0.20887 (0.21506) | > loss_disc_real_5: 0.20741 (0.21388) | > loss_0: 2.32201 (2.32155) | > grad_norm_0: 21.26119 (16.13569) | > loss_gen: 2.50858 (2.55438) | > loss_kl: 2.54384 (2.66202) | > loss_feat: 9.25390 (8.68038) | > loss_mel: 17.81558 (17.75888) | > loss_duration: 1.70945 (1.70815) | > loss_1: 33.83137 (33.36393) | > grad_norm_1: 141.66444 (132.45157) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99790 (2.22511) | > loader_time: 0.03870 (0.03877)  --> STEP: 12413/15287 -- GLOBAL_STEP: 1008275 | > loss_disc: 2.41736 (2.32150) | > loss_disc_real_0: 0.08225 (0.12267) | > loss_disc_real_1: 0.21195 (0.21142) | > loss_disc_real_2: 0.21581 (0.21580) | > loss_disc_real_3: 0.21997 (0.21948) | > loss_disc_real_4: 0.24247 (0.21505) | > loss_disc_real_5: 0.20044 (0.21388) | > loss_0: 2.41736 (2.32150) | > grad_norm_0: 24.54572 (16.13901) | > loss_gen: 2.34516 (2.55440) | > loss_kl: 2.63290 (2.66200) | > loss_feat: 8.03031 (8.68062) | > loss_mel: 17.17626 (17.75902) | > loss_duration: 1.73439 (1.70818) | > loss_1: 31.91901 (33.36432) | > grad_norm_1: 135.17349 (132.48016) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25100 (2.22456) | > loader_time: 0.03850 (0.03877)  --> STEP: 12438/15287 -- GLOBAL_STEP: 1008300 | > loss_disc: 2.27951 (2.32147) | > loss_disc_real_0: 0.07080 (0.12265) | > loss_disc_real_1: 0.20144 (0.21142) | > loss_disc_real_2: 0.20182 (0.21579) | > loss_disc_real_3: 0.23363 (0.21947) | > loss_disc_real_4: 0.21315 (0.21505) | > loss_disc_real_5: 0.22886 (0.21388) | > loss_0: 2.27951 (2.32147) | > grad_norm_0: 16.58074 (16.14260) | > loss_gen: 2.63076 (2.55441) | > loss_kl: 2.78676 (2.66190) | > loss_feat: 9.05594 (8.68065) | > loss_mel: 18.17646 (17.75907) | > loss_duration: 1.76948 (1.70817) | > loss_1: 34.41941 (33.36430) | > grad_norm_1: 137.10509 (132.55258) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.83030 (2.22408) | > loader_time: 0.03730 (0.03877)  --> STEP: 12463/15287 -- GLOBAL_STEP: 1008325 | > loss_disc: 2.27900 (2.32144) | > loss_disc_real_0: 0.10998 (0.12265) | > loss_disc_real_1: 0.19953 (0.21142) | > loss_disc_real_2: 0.19890 (0.21579) | > loss_disc_real_3: 0.22602 (0.21947) | > loss_disc_real_4: 0.22625 (0.21504) | > loss_disc_real_5: 0.23102 (0.21388) | > loss_0: 2.27900 (2.32144) | > grad_norm_0: 16.68468 (16.14722) | > loss_gen: 2.47477 (2.55441) | > loss_kl: 2.69605 (2.66183) | > loss_feat: 8.78207 (8.68066) | > loss_mel: 18.25704 (17.75887) | > loss_duration: 1.70643 (1.70816) | > loss_1: 33.91637 (33.36404) | > grad_norm_1: 260.42010 (132.58748) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14150 (2.22360) | > loader_time: 0.04720 (0.03878)  --> STEP: 12488/15287 -- GLOBAL_STEP: 1008350 | > loss_disc: 2.29630 (2.32142) | > loss_disc_real_0: 0.09421 (0.12265) | > loss_disc_real_1: 0.19619 (0.21141) | > loss_disc_real_2: 0.19544 (0.21578) | > loss_disc_real_3: 0.19122 (0.21947) | > loss_disc_real_4: 0.18393 (0.21505) | > loss_disc_real_5: 0.19348 (0.21388) | > loss_0: 2.29630 (2.32142) | > grad_norm_0: 12.03963 (16.14888) | > loss_gen: 2.67861 (2.55442) | > loss_kl: 2.66588 (2.66185) | > loss_feat: 8.97333 (8.68073) | > loss_mel: 18.03410 (17.75892) | > loss_duration: 1.73581 (1.70817) | > loss_1: 34.08774 (33.36419) | > grad_norm_1: 196.27850 (132.61954) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.84490 (2.22316) | > loader_time: 0.03610 (0.03878)  --> STEP: 12513/15287 -- GLOBAL_STEP: 1008375 | > loss_disc: 2.39967 (2.32144) | > loss_disc_real_0: 0.12477 (0.12265) | > loss_disc_real_1: 0.24104 (0.21141) | > loss_disc_real_2: 0.21518 (0.21578) | > loss_disc_real_3: 0.21116 (0.21946) | > loss_disc_real_4: 0.23839 (0.21504) | > loss_disc_real_5: 0.19904 (0.21388) | > loss_0: 2.39967 (2.32144) | > grad_norm_0: 13.67499 (16.14778) | > loss_gen: 2.40595 (2.55437) | > loss_kl: 2.63850 (2.66187) | > loss_feat: 7.80360 (8.68067) | > loss_mel: 17.58826 (17.75895) | > loss_duration: 1.68736 (1.70817) | > loss_1: 32.12367 (33.36414) | > grad_norm_1: 128.09702 (132.64000) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91710 (2.22267) | > loader_time: 0.03710 (0.03878)  --> STEP: 12538/15287 -- GLOBAL_STEP: 1008400 | > loss_disc: 2.45657 (2.32148) | > loss_disc_real_0: 0.19690 (0.12265) | > loss_disc_real_1: 0.21962 (0.21141) | > loss_disc_real_2: 0.20578 (0.21578) | > loss_disc_real_3: 0.22466 (0.21945) | > loss_disc_real_4: 0.20864 (0.21503) | > loss_disc_real_5: 0.18675 (0.21387) | > loss_0: 2.45657 (2.32148) | > grad_norm_0: 14.83682 (16.14335) | > loss_gen: 2.38454 (2.55430) | > loss_kl: 2.73549 (2.66189) | > loss_feat: 7.66713 (8.68051) | > loss_mel: 17.84937 (17.75909) | > loss_duration: 1.73652 (1.70818) | > loss_1: 32.37305 (33.36407) | > grad_norm_1: 95.17824 (132.62198) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90210 (2.22222) | > loader_time: 0.03760 (0.03878)  --> STEP: 12563/15287 -- GLOBAL_STEP: 1008425 | > loss_disc: 2.36519 (2.32154) | > loss_disc_real_0: 0.09659 (0.12267) | > loss_disc_real_1: 0.23894 (0.21142) | > loss_disc_real_2: 0.20299 (0.21579) | > loss_disc_real_3: 0.21569 (0.21945) | > loss_disc_real_4: 0.20108 (0.21503) | > loss_disc_real_5: 0.24098 (0.21388) | > loss_0: 2.36519 (2.32154) | > grad_norm_0: 8.56160 (16.13760) | > loss_gen: 2.61783 (2.55430) | > loss_kl: 2.99489 (2.66192) | > loss_feat: 8.75785 (8.68040) | > loss_mel: 18.31223 (17.75953) | > loss_duration: 1.71211 (1.70818) | > loss_1: 34.39490 (33.36444) | > grad_norm_1: 87.67860 (132.51289) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05860 (2.22172) | > loader_time: 0.04530 (0.03878)  --> STEP: 12588/15287 -- GLOBAL_STEP: 1008450 | > loss_disc: 2.34012 (2.32162) | > loss_disc_real_0: 0.11696 (0.12269) | > loss_disc_real_1: 0.27497 (0.21142) | > loss_disc_real_2: 0.26060 (0.21579) | > loss_disc_real_3: 0.23638 (0.21946) | > loss_disc_real_4: 0.23536 (0.21504) | > loss_disc_real_5: 0.20302 (0.21388) | > loss_0: 2.34012 (2.32162) | > grad_norm_0: 5.62816 (16.12826) | > loss_gen: 2.57952 (2.55428) | > loss_kl: 2.63119 (2.66193) | > loss_feat: 8.44944 (8.68019) | > loss_mel: 17.85118 (17.75977) | > loss_duration: 1.63906 (1.70817) | > loss_1: 33.15039 (33.36443) | > grad_norm_1: 66.15789 (132.38165) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14720 (2.22123) | > loader_time: 0.03760 (0.03879)  --> STEP: 12613/15287 -- GLOBAL_STEP: 1008475 | > loss_disc: 2.28936 (2.32169) | > loss_disc_real_0: 0.13118 (0.12270) | > loss_disc_real_1: 0.21817 (0.21144) | > loss_disc_real_2: 0.17952 (0.21579) | > loss_disc_real_3: 0.24178 (0.21945) | > loss_disc_real_4: 0.22206 (0.21504) | > loss_disc_real_5: 0.21456 (0.21388) | > loss_0: 2.28936 (2.32169) | > grad_norm_0: 11.21158 (16.11688) | > loss_gen: 2.44498 (2.55424) | > loss_kl: 2.72266 (2.66197) | > loss_feat: 8.86702 (8.68031) | > loss_mel: 18.41679 (17.76017) | > loss_duration: 1.70377 (1.70817) | > loss_1: 34.15521 (33.36495) | > grad_norm_1: 116.72185 (132.30409) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93170 (2.22079) | > loader_time: 0.03690 (0.03879)  --> STEP: 12638/15287 -- GLOBAL_STEP: 1008500 | > loss_disc: 2.32110 (2.32168) | > loss_disc_real_0: 0.12642 (0.12269) | > loss_disc_real_1: 0.23675 (0.21143) | > loss_disc_real_2: 0.24416 (0.21579) | > loss_disc_real_3: 0.22692 (0.21945) | > loss_disc_real_4: 0.21660 (0.21505) | > loss_disc_real_5: 0.21764 (0.21388) | > loss_0: 2.32110 (2.32168) | > grad_norm_0: 8.92117 (16.11285) | > loss_gen: 2.43531 (2.55423) | > loss_kl: 2.56458 (2.66192) | > loss_feat: 8.43919 (8.68040) | > loss_mel: 17.59779 (17.76010) | > loss_duration: 1.69946 (1.70817) | > loss_1: 32.73634 (33.36491) | > grad_norm_1: 144.33289 (132.27531) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96820 (2.22030) | > loader_time: 0.03930 (0.03879)  --> STEP: 12663/15287 -- GLOBAL_STEP: 1008525 | > loss_disc: 2.40717 (2.32163) | > loss_disc_real_0: 0.13688 (0.12267) | > loss_disc_real_1: 0.21628 (0.21143) | > loss_disc_real_2: 0.20430 (0.21579) | > loss_disc_real_3: 0.27134 (0.21945) | > loss_disc_real_4: 0.23806 (0.21504) | > loss_disc_real_5: 0.28296 (0.21388) | > loss_0: 2.40717 (2.32163) | > grad_norm_0: 16.47165 (16.11379) | > loss_gen: 2.58629 (2.55427) | > loss_kl: 2.68071 (2.66186) | > loss_feat: 8.68636 (8.68042) | > loss_mel: 17.41878 (17.75996) | > loss_duration: 1.71771 (1.70816) | > loss_1: 33.08986 (33.36476) | > grad_norm_1: 153.61145 (132.30002) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95870 (2.21984) | > loader_time: 0.04840 (0.03879)  --> STEP: 12688/15287 -- GLOBAL_STEP: 1008550 | > loss_disc: 2.24438 (2.32165) | > loss_disc_real_0: 0.11103 (0.12265) | > loss_disc_real_1: 0.19988 (0.21143) | > loss_disc_real_2: 0.21663 (0.21580) | > loss_disc_real_3: 0.22470 (0.21946) | > loss_disc_real_4: 0.21382 (0.21506) | > loss_disc_real_5: 0.18244 (0.21388) | > loss_0: 2.24438 (2.32165) | > grad_norm_0: 4.14115 (16.11585) | > loss_gen: 2.66948 (2.55426) | > loss_kl: 2.67924 (2.66185) | > loss_feat: 8.75417 (8.68045) | > loss_mel: 17.48110 (17.75983) | > loss_duration: 1.73419 (1.70816) | > loss_1: 33.31817 (33.36466) | > grad_norm_1: 124.75378 (132.29086) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93570 (2.21943) | > loader_time: 0.03820 (0.03880)  --> STEP: 12713/15287 -- GLOBAL_STEP: 1008575 | > loss_disc: 2.31768 (2.32158) | > loss_disc_real_0: 0.10339 (0.12264) | > loss_disc_real_1: 0.21044 (0.21142) | > loss_disc_real_2: 0.21258 (0.21579) | > loss_disc_real_3: 0.21536 (0.21946) | > loss_disc_real_4: 0.24106 (0.21505) | > loss_disc_real_5: 0.21750 (0.21389) | > loss_0: 2.31768 (2.32158) | > grad_norm_0: 11.66720 (16.12202) | > loss_gen: 2.41994 (2.55426) | > loss_kl: 2.66498 (2.66184) | > loss_feat: 8.50872 (8.68062) | > loss_mel: 17.43675 (17.75978) | > loss_duration: 1.67542 (1.70815) | > loss_1: 32.70582 (33.36476) | > grad_norm_1: 99.53545 (132.33401) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86910 (2.21899) | > loader_time: 0.03620 (0.03880)  --> STEP: 12738/15287 -- GLOBAL_STEP: 1008600 | > loss_disc: 2.30464 (2.32149) | > loss_disc_real_0: 0.09208 (0.12261) | > loss_disc_real_1: 0.22445 (0.21142) | > loss_disc_real_2: 0.20843 (0.21578) | > loss_disc_real_3: 0.21707 (0.21946) | > loss_disc_real_4: 0.20465 (0.21504) | > loss_disc_real_5: 0.18615 (0.21389) | > loss_0: 2.30464 (2.32149) | > grad_norm_0: 10.72585 (16.11623) | > loss_gen: 2.50244 (2.55431) | > loss_kl: 2.79126 (2.66188) | > loss_feat: 8.97778 (8.68100) | > loss_mel: 17.78117 (17.75971) | > loss_duration: 1.69248 (1.70815) | > loss_1: 33.74512 (33.36514) | > grad_norm_1: 47.93550 (132.34802) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01640 (2.21858) | > loader_time: 0.03660 (0.03880)  --> STEP: 12763/15287 -- GLOBAL_STEP: 1008625 | > loss_disc: 2.29190 (2.32146) | > loss_disc_real_0: 0.10434 (0.12260) | > loss_disc_real_1: 0.21381 (0.21142) | > loss_disc_real_2: 0.23040 (0.21578) | > loss_disc_real_3: 0.21842 (0.21945) | > loss_disc_real_4: 0.20140 (0.21504) | > loss_disc_real_5: 0.22343 (0.21389) | > loss_0: 2.29190 (2.32146) | > grad_norm_0: 16.56473 (16.11681) | > loss_gen: 2.49736 (2.55426) | > loss_kl: 2.73273 (2.66191) | > loss_feat: 8.81548 (8.68102) | > loss_mel: 17.58420 (17.75960) | > loss_duration: 1.70849 (1.70814) | > loss_1: 33.33826 (33.36502) | > grad_norm_1: 170.83200 (132.39925) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88020 (2.21817) | > loader_time: 0.04850 (0.03880)  --> STEP: 12788/15287 -- GLOBAL_STEP: 1008650 | > loss_disc: 2.26781 (2.32144) | > loss_disc_real_0: 0.14354 (0.12261) | > loss_disc_real_1: 0.20821 (0.21142) | > loss_disc_real_2: 0.20368 (0.21578) | > loss_disc_real_3: 0.21983 (0.21945) | > loss_disc_real_4: 0.21179 (0.21505) | > loss_disc_real_5: 0.19410 (0.21390) | > loss_0: 2.26781 (2.32144) | > grad_norm_0: 13.74372 (16.11933) | > loss_gen: 2.47494 (2.55422) | > loss_kl: 2.64029 (2.66195) | > loss_feat: 8.93568 (8.68118) | > loss_mel: 17.29576 (17.75941) | > loss_duration: 1.70077 (1.70815) | > loss_1: 33.04744 (33.36501) | > grad_norm_1: 134.11290 (132.39227) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08940 (2.21781) | > loader_time: 0.03820 (0.03880)  --> STEP: 12813/15287 -- GLOBAL_STEP: 1008675 | > loss_disc: 2.28788 (2.32140) | > loss_disc_real_0: 0.11408 (0.12260) | > loss_disc_real_1: 0.19777 (0.21141) | > loss_disc_real_2: 0.20264 (0.21578) | > loss_disc_real_3: 0.17522 (0.21945) | > loss_disc_real_4: 0.18438 (0.21505) | > loss_disc_real_5: 0.20937 (0.21390) | > loss_0: 2.28788 (2.32140) | > grad_norm_0: 9.03448 (16.12033) | > loss_gen: 2.71220 (2.55423) | > loss_kl: 2.67255 (2.66191) | > loss_feat: 9.19971 (8.68118) | > loss_mel: 18.06953 (17.75928) | > loss_duration: 1.73113 (1.70815) | > loss_1: 34.38512 (33.36485) | > grad_norm_1: 77.85266 (132.42438) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.84620 (2.21739) | > loader_time: 0.03750 (0.03880)  --> STEP: 12838/15287 -- GLOBAL_STEP: 1008700 | > loss_disc: 2.30574 (2.32132) | > loss_disc_real_0: 0.14121 (0.12258) | > loss_disc_real_1: 0.21487 (0.21141) | > loss_disc_real_2: 0.22642 (0.21578) | > loss_disc_real_3: 0.21088 (0.21945) | > loss_disc_real_4: 0.20898 (0.21505) | > loss_disc_real_5: 0.18456 (0.21389) | > loss_0: 2.30574 (2.32132) | > grad_norm_0: 12.19766 (16.12934) | > loss_gen: 2.53603 (2.55425) | > loss_kl: 2.62784 (2.66194) | > loss_feat: 8.36903 (8.68128) | > loss_mel: 17.21965 (17.75937) | > loss_duration: 1.67850 (1.70816) | > loss_1: 32.43103 (33.36509) | > grad_norm_1: 87.74704 (132.46446) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02970 (2.21696) | > loader_time: 0.03870 (0.03880)  --> STEP: 12863/15287 -- GLOBAL_STEP: 1008725 | > loss_disc: 2.24966 (2.32126) | > loss_disc_real_0: 0.10131 (0.12257) | > loss_disc_real_1: 0.20678 (0.21142) | > loss_disc_real_2: 0.20254 (0.21578) | > loss_disc_real_3: 0.21449 (0.21945) | > loss_disc_real_4: 0.24376 (0.21506) | > loss_disc_real_5: 0.20605 (0.21390) | > loss_0: 2.24966 (2.32126) | > grad_norm_0: 23.33420 (16.13797) | > loss_gen: 2.53277 (2.55429) | > loss_kl: 2.64070 (2.66198) | > loss_feat: 9.00073 (8.68140) | > loss_mel: 17.86686 (17.75928) | > loss_duration: 1.72803 (1.70815) | > loss_1: 33.76908 (33.36520) | > grad_norm_1: 129.54396 (132.53438) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89720 (2.21651) | > loader_time: 0.04840 (0.03880)  --> STEP: 12888/15287 -- GLOBAL_STEP: 1008750 | > loss_disc: 2.25407 (2.32126) | > loss_disc_real_0: 0.09166 (0.12255) | > loss_disc_real_1: 0.22579 (0.21142) | > loss_disc_real_2: 0.27521 (0.21579) | > loss_disc_real_3: 0.22195 (0.21945) | > loss_disc_real_4: 0.21133 (0.21506) | > loss_disc_real_5: 0.18611 (0.21390) | > loss_0: 2.25407 (2.32126) | > grad_norm_0: 10.95946 (16.13672) | > loss_gen: 2.84626 (2.55429) | > loss_kl: 2.68193 (2.66205) | > loss_feat: 8.57330 (8.68135) | > loss_mel: 17.57442 (17.75901) | > loss_duration: 1.71315 (1.70816) | > loss_1: 33.38907 (33.36496) | > grad_norm_1: 210.84787 (132.56389) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01970 (2.21608) | > loader_time: 0.03760 (0.03880)  --> STEP: 12913/15287 -- GLOBAL_STEP: 1008775 | > loss_disc: 2.24041 (2.32133) | > loss_disc_real_0: 0.10191 (0.12256) | > loss_disc_real_1: 0.21304 (0.21142) | > loss_disc_real_2: 0.18937 (0.21578) | > loss_disc_real_3: 0.20954 (0.21944) | > loss_disc_real_4: 0.23041 (0.21506) | > loss_disc_real_5: 0.23480 (0.21391) | > loss_0: 2.24041 (2.32133) | > grad_norm_0: 18.31674 (16.14419) | > loss_gen: 2.57420 (2.55415) | > loss_kl: 2.55064 (2.66208) | > loss_feat: 8.54910 (8.68117) | > loss_mel: 17.83268 (17.75908) | > loss_duration: 1.76101 (1.70816) | > loss_1: 33.26764 (33.36473) | > grad_norm_1: 152.00700 (132.58276) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01530 (2.21563) | > loader_time: 0.03770 (0.03880)  --> STEP: 12938/15287 -- GLOBAL_STEP: 1008800 | > loss_disc: 2.26799 (2.32136) | > loss_disc_real_0: 0.09743 (0.12256) | > loss_disc_real_1: 0.18563 (0.21143) | > loss_disc_real_2: 0.21782 (0.21578) | > loss_disc_real_3: 0.18875 (0.21944) | > loss_disc_real_4: 0.17982 (0.21506) | > loss_disc_real_5: 0.21150 (0.21392) | > loss_0: 2.26799 (2.32136) | > grad_norm_0: 11.03110 (16.13787) | > loss_gen: 2.61022 (2.55410) | > loss_kl: 2.67697 (2.66213) | > loss_feat: 9.21640 (8.68122) | > loss_mel: 18.48027 (17.75921) | > loss_duration: 1.72334 (1.70817) | > loss_1: 34.70721 (33.36492) | > grad_norm_1: 71.90554 (132.53293) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99260 (2.21534) | > loader_time: 0.03730 (0.03880)  --> STEP: 12963/15287 -- GLOBAL_STEP: 1008825 | > loss_disc: 2.28602 (2.32140) | > loss_disc_real_0: 0.08758 (0.12257) | > loss_disc_real_1: 0.19405 (0.21143) | > loss_disc_real_2: 0.21851 (0.21578) | > loss_disc_real_3: 0.23663 (0.21945) | > loss_disc_real_4: 0.20699 (0.21506) | > loss_disc_real_5: 0.19821 (0.21391) | > loss_0: 2.28602 (2.32140) | > grad_norm_0: 9.51502 (16.12934) | > loss_gen: 2.71123 (2.55416) | > loss_kl: 2.66129 (2.66219) | > loss_feat: 9.19022 (8.68150) | > loss_mel: 18.23701 (17.75970) | > loss_duration: 1.70613 (1.70818) | > loss_1: 34.50589 (33.36583) | > grad_norm_1: 199.97858 (132.49780) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88380 (2.21489) | > loader_time: 0.03700 (0.03880)  --> STEP: 12988/15287 -- GLOBAL_STEP: 1008850 | > loss_disc: 2.35677 (2.32152) | > loss_disc_real_0: 0.18926 (0.12261) | > loss_disc_real_1: 0.18915 (0.21144) | > loss_disc_real_2: 0.25242 (0.21578) | > loss_disc_real_3: 0.19054 (0.21945) | > loss_disc_real_4: 0.19358 (0.21507) | > loss_disc_real_5: 0.21175 (0.21392) | > loss_0: 2.35677 (2.32152) | > grad_norm_0: 24.69604 (16.13339) | > loss_gen: 2.42195 (2.55410) | > loss_kl: 2.68516 (2.66223) | > loss_feat: 8.07532 (8.68118) | > loss_mel: 17.84139 (17.75987) | > loss_duration: 1.71405 (1.70818) | > loss_1: 32.73786 (33.36566) | > grad_norm_1: 148.44675 (132.51611) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07000 (2.21446) | > loader_time: 0.03440 (0.03880)  --> STEP: 13013/15287 -- GLOBAL_STEP: 1008875 | > loss_disc: 2.39602 (2.32155) | > loss_disc_real_0: 0.12745 (0.12261) | > loss_disc_real_1: 0.24248 (0.21144) | > loss_disc_real_2: 0.25999 (0.21578) | > loss_disc_real_3: 0.24062 (0.21946) | > loss_disc_real_4: 0.21650 (0.21506) | > loss_disc_real_5: 0.19817 (0.21392) | > loss_0: 2.39602 (2.32155) | > grad_norm_0: 9.95011 (16.12391) | > loss_gen: 2.32983 (2.55408) | > loss_kl: 2.67171 (2.66217) | > loss_feat: 8.43991 (8.68094) | > loss_mel: 18.40498 (17.76000) | > loss_duration: 1.72208 (1.70817) | > loss_1: 33.56851 (33.36546) | > grad_norm_1: 39.17364 (132.43803) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09120 (2.21403) | > loader_time: 0.06490 (0.03881)  --> STEP: 13038/15287 -- GLOBAL_STEP: 1008900 | > loss_disc: 2.36517 (2.32159) | > loss_disc_real_0: 0.08527 (0.12263) | > loss_disc_real_1: 0.22571 (0.21146) | > loss_disc_real_2: 0.23508 (0.21578) | > loss_disc_real_3: 0.22285 (0.21945) | > loss_disc_real_4: 0.22197 (0.21506) | > loss_disc_real_5: 0.19719 (0.21392) | > loss_0: 2.36517 (2.32159) | > grad_norm_0: 8.99136 (16.11538) | > loss_gen: 2.46604 (2.55412) | > loss_kl: 2.76788 (2.66217) | > loss_feat: 8.80032 (8.68074) | > loss_mel: 17.93902 (17.76010) | > loss_duration: 1.73381 (1.70819) | > loss_1: 33.70707 (33.36542) | > grad_norm_1: 112.90898 (132.38365) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87390 (2.21367) | > loader_time: 0.03670 (0.03881)  --> STEP: 13063/15287 -- GLOBAL_STEP: 1008925 | > loss_disc: 2.26241 (2.32161) | > loss_disc_real_0: 0.14506 (0.12265) | > loss_disc_real_1: 0.20450 (0.21145) | > loss_disc_real_2: 0.21179 (0.21578) | > loss_disc_real_3: 0.19672 (0.21946) | > loss_disc_real_4: 0.21025 (0.21506) | > loss_disc_real_5: 0.19651 (0.21392) | > loss_0: 2.26241 (2.32161) | > grad_norm_0: 9.65715 (16.11958) | > loss_gen: 2.58059 (2.55404) | > loss_kl: 2.62470 (2.66215) | > loss_feat: 8.74550 (8.68035) | > loss_mel: 18.00482 (17.76011) | > loss_duration: 1.72735 (1.70818) | > loss_1: 33.68296 (33.36491) | > grad_norm_1: 124.54172 (132.37090) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.83310 (2.21330) | > loader_time: 0.04880 (0.03881)  --> STEP: 13088/15287 -- GLOBAL_STEP: 1008950 | > loss_disc: 2.34480 (2.32159) | > loss_disc_real_0: 0.12597 (0.12264) | > loss_disc_real_1: 0.21275 (0.21145) | > loss_disc_real_2: 0.21640 (0.21578) | > loss_disc_real_3: 0.18310 (0.21945) | > loss_disc_real_4: 0.17713 (0.21505) | > loss_disc_real_5: 0.21608 (0.21392) | > loss_0: 2.34480 (2.32159) | > grad_norm_0: 11.95056 (16.10843) | > loss_gen: 2.43923 (2.55409) | > loss_kl: 2.65732 (2.66211) | > loss_feat: 8.48091 (8.68050) | > loss_mel: 17.45787 (17.75999) | > loss_duration: 1.70153 (1.70817) | > loss_1: 32.73687 (33.36494) | > grad_norm_1: 72.34096 (132.35936) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87920 (2.21286) | > loader_time: 0.03840 (0.03881)  --> STEP: 13113/15287 -- GLOBAL_STEP: 1008975 | > loss_disc: 2.33392 (2.32159) | > loss_disc_real_0: 0.08616 (0.12264) | > loss_disc_real_1: 0.17727 (0.21147) | > loss_disc_real_2: 0.18549 (0.21580) | > loss_disc_real_3: 0.23264 (0.21945) | > loss_disc_real_4: 0.20400 (0.21506) | > loss_disc_real_5: 0.25924 (0.21393) | > loss_0: 2.33392 (2.32159) | > grad_norm_0: 21.99173 (16.11632) | > loss_gen: 2.39464 (2.55411) | > loss_kl: 2.62363 (2.66202) | > loss_feat: 8.53143 (8.68039) | > loss_mel: 17.78971 (17.76000) | > loss_duration: 1.70294 (1.70817) | > loss_1: 33.04235 (33.36477) | > grad_norm_1: 113.32133 (132.36842) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05510 (2.21253) | > loader_time: 0.04300 (0.03882)  --> STEP: 13138/15287 -- GLOBAL_STEP: 1009000 | > loss_disc: 2.36288 (2.32156) | > loss_disc_real_0: 0.16739 (0.12263) | > loss_disc_real_1: 0.20835 (0.21147) | > loss_disc_real_2: 0.20551 (0.21580) | > loss_disc_real_3: 0.21603 (0.21945) | > loss_disc_real_4: 0.20495 (0.21505) | > loss_disc_real_5: 0.21007 (0.21394) | > loss_0: 2.36288 (2.32156) | > grad_norm_0: 5.73182 (16.12251) | > loss_gen: 2.34387 (2.55408) | > loss_kl: 2.76468 (2.66194) | > loss_feat: 8.71525 (8.68033) | > loss_mel: 17.40994 (17.75988) | > loss_duration: 1.71258 (1.70817) | > loss_1: 32.94632 (33.36448) | > grad_norm_1: 79.38602 (132.36954) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02850 (2.21209) | > loader_time: 0.03960 (0.03882)  --> STEP: 13163/15287 -- GLOBAL_STEP: 1009025 | > loss_disc: 2.25311 (2.32153) | > loss_disc_real_0: 0.14809 (0.12263) | > loss_disc_real_1: 0.20616 (0.21147) | > loss_disc_real_2: 0.22113 (0.21580) | > loss_disc_real_3: 0.21868 (0.21945) | > loss_disc_real_4: 0.20535 (0.21504) | > loss_disc_real_5: 0.21114 (0.21393) | > loss_0: 2.25311 (2.32153) | > grad_norm_0: 17.55563 (16.11983) | > loss_gen: 2.72472 (2.55409) | > loss_kl: 2.64411 (2.66195) | > loss_feat: 9.31730 (8.68030) | > loss_mel: 18.18328 (17.75998) | > loss_duration: 1.74460 (1.70817) | > loss_1: 34.61401 (33.36456) | > grad_norm_1: 159.62860 (132.36847) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91020 (2.21173) | > loader_time: 0.03700 (0.03882)  --> STEP: 13188/15287 -- GLOBAL_STEP: 1009050 | > loss_disc: 2.32955 (2.32154) | > loss_disc_real_0: 0.15136 (0.12263) | > loss_disc_real_1: 0.20290 (0.21148) | > loss_disc_real_2: 0.20241 (0.21579) | > loss_disc_real_3: 0.20307 (0.21945) | > loss_disc_real_4: 0.20708 (0.21504) | > loss_disc_real_5: 0.19104 (0.21394) | > loss_0: 2.32955 (2.32154) | > grad_norm_0: 23.97761 (16.11883) | > loss_gen: 2.54673 (2.55410) | > loss_kl: 2.77090 (2.66191) | > loss_feat: 7.98362 (8.68031) | > loss_mel: 17.60041 (17.75997) | > loss_duration: 1.72571 (1.70818) | > loss_1: 32.62737 (33.36454) | > grad_norm_1: 82.47534 (132.36914) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94930 (2.21144) | > loader_time: 0.03560 (0.03882)  --> STEP: 13213/15287 -- GLOBAL_STEP: 1009075 | > loss_disc: 2.28985 (2.32152) | > loss_disc_real_0: 0.08352 (0.12263) | > loss_disc_real_1: 0.23523 (0.21148) | > loss_disc_real_2: 0.22571 (0.21579) | > loss_disc_real_3: 0.22850 (0.21945) | > loss_disc_real_4: 0.21885 (0.21505) | > loss_disc_real_5: 0.16030 (0.21394) | > loss_0: 2.28985 (2.32152) | > grad_norm_0: 8.95814 (16.11476) | > loss_gen: 2.54238 (2.55414) | > loss_kl: 2.56775 (2.66193) | > loss_feat: 8.63774 (8.68039) | > loss_mel: 17.99328 (17.76008) | > loss_duration: 1.68651 (1.70819) | > loss_1: 33.42767 (33.36480) | > grad_norm_1: 126.45186 (132.33234) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03620 (2.21095) | > loader_time: 0.03830 (0.03882)  --> STEP: 13238/15287 -- GLOBAL_STEP: 1009100 | > loss_disc: 2.43275 (2.32153) | > loss_disc_real_0: 0.13270 (0.12263) | > loss_disc_real_1: 0.18578 (0.21148) | > loss_disc_real_2: 0.21328 (0.21579) | > loss_disc_real_3: 0.24650 (0.21944) | > loss_disc_real_4: 0.19333 (0.21505) | > loss_disc_real_5: 0.19985 (0.21394) | > loss_0: 2.43275 (2.32153) | > grad_norm_0: 6.78799 (16.10531) | > loss_gen: 2.61887 (2.55417) | > loss_kl: 2.69644 (2.66197) | > loss_feat: 9.02889 (8.68055) | > loss_mel: 18.08935 (17.76017) | > loss_duration: 1.69057 (1.70820) | > loss_1: 34.12412 (33.36512) | > grad_norm_1: 57.23642 (132.26627) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96850 (2.21049) | > loader_time: 0.03780 (0.03883)  --> STEP: 13263/15287 -- GLOBAL_STEP: 1009125 | > loss_disc: 2.36709 (2.32158) | > loss_disc_real_0: 0.08666 (0.12264) | > loss_disc_real_1: 0.20227 (0.21148) | > loss_disc_real_2: 0.20906 (0.21580) | > loss_disc_real_3: 0.23626 (0.21944) | > loss_disc_real_4: 0.20961 (0.21505) | > loss_disc_real_5: 0.21131 (0.21394) | > loss_0: 2.36709 (2.32158) | > grad_norm_0: 18.18007 (16.09896) | > loss_gen: 2.37244 (2.55413) | > loss_kl: 2.75099 (2.66198) | > loss_feat: 8.66665 (8.68039) | > loss_mel: 18.02751 (17.76034) | > loss_duration: 1.75331 (1.70822) | > loss_1: 33.57090 (33.36510) | > grad_norm_1: 134.11113 (132.20877) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27280 (2.21010) | > loader_time: 0.03560 (0.03883)  --> STEP: 13288/15287 -- GLOBAL_STEP: 1009150 | > loss_disc: 2.36906 (2.32163) | > loss_disc_real_0: 0.15958 (0.12265) | > loss_disc_real_1: 0.22709 (0.21149) | > loss_disc_real_2: 0.23883 (0.21580) | > loss_disc_real_3: 0.20468 (0.21945) | > loss_disc_real_4: 0.23893 (0.21505) | > loss_disc_real_5: 0.22602 (0.21395) | > loss_0: 2.36906 (2.32163) | > grad_norm_0: 32.01142 (16.10027) | > loss_gen: 2.52819 (2.55411) | > loss_kl: 2.64967 (2.66201) | > loss_feat: 7.93562 (8.68025) | > loss_mel: 17.85835 (17.76038) | > loss_duration: 1.69532 (1.70823) | > loss_1: 32.66714 (33.36502) | > grad_norm_1: 185.41333 (132.23711) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20830 (2.20974) | > loader_time: 0.03770 (0.03883)  --> STEP: 13313/15287 -- GLOBAL_STEP: 1009175 | > loss_disc: 2.34128 (2.32159) | > loss_disc_real_0: 0.12713 (0.12264) | > loss_disc_real_1: 0.20523 (0.21148) | > loss_disc_real_2: 0.21261 (0.21580) | > loss_disc_real_3: 0.22176 (0.21944) | > loss_disc_real_4: 0.25345 (0.21505) | > loss_disc_real_5: 0.24624 (0.21394) | > loss_0: 2.34128 (2.32159) | > grad_norm_0: 18.10147 (16.09404) | > loss_gen: 2.54650 (2.55417) | > loss_kl: 2.70576 (2.66200) | > loss_feat: 8.03316 (8.68044) | > loss_mel: 17.21006 (17.76029) | > loss_duration: 1.70228 (1.70823) | > loss_1: 32.19776 (33.36517) | > grad_norm_1: 117.49425 (132.25046) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20490 (2.20936) | > loader_time: 0.03770 (0.03883)  --> STEP: 13338/15287 -- GLOBAL_STEP: 1009200 | > loss_disc: 2.20318 (2.32158) | > loss_disc_real_0: 0.07679 (0.12265) | > loss_disc_real_1: 0.18436 (0.21149) | > loss_disc_real_2: 0.19717 (0.21579) | > loss_disc_real_3: 0.21573 (0.21945) | > loss_disc_real_4: 0.19621 (0.21505) | > loss_disc_real_5: 0.18376 (0.21396) | > loss_0: 2.20318 (2.32158) | > grad_norm_0: 17.72324 (16.10083) | > loss_gen: 2.41978 (2.55421) | > loss_kl: 2.56740 (2.66199) | > loss_feat: 8.60947 (8.68054) | > loss_mel: 17.50859 (17.76017) | > loss_duration: 1.69470 (1.70824) | > loss_1: 32.79995 (33.36519) | > grad_norm_1: 137.53445 (132.26723) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02720 (2.20892) | > loader_time: 0.03480 (0.03883)  --> STEP: 13363/15287 -- GLOBAL_STEP: 1009225 | > loss_disc: 2.35633 (2.32157) | > loss_disc_real_0: 0.11594 (0.12264) | > loss_disc_real_1: 0.19699 (0.21147) | > loss_disc_real_2: 0.21838 (0.21579) | > loss_disc_real_3: 0.22767 (0.21945) | > loss_disc_real_4: 0.20624 (0.21506) | > loss_disc_real_5: 0.21317 (0.21396) | > loss_0: 2.35633 (2.32157) | > grad_norm_0: 11.95359 (16.10616) | > loss_gen: 2.47396 (2.55416) | > loss_kl: 2.66165 (2.66203) | > loss_feat: 8.47639 (8.68034) | > loss_mel: 17.55899 (17.75987) | > loss_duration: 1.73084 (1.70823) | > loss_1: 32.90183 (33.36470) | > grad_norm_1: 124.49304 (132.26779) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96010 (2.20848) | > loader_time: 0.03730 (0.03883)  --> STEP: 13388/15287 -- GLOBAL_STEP: 1009250 | > loss_disc: 2.21469 (2.32151) | > loss_disc_real_0: 0.11702 (0.12264) | > loss_disc_real_1: 0.22741 (0.21147) | > loss_disc_real_2: 0.22122 (0.21579) | > loss_disc_real_3: 0.22524 (0.21944) | > loss_disc_real_4: 0.24392 (0.21506) | > loss_disc_real_5: 0.23689 (0.21396) | > loss_0: 2.21469 (2.32151) | > grad_norm_0: 25.15787 (16.10390) | > loss_gen: 2.65604 (2.55423) | > loss_kl: 2.55606 (2.66201) | > loss_feat: 8.43460 (8.68053) | > loss_mel: 17.64885 (17.75972) | > loss_duration: 1.68590 (1.70822) | > loss_1: 32.98145 (33.36480) | > grad_norm_1: 141.74121 (132.28297) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.84760 (2.20806) | > loader_time: 0.03740 (0.03883)  --> STEP: 13413/15287 -- GLOBAL_STEP: 1009275 | > loss_disc: 2.29499 (2.32147) | > loss_disc_real_0: 0.09123 (0.12263) | > loss_disc_real_1: 0.20238 (0.21148) | > loss_disc_real_2: 0.22570 (0.21579) | > loss_disc_real_3: 0.21671 (0.21944) | > loss_disc_real_4: 0.20389 (0.21506) | > loss_disc_real_5: 0.19689 (0.21396) | > loss_0: 2.29499 (2.32147) | > grad_norm_0: 19.37341 (16.11133) | > loss_gen: 2.50582 (2.55425) | > loss_kl: 2.58385 (2.66199) | > loss_feat: 8.14254 (8.68071) | > loss_mel: 17.87729 (17.75981) | > loss_duration: 1.73625 (1.70821) | > loss_1: 32.84574 (33.36506) | > grad_norm_1: 192.83095 (132.33440) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98860 (2.20769) | > loader_time: 0.03720 (0.03883)  --> STEP: 13438/15287 -- GLOBAL_STEP: 1009300 | > loss_disc: 2.34818 (2.32141) | > loss_disc_real_0: 0.10161 (0.12262) | > loss_disc_real_1: 0.22377 (0.21147) | > loss_disc_real_2: 0.21519 (0.21578) | > loss_disc_real_3: 0.23792 (0.21943) | > loss_disc_real_4: 0.22438 (0.21505) | > loss_disc_real_5: 0.23495 (0.21396) | > loss_0: 2.34818 (2.32141) | > grad_norm_0: 15.00090 (16.11183) | > loss_gen: 2.51954 (2.55430) | > loss_kl: 2.73712 (2.66199) | > loss_feat: 8.50751 (8.68109) | > loss_mel: 17.56216 (17.75980) | > loss_duration: 1.67972 (1.70822) | > loss_1: 33.00605 (33.36547) | > grad_norm_1: 204.35448 (132.37907) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01090 (2.20733) | > loader_time: 0.03680 (0.03883)  --> STEP: 13463/15287 -- GLOBAL_STEP: 1009325 | > loss_disc: 2.35182 (2.32136) | > loss_disc_real_0: 0.13378 (0.12261) | > loss_disc_real_1: 0.24687 (0.21147) | > loss_disc_real_2: 0.21935 (0.21578) | > loss_disc_real_3: 0.21698 (0.21943) | > loss_disc_real_4: 0.21862 (0.21504) | > loss_disc_real_5: 0.23706 (0.21397) | > loss_0: 2.35182 (2.32136) | > grad_norm_0: 12.68408 (16.11037) | > loss_gen: 2.41859 (2.55426) | > loss_kl: 2.63687 (2.66206) | > loss_feat: 7.69803 (8.68101) | > loss_mel: 17.22149 (17.75985) | > loss_duration: 1.73341 (1.70822) | > loss_1: 31.70839 (33.36548) | > grad_norm_1: 74.47398 (132.40691) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01310 (2.20691) | > loader_time: 0.04830 (0.03883)  --> STEP: 13488/15287 -- GLOBAL_STEP: 1009350 | > loss_disc: 2.31228 (2.32134) | > loss_disc_real_0: 0.11743 (0.12260) | > loss_disc_real_1: 0.22670 (0.21147) | > loss_disc_real_2: 0.21774 (0.21579) | > loss_disc_real_3: 0.23411 (0.21942) | > loss_disc_real_4: 0.23809 (0.21503) | > loss_disc_real_5: 0.21520 (0.21396) | > loss_0: 2.31228 (2.32134) | > grad_norm_0: 13.58732 (16.10361) | > loss_gen: 2.66436 (2.55427) | > loss_kl: 2.68931 (2.66217) | > loss_feat: 8.66672 (8.68135) | > loss_mel: 18.13772 (17.76017) | > loss_duration: 1.68152 (1.70823) | > loss_1: 33.83962 (33.36626) | > grad_norm_1: 65.69123 (132.33911) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88040 (2.20652) | > loader_time: 0.03780 (0.03883)  --> STEP: 13513/15287 -- GLOBAL_STEP: 1009375 | > loss_disc: 2.28337 (2.32138) | > loss_disc_real_0: 0.12440 (0.12260) | > loss_disc_real_1: 0.22588 (0.21147) | > loss_disc_real_2: 0.21402 (0.21579) | > loss_disc_real_3: 0.20907 (0.21943) | > loss_disc_real_4: 0.21787 (0.21504) | > loss_disc_real_5: 0.25020 (0.21396) | > loss_0: 2.28337 (2.32138) | > grad_norm_0: 12.89597 (16.09828) | > loss_gen: 2.74381 (2.55426) | > loss_kl: 2.71892 (2.66219) | > loss_feat: 9.10796 (8.68131) | > loss_mel: 18.47780 (17.76027) | > loss_duration: 1.69957 (1.70822) | > loss_1: 34.74806 (33.36634) | > grad_norm_1: 88.80003 (132.30620) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90330 (2.20608) | > loader_time: 0.03910 (0.03883)  --> STEP: 13538/15287 -- GLOBAL_STEP: 1009400 | > loss_disc: 2.28359 (2.32141) | > loss_disc_real_0: 0.11242 (0.12261) | > loss_disc_real_1: 0.23764 (0.21147) | > loss_disc_real_2: 0.22353 (0.21580) | > loss_disc_real_3: 0.23711 (0.21942) | > loss_disc_real_4: 0.22844 (0.21504) | > loss_disc_real_5: 0.23381 (0.21396) | > loss_0: 2.28359 (2.32141) | > grad_norm_0: 16.74988 (16.10187) | > loss_gen: 2.57521 (2.55421) | > loss_kl: 2.67699 (2.66219) | > loss_feat: 9.35529 (8.68133) | > loss_mel: 18.48056 (17.76036) | > loss_duration: 1.71040 (1.70822) | > loss_1: 34.79845 (33.36639) | > grad_norm_1: 85.42845 (132.31346) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06360 (2.20569) | > loader_time: 0.03800 (0.03883)  --> STEP: 13563/15287 -- GLOBAL_STEP: 1009425 | > loss_disc: 2.31548 (2.32145) | > loss_disc_real_0: 0.15469 (0.12263) | > loss_disc_real_1: 0.22510 (0.21149) | > loss_disc_real_2: 0.21813 (0.21580) | > loss_disc_real_3: 0.20172 (0.21942) | > loss_disc_real_4: 0.19318 (0.21504) | > loss_disc_real_5: 0.21234 (0.21395) | > loss_0: 2.31548 (2.32145) | > grad_norm_0: 16.38346 (16.10807) | > loss_gen: 2.64015 (2.55422) | > loss_kl: 2.59575 (2.66215) | > loss_feat: 8.91522 (8.68118) | > loss_mel: 18.07706 (17.76043) | > loss_duration: 1.77749 (1.70821) | > loss_1: 34.00567 (33.36626) | > grad_norm_1: 109.27904 (132.30917) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95350 (2.20522) | > loader_time: 0.04380 (0.03883)  --> STEP: 13588/15287 -- GLOBAL_STEP: 1009450 | > loss_disc: 2.42480 (2.32150) | > loss_disc_real_0: 0.15659 (0.12264) | > loss_disc_real_1: 0.23430 (0.21149) | > loss_disc_real_2: 0.22010 (0.21581) | > loss_disc_real_3: 0.22473 (0.21942) | > loss_disc_real_4: 0.21194 (0.21504) | > loss_disc_real_5: 0.23128 (0.21396) | > loss_0: 2.42480 (2.32150) | > grad_norm_0: 16.98614 (16.10012) | > loss_gen: 2.49269 (2.55422) | > loss_kl: 2.68969 (2.66217) | > loss_feat: 8.75828 (8.68109) | > loss_mel: 18.22541 (17.76066) | > loss_duration: 1.68407 (1.70821) | > loss_1: 33.85013 (33.36643) | > grad_norm_1: 159.79294 (132.22881) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91620 (2.20500) | > loader_time: 0.03360 (0.03883)  --> STEP: 13613/15287 -- GLOBAL_STEP: 1009475 | > loss_disc: 2.29050 (2.32153) | > loss_disc_real_0: 0.10940 (0.12263) | > loss_disc_real_1: 0.22504 (0.21151) | > loss_disc_real_2: 0.22836 (0.21581) | > loss_disc_real_3: 0.21837 (0.21943) | > loss_disc_real_4: 0.20408 (0.21504) | > loss_disc_real_5: 0.22406 (0.21396) | > loss_0: 2.29050 (2.32153) | > grad_norm_0: 10.42246 (16.10146) | > loss_gen: 2.60779 (2.55418) | > loss_kl: 2.54705 (2.66215) | > loss_feat: 8.56069 (8.68103) | > loss_mel: 17.46500 (17.76092) | > loss_duration: 1.70566 (1.70821) | > loss_1: 32.88618 (33.36658) | > grad_norm_1: 85.78730 (132.22348) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99460 (2.20461) | > loader_time: 0.03750 (0.03883)  --> STEP: 13638/15287 -- GLOBAL_STEP: 1009500 | > loss_disc: 2.26507 (2.32149) | > loss_disc_real_0: 0.14041 (0.12262) | > loss_disc_real_1: 0.20429 (0.21151) | > loss_disc_real_2: 0.20752 (0.21580) | > loss_disc_real_3: 0.23513 (0.21943) | > loss_disc_real_4: 0.23678 (0.21504) | > loss_disc_real_5: 0.19154 (0.21397) | > loss_0: 2.26507 (2.32149) | > grad_norm_0: 31.71146 (16.10233) | > loss_gen: 2.64195 (2.55418) | > loss_kl: 2.48126 (2.66208) | > loss_feat: 8.52315 (8.68097) | > loss_mel: 17.52368 (17.76080) | > loss_duration: 1.71840 (1.70821) | > loss_1: 32.88845 (33.36633) | > grad_norm_1: 141.08205 (132.23079) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88160 (2.20471) | > loader_time: 0.03740 (0.03883)  --> STEP: 13663/15287 -- GLOBAL_STEP: 1009525 | > loss_disc: 2.39392 (2.32148) | > loss_disc_real_0: 0.19905 (0.12264) | > loss_disc_real_1: 0.23796 (0.21151) | > loss_disc_real_2: 0.21997 (0.21581) | > loss_disc_real_3: 0.20173 (0.21942) | > loss_disc_real_4: 0.19675 (0.21505) | > loss_disc_real_5: 0.19706 (0.21396) | > loss_0: 2.39392 (2.32148) | > grad_norm_0: 13.47194 (16.09891) | > loss_gen: 2.55621 (2.55425) | > loss_kl: 2.73541 (2.66212) | > loss_feat: 8.12043 (8.68106) | > loss_mel: 17.77993 (17.76118) | > loss_duration: 1.69291 (1.70821) | > loss_1: 32.88490 (33.36690) | > grad_norm_1: 43.87476 (132.21205) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89780 (2.20424) | > loader_time: 0.04550 (0.03883)  --> STEP: 13688/15287 -- GLOBAL_STEP: 1009550 | > loss_disc: 2.31441 (2.32150) | > loss_disc_real_0: 0.12606 (0.12264) | > loss_disc_real_1: 0.21727 (0.21152) | > loss_disc_real_2: 0.22120 (0.21582) | > loss_disc_real_3: 0.21253 (0.21942) | > loss_disc_real_4: 0.21748 (0.21505) | > loss_disc_real_5: 0.20082 (0.21395) | > loss_0: 2.31441 (2.32150) | > grad_norm_0: 4.53906 (16.09824) | > loss_gen: 2.50049 (2.55422) | > loss_kl: 2.62921 (2.66216) | > loss_feat: 8.04922 (8.68106) | > loss_mel: 17.21373 (17.76123) | > loss_duration: 1.66684 (1.70819) | > loss_1: 32.05949 (33.36695) | > grad_norm_1: 134.30281 (132.19182) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97350 (2.20388) | > loader_time: 0.03590 (0.03883)  --> STEP: 13713/15287 -- GLOBAL_STEP: 1009575 | > loss_disc: 2.33021 (2.32149) | > loss_disc_real_0: 0.09683 (0.12264) | > loss_disc_real_1: 0.21484 (0.21152) | > loss_disc_real_2: 0.19824 (0.21582) | > loss_disc_real_3: 0.22301 (0.21942) | > loss_disc_real_4: 0.23477 (0.21505) | > loss_disc_real_5: 0.22228 (0.21395) | > loss_0: 2.33021 (2.32149) | > grad_norm_0: 13.07702 (16.09665) | > loss_gen: 2.46072 (2.55424) | > loss_kl: 2.69902 (2.66216) | > loss_feat: 8.42601 (8.68119) | > loss_mel: 18.35296 (17.76124) | > loss_duration: 1.70502 (1.70819) | > loss_1: 33.64373 (33.36713) | > grad_norm_1: 148.17674 (132.19408) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01260 (2.20350) | > loader_time: 0.03850 (0.03883)  --> STEP: 13738/15287 -- GLOBAL_STEP: 1009600 | > loss_disc: 2.33189 (2.32146) | > loss_disc_real_0: 0.16618 (0.12264) | > loss_disc_real_1: 0.26444 (0.21152) | > loss_disc_real_2: 0.22730 (0.21582) | > loss_disc_real_3: 0.23734 (0.21942) | > loss_disc_real_4: 0.22428 (0.21505) | > loss_disc_real_5: 0.22187 (0.21395) | > loss_0: 2.33189 (2.32146) | > grad_norm_0: 25.14692 (16.10250) | > loss_gen: 2.91650 (2.55435) | > loss_kl: 2.71883 (2.66219) | > loss_feat: 9.27512 (8.68124) | > loss_mel: 17.95395 (17.76110) | > loss_duration: 1.71463 (1.70818) | > loss_1: 34.57903 (33.36718) | > grad_norm_1: 175.58989 (132.21173) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94080 (2.20308) | > loader_time: 0.03420 (0.03882)  --> STEP: 13763/15287 -- GLOBAL_STEP: 1009625 | > loss_disc: 2.31801 (2.32148) | > loss_disc_real_0: 0.14772 (0.12265) | > loss_disc_real_1: 0.21553 (0.21154) | > loss_disc_real_2: 0.19513 (0.21582) | > loss_disc_real_3: 0.24964 (0.21942) | > loss_disc_real_4: 0.24660 (0.21506) | > loss_disc_real_5: 0.22537 (0.21395) | > loss_0: 2.31801 (2.32148) | > grad_norm_0: 17.22851 (16.10365) | > loss_gen: 2.56647 (2.55435) | > loss_kl: 2.66851 (2.66223) | > loss_feat: 8.74093 (8.68131) | > loss_mel: 17.41278 (17.76125) | > loss_duration: 1.73699 (1.70819) | > loss_1: 33.12569 (33.36742) | > grad_norm_1: 42.55720 (132.19543) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96680 (2.20267) | > loader_time: 0.04640 (0.03882)  --> STEP: 13788/15287 -- GLOBAL_STEP: 1009650 | > loss_disc: 2.29299 (2.32148) | > loss_disc_real_0: 0.10800 (0.12264) | > loss_disc_real_1: 0.23174 (0.21154) | > loss_disc_real_2: 0.20314 (0.21582) | > loss_disc_real_3: 0.22110 (0.21943) | > loss_disc_real_4: 0.20597 (0.21506) | > loss_disc_real_5: 0.21399 (0.21396) | > loss_0: 2.29299 (2.32148) | > grad_norm_0: 21.03872 (16.10671) | > loss_gen: 2.53748 (2.55431) | > loss_kl: 2.73477 (2.66220) | > loss_feat: 8.29259 (8.68141) | > loss_mel: 17.34074 (17.76137) | > loss_duration: 1.72284 (1.70820) | > loss_1: 32.62843 (33.36758) | > grad_norm_1: 167.76198 (132.22115) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22250 (2.20226) | > loader_time: 0.03760 (0.03882)  --> STEP: 13813/15287 -- GLOBAL_STEP: 1009675 | > loss_disc: 2.33739 (2.32147) | > loss_disc_real_0: 0.13090 (0.12263) | > loss_disc_real_1: 0.21231 (0.21154) | > loss_disc_real_2: 0.21992 (0.21582) | > loss_disc_real_3: 0.24053 (0.21942) | > loss_disc_real_4: 0.22713 (0.21506) | > loss_disc_real_5: 0.22677 (0.21395) | > loss_0: 2.33739 (2.32147) | > grad_norm_0: 9.43488 (16.10474) | > loss_gen: 2.44714 (2.55426) | > loss_kl: 2.51443 (2.66213) | > loss_feat: 8.36487 (8.68139) | > loss_mel: 17.36075 (17.76139) | > loss_duration: 1.76329 (1.70821) | > loss_1: 32.45048 (33.36745) | > grad_norm_1: 58.82069 (132.21800) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89860 (2.20182) | > loader_time: 0.03750 (0.03882)  --> STEP: 13838/15287 -- GLOBAL_STEP: 1009700 | > loss_disc: 2.34749 (2.32145) | > loss_disc_real_0: 0.19050 (0.12263) | > loss_disc_real_1: 0.20991 (0.21154) | > loss_disc_real_2: 0.19590 (0.21581) | > loss_disc_real_3: 0.24462 (0.21941) | > loss_disc_real_4: 0.22432 (0.21505) | > loss_disc_real_5: 0.24421 (0.21394) | > loss_0: 2.34749 (2.32145) | > grad_norm_0: 20.77951 (16.10932) | > loss_gen: 2.61740 (2.55425) | > loss_kl: 2.53447 (2.66211) | > loss_feat: 8.29307 (8.68117) | > loss_mel: 17.34749 (17.76112) | > loss_duration: 1.72229 (1.70820) | > loss_1: 32.51471 (33.36695) | > grad_norm_1: 64.54845 (132.22935) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86190 (2.20139) | > loader_time: 0.03390 (0.03882)  --> STEP: 13863/15287 -- GLOBAL_STEP: 1009725 | > loss_disc: 2.33327 (2.32139) | > loss_disc_real_0: 0.14773 (0.12262) | > loss_disc_real_1: 0.21232 (0.21153) | > loss_disc_real_2: 0.20815 (0.21581) | > loss_disc_real_3: 0.22118 (0.21940) | > loss_disc_real_4: 0.20247 (0.21505) | > loss_disc_real_5: 0.21691 (0.21394) | > loss_0: 2.33327 (2.32139) | > grad_norm_0: 9.81589 (16.10768) | > loss_gen: 2.56057 (2.55425) | > loss_kl: 2.74181 (2.66214) | > loss_feat: 8.45738 (8.68146) | > loss_mel: 17.14079 (17.76104) | > loss_duration: 1.77397 (1.70821) | > loss_1: 32.67453 (33.36720) | > grad_norm_1: 115.03208 (132.25224) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88770 (2.20103) | > loader_time: 0.04380 (0.03882)  --> STEP: 13888/15287 -- GLOBAL_STEP: 1009750 | > loss_disc: 2.22872 (2.32136) | > loss_disc_real_0: 0.12389 (0.12262) | > loss_disc_real_1: 0.21657 (0.21152) | > loss_disc_real_2: 0.20843 (0.21580) | > loss_disc_real_3: 0.21535 (0.21940) | > loss_disc_real_4: 0.20720 (0.21506) | > loss_disc_real_5: 0.19821 (0.21395) | > loss_0: 2.22872 (2.32136) | > grad_norm_0: 6.36189 (16.11487) | > loss_gen: 2.60894 (2.55423) | > loss_kl: 2.69138 (2.66226) | > loss_feat: 9.53950 (8.68157) | > loss_mel: 17.92532 (17.76120) | > loss_duration: 1.72681 (1.70820) | > loss_1: 34.49195 (33.36757) | > grad_norm_1: 114.49361 (132.27747) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01660 (2.20071) | > loader_time: 0.03720 (0.03882)  --> STEP: 13913/15287 -- GLOBAL_STEP: 1009775 | > loss_disc: 2.40058 (2.32134) | > loss_disc_real_0: 0.16544 (0.12261) | > loss_disc_real_1: 0.23877 (0.21152) | > loss_disc_real_2: 0.21732 (0.21581) | > loss_disc_real_3: 0.23867 (0.21940) | > loss_disc_real_4: 0.20836 (0.21505) | > loss_disc_real_5: 0.22444 (0.21396) | > loss_0: 2.40058 (2.32134) | > grad_norm_0: 9.17515 (16.11450) | > loss_gen: 2.40300 (2.55429) | > loss_kl: 2.73238 (2.66228) | > loss_feat: 8.14908 (8.68175) | > loss_mel: 17.78775 (17.76129) | > loss_duration: 1.73458 (1.70820) | > loss_1: 32.80680 (33.36793) | > grad_norm_1: 49.36500 (132.29160) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56630 (2.20036) | > loader_time: 0.04330 (0.03882)  --> STEP: 13938/15287 -- GLOBAL_STEP: 1009800 | > loss_disc: 2.35724 (2.32131) | > loss_disc_real_0: 0.10600 (0.12260) | > loss_disc_real_1: 0.22363 (0.21152) | > loss_disc_real_2: 0.23538 (0.21580) | > loss_disc_real_3: 0.21228 (0.21940) | > loss_disc_real_4: 0.21089 (0.21504) | > loss_disc_real_5: 0.25812 (0.21397) | > loss_0: 2.35724 (2.32131) | > grad_norm_0: 22.58627 (16.10884) | > loss_gen: 2.57943 (2.55436) | > loss_kl: 2.69855 (2.66231) | > loss_feat: 9.04290 (8.68195) | > loss_mel: 17.89323 (17.76132) | > loss_duration: 1.68152 (1.70820) | > loss_1: 33.89562 (33.36828) | > grad_norm_1: 124.99516 (132.29933) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96610 (2.19997) | > loader_time: 0.03550 (0.03881)  --> STEP: 13963/15287 -- GLOBAL_STEP: 1009825 | > loss_disc: 2.32265 (2.32129) | > loss_disc_real_0: 0.09799 (0.12260) | > loss_disc_real_1: 0.18323 (0.21152) | > loss_disc_real_2: 0.20358 (0.21580) | > loss_disc_real_3: 0.23773 (0.21940) | > loss_disc_real_4: 0.22623 (0.21504) | > loss_disc_real_5: 0.21755 (0.21396) | > loss_0: 2.32265 (2.32129) | > grad_norm_0: 8.54922 (16.11096) | > loss_gen: 2.62658 (2.55432) | > loss_kl: 2.83367 (2.66233) | > loss_feat: 8.46440 (8.68197) | > loss_mel: 18.00991 (17.76125) | > loss_duration: 1.67716 (1.70819) | > loss_1: 33.61171 (33.36819) | > grad_norm_1: 200.46191 (132.31834) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98200 (2.19962) | > loader_time: 0.04120 (0.03881)  --> STEP: 13988/15287 -- GLOBAL_STEP: 1009850 | > loss_disc: 2.34871 (2.32125) | > loss_disc_real_0: 0.13604 (0.12259) | > loss_disc_real_1: 0.21814 (0.21152) | > loss_disc_real_2: 0.22174 (0.21580) | > loss_disc_real_3: 0.21167 (0.21939) | > loss_disc_real_4: 0.18492 (0.21504) | > loss_disc_real_5: 0.20277 (0.21396) | > loss_0: 2.34871 (2.32125) | > grad_norm_0: 8.32756 (16.10370) | > loss_gen: 2.41310 (2.55437) | > loss_kl: 2.69387 (2.66232) | > loss_feat: 8.00803 (8.68226) | > loss_mel: 17.49068 (17.76132) | > loss_duration: 1.73157 (1.70821) | > loss_1: 32.33725 (33.36861) | > grad_norm_1: 94.79260 (132.31070) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10080 (2.19917) | > loader_time: 0.03660 (0.03881)  --> STEP: 14013/15287 -- GLOBAL_STEP: 1009875 | > loss_disc: 2.37682 (2.32129) | > loss_disc_real_0: 0.13436 (0.12258) | > loss_disc_real_1: 0.25675 (0.21153) | > loss_disc_real_2: 0.22701 (0.21580) | > loss_disc_real_3: 0.23453 (0.21938) | > loss_disc_real_4: 0.23962 (0.21503) | > loss_disc_real_5: 0.21336 (0.21396) | > loss_0: 2.37682 (2.32129) | > grad_norm_0: 7.57361 (16.09750) | > loss_gen: 2.67944 (2.55440) | > loss_kl: 2.57504 (2.66244) | > loss_feat: 8.05600 (8.68258) | > loss_mel: 17.69814 (17.76158) | > loss_duration: 1.69213 (1.70821) | > loss_1: 32.70076 (33.36933) | > grad_norm_1: 156.58588 (132.29739) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.76260 (2.19875) | > loader_time: 0.03710 (0.03881)  --> STEP: 14038/15287 -- GLOBAL_STEP: 1009900 | > loss_disc: 2.26544 (2.32131) | > loss_disc_real_0: 0.11918 (0.12257) | > loss_disc_real_1: 0.20346 (0.21153) | > loss_disc_real_2: 0.20604 (0.21582) | > loss_disc_real_3: 0.23633 (0.21940) | > loss_disc_real_4: 0.20696 (0.21504) | > loss_disc_real_5: 0.21534 (0.21395) | > loss_0: 2.26544 (2.32131) | > grad_norm_0: 14.46870 (16.09976) | > loss_gen: 2.44500 (2.55433) | > loss_kl: 2.59255 (2.66236) | > loss_feat: 8.37158 (8.68232) | > loss_mel: 17.43100 (17.76148) | > loss_duration: 1.71441 (1.70819) | > loss_1: 32.55453 (33.36881) | > grad_norm_1: 174.49315 (132.31929) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89460 (2.19836) | > loader_time: 0.04040 (0.03881)  --> STEP: 14063/15287 -- GLOBAL_STEP: 1009925 | > loss_disc: 2.38676 (2.32127) | > loss_disc_real_0: 0.10442 (0.12255) | > loss_disc_real_1: 0.21465 (0.21153) | > loss_disc_real_2: 0.21581 (0.21582) | > loss_disc_real_3: 0.21466 (0.21939) | > loss_disc_real_4: 0.22623 (0.21503) | > loss_disc_real_5: 0.19936 (0.21396) | > loss_0: 2.38676 (2.32127) | > grad_norm_0: 10.80849 (16.10348) | > loss_gen: 2.48290 (2.55439) | > loss_kl: 2.81103 (2.66235) | > loss_feat: 8.98112 (8.68267) | > loss_mel: 17.28431 (17.76132) | > loss_duration: 1.68796 (1.70819) | > loss_1: 33.24733 (33.36903) | > grad_norm_1: 125.86771 (132.36792) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87140 (2.19798) | > loader_time: 0.03950 (0.03881)  --> STEP: 14088/15287 -- GLOBAL_STEP: 1009950 | > loss_disc: 2.20889 (2.32122) | > loss_disc_real_0: 0.11380 (0.12255) | > loss_disc_real_1: 0.18479 (0.21152) | > loss_disc_real_2: 0.20508 (0.21582) | > loss_disc_real_3: 0.22528 (0.21939) | > loss_disc_real_4: 0.22160 (0.21502) | > loss_disc_real_5: 0.20116 (0.21395) | > loss_0: 2.20889 (2.32122) | > grad_norm_0: 8.22261 (16.10783) | > loss_gen: 2.70663 (2.55439) | > loss_kl: 2.49824 (2.66226) | > loss_feat: 8.72804 (8.68260) | > loss_mel: 17.50209 (17.76095) | > loss_duration: 1.67423 (1.70818) | > loss_1: 33.10923 (33.36851) | > grad_norm_1: 220.93259 (132.40639) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98540 (2.19760) | > loader_time: 0.03800 (0.03880)  --> STEP: 14113/15287 -- GLOBAL_STEP: 1009975 | > loss_disc: 2.30109 (2.32125) | > loss_disc_real_0: 0.12366 (0.12255) | > loss_disc_real_1: 0.18591 (0.21153) | > loss_disc_real_2: 0.18743 (0.21581) | > loss_disc_real_3: 0.21271 (0.21938) | > loss_disc_real_4: 0.18896 (0.21501) | > loss_disc_real_5: 0.22375 (0.21397) | > loss_0: 2.30109 (2.32125) | > grad_norm_0: 16.88619 (16.11964) | > loss_gen: 2.51495 (2.55433) | > loss_kl: 2.68831 (2.66227) | > loss_feat: 9.06765 (8.68269) | > loss_mel: 17.87202 (17.76080) | > loss_duration: 1.67906 (1.70818) | > loss_1: 33.82198 (33.36837) | > grad_norm_1: 123.36953 (132.42804) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98970 (2.19720) | > loader_time: 0.03560 (0.03880)  --> STEP: 14138/15287 -- GLOBAL_STEP: 1010000 | > loss_disc: 2.27730 (2.32121) | > loss_disc_real_0: 0.11154 (0.12255) | > loss_disc_real_1: 0.19925 (0.21152) | > loss_disc_real_2: 0.22694 (0.21580) | > loss_disc_real_3: 0.23519 (0.21938) | > loss_disc_real_4: 0.19549 (0.21500) | > loss_disc_real_5: 0.20815 (0.21396) | > loss_0: 2.27730 (2.32121) | > grad_norm_0: 7.26348 (16.11972) | > loss_gen: 2.71848 (2.55436) | > loss_kl: 2.63592 (2.66231) | > loss_feat: 9.24226 (8.68291) | > loss_mel: 17.45872 (17.76060) | > loss_duration: 1.70863 (1.70817) | > loss_1: 33.76402 (33.36847) | > grad_norm_1: 127.79295 (132.42273) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91930 (2.19680) | > loader_time: 0.03540 (0.03880) > CHECKPOINT : ./checkpoints/yourtts_multilingual/yourtts-du_en_fr_ge_it_pl_ptbr_sp-November-08-2022_12+19PM-0cbaa0f6/checkpoint_1010000.pth  --> STEP: 14163/15287 -- GLOBAL_STEP: 1010025 | > loss_disc: 2.36813 (2.32132) | > loss_disc_real_0: 0.16682 (0.12255) | > loss_disc_real_1: 0.20251 (0.21154) | > loss_disc_real_2: 0.22066 (0.21582) | > loss_disc_real_3: 0.23811 (0.21939) | > loss_disc_real_4: 0.22354 (0.21501) | > loss_disc_real_5: 0.22238 (0.21398) | > loss_0: 2.36813 (2.32132) | > grad_norm_0: 29.30777 (16.12940) | > loss_gen: 2.48083 (2.55434) | > loss_kl: 2.61053 (2.66225) | > loss_feat: 8.27195 (8.68269) | > loss_mel: 17.52231 (17.76073) | > loss_duration: 1.71709 (1.70816) | > loss_1: 32.60270 (33.36828) | > grad_norm_1: 160.74846 (132.42737) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96600 (2.19636) | > loader_time: 0.04300 (0.03880)  --> STEP: 14188/15287 -- GLOBAL_STEP: 1010050 | > loss_disc: 2.33389 (2.32130) | > loss_disc_real_0: 0.15208 (0.12254) | > loss_disc_real_1: 0.22468 (0.21154) | > loss_disc_real_2: 0.21632 (0.21580) | > loss_disc_real_3: 0.22250 (0.21939) | > loss_disc_real_4: 0.22491 (0.21501) | > loss_disc_real_5: 0.19735 (0.21397) | > loss_0: 2.33389 (2.32130) | > grad_norm_0: 19.33875 (16.13582) | > loss_gen: 2.66144 (2.55430) | > loss_kl: 2.70681 (2.66219) | > loss_feat: 8.56645 (8.68282) | > loss_mel: 17.64131 (17.76099) | > loss_duration: 1.71578 (1.70816) | > loss_1: 33.29179 (33.36856) | > grad_norm_1: 208.88042 (132.48763) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99470 (2.19592) | > loader_time: 0.03410 (0.03879)  --> STEP: 14213/15287 -- GLOBAL_STEP: 1010075 | > loss_disc: 2.42157 (2.32133) | > loss_disc_real_0: 0.07909 (0.12254) | > loss_disc_real_1: 0.20116 (0.21155) | > loss_disc_real_2: 0.22760 (0.21580) | > loss_disc_real_3: 0.23912 (0.21940) | > loss_disc_real_4: 0.21386 (0.21500) | > loss_disc_real_5: 0.18183 (0.21398) | > loss_0: 2.42157 (2.32133) | > grad_norm_0: 24.23433 (16.14126) | > loss_gen: 2.28131 (2.55437) | > loss_kl: 2.80539 (2.66218) | > loss_feat: 8.82782 (8.68282) | > loss_mel: 18.63641 (17.76108) | > loss_duration: 1.68870 (1.70814) | > loss_1: 34.23963 (33.36870) | > grad_norm_1: 200.52924 (132.53043) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86870 (2.19556) | > loader_time: 0.03880 (0.03879)  --> STEP: 14238/15287 -- GLOBAL_STEP: 1010100 | > loss_disc: 2.47087 (2.32138) | > loss_disc_real_0: 0.17473 (0.12255) | > loss_disc_real_1: 0.20005 (0.21156) | > loss_disc_real_2: 0.24657 (0.21580) | > loss_disc_real_3: 0.24697 (0.21941) | > loss_disc_real_4: 0.25857 (0.21501) | > loss_disc_real_5: 0.24279 (0.21398) | > loss_0: 2.47087 (2.32138) | > grad_norm_0: 41.05603 (16.14703) | > loss_gen: 2.45986 (2.55437) | > loss_kl: 2.73970 (2.66220) | > loss_feat: 8.31640 (8.68279) | > loss_mel: 17.53794 (17.76121) | > loss_duration: 1.68440 (1.70813) | > loss_1: 32.73830 (33.36882) | > grad_norm_1: 198.39632 (132.55011) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88230 (2.19524) | > loader_time: 0.03430 (0.03879)  --> STEP: 14263/15287 -- GLOBAL_STEP: 1010125 | > loss_disc: 2.28906 (2.32139) | > loss_disc_real_0: 0.08598 (0.12255) | > loss_disc_real_1: 0.19022 (0.21156) | > loss_disc_real_2: 0.19060 (0.21581) | > loss_disc_real_3: 0.21521 (0.21941) | > loss_disc_real_4: 0.18488 (0.21501) | > loss_disc_real_5: 0.20019 (0.21398) | > loss_0: 2.28906 (2.32139) | > grad_norm_0: 10.92180 (16.14275) | > loss_gen: 2.73356 (2.55438) | > loss_kl: 2.66813 (2.66221) | > loss_feat: 9.19236 (8.68294) | > loss_mel: 18.18139 (17.76159) | > loss_duration: 1.70122 (1.70811) | > loss_1: 34.47665 (33.36935) | > grad_norm_1: 161.28401 (132.49727) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99230 (2.19484) | > loader_time: 0.03460 (0.03879)  --> STEP: 14288/15287 -- GLOBAL_STEP: 1010150 | > loss_disc: 2.38873 (2.32146) | > loss_disc_real_0: 0.11134 (0.12256) | > loss_disc_real_1: 0.20635 (0.21157) | > loss_disc_real_2: 0.22038 (0.21581) | > loss_disc_real_3: 0.23901 (0.21941) | > loss_disc_real_4: 0.22999 (0.21502) | > loss_disc_real_5: 0.25962 (0.21398) | > loss_0: 2.38873 (2.32146) | > grad_norm_0: 19.54208 (16.14378) | > loss_gen: 2.49860 (2.55436) | > loss_kl: 2.66441 (2.66226) | > loss_feat: 8.35438 (8.68292) | > loss_mel: 17.75624 (17.76184) | > loss_duration: 1.69844 (1.70810) | > loss_1: 32.97207 (33.36958) | > grad_norm_1: 52.29489 (132.50156) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99010 (2.19454) | > loader_time: 0.03440 (0.03879)  --> STEP: 14313/15287 -- GLOBAL_STEP: 1010175 | > loss_disc: 2.42292 (2.32149) | > loss_disc_real_0: 0.08940 (0.12256) | > loss_disc_real_1: 0.21290 (0.21157) | > loss_disc_real_2: 0.22345 (0.21581) | > loss_disc_real_3: 0.22126 (0.21940) | > loss_disc_real_4: 0.21096 (0.21501) | > loss_disc_real_5: 0.27889 (0.21399) | > loss_0: 2.42292 (2.32149) | > grad_norm_0: 29.65023 (16.16302) | > loss_gen: 2.53395 (2.55452) | > loss_kl: 2.59684 (2.66226) | > loss_feat: 8.64830 (8.68316) | > loss_mel: 17.62835 (17.76228) | > loss_duration: 1.68109 (1.70809) | > loss_1: 33.08853 (33.37043) | > grad_norm_1: 149.92467 (132.58363) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05910 (2.19414) | > loader_time: 0.03660 (0.03878)  --> STEP: 14338/15287 -- GLOBAL_STEP: 1010200 | > loss_disc: 2.29849 (2.32150) | > loss_disc_real_0: 0.11790 (0.12257) | > loss_disc_real_1: 0.19815 (0.21157) | > loss_disc_real_2: 0.21488 (0.21582) | > loss_disc_real_3: 0.23190 (0.21940) | > loss_disc_real_4: 0.22408 (0.21501) | > loss_disc_real_5: 0.16835 (0.21399) | > loss_0: 2.29849 (2.32150) | > grad_norm_0: 12.68729 (16.17449) | > loss_gen: 2.42085 (2.55447) | > loss_kl: 2.72096 (2.66229) | > loss_feat: 9.21951 (8.68287) | > loss_mel: 18.35648 (17.76239) | > loss_duration: 1.71572 (1.70809) | > loss_1: 34.43352 (33.37021) | > grad_norm_1: 130.14862 (132.60806) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97330 (2.19375) | > loader_time: 0.03770 (0.03878)  --> STEP: 14363/15287 -- GLOBAL_STEP: 1010225 | > loss_disc: 2.37478 (2.32150) | > loss_disc_real_0: 0.15082 (0.12257) | > loss_disc_real_1: 0.20983 (0.21157) | > loss_disc_real_2: 0.21065 (0.21582) | > loss_disc_real_3: 0.20946 (0.21940) | > loss_disc_real_4: 0.19305 (0.21502) | > loss_disc_real_5: 0.20568 (0.21401) | > loss_0: 2.37478 (2.32150) | > grad_norm_0: 48.58701 (16.17958) | > loss_gen: 2.47326 (2.55455) | > loss_kl: 2.61137 (2.66226) | > loss_feat: 8.28953 (8.68273) | > loss_mel: 17.69650 (17.76219) | > loss_duration: 1.68436 (1.70808) | > loss_1: 32.75502 (33.36992) | > grad_norm_1: 69.25556 (132.60381) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86410 (2.19339) | > loader_time: 0.03500 (0.03878)  --> STEP: 14388/15287 -- GLOBAL_STEP: 1010250 | > loss_disc: 2.37292 (2.32152) | > loss_disc_real_0: 0.14293 (0.12258) | > loss_disc_real_1: 0.22378 (0.21156) | > loss_disc_real_2: 0.21155 (0.21581) | > loss_disc_real_3: 0.22520 (0.21940) | > loss_disc_real_4: 0.21440 (0.21500) | > loss_disc_real_5: 0.16730 (0.21400) | > loss_0: 2.37292 (2.32152) | > grad_norm_0: 26.52091 (16.18577) | > loss_gen: 2.50512 (2.55444) | > loss_kl: 2.65172 (2.66220) | > loss_feat: 8.46854 (8.68270) | > loss_mel: 17.58103 (17.76225) | > loss_duration: 1.72307 (1.70810) | > loss_1: 32.92948 (33.36979) | > grad_norm_1: 81.03412 (132.56017) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.81730 (2.19292) | > loader_time: 0.03490 (0.03878)  --> STEP: 14413/15287 -- GLOBAL_STEP: 1010275 | > loss_disc: 2.24045 (2.32147) | > loss_disc_real_0: 0.10903 (0.12257) | > loss_disc_real_1: 0.22477 (0.21156) | > loss_disc_real_2: 0.22786 (0.21580) | > loss_disc_real_3: 0.24167 (0.21938) | > loss_disc_real_4: 0.25801 (0.21500) | > loss_disc_real_5: 0.18576 (0.21400) | > loss_0: 2.24045 (2.32147) | > grad_norm_0: 11.36209 (16.18614) | > loss_gen: 2.59900 (2.55449) | > loss_kl: 2.61287 (2.66224) | > loss_feat: 8.73895 (8.68299) | > loss_mel: 17.56066 (17.76229) | > loss_duration: 1.65518 (1.70807) | > loss_1: 33.16665 (33.37017) | > grad_norm_1: 175.21242 (132.57730) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96060 (2.19250) | > loader_time: 0.03700 (0.03877)  --> STEP: 14438/15287 -- GLOBAL_STEP: 1010300 | > loss_disc: 2.27176 (2.32145) | > loss_disc_real_0: 0.14206 (0.12258) | > loss_disc_real_1: 0.17450 (0.21156) | > loss_disc_real_2: 0.15302 (0.21580) | > loss_disc_real_3: 0.17765 (0.21937) | > loss_disc_real_4: 0.17645 (0.21500) | > loss_disc_real_5: 0.20573 (0.21399) | > loss_0: 2.27176 (2.32145) | > grad_norm_0: 26.74643 (16.19213) | > loss_gen: 2.41322 (2.55447) | > loss_kl: 2.70036 (2.66221) | > loss_feat: 9.13965 (8.68297) | > loss_mel: 17.90952 (17.76233) | > loss_duration: 1.68895 (1.70806) | > loss_1: 33.85171 (33.37013) | > grad_norm_1: 200.96260 (132.59961) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91210 (2.19214) | > loader_time: 0.03660 (0.03877)  --> STEP: 14463/15287 -- GLOBAL_STEP: 1010325 | > loss_disc: 2.25180 (2.32144) | > loss_disc_real_0: 0.12036 (0.12256) | > loss_disc_real_1: 0.19190 (0.21156) | > loss_disc_real_2: 0.21962 (0.21580) | > loss_disc_real_3: 0.21478 (0.21938) | > loss_disc_real_4: 0.19533 (0.21501) | > loss_disc_real_5: 0.19853 (0.21400) | > loss_0: 2.25180 (2.32144) | > grad_norm_0: 22.65961 (16.19565) | > loss_gen: 2.53861 (2.55451) | > loss_kl: 2.70962 (2.66220) | > loss_feat: 8.90218 (8.68322) | > loss_mel: 17.83571 (17.76241) | > loss_duration: 1.67825 (1.70807) | > loss_1: 33.66438 (33.37050) | > grad_norm_1: 56.65725 (132.63228) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32020 (2.19180) | > loader_time: 0.04150 (0.03876)  --> STEP: 14488/15287 -- GLOBAL_STEP: 1010350 | > loss_disc: 2.29361 (2.32149) | > loss_disc_real_0: 0.12455 (0.12257) | > loss_disc_real_1: 0.21655 (0.21156) | > loss_disc_real_2: 0.21090 (0.21581) | > loss_disc_real_3: 0.20639 (0.21938) | > loss_disc_real_4: 0.21628 (0.21501) | > loss_disc_real_5: 0.22118 (0.21400) | > loss_0: 2.29361 (2.32149) | > grad_norm_0: 6.33972 (16.19303) | > loss_gen: 2.52125 (2.55450) | > loss_kl: 2.79742 (2.66218) | > loss_feat: 8.67707 (8.68314) | > loss_mel: 17.96510 (17.76241) | > loss_duration: 1.71876 (1.70806) | > loss_1: 33.67960 (33.37039) | > grad_norm_1: 110.43729 (132.61125) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93380 (2.19151) | > loader_time: 0.03650 (0.03876)  --> STEP: 14513/15287 -- GLOBAL_STEP: 1010375 | > loss_disc: 2.40411 (2.32152) | > loss_disc_real_0: 0.14461 (0.12258) | > loss_disc_real_1: 0.21875 (0.21156) | > loss_disc_real_2: 0.21627 (0.21581) | > loss_disc_real_3: 0.23090 (0.21939) | > loss_disc_real_4: 0.21076 (0.21501) | > loss_disc_real_5: 0.25559 (0.21400) | > loss_0: 2.40411 (2.32152) | > grad_norm_0: 12.61303 (16.19336) | > loss_gen: 2.45475 (2.55445) | > loss_kl: 2.59837 (2.66219) | > loss_feat: 8.64732 (8.68308) | > loss_mel: 17.87222 (17.76263) | > loss_duration: 1.73778 (1.70806) | > loss_1: 33.31044 (33.37051) | > grad_norm_1: 142.20387 (132.61829) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90730 (2.19107) | > loader_time: 0.03650 (0.03876)  --> STEP: 14538/15287 -- GLOBAL_STEP: 1010400 | > loss_disc: 2.33651 (2.32148) | > loss_disc_real_0: 0.10471 (0.12256) | > loss_disc_real_1: 0.21884 (0.21156) | > loss_disc_real_2: 0.20143 (0.21580) | > loss_disc_real_3: 0.24383 (0.21938) | > loss_disc_real_4: 0.21201 (0.21501) | > loss_disc_real_5: 0.23411 (0.21400) | > loss_0: 2.33651 (2.32148) | > grad_norm_0: 31.71494 (16.19208) | > loss_gen: 2.47522 (2.55448) | > loss_kl: 2.73411 (2.66219) | > loss_feat: 8.64070 (8.68327) | > loss_mel: 17.82734 (17.76263) | > loss_duration: 1.68791 (1.70805) | > loss_1: 33.36528 (33.37069) | > grad_norm_1: 189.04970 (132.65326) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99660 (2.19066) | > loader_time: 0.03800 (0.03876)  --> STEP: 14563/15287 -- GLOBAL_STEP: 1010425 | > loss_disc: 2.37582 (2.32149) | > loss_disc_real_0: 0.08359 (0.12256) | > loss_disc_real_1: 0.22405 (0.21154) | > loss_disc_real_2: 0.22029 (0.21580) | > loss_disc_real_3: 0.21338 (0.21937) | > loss_disc_real_4: 0.21430 (0.21500) | > loss_disc_real_5: 0.23965 (0.21400) | > loss_0: 2.37582 (2.32149) | > grad_norm_0: 23.74270 (16.19655) | > loss_gen: 2.55026 (2.55443) | > loss_kl: 2.58882 (2.66219) | > loss_feat: 8.62461 (8.68317) | > loss_mel: 17.88714 (17.76247) | > loss_duration: 1.67618 (1.70806) | > loss_1: 33.32702 (33.37039) | > grad_norm_1: 188.76570 (132.66998) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93050 (2.19026) | > loader_time: 0.03700 (0.03875)  --> STEP: 14588/15287 -- GLOBAL_STEP: 1010450 | > loss_disc: 2.31337 (2.32151) | > loss_disc_real_0: 0.10753 (0.12256) | > loss_disc_real_1: 0.19451 (0.21155) | > loss_disc_real_2: 0.20345 (0.21581) | > loss_disc_real_3: 0.26276 (0.21937) | > loss_disc_real_4: 0.23529 (0.21500) | > loss_disc_real_5: 0.19145 (0.21399) | > loss_0: 2.31337 (2.32151) | > grad_norm_0: 6.84152 (16.18749) | > loss_gen: 2.61921 (2.55440) | > loss_kl: 2.72269 (2.66222) | > loss_feat: 8.85012 (8.68306) | > loss_mel: 18.06000 (17.76241) | > loss_duration: 1.68096 (1.70805) | > loss_1: 33.93298 (33.37024) | > grad_norm_1: 130.81685 (132.61340) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10720 (2.18988) | > loader_time: 0.03460 (0.03875)  --> STEP: 14613/15287 -- GLOBAL_STEP: 1010475 | > loss_disc: 2.25672 (2.32155) | > loss_disc_real_0: 0.11565 (0.12257) | > loss_disc_real_1: 0.20818 (0.21155) | > loss_disc_real_2: 0.22086 (0.21581) | > loss_disc_real_3: 0.22266 (0.21938) | > loss_disc_real_4: 0.21543 (0.21499) | > loss_disc_real_5: 0.19294 (0.21400) | > loss_0: 2.25672 (2.32155) | > grad_norm_0: 12.08851 (16.18942) | > loss_gen: 2.60930 (2.55442) | > loss_kl: 2.67395 (2.66218) | > loss_feat: 8.43566 (8.68298) | > loss_mel: 17.46453 (17.76262) | > loss_duration: 1.70309 (1.70805) | > loss_1: 32.88654 (33.37034) | > grad_norm_1: 101.04189 (132.59476) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87770 (2.18952) | > loader_time: 0.03720 (0.03875)  --> STEP: 14638/15287 -- GLOBAL_STEP: 1010500 | > loss_disc: 2.30182 (2.32154) | > loss_disc_real_0: 0.12700 (0.12256) | > loss_disc_real_1: 0.19651 (0.21155) | > loss_disc_real_2: 0.20236 (0.21581) | > loss_disc_real_3: 0.20032 (0.21937) | > loss_disc_real_4: 0.20084 (0.21499) | > loss_disc_real_5: 0.23086 (0.21400) | > loss_0: 2.30182 (2.32154) | > grad_norm_0: 18.39249 (16.18798) | > loss_gen: 2.66047 (2.55440) | > loss_kl: 2.75704 (2.66216) | > loss_feat: 7.99188 (8.68287) | > loss_mel: 17.24421 (17.76256) | > loss_duration: 1.71119 (1.70804) | > loss_1: 32.36479 (33.37013) | > grad_norm_1: 172.92094 (132.58269) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86700 (2.18923) | > loader_time: 0.03320 (0.03874)  --> STEP: 14663/15287 -- GLOBAL_STEP: 1010525 | > loss_disc: 2.28752 (2.32153) | > loss_disc_real_0: 0.09331 (0.12255) | > loss_disc_real_1: 0.19844 (0.21154) | > loss_disc_real_2: 0.22222 (0.21581) | > loss_disc_real_3: 0.19487 (0.21936) | > loss_disc_real_4: 0.18867 (0.21499) | > loss_disc_real_5: 0.19291 (0.21400) | > loss_0: 2.28752 (2.32153) | > grad_norm_0: 23.95950 (16.19149) | > loss_gen: 2.55879 (2.55440) | > loss_kl: 2.67498 (2.66215) | > loss_feat: 8.97496 (8.68297) | > loss_mel: 17.89154 (17.76261) | > loss_duration: 1.69002 (1.70802) | > loss_1: 33.79028 (33.37025) | > grad_norm_1: 201.97800 (132.61737) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88890 (2.18884) | > loader_time: 0.03700 (0.03874)  --> STEP: 14688/15287 -- GLOBAL_STEP: 1010550 | > loss_disc: 2.26789 (2.32151) | > loss_disc_real_0: 0.08699 (0.12254) | > loss_disc_real_1: 0.19600 (0.21154) | > loss_disc_real_2: 0.20150 (0.21581) | > loss_disc_real_3: 0.21840 (0.21937) | > loss_disc_real_4: 0.20698 (0.21499) | > loss_disc_real_5: 0.18967 (0.21400) | > loss_0: 2.26789 (2.32151) | > grad_norm_0: 30.74760 (16.20277) | > loss_gen: 2.51977 (2.55435) | > loss_kl: 2.54064 (2.66214) | > loss_feat: 9.00470 (8.68292) | > loss_mel: 17.37678 (17.76231) | > loss_duration: 1.68269 (1.70802) | > loss_1: 33.12458 (33.36983) | > grad_norm_1: 189.49767 (132.68523) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98990 (2.18850) | > loader_time: 0.03760 (0.03874)  --> STEP: 14713/15287 -- GLOBAL_STEP: 1010575 | > loss_disc: 2.35951 (2.32145) | > loss_disc_real_0: 0.12733 (0.12253) | > loss_disc_real_1: 0.20659 (0.21153) | > loss_disc_real_2: 0.22605 (0.21581) | > loss_disc_real_3: 0.23598 (0.21936) | > loss_disc_real_4: 0.20944 (0.21499) | > loss_disc_real_5: 0.23362 (0.21400) | > loss_0: 2.35951 (2.32145) | > grad_norm_0: 18.48317 (16.21016) | > loss_gen: 2.55893 (2.55437) | > loss_kl: 2.69562 (2.66213) | > loss_feat: 8.56114 (8.68294) | > loss_mel: 17.38065 (17.76209) | > loss_duration: 1.75110 (1.70802) | > loss_1: 32.94745 (33.36966) | > grad_norm_1: 153.02571 (132.75021) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.80920 (2.18807) | > loader_time: 0.03720 (0.03873)  --> STEP: 14738/15287 -- GLOBAL_STEP: 1010600 | > loss_disc: 2.30289 (2.32148) | > loss_disc_real_0: 0.11388 (0.12253) | > loss_disc_real_1: 0.23562 (0.21155) | > loss_disc_real_2: 0.21153 (0.21581) | > loss_disc_real_3: 0.21342 (0.21936) | > loss_disc_real_4: 0.22470 (0.21499) | > loss_disc_real_5: 0.20053 (0.21400) | > loss_0: 2.30289 (2.32148) | > grad_norm_0: 12.43086 (16.21205) | > loss_gen: 2.50872 (2.55435) | > loss_kl: 2.63500 (2.66213) | > loss_feat: 8.31062 (8.68269) | > loss_mel: 17.18507 (17.76182) | > loss_duration: 1.67535 (1.70802) | > loss_1: 32.31476 (33.36910) | > grad_norm_1: 104.78974 (132.74329) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93490 (2.18771) | > loader_time: 0.03570 (0.03873)  --> STEP: 14763/15287 -- GLOBAL_STEP: 1010625 | > loss_disc: 2.32591 (2.32149) | > loss_disc_real_0: 0.10990 (0.12254) | > loss_disc_real_1: 0.20185 (0.21155) | > loss_disc_real_2: 0.23644 (0.21581) | > loss_disc_real_3: 0.26516 (0.21936) | > loss_disc_real_4: 0.21929 (0.21500) | > loss_disc_real_5: 0.24702 (0.21399) | > loss_0: 2.32591 (2.32149) | > grad_norm_0: 15.61580 (16.21380) | > loss_gen: 2.56029 (2.55434) | > loss_kl: 2.68604 (2.66210) | > loss_feat: 8.81436 (8.68291) | > loss_mel: 18.26322 (17.76205) | > loss_duration: 1.71945 (1.70800) | > loss_1: 34.04336 (33.36951) | > grad_norm_1: 107.75110 (132.75197) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.84720 (2.18733) | > loader_time: 0.03680 (0.03873)  --> STEP: 14788/15287 -- GLOBAL_STEP: 1010650 | > loss_disc: 2.45928 (2.32152) | > loss_disc_real_0: 0.23132 (0.12255) | > loss_disc_real_1: 0.21611 (0.21155) | > loss_disc_real_2: 0.24876 (0.21582) | > loss_disc_real_3: 0.20271 (0.21937) | > loss_disc_real_4: 0.23167 (0.21500) | > loss_disc_real_5: 0.20242 (0.21399) | > loss_0: 2.45928 (2.32152) | > grad_norm_0: 21.23241 (16.21392) | > loss_gen: 2.63086 (2.55433) | > loss_kl: 2.69603 (2.66213) | > loss_feat: 8.39541 (8.68272) | > loss_mel: 17.50443 (17.76200) | > loss_duration: 1.72470 (1.70799) | > loss_1: 32.95142 (33.36928) | > grad_norm_1: 150.05034 (132.73131) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88590 (2.18697) | > loader_time: 0.03360 (0.03872)  --> STEP: 14813/15287 -- GLOBAL_STEP: 1010675 | > loss_disc: 2.33539 (2.32157) | > loss_disc_real_0: 0.11923 (0.12256) | > loss_disc_real_1: 0.24748 (0.21155) | > loss_disc_real_2: 0.21284 (0.21582) | > loss_disc_real_3: 0.23603 (0.21937) | > loss_disc_real_4: 0.24785 (0.21501) | > loss_disc_real_5: 0.23446 (0.21399) | > loss_0: 2.33539 (2.32157) | > grad_norm_0: 6.86395 (16.20945) | > loss_gen: 2.41215 (2.55433) | > loss_kl: 2.71689 (2.66215) | > loss_feat: 8.44186 (8.68270) | > loss_mel: 17.76188 (17.76198) | > loss_duration: 1.70962 (1.70799) | > loss_1: 33.04240 (33.36927) | > grad_norm_1: 175.65781 (132.72346) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88010 (2.18666) | > loader_time: 0.03690 (0.03872)  --> STEP: 14838/15287 -- GLOBAL_STEP: 1010700 | > loss_disc: 2.29352 (2.32157) | > loss_disc_real_0: 0.14307 (0.12255) | > loss_disc_real_1: 0.23723 (0.21156) | > loss_disc_real_2: 0.26760 (0.21582) | > loss_disc_real_3: 0.23834 (0.21937) | > loss_disc_real_4: 0.23556 (0.21501) | > loss_disc_real_5: 0.22944 (0.21398) | > loss_0: 2.29352 (2.32157) | > grad_norm_0: 32.60940 (16.21897) | > loss_gen: 2.83955 (2.55436) | > loss_kl: 2.57805 (2.66219) | > loss_feat: 8.97883 (8.68275) | > loss_mel: 17.80788 (17.76209) | > loss_duration: 1.70256 (1.70798) | > loss_1: 33.90687 (33.36949) | > grad_norm_1: 112.32845 (132.78334) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.82520 (2.18645) | > loader_time: 0.03380 (0.03872)  --> STEP: 14863/15287 -- GLOBAL_STEP: 1010725 | > loss_disc: 2.27565 (2.32158) | > loss_disc_real_0: 0.10334 (0.12255) | > loss_disc_real_1: 0.20002 (0.21157) | > loss_disc_real_2: 0.20280 (0.21584) | > loss_disc_real_3: 0.17280 (0.21936) | > loss_disc_real_4: 0.17570 (0.21501) | > loss_disc_real_5: 0.19757 (0.21399) | > loss_0: 2.27565 (2.32158) | > grad_norm_0: 23.23153 (16.22769) | > loss_gen: 2.39559 (2.55432) | > loss_kl: 2.69994 (2.66216) | > loss_feat: 9.23105 (8.68253) | > loss_mel: 18.23857 (17.76189) | > loss_duration: 1.70460 (1.70797) | > loss_1: 34.26974 (33.36900) | > grad_norm_1: 142.50177 (132.81607) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89440 (2.18605) | > loader_time: 0.03530 (0.03872)  --> STEP: 14888/15287 -- GLOBAL_STEP: 1010750 | > loss_disc: 2.31108 (2.32164) | > loss_disc_real_0: 0.14965 (0.12257) | > loss_disc_real_1: 0.20385 (0.21158) | > loss_disc_real_2: 0.20847 (0.21584) | > loss_disc_real_3: 0.23284 (0.21937) | > loss_disc_real_4: 0.23361 (0.21501) | > loss_disc_real_5: 0.21758 (0.21398) | > loss_0: 2.31108 (2.32164) | > grad_norm_0: 24.31167 (16.22728) | > loss_gen: 2.72039 (2.55430) | > loss_kl: 2.84217 (2.66227) | > loss_feat: 9.33060 (8.68232) | > loss_mel: 17.58404 (17.76190) | > loss_duration: 1.72341 (1.70796) | > loss_1: 34.20061 (33.36889) | > grad_norm_1: 71.34248 (132.81834) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87470 (2.18572) | > loader_time: 0.03740 (0.03872)  --> STEP: 14913/15287 -- GLOBAL_STEP: 1010775 | > loss_disc: 2.25143 (2.32165) | > loss_disc_real_0: 0.07380 (0.12258) | > loss_disc_real_1: 0.20893 (0.21158) | > loss_disc_real_2: 0.17822 (0.21584) | > loss_disc_real_3: 0.18610 (0.21936) | > loss_disc_real_4: 0.19573 (0.21501) | > loss_disc_real_5: 0.16685 (0.21398) | > loss_0: 2.25143 (2.32165) | > grad_norm_0: 18.49199 (16.23044) | > loss_gen: 2.65779 (2.55430) | > loss_kl: 2.70861 (2.66235) | > loss_feat: 9.17453 (8.68247) | > loss_mel: 18.00329 (17.76208) | > loss_duration: 1.67901 (1.70796) | > loss_1: 34.22322 (33.36928) | > grad_norm_1: 174.44212 (132.87535) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95870 (2.18533) | > loader_time: 0.03620 (0.03871)  --> STEP: 14938/15287 -- GLOBAL_STEP: 1010800 | > loss_disc: 2.42935 (2.32163) | > loss_disc_real_0: 0.15073 (0.12257) | > loss_disc_real_1: 0.19494 (0.21157) | > loss_disc_real_2: 0.25194 (0.21584) | > loss_disc_real_3: 0.24803 (0.21936) | > loss_disc_real_4: 0.23188 (0.21501) | > loss_disc_real_5: 0.24407 (0.21399) | > loss_0: 2.42935 (2.32163) | > grad_norm_0: 43.40129 (16.23638) | > loss_gen: 2.52738 (2.55434) | > loss_kl: 2.56238 (2.66238) | > loss_feat: 8.43692 (8.68258) | > loss_mel: 17.29002 (17.76229) | > loss_duration: 1.67066 (1.70798) | > loss_1: 32.48737 (33.36968) | > grad_norm_1: 184.55350 (132.90746) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97750 (2.18493) | > loader_time: 0.03600 (0.03871)  --> STEP: 14963/15287 -- GLOBAL_STEP: 1010825 | > loss_disc: 2.29862 (2.32168) | > loss_disc_real_0: 0.14515 (0.12258) | > loss_disc_real_1: 0.20826 (0.21158) | > loss_disc_real_2: 0.22192 (0.21585) | > loss_disc_real_3: 0.20315 (0.21937) | > loss_disc_real_4: 0.18969 (0.21502) | > loss_disc_real_5: 0.19668 (0.21399) | > loss_0: 2.29862 (2.32168) | > grad_norm_0: 12.08884 (16.23878) | > loss_gen: 2.38593 (2.55425) | > loss_kl: 2.70714 (2.66239) | > loss_feat: 8.71764 (8.68238) | > loss_mel: 17.37015 (17.76196) | > loss_duration: 1.71607 (1.70796) | > loss_1: 32.89692 (33.36906) | > grad_norm_1: 129.55110 (132.92020) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92560 (2.18450) | > loader_time: 0.03360 (0.03871)  --> STEP: 14988/15287 -- GLOBAL_STEP: 1010850 | > loss_disc: 2.32223 (2.32164) | > loss_disc_real_0: 0.15444 (0.12257) | > loss_disc_real_1: 0.20092 (0.21157) | > loss_disc_real_2: 0.20468 (0.21585) | > loss_disc_real_3: 0.22965 (0.21937) | > loss_disc_real_4: 0.21358 (0.21501) | > loss_disc_real_5: 0.22630 (0.21399) | > loss_0: 2.32223 (2.32164) | > grad_norm_0: 25.27192 (16.23851) | > loss_gen: 2.45659 (2.55428) | > loss_kl: 2.84770 (2.66248) | > loss_feat: 8.90430 (8.68260) | > loss_mel: 18.04561 (17.76212) | > loss_duration: 1.70252 (1.70796) | > loss_1: 33.95671 (33.36956) | > grad_norm_1: 147.84137 (132.94524) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02350 (2.18424) | > loader_time: 0.03680 (0.03871)  --> STEP: 15013/15287 -- GLOBAL_STEP: 1010875 | > loss_disc: 2.30842 (2.32163) | > loss_disc_real_0: 0.11111 (0.12257) | > loss_disc_real_1: 0.22332 (0.21158) | > loss_disc_real_2: 0.21177 (0.21585) | > loss_disc_real_3: 0.21881 (0.21937) | > loss_disc_real_4: 0.19005 (0.21501) | > loss_disc_real_5: 0.19564 (0.21399) | > loss_0: 2.30842 (2.32163) | > grad_norm_0: 12.15009 (16.23907) | > loss_gen: 2.55564 (2.55426) | > loss_kl: 2.77093 (2.66246) | > loss_feat: 8.91321 (8.68252) | > loss_mel: 18.28511 (17.76221) | > loss_duration: 1.71053 (1.70796) | > loss_1: 34.23541 (33.36951) | > grad_norm_1: 89.09679 (132.95984) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00710 (2.18387) | > loader_time: 0.03710 (0.03871)  --> STEP: 15038/15287 -- GLOBAL_STEP: 1010900 | > loss_disc: 2.33361 (2.32171) | > loss_disc_real_0: 0.10234 (0.12258) | > loss_disc_real_1: 0.22788 (0.21159) | > loss_disc_real_2: 0.21000 (0.21585) | > loss_disc_real_3: 0.23831 (0.21937) | > loss_disc_real_4: 0.22163 (0.21502) | > loss_disc_real_5: 0.21240 (0.21399) | > loss_0: 2.33361 (2.32171) | > grad_norm_0: 11.05360 (16.24120) | > loss_gen: 2.54308 (2.55423) | > loss_kl: 2.54686 (2.66254) | > loss_feat: 8.83118 (8.68253) | > loss_mel: 17.73269 (17.76255) | > loss_duration: 1.69606 (1.70796) | > loss_1: 33.34988 (33.36992) | > grad_norm_1: 117.28560 (132.95650) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16290 (2.18351) | > loader_time: 0.03530 (0.03870)  --> STEP: 15063/15287 -- GLOBAL_STEP: 1010925 | > loss_disc: 2.29247 (2.32171) | > loss_disc_real_0: 0.10514 (0.12258) | > loss_disc_real_1: 0.19679 (0.21159) | > loss_disc_real_2: 0.20768 (0.21586) | > loss_disc_real_3: 0.22610 (0.21937) | > loss_disc_real_4: 0.21809 (0.21502) | > loss_disc_real_5: 0.21930 (0.21399) | > loss_0: 2.29247 (2.32171) | > grad_norm_0: 12.41181 (16.23409) | > loss_gen: 2.67124 (2.55427) | > loss_kl: 2.64023 (2.66259) | > loss_feat: 8.74784 (8.68257) | > loss_mel: 18.21265 (17.76289) | > loss_duration: 1.70002 (1.70797) | > loss_1: 33.97197 (33.37039) | > grad_norm_1: 131.22641 (132.90396) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94420 (2.18314) | > loader_time: 0.05660 (0.03870)  --> STEP: 15088/15287 -- GLOBAL_STEP: 1010950 | > loss_disc: 2.40469 (2.32175) | > loss_disc_real_0: 0.09370 (0.12258) | > loss_disc_real_1: 0.24099 (0.21160) | > loss_disc_real_2: 0.23607 (0.21587) | > loss_disc_real_3: 0.23005 (0.21937) | > loss_disc_real_4: 0.21904 (0.21501) | > loss_disc_real_5: 0.21415 (0.21398) | > loss_0: 2.40469 (2.32175) | > grad_norm_0: 10.16338 (16.23454) | > loss_gen: 2.63325 (2.55424) | > loss_kl: 2.66635 (2.66253) | > loss_feat: 8.24219 (8.68225) | > loss_mel: 17.98701 (17.76291) | > loss_duration: 1.70983 (1.70799) | > loss_1: 33.23863 (33.37002) | > grad_norm_1: 158.54483 (132.90552) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85720 (2.18274) | > loader_time: 0.03330 (0.03870)  --> STEP: 15113/15287 -- GLOBAL_STEP: 1010975 | > loss_disc: 2.36510 (2.32179) | > loss_disc_real_0: 0.07459 (0.12260) | > loss_disc_real_1: 0.19628 (0.21161) | > loss_disc_real_2: 0.20626 (0.21588) | > loss_disc_real_3: 0.23627 (0.21937) | > loss_disc_real_4: 0.22757 (0.21501) | > loss_disc_real_5: 0.21130 (0.21398) | > loss_0: 2.36510 (2.32179) | > grad_norm_0: 9.87803 (16.23419) | > loss_gen: 2.50489 (2.55420) | > loss_kl: 2.67476 (2.66255) | > loss_feat: 8.24064 (8.68195) | > loss_mel: 17.89973 (17.76287) | > loss_duration: 1.66410 (1.70798) | > loss_1: 32.98412 (33.36964) | > grad_norm_1: 81.66077 (132.81824) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87780 (2.18234) | > loader_time: 0.03090 (0.03870)  --> STEP: 15138/15287 -- GLOBAL_STEP: 1011000 | > loss_disc: 2.33432 (2.32177) | > loss_disc_real_0: 0.12333 (0.12261) | > loss_disc_real_1: 0.22293 (0.21161) | > loss_disc_real_2: 0.21490 (0.21587) | > loss_disc_real_3: 0.23649 (0.21937) | > loss_disc_real_4: 0.20776 (0.21500) | > loss_disc_real_5: 0.20249 (0.21399) | > loss_0: 2.33432 (2.32177) | > grad_norm_0: 13.41832 (16.23298) | > loss_gen: 2.50900 (2.55428) | > loss_kl: 2.68672 (2.66257) | > loss_feat: 8.93318 (8.68217) | > loss_mel: 17.75762 (17.76306) | > loss_duration: 1.76349 (1.70798) | > loss_1: 33.65001 (33.37014) | > grad_norm_1: 112.12933 (132.79303) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90700 (2.18193) | > loader_time: 0.03290 (0.03869)  --> STEP: 15163/15287 -- GLOBAL_STEP: 1011025 | > loss_disc: 2.27754 (2.32172) | > loss_disc_real_0: 0.10451 (0.12259) | > loss_disc_real_1: 0.20882 (0.21160) | > loss_disc_real_2: 0.20063 (0.21587) | > loss_disc_real_3: 0.23144 (0.21937) | > loss_disc_real_4: 0.23118 (0.21501) | > loss_disc_real_5: 0.23023 (0.21399) | > loss_0: 2.27754 (2.32172) | > grad_norm_0: 21.99012 (16.24813) | > loss_gen: 2.52234 (2.55427) | > loss_kl: 2.59177 (2.66253) | > loss_feat: 8.91530 (8.68231) | > loss_mel: 17.57316 (17.76304) | > loss_duration: 1.76004 (1.70798) | > loss_1: 33.36261 (33.37022) | > grad_norm_1: 193.30042 (132.86299) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.73470 (2.18162) | > loader_time: 0.03880 (0.03869)  --> STEP: 15188/15287 -- GLOBAL_STEP: 1011050 | > loss_disc: 2.26039 (2.32162) | > loss_disc_real_0: 0.09573 (0.12257) | > loss_disc_real_1: 0.25637 (0.21160) | > loss_disc_real_2: 0.23004 (0.21586) | > loss_disc_real_3: 0.21659 (0.21936) | > loss_disc_real_4: 0.23594 (0.21499) | > loss_disc_real_5: 0.20049 (0.21397) | > loss_0: 2.26039 (2.32162) | > grad_norm_0: 10.33797 (16.25418) | > loss_gen: 2.67072 (2.55431) | > loss_kl: 2.65663 (2.66250) | > loss_feat: 8.86975 (8.68247) | > loss_mel: 17.91390 (17.76296) | > loss_duration: 1.69937 (1.70798) | > loss_1: 33.81038 (33.37031) | > grad_norm_1: 81.26309 (132.93996) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91920 (2.18127) | > loader_time: 0.03570 (0.03869)  --> STEP: 15213/15287 -- GLOBAL_STEP: 1011075 | > loss_disc: 2.30840 (2.32156) | > loss_disc_real_0: 0.08282 (0.12255) | > loss_disc_real_1: 0.16610 (0.21159) | > loss_disc_real_2: 0.19057 (0.21585) | > loss_disc_real_3: 0.19368 (0.21937) | > loss_disc_real_4: 0.21433 (0.21498) | > loss_disc_real_5: 0.21131 (0.21397) | > loss_0: 2.30840 (2.32156) | > grad_norm_0: 10.94449 (16.25584) | > loss_gen: 2.50900 (2.55428) | > loss_kl: 2.71293 (2.66251) | > loss_feat: 8.79868 (8.68269) | > loss_mel: 17.84888 (17.76276) | > loss_duration: 1.69894 (1.70797) | > loss_1: 33.56842 (33.37032) | > grad_norm_1: 147.61842 (132.98378) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13920 (2.18097) | > loader_time: 0.04590 (0.03869)  --> STEP: 15238/15287 -- GLOBAL_STEP: 1011100 | > loss_disc: 2.33480 (2.32155) | > loss_disc_real_0: 0.10658 (0.12255) | > loss_disc_real_1: 0.21470 (0.21160) | > loss_disc_real_2: 0.21547 (0.21586) | > loss_disc_real_3: 0.22410 (0.21936) | > loss_disc_real_4: 0.20585 (0.21498) | > loss_disc_real_5: 0.24728 (0.21396) | > loss_0: 2.33480 (2.32155) | > grad_norm_0: 10.44789 (16.25451) | > loss_gen: 2.40314 (2.55431) | > loss_kl: 2.60639 (2.66254) | > loss_feat: 8.88093 (8.68281) | > loss_mel: 17.86146 (17.76265) | > loss_duration: 1.70326 (1.70796) | > loss_1: 33.45519 (33.37038) | > grad_norm_1: 79.73457 (133.00621) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00890 (2.18065) | > loader_time: 0.03360 (0.03869)  --> STEP: 15263/15287 -- GLOBAL_STEP: 1011125 | > loss_disc: 2.28322 (2.32153) | > loss_disc_real_0: 0.12716 (0.12255) | > loss_disc_real_1: 0.19907 (0.21160) | > loss_disc_real_2: 0.19925 (0.21585) | > loss_disc_real_3: 0.22728 (0.21936) | > loss_disc_real_4: 0.20830 (0.21499) | > loss_disc_real_5: 0.20533 (0.21396) | > loss_0: 2.28322 (2.32153) | > grad_norm_0: 22.09950 (16.25842) | > loss_gen: 2.57952 (2.55435) | > loss_kl: 2.66456 (2.66254) | > loss_feat: 9.30519 (8.68286) | > loss_mel: 17.46703 (17.76250) | > loss_duration: 1.67527 (1.70794) | > loss_1: 33.69156 (33.37030) | > grad_norm_1: 60.36113 (133.04201) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06310 (2.18051) | > loader_time: 0.05320 (0.03870)  > EVALUATION   --> STEP: 0 | > loss_disc: 2.26699 (2.26699) | > loss_disc_real_0: 0.08738 (0.08738) | > loss_disc_real_1: 0.17113 (0.17113) | > loss_disc_real_2: 0.24931 (0.24931) | > loss_disc_real_3: 0.22146 (0.22146) | > loss_disc_real_4: 0.20117 (0.20117) | > loss_disc_real_5: 0.23589 (0.23589) | > loss_0: 2.26699 (2.26699) | > loss_gen: 2.47085 (2.47085) | > loss_kl: 2.64008 (2.64008) | > loss_feat: 8.63489 (8.63489) | > loss_mel: 17.66651 (17.66651) | > loss_duration: 1.73629 (1.73629) | > loss_1: 33.14862 (33.14862)  --> STEP: 1 | > loss_disc: 2.31343 (2.31343) | > loss_disc_real_0: 0.09269 (0.09269) | > loss_disc_real_1: 0.16406 (0.16406) | > loss_disc_real_2: 0.24533 (0.24533) | > loss_disc_real_3: 0.24338 (0.24338) | > loss_disc_real_4: 0.21351 (0.21351) | > loss_disc_real_5: 0.21571 (0.21571) | > loss_0: 2.31343 (2.31343) | > loss_gen: 2.47930 (2.47930) | > loss_kl: 2.56690 (2.56690) | > loss_feat: 8.49501 (8.49501) | > loss_mel: 17.38525 (17.38525) | > loss_duration: 1.71833 (1.71833) | > loss_1: 32.64479 (32.64479)  --> STEP: 2 | > loss_disc: 2.35130 (2.33236) | > loss_disc_real_0: 0.10461 (0.09865) | > loss_disc_real_1: 0.16614 (0.16510) | > loss_disc_real_2: 0.24070 (0.24302) | > loss_disc_real_3: 0.23706 (0.24022) | > loss_disc_real_4: 0.21539 (0.21445) | > loss_disc_real_5: 0.23810 (0.22690) | > loss_0: 2.35130 (2.33236) | > loss_gen: 2.42184 (2.45057) | > loss_kl: 2.83736 (2.70213) | > loss_feat: 8.88348 (8.68925) | > loss_mel: 18.32852 (17.85689) | > loss_duration: 1.70644 (1.71239) | > loss_1: 34.17764 (33.41122)  --> STEP: 3 | > loss_disc: 2.39186 (2.35219) | > loss_disc_real_0: 0.10812 (0.10181) | > loss_disc_real_1: 0.16657 (0.16559) | > loss_disc_real_2: 0.25925 (0.24843) | > loss_disc_real_3: 0.24431 (0.24158) | > loss_disc_real_4: 0.24338 (0.22409) | > loss_disc_real_5: 0.25186 (0.23522) | > loss_0: 2.39186 (2.35219) | > loss_gen: 2.41455 (2.43856) | > loss_kl: 2.76985 (2.72470) | > loss_feat: 7.76296 (8.38048) | > loss_mel: 17.36300 (17.69226) | > loss_duration: 1.69929 (1.70802) | > loss_1: 32.00965 (32.94403)  --> STEP: 4 | > loss_disc: 2.26174 (2.32958) | > loss_disc_real_0: 0.09135 (0.09919) | > loss_disc_real_1: 0.16362 (0.16510) | > loss_disc_real_2: 0.24129 (0.24664) | > loss_disc_real_3: 0.23397 (0.23968) | > loss_disc_real_4: 0.21624 (0.22213) | > loss_disc_real_5: 0.21507 (0.23019) | > loss_0: 2.26174 (2.32958) | > loss_gen: 2.47025 (2.44648) | > loss_kl: 2.66756 (2.71042) | > loss_feat: 9.03610 (8.54439) | > loss_mel: 17.80473 (17.72038) | > loss_duration: 1.73869 (1.71569) | > loss_1: 33.71734 (33.13736)  --> STEP: 5 | > loss_disc: 2.36255 (2.33618) | > loss_disc_real_0: 0.11604 (0.10256) | > loss_disc_real_1: 0.16503 (0.16508) | > loss_disc_real_2: 0.25339 (0.24799) | > loss_disc_real_3: 0.26427 (0.24460) | > loss_disc_real_4: 0.22076 (0.22186) | > loss_disc_real_5: 0.24488 (0.23312) | > loss_0: 2.36255 (2.33618) | > loss_gen: 2.49075 (2.45534) | > loss_kl: 2.69289 (2.70691) | > loss_feat: 8.56072 (8.54765) | > loss_mel: 17.47019 (17.67034) | > loss_duration: 1.68720 (1.70999) | > loss_1: 32.90175 (33.09024)  --> STEP: 6 | > loss_disc: 2.35089 (2.33863) | > loss_disc_real_0: 0.10558 (0.10306) | > loss_disc_real_1: 0.16797 (0.16556) | > loss_disc_real_2: 0.25177 (0.24862) | > loss_disc_real_3: 0.24737 (0.24506) | > loss_disc_real_4: 0.23334 (0.22377) | > loss_disc_real_5: 0.22676 (0.23206) | > loss_0: 2.35089 (2.33863) | > loss_gen: 2.44324 (2.45332) | > loss_kl: 2.85681 (2.73190) | > loss_feat: 8.27705 (8.50255) | > loss_mel: 17.85632 (17.70134) | > loss_duration: 1.70649 (1.70941) | > loss_1: 33.13992 (33.09852)  --> STEP: 7 | > loss_disc: 2.32643 (2.33689) | > loss_disc_real_0: 0.09612 (0.10207) | > loss_disc_real_1: 0.17137 (0.16639) | > loss_disc_real_2: 0.24017 (0.24741) | > loss_disc_real_3: 0.23924 (0.24423) | > loss_disc_real_4: 0.21755 (0.22288) | > loss_disc_real_5: 0.23187 (0.23204) | > loss_0: 2.32643 (2.33689) | > loss_gen: 2.44300 (2.45185) | > loss_kl: 2.76664 (2.73686) | > loss_feat: 8.34935 (8.48067) | > loss_mel: 17.49081 (17.67126) | > loss_duration: 1.72986 (1.71233) | > loss_1: 32.77965 (33.05297)  --> STEP: 8 | > loss_disc: 2.29145 (2.33121) | > loss_disc_real_0: 0.11394 (0.10356) | > loss_disc_real_1: 0.16694 (0.16646) | > loss_disc_real_2: 0.25638 (0.24853) | > loss_disc_real_3: 0.25105 (0.24508) | > loss_disc_real_4: 0.23340 (0.22420) | > loss_disc_real_5: 0.23224 (0.23206) | > loss_0: 2.29145 (2.33121) | > loss_gen: 2.61404 (2.47212) | > loss_kl: 2.73318 (2.73640) | > loss_feat: 8.30714 (8.45898) | > loss_mel: 17.80478 (17.68795) | > loss_duration: 1.67483 (1.70764) | > loss_1: 33.13397 (33.06310)  --> STEP: 9 | > loss_disc: 2.40696 (2.33962) | > loss_disc_real_0: 0.09845 (0.10299) | > loss_disc_real_1: 0.17293 (0.16718) | > loss_disc_real_2: 0.26343 (0.25019) | > loss_disc_real_3: 0.28564 (0.24959) | > loss_disc_real_4: 0.23441 (0.22533) | > loss_disc_real_5: 0.25235 (0.23431) | > loss_0: 2.40696 (2.33962) | > loss_gen: 2.46179 (2.47097) | > loss_kl: 2.71388 (2.73390) | > loss_feat: 8.29872 (8.44117) | > loss_mel: 17.18057 (17.63158) | > loss_duration: 1.72260 (1.70930) | > loss_1: 32.37756 (32.98693)  --> STEP: 10 | > loss_disc: 2.30569 (2.33623) | > loss_disc_real_0: 0.07990 (0.10068) | > loss_disc_real_1: 0.16340 (0.16680) | > loss_disc_real_2: 0.23904 (0.24908) | > loss_disc_real_3: 0.25076 (0.24970) | > loss_disc_real_4: 0.23349 (0.22615) | > loss_disc_real_5: 0.23280 (0.23416) | > loss_0: 2.30569 (2.33623) | > loss_gen: 2.49312 (2.47319) | > loss_kl: 2.58589 (2.71910) | > loss_feat: 8.72271 (8.46933) | > loss_mel: 17.77415 (17.64583) | > loss_duration: 1.73546 (1.71192) | > loss_1: 33.31134 (33.01937)  --> STEP: 11 | > loss_disc: 2.37470 (2.33973) | > loss_disc_real_0: 0.14082 (0.10433) | > loss_disc_real_1: 0.17099 (0.16718) | > loss_disc_real_2: 0.24728 (0.24891) | > loss_disc_real_3: 0.26406 (0.25101) | > loss_disc_real_4: 0.23288 (0.22676) | > loss_disc_real_5: 0.25321 (0.23589) | > loss_0: 2.37470 (2.33973) | > loss_gen: 2.51755 (2.47722) | > loss_kl: 2.72051 (2.71923) | > loss_feat: 8.33812 (8.45740) | > loss_mel: 17.32449 (17.61662) | > loss_duration: 1.67790 (1.70883) | > loss_1: 32.57856 (32.97930)  --> STEP: 12 | > loss_disc: 2.32949 (2.33887) | > loss_disc_real_0: 0.10271 (0.10419) | > loss_disc_real_1: 0.16447 (0.16696) | > loss_disc_real_2: 0.24487 (0.24858) | > loss_disc_real_3: 0.24361 (0.25039) | > loss_disc_real_4: 0.23025 (0.22705) | > loss_disc_real_5: 0.22203 (0.23474) | > loss_0: 2.32949 (2.33887) | > loss_gen: 2.42371 (2.47276) | > loss_kl: 2.82573 (2.72810) | > loss_feat: 8.35966 (8.44925) | > loss_mel: 17.69892 (17.62348) | > loss_duration: 1.72452 (1.71013) | > loss_1: 33.03253 (32.98373)  --> STEP: 13 | > loss_disc: 2.29637 (2.33561) | > loss_disc_real_0: 0.09432 (0.10343) | > loss_disc_real_1: 0.16730 (0.16698) | > loss_disc_real_2: 0.25788 (0.24929) | > loss_disc_real_3: 0.25321 (0.25061) | > loss_disc_real_4: 0.20977 (0.22572) | > loss_disc_real_5: 0.22552 (0.23403) | > loss_0: 2.29637 (2.33561) | > loss_gen: 2.50846 (2.47551) | > loss_kl: 2.70226 (2.72611) | > loss_feat: 8.65424 (8.46502) | > loss_mel: 17.87374 (17.64273) | > loss_duration: 1.69045 (1.70862) | > loss_1: 33.42915 (33.01800)  --> STEP: 14 | > loss_disc: 2.34065 (2.33597) | > loss_disc_real_0: 0.09077 (0.10253) | > loss_disc_real_1: 0.16571 (0.16689) | > loss_disc_real_2: 0.25161 (0.24946) | > loss_disc_real_3: 0.26275 (0.25148) | > loss_disc_real_4: 0.23280 (0.22623) | > loss_disc_real_5: 0.24652 (0.23492) | > loss_0: 2.34065 (2.33597) | > loss_gen: 2.49051 (2.47658) | > loss_kl: 2.73897 (2.72703) | > loss_feat: 8.27166 (8.45121) | > loss_mel: 17.71772 (17.64809) | > loss_duration: 1.67349 (1.70611) | > loss_1: 32.89235 (33.00903)  --> STEP: 15 | > loss_disc: 2.31440 (2.33453) | > loss_disc_real_0: 0.11324 (0.10324) | > loss_disc_real_1: 0.16087 (0.16649) | > loss_disc_real_2: 0.24710 (0.24930) | > loss_disc_real_3: 0.24130 (0.25080) | > loss_disc_real_4: 0.21505 (0.22548) | > loss_disc_real_5: 0.22291 (0.23412) | > loss_0: 2.31440 (2.33453) | > loss_gen: 2.43401 (2.47374) | > loss_kl: 2.62335 (2.72012) | > loss_feat: 8.43817 (8.45034) | > loss_mel: 17.55752 (17.64205) | > loss_duration: 1.73423 (1.70799) | > loss_1: 32.78728 (32.99424)  --> STEP: 16 | > loss_disc: 2.34091 (2.33493) | > loss_disc_real_0: 0.10561 (0.10339) | > loss_disc_real_1: 0.17469 (0.16700) | > loss_disc_real_2: 0.25038 (0.24937) | > loss_disc_real_3: 0.24962 (0.25072) | > loss_disc_real_4: 0.22127 (0.22522) | > loss_disc_real_5: 0.21281 (0.23279) | > loss_0: 2.34091 (2.33493) | > loss_gen: 2.42629 (2.47078) | > loss_kl: 2.68297 (2.71780) | > loss_feat: 8.31468 (8.44186) | > loss_mel: 17.71712 (17.64675) | > loss_duration: 1.68751 (1.70671) | > loss_1: 32.82858 (32.98389)  --> STEP: 17 | > loss_disc: 2.31079 (2.33351) | > loss_disc_real_0: 0.08854 (0.10252) | > loss_disc_real_1: 0.16613 (0.16695) | > loss_disc_real_2: 0.25776 (0.24986) | > loss_disc_real_3: 0.25844 (0.25118) | > loss_disc_real_4: 0.22824 (0.22540) | > loss_disc_real_5: 0.22719 (0.23246) | > loss_0: 2.31079 (2.33351) | > loss_gen: 2.50983 (2.47307) | > loss_kl: 2.61816 (2.71194) | > loss_feat: 8.59968 (8.45115) | > loss_mel: 18.00513 (17.66783) | > loss_duration: 1.68367 (1.70535) | > loss_1: 33.41648 (33.00934)  --> STEP: 18 | > loss_disc: 2.23171 (2.32785) | > loss_disc_real_0: 0.07295 (0.10088) | > loss_disc_real_1: 0.15966 (0.16655) | > loss_disc_real_2: 0.24343 (0.24950) | > loss_disc_real_3: 0.24365 (0.25076) | > loss_disc_real_4: 0.20732 (0.22439) | > loss_disc_real_5: 0.21182 (0.23131) | > loss_0: 2.23171 (2.32785) | > loss_gen: 2.49405 (2.47424) | > loss_kl: 2.62562 (2.70714) | > loss_feat: 8.90035 (8.47610) | > loss_mel: 17.75493 (17.67267) | > loss_duration: 1.71375 (1.70582) | > loss_1: 33.48870 (33.03597)  --> STEP: 19 | > loss_disc: 2.34858 (2.32894) | > loss_disc_real_0: 0.11784 (0.10177) | > loss_disc_real_1: 0.16838 (0.16664) | > loss_disc_real_2: 0.25622 (0.24986) | > loss_disc_real_3: 0.24726 (0.25058) | > loss_disc_real_4: 0.23228 (0.22481) | > loss_disc_real_5: 0.24121 (0.23183) | > loss_0: 2.34858 (2.32894) | > loss_gen: 2.48987 (2.47506) | > loss_kl: 2.68171 (2.70580) | > loss_feat: 8.65985 (8.48577) | > loss_mel: 17.75334 (17.67691) | > loss_duration: 1.65022 (1.70289) | > loss_1: 33.23499 (33.04644)  --> STEP: 20 | > loss_disc: 2.32295 (2.32864) | > loss_disc_real_0: 0.09885 (0.10162) | > loss_disc_real_1: 0.16601 (0.16661) | > loss_disc_real_2: 0.26167 (0.25045) | > loss_disc_real_3: 0.23968 (0.25003) | > loss_disc_real_4: 0.21997 (0.22457) | > loss_disc_real_5: 0.22896 (0.23169) | > loss_0: 2.32295 (2.32864) | > loss_gen: 2.48736 (2.47568) | > loss_kl: 2.62777 (2.70190) | > loss_feat: 9.01417 (8.51219) | > loss_mel: 17.57209 (17.67167) | > loss_duration: 1.71363 (1.70343) | > loss_1: 33.41502 (33.06488)  --> STEP: 21 | > loss_disc: 2.37486 (2.33084) | > loss_disc_real_0: 0.10735 (0.10189) | > loss_disc_real_1: 0.16620 (0.16659) | > loss_disc_real_2: 0.26616 (0.25120) | > loss_disc_real_3: 0.24860 (0.24996) | > loss_disc_real_4: 0.22927 (0.22479) | > loss_disc_real_5: 0.23104 (0.23166) | > loss_0: 2.37486 (2.33084) | > loss_gen: 2.42449 (2.47324) | > loss_kl: 2.51314 (2.69291) | > loss_feat: 8.49196 (8.51123) | > loss_mel: 17.58019 (17.66731) | > loss_duration: 1.70213 (1.70337) | > loss_1: 32.71191 (33.04807)  --> STEP: 22 | > loss_disc: 2.33384 (2.33098) | > loss_disc_real_0: 0.09848 (0.10174) | > loss_disc_real_1: 0.16769 (0.16664) | > loss_disc_real_2: 0.25197 (0.25123) | > loss_disc_real_3: 0.25083 (0.25000) | > loss_disc_real_4: 0.22669 (0.22488) | > loss_disc_real_5: 0.23661 (0.23188) | > loss_0: 2.33384 (2.33098) | > loss_gen: 2.46860 (2.47303) | > loss_kl: 2.73059 (2.69463) | > loss_feat: 8.28463 (8.50093) | > loss_mel: 17.38004 (17.65426) | > loss_duration: 1.69382 (1.70293) | > loss_1: 32.55769 (33.02578)  --> STEP: 23 | > loss_disc: 2.31466 (2.33027) | > loss_disc_real_0: 0.09803 (0.10158) | > loss_disc_real_1: 0.15773 (0.16625) | > loss_disc_real_2: 0.24000 (0.25074) | > loss_disc_real_3: 0.25390 (0.25017) | > loss_disc_real_4: 0.21916 (0.22463) | > loss_disc_real_5: 0.22554 (0.23161) | > loss_0: 2.31466 (2.33027) | > loss_gen: 2.44456 (2.47179) | > loss_kl: 2.72904 (2.69612) | > loss_feat: 8.10869 (8.48388) | > loss_mel: 17.58713 (17.65134) | > loss_duration: 1.73060 (1.70414) | > loss_1: 32.60001 (33.00727)  --> STEP: 24 | > loss_disc: 2.35111 (2.33114) | > loss_disc_real_0: 0.09767 (0.10142) | > loss_disc_real_1: 0.17170 (0.16648) | > loss_disc_real_2: 0.24006 (0.25030) | > loss_disc_real_3: 0.25601 (0.25042) | > loss_disc_real_4: 0.22927 (0.22482) | > loss_disc_real_5: 0.23718 (0.23184) | > loss_0: 2.35111 (2.33114) | > loss_gen: 2.45277 (2.47100) | > loss_kl: 2.78019 (2.69963) | > loss_feat: 8.42883 (8.48158) | > loss_mel: 17.89187 (17.66136) | > loss_duration: 1.68886 (1.70350) | > loss_1: 33.24252 (33.01707)  --> STEP: 25 | > loss_disc: 2.32276 (2.33080) | > loss_disc_real_0: 0.09067 (0.10099) | > loss_disc_real_1: 0.16386 (0.16638) | > loss_disc_real_2: 0.24589 (0.25012) | > loss_disc_real_3: 0.25292 (0.25052) | > loss_disc_real_4: 0.22358 (0.22477) | > loss_disc_real_5: 0.24511 (0.23237) | > loss_0: 2.32276 (2.33080) | > loss_gen: 2.47082 (2.47099) | > loss_kl: 2.66010 (2.69804) | > loss_feat: 8.99691 (8.50220) | > loss_mel: 17.85895 (17.66926) | > loss_duration: 1.70638 (1.70361) | > loss_1: 33.69317 (33.04411)  --> STEP: 26 | > loss_disc: 2.31544 (2.33021) | > loss_disc_real_0: 0.11633 (0.10158) | > loss_disc_real_1: 0.16976 (0.16651) | > loss_disc_real_2: 0.24876 (0.25007) | > loss_disc_real_3: 0.24793 (0.25042) | > loss_disc_real_4: 0.23097 (0.22501) | > loss_disc_real_5: 0.22245 (0.23199) | > loss_0: 2.31544 (2.33021) | > loss_gen: 2.50750 (2.47240) | > loss_kl: 2.77434 (2.70098) | > loss_feat: 8.62635 (8.50697) | > loss_mel: 17.90732 (17.67842) | > loss_duration: 1.72987 (1.70462) | > loss_1: 33.54538 (33.06339)  --> STEP: 27 | > loss_disc: 2.44235 (2.33437) | > loss_disc_real_0: 0.13057 (0.10265) | > loss_disc_real_1: 0.17276 (0.16674) | > loss_disc_real_2: 0.26327 (0.25056) | > loss_disc_real_3: 0.26061 (0.25079) | > loss_disc_real_4: 0.24282 (0.22567) | > loss_disc_real_5: 0.23396 (0.23206) | > loss_0: 2.44235 (2.33437) | > loss_gen: 2.34467 (2.46766) | > loss_kl: 2.68843 (2.70051) | > loss_feat: 7.37728 (8.46513) | > loss_mel: 17.48020 (17.67108) | > loss_duration: 1.71185 (1.70489) | > loss_1: 31.60243 (33.00928)  --> STEP: 28 | > loss_disc: 2.36407 (2.33543) | > loss_disc_real_0: 0.09175 (0.10226) | > loss_disc_real_1: 0.17685 (0.16710) | > loss_disc_real_2: 0.25246 (0.25063) | > loss_disc_real_3: 0.26727 (0.25138) | > loss_disc_real_4: 0.22164 (0.22553) | > loss_disc_real_5: 0.24799 (0.23263) | > loss_0: 2.36407 (2.33543) | > loss_gen: 2.46730 (2.46765) | > loss_kl: 2.69243 (2.70023) | > loss_feat: 8.25757 (8.45772) | > loss_mel: 17.50591 (17.66518) | > loss_duration: 1.68989 (1.70436) | > loss_1: 32.61310 (32.99513)  --> STEP: 29 | > loss_disc: 2.39821 (2.33759) | > loss_disc_real_0: 0.12698 (0.10311) | > loss_disc_real_1: 0.16878 (0.16716) | > loss_disc_real_2: 0.25841 (0.25089) | > loss_disc_real_3: 0.26850 (0.25197) | > loss_disc_real_4: 0.23829 (0.22597) | > loss_disc_real_5: 0.23424 (0.23269) | > loss_0: 2.39821 (2.33759) | > loss_gen: 2.41168 (2.46572) | > loss_kl: 2.72705 (2.70115) | > loss_feat: 7.58063 (8.42747) | > loss_mel: 17.07097 (17.64469) | > loss_duration: 1.69079 (1.70389) | > loss_1: 31.48113 (32.94292)  --> STEP: 30 | > loss_disc: 2.33767 (2.33760) | > loss_disc_real_0: 0.11038 (0.10336) | > loss_disc_real_1: 0.16258 (0.16701) | > loss_disc_real_2: 0.24242 (0.25061) | > loss_disc_real_3: 0.24791 (0.25184) | > loss_disc_real_4: 0.21024 (0.22544) | > loss_disc_real_5: 0.24437 (0.23308) | > loss_0: 2.33767 (2.33760) | > loss_gen: 2.41053 (2.46388) | > loss_kl: 2.69251 (2.70086) | > loss_feat: 8.89326 (8.44300) | > loss_mel: 17.78323 (17.64931) | > loss_duration: 1.69084 (1.70345) | > loss_1: 33.47038 (32.96051)  --> STEP: 31 | > loss_disc: 2.29579 (2.33625) | > loss_disc_real_0: 0.10348 (0.10336) | > loss_disc_real_1: 0.16575 (0.16696) | > loss_disc_real_2: 0.24907 (0.25056) | > loss_disc_real_3: 0.25692 (0.25200) | > loss_disc_real_4: 0.21971 (0.22526) | > loss_disc_real_5: 0.24376 (0.23342) | > loss_0: 2.29579 (2.33625) | > loss_gen: 2.53228 (2.46609) | > loss_kl: 2.57725 (2.69687) | > loss_feat: 8.70406 (8.45142) | > loss_mel: 17.54808 (17.64604) | > loss_duration: 1.72425 (1.70412) | > loss_1: 33.08592 (32.96455)  --> STEP: 32 | > loss_disc: 2.27929 (2.33447) | > loss_disc_real_0: 0.10184 (0.10331) | > loss_disc_real_1: 0.16149 (0.16679) | > loss_disc_real_2: 0.24109 (0.25027) | > loss_disc_real_3: 0.24127 (0.25167) | > loss_disc_real_4: 0.21408 (0.22491) | > loss_disc_real_5: 0.21046 (0.23270) | > loss_0: 2.27929 (2.33447) | > loss_gen: 2.46682 (2.46611) | > loss_kl: 2.74856 (2.69849) | > loss_feat: 8.31040 (8.44701) | > loss_mel: 17.21926 (17.63270) | > loss_duration: 1.70709 (1.70422) | > loss_1: 32.45214 (32.94854)  --> STEP: 33 | > loss_disc: 2.30622 (2.33361) | > loss_disc_real_0: 0.10950 (0.10350) | > loss_disc_real_1: 0.16745 (0.16681) | > loss_disc_real_2: 0.24556 (0.25012) | > loss_disc_real_3: 0.25868 (0.25188) | > loss_disc_real_4: 0.22332 (0.22486) | > loss_disc_real_5: 0.21334 (0.23212) | > loss_0: 2.30622 (2.33361) | > loss_gen: 2.46883 (2.46619) | > loss_kl: 2.60215 (2.69557) | > loss_feat: 8.29503 (8.44241) | > loss_mel: 17.13051 (17.61749) | > loss_duration: 1.71229 (1.70446) | > loss_1: 32.20881 (32.92612)  --> STEP: 34 | > loss_disc: 2.31049 (2.33293) | > loss_disc_real_0: 0.09120 (0.10314) | > loss_disc_real_1: 0.16307 (0.16670) | > loss_disc_real_2: 0.23807 (0.24977) | > loss_disc_real_3: 0.24426 (0.25165) | > loss_disc_real_4: 0.20573 (0.22430) | > loss_disc_real_5: 0.21232 (0.23153) | > loss_0: 2.31049 (2.33293) | > loss_gen: 2.42260 (2.46491) | > loss_kl: 2.72079 (2.69631) | > loss_feat: 9.31843 (8.46817) | > loss_mel: 17.61930 (17.61754) | > loss_duration: 1.70639 (1.70452) | > loss_1: 33.78753 (32.95145)  --> STEP: 35 | > loss_disc: 2.36345 (2.33380) | > loss_disc_real_0: 0.10009 (0.10305) | > loss_disc_real_1: 0.17200 (0.16685) | > loss_disc_real_2: 0.24445 (0.24962) | > loss_disc_real_3: 0.25192 (0.25166) | > loss_disc_real_4: 0.22574 (0.22434) | > loss_disc_real_5: 0.23624 (0.23167) | > loss_0: 2.36345 (2.33380) | > loss_gen: 2.35839 (2.46187) | > loss_kl: 2.61200 (2.69390) | > loss_feat: 8.13181 (8.45856) | > loss_mel: 17.46174 (17.61309) | > loss_duration: 1.71189 (1.70473) | > loss_1: 32.27584 (32.93215)  --> STEP: 36 | > loss_disc: 2.30704 (2.33306) | > loss_disc_real_0: 0.10153 (0.10301) | > loss_disc_real_1: 0.16088 (0.16669) | > loss_disc_real_2: 0.23597 (0.24924) | > loss_disc_real_3: 0.24628 (0.25151) | > loss_disc_real_4: 0.23086 (0.22452) | > loss_disc_real_5: 0.23931 (0.23188) | > loss_0: 2.30704 (2.33306) | > loss_gen: 2.48804 (2.46259) | > loss_kl: 2.75976 (2.69573) | > loss_feat: 8.84227 (8.46922) | > loss_mel: 18.03125 (17.62470) | > loss_duration: 1.70850 (1.70483) | > loss_1: 33.82981 (32.95709)  --> STEP: 37 | > loss_disc: 2.33772 (2.33319) | > loss_disc_real_0: 0.10269 (0.10300) | > loss_disc_real_1: 0.16482 (0.16664) | > loss_disc_real_2: 0.24452 (0.24911) | > loss_disc_real_3: 0.25106 (0.25150) | > loss_disc_real_4: 0.21068 (0.22415) | > loss_disc_real_5: 0.23153 (0.23187) | > loss_0: 2.33772 (2.33319) | > loss_gen: 2.46987 (2.46279) | > loss_kl: 2.62077 (2.69371) | > loss_feat: 8.73649 (8.47645) | > loss_mel: 17.90441 (17.63227) | > loss_duration: 1.67560 (1.70404) | > loss_1: 33.40714 (32.96925)  --> STEP: 38 | > loss_disc: 2.34844 (2.33359) | > loss_disc_real_0: 0.10677 (0.10310) | > loss_disc_real_1: 0.16573 (0.16661) | > loss_disc_real_2: 0.25122 (0.24917) | > loss_disc_real_3: 0.25577 (0.25161) | > loss_disc_real_4: 0.22709 (0.22422) | > loss_disc_real_5: 0.24374 (0.23218) | > loss_0: 2.34844 (2.33359) | > loss_gen: 2.46568 (2.46287) | > loss_kl: 2.65194 (2.69261) | > loss_feat: 8.43054 (8.47524) | > loss_mel: 17.74021 (17.63511) | > loss_duration: 1.71999 (1.70446) | > loss_1: 33.00835 (32.97028)  --> STEP: 39 | > loss_disc: 2.31400 (2.33308) | > loss_disc_real_0: 0.10123 (0.10305) | > loss_disc_real_1: 0.17241 (0.16676) | > loss_disc_real_2: 0.24686 (0.24911) | > loss_disc_real_3: 0.26300 (0.25190) | > loss_disc_real_4: 0.21924 (0.22409) | > loss_disc_real_5: 0.22980 (0.23212) | > loss_0: 2.31400 (2.33308) | > loss_gen: 2.51233 (2.46414) | > loss_kl: 2.64249 (2.69132) | > loss_feat: 8.64865 (8.47968) | > loss_mel: 18.45446 (17.65612) | > loss_duration: 1.72842 (1.70508) | > loss_1: 33.98636 (32.99633)  --> STEP: 40 | > loss_disc: 2.27959 (2.33175) | > loss_disc_real_0: 0.09061 (0.10274) | > loss_disc_real_1: 0.16611 (0.16675) | > loss_disc_real_2: 0.24678 (0.24905) | > loss_disc_real_3: 0.24344 (0.25169) | > loss_disc_real_4: 0.20827 (0.22370) | > loss_disc_real_5: 0.22327 (0.23190) | > loss_0: 2.27959 (2.33175) | > loss_gen: 2.49544 (2.46492) | > loss_kl: 2.47555 (2.68593) | > loss_feat: 8.70227 (8.48525) | > loss_mel: 17.88887 (17.66194) | > loss_duration: 1.66684 (1.70412) | > loss_1: 33.22897 (33.00215)  --> STEP: 41 | > loss_disc: 2.37568 (2.33282) | > loss_disc_real_0: 0.09533 (0.10256) | > loss_disc_real_1: 0.16920 (0.16681) | > loss_disc_real_2: 0.26230 (0.24937) | > loss_disc_real_3: 0.24586 (0.25155) | > loss_disc_real_4: 0.22486 (0.22373) | > loss_disc_real_5: 0.24031 (0.23211) | > loss_0: 2.37568 (2.33282) | > loss_gen: 2.40120 (2.46336) | > loss_kl: 2.68113 (2.68581) | > loss_feat: 8.09727 (8.47579) | > loss_mel: 17.06829 (17.64746) | > loss_duration: 1.67723 (1.70347) | > loss_1: 31.92514 (32.97588)  --> STEP: 42 | > loss_disc: 2.30867 (2.33224) | > loss_disc_real_0: 0.11977 (0.10297) | > loss_disc_real_1: 0.16473 (0.16676) | > loss_disc_real_2: 0.24573 (0.24929) | > loss_disc_real_3: 0.23179 (0.25108) | > loss_disc_real_4: 0.20620 (0.22331) | > loss_disc_real_5: 0.20850 (0.23154) | > loss_0: 2.30867 (2.33224) | > loss_gen: 2.41994 (2.46233) | > loss_kl: 2.66154 (2.68523) | > loss_feat: 8.94115 (8.48687) | > loss_mel: 17.50469 (17.64406) | > loss_duration: 1.70223 (1.70344) | > loss_1: 33.22954 (32.98192)  --> STEP: 43 | > loss_disc: 2.34234 (2.33248) | > loss_disc_real_0: 0.11881 (0.10334) | > loss_disc_real_1: 0.17675 (0.16699) | > loss_disc_real_2: 0.26659 (0.24969) | > loss_disc_real_3: 0.25880 (0.25126) | > loss_disc_real_4: 0.24945 (0.22392) | > loss_disc_real_5: 0.23243 (0.23157) | > loss_0: 2.34234 (2.33248) | > loss_gen: 2.54507 (2.46425) | > loss_kl: 2.60883 (2.68346) | > loss_feat: 7.82161 (8.47140) | > loss_mel: 16.74667 (17.62319) | > loss_duration: 1.68079 (1.70291) | > loss_1: 31.40297 (32.94520)  --> STEP: 44 | > loss_disc: 2.33976 (2.33264) | > loss_disc_real_0: 0.10762 (0.10343) | > loss_disc_real_1: 0.16719 (0.16699) | > loss_disc_real_2: 0.24907 (0.24967) | > loss_disc_real_3: 0.23437 (0.25088) | > loss_disc_real_4: 0.22169 (0.22387) | > loss_disc_real_5: 0.22059 (0.23132) | > loss_0: 2.33976 (2.33264) | > loss_gen: 2.41038 (2.46303) | > loss_kl: 2.92394 (2.68892) | > loss_feat: 8.48066 (8.47161) | > loss_mel: 17.47258 (17.61976) | > loss_duration: 1.73664 (1.70368) | > loss_1: 33.02421 (32.94700)  --> STEP: 45 | > loss_disc: 2.33160 (2.33262) | > loss_disc_real_0: 0.10095 (0.10338) | > loss_disc_real_1: 0.16474 (0.16694) | > loss_disc_real_2: 0.24282 (0.24952) | > loss_disc_real_3: 0.25266 (0.25092) | > loss_disc_real_4: 0.21784 (0.22373) | > loss_disc_real_5: 0.23501 (0.23140) | > loss_0: 2.33160 (2.33262) | > loss_gen: 2.45065 (2.46276) | > loss_kl: 2.70618 (2.68931) | > loss_feat: 8.60016 (8.47446) | > loss_mel: 17.93347 (17.62674) | > loss_duration: 1.72270 (1.70410) | > loss_1: 33.41316 (32.95736)  --> STEP: 46 | > loss_disc: 2.34126 (2.33281) | > loss_disc_real_0: 0.10423 (0.10340) | > loss_disc_real_1: 0.16001 (0.16679) | > loss_disc_real_2: 0.24349 (0.24939) | > loss_disc_real_3: 0.25274 (0.25095) | > loss_disc_real_4: 0.21886 (0.22363) | > loss_disc_real_5: 0.22651 (0.23129) | > loss_0: 2.34126 (2.33281) | > loss_gen: 2.38497 (2.46106) | > loss_kl: 2.68241 (2.68916) | > loss_feat: 8.11143 (8.46657) | > loss_mel: 17.21708 (17.61783) | > loss_duration: 1.72846 (1.70463) | > loss_1: 32.12435 (32.93925)  --> STEP: 47 | > loss_disc: 2.33677 (2.33289) | > loss_disc_real_0: 0.11378 (0.10362) | > loss_disc_real_1: 0.16687 (0.16679) | > loss_disc_real_2: 0.24805 (0.24936) | > loss_disc_real_3: 0.25547 (0.25105) | > loss_disc_real_4: 0.23471 (0.22386) | > loss_disc_real_5: 0.24110 (0.23150) | > loss_0: 2.33677 (2.33289) | > loss_gen: 2.52262 (2.46237) | > loss_kl: 2.70769 (2.68955) | > loss_feat: 8.55433 (8.46844) | > loss_mel: 17.63054 (17.61810) | > loss_duration: 1.69614 (1.70445) | > loss_1: 33.11131 (32.94291)  --> STEP: 48 | > loss_disc: 2.33615 (2.33296) | > loss_disc_real_0: 0.09141 (0.10336) | > loss_disc_real_1: 0.17035 (0.16687) | > loss_disc_real_2: 0.26771 (0.24974) | > loss_disc_real_3: 0.25286 (0.25109) | > loss_disc_real_4: 0.21087 (0.22359) | > loss_disc_real_5: 0.24551 (0.23179) | > loss_0: 2.33615 (2.33296) | > loss_gen: 2.48053 (2.46275) | > loss_kl: 2.63514 (2.68842) | > loss_feat: 8.27147 (8.46434) | > loss_mel: 17.51701 (17.61600) | > loss_duration: 1.71519 (1.70467) | > loss_1: 32.61935 (32.93617)  --> STEP: 49 | > loss_disc: 2.40896 (2.33451) | > loss_disc_real_0: 0.10356 (0.10337) | > loss_disc_real_1: 0.17739 (0.16708) | > loss_disc_real_2: 0.26203 (0.24999) | > loss_disc_real_3: 0.25370 (0.25114) | > loss_disc_real_4: 0.21988 (0.22352) | > loss_disc_real_5: 0.24354 (0.23203) | > loss_0: 2.40896 (2.33451) | > loss_gen: 2.37432 (2.46095) | > loss_kl: 2.76724 (2.69003) | > loss_feat: 8.31562 (8.46130) | > loss_mel: 17.20856 (17.60768) | > loss_duration: 1.70637 (1.70471) | > loss_1: 32.37211 (32.92466)  --> STEP: 50 | > loss_disc: 2.38894 (2.33560) | > loss_disc_real_0: 0.10778 (0.10346) | > loss_disc_real_1: 0.16805 (0.16710) | > loss_disc_real_2: 0.26096 (0.25021) | > loss_disc_real_3: 0.23962 (0.25091) | > loss_disc_real_4: 0.22629 (0.22357) | > loss_disc_real_5: 0.24347 (0.23226) | > loss_0: 2.38894 (2.33560) | > loss_gen: 2.40952 (2.45992) | > loss_kl: 2.66982 (2.68962) | > loss_feat: 9.17879 (8.47565) | > loss_mel: 17.90890 (17.61370) | > loss_duration: 1.69743 (1.70456) | > loss_1: 33.86446 (32.94345)  --> STEP: 51 | > loss_disc: 2.28101 (2.33453) | > loss_disc_real_0: 0.09664 (0.10332) | > loss_disc_real_1: 0.17147 (0.16719) | > loss_disc_real_2: 0.25084 (0.25023) | > loss_disc_real_3: 0.24964 (0.25089) | > loss_disc_real_4: 0.23056 (0.22371) | > loss_disc_real_5: 0.23653 (0.23234) | > loss_0: 2.28101 (2.33453) | > loss_gen: 2.55945 (2.46187) | > loss_kl: 2.70858 (2.68999) | > loss_feat: 8.37426 (8.47366) | > loss_mel: 17.53804 (17.61222) | > loss_duration: 1.69680 (1.70441) | > loss_1: 32.87712 (32.94215)  --> STEP: 52 | > loss_disc: 2.30750 (2.33401) | > loss_disc_real_0: 0.08780 (0.10302) | > loss_disc_real_1: 0.17075 (0.16726) | > loss_disc_real_2: 0.23649 (0.24996) | > loss_disc_real_3: 0.24908 (0.25085) | > loss_disc_real_4: 0.22307 (0.22370) | > loss_disc_real_5: 0.23402 (0.23238) | > loss_0: 2.30750 (2.33401) | > loss_gen: 2.50266 (2.46265) | > loss_kl: 2.72079 (2.69059) | > loss_feat: 8.93095 (8.48246) | > loss_mel: 17.63658 (17.61269) | > loss_duration: 1.68765 (1.70409) | > loss_1: 33.47862 (32.95247)  --> STEP: 53 | > loss_disc: 2.32361 (2.33381) | > loss_disc_real_0: 0.09756 (0.10292) | > loss_disc_real_1: 0.17492 (0.16740) | > loss_disc_real_2: 0.25752 (0.25010) | > loss_disc_real_3: 0.24577 (0.25076) | > loss_disc_real_4: 0.21587 (0.22355) | > loss_disc_real_5: 0.21197 (0.23199) | > loss_0: 2.32361 (2.33381) | > loss_gen: 2.44999 (2.46242) | > loss_kl: 2.71962 (2.69113) | > loss_feat: 8.33567 (8.47969) | > loss_mel: 17.45030 (17.60963) | > loss_duration: 1.70021 (1.70401) | > loss_1: 32.65579 (32.94687)  --> STEP: 54 | > loss_disc: 2.37190 (2.33452) | > loss_disc_real_0: 0.10629 (0.10298) | > loss_disc_real_1: 0.17129 (0.16747) | > loss_disc_real_2: 0.24963 (0.25010) | > loss_disc_real_3: 0.25114 (0.25076) | > loss_disc_real_4: 0.23518 (0.22376) | > loss_disc_real_5: 0.24736 (0.23228) | > loss_0: 2.37190 (2.33452) | > loss_gen: 2.43057 (2.46183) | > loss_kl: 2.60932 (2.68962) | > loss_feat: 7.96572 (8.47017) | > loss_mel: 17.30840 (17.60405) | > loss_duration: 1.64808 (1.70298) | > loss_1: 31.96209 (32.92863)  --> STEP: 55 | > loss_disc: 2.34381 (2.33469) | > loss_disc_real_0: 0.08621 (0.10268) | > loss_disc_real_1: 0.16558 (0.16744) | > loss_disc_real_2: 0.24414 (0.24999) | > loss_disc_real_3: 0.25742 (0.25088) | > loss_disc_real_4: 0.23207 (0.22392) | > loss_disc_real_5: 0.21759 (0.23201) | > loss_0: 2.34381 (2.33469) | > loss_gen: 2.39814 (2.46067) | > loss_kl: 2.71351 (2.69005) | > loss_feat: 8.51012 (8.47090) | > loss_mel: 17.80503 (17.60770) | > loss_duration: 1.67804 (1.70252) | > loss_1: 33.10484 (32.93184)  --> STEP: 56 | > loss_disc: 2.36190 (2.33517) | > loss_disc_real_0: 0.09987 (0.10263) | > loss_disc_real_1: 0.15944 (0.16730) | > loss_disc_real_2: 0.24411 (0.24988) | > loss_disc_real_3: 0.24672 (0.25081) | > loss_disc_real_4: 0.22015 (0.22385) | > loss_disc_real_5: 0.23573 (0.23208) | > loss_0: 2.36190 (2.33517) | > loss_gen: 2.40327 (2.45964) | > loss_kl: 2.67709 (2.68982) | > loss_feat: 8.56892 (8.47265) | > loss_mel: 17.44072 (17.60472) | > loss_duration: 1.70038 (1.70249) | > loss_1: 32.79039 (32.92931)  --> STEP: 57 | > loss_disc: 2.33711 (2.33521) | > loss_disc_real_0: 0.10402 (0.10265) | > loss_disc_real_1: 0.16852 (0.16732) | > loss_disc_real_2: 0.25204 (0.24992) | > loss_disc_real_3: 0.24138 (0.25064) | > loss_disc_real_4: 0.23364 (0.22402) | > loss_disc_real_5: 0.23202 (0.23207) | > loss_0: 2.33711 (2.33521) | > loss_gen: 2.49846 (2.46032) | > loss_kl: 2.64223 (2.68899) | > loss_feat: 8.81300 (8.47862) | > loss_mel: 17.69458 (17.60630) | > loss_duration: 1.69680 (1.70239) | > loss_1: 33.34507 (32.93661)  --> STEP: 58 | > loss_disc: 2.37476 (2.33589) | > loss_disc_real_0: 0.10673 (0.10272) | > loss_disc_real_1: 0.16338 (0.16725) | > loss_disc_real_2: 0.24771 (0.24988) | > loss_disc_real_3: 0.26674 (0.25092) | > loss_disc_real_4: 0.23256 (0.22417) | > loss_disc_real_5: 0.25558 (0.23248) | > loss_0: 2.37476 (2.33589) | > loss_gen: 2.50412 (2.46108) | > loss_kl: 2.84579 (2.69169) | > loss_feat: 8.50660 (8.47910) | > loss_mel: 17.76789 (17.60909) | > loss_duration: 1.67726 (1.70195) | > loss_1: 33.30166 (32.94290)  --> STEP: 59 | > loss_disc: 2.28424 (2.33502) | > loss_disc_real_0: 0.10835 (0.10282) | > loss_disc_real_1: 0.15843 (0.16710) | > loss_disc_real_2: 0.24570 (0.24981) | > loss_disc_real_3: 0.24060 (0.25075) | > loss_disc_real_4: 0.20334 (0.22381) | > loss_disc_real_5: 0.21138 (0.23212) | > loss_0: 2.28424 (2.33502) | > loss_gen: 2.46897 (2.46121) | > loss_kl: 2.65479 (2.69106) | > loss_feat: 8.62237 (8.48153) | > loss_mel: 17.64467 (17.60969) | > loss_duration: 1.69942 (1.70191) | > loss_1: 33.09022 (32.94540)  --> STEP: 60 | > loss_disc: 2.27507 (2.33402) | > loss_disc_real_0: 0.09964 (0.10277) | > loss_disc_real_1: 0.15939 (0.16697) | > loss_disc_real_2: 0.22143 (0.24934) | > loss_disc_real_3: 0.24127 (0.25059) | > loss_disc_real_4: 0.23653 (0.22403) | > loss_disc_real_5: 0.23923 (0.23224) | > loss_0: 2.27507 (2.33402) | > loss_gen: 2.51435 (2.46210) | > loss_kl: 2.90831 (2.69468) | > loss_feat: 8.96163 (8.48953) | > loss_mel: 18.11836 (17.61817) | > loss_duration: 1.73609 (1.70248) | > loss_1: 34.23874 (32.96696)  --> STEP: 61 | > loss_disc: 2.31273 (2.33367) | > loss_disc_real_0: 0.10927 (0.10287) | > loss_disc_real_1: 0.16763 (0.16698) | > loss_disc_real_2: 0.24505 (0.24927) | > loss_disc_real_3: 0.25321 (0.25063) | > loss_disc_real_4: 0.20909 (0.22378) | > loss_disc_real_5: 0.22632 (0.23214) | > loss_0: 2.31273 (2.33367) | > loss_gen: 2.46428 (2.46213) | > loss_kl: 2.63093 (2.69364) | > loss_feat: 8.52085 (8.49004) | > loss_mel: 17.78076 (17.62083) | > loss_duration: 1.69199 (1.70231) | > loss_1: 33.08882 (32.96896)  --> STEP: 62 | > loss_disc: 2.33935 (2.33376) | > loss_disc_real_0: 0.11499 (0.10307) | > loss_disc_real_1: 0.16650 (0.16697) | > loss_disc_real_2: 0.24567 (0.24921) | > loss_disc_real_3: 0.24860 (0.25060) | > loss_disc_real_4: 0.23060 (0.22389) | > loss_disc_real_5: 0.22941 (0.23210) | > loss_0: 2.33935 (2.33376) | > loss_gen: 2.46997 (2.46226) | > loss_kl: 2.64940 (2.69293) | > loss_feat: 8.62157 (8.49216) | > loss_mel: 17.18718 (17.61384) | > loss_duration: 1.75222 (1.70311) | > loss_1: 32.68034 (32.96430)  --> STEP: 63 | > loss_disc: 2.30225 (2.33326) | > loss_disc_real_0: 0.09369 (0.10292) | > loss_disc_real_1: 0.16539 (0.16695) | > loss_disc_real_2: 0.25320 (0.24927) | > loss_disc_real_3: 0.25851 (0.25072) | > loss_disc_real_4: 0.20684 (0.22362) | > loss_disc_real_5: 0.23142 (0.23209) | > loss_0: 2.30225 (2.33326) | > loss_gen: 2.47604 (2.46248) | > loss_kl: 2.76368 (2.69405) | > loss_feat: 8.97482 (8.49983) | > loss_mel: 17.56814 (17.61311) | > loss_duration: 1.68594 (1.70284) | > loss_1: 33.46863 (32.97231)  --> STEP: 64 | > loss_disc: 2.35737 (2.33364) | > loss_disc_real_0: 0.10231 (0.10291) | > loss_disc_real_1: 0.15958 (0.16683) | > loss_disc_real_2: 0.26546 (0.24953) | > loss_disc_real_3: 0.25468 (0.25079) | > loss_disc_real_4: 0.22906 (0.22371) | > loss_disc_real_5: 0.23517 (0.23214) | > loss_0: 2.35737 (2.33364) | > loss_gen: 2.47643 (2.46270) | > loss_kl: 2.63496 (2.69313) | > loss_feat: 8.51488 (8.50006) | > loss_mel: 17.29846 (17.60819) | > loss_duration: 1.67127 (1.70235) | > loss_1: 32.59601 (32.96642)  --> STEP: 65 | > loss_disc: 2.27057 (2.33267) | > loss_disc_real_0: 0.08773 (0.10268) | > loss_disc_real_1: 0.16680 (0.16683) | > loss_disc_real_2: 0.23996 (0.24938) | > loss_disc_real_3: 0.22761 (0.25043) | > loss_disc_real_4: 0.21393 (0.22356) | > loss_disc_real_5: 0.23278 (0.23215) | > loss_0: 2.27057 (2.33267) | > loss_gen: 2.49941 (2.46326) | > loss_kl: 2.72604 (2.69363) | > loss_feat: 8.97354 (8.50735) | > loss_mel: 18.29693 (17.61879) | > loss_duration: 1.69572 (1.70224) | > loss_1: 34.19165 (32.98527)  --> STEP: 66 | > loss_disc: 2.33842 (2.33275) | > loss_disc_real_0: 0.10667 (0.10274) | > loss_disc_real_1: 0.17309 (0.16693) | > loss_disc_real_2: 0.25470 (0.24946) | > loss_disc_real_3: 0.25676 (0.25053) | > loss_disc_real_4: 0.23874 (0.22379) | > loss_disc_real_5: 0.24407 (0.23233) | > loss_0: 2.33842 (2.33275) | > loss_gen: 2.51269 (2.46401) | > loss_kl: 2.64085 (2.69283) | > loss_feat: 8.53536 (8.50777) | > loss_mel: 17.71074 (17.62018) | > loss_duration: 1.75018 (1.70297) | > loss_1: 33.14982 (32.98777)  --> STEP: 67 | > loss_disc: 2.39511 (2.33368) | > loss_disc_real_0: 0.10052 (0.10270) | > loss_disc_real_1: 0.17771 (0.16709) | > loss_disc_real_2: 0.25677 (0.24957) | > loss_disc_real_3: 0.25094 (0.25053) | > loss_disc_real_4: 0.23723 (0.22399) | > loss_disc_real_5: 0.24885 (0.23257) | > loss_0: 2.39511 (2.33368) | > loss_gen: 2.39882 (2.46304) | > loss_kl: 2.78667 (2.69423) | > loss_feat: 7.96369 (8.49965) | > loss_mel: 16.99754 (17.61089) | > loss_duration: 1.68046 (1.70264) | > loss_1: 31.82718 (32.97044)  --> STEP: 68 | > loss_disc: 2.29856 (2.33317) | > loss_disc_real_0: 0.09309 (0.10256) | > loss_disc_real_1: 0.16442 (0.16705) | > loss_disc_real_2: 0.25728 (0.24968) | > loss_disc_real_3: 0.24757 (0.25049) | > loss_disc_real_4: 0.21667 (0.22388) | > loss_disc_real_5: 0.22256 (0.23243) | > loss_0: 2.29856 (2.33317) | > loss_gen: 2.50879 (2.46371) | > loss_kl: 2.64873 (2.69356) | > loss_feat: 8.87712 (8.50520) | > loss_mel: 18.04861 (17.61733) | > loss_duration: 1.70024 (1.70260) | > loss_1: 33.78350 (32.98240)  --> STEP: 69 | > loss_disc: 2.34908 (2.33340) | > loss_disc_real_0: 0.11133 (0.10269) | > loss_disc_real_1: 0.16089 (0.16696) | > loss_disc_real_2: 0.24935 (0.24968) | > loss_disc_real_3: 0.24783 (0.25045) | > loss_disc_real_4: 0.23534 (0.22404) | > loss_disc_real_5: 0.23332 (0.23244) | > loss_0: 2.34908 (2.33340) | > loss_gen: 2.45051 (2.46352) | > loss_kl: 2.79998 (2.69511) | > loss_feat: 8.48722 (8.50494) | > loss_mel: 18.11534 (17.62455) | > loss_duration: 1.74302 (1.70319) | > loss_1: 33.59607 (32.99129)  --> STEP: 70 | > loss_disc: 2.28620 (2.33272) | > loss_disc_real_0: 0.11953 (0.10293) | > loss_disc_real_1: 0.17385 (0.16706) | > loss_disc_real_2: 0.25225 (0.24971) | > loss_disc_real_3: 0.23830 (0.25028) | > loss_disc_real_4: 0.22905 (0.22412) | > loss_disc_real_5: 0.24131 (0.23257) | > loss_0: 2.28620 (2.33272) | > loss_gen: 2.59517 (2.46540) | > loss_kl: 2.76469 (2.69610) | > loss_feat: 9.21173 (8.51504) | > loss_mel: 17.94248 (17.62909) | > loss_duration: 1.68690 (1.70295) | > loss_1: 34.20097 (33.00858)  --> STEP: 71 | > loss_disc: 2.36963 (2.33324) | > loss_disc_real_0: 0.11450 (0.10309) | > loss_disc_real_1: 0.16956 (0.16709) | > loss_disc_real_2: 0.25676 (0.24981) | > loss_disc_real_3: 0.27424 (0.25061) | > loss_disc_real_4: 0.23247 (0.22423) | > loss_disc_real_5: 0.24001 (0.23267) | > loss_0: 2.36963 (2.33324) | > loss_gen: 2.48172 (2.46563) | > loss_kl: 2.64354 (2.69536) | > loss_feat: 8.71778 (8.51789) | > loss_mel: 17.18270 (17.62280) | > loss_duration: 1.71275 (1.70309) | > loss_1: 32.73848 (33.00477)  --> STEP: 72 | > loss_disc: 2.35778 (2.33358) | > loss_disc_real_0: 0.11177 (0.10321) | > loss_disc_real_1: 0.16835 (0.16711) | > loss_disc_real_2: 0.24922 (0.24981) | > loss_disc_real_3: 0.24773 (0.25057) | > loss_disc_real_4: 0.23700 (0.22441) | > loss_disc_real_5: 0.23523 (0.23271) | > loss_0: 2.35778 (2.33358) | > loss_gen: 2.45095 (2.46543) | > loss_kl: 2.73349 (2.69589) | > loss_feat: 8.68414 (8.52020) | > loss_mel: 17.34413 (17.61893) | > loss_duration: 1.65896 (1.70248) | > loss_1: 32.87166 (33.00292)  --> STEP: 73 | > loss_disc: 2.29133 (2.33301) | > loss_disc_real_0: 0.09236 (0.10306) | > loss_disc_real_1: 0.15912 (0.16700) | > loss_disc_real_2: 0.23756 (0.24964) | > loss_disc_real_3: 0.24419 (0.25049) | > loss_disc_real_4: 0.22437 (0.22441) | > loss_disc_real_5: 0.23213 (0.23270) | > loss_0: 2.29133 (2.33301) | > loss_gen: 2.47248 (2.46552) | > loss_kl: 2.71304 (2.69613) | > loss_feat: 8.81277 (8.52421) | > loss_mel: 17.85334 (17.62214) | > loss_duration: 1.71914 (1.70271) | > loss_1: 33.57077 (33.01070)  --> STEP: 74 | > loss_disc: 2.28160 (2.33231) | > loss_disc_real_0: 0.09653 (0.10298) | > loss_disc_real_1: 0.16573 (0.16699) | > loss_disc_real_2: 0.24553 (0.24958) | > loss_disc_real_3: 0.24171 (0.25037) | > loss_disc_real_4: 0.21983 (0.22435) | > loss_disc_real_5: 0.24062 (0.23281) | > loss_0: 2.28160 (2.33231) | > loss_gen: 2.54400 (2.46658) | > loss_kl: 2.84500 (2.69814) | > loss_feat: 9.15188 (8.53269) | > loss_mel: 18.04155 (17.62781) | > loss_duration: 1.65246 (1.70203) | > loss_1: 34.23490 (33.02724)  --> STEP: 75 | > loss_disc: 2.32337 (2.33219) | > loss_disc_real_0: 0.12520 (0.10327) | > loss_disc_real_1: 0.16535 (0.16696) | > loss_disc_real_2: 0.25311 (0.24963) | > loss_disc_real_3: 0.24622 (0.25031) | > loss_disc_real_4: 0.23613 (0.22451) | > loss_disc_real_5: 0.23728 (0.23287) | > loss_0: 2.32337 (2.33219) | > loss_gen: 2.55886 (2.46781) | > loss_kl: 2.69928 (2.69815) | > loss_feat: 8.79423 (8.53618) | > loss_mel: 17.63128 (17.62786) | > loss_duration: 1.71180 (1.70216) | > loss_1: 33.39545 (33.03215)  --> STEP: 76 | > loss_disc: 2.32113 (2.33205) | > loss_disc_real_0: 0.09762 (0.10320) | > loss_disc_real_1: 0.16384 (0.16692) | > loss_disc_real_2: 0.24749 (0.24960) | > loss_disc_real_3: 0.25325 (0.25035) | > loss_disc_real_4: 0.22801 (0.22455) | > loss_disc_real_5: 0.24452 (0.23302) | > loss_0: 2.32113 (2.33205) | > loss_gen: 2.50395 (2.46829) | > loss_kl: 2.72077 (2.69845) | > loss_feat: 8.41012 (8.53452) | > loss_mel: 17.25958 (17.62301) | > loss_duration: 1.71717 (1.70236) | > loss_1: 32.61157 (33.02662)  --> STEP: 77 | > loss_disc: 2.31228 (2.33179) | > loss_disc_real_0: 0.10659 (0.10324) | > loss_disc_real_1: 0.16312 (0.16687) | > loss_disc_real_2: 0.24233 (0.24951) | > loss_disc_real_3: 0.24561 (0.25029) | > loss_disc_real_4: 0.20615 (0.22431) | > loss_disc_real_5: 0.22884 (0.23296) | > loss_0: 2.31228 (2.33179) | > loss_gen: 2.48450 (2.46850) | > loss_kl: 2.83036 (2.70016) | > loss_feat: 8.52819 (8.53444) | > loss_mel: 17.88922 (17.62646) | > loss_duration: 1.65444 (1.70173) | > loss_1: 33.38671 (33.03130)  --> STEP: 78 | > loss_disc: 2.35758 (2.33212) | > loss_disc_real_0: 0.11009 (0.10333) | > loss_disc_real_1: 0.17328 (0.16696) | > loss_disc_real_2: 0.23942 (0.24938) | > loss_disc_real_3: 0.24687 (0.25025) | > loss_disc_real_4: 0.21908 (0.22425) | > loss_disc_real_5: 0.21705 (0.23276) | > loss_0: 2.35758 (2.33212) | > loss_gen: 2.40123 (2.46764) | > loss_kl: 2.73082 (2.70056) | > loss_feat: 7.90881 (8.52642) | > loss_mel: 17.53567 (17.62530) | > loss_duration: 1.69817 (1.70169) | > loss_1: 32.27470 (33.02160)  --> STEP: 79 | > loss_disc: 2.32462 (2.33203) | > loss_disc_real_0: 0.11083 (0.10342) | > loss_disc_real_1: 0.16013 (0.16687) | > loss_disc_real_2: 0.24662 (0.24934) | > loss_disc_real_3: 0.24091 (0.25013) | > loss_disc_real_4: 0.21641 (0.22415) | > loss_disc_real_5: 0.22642 (0.23268) | > loss_0: 2.32462 (2.33203) | > loss_gen: 2.44456 (2.46735) | > loss_kl: 2.71705 (2.70077) | > loss_feat: 9.07903 (8.53341) | > loss_mel: 17.99245 (17.62995) | > loss_duration: 1.67690 (1.70137) | > loss_1: 33.91000 (33.03284)  --> STEP: 80 | > loss_disc: 2.35104 (2.33226) | > loss_disc_real_0: 0.11721 (0.10360) | > loss_disc_real_1: 0.17574 (0.16698) | > loss_disc_real_2: 0.26250 (0.24951) | > loss_disc_real_3: 0.24702 (0.25009) | > loss_disc_real_4: 0.21505 (0.22403) | > loss_disc_real_5: 0.20484 (0.23233) | > loss_0: 2.35104 (2.33226) | > loss_gen: 2.39407 (2.46643) | > loss_kl: 2.59769 (2.69948) | > loss_feat: 8.01398 (8.52692) | > loss_mel: 17.04607 (17.62265) | > loss_duration: 1.71139 (1.70150) | > loss_1: 31.76320 (33.01698)  --> STEP: 81 | > loss_disc: 2.31740 (2.33208) | > loss_disc_real_0: 0.09792 (0.10353) | > loss_disc_real_1: 0.15449 (0.16683) | > loss_disc_real_2: 0.25394 (0.24956) | > loss_disc_real_3: 0.23678 (0.24992) | > loss_disc_real_4: 0.22516 (0.22405) | > loss_disc_real_5: 0.23013 (0.23231) | > loss_0: 2.31740 (2.33208) | > loss_gen: 2.44241 (2.46613) | > loss_kl: 2.72549 (2.69980) | > loss_feat: 8.30823 (8.52422) | > loss_mel: 17.02037 (17.61522) | > loss_duration: 1.71138 (1.70162) | > loss_1: 32.20788 (33.00698)  --> STEP: 82 | > loss_disc: 2.27255 (2.33135) | > loss_disc_real_0: 0.09707 (0.10345) | > loss_disc_real_1: 0.16392 (0.16679) | > loss_disc_real_2: 0.23548 (0.24939) | > loss_disc_real_3: 0.22827 (0.24966) | > loss_disc_real_4: 0.21461 (0.22393) | > loss_disc_real_5: 0.21622 (0.23211) | > loss_0: 2.27255 (2.33135) | > loss_gen: 2.43638 (2.46577) | > loss_kl: 2.74649 (2.70037) | > loss_feat: 8.56861 (8.52476) | > loss_mel: 18.05624 (17.62059) | > loss_duration: 1.71234 (1.70175) | > loss_1: 33.52006 (33.01324)  --> STEP: 83 | > loss_disc: 2.35951 (2.33169) | > loss_disc_real_0: 0.11727 (0.10361) | > loss_disc_real_1: 0.16241 (0.16674) | > loss_disc_real_2: 0.25705 (0.24948) | > loss_disc_real_3: 0.26650 (0.24986) | > loss_disc_real_4: 0.22399 (0.22393) | > loss_disc_real_5: 0.24355 (0.23225) | > loss_0: 2.35951 (2.33169) | > loss_gen: 2.51175 (2.46633) | > loss_kl: 2.84209 (2.70207) | > loss_feat: 8.70927 (8.52699) | > loss_mel: 17.46932 (17.61877) | > loss_duration: 1.70462 (1.70179) | > loss_1: 33.23705 (33.01593)  --> STEP: 84 | > loss_disc: 2.34181 (2.33181) | > loss_disc_real_0: 0.09226 (0.10348) | > loss_disc_real_1: 0.18448 (0.16695) | > loss_disc_real_2: 0.25605 (0.24956) | > loss_disc_real_3: 0.25942 (0.24998) | > loss_disc_real_4: 0.23613 (0.22408) | > loss_disc_real_5: 0.23553 (0.23229) | > loss_0: 2.34181 (2.33181) | > loss_gen: 2.46181 (2.46627) | > loss_kl: 2.60500 (2.70092) | > loss_feat: 8.16828 (8.52271) | > loss_mel: 17.00555 (17.61147) | > loss_duration: 1.73012 (1.70212) | > loss_1: 31.97077 (33.00349)  --> STEP: 85 | > loss_disc: 2.35413 (2.33208) | > loss_disc_real_0: 0.10983 (0.10355) | > loss_disc_real_1: 0.15811 (0.16684) | > loss_disc_real_2: 0.24679 (0.24953) | > loss_disc_real_3: 0.25898 (0.25008) | > loss_disc_real_4: 0.22166 (0.22405) | > loss_disc_real_5: 0.23684 (0.23234) | > loss_0: 2.35413 (2.33208) | > loss_gen: 2.48018 (2.46643) | > loss_kl: 2.84289 (2.70259) | > loss_feat: 9.09555 (8.52945) | > loss_mel: 18.62700 (17.62341) | > loss_duration: 1.67472 (1.70180) | > loss_1: 34.72034 (33.02369)  --> STEP: 86 | > loss_disc: 2.38774 (2.33272) | > loss_disc_real_0: 0.10535 (0.10358) | > loss_disc_real_1: 0.17071 (0.16689) | > loss_disc_real_2: 0.25557 (0.24960) | > loss_disc_real_3: 0.26586 (0.25027) | > loss_disc_real_4: 0.23614 (0.22419) | > loss_disc_real_5: 0.24472 (0.23248) | > loss_0: 2.38774 (2.33272) | > loss_gen: 2.44477 (2.46618) | > loss_kl: 2.65078 (2.70199) | > loss_feat: 8.01704 (8.52349) | > loss_mel: 17.06265 (17.61689) | > loss_duration: 1.66725 (1.70140) | > loss_1: 31.84250 (33.00996)  --> STEP: 87 | > loss_disc: 2.29096 (2.33224) | > loss_disc_real_0: 0.09918 (0.10352) | > loss_disc_real_1: 0.15924 (0.16680) | > loss_disc_real_2: 0.25167 (0.24962) | > loss_disc_real_3: 0.23638 (0.25011) | > loss_disc_real_4: 0.21906 (0.22413) | > loss_disc_real_5: 0.24900 (0.23267) | > loss_0: 2.29096 (2.33224) | > loss_gen: 2.50781 (2.46666) | > loss_kl: 2.58707 (2.70067) | > loss_feat: 9.13925 (8.53057) | > loss_mel: 17.38218 (17.61420) | > loss_duration: 1.69456 (1.70132) | > loss_1: 33.31088 (33.01341)  --> STEP: 88 | > loss_disc: 2.34672 (2.33241) | > loss_disc_real_0: 0.10401 (0.10353) | > loss_disc_real_1: 0.16774 (0.16681) | > loss_disc_real_2: 0.25867 (0.24972) | > loss_disc_real_3: 0.23316 (0.24991) | > loss_disc_real_4: 0.22320 (0.22412) | > loss_disc_real_5: 0.23922 (0.23275) | > loss_0: 2.34672 (2.33241) | > loss_gen: 2.45996 (2.46659) | > loss_kl: 2.57654 (2.69926) | > loss_feat: 8.40876 (8.52919) | > loss_mel: 17.34760 (17.61117) | > loss_duration: 1.70147 (1.70132) | > loss_1: 32.49434 (33.00751)  --> STEP: 89 | > loss_disc: 2.31601 (2.33222) | > loss_disc_real_0: 0.09996 (0.10349) | > loss_disc_real_1: 0.16533 (0.16680) | > loss_disc_real_2: 0.24790 (0.24970) | > loss_disc_real_3: 0.24229 (0.24983) | > loss_disc_real_4: 0.21878 (0.22406) | > loss_disc_real_5: 0.23819 (0.23281) | > loss_0: 2.31601 (2.33222) | > loss_gen: 2.46330 (2.46655) | > loss_kl: 2.67016 (2.69893) | > loss_feat: 8.34535 (8.52712) | > loss_mel: 17.55675 (17.61056) | > loss_duration: 1.68629 (1.70115) | > loss_1: 32.72185 (33.00431)  --> STEP: 90 | > loss_disc: 2.30901 (2.33196) | > loss_disc_real_0: 0.10842 (0.10354) | > loss_disc_real_1: 0.15782 (0.16670) | > loss_disc_real_2: 0.24632 (0.24967) | > loss_disc_real_3: 0.24198 (0.24974) | > loss_disc_real_4: 0.23416 (0.22417) | > loss_disc_real_5: 0.21831 (0.23265) | > loss_0: 2.30901 (2.33196) | > loss_gen: 2.47965 (2.46669) | > loss_kl: 2.71908 (2.69915) | > loss_feat: 8.85293 (8.53074) | > loss_mel: 17.86047 (17.61333) | > loss_duration: 1.71025 (1.70125) | > loss_1: 33.62239 (33.01117)  --> STEP: 91 | > loss_disc: 2.39675 (2.33268) | > loss_disc_real_0: 0.10049 (0.10351) | > loss_disc_real_1: 0.16721 (0.16670) | > loss_disc_real_2: 0.25078 (0.24968) | > loss_disc_real_3: 0.26008 (0.24985) | > loss_disc_real_4: 0.23819 (0.22433) | > loss_disc_real_5: 0.24457 (0.23278) | > loss_0: 2.39675 (2.33268) | > loss_gen: 2.42896 (2.46628) | > loss_kl: 2.72195 (2.69940) | > loss_feat: 8.28742 (8.52807) | > loss_mel: 17.39337 (17.61092) | > loss_duration: 1.67757 (1.70099) | > loss_1: 32.50927 (33.00566)  --> STEP: 92 | > loss_disc: 2.31707 (2.33251) | > loss_disc_real_0: 0.09660 (0.10344) | > loss_disc_real_1: 0.17103 (0.16675) | > loss_disc_real_2: 0.25481 (0.24973) | > loss_disc_real_3: 0.24106 (0.24976) | > loss_disc_real_4: 0.22009 (0.22428) | > loss_disc_real_5: 0.22259 (0.23267) | > loss_0: 2.31707 (2.33251) | > loss_gen: 2.48060 (2.46644) | > loss_kl: 2.62705 (2.69862) | > loss_feat: 8.68836 (8.52981) | > loss_mel: 17.57709 (17.61055) | > loss_duration: 1.73588 (1.70137) | > loss_1: 33.10899 (33.00678)  --> STEP: 93 | > loss_disc: 2.29916 (2.33215) | > loss_disc_real_0: 0.09971 (0.10340) | > loss_disc_real_1: 0.16460 (0.16673) | > loss_disc_real_2: 0.24273 (0.24966) | > loss_disc_real_3: 0.25017 (0.24976) | > loss_disc_real_4: 0.23392 (0.22438) | > loss_disc_real_5: 0.23229 (0.23266) | > loss_0: 2.29916 (2.33215) | > loss_gen: 2.57480 (2.46760) | > loss_kl: 2.72713 (2.69892) | > loss_feat: 8.99733 (8.53484) | > loss_mel: 17.73627 (17.61190) | > loss_duration: 1.70390 (1.70140) | > loss_1: 33.73944 (33.01466)  --> STEP: 94 | > loss_disc: 2.34593 (2.33229) | > loss_disc_real_0: 0.10538 (0.10342) | > loss_disc_real_1: 0.17538 (0.16682) | > loss_disc_real_2: 0.25087 (0.24967) | > loss_disc_real_3: 0.24010 (0.24966) | > loss_disc_real_4: 0.23464 (0.22449) | > loss_disc_real_5: 0.22724 (0.23261) | > loss_0: 2.34593 (2.33229) | > loss_gen: 2.43539 (2.46726) | > loss_kl: 2.71326 (2.69908) | > loss_feat: 8.05691 (8.52975) | > loss_mel: 17.62308 (17.61202) | > loss_duration: 1.72786 (1.70168) | > loss_1: 32.55650 (33.00978)  --> STEP: 95 | > loss_disc: 2.34179 (2.33239) | > loss_disc_real_0: 0.11111 (0.10350) | > loss_disc_real_1: 0.16137 (0.16676) | > loss_disc_real_2: 0.24647 (0.24964) | > loss_disc_real_3: 0.25909 (0.24976) | > loss_disc_real_4: 0.23203 (0.22457) | > loss_disc_real_5: 0.24290 (0.23271) | > loss_0: 2.34179 (2.33239) | > loss_gen: 2.49573 (2.46756) | > loss_kl: 2.66966 (2.69877) | > loss_feat: 8.61204 (8.53062) | > loss_mel: 18.04246 (17.61655) | > loss_duration: 1.66780 (1.70133) | > loss_1: 33.48769 (33.01481)  --> STEP: 96 | > loss_disc: 2.28099 (2.33186) | > loss_disc_real_0: 0.10613 (0.10353) | > loss_disc_real_1: 0.16666 (0.16676) | > loss_disc_real_2: 0.25302 (0.24967) | > loss_disc_real_3: 0.25101 (0.24977) | > loss_disc_real_4: 0.23507 (0.22468) | > loss_disc_real_5: 0.22479 (0.23263) | > loss_0: 2.28099 (2.33186) | > loss_gen: 2.53484 (2.46826) | > loss_kl: 2.73279 (2.69912) | > loss_feat: 8.09409 (8.52607) | > loss_mel: 17.99488 (17.62049) | > loss_duration: 1.71063 (1.70142) | > loss_1: 33.06723 (33.01536)  --> STEP: 97 | > loss_disc: 2.30985 (2.33163) | > loss_disc_real_0: 0.09809 (0.10347) | > loss_disc_real_1: 0.17062 (0.16680) | > loss_disc_real_2: 0.25128 (0.24969) | > loss_disc_real_3: 0.24367 (0.24971) | > loss_disc_real_4: 0.22331 (0.22467) | > loss_disc_real_5: 0.23311 (0.23264) | > loss_0: 2.30985 (2.33163) | > loss_gen: 2.46613 (2.46824) | > loss_kl: 2.62056 (2.69831) | > loss_feat: 8.04164 (8.52108) | > loss_mel: 17.25417 (17.61671) | > loss_duration: 1.73552 (1.70177) | > loss_1: 32.11802 (33.00610)  --> STEP: 98 | > loss_disc: 2.30501 (2.33136) | > loss_disc_real_0: 0.08810 (0.10331) | > loss_disc_real_1: 0.15954 (0.16673) | > loss_disc_real_2: 0.24219 (0.24961) | > loss_disc_real_3: 0.23432 (0.24955) | > loss_disc_real_4: 0.21529 (0.22457) | > loss_disc_real_5: 0.23558 (0.23267) | > loss_0: 2.30501 (2.33136) | > loss_gen: 2.45060 (2.46806) | > loss_kl: 2.62722 (2.69759) | > loss_feat: 8.77725 (8.52369) | > loss_mel: 17.87719 (17.61937) | > loss_duration: 1.75045 (1.70227) | > loss_1: 33.48270 (33.01097)  --> STEP: 99 | > loss_disc: 2.33837 (2.33143) | > loss_disc_real_0: 0.09677 (0.10325) | > loss_disc_real_1: 0.17199 (0.16678) | > loss_disc_real_2: 0.25615 (0.24968) | > loss_disc_real_3: 0.24971 (0.24955) | > loss_disc_real_4: 0.23014 (0.22463) | > loss_disc_real_5: 0.24970 (0.23284) | > loss_0: 2.33837 (2.33143) | > loss_gen: 2.48953 (2.46827) | > loss_kl: 2.64869 (2.69709) | > loss_feat: 8.43414 (8.52279) | > loss_mel: 17.29235 (17.61607) | > loss_duration: 1.73128 (1.70256) | > loss_1: 32.59599 (33.00677)  --> STEP: 100 | > loss_disc: 2.29905 (2.33111) | > loss_disc_real_0: 0.09780 (0.10319) | > loss_disc_real_1: 0.16270 (0.16674) | > loss_disc_real_2: 0.25370 (0.24972) | > loss_disc_real_3: 0.25715 (0.24963) | > loss_disc_real_4: 0.23851 (0.22477) | > loss_disc_real_5: 0.22166 (0.23273) | > loss_0: 2.29905 (2.33111) | > loss_gen: 2.54411 (2.46903) | > loss_kl: 2.58336 (2.69595) | > loss_feat: 8.97978 (8.52736) | > loss_mel: 17.78217 (17.61773) | > loss_duration: 1.72300 (1.70277) | > loss_1: 33.61242 (33.01283)  --> STEP: 101 | > loss_disc: 2.26507 (2.33045) | > loss_disc_real_0: 0.09017 (0.10306) | > loss_disc_real_1: 0.17143 (0.16678) | > loss_disc_real_2: 0.25115 (0.24973) | > loss_disc_real_3: 0.23540 (0.24949) | > loss_disc_real_4: 0.21462 (0.22467) | > loss_disc_real_5: 0.21658 (0.23257) | > loss_0: 2.26507 (2.33045) | > loss_gen: 2.50315 (2.46937) | > loss_kl: 2.78654 (2.69685) | > loss_feat: 8.40480 (8.52614) | > loss_mel: 17.50130 (17.61658) | > loss_duration: 1.70464 (1.70279) | > loss_1: 32.90042 (33.01171)  --> STEP: 102 | > loss_disc: 2.40026 (2.33114) | > loss_disc_real_0: 0.10274 (0.10306) | > loss_disc_real_1: 0.16381 (0.16675) | > loss_disc_real_2: 0.24200 (0.24966) | > loss_disc_real_3: 0.23693 (0.24937) | > loss_disc_real_4: 0.23100 (0.22473) | > loss_disc_real_5: 0.22957 (0.23254) | > loss_0: 2.40026 (2.33114) | > loss_gen: 2.32238 (2.46793) | > loss_kl: 2.63426 (2.69624) | > loss_feat: 8.55144 (8.52639) | > loss_mel: 17.69453 (17.61734) | > loss_duration: 1.73618 (1.70311) | > loss_1: 32.93879 (33.01100)  --> STEP: 103 | > loss_disc: 2.31130 (2.33095) | > loss_disc_real_0: 0.09933 (0.10302) | > loss_disc_real_1: 0.16944 (0.16678) | > loss_disc_real_2: 0.24032 (0.24957) | > loss_disc_real_3: 0.25257 (0.24940) | > loss_disc_real_4: 0.20888 (0.22457) | > loss_disc_real_5: 0.22431 (0.23246) | > loss_0: 2.31130 (2.33095) | > loss_gen: 2.48906 (2.46813) | > loss_kl: 2.73922 (2.69665) | > loss_feat: 9.12854 (8.53224) | > loss_mel: 17.93751 (17.62045) | > loss_duration: 1.67634 (1.70285) | > loss_1: 33.97068 (33.02032)  --> STEP: 104 | > loss_disc: 2.34266 (2.33106) | > loss_disc_real_0: 0.10463 (0.10304) | > loss_disc_real_1: 0.18100 (0.16692) | > loss_disc_real_2: 0.25759 (0.24964) | > loss_disc_real_3: 0.25340 (0.24944) | > loss_disc_real_4: 0.22138 (0.22454) | > loss_disc_real_5: 0.22555 (0.23239) | > loss_0: 2.34266 (2.33106) | > loss_gen: 2.47610 (2.46821) | > loss_kl: 2.64239 (2.69613) | > loss_feat: 8.17100 (8.52876) | > loss_mel: 17.24627 (17.61685) | > loss_duration: 1.67314 (1.70257) | > loss_1: 32.20890 (33.01252)  --> STEP: 105 | > loss_disc: 2.37257 (2.33145) | > loss_disc_real_0: 0.11891 (0.10319) | > loss_disc_real_1: 0.16857 (0.16693) | > loss_disc_real_2: 0.26405 (0.24978) | > loss_disc_real_3: 0.24421 (0.24939) | > loss_disc_real_4: 0.22133 (0.22451) | > loss_disc_real_5: 0.24001 (0.23246) | > loss_0: 2.37257 (2.33145) | > loss_gen: 2.41085 (2.46766) | > loss_kl: 2.61548 (2.69536) | > loss_feat: 8.06977 (8.52439) | > loss_mel: 16.72917 (17.60840) | > loss_duration: 1.68524 (1.70240) | > loss_1: 31.51051 (32.99821)  --> STEP: 106 | > loss_disc: 2.30729 (2.33123) | > loss_disc_real_0: 0.10852 (0.10324) | > loss_disc_real_1: 0.17006 (0.16696) | > loss_disc_real_2: 0.25228 (0.24981) | > loss_disc_real_3: 0.23990 (0.24930) | > loss_disc_real_4: 0.22445 (0.22451) | > loss_disc_real_5: 0.21624 (0.23231) | > loss_0: 2.30729 (2.33123) | > loss_gen: 2.47066 (2.46769) | > loss_kl: 2.63981 (2.69484) | > loss_feat: 8.55176 (8.52465) | > loss_mel: 17.87151 (17.61088) | > loss_duration: 1.66950 (1.70209) | > loss_1: 33.20325 (33.00015)  --> STEP: 107 | > loss_disc: 2.37472 (2.33163) | > loss_disc_real_0: 0.12064 (0.10340) | > loss_disc_real_1: 0.16200 (0.16692) | > loss_disc_real_2: 0.24914 (0.24980) | > loss_disc_real_3: 0.25429 (0.24934) | > loss_disc_real_4: 0.22673 (0.22453) | > loss_disc_real_5: 0.24520 (0.23243) | > loss_0: 2.37472 (2.33163) | > loss_gen: 2.49627 (2.46796) | > loss_kl: 2.76638 (2.69551) | > loss_feat: 8.43511 (8.52381) | > loss_mel: 17.86666 (17.61327) | > loss_duration: 1.70031 (1.70208) | > loss_1: 33.26473 (33.00262)  --> STEP: 108 | > loss_disc: 2.31145 (2.33145) | > loss_disc_real_0: 0.09525 (0.10333) | > loss_disc_real_1: 0.16853 (0.16693) | > loss_disc_real_2: 0.25658 (0.24986) | > loss_disc_real_3: 0.24581 (0.24931) | > loss_disc_real_4: 0.20788 (0.22438) | > loss_disc_real_5: 0.21308 (0.23225) | > loss_0: 2.31145 (2.33145) | > loss_gen: 2.43649 (2.46767) | > loss_kl: 2.74091 (2.69593) | > loss_feat: 8.40095 (8.52268) | > loss_mel: 18.12735 (17.61803) | > loss_duration: 1.70180 (1.70207) | > loss_1: 33.40750 (33.00637)  --> STEP: 109 | > loss_disc: 2.27097 (2.33089) | > loss_disc_real_0: 0.08552 (0.10316) | > loss_disc_real_1: 0.16782 (0.16694) | > loss_disc_real_2: 0.23569 (0.24973) | > loss_disc_real_3: 0.24832 (0.24930) | > loss_disc_real_4: 0.21476 (0.22429) | > loss_disc_real_5: 0.20873 (0.23204) | > loss_0: 2.27097 (2.33089) | > loss_gen: 2.46508 (2.46764) | > loss_kl: 2.76592 (2.69657) | > loss_feat: 8.73845 (8.52466) | > loss_mel: 18.26516 (17.62397) | > loss_duration: 1.70706 (1.70212) | > loss_1: 33.94168 (33.01495)  --> STEP: 110 | > loss_disc: 2.40962 (2.33161) | > loss_disc_real_0: 0.11739 (0.10329) | > loss_disc_real_1: 0.16183 (0.16689) | > loss_disc_real_2: 0.25360 (0.24977) | > loss_disc_real_3: 0.26020 (0.24940) | > loss_disc_real_4: 0.22723 (0.22432) | > loss_disc_real_5: 0.24675 (0.23217) | > loss_0: 2.40962 (2.33161) | > loss_gen: 2.43876 (2.46738) | > loss_kl: 2.74808 (2.69704) | > loss_feat: 8.37107 (8.52326) | > loss_mel: 17.33212 (17.62132) | > loss_duration: 1.71535 (1.70224) | > loss_1: 32.60537 (33.01123)  --> STEP: 111 | > loss_disc: 2.37478 (2.33200) | > loss_disc_real_0: 0.10954 (0.10335) | > loss_disc_real_1: 0.16798 (0.16690) | > loss_disc_real_2: 0.24647 (0.24974) | > loss_disc_real_3: 0.25863 (0.24948) | > loss_disc_real_4: 0.23562 (0.22442) | > loss_disc_real_5: 0.24203 (0.23226) | > loss_0: 2.37478 (2.33200) | > loss_gen: 2.45121 (2.46724) | > loss_kl: 2.69784 (2.69705) | > loss_feat: 8.34482 (8.52165) | > loss_mel: 17.72311 (17.62223) | > loss_duration: 1.69432 (1.70217) | > loss_1: 32.91130 (33.01033)  --> STEP: 112 | > loss_disc: 2.27565 (2.33149) | > loss_disc_real_0: 0.11089 (0.10342) | > loss_disc_real_1: 0.15590 (0.16680) | > loss_disc_real_2: 0.23705 (0.24962) | > loss_disc_real_3: 0.26708 (0.24964) | > loss_disc_real_4: 0.21876 (0.22437) | > loss_disc_real_5: 0.24632 (0.23239) | > loss_0: 2.27565 (2.33149) | > loss_gen: 2.61180 (2.46853) | > loss_kl: 2.65817 (2.69670) | > loss_feat: 8.77970 (8.52396) | > loss_mel: 17.96220 (17.62527) | > loss_duration: 1.72505 (1.70237) | > loss_1: 33.73691 (33.01682)  --> STEP: 113 | > loss_disc: 2.38275 (2.33195) | > loss_disc_real_0: 0.10625 (0.10344) | > loss_disc_real_1: 0.16854 (0.16682) | > loss_disc_real_2: 0.25696 (0.24969) | > loss_disc_real_3: 0.26502 (0.24978) | > loss_disc_real_4: 0.23361 (0.22445) | > loss_disc_real_5: 0.25139 (0.23255) | > loss_0: 2.38275 (2.33195) | > loss_gen: 2.44474 (2.46832) | > loss_kl: 2.54752 (2.69538) | > loss_feat: 8.13584 (8.52052) | > loss_mel: 17.02526 (17.61996) | > loss_duration: 1.69730 (1.70233) | > loss_1: 31.85065 (33.00649)  --> STEP: 114 | > loss_disc: 2.38922 (2.33245) | > loss_disc_real_0: 0.12136 (0.10360) | > loss_disc_real_1: 0.16767 (0.16683) | > loss_disc_real_2: 0.24058 (0.24961) | > loss_disc_real_3: 0.25633 (0.24983) | > loss_disc_real_4: 0.22192 (0.22443) | > loss_disc_real_5: 0.23764 (0.23260) | > loss_0: 2.38922 (2.33245) | > loss_gen: 2.38613 (2.46760) | > loss_kl: 2.87546 (2.69696) | > loss_feat: 8.30015 (8.51859) | > loss_mel: 17.82183 (17.62173) | > loss_duration: 1.71233 (1.70242) | > loss_1: 33.09589 (33.00728)  --> STEP: 115 | > loss_disc: 2.34937 (2.33260) | > loss_disc_real_0: 0.11866 (0.10373) | > loss_disc_real_1: 0.17122 (0.16687) | > loss_disc_real_2: 0.23787 (0.24951) | > loss_disc_real_3: 0.26229 (0.24994) | > loss_disc_real_4: 0.21632 (0.22436) | > loss_disc_real_5: 0.22200 (0.23251) | > loss_0: 2.34937 (2.33260) | > loss_gen: 2.43674 (2.46733) | > loss_kl: 2.75802 (2.69749) | > loss_feat: 8.72039 (8.52034) | > loss_mel: 17.88568 (17.62402) | > loss_duration: 1.67321 (1.70216) | > loss_1: 33.47404 (33.01134)  --> STEP: 116 | > loss_disc: 2.35238 (2.33277) | > loss_disc_real_0: 0.09537 (0.10366) | > loss_disc_real_1: 0.15113 (0.16673) | > loss_disc_real_2: 0.24781 (0.24949) | > loss_disc_real_3: 0.25183 (0.24996) | > loss_disc_real_4: 0.22851 (0.22439) | > loss_disc_real_5: 0.23003 (0.23248) | > loss_0: 2.35238 (2.33277) | > loss_gen: 2.41382 (2.46687) | > loss_kl: 2.54346 (2.69616) | > loss_feat: 8.91291 (8.52373) | > loss_mel: 18.03619 (17.62757) | > loss_duration: 1.68904 (1.70205) | > loss_1: 33.59542 (33.01637)  --> STEP: 117 | > loss_disc: 2.29158 (2.33241) | > loss_disc_real_0: 0.09584 (0.10359) | > loss_disc_real_1: 0.16478 (0.16671) | > loss_disc_real_2: 0.23696 (0.24939) | > loss_disc_real_3: 0.24063 (0.24988) | > loss_disc_real_4: 0.22054 (0.22436) | > loss_disc_real_5: 0.22998 (0.23246) | > loss_0: 2.29158 (2.33241) | > loss_gen: 2.52514 (2.46736) | > loss_kl: 2.71491 (2.69632) | > loss_feat: 8.84709 (8.52649) | > loss_mel: 18.36295 (17.63386) | > loss_duration: 1.69667 (1.70200) | > loss_1: 34.14676 (33.02604)  --> STEP: 118 | > loss_disc: 2.31224 (2.33224) | > loss_disc_real_0: 0.09736 (0.10354) | > loss_disc_real_1: 0.16353 (0.16669) | > loss_disc_real_2: 0.23720 (0.24928) | > loss_disc_real_3: 0.23919 (0.24979) | > loss_disc_real_4: 0.20770 (0.22422) | > loss_disc_real_5: 0.20963 (0.23227) | > loss_0: 2.31224 (2.33224) | > loss_gen: 2.38249 (2.46664) | > loss_kl: 2.60266 (2.69553) | > loss_feat: 8.74645 (8.52836) | > loss_mel: 17.25608 (17.63066) | > loss_duration: 1.72240 (1.70218) | > loss_1: 32.71008 (33.02336)  --> STEP: 119 | > loss_disc: 2.31795 (2.33212) | > loss_disc_real_0: 0.12305 (0.10370) | > loss_disc_real_1: 0.16965 (0.16671) | > loss_disc_real_2: 0.24792 (0.24927) | > loss_disc_real_3: 0.23979 (0.24970) | > loss_disc_real_4: 0.22532 (0.22423) | > loss_disc_real_5: 0.22595 (0.23222) | > loss_0: 2.31795 (2.33212) | > loss_gen: 2.48982 (2.46684) | > loss_kl: 2.69620 (2.69554) | > loss_feat: 9.13265 (8.53344) | > loss_mel: 17.57603 (17.63020) | > loss_duration: 1.74227 (1.70251) | > loss_1: 33.63696 (33.02851)  --> STEP: 120 | > loss_disc: 2.33985 (2.33219) | > loss_disc_real_0: 0.08966 (0.10359) | > loss_disc_real_1: 0.15859 (0.16664) | > loss_disc_real_2: 0.23561 (0.24916) | > loss_disc_real_3: 0.23613 (0.24959) | > loss_disc_real_4: 0.21000 (0.22411) | > loss_disc_real_5: 0.23485 (0.23224) | > loss_0: 2.33985 (2.33219) | > loss_gen: 2.44653 (2.46667) | > loss_kl: 2.60393 (2.69477) | > loss_feat: 8.86146 (8.53617) | > loss_mel: 18.17275 (17.63472) | > loss_duration: 1.71855 (1.70265) | > loss_1: 33.80322 (33.03497)  --> STEP: 121 | > loss_disc: 2.34865 (2.33232) | > loss_disc_real_0: 0.10595 (0.10361) | > loss_disc_real_1: 0.16888 (0.16666) | > loss_disc_real_2: 0.24761 (0.24914) | > loss_disc_real_3: 0.23403 (0.24946) | > loss_disc_real_4: 0.21679 (0.22405) | > loss_disc_real_5: 0.24067 (0.23231) | > loss_0: 2.34865 (2.33232) | > loss_gen: 2.41064 (2.46621) | > loss_kl: 2.57339 (2.69377) | > loss_feat: 8.02941 (8.53198) | > loss_mel: 17.49566 (17.63357) | > loss_duration: 1.65645 (1.70226) | > loss_1: 32.16554 (33.02779)  --> STEP: 122 | > loss_disc: 2.36065 (2.33256) | > loss_disc_real_0: 0.09582 (0.10354) | > loss_disc_real_1: 0.16652 (0.16666) | > loss_disc_real_2: 0.26002 (0.24923) | > loss_disc_real_3: 0.26300 (0.24957) | > loss_disc_real_4: 0.24349 (0.22421) | > loss_disc_real_5: 0.25962 (0.23253) | > loss_0: 2.36065 (2.33256) | > loss_gen: 2.51196 (2.46658) | > loss_kl: 2.75967 (2.69431) | > loss_feat: 8.51415 (8.53184) | > loss_mel: 17.43362 (17.63193) | > loss_duration: 1.71427 (1.70236) | > loss_1: 32.93367 (33.02701)  --> STEP: 123 | > loss_disc: 2.32116 (2.33246) | > loss_disc_real_0: 0.08472 (0.10339) | > loss_disc_real_1: 0.16043 (0.16661) | > loss_disc_real_2: 0.24552 (0.24920) | > loss_disc_real_3: 0.24088 (0.24950) | > loss_disc_real_4: 0.22221 (0.22419) | > loss_disc_real_5: 0.23368 (0.23254) | > loss_0: 2.32116 (2.33246) | > loss_gen: 2.38902 (2.46595) | > loss_kl: 2.69624 (2.69432) | > loss_feat: 8.62264 (8.53257) | > loss_mel: 17.79273 (17.63323) | > loss_duration: 1.64209 (1.70187) | > loss_1: 33.14272 (33.02795)  --> STEP: 124 | > loss_disc: 2.33615 (2.33249) | > loss_disc_real_0: 0.11879 (0.10351) | > loss_disc_real_1: 0.17189 (0.16665) | > loss_disc_real_2: 0.24279 (0.24915) | > loss_disc_real_3: 0.24877 (0.24950) | > loss_disc_real_4: 0.23376 (0.22427) | > loss_disc_real_5: 0.24563 (0.23265) | > loss_0: 2.33615 (2.33249) | > loss_gen: 2.54046 (2.46655) | > loss_kl: 2.77712 (2.69499) | > loss_feat: 8.90507 (8.53558) | > loss_mel: 17.56238 (17.63266) | > loss_duration: 1.69679 (1.70183) | > loss_1: 33.48182 (33.03161)  --> STEP: 125 | > loss_disc: 2.41719 (2.33317) | > loss_disc_real_0: 0.11535 (0.10361) | > loss_disc_real_1: 0.16481 (0.16664) | > loss_disc_real_2: 0.25289 (0.24918) | > loss_disc_real_3: 0.26300 (0.24961) | > loss_disc_real_4: 0.23854 (0.22438) | > loss_disc_real_5: 0.25263 (0.23281) | > loss_0: 2.41719 (2.33317) | > loss_gen: 2.40747 (2.46608) | > loss_kl: 2.72817 (2.69526) | > loss_feat: 7.76930 (8.52945) | > loss_mel: 17.28050 (17.62984) | > loss_duration: 1.73479 (1.70210) | > loss_1: 31.92024 (33.02272)  --> STEP: 126 | > loss_disc: 2.33569 (2.33319) | > loss_disc_real_0: 0.08049 (0.10342) | > loss_disc_real_1: 0.17121 (0.16667) | > loss_disc_real_2: 0.25160 (0.24920) | > loss_disc_real_3: 0.24348 (0.24956) | > loss_disc_real_4: 0.22489 (0.22439) | > loss_disc_real_5: 0.22712 (0.23276) | > loss_0: 2.33569 (2.33319) | > loss_gen: 2.42825 (2.46578) | > loss_kl: 2.67625 (2.69511) | > loss_feat: 8.86896 (8.53214) | > loss_mel: 17.67634 (17.63021) | > loss_duration: 1.72455 (1.70227) | > loss_1: 33.37435 (33.02552)  --> STEP: 127 | > loss_disc: 2.37120 (2.33349) | > loss_disc_real_0: 0.09661 (0.10337) | > loss_disc_real_1: 0.16857 (0.16669) | > loss_disc_real_2: 0.24296 (0.24915) | > loss_disc_real_3: 0.24141 (0.24949) | > loss_disc_real_4: 0.23929 (0.22451) | > loss_disc_real_5: 0.24447 (0.23285) | > loss_0: 2.37120 (2.33349) | > loss_gen: 2.41555 (2.46538) | > loss_kl: 2.61055 (2.69444) | > loss_feat: 8.64674 (8.53304) | > loss_mel: 17.28736 (17.62751) | > loss_duration: 1.74188 (1.70259) | > loss_1: 32.70208 (33.02297)  --> STEP: 128 | > loss_disc: 2.34350 (2.33357) | > loss_disc_real_0: 0.10188 (0.10336) | > loss_disc_real_1: 0.16379 (0.16667) | > loss_disc_real_2: 0.25521 (0.24920) | > loss_disc_real_3: 0.25999 (0.24957) | > loss_disc_real_4: 0.23444 (0.22458) | > loss_disc_real_5: 0.23810 (0.23289) | > loss_0: 2.34350 (2.33357) | > loss_gen: 2.48846 (2.46556) | > loss_kl: 2.69985 (2.69448) | > loss_feat: 8.21495 (8.53056) | > loss_mel: 17.11665 (17.62352) | > loss_duration: 1.71927 (1.70272) | > loss_1: 32.23919 (33.01685)  --> STEP: 129 | > loss_disc: 2.33022 (2.33354) | > loss_disc_real_0: 0.10557 (0.10338) | > loss_disc_real_1: 0.16503 (0.16665) | > loss_disc_real_2: 0.24211 (0.24914) | > loss_disc_real_3: 0.24282 (0.24952) | > loss_disc_real_4: 0.22523 (0.22459) | > loss_disc_real_5: 0.22293 (0.23282) | > loss_0: 2.33022 (2.33354) | > loss_gen: 2.41215 (2.46515) | > loss_kl: 2.71377 (2.69463) | > loss_feat: 8.38224 (8.52941) | > loss_mel: 17.23892 (17.62054) | > loss_duration: 1.68625 (1.70259) | > loss_1: 32.43332 (33.01232)  --> STEP: 130 | > loss_disc: 2.33972 (2.33359) | > loss_disc_real_0: 0.10008 (0.10335) | > loss_disc_real_1: 0.16160 (0.16662) | > loss_disc_real_2: 0.23130 (0.24901) | > loss_disc_real_3: 0.25475 (0.24956) | > loss_disc_real_4: 0.24044 (0.22471) | > loss_disc_real_5: 0.24989 (0.23295) | > loss_0: 2.33972 (2.33359) | > loss_gen: 2.45666 (2.46509) | > loss_kl: 2.67371 (2.69447) | > loss_feat: 8.24071 (8.52719) | > loss_mel: 17.53384 (17.61987) | > loss_duration: 1.70245 (1.70259) | > loss_1: 32.60737 (33.00920)  --> STEP: 131 | > loss_disc: 2.34618 (2.33369) | > loss_disc_real_0: 0.10595 (0.10337) | > loss_disc_real_1: 0.16235 (0.16658) | > loss_disc_real_2: 0.24490 (0.24898) | > loss_disc_real_3: 0.25470 (0.24960) | > loss_disc_real_4: 0.20881 (0.22459) | > loss_disc_real_5: 0.24698 (0.23306) | > loss_0: 2.34618 (2.33369) | > loss_gen: 2.50422 (2.46538) | > loss_kl: 2.84530 (2.69562) | > loss_feat: 9.18744 (8.53223) | > loss_mel: 17.82080 (17.62141) | > loss_duration: 1.70876 (1.70263) | > loss_1: 34.06652 (33.01728)  --> STEP: 132 | > loss_disc: 2.29480 (2.33339) | > loss_disc_real_0: 0.09528 (0.10331) | > loss_disc_real_1: 0.16457 (0.16657) | > loss_disc_real_2: 0.23937 (0.24890) | > loss_disc_real_3: 0.24740 (0.24959) | > loss_disc_real_4: 0.21833 (0.22454) | > loss_disc_real_5: 0.22248 (0.23298) | > loss_0: 2.29480 (2.33339) | > loss_gen: 2.50231 (2.46566) | > loss_kl: 2.84469 (2.69675) | > loss_feat: 8.83455 (8.53452) | > loss_mel: 17.63745 (17.62153) | > loss_duration: 1.70957 (1.70269) | > loss_1: 33.52856 (33.02115)  --> STEP: 133 | > loss_disc: 2.30543 (2.33318) | > loss_disc_real_0: 0.10724 (0.10334) | > loss_disc_real_1: 0.16150 (0.16653) | > loss_disc_real_2: 0.24919 (0.24890) | > loss_disc_real_3: 0.24476 (0.24955) | > loss_disc_real_4: 0.23349 (0.22461) | > loss_disc_real_5: 0.23729 (0.23301) | > loss_0: 2.30543 (2.33318) | > loss_gen: 2.53777 (2.46621) | > loss_kl: 2.70062 (2.69678) | > loss_feat: 8.86298 (8.53699) | > loss_mel: 17.74874 (17.62249) | > loss_duration: 1.68263 (1.70254) | > loss_1: 33.53273 (33.02500)  --> STEP: 134 | > loss_disc: 2.31538 (2.33305) | > loss_disc_real_0: 0.10003 (0.10331) | > loss_disc_real_1: 0.16090 (0.16649) | > loss_disc_real_2: 0.24130 (0.24885) | > loss_disc_real_3: 0.24244 (0.24950) | > loss_disc_real_4: 0.21384 (0.22453) | > loss_disc_real_5: 0.23427 (0.23302) | > loss_0: 2.31538 (2.33305) | > loss_gen: 2.42683 (2.46591) | > loss_kl: 2.65643 (2.69648) | > loss_feat: 8.71823 (8.53834) | > loss_mel: 17.99184 (17.62525) | > loss_duration: 1.68344 (1.70239) | > loss_1: 33.47678 (33.02837)  --> STEP: 135 | > loss_disc: 2.26691 (2.33256) | > loss_disc_real_0: 0.10253 (0.10331) | > loss_disc_real_1: 0.15418 (0.16640) | > loss_disc_real_2: 0.23654 (0.24876) | > loss_disc_real_3: 0.25365 (0.24953) | > loss_disc_real_4: 0.21220 (0.22444) | > loss_disc_real_5: 0.23053 (0.23300) | > loss_0: 2.26691 (2.33256) | > loss_gen: 2.53656 (2.46644) | > loss_kl: 2.85251 (2.69764) | > loss_feat: 8.47040 (8.53784) | > loss_mel: 18.07062 (17.62854) | > loss_duration: 1.68973 (1.70230) | > loss_1: 33.61981 (33.03275)  --> STEP: 136 | > loss_disc: 2.37663 (2.33288) | > loss_disc_real_0: 0.11516 (0.10339) | > loss_disc_real_1: 0.16600 (0.16639) | > loss_disc_real_2: 0.25609 (0.24881) | > loss_disc_real_3: 0.23816 (0.24944) | > loss_disc_real_4: 0.22606 (0.22445) | > loss_disc_real_5: 0.23983 (0.23305) | > loss_0: 2.37663 (2.33288) | > loss_gen: 2.42840 (2.46616) | > loss_kl: 2.67362 (2.69746) | > loss_feat: 7.92436 (8.53333) | > loss_mel: 17.13376 (17.62491) | > loss_duration: 1.66703 (1.70204) | > loss_1: 31.82717 (33.02388)  --> STEP: 137 | > loss_disc: 2.35097 (2.33301) | > loss_disc_real_0: 0.11640 (0.10349) | > loss_disc_real_1: 0.16618 (0.16639) | > loss_disc_real_2: 0.24797 (0.24880) | > loss_disc_real_3: 0.24840 (0.24944) | > loss_disc_real_4: 0.20630 (0.22432) | > loss_disc_real_5: 0.21431 (0.23291) | > loss_0: 2.35097 (2.33301) | > loss_gen: 2.40502 (2.46571) | > loss_kl: 2.65599 (2.69716) | > loss_feat: 8.82890 (8.53548) | > loss_mel: 17.68300 (17.62533) | > loss_duration: 1.69232 (1.70197) | > loss_1: 33.26523 (33.02564)  --> STEP: 138 | > loss_disc: 2.33303 (2.33301) | > loss_disc_real_0: 0.11323 (0.10356) | > loss_disc_real_1: 0.18222 (0.16651) | > loss_disc_real_2: 0.26184 (0.24890) | > loss_disc_real_3: 0.24823 (0.24943) | > loss_disc_real_4: 0.23437 (0.22439) | > loss_disc_real_5: 0.23493 (0.23293) | > loss_0: 2.33303 (2.33301) | > loss_gen: 2.56865 (2.46646) | > loss_kl: 2.66026 (2.69689) | > loss_feat: 8.29296 (8.53373) | > loss_mel: 17.72916 (17.62609) | > loss_duration: 1.74646 (1.70229) | > loss_1: 32.99749 (33.02544)  --> STEP: 139 | > loss_disc: 2.34245 (2.33308) | > loss_disc_real_0: 0.09321 (0.10349) | > loss_disc_real_1: 0.16971 (0.16653) | > loss_disc_real_2: 0.24593 (0.24888) | > loss_disc_real_3: 0.24629 (0.24940) | > loss_disc_real_4: 0.21995 (0.22436) | > loss_disc_real_5: 0.23316 (0.23293) | > loss_0: 2.34245 (2.33308) | > loss_gen: 2.43123 (2.46620) | > loss_kl: 2.71754 (2.69704) | > loss_feat: 8.49192 (8.53343) | > loss_mel: 17.36008 (17.62417) | > loss_duration: 1.68064 (1.70214) | > loss_1: 32.68141 (33.02296)  --> STEP: 140 | > loss_disc: 2.25408 (2.33252) | > loss_disc_real_0: 0.09034 (0.10339) | > loss_disc_real_1: 0.16102 (0.16649) | > loss_disc_real_2: 0.24485 (0.24885) | > loss_disc_real_3: 0.24107 (0.24934) | > loss_disc_real_4: 0.21592 (0.22430) | > loss_disc_real_5: 0.21067 (0.23277) | > loss_0: 2.25408 (2.33252) | > loss_gen: 2.48341 (2.46633) | > loss_kl: 2.54923 (2.69598) | > loss_feat: 9.49162 (8.54027) | > loss_mel: 17.78581 (17.62533) | > loss_duration: 1.71878 (1.70225) | > loss_1: 34.02884 (33.03015)  --> STEP: 141 | > loss_disc: 2.31512 (2.33239) | > loss_disc_real_0: 0.09341 (0.10332) | > loss_disc_real_1: 0.15760 (0.16643) | > loss_disc_real_2: 0.26032 (0.24893) | > loss_disc_real_3: 0.24621 (0.24932) | > loss_disc_real_4: 0.22285 (0.22429) | > loss_disc_real_5: 0.23688 (0.23280) | > loss_0: 2.31512 (2.33239) | > loss_gen: 2.44568 (2.46618) | > loss_kl: 2.52966 (2.69480) | > loss_feat: 7.97044 (8.53623) | > loss_mel: 17.46854 (17.62421) | > loss_duration: 1.71538 (1.70235) | > loss_1: 32.12969 (33.02376)  --> STEP: 142 | > loss_disc: 2.32897 (2.33237) | > loss_disc_real_0: 0.08673 (0.10320) | > loss_disc_real_1: 0.16997 (0.16645) | > loss_disc_real_2: 0.25150 (0.24895) | > loss_disc_real_3: 0.26107 (0.24940) | > loss_disc_real_4: 0.23460 (0.22436) | > loss_disc_real_5: 0.25268 (0.23294) | > loss_0: 2.32897 (2.33237) | > loss_gen: 2.52719 (2.46661) | > loss_kl: 2.59337 (2.69409) | > loss_feat: 7.87251 (8.53155) | > loss_mel: 17.50630 (17.62338) | > loss_duration: 1.70568 (1.70237) | > loss_1: 32.20504 (33.01800)  --> STEP: 143 | > loss_disc: 2.37111 (2.33264) | > loss_disc_real_0: 0.10282 (0.10320) | > loss_disc_real_1: 0.16991 (0.16648) | > loss_disc_real_2: 0.25263 (0.24897) | > loss_disc_real_3: 0.25625 (0.24945) | > loss_disc_real_4: 0.22742 (0.22438) | > loss_disc_real_5: 0.24761 (0.23304) | > loss_0: 2.37111 (2.33264) | > loss_gen: 2.42489 (2.46632) | > loss_kl: 2.56229 (2.69317) | > loss_feat: 8.24084 (8.52952) | > loss_mel: 17.47407 (17.62234) | > loss_duration: 1.66233 (1.70209) | > loss_1: 32.36442 (33.01342)  --> STEP: 144 | > loss_disc: 2.35062 (2.33277) | > loss_disc_real_0: 0.10209 (0.10319) | > loss_disc_real_1: 0.16662 (0.16648) | > loss_disc_real_2: 0.25385 (0.24901) | > loss_disc_real_3: 0.24938 (0.24945) | > loss_disc_real_4: 0.22288 (0.22437) | > loss_disc_real_5: 0.25368 (0.23318) | > loss_0: 2.35062 (2.33277) | > loss_gen: 2.47321 (2.46636) | > loss_kl: 2.68856 (2.69314) | > loss_feat: 8.33268 (8.52815) | > loss_mel: 17.72358 (17.62304) | > loss_duration: 1.70954 (1.70214) | > loss_1: 32.92757 (33.01283)  --> STEP: 145 | > loss_disc: 2.30548 (2.33258) | > loss_disc_real_0: 0.09351 (0.10313) | > loss_disc_real_1: 0.16826 (0.16649) | > loss_disc_real_2: 0.24993 (0.24901) | > loss_disc_real_3: 0.26520 (0.24956) | > loss_disc_real_4: 0.22757 (0.22439) | > loss_disc_real_5: 0.23787 (0.23322) | > loss_0: 2.30548 (2.33258) | > loss_gen: 2.52958 (2.46680) | > loss_kl: 2.63763 (2.69275) | > loss_feat: 8.67010 (8.52913) | > loss_mel: 17.57995 (17.62275) | > loss_duration: 1.69349 (1.70208) | > loss_1: 33.11074 (33.01350)  --> STEP: 146 | > loss_disc: 2.35916 (2.33276) | > loss_disc_real_0: 0.11377 (0.10320) | > loss_disc_real_1: 0.15983 (0.16644) | > loss_disc_real_2: 0.25255 (0.24904) | > loss_disc_real_3: 0.26034 (0.24963) | > loss_disc_real_4: 0.22619 (0.22440) | > loss_disc_real_5: 0.23972 (0.23326) | > loss_0: 2.35916 (2.33276) | > loss_gen: 2.46439 (2.46678) | > loss_kl: 2.62442 (2.69228) | > loss_feat: 8.62199 (8.52977) | > loss_mel: 18.16801 (17.62648) | > loss_duration: 1.72633 (1.70225) | > loss_1: 33.60515 (33.01756)  --> STEP: 147 | > loss_disc: 2.34771 (2.33286) | > loss_disc_real_0: 0.10060 (0.10318) | > loss_disc_real_1: 0.16581 (0.16644) | > loss_disc_real_2: 0.26310 (0.24913) | > loss_disc_real_3: 0.25664 (0.24968) | > loss_disc_real_4: 0.22812 (0.22443) | > loss_disc_real_5: 0.24549 (0.23334) | > loss_0: 2.34771 (2.33286) | > loss_gen: 2.45883 (2.46673) | > loss_kl: 2.86785 (2.69348) | > loss_feat: 8.43832 (8.52915) | > loss_mel: 17.74143 (17.62726) | > loss_duration: 1.68418 (1.70213) | > loss_1: 33.19061 (33.01873)  --> STEP: 148 | > loss_disc: 2.29241 (2.33259) | > loss_disc_real_0: 0.09291 (0.10311) | > loss_disc_real_1: 0.16455 (0.16643) | > loss_disc_real_2: 0.24999 (0.24914) | > loss_disc_real_3: 0.23272 (0.24957) | > loss_disc_real_4: 0.20607 (0.22431) | > loss_disc_real_5: 0.21103 (0.23319) | > loss_0: 2.29241 (2.33259) | > loss_gen: 2.41556 (2.46638) | > loss_kl: 2.69402 (2.69348) | > loss_feat: 8.26435 (8.52736) | > loss_mel: 17.55400 (17.62677) | > loss_duration: 1.66648 (1.70189) | > loss_1: 32.59441 (33.01586)  --> STEP: 149 | > loss_disc: 2.28598 (2.33228) | > loss_disc_real_0: 0.09939 (0.10309) | > loss_disc_real_1: 0.15736 (0.16637) | > loss_disc_real_2: 0.23935 (0.24907) | > loss_disc_real_3: 0.25217 (0.24959) | > loss_disc_real_4: 0.21720 (0.22426) | > loss_disc_real_5: 0.22733 (0.23315) | > loss_0: 2.28598 (2.33228) | > loss_gen: 2.48157 (2.46649) | > loss_kl: 2.73799 (2.69378) | > loss_feat: 8.56958 (8.52764) | > loss_mel: 17.15765 (17.62362) | > loss_duration: 1.68253 (1.70176) | > loss_1: 32.62932 (33.01327)  --> STEP: 150 | > loss_disc: 2.33737 (2.33231) | > loss_disc_real_0: 0.10530 (0.10310) | > loss_disc_real_1: 0.15665 (0.16630) | > loss_disc_real_2: 0.24909 (0.24907) | > loss_disc_real_3: 0.24664 (0.24957) | > loss_disc_real_4: 0.23340 (0.22432) | > loss_disc_real_5: 0.22798 (0.23312) | > loss_0: 2.33737 (2.33231) | > loss_gen: 2.42662 (2.46622) | > loss_kl: 2.64708 (2.69347) | > loss_feat: 8.54832 (8.52778) | > loss_mel: 17.91513 (17.62556) | > loss_duration: 1.70864 (1.70180) | > loss_1: 33.24577 (33.01482)  --> STEP: 151 | > loss_disc: 2.34751 (2.33241) | > loss_disc_real_0: 0.11816 (0.10320) | > loss_disc_real_1: 0.16152 (0.16627) | > loss_disc_real_2: 0.26206 (0.24916) | > loss_disc_real_3: 0.24543 (0.24954) | > loss_disc_real_4: 0.22576 (0.22433) | > loss_disc_real_5: 0.23595 (0.23314) | > loss_0: 2.34751 (2.33241) | > loss_gen: 2.44667 (2.46609) | > loss_kl: 2.82650 (2.69435) | > loss_feat: 8.05462 (8.52464) | > loss_mel: 17.75520 (17.62642) | > loss_duration: 1.67071 (1.70160) | > loss_1: 32.75370 (33.01309)  --> STEP: 152 | > loss_disc: 2.36626 (2.33263) | > loss_disc_real_0: 0.10654 (0.10322) | > loss_disc_real_1: 0.17014 (0.16629) | > loss_disc_real_2: 0.26162 (0.24924) | > loss_disc_real_3: 0.26153 (0.24962) | > loss_disc_real_4: 0.24214 (0.22445) | > loss_disc_real_5: 0.23995 (0.23318) | > loss_0: 2.36626 (2.33263) | > loss_gen: 2.52871 (2.46650) | > loss_kl: 2.72917 (2.69458) | > loss_feat: 8.43026 (8.52402) | > loss_mel: 17.97132 (17.62869) | > loss_duration: 1.70458 (1.70162) | > loss_1: 33.36404 (33.01540)  --> STEP: 153 | > loss_disc: 2.31148 (2.33249) | > loss_disc_real_0: 0.09042 (0.10314) | > loss_disc_real_1: 0.16027 (0.16626) | > loss_disc_real_2: 0.24665 (0.24923) | > loss_disc_real_3: 0.24612 (0.24959) | > loss_disc_real_4: 0.22695 (0.22446) | > loss_disc_real_5: 0.23687 (0.23321) | > loss_0: 2.31148 (2.33249) | > loss_gen: 2.44806 (2.46638) | > loss_kl: 2.73144 (2.69482) | > loss_feat: 8.45284 (8.52356) | > loss_mel: 17.55820 (17.62823) | > loss_duration: 1.67347 (1.70143) | > loss_1: 32.86402 (33.01442)  --> STEP: 154 | > loss_disc: 2.45427 (2.33329) | > loss_disc_real_0: 0.11413 (0.10321) | > loss_disc_real_1: 0.16381 (0.16624) | > loss_disc_real_2: 0.25778 (0.24928) | > loss_disc_real_3: 0.26310 (0.24968) | > loss_disc_real_4: 0.23070 (0.22450) | > loss_disc_real_5: 0.25424 (0.23334) | > loss_0: 2.45427 (2.33329) | > loss_gen: 2.39073 (2.46589) | > loss_kl: 2.97697 (2.69665) | > loss_feat: 7.98703 (8.52007) | > loss_mel: 18.05466 (17.63100) | > loss_duration: 1.75793 (1.70180) | > loss_1: 33.16732 (33.01541) --> EVAL PERFORMANCE | > avg_loader_time: 0.04115 (+0.00152) | > avg_loss_disc: 2.33329 (+0.00756) | > avg_loss_disc_real_0: 0.10321 (-0.00666) | > avg_loss_disc_real_1: 0.16624 (-0.05344) | > avg_loss_disc_real_2: 0.24928 (+0.01816) | > avg_loss_disc_real_3: 0.24968 (+0.02040) | > avg_loss_disc_real_4: 0.22450 (-0.00221) | > avg_loss_disc_real_5: 0.23334 (+0.01956) | > avg_loss_0: 2.33329 (+0.00756) | > avg_loss_gen: 2.46589 (-0.00085) | > avg_loss_kl: 2.69665 (-0.06374) | > avg_loss_feat: 8.52007 (+0.11422) | > avg_loss_mel: 17.63100 (-0.26768) | > avg_loss_duration: 1.70180 (-0.01518) | > avg_loss_1: 33.01541 (-0.23324) > BEST MODEL : ./checkpoints/yourtts_multilingual/yourtts-du_en_fr_ge_it_pl_ptbr_sp-November-08-2022_12+19PM-0cbaa0f6/best_model_1011149.pth  > EPOCH: 4/1000 --> ./checkpoints/yourtts_multilingual/yourtts-du_en_fr_ge_it_pl_ptbr_sp-November-08-2022_12+19PM-0cbaa0f6  > TRAINING (2022-11-10 03:00:06)   --> STEP: 1/15287 -- GLOBAL_STEP: 1011150 | > loss_disc: 2.29646 (2.29646) | > loss_disc_real_0: 0.11917 (0.11917) | > loss_disc_real_1: 0.19647 (0.19647) | > loss_disc_real_2: 0.24528 (0.24528) | > loss_disc_real_3: 0.24149 (0.24149) | > loss_disc_real_4: 0.21590 (0.21590) | > loss_disc_real_5: 0.24368 (0.24368) | > loss_0: 2.29646 (2.29646) | > grad_norm_0: 21.26929 (21.26929) | > loss_gen: 2.70162 (2.70162) | > loss_kl: 2.75030 (2.75030) | > loss_feat: 8.74625 (8.74625) | > loss_mel: 17.51281 (17.51281) | > loss_duration: 1.69146 (1.69146) | > loss_1: 33.40245 (33.40245) | > grad_norm_1: 148.17093 (148.17093) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.48620 (2.48618) | > loader_time: 0.05240 (0.05238)  --> STEP: 26/15287 -- GLOBAL_STEP: 1011175 | > loss_disc: 2.30652 (2.33317) | > loss_disc_real_0: 0.10931 (0.12791) | > loss_disc_real_1: 0.20466 (0.21437) | > loss_disc_real_2: 0.25072 (0.22351) | > loss_disc_real_3: 0.19216 (0.21921) | > loss_disc_real_4: 0.19002 (0.21310) | > loss_disc_real_5: 0.24755 (0.21572) | > loss_0: 2.30652 (2.33317) | > grad_norm_0: 37.57500 (18.82471) | > loss_gen: 2.47351 (2.55583) | > loss_kl: 2.66273 (2.67406) | > loss_feat: 8.47048 (8.60936) | > loss_mel: 17.79862 (17.82066) | > loss_duration: 1.71804 (1.70294) | > loss_1: 33.12337 (33.36286) | > grad_norm_1: 154.65236 (137.96582) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92770 (2.20572) | > loader_time: 0.04100 (0.04590)  --> STEP: 51/15287 -- GLOBAL_STEP: 1011200 | > loss_disc: 2.31018 (2.32427) | > loss_disc_real_0: 0.11383 (0.12374) | > loss_disc_real_1: 0.19884 (0.21324) | > loss_disc_real_2: 0.21515 (0.21948) | > loss_disc_real_3: 0.19823 (0.21933) | > loss_disc_real_4: 0.17908 (0.21304) | > loss_disc_real_5: 0.17955 (0.21468) | > loss_0: 2.31018 (2.32427) | > grad_norm_0: 7.21098 (16.51604) | > loss_gen: 2.68185 (2.55456) | > loss_kl: 2.60026 (2.67161) | > loss_feat: 9.07092 (8.63268) | > loss_mel: 17.86479 (17.80069) | > loss_duration: 1.68330 (1.70445) | > loss_1: 33.90113 (33.36399) | > grad_norm_1: 84.41532 (134.17467) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05190 (2.11514) | > loader_time: 0.04310 (0.04274)  --> STEP: 76/15287 -- GLOBAL_STEP: 1011225 | > loss_disc: 2.32241 (2.31908) | > loss_disc_real_0: 0.11350 (0.12242) | > loss_disc_real_1: 0.19045 (0.21206) | > loss_disc_real_2: 0.18612 (0.21830) | > loss_disc_real_3: 0.18906 (0.21971) | > loss_disc_real_4: 0.20482 (0.21456) | > loss_disc_real_5: 0.21909 (0.21360) | > loss_0: 2.32241 (2.31908) | > grad_norm_0: 11.36878 (15.84553) | > loss_gen: 2.41400 (2.55998) | > loss_kl: 2.65190 (2.67111) | > loss_feat: 9.21323 (8.66535) | > loss_mel: 17.89884 (17.79484) | > loss_duration: 1.67971 (1.70457) | > loss_1: 33.85767 (33.39584) | > grad_norm_1: 166.48906 (137.82019) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05080 (2.09356) | > loader_time: 0.04240 (0.04188)  --> STEP: 101/15287 -- GLOBAL_STEP: 1011250 | > loss_disc: 2.26038 (2.32023) | > loss_disc_real_0: 0.12748 (0.12218) | > loss_disc_real_1: 0.19406 (0.21220) | > loss_disc_real_2: 0.19530 (0.21842) | > loss_disc_real_3: 0.22049 (0.21927) | > loss_disc_real_4: 0.20916 (0.21452) | > loss_disc_real_5: 0.22047 (0.21568) | > loss_0: 2.26038 (2.32023) | > grad_norm_0: 12.34173 (15.78584) | > loss_gen: 2.58759 (2.56886) | > loss_kl: 2.63055 (2.66172) | > loss_feat: 8.82926 (8.69081) | > loss_mel: 18.62284 (17.77208) | > loss_duration: 1.73937 (1.70512) | > loss_1: 34.40962 (33.39859) | > grad_norm_1: 156.88251 (138.37964) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95730 (2.07010) | > loader_time: 0.04450 (0.04137)  --> STEP: 126/15287 -- GLOBAL_STEP: 1011275 | > loss_disc: 2.34177 (2.32497) | > loss_disc_real_0: 0.12507 (0.12229) | > loss_disc_real_1: 0.22593 (0.21371) | > loss_disc_real_2: 0.21473 (0.21912) | > loss_disc_real_3: 0.26123 (0.21966) | > loss_disc_real_4: 0.22976 (0.21507) | > loss_disc_real_5: 0.21523 (0.21456) | > loss_0: 2.34177 (2.32497) | > grad_norm_0: 12.28519 (14.96156) | > loss_gen: 2.64318 (2.57246) | > loss_kl: 2.72671 (2.66130) | > loss_feat: 9.19627 (8.69905) | > loss_mel: 18.02301 (17.80020) | > loss_duration: 1.76273 (1.70605) | > loss_1: 34.35191 (33.43906) | > grad_norm_1: 194.23155 (135.13664) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95940 (2.05536) | > loader_time: 0.04080 (0.04153)  --> STEP: 151/15287 -- GLOBAL_STEP: 1011300 | > loss_disc: 2.32315 (2.32654) | > loss_disc_real_0: 0.07994 (0.12303) | > loss_disc_real_1: 0.19919 (0.21351) | > loss_disc_real_2: 0.22278 (0.21918) | > loss_disc_real_3: 0.23171 (0.21869) | > loss_disc_real_4: 0.24887 (0.21494) | > loss_disc_real_5: 0.24199 (0.21496) | > loss_0: 2.32315 (2.32654) | > grad_norm_0: 25.22787 (15.55591) | > loss_gen: 2.45054 (2.56872) | > loss_kl: 2.57257 (2.66323) | > loss_feat: 8.46142 (8.69441) | > loss_mel: 17.39552 (17.81255) | > loss_duration: 1.67891 (1.70624) | > loss_1: 32.55897 (33.44515) | > grad_norm_1: 136.55643 (135.54579) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96910 (2.04840) | > loader_time: 0.04060 (0.04142)  --> STEP: 176/15287 -- GLOBAL_STEP: 1011325 | > loss_disc: 2.29518 (2.32646) | > loss_disc_real_0: 0.10162 (0.12216) | > loss_disc_real_1: 0.22198 (0.21354) | > loss_disc_real_2: 0.22213 (0.21918) | > loss_disc_real_3: 0.23672 (0.21939) | > loss_disc_real_4: 0.23643 (0.21520) | > loss_disc_real_5: 0.21477 (0.21527) | > loss_0: 2.29518 (2.32646) | > grad_norm_0: 27.52776 (15.69506) | > loss_gen: 2.52668 (2.56633) | > loss_kl: 2.63282 (2.66283) | > loss_feat: 8.80307 (8.69707) | > loss_mel: 17.40369 (17.82117) | > loss_duration: 1.67238 (1.70696) | > loss_1: 33.03864 (33.45434) | > grad_norm_1: 171.80945 (136.74951) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06270 (2.04365) | > loader_time: 0.04000 (0.04109)  --> STEP: 201/15287 -- GLOBAL_STEP: 1011350 | > loss_disc: 2.28327 (2.32600) | > loss_disc_real_0: 0.08945 (0.12257) | > loss_disc_real_1: 0.25734 (0.21430) | > loss_disc_real_2: 0.22307 (0.21844) | > loss_disc_real_3: 0.22047 (0.21918) | > loss_disc_real_4: 0.16819 (0.21425) | > loss_disc_real_5: 0.24581 (0.21394) | > loss_0: 2.28327 (2.32600) | > grad_norm_0: 20.56626 (16.14008) | > loss_gen: 2.50225 (2.56986) | > loss_kl: 2.58046 (2.65877) | > loss_feat: 8.97942 (8.70998) | > loss_mel: 17.75661 (17.81930) | > loss_duration: 1.70806 (1.70702) | > loss_1: 33.52681 (33.46491) | > grad_norm_1: 63.20428 (137.64232) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.14370 (2.04406) | > loader_time: 0.04920 (0.04098)  --> STEP: 226/15287 -- GLOBAL_STEP: 1011375 | > loss_disc: 1.88534 (2.31631) | > loss_disc_real_0: 0.07367 (0.12103) | > loss_disc_real_1: 0.22963 (0.21430) | > loss_disc_real_2: 0.22175 (0.21823) | > loss_disc_real_3: 0.17762 (0.21891) | > loss_disc_real_4: 0.17305 (0.21288) | > loss_disc_real_5: 0.15406 (0.21158) | > loss_0: 1.88534 (2.31631) | > grad_norm_0: 16.27720 (16.38195) | > loss_gen: 3.31539 (2.59013) | > loss_kl: 2.75323 (2.65917) | > loss_feat: 10.16261 (8.75108) | > loss_mel: 17.70107 (17.82320) | > loss_duration: 1.69099 (1.70702) | > loss_1: 35.62329 (33.53061) | > grad_norm_1: 528.77631 (140.98174) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98060 (2.04045) | > loader_time: 0.03650 (0.04079)  --> STEP: 251/15287 -- GLOBAL_STEP: 1011400 | > loss_disc: 2.44925 (2.32657) | > loss_disc_real_0: 0.12141 (0.11995) | > loss_disc_real_1: 0.20966 (0.21483) | > loss_disc_real_2: 0.21345 (0.21810) | > loss_disc_real_3: 0.22836 (0.22022) | > loss_disc_real_4: 0.20118 (0.21549) | > loss_disc_real_5: 0.28548 (0.21414) | > loss_0: 2.44925 (2.32657) | > grad_norm_0: 70.78673 (19.02384) | > loss_gen: 2.45334 (2.59977) | > loss_kl: 2.48473 (2.65411) | > loss_feat: 7.73930 (8.76553) | > loss_mel: 17.30049 (17.84400) | > loss_duration: 1.70171 (1.70727) | > loss_1: 31.67957 (33.57068) | > grad_norm_1: 209.04993 (149.15295) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08310 (2.03785) | > loader_time: 0.03980 (0.04061)  --> STEP: 276/15287 -- GLOBAL_STEP: 1011425 | > loss_disc: 2.33219 (2.32763) | > loss_disc_real_0: 0.14733 (0.12126) | > loss_disc_real_1: 0.22352 (0.21408) | > loss_disc_real_2: 0.22527 (0.21785) | > loss_disc_real_3: 0.20479 (0.22042) | > loss_disc_real_4: 0.20798 (0.21575) | > loss_disc_real_5: 0.20195 (0.21511) | > loss_0: 2.33219 (2.32763) | > grad_norm_0: 10.48351 (19.64467) | > loss_gen: 2.53071 (2.59052) | > loss_kl: 2.65832 (2.65562) | > loss_feat: 8.62646 (8.74147) | > loss_mel: 17.47252 (17.83326) | > loss_duration: 1.69529 (1.70646) | > loss_1: 32.98330 (33.52733) | > grad_norm_1: 133.53061 (150.94876) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86830 (2.03929) | > loader_time: 0.03560 (0.04046)  --> STEP: 301/15287 -- GLOBAL_STEP: 1011450 | > loss_disc: 2.27688 (2.32450) | > loss_disc_real_0: 0.09386 (0.12059) | > loss_disc_real_1: 0.20089 (0.21338) | > loss_disc_real_2: 0.20668 (0.21744) | > loss_disc_real_3: 0.20072 (0.22011) | > loss_disc_real_4: 0.21405 (0.21571) | > loss_disc_real_5: 0.18166 (0.21531) | > loss_0: 2.27688 (2.32450) | > grad_norm_0: 9.72141 (20.35803) | > loss_gen: 2.80527 (2.58845) | > loss_kl: 2.53472 (2.65512) | > loss_feat: 8.44578 (8.74341) | > loss_mel: 17.66110 (17.82619) | > loss_duration: 1.73607 (1.70648) | > loss_1: 33.18293 (33.51963) | > grad_norm_1: 108.99847 (155.47768) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86620 (2.03699) | > loader_time: 0.03850 (0.04031)  --> STEP: 326/15287 -- GLOBAL_STEP: 1011475 | > loss_disc: 2.31396 (2.32184) | > loss_disc_real_0: 0.10029 (0.12067) | > loss_disc_real_1: 0.18547 (0.21295) | > loss_disc_real_2: 0.21574 (0.21711) | > loss_disc_real_3: 0.21712 (0.22031) | > loss_disc_real_4: 0.19858 (0.21548) | > loss_disc_real_5: 0.24534 (0.21540) | > loss_0: 2.31396 (2.32184) | > grad_norm_0: 18.01503 (20.40561) | > loss_gen: 2.51579 (2.58519) | > loss_kl: 2.59603 (2.65289) | > loss_feat: 8.61564 (8.73680) | > loss_mel: 17.67427 (17.81353) | > loss_duration: 1.73631 (1.70589) | > loss_1: 33.13804 (33.49430) | > grad_norm_1: 214.29547 (155.85442) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87120 (2.03454) | > loader_time: 0.04710 (0.04027)  --> STEP: 351/15287 -- GLOBAL_STEP: 1011500 | > loss_disc: 2.27142 (2.32175) | > loss_disc_real_0: 0.11784 (0.12155) | > loss_disc_real_1: 0.18706 (0.21254) | > loss_disc_real_2: 0.18803 (0.21712) | > loss_disc_real_3: 0.22724 (0.22059) | > loss_disc_real_4: 0.20105 (0.21568) | > loss_disc_real_5: 0.21024 (0.21554) | > loss_0: 2.27142 (2.32175) | > grad_norm_0: 23.59613 (20.46061) | > loss_gen: 2.41735 (2.58405) | > loss_kl: 2.78632 (2.65487) | > loss_feat: 8.47458 (8.73642) | > loss_mel: 17.60328 (17.80240) | > loss_duration: 1.72200 (1.70575) | > loss_1: 33.00353 (33.48349) | > grad_norm_1: 224.96843 (155.64336) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.78060 (2.05653) | > loader_time: 0.05820 (0.04020)  --> STEP: 376/15287 -- GLOBAL_STEP: 1011525 | > loss_disc: 2.30989 (2.32139) | > loss_disc_real_0: 0.11038 (0.12125) | > loss_disc_real_1: 0.21204 (0.21247) | > loss_disc_real_2: 0.21060 (0.21733) | > loss_disc_real_3: 0.20160 (0.22041) | > loss_disc_real_4: 0.22732 (0.21595) | > loss_disc_real_5: 0.20626 (0.21554) | > loss_0: 2.30989 (2.32139) | > grad_norm_0: 24.67913 (20.45359) | > loss_gen: 2.52792 (2.58252) | > loss_kl: 2.59024 (2.65544) | > loss_feat: 8.93652 (8.73386) | > loss_mel: 18.28819 (17.80518) | > loss_duration: 1.70930 (1.70547) | > loss_1: 34.05216 (33.48249) | > grad_norm_1: 221.31848 (157.26575) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89980 (2.06115) | > loader_time: 0.03550 (0.04031)  --> STEP: 401/15287 -- GLOBAL_STEP: 1011550 | > loss_disc: 2.34588 (2.32198) | > loss_disc_real_0: 0.19333 (0.12135) | > loss_disc_real_1: 0.21503 (0.21231) | > loss_disc_real_2: 0.20092 (0.21704) | > loss_disc_real_3: 0.20432 (0.22036) | > loss_disc_real_4: 0.22000 (0.21585) | > loss_disc_real_5: 0.23073 (0.21562) | > loss_0: 2.34588 (2.32198) | > grad_norm_0: 42.07502 (20.54657) | > loss_gen: 2.78627 (2.57965) | > loss_kl: 2.62248 (2.65450) | > loss_feat: 8.76809 (8.72307) | > loss_mel: 18.06015 (17.79956) | > loss_duration: 1.68641 (1.70537) | > loss_1: 33.92340 (33.46217) | > grad_norm_1: 186.51601 (157.86990) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13270 (2.05906) | > loader_time: 0.03880 (0.04025)  --> STEP: 426/15287 -- GLOBAL_STEP: 1011575 | > loss_disc: 2.34461 (2.32215) | > loss_disc_real_0: 0.08717 (0.12113) | > loss_disc_real_1: 0.17526 (0.21232) | > loss_disc_real_2: 0.23222 (0.21724) | > loss_disc_real_3: 0.25924 (0.22063) | > loss_disc_real_4: 0.24014 (0.21598) | > loss_disc_real_5: 0.26543 (0.21594) | > loss_0: 2.34461 (2.32215) | > grad_norm_0: 28.14952 (20.43300) | > loss_gen: 2.49979 (2.57898) | > loss_kl: 2.61935 (2.65542) | > loss_feat: 8.95787 (8.72187) | > loss_mel: 18.13196 (17.80117) | > loss_duration: 1.68973 (1.70513) | > loss_1: 33.89871 (33.46259) | > grad_norm_1: 153.56708 (157.97084) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90730 (2.05953) | > loader_time: 0.03590 (0.04017)  --> STEP: 451/15287 -- GLOBAL_STEP: 1011600 | > loss_disc: 2.27992 (2.32375) | > loss_disc_real_0: 0.13842 (0.12112) | > loss_disc_real_1: 0.20249 (0.21249) | > loss_disc_real_2: 0.20125 (0.21698) | > loss_disc_real_3: 0.22919 (0.22066) | > loss_disc_real_4: 0.20480 (0.21595) | > loss_disc_real_5: 0.18449 (0.21652) | > loss_0: 2.27992 (2.32375) | > grad_norm_0: 6.64952 (20.43020) | > loss_gen: 2.51321 (2.57656) | > loss_kl: 2.62375 (2.65502) | > loss_feat: 8.35345 (8.71161) | > loss_mel: 17.44736 (17.80616) | > loss_duration: 1.76339 (1.70584) | > loss_1: 32.70116 (33.45520) | > grad_norm_1: 147.66924 (158.75307) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93090 (2.05681) | > loader_time: 0.04210 (0.04013)  --> STEP: 476/15287 -- GLOBAL_STEP: 1011625 | > loss_disc: 2.39993 (2.32610) | > loss_disc_real_0: 0.16327 (0.12170) | > loss_disc_real_1: 0.22409 (0.21250) | > loss_disc_real_2: 0.28475 (0.21703) | > loss_disc_real_3: 0.22988 (0.22090) | > loss_disc_real_4: 0.21015 (0.21620) | > loss_disc_real_5: 0.21190 (0.21676) | > loss_0: 2.39993 (2.32610) | > grad_norm_0: 15.43652 (20.27144) | > loss_gen: 2.60559 (2.57646) | > loss_kl: 2.64022 (2.65656) | > loss_feat: 7.97684 (8.70624) | > loss_mel: 17.64416 (17.81250) | > loss_duration: 1.71939 (1.70579) | > loss_1: 32.58621 (33.45756) | > grad_norm_1: 57.27348 (157.61345) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93490 (2.05647) | > loader_time: 0.03750 (0.04006)  --> STEP: 501/15287 -- GLOBAL_STEP: 1011650 | > loss_disc: 2.35741 (2.32571) | > loss_disc_real_0: 0.13637 (0.12183) | > loss_disc_real_1: 0.20334 (0.21225) | > loss_disc_real_2: 0.20403 (0.21712) | > loss_disc_real_3: 0.22439 (0.22079) | > loss_disc_real_4: 0.21607 (0.21611) | > loss_disc_real_5: 0.21817 (0.21656) | > loss_0: 2.35741 (2.32571) | > grad_norm_0: 27.02596 (20.05530) | > loss_gen: 2.45492 (2.57445) | > loss_kl: 2.59607 (2.65709) | > loss_feat: 8.63222 (8.70507) | > loss_mel: 17.83506 (17.81148) | > loss_duration: 1.69644 (1.70559) | > loss_1: 33.21470 (33.45368) | > grad_norm_1: 162.72264 (157.07002) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89480 (2.05675) | > loader_time: 0.03540 (0.03997)  --> STEP: 526/15287 -- GLOBAL_STEP: 1011675 | > loss_disc: 2.34193 (2.32545) | > loss_disc_real_0: 0.10765 (0.12168) | > loss_disc_real_1: 0.19307 (0.21240) | > loss_disc_real_2: 0.20895 (0.21699) | > loss_disc_real_3: 0.21552 (0.22061) | > loss_disc_real_4: 0.20915 (0.21576) | > loss_disc_real_5: 0.20038 (0.21655) | > loss_0: 2.34193 (2.32545) | > grad_norm_0: 20.55041 (19.81713) | > loss_gen: 2.45078 (2.57306) | > loss_kl: 2.56946 (2.65592) | > loss_feat: 8.90347 (8.70274) | > loss_mel: 17.47738 (17.80507) | > loss_duration: 1.66843 (1.70554) | > loss_1: 33.06952 (33.44234) | > grad_norm_1: 167.53998 (156.29341) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96590 (2.05384) | > loader_time: 0.03740 (0.03998)  --> STEP: 551/15287 -- GLOBAL_STEP: 1011700 | > loss_disc: 2.27889 (2.32676) | > loss_disc_real_0: 0.11110 (0.12232) | > loss_disc_real_1: 0.18333 (0.21220) | > loss_disc_real_2: 0.21006 (0.21712) | > loss_disc_real_3: 0.22104 (0.22061) | > loss_disc_real_4: 0.17789 (0.21589) | > loss_disc_real_5: 0.24413 (0.21664) | > loss_0: 2.27889 (2.32676) | > grad_norm_0: 6.28266 (19.55935) | > loss_gen: 2.69916 (2.57187) | > loss_kl: 2.78483 (2.65787) | > loss_feat: 8.96084 (8.69936) | > loss_mel: 18.18752 (17.80381) | > loss_duration: 1.70710 (1.70535) | > loss_1: 34.33945 (33.43830) | > grad_norm_1: 164.12772 (154.42450) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94480 (2.05158) | > loader_time: 0.04220 (0.03993)  --> STEP: 576/15287 -- GLOBAL_STEP: 1011725 | > loss_disc: 2.24785 (2.32811) | > loss_disc_real_0: 0.08065 (0.12256) | > loss_disc_real_1: 0.19999 (0.21256) | > loss_disc_real_2: 0.18670 (0.21705) | > loss_disc_real_3: 0.19356 (0.22047) | > loss_disc_real_4: 0.17318 (0.21623) | > loss_disc_real_5: 0.18392 (0.21652) | > loss_0: 2.24785 (2.32811) | > grad_norm_0: 19.80713 (19.38043) | > loss_gen: 2.44678 (2.57058) | > loss_kl: 2.70949 (2.65796) | > loss_feat: 8.66663 (8.69136) | > loss_mel: 17.96451 (17.80861) | > loss_duration: 1.74324 (1.70535) | > loss_1: 33.53065 (33.43390) | > grad_norm_1: 134.84480 (153.46089) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95860 (2.05018) | > loader_time: 0.04140 (0.03985)  --> STEP: 601/15287 -- GLOBAL_STEP: 1011750 | > loss_disc: 2.32903 (2.32823) | > loss_disc_real_0: 0.12924 (0.12228) | > loss_disc_real_1: 0.21645 (0.21273) | > loss_disc_real_2: 0.20935 (0.21709) | > loss_disc_real_3: 0.22897 (0.22042) | > loss_disc_real_4: 0.22348 (0.21607) | > loss_disc_real_5: 0.20588 (0.21643) | > loss_0: 2.32903 (2.32823) | > grad_norm_0: 14.97105 (19.14335) | > loss_gen: 2.53226 (2.56979) | > loss_kl: 2.65878 (2.65586) | > loss_feat: 8.35507 (8.68787) | > loss_mel: 17.65143 (17.80861) | > loss_duration: 1.74985 (1.70520) | > loss_1: 32.94739 (33.42739) | > grad_norm_1: 200.35124 (153.02608) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93280 (2.04773) | > loader_time: 0.03560 (0.03977)  --> STEP: 626/15287 -- GLOBAL_STEP: 1011775 | > loss_disc: 2.26158 (2.32810) | > loss_disc_real_0: 0.09566 (0.12217) | > loss_disc_real_1: 0.24677 (0.21299) | > loss_disc_real_2: 0.20693 (0.21699) | > loss_disc_real_3: 0.19956 (0.22029) | > loss_disc_real_4: 0.21306 (0.21599) | > loss_disc_real_5: 0.18090 (0.21621) | > loss_0: 2.26158 (2.32810) | > grad_norm_0: 15.07589 (18.86755) | > loss_gen: 2.59074 (2.56858) | > loss_kl: 2.71731 (2.65477) | > loss_feat: 8.96719 (8.68170) | > loss_mel: 17.91154 (17.80632) | > loss_duration: 1.70843 (1.70534) | > loss_1: 33.89521 (33.41677) | > grad_norm_1: 146.26126 (151.81665) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07480 (2.04620) | > loader_time: 0.03780 (0.03968)  --> STEP: 651/15287 -- GLOBAL_STEP: 1011800 | > loss_disc: 2.35089 (2.32768) | > loss_disc_real_0: 0.09783 (0.12173) | > loss_disc_real_1: 0.20135 (0.21296) | > loss_disc_real_2: 0.20522 (0.21709) | > loss_disc_real_3: 0.22402 (0.22025) | > loss_disc_real_4: 0.21862 (0.21601) | > loss_disc_real_5: 0.21706 (0.21626) | > loss_0: 2.35089 (2.32768) | > grad_norm_0: 18.86321 (18.68549) | > loss_gen: 2.54395 (2.56873) | > loss_kl: 2.69236 (2.65446) | > loss_feat: 8.40667 (8.68324) | > loss_mel: 17.80305 (17.80616) | > loss_duration: 1.71244 (1.70548) | > loss_1: 33.15846 (33.41812) | > grad_norm_1: 175.15286 (151.31584) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98240 (2.04380) | > loader_time: 0.04000 (0.03960)  --> STEP: 676/15287 -- GLOBAL_STEP: 1011825 | > loss_disc: 2.26307 (2.32582) | > loss_disc_real_0: 0.11442 (0.12142) | > loss_disc_real_1: 0.22390 (0.21272) | > loss_disc_real_2: 0.21167 (0.21690) | > loss_disc_real_3: 0.21911 (0.22004) | > loss_disc_real_4: 0.20202 (0.21582) | > loss_disc_real_5: 0.19523 (0.21589) | > loss_0: 2.26307 (2.32582) | > grad_norm_0: 10.05826 (18.70628) | > loss_gen: 2.48314 (2.56789) | > loss_kl: 2.66789 (2.65299) | > loss_feat: 8.92939 (8.68569) | > loss_mel: 18.01408 (17.80550) | > loss_duration: 1.71756 (1.70564) | > loss_1: 33.81207 (33.41776) | > grad_norm_1: 93.43230 (152.04826) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19530 (2.04271) | > loader_time: 0.03910 (0.03953)  --> STEP: 701/15287 -- GLOBAL_STEP: 1011850 | > loss_disc: 2.35842 (2.32474) | > loss_disc_real_0: 0.09541 (0.12112) | > loss_disc_real_1: 0.19643 (0.21254) | > loss_disc_real_2: 0.21750 (0.21680) | > loss_disc_real_3: 0.22987 (0.21992) | > loss_disc_real_4: 0.24746 (0.21571) | > loss_disc_real_5: 0.21983 (0.21571) | > loss_0: 2.35842 (2.32474) | > grad_norm_0: 8.42945 (18.75467) | > loss_gen: 2.55259 (2.56692) | > loss_kl: 2.55262 (2.65210) | > loss_feat: 8.18239 (8.68623) | > loss_mel: 17.45732 (17.80053) | > loss_duration: 1.69280 (1.70575) | > loss_1: 32.43772 (33.41158) | > grad_norm_1: 130.55228 (152.61150) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.53910 (2.04267) | > loader_time: 0.06340 (0.03954)  --> STEP: 726/15287 -- GLOBAL_STEP: 1011875 | > loss_disc: 2.26386 (2.32424) | > loss_disc_real_0: 0.08467 (0.12098) | > loss_disc_real_1: 0.21164 (0.21242) | > loss_disc_real_2: 0.20279 (0.21681) | > loss_disc_real_3: 0.23149 (0.21997) | > loss_disc_real_4: 0.24627 (0.21575) | > loss_disc_real_5: 0.21693 (0.21582) | > loss_0: 2.26386 (2.32424) | > grad_norm_0: 10.45244 (18.70262) | > loss_gen: 2.75943 (2.56699) | > loss_kl: 2.62941 (2.65153) | > loss_feat: 9.20458 (8.68726) | > loss_mel: 18.13720 (17.79713) | > loss_duration: 1.72678 (1.70583) | > loss_1: 34.45740 (33.40878) | > grad_norm_1: 105.60285 (152.63817) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96320 (2.04052) | > loader_time: 0.03720 (0.03948)  --> STEP: 751/15287 -- GLOBAL_STEP: 1011900 | > loss_disc: 2.32579 (2.32367) | > loss_disc_real_0: 0.16407 (0.12102) | > loss_disc_real_1: 0.20507 (0.21242) | > loss_disc_real_2: 0.21826 (0.21684) | > loss_disc_real_3: 0.21691 (0.21986) | > loss_disc_real_4: 0.21165 (0.21565) | > loss_disc_real_5: 0.20288 (0.21567) | > loss_0: 2.32579 (2.32367) | > grad_norm_0: 7.58886 (18.62462) | > loss_gen: 2.54202 (2.56657) | > loss_kl: 2.87273 (2.65266) | > loss_feat: 8.61502 (8.68936) | > loss_mel: 17.64195 (17.79464) | > loss_duration: 1.68466 (1.70581) | > loss_1: 33.35638 (33.40911) | > grad_norm_1: 148.01056 (152.98282) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93270 (2.03922) | > loader_time: 0.03580 (0.03942)  --> STEP: 776/15287 -- GLOBAL_STEP: 1011925 | > loss_disc: 2.27315 (2.32317) | > loss_disc_real_0: 0.11073 (0.12075) | > loss_disc_real_1: 0.19465 (0.21237) | > loss_disc_real_2: 0.20718 (0.21683) | > loss_disc_real_3: 0.20252 (0.21991) | > loss_disc_real_4: 0.22496 (0.21568) | > loss_disc_real_5: 0.22689 (0.21572) | > loss_0: 2.27315 (2.32317) | > grad_norm_0: 18.42583 (18.59838) | > loss_gen: 2.59336 (2.56569) | > loss_kl: 2.76151 (2.65312) | > loss_feat: 9.56771 (8.69191) | > loss_mel: 17.69676 (17.79417) | > loss_duration: 1.72797 (1.70577) | > loss_1: 34.34730 (33.41074) | > grad_norm_1: 204.34172 (153.05386) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09830 (2.03973) | > loader_time: 0.03520 (0.03936)  --> STEP: 801/15287 -- GLOBAL_STEP: 1011950 | > loss_disc: 2.36486 (2.32241) | > loss_disc_real_0: 0.14714 (0.12072) | > loss_disc_real_1: 0.18815 (0.21231) | > loss_disc_real_2: 0.21005 (0.21682) | > loss_disc_real_3: 0.20128 (0.21989) | > loss_disc_real_4: 0.21381 (0.21567) | > loss_disc_real_5: 0.17895 (0.21562) | > loss_0: 2.36486 (2.32241) | > grad_norm_0: 10.15109 (18.49936) | > loss_gen: 2.78424 (2.56587) | > loss_kl: 2.69384 (2.65343) | > loss_feat: 9.42378 (8.69601) | > loss_mel: 17.89594 (17.79689) | > loss_duration: 1.70849 (1.70598) | > loss_1: 34.50629 (33.41824) | > grad_norm_1: 155.16429 (152.95317) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92050 (2.03838) | > loader_time: 0.03530 (0.03938)  --> STEP: 826/15287 -- GLOBAL_STEP: 1011975 | > loss_disc: 2.35973 (2.32292) | > loss_disc_real_0: 0.14599 (0.12118) | > loss_disc_real_1: 0.20500 (0.21242) | > loss_disc_real_2: 0.22222 (0.21693) | > loss_disc_real_3: 0.22893 (0.21993) | > loss_disc_real_4: 0.22621 (0.21562) | > loss_disc_real_5: 0.21280 (0.21543) | > loss_0: 2.35973 (2.32292) | > grad_norm_0: 27.19004 (18.50324) | > loss_gen: 2.30905 (2.56537) | > loss_kl: 2.74071 (2.65333) | > loss_feat: 8.78914 (8.69674) | > loss_mel: 17.69316 (17.79966) | > loss_duration: 1.71370 (1.70630) | > loss_1: 33.24577 (33.42145) | > grad_norm_1: 190.80769 (152.62729) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10910 (2.03804) | > loader_time: 0.04540 (0.03933)  --> STEP: 851/15287 -- GLOBAL_STEP: 1012000 | > loss_disc: 2.29947 (2.32270) | > loss_disc_real_0: 0.10243 (0.12105) | > loss_disc_real_1: 0.20236 (0.21231) | > loss_disc_real_2: 0.21336 (0.21688) | > loss_disc_real_3: 0.23671 (0.21980) | > loss_disc_real_4: 0.24084 (0.21558) | > loss_disc_real_5: 0.20998 (0.21532) | > loss_0: 2.29947 (2.32270) | > grad_norm_0: 10.76358 (18.39723) | > loss_gen: 2.58431 (2.56465) | > loss_kl: 2.65434 (2.65399) | > loss_feat: 8.35164 (8.69685) | > loss_mel: 17.78493 (17.80293) | > loss_duration: 1.70179 (1.70637) | > loss_1: 33.07701 (33.42484) | > grad_norm_1: 140.84419 (152.39388) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93390 (2.03693) | > loader_time: 0.03690 (0.03932)  --> STEP: 876/15287 -- GLOBAL_STEP: 1012025 | > loss_disc: 2.42090 (2.32288) | > loss_disc_real_0: 0.08465 (0.12100) | > loss_disc_real_1: 0.20624 (0.21226) | > loss_disc_real_2: 0.23147 (0.21692) | > loss_disc_real_3: 0.24175 (0.21979) | > loss_disc_real_4: 0.23327 (0.21561) | > loss_disc_real_5: 0.20202 (0.21515) | > loss_0: 2.42090 (2.32288) | > grad_norm_0: 14.72075 (18.24375) | > loss_gen: 2.53013 (2.56393) | > loss_kl: 2.71103 (2.65350) | > loss_feat: 8.69521 (8.69709) | > loss_mel: 18.13206 (17.80413) | > loss_duration: 1.73102 (1.70655) | > loss_1: 33.79944 (33.42525) | > grad_norm_1: 112.76463 (151.33125) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88190 (2.03831) | > loader_time: 0.03600 (0.03930)  --> STEP: 901/15287 -- GLOBAL_STEP: 1012050 | > loss_disc: 2.35853 (2.32304) | > loss_disc_real_0: 0.10944 (0.12110) | > loss_disc_real_1: 0.24746 (0.21218) | > loss_disc_real_2: 0.23581 (0.21686) | > loss_disc_real_3: 0.22783 (0.21976) | > loss_disc_real_4: 0.21169 (0.21560) | > loss_disc_real_5: 0.21166 (0.21518) | > loss_0: 2.35853 (2.32304) | > grad_norm_0: 21.19352 (18.13119) | > loss_gen: 2.63449 (2.56401) | > loss_kl: 2.51985 (2.65385) | > loss_feat: 8.77145 (8.69501) | > loss_mel: 18.03412 (17.80813) | > loss_duration: 1.68971 (1.70660) | > loss_1: 33.64963 (33.42767) | > grad_norm_1: 162.04861 (150.27356) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11780 (2.03825) | > loader_time: 0.03910 (0.03932)  --> STEP: 926/15287 -- GLOBAL_STEP: 1012075 | > loss_disc: 2.28672 (2.32434) | > loss_disc_real_0: 0.11599 (0.12124) | > loss_disc_real_1: 0.20375 (0.21227) | > loss_disc_real_2: 0.20729 (0.21694) | > loss_disc_real_3: 0.20546 (0.21977) | > loss_disc_real_4: 0.20952 (0.21564) | > loss_disc_real_5: 0.19635 (0.21515) | > loss_0: 2.28672 (2.32434) | > grad_norm_0: 11.41884 (18.03080) | > loss_gen: 2.58843 (2.56190) | > loss_kl: 2.57983 (2.65310) | > loss_feat: 8.61055 (8.68603) | > loss_mel: 17.90995 (17.80695) | > loss_duration: 1.72704 (1.70665) | > loss_1: 33.41579 (33.41468) | > grad_norm_1: 107.28952 (149.18617) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96740 (2.03771) | > loader_time: 0.04150 (0.03928)  --> STEP: 951/15287 -- GLOBAL_STEP: 1012100 | > loss_disc: 2.37201 (2.32380) | > loss_disc_real_0: 0.12127 (0.12104) | > loss_disc_real_1: 0.21895 (0.21215) | > loss_disc_real_2: 0.25556 (0.21684) | > loss_disc_real_3: 0.22072 (0.21974) | > loss_disc_real_4: 0.23588 (0.21559) | > loss_disc_real_5: 0.20003 (0.21502) | > loss_0: 2.37201 (2.32380) | > grad_norm_0: 18.84479 (17.99052) | > loss_gen: 2.49328 (2.56156) | > loss_kl: 2.61529 (2.65181) | > loss_feat: 8.05423 (8.68678) | > loss_mel: 16.76707 (17.80518) | > loss_duration: 1.68992 (1.70670) | > loss_1: 31.61979 (33.41208) | > grad_norm_1: 68.79588 (148.80383) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99840 (2.03675) | > loader_time: 0.03570 (0.03924)  --> STEP: 976/15287 -- GLOBAL_STEP: 1012125 | > loss_disc: 2.28730 (2.32291) | > loss_disc_real_0: 0.12017 (0.12087) | > loss_disc_real_1: 0.19544 (0.21217) | > loss_disc_real_2: 0.21462 (0.21666) | > loss_disc_real_3: 0.20481 (0.21986) | > loss_disc_real_4: 0.22758 (0.21570) | > loss_disc_real_5: 0.21438 (0.21493) | > loss_0: 2.28730 (2.32291) | > grad_norm_0: 31.80980 (17.94412) | > loss_gen: 2.59084 (2.56199) | > loss_kl: 2.55886 (2.65117) | > loss_feat: 8.83018 (8.68740) | > loss_mel: 17.99205 (17.80423) | > loss_duration: 1.66685 (1.70648) | > loss_1: 33.63877 (33.41132) | > grad_norm_1: 142.70502 (148.60464) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99050 (2.04009) | > loader_time: 0.03570 (0.03923)  --> STEP: 1001/15287 -- GLOBAL_STEP: 1012150 | > loss_disc: 2.27605 (2.32220) | > loss_disc_real_0: 0.12504 (0.12067) | > loss_disc_real_1: 0.20273 (0.21214) | > loss_disc_real_2: 0.19742 (0.21652) | > loss_disc_real_3: 0.21418 (0.21982) | > loss_disc_real_4: 0.20688 (0.21563) | > loss_disc_real_5: 0.22648 (0.21491) | > loss_0: 2.27605 (2.32220) | > grad_norm_0: 25.49352 (17.93876) | > loss_gen: 2.65585 (2.56190) | > loss_kl: 2.74001 (2.65087) | > loss_feat: 9.41413 (8.69205) | > loss_mel: 17.77664 (17.80387) | > loss_duration: 1.72304 (1.70645) | > loss_1: 34.30967 (33.41520) | > grad_norm_1: 219.00533 (148.71387) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10900 (2.03926) | > loader_time: 0.04040 (0.03919)  --> STEP: 1026/15287 -- GLOBAL_STEP: 1012175 | > loss_disc: 2.28693 (2.32207) | > loss_disc_real_0: 0.11349 (0.12068) | > loss_disc_real_1: 0.22403 (0.21227) | > loss_disc_real_2: 0.21745 (0.21650) | > loss_disc_real_3: 0.22990 (0.21981) | > loss_disc_real_4: 0.20122 (0.21557) | > loss_disc_real_5: 0.22680 (0.21483) | > loss_0: 2.28693 (2.32207) | > grad_norm_0: 23.22276 (17.91924) | > loss_gen: 2.50237 (2.56172) | > loss_kl: 2.64047 (2.65052) | > loss_feat: 8.38547 (8.68956) | > loss_mel: 17.58992 (17.80148) | > loss_duration: 1.71506 (1.70619) | > loss_1: 32.83329 (33.40950) | > grad_norm_1: 139.48233 (148.79428) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05210 (2.04010) | > loader_time: 0.03550 (0.03924)  --> STEP: 1051/15287 -- GLOBAL_STEP: 1012200 | > loss_disc: 2.33253 (2.32212) | > loss_disc_real_0: 0.13727 (0.12065) | > loss_disc_real_1: 0.23504 (0.21223) | > loss_disc_real_2: 0.22894 (0.21632) | > loss_disc_real_3: 0.20712 (0.21978) | > loss_disc_real_4: 0.20015 (0.21543) | > loss_disc_real_5: 0.22204 (0.21491) | > loss_0: 2.33253 (2.32212) | > grad_norm_0: 11.20387 (17.85418) | > loss_gen: 2.59734 (2.56115) | > loss_kl: 2.68364 (2.65006) | > loss_feat: 8.52196 (8.68881) | > loss_mel: 17.59382 (17.80043) | > loss_duration: 1.73297 (1.70611) | > loss_1: 33.12974 (33.40657) | > grad_norm_1: 112.53146 (148.29176) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91060 (2.03920) | > loader_time: 0.03400 (0.03918)  --> STEP: 1076/15287 -- GLOBAL_STEP: 1012225 | > loss_disc: 2.49365 (2.32203) | > loss_disc_real_0: 0.26208 (0.12086) | > loss_disc_real_1: 0.19724 (0.21219) | > loss_disc_real_2: 0.21238 (0.21632) | > loss_disc_real_3: 0.22430 (0.21983) | > loss_disc_real_4: 0.19723 (0.21541) | > loss_disc_real_5: 0.22255 (0.21488) | > loss_0: 2.49365 (2.32203) | > grad_norm_0: 14.20295 (17.78253) | > loss_gen: 2.46609 (2.56206) | > loss_kl: 2.65802 (2.65055) | > loss_feat: 8.32263 (8.69034) | > loss_mel: 18.06215 (17.80002) | > loss_duration: 1.68616 (1.70595) | > loss_1: 33.19506 (33.40893) | > grad_norm_1: 148.18645 (147.98003) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05180 (2.03913) | > loader_time: 0.04100 (0.03913)  --> STEP: 1101/15287 -- GLOBAL_STEP: 1012250 | > loss_disc: 2.36772 (2.32353) | > loss_disc_real_0: 0.20098 (0.12144) | > loss_disc_real_1: 0.17404 (0.21222) | > loss_disc_real_2: 0.17881 (0.21631) | > loss_disc_real_3: 0.23171 (0.21994) | > loss_disc_real_4: 0.20399 (0.21551) | > loss_disc_real_5: 0.19984 (0.21488) | > loss_0: 2.36772 (2.32353) | > grad_norm_0: 31.82365 (17.87761) | > loss_gen: 2.56996 (2.56134) | > loss_kl: 2.60599 (2.65046) | > loss_feat: 8.99566 (8.68872) | > loss_mel: 18.36864 (17.80131) | > loss_duration: 1.72421 (1.70602) | > loss_1: 34.26445 (33.40786) | > grad_norm_1: 172.81175 (147.70279) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00830 (2.03817) | > loader_time: 0.03450 (0.03909)  --> STEP: 1126/15287 -- GLOBAL_STEP: 1012275 | > loss_disc: 2.35020 (2.32354) | > loss_disc_real_0: 0.12556 (0.12141) | > loss_disc_real_1: 0.24650 (0.21220) | > loss_disc_real_2: 0.24003 (0.21622) | > loss_disc_real_3: 0.21009 (0.22012) | > loss_disc_real_4: 0.18950 (0.21548) | > loss_disc_real_5: 0.17998 (0.21494) | > loss_0: 2.35020 (2.32354) | > grad_norm_0: 24.82328 (17.85792) | > loss_gen: 2.51787 (2.56169) | > loss_kl: 2.57570 (2.65050) | > loss_feat: 8.68538 (8.68896) | > loss_mel: 17.52908 (17.79981) | > loss_duration: 1.73012 (1.70606) | > loss_1: 33.03815 (33.40702) | > grad_norm_1: 73.12775 (147.60307) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96960 (2.03891) | > loader_time: 0.03320 (0.03910)  --> STEP: 1151/15287 -- GLOBAL_STEP: 1012300 | > loss_disc: 2.31224 (2.32403) | > loss_disc_real_0: 0.10225 (0.12148) | > loss_disc_real_1: 0.21398 (0.21234) | > loss_disc_real_2: 0.20723 (0.21626) | > loss_disc_real_3: 0.21631 (0.22013) | > loss_disc_real_4: 0.20216 (0.21551) | > loss_disc_real_5: 0.20627 (0.21484) | > loss_0: 2.31224 (2.32403) | > grad_norm_0: 8.01450 (17.83797) | > loss_gen: 2.80806 (2.56070) | > loss_kl: 2.61183 (2.65177) | > loss_feat: 9.08891 (8.68670) | > loss_mel: 17.85507 (17.80000) | > loss_duration: 1.73000 (1.70608) | > loss_1: 34.09387 (33.40526) | > grad_norm_1: 195.31738 (147.54089) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96390 (2.03750) | > loader_time: 0.03290 (0.03903)  --> STEP: 1176/15287 -- GLOBAL_STEP: 1012325 | > loss_disc: 2.31060 (2.32393) | > loss_disc_real_0: 0.13659 (0.12149) | > loss_disc_real_1: 0.23589 (0.21239) | > loss_disc_real_2: 0.24091 (0.21627) | > loss_disc_real_3: 0.23819 (0.22008) | > loss_disc_real_4: 0.23526 (0.21547) | > loss_disc_real_5: 0.20248 (0.21489) | > loss_0: 2.31060 (2.32393) | > grad_norm_0: 17.44222 (17.83399) | > loss_gen: 2.46428 (2.56069) | > loss_kl: 2.70871 (2.65173) | > loss_feat: 8.48372 (8.68747) | > loss_mel: 17.87256 (17.79994) | > loss_duration: 1.68701 (1.70589) | > loss_1: 33.21628 (33.40575) | > grad_norm_1: 89.08469 (147.47144) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86410 (2.03645) | > loader_time: 0.03790 (0.03897)  --> STEP: 1201/15287 -- GLOBAL_STEP: 1012350 | > loss_disc: 2.27475 (2.32330) | > loss_disc_real_0: 0.10697 (0.12137) | > loss_disc_real_1: 0.19034 (0.21225) | > loss_disc_real_2: 0.21197 (0.21622) | > loss_disc_real_3: 0.22498 (0.22002) | > loss_disc_real_4: 0.21102 (0.21546) | > loss_disc_real_5: 0.20221 (0.21483) | > loss_0: 2.27475 (2.32330) | > grad_norm_0: 4.35795 (17.79749) | > loss_gen: 2.70980 (2.56044) | > loss_kl: 2.59131 (2.65193) | > loss_feat: 9.56038 (8.68884) | > loss_mel: 18.11930 (17.79830) | > loss_duration: 1.68438 (1.70596) | > loss_1: 34.66518 (33.40549) | > grad_norm_1: 83.57802 (147.23007) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87160 (2.03582) | > loader_time: 0.03800 (0.03891)  --> STEP: 1226/15287 -- GLOBAL_STEP: 1012375 | > loss_disc: 2.33264 (2.32290) | > loss_disc_real_0: 0.14032 (0.12134) | > loss_disc_real_1: 0.21836 (0.21223) | > loss_disc_real_2: 0.21208 (0.21615) | > loss_disc_real_3: 0.24567 (0.21997) | > loss_disc_real_4: 0.23168 (0.21548) | > loss_disc_real_5: 0.20539 (0.21481) | > loss_0: 2.33264 (2.32290) | > grad_norm_0: 15.25531 (17.75695) | > loss_gen: 2.58556 (2.56073) | > loss_kl: 2.57820 (2.65243) | > loss_feat: 8.00992 (8.69080) | > loss_mel: 17.29294 (17.79815) | > loss_duration: 1.70592 (1.70588) | > loss_1: 32.17254 (33.40802) | > grad_norm_1: 156.78906 (147.29596) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98740 (2.03463) | > loader_time: 0.03510 (0.03886)  --> STEP: 1251/15287 -- GLOBAL_STEP: 1012400 | > loss_disc: 2.36827 (2.32306) | > loss_disc_real_0: 0.18068 (0.12140) | > loss_disc_real_1: 0.23192 (0.21222) | > loss_disc_real_2: 0.23987 (0.21615) | > loss_disc_real_3: 0.22010 (0.22001) | > loss_disc_real_4: 0.23441 (0.21542) | > loss_disc_real_5: 0.21357 (0.21479) | > loss_0: 2.36827 (2.32306) | > grad_norm_0: 14.21236 (17.75288) | > loss_gen: 2.74612 (2.56056) | > loss_kl: 2.75409 (2.65266) | > loss_feat: 8.45688 (8.68951) | > loss_mel: 17.27739 (17.79646) | > loss_duration: 1.68865 (1.70586) | > loss_1: 32.92313 (33.40507) | > grad_norm_1: 179.30531 (147.34084) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97610 (2.03359) | > loader_time: 0.03420 (0.03881)  --> STEP: 1276/15287 -- GLOBAL_STEP: 1012425 | > loss_disc: 2.30847 (2.32283) | > loss_disc_real_0: 0.12846 (0.12135) | > loss_disc_real_1: 0.18665 (0.21211) | > loss_disc_real_2: 0.20477 (0.21607) | > loss_disc_real_3: 0.21313 (0.22000) | > loss_disc_real_4: 0.20372 (0.21538) | > loss_disc_real_5: 0.22706 (0.21474) | > loss_0: 2.30847 (2.32283) | > grad_norm_0: 9.09768 (17.73327) | > loss_gen: 2.62775 (2.55985) | > loss_kl: 2.79886 (2.65340) | > loss_feat: 8.93916 (8.68958) | > loss_mel: 18.20909 (17.79646) | > loss_duration: 1.67618 (1.70573) | > loss_1: 34.25105 (33.40502) | > grad_norm_1: 133.78783 (147.52457) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86060 (2.03214) | > loader_time: 0.03460 (0.03874)  --> STEP: 1301/15287 -- GLOBAL_STEP: 1012450 | > loss_disc: 2.29475 (2.32264) | > loss_disc_real_0: 0.11294 (0.12138) | > loss_disc_real_1: 0.19789 (0.21207) | > loss_disc_real_2: 0.17023 (0.21606) | > loss_disc_real_3: 0.22550 (0.22001) | > loss_disc_real_4: 0.20726 (0.21534) | > loss_disc_real_5: 0.20735 (0.21473) | > loss_0: 2.29475 (2.32264) | > grad_norm_0: 10.68031 (17.65093) | > loss_gen: 2.44232 (2.55962) | > loss_kl: 2.74200 (2.65492) | > loss_feat: 8.48123 (8.68754) | > loss_mel: 17.46174 (17.79205) | > loss_duration: 1.71075 (1.70574) | > loss_1: 32.83804 (33.39988) | > grad_norm_1: 72.19565 (147.18103) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85280 (2.03189) | > loader_time: 0.03320 (0.03869)  --> STEP: 1326/15287 -- GLOBAL_STEP: 1012475 | > loss_disc: 2.38924 (2.32332) | > loss_disc_real_0: 0.11838 (0.12150) | > loss_disc_real_1: 0.21204 (0.21212) | > loss_disc_real_2: 0.21552 (0.21610) | > loss_disc_real_3: 0.19754 (0.21998) | > loss_disc_real_4: 0.22295 (0.21538) | > loss_disc_real_5: 0.20023 (0.21478) | > loss_0: 2.38924 (2.32332) | > grad_norm_0: 37.55581 (17.69299) | > loss_gen: 2.36075 (2.55929) | > loss_kl: 2.92030 (2.65584) | > loss_feat: 8.67939 (8.68741) | > loss_mel: 17.74370 (17.79167) | > loss_duration: 1.68060 (1.70563) | > loss_1: 33.38475 (33.39985) | > grad_norm_1: 198.78937 (147.21721) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05780 (2.03036) | > loader_time: 0.04030 (0.03863)  --> STEP: 1351/15287 -- GLOBAL_STEP: 1012500 | > loss_disc: 2.30858 (2.32307) | > loss_disc_real_0: 0.09261 (0.12142) | > loss_disc_real_1: 0.24455 (0.21226) | > loss_disc_real_2: 0.22811 (0.21617) | > loss_disc_real_3: 0.22300 (0.21990) | > loss_disc_real_4: 0.20349 (0.21534) | > loss_disc_real_5: 0.21584 (0.21473) | > loss_0: 2.30858 (2.32307) | > grad_norm_0: 16.06358 (17.66636) | > loss_gen: 2.66976 (2.55943) | > loss_kl: 2.56719 (2.65528) | > loss_feat: 9.17012 (8.68831) | > loss_mel: 17.95950 (17.79075) | > loss_duration: 1.68089 (1.70549) | > loss_1: 34.04746 (33.39927) | > grad_norm_1: 247.24464 (147.57370) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91710 (2.02963) | > loader_time: 0.03370 (0.03859)  --> STEP: 1376/15287 -- GLOBAL_STEP: 1012525 | > loss_disc: 2.30896 (2.32243) | > loss_disc_real_0: 0.11090 (0.12128) | > loss_disc_real_1: 0.18827 (0.21215) | > loss_disc_real_2: 0.21663 (0.21612) | > loss_disc_real_3: 0.23202 (0.21986) | > loss_disc_real_4: 0.22835 (0.21530) | > loss_disc_real_5: 0.22733 (0.21469) | > loss_0: 2.30896 (2.32243) | > grad_norm_0: 21.39777 (17.63885) | > loss_gen: 2.46395 (2.55919) | > loss_kl: 2.57013 (2.65538) | > loss_feat: 8.85098 (8.68834) | > loss_mel: 17.74055 (17.79047) | > loss_duration: 1.70906 (1.70552) | > loss_1: 33.33467 (33.39893) | > grad_norm_1: 115.63346 (147.51515) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88570 (2.02920) | > loader_time: 0.03440 (0.03853)  --> STEP: 1401/15287 -- GLOBAL_STEP: 1012550 | > loss_disc: 2.29440 (2.32264) | > loss_disc_real_0: 0.15616 (0.12126) | > loss_disc_real_1: 0.19881 (0.21232) | > loss_disc_real_2: 0.20764 (0.21611) | > loss_disc_real_3: 0.22229 (0.21993) | > loss_disc_real_4: 0.18836 (0.21541) | > loss_disc_real_5: 0.20555 (0.21466) | > loss_0: 2.29440 (2.32264) | > grad_norm_0: 48.57463 (17.67426) | > loss_gen: 2.70120 (2.55934) | > loss_kl: 2.69497 (2.65501) | > loss_feat: 8.19990 (8.68715) | > loss_mel: 17.33868 (17.78942) | > loss_duration: 1.72027 (1.70547) | > loss_1: 32.65503 (33.39642) | > grad_norm_1: 132.84909 (147.51709) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.50800 (2.02945) | > loader_time: 0.04290 (0.03849)  --> STEP: 1426/15287 -- GLOBAL_STEP: 1012575 | > loss_disc: 2.30469 (2.32242) | > loss_disc_real_0: 0.10265 (0.12141) | > loss_disc_real_1: 0.20979 (0.21228) | > loss_disc_real_2: 0.20059 (0.21602) | > loss_disc_real_3: 0.21277 (0.21994) | > loss_disc_real_4: 0.21245 (0.21544) | > loss_disc_real_5: 0.19184 (0.21453) | > loss_0: 2.30469 (2.32242) | > grad_norm_0: 29.70085 (17.73612) | > loss_gen: 2.37795 (2.55933) | > loss_kl: 2.45922 (2.65492) | > loss_feat: 7.91764 (8.68825) | > loss_mel: 17.50350 (17.78785) | > loss_duration: 1.66345 (1.70523) | > loss_1: 31.92175 (33.39563) | > grad_norm_1: 164.47054 (147.95615) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91670 (2.02934) | > loader_time: 0.03900 (0.03844)  --> STEP: 1451/15287 -- GLOBAL_STEP: 1012600 | > loss_disc: 2.37823 (2.32216) | > loss_disc_real_0: 0.13303 (0.12120) | > loss_disc_real_1: 0.22849 (0.21224) | > loss_disc_real_2: 0.22228 (0.21597) | > loss_disc_real_3: 0.23356 (0.21985) | > loss_disc_real_4: 0.21900 (0.21533) | > loss_disc_real_5: 0.23737 (0.21453) | > loss_0: 2.37823 (2.32216) | > grad_norm_0: 13.67547 (17.75138) | > loss_gen: 2.55890 (2.55878) | > loss_kl: 2.69939 (2.65506) | > loss_feat: 8.84688 (8.68873) | > loss_mel: 17.96050 (17.78487) | > loss_duration: 1.67757 (1.70525) | > loss_1: 33.74324 (33.39274) | > grad_norm_1: 158.07632 (148.25566) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42360 (2.02918) | > loader_time: 0.04640 (0.03841)  --> STEP: 1476/15287 -- GLOBAL_STEP: 1012625 | > loss_disc: 2.29704 (2.32167) | > loss_disc_real_0: 0.09774 (0.12103) | > loss_disc_real_1: 0.15275 (0.21212) | > loss_disc_real_2: 0.20767 (0.21591) | > loss_disc_real_3: 0.25344 (0.21984) | > loss_disc_real_4: 0.23753 (0.21530) | > loss_disc_real_5: 0.25738 (0.21448) | > loss_0: 2.29704 (2.32167) | > grad_norm_0: 8.22813 (17.70421) | > loss_gen: 2.52076 (2.55882) | > loss_kl: 2.64754 (2.65505) | > loss_feat: 8.35624 (8.69096) | > loss_mel: 17.58005 (17.78336) | > loss_duration: 1.70950 (1.70510) | > loss_1: 32.81408 (33.39333) | > grad_norm_1: 147.64290 (148.45010) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89200 (2.02966) | > loader_time: 0.03290 (0.03839)  --> STEP: 1501/15287 -- GLOBAL_STEP: 1012650 | > loss_disc: 2.27706 (2.32217) | > loss_disc_real_0: 0.10318 (0.12109) | > loss_disc_real_1: 0.20907 (0.21213) | > loss_disc_real_2: 0.22248 (0.21597) | > loss_disc_real_3: 0.20917 (0.21985) | > loss_disc_real_4: 0.21103 (0.21529) | > loss_disc_real_5: 0.22114 (0.21448) | > loss_0: 2.27706 (2.32217) | > grad_norm_0: 17.96806 (17.68752) | > loss_gen: 2.53793 (2.55814) | > loss_kl: 2.71806 (2.65522) | > loss_feat: 9.21189 (8.68902) | > loss_mel: 18.29524 (17.78367) | > loss_duration: 1.73566 (1.70496) | > loss_1: 34.49878 (33.39106) | > grad_norm_1: 165.44026 (148.51828) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90780 (2.02816) | > loader_time: 0.03420 (0.03831)  --> STEP: 1526/15287 -- GLOBAL_STEP: 1012675 | > loss_disc: 2.37995 (2.32272) | > loss_disc_real_0: 0.14193 (0.12121) | > loss_disc_real_1: 0.19307 (0.21217) | > loss_disc_real_2: 0.22326 (0.21604) | > loss_disc_real_3: 0.19497 (0.21985) | > loss_disc_real_4: 0.18583 (0.21529) | > loss_disc_real_5: 0.18655 (0.21448) | > loss_0: 2.37995 (2.32272) | > grad_norm_0: 8.65710 (17.65042) | > loss_gen: 2.61940 (2.55800) | > loss_kl: 2.67176 (2.65530) | > loss_feat: 8.18341 (8.68819) | > loss_mel: 17.89653 (17.78485) | > loss_duration: 1.65897 (1.70485) | > loss_1: 33.03006 (33.39123) | > grad_norm_1: 80.19144 (147.82561) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04410 (2.02821) | > loader_time: 0.03770 (0.03830)  --> STEP: 1551/15287 -- GLOBAL_STEP: 1012700 | > loss_disc: 2.36838 (2.32290) | > loss_disc_real_0: 0.11886 (0.12133) | > loss_disc_real_1: 0.23967 (0.21217) | > loss_disc_real_2: 0.20905 (0.21612) | > loss_disc_real_3: 0.21289 (0.21989) | > loss_disc_real_4: 0.19973 (0.21531) | > loss_disc_real_5: 0.20148 (0.21448) | > loss_0: 2.36838 (2.32290) | > grad_norm_0: 9.23368 (17.54717) | > loss_gen: 2.50282 (2.55833) | > loss_kl: 2.50790 (2.65558) | > loss_feat: 8.16302 (8.68828) | > loss_mel: 17.89074 (17.78820) | > loss_duration: 1.76306 (1.70498) | > loss_1: 32.82755 (33.39541) | > grad_norm_1: 99.18700 (147.09293) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99300 (2.02788) | > loader_time: 0.03420 (0.03825)  --> STEP: 1576/15287 -- GLOBAL_STEP: 1012725 | > loss_disc: 2.29763 (2.32345) | > loss_disc_real_0: 0.14583 (0.12141) | > loss_disc_real_1: 0.21044 (0.21216) | > loss_disc_real_2: 0.20839 (0.21614) | > loss_disc_real_3: 0.20544 (0.21990) | > loss_disc_real_4: 0.22247 (0.21534) | > loss_disc_real_5: 0.21668 (0.21449) | > loss_0: 2.29763 (2.32345) | > grad_norm_0: 12.57840 (17.48484) | > loss_gen: 2.68254 (2.55796) | > loss_kl: 2.62088 (2.65530) | > loss_feat: 8.90608 (8.68856) | > loss_mel: 17.88597 (17.78962) | > loss_duration: 1.68283 (1.70482) | > loss_1: 33.77828 (33.39631) | > grad_norm_1: 156.67094 (146.60040) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02040 (2.02765) | > loader_time: 0.03750 (0.03821)  --> STEP: 1601/15287 -- GLOBAL_STEP: 1012750 | > loss_disc: 2.23222 (2.32314) | > loss_disc_real_0: 0.12483 (0.12146) | > loss_disc_real_1: 0.18380 (0.21207) | > loss_disc_real_2: 0.20948 (0.21617) | > loss_disc_real_3: 0.22238 (0.21984) | > loss_disc_real_4: 0.20211 (0.21533) | > loss_disc_real_5: 0.18777 (0.21445) | > loss_0: 2.23222 (2.32314) | > grad_norm_0: 10.08404 (17.48567) | > loss_gen: 2.62469 (2.55814) | > loss_kl: 2.62162 (2.65518) | > loss_feat: 8.93211 (8.68978) | > loss_mel: 18.22247 (17.79086) | > loss_duration: 1.75419 (1.70480) | > loss_1: 34.15508 (33.39882) | > grad_norm_1: 41.20571 (146.64677) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08930 (2.02803) | > loader_time: 0.03510 (0.03817)  --> STEP: 1626/15287 -- GLOBAL_STEP: 1012775 | > loss_disc: 2.37709 (2.32302) | > loss_disc_real_0: 0.10812 (0.12139) | > loss_disc_real_1: 0.21359 (0.21217) | > loss_disc_real_2: 0.23216 (0.21623) | > loss_disc_real_3: 0.25345 (0.21985) | > loss_disc_real_4: 0.21987 (0.21531) | > loss_disc_real_5: 0.24215 (0.21447) | > loss_0: 2.37709 (2.32302) | > grad_norm_0: 18.71534 (17.48404) | > loss_gen: 2.51317 (2.55827) | > loss_kl: 2.64411 (2.65496) | > loss_feat: 8.42160 (8.69118) | > loss_mel: 17.62728 (17.79171) | > loss_duration: 1.70818 (1.70478) | > loss_1: 32.91434 (33.40097) | > grad_norm_1: 102.59117 (146.52800) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88820 (2.02898) | > loader_time: 0.03380 (0.03814)  --> STEP: 1651/15287 -- GLOBAL_STEP: 1012800 | > loss_disc: 2.30958 (2.32258) | > loss_disc_real_0: 0.10061 (0.12135) | > loss_disc_real_1: 0.21632 (0.21225) | > loss_disc_real_2: 0.21050 (0.21621) | > loss_disc_real_3: 0.22877 (0.21983) | > loss_disc_real_4: 0.24808 (0.21539) | > loss_disc_real_5: 0.22933 (0.21448) | > loss_0: 2.30958 (2.32258) | > grad_norm_0: 13.08083 (17.53588) | > loss_gen: 2.50495 (2.55888) | > loss_kl: 2.57410 (2.65475) | > loss_feat: 8.64156 (8.69153) | > loss_mel: 17.55738 (17.79257) | > loss_duration: 1.74049 (1.70476) | > loss_1: 33.01849 (33.40254) | > grad_norm_1: 182.28912 (146.67778) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91160 (2.02868) | > loader_time: 0.04120 (0.03812)  --> STEP: 1676/15287 -- GLOBAL_STEP: 1012825 | > loss_disc: 2.34966 (2.32229) | > loss_disc_real_0: 0.08484 (0.12131) | > loss_disc_real_1: 0.20631 (0.21221) | > loss_disc_real_2: 0.21105 (0.21622) | > loss_disc_real_3: 0.22249 (0.21977) | > loss_disc_real_4: 0.22992 (0.21540) | > loss_disc_real_5: 0.18415 (0.21446) | > loss_0: 2.34966 (2.32229) | > grad_norm_0: 14.33297 (17.53659) | > loss_gen: 2.56893 (2.55882) | > loss_kl: 2.71585 (2.65504) | > loss_feat: 9.01333 (8.69225) | > loss_mel: 18.14304 (17.79009) | > loss_duration: 1.66488 (1.70464) | > loss_1: 34.10603 (33.40089) | > grad_norm_1: 177.64864 (146.76062) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99460 (2.02852) | > loader_time: 0.03350 (0.03808)  --> STEP: 1701/15287 -- GLOBAL_STEP: 1012850 | > loss_disc: 2.32296 (2.32180) | > loss_disc_real_0: 0.20078 (0.12133) | > loss_disc_real_1: 0.17688 (0.21208) | > loss_disc_real_2: 0.20502 (0.21612) | > loss_disc_real_3: 0.21891 (0.21974) | > loss_disc_real_4: 0.21401 (0.21539) | > loss_disc_real_5: 0.21911 (0.21453) | > loss_0: 2.32296 (2.32180) | > grad_norm_0: 37.99052 (17.61254) | > loss_gen: 2.49079 (2.55930) | > loss_kl: 2.62308 (2.65460) | > loss_feat: 8.84301 (8.69342) | > loss_mel: 17.58863 (17.78907) | > loss_duration: 1.74799 (1.70456) | > loss_1: 33.29350 (33.40099) | > grad_norm_1: 192.01038 (147.11981) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02110 (2.02814) | > loader_time: 0.03380 (0.03804)  --> STEP: 1726/15287 -- GLOBAL_STEP: 1012875 | > loss_disc: 2.26094 (2.32141) | > loss_disc_real_0: 0.09359 (0.12126) | > loss_disc_real_1: 0.20072 (0.21206) | > loss_disc_real_2: 0.22071 (0.21607) | > loss_disc_real_3: 0.20788 (0.21966) | > loss_disc_real_4: 0.20032 (0.21535) | > loss_disc_real_5: 0.19520 (0.21454) | > loss_0: 2.26094 (2.32141) | > grad_norm_0: 6.54414 (17.58898) | > loss_gen: 2.95232 (2.55941) | > loss_kl: 2.94026 (2.65511) | > loss_feat: 9.48721 (8.69472) | > loss_mel: 17.78514 (17.78972) | > loss_duration: 1.67181 (1.70466) | > loss_1: 34.83675 (33.40366) | > grad_norm_1: 209.40544 (146.86316) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99260 (2.02787) | > loader_time: 0.03300 (0.03804)  --> STEP: 1751/15287 -- GLOBAL_STEP: 1012900 | > loss_disc: 2.25675 (2.32141) | > loss_disc_real_0: 0.09617 (0.12139) | > loss_disc_real_1: 0.20252 (0.21210) | > loss_disc_real_2: 0.22884 (0.21598) | > loss_disc_real_3: 0.22254 (0.21963) | > loss_disc_real_4: 0.22195 (0.21533) | > loss_disc_real_5: 0.20896 (0.21451) | > loss_0: 2.25675 (2.32141) | > grad_norm_0: 17.19298 (17.66711) | > loss_gen: 2.66451 (2.55932) | > loss_kl: 2.66673 (2.65541) | > loss_feat: 9.09760 (8.69540) | > loss_mel: 18.03867 (17.78842) | > loss_duration: 1.71937 (1.70458) | > loss_1: 34.18688 (33.40314) | > grad_norm_1: 146.13914 (146.97588) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95780 (2.02684) | > loader_time: 0.03230 (0.03800)  --> STEP: 1776/15287 -- GLOBAL_STEP: 1012925 | > loss_disc: 2.32983 (2.32122) | > loss_disc_real_0: 0.10257 (0.12131) | > loss_disc_real_1: 0.19386 (0.21209) | > loss_disc_real_2: 0.21410 (0.21596) | > loss_disc_real_3: 0.20143 (0.21959) | > loss_disc_real_4: 0.22291 (0.21534) | > loss_disc_real_5: 0.21534 (0.21449) | > loss_0: 2.32983 (2.32122) | > grad_norm_0: 16.78373 (17.65150) | > loss_gen: 2.41133 (2.55932) | > loss_kl: 2.59605 (2.65548) | > loss_feat: 8.71984 (8.69633) | > loss_mel: 17.18265 (17.78772) | > loss_duration: 1.72696 (1.70463) | > loss_1: 32.63682 (33.40350) | > grad_norm_1: 74.73020 (146.97057) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94920 (2.02625) | > loader_time: 0.03320 (0.03797)  --> STEP: 1801/15287 -- GLOBAL_STEP: 1012950 | > loss_disc: 2.22423 (2.32146) | > loss_disc_real_0: 0.10202 (0.12123) | > loss_disc_real_1: 0.21951 (0.21206) | > loss_disc_real_2: 0.21116 (0.21600) | > loss_disc_real_3: 0.19941 (0.21960) | > loss_disc_real_4: 0.20386 (0.21546) | > loss_disc_real_5: 0.18346 (0.21453) | > loss_0: 2.22423 (2.32146) | > grad_norm_0: 11.60774 (17.64030) | > loss_gen: 2.64623 (2.55894) | > loss_kl: 2.63461 (2.65550) | > loss_feat: 9.01295 (8.69469) | > loss_mel: 17.62029 (17.78600) | > loss_duration: 1.74215 (1.70459) | > loss_1: 33.65623 (33.39975) | > grad_norm_1: 131.39532 (146.89143) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99730 (2.02602) | > loader_time: 0.03260 (0.03796)  --> STEP: 1826/15287 -- GLOBAL_STEP: 1012975 | > loss_disc: 2.33885 (2.32180) | > loss_disc_real_0: 0.11738 (0.12132) | > loss_disc_real_1: 0.19274 (0.21217) | > loss_disc_real_2: 0.22337 (0.21602) | > loss_disc_real_3: 0.21628 (0.21960) | > loss_disc_real_4: 0.21035 (0.21545) | > loss_disc_real_5: 0.16473 (0.21448) | > loss_0: 2.33885 (2.32180) | > grad_norm_0: 11.05483 (17.69582) | > loss_gen: 2.53635 (2.55856) | > loss_kl: 2.62765 (2.65532) | > loss_feat: 8.33019 (8.69350) | > loss_mel: 17.50224 (17.78454) | > loss_duration: 1.73690 (1.70472) | > loss_1: 32.73333 (33.39665) | > grad_norm_1: 88.67882 (146.94264) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98530 (2.02512) | > loader_time: 0.03370 (0.03792)  --> STEP: 1851/15287 -- GLOBAL_STEP: 1013000 | > loss_disc: 2.36320 (2.32151) | > loss_disc_real_0: 0.11355 (0.12126) | > loss_disc_real_1: 0.22705 (0.21216) | > loss_disc_real_2: 0.22300 (0.21601) | > loss_disc_real_3: 0.23842 (0.21957) | > loss_disc_real_4: 0.22546 (0.21544) | > loss_disc_real_5: 0.22376 (0.21450) | > loss_0: 2.36320 (2.32151) | > grad_norm_0: 13.92644 (17.65426) | > loss_gen: 2.51588 (2.55850) | > loss_kl: 2.61780 (2.65545) | > loss_feat: 8.23083 (8.69331) | > loss_mel: 17.94100 (17.78429) | > loss_duration: 1.70227 (1.70478) | > loss_1: 33.00777 (33.39634) | > grad_norm_1: 101.23923 (146.72536) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02800 (2.02398) | > loader_time: 0.03450 (0.03786)  --> STEP: 1876/15287 -- GLOBAL_STEP: 1013025 | > loss_disc: 2.33792 (2.32165) | > loss_disc_real_0: 0.13598 (0.12125) | > loss_disc_real_1: 0.20837 (0.21214) | > loss_disc_real_2: 0.21484 (0.21607) | > loss_disc_real_3: 0.21938 (0.21961) | > loss_disc_real_4: 0.20577 (0.21550) | > loss_disc_real_5: 0.20862 (0.21451) | > loss_0: 2.33792 (2.32165) | > grad_norm_0: 13.88438 (17.66686) | > loss_gen: 2.57656 (2.55868) | > loss_kl: 2.66230 (2.65568) | > loss_feat: 8.61390 (8.69312) | > loss_mel: 17.78036 (17.78594) | > loss_duration: 1.68091 (1.70479) | > loss_1: 33.31403 (33.39820) | > grad_norm_1: 187.34445 (146.88724) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98410 (2.02344) | > loader_time: 0.03290 (0.03782)  --> STEP: 1901/15287 -- GLOBAL_STEP: 1013050 | > loss_disc: 2.36800 (2.32179) | > loss_disc_real_0: 0.11768 (0.12131) | > loss_disc_real_1: 0.18888 (0.21212) | > loss_disc_real_2: 0.21498 (0.21607) | > loss_disc_real_3: 0.23475 (0.21964) | > loss_disc_real_4: 0.21302 (0.21553) | > loss_disc_real_5: 0.21012 (0.21447) | > loss_0: 2.36800 (2.32179) | > grad_norm_0: 18.34890 (17.70765) | > loss_gen: 2.43972 (2.55801) | > loss_kl: 2.67879 (2.65607) | > loss_feat: 8.58689 (8.69146) | > loss_mel: 17.86320 (17.78549) | > loss_duration: 1.69812 (1.70486) | > loss_1: 33.26673 (33.39587) | > grad_norm_1: 124.46938 (146.87288) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86530 (2.02302) | > loader_time: 0.03310 (0.03780)  --> STEP: 1926/15287 -- GLOBAL_STEP: 1013075 | > loss_disc: 2.28357 (2.32143) | > loss_disc_real_0: 0.10950 (0.12132) | > loss_disc_real_1: 0.22113 (0.21204) | > loss_disc_real_2: 0.20514 (0.21605) | > loss_disc_real_3: 0.20246 (0.21964) | > loss_disc_real_4: 0.19853 (0.21552) | > loss_disc_real_5: 0.18860 (0.21444) | > loss_0: 2.28357 (2.32143) | > grad_norm_0: 20.25445 (17.70296) | > loss_gen: 2.45350 (2.55834) | > loss_kl: 2.61665 (2.65655) | > loss_feat: 9.25009 (8.69290) | > loss_mel: 17.58457 (17.78585) | > loss_duration: 1.71825 (1.70480) | > loss_1: 33.62307 (33.39843) | > grad_norm_1: 175.37012 (146.91286) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88000 (2.02254) | > loader_time: 0.03380 (0.03776)  --> STEP: 1951/15287 -- GLOBAL_STEP: 1013100 | > loss_disc: 2.29532 (2.32142) | > loss_disc_real_0: 0.12481 (0.12125) | > loss_disc_real_1: 0.16452 (0.21202) | > loss_disc_real_2: 0.19007 (0.21610) | > loss_disc_real_3: 0.19353 (0.21962) | > loss_disc_real_4: 0.18340 (0.21544) | > loss_disc_real_5: 0.20873 (0.21440) | > loss_0: 2.29532 (2.32142) | > grad_norm_0: 23.69724 (17.69501) | > loss_gen: 2.68836 (2.55849) | > loss_kl: 2.77094 (2.65635) | > loss_feat: 9.45266 (8.69393) | > loss_mel: 18.13472 (17.78599) | > loss_duration: 1.73389 (1.70485) | > loss_1: 34.78058 (33.39959) | > grad_norm_1: 99.35869 (146.80505) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86070 (2.02176) | > loader_time: 0.03120 (0.03772)  --> STEP: 1976/15287 -- GLOBAL_STEP: 1013125 | > loss_disc: 2.28514 (2.32171) | > loss_disc_real_0: 0.15894 (0.12127) | > loss_disc_real_1: 0.19561 (0.21203) | > loss_disc_real_2: 0.21026 (0.21617) | > loss_disc_real_3: 0.19855 (0.21963) | > loss_disc_real_4: 0.21818 (0.21543) | > loss_disc_real_5: 0.22230 (0.21438) | > loss_0: 2.28514 (2.32171) | > grad_norm_0: 20.31371 (17.77738) | > loss_gen: 2.48518 (2.55818) | > loss_kl: 2.64466 (2.65621) | > loss_feat: 8.75592 (8.69399) | > loss_mel: 18.10854 (17.78770) | > loss_duration: 1.70149 (1.70474) | > loss_1: 33.69579 (33.40081) | > grad_norm_1: 168.70329 (147.22054) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85470 (2.02089) | > loader_time: 0.03360 (0.03767)  --> STEP: 2001/15287 -- GLOBAL_STEP: 1013150 | > loss_disc: 2.34826 (2.32141) | > loss_disc_real_0: 0.15069 (0.12115) | > loss_disc_real_1: 0.20382 (0.21202) | > loss_disc_real_2: 0.20480 (0.21614) | > loss_disc_real_3: 0.23766 (0.21957) | > loss_disc_real_4: 0.20480 (0.21536) | > loss_disc_real_5: 0.22940 (0.21434) | > loss_0: 2.34826 (2.32141) | > grad_norm_0: 9.96920 (17.76196) | > loss_gen: 2.44710 (2.55810) | > loss_kl: 2.79595 (2.65675) | > loss_feat: 8.53447 (8.69473) | > loss_mel: 17.88557 (17.78735) | > loss_duration: 1.66794 (1.70472) | > loss_1: 33.33103 (33.40162) | > grad_norm_1: 45.91133 (147.42865) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00840 (2.02016) | > loader_time: 0.03420 (0.03763)  --> STEP: 2026/15287 -- GLOBAL_STEP: 1013175 | > loss_disc: 2.32863 (2.32141) | > loss_disc_real_0: 0.11678 (0.12122) | > loss_disc_real_1: 0.21003 (0.21197) | > loss_disc_real_2: 0.22175 (0.21613) | > loss_disc_real_3: 0.22386 (0.21961) | > loss_disc_real_4: 0.24880 (0.21536) | > loss_disc_real_5: 0.21035 (0.21430) | > loss_0: 2.32863 (2.32141) | > grad_norm_0: 17.42156 (17.73875) | > loss_gen: 2.48517 (2.55826) | > loss_kl: 2.79509 (2.65671) | > loss_feat: 9.13692 (8.69500) | > loss_mel: 18.06610 (17.78868) | > loss_duration: 1.70797 (1.70483) | > loss_1: 34.19124 (33.40345) | > grad_norm_1: 200.25562 (147.30469) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99160 (2.01985) | > loader_time: 0.03730 (0.03760)  --> STEP: 2051/15287 -- GLOBAL_STEP: 1013200 | > loss_disc: 2.39959 (2.32145) | > loss_disc_real_0: 0.13847 (0.12120) | > loss_disc_real_1: 0.21521 (0.21194) | > loss_disc_real_2: 0.24481 (0.21613) | > loss_disc_real_3: 0.21328 (0.21959) | > loss_disc_real_4: 0.21155 (0.21533) | > loss_disc_real_5: 0.21951 (0.21431) | > loss_0: 2.39959 (2.32145) | > grad_norm_0: 18.06747 (17.71214) | > loss_gen: 2.37065 (2.55785) | > loss_kl: 2.67374 (2.65697) | > loss_feat: 8.47125 (8.69514) | > loss_mel: 17.18487 (17.79120) | > loss_duration: 1.70732 (1.70510) | > loss_1: 32.40782 (33.40623) | > grad_norm_1: 112.89452 (147.24457) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96900 (2.01941) | > loader_time: 0.03280 (0.03756)  --> STEP: 2076/15287 -- GLOBAL_STEP: 1013225 | > loss_disc: 2.28992 (2.32151) | > loss_disc_real_0: 0.06190 (0.12122) | > loss_disc_real_1: 0.22137 (0.21188) | > loss_disc_real_2: 0.19872 (0.21611) | > loss_disc_real_3: 0.20637 (0.21958) | > loss_disc_real_4: 0.21768 (0.21535) | > loss_disc_real_5: 0.19717 (0.21427) | > loss_0: 2.28992 (2.32151) | > grad_norm_0: 15.33903 (17.68133) | > loss_gen: 2.46855 (2.55770) | > loss_kl: 2.64813 (2.65672) | > loss_feat: 8.67828 (8.69614) | > loss_mel: 17.73029 (17.79167) | > loss_duration: 1.72287 (1.70522) | > loss_1: 33.24812 (33.40742) | > grad_norm_1: 161.97813 (147.07816) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98200 (2.01846) | > loader_time: 0.03330 (0.03750)  --> STEP: 2101/15287 -- GLOBAL_STEP: 1013250 | > loss_disc: 2.36047 (2.32121) | > loss_disc_real_0: 0.13303 (0.12120) | > loss_disc_real_1: 0.24222 (0.21187) | > loss_disc_real_2: 0.23981 (0.21608) | > loss_disc_real_3: 0.24152 (0.21954) | > loss_disc_real_4: 0.25437 (0.21530) | > loss_disc_real_5: 0.21833 (0.21429) | > loss_0: 2.36047 (2.32121) | > grad_norm_0: 33.58507 (17.68484) | > loss_gen: 2.58759 (2.55780) | > loss_kl: 2.80967 (2.65695) | > loss_feat: 8.74149 (8.69693) | > loss_mel: 17.62359 (17.79111) | > loss_duration: 1.68749 (1.70530) | > loss_1: 33.44983 (33.40806) | > grad_norm_1: 183.21788 (146.99976) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07990 (2.01835) | > loader_time: 0.03830 (0.03747)  --> STEP: 2126/15287 -- GLOBAL_STEP: 1013275 | > loss_disc: 2.27013 (2.32114) | > loss_disc_real_0: 0.08092 (0.12109) | > loss_disc_real_1: 0.20716 (0.21186) | > loss_disc_real_2: 0.20830 (0.21605) | > loss_disc_real_3: 0.23654 (0.21958) | > loss_disc_real_4: 0.23361 (0.21534) | > loss_disc_real_5: 0.24857 (0.21433) | > loss_0: 2.27013 (2.32114) | > grad_norm_0: 27.14795 (17.73153) | > loss_gen: 2.60790 (2.55745) | > loss_kl: 2.58280 (2.65747) | > loss_feat: 9.18907 (8.69625) | > loss_mel: 17.88062 (17.79108) | > loss_duration: 1.71286 (1.70542) | > loss_1: 33.97325 (33.40763) | > grad_norm_1: 213.26924 (147.33447) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98900 (2.01909) | > loader_time: 0.04380 (0.03749)  --> STEP: 2151/15287 -- GLOBAL_STEP: 1013300 | > loss_disc: 2.29090 (2.32090) | > loss_disc_real_0: 0.13847 (0.12101) | > loss_disc_real_1: 0.19102 (0.21183) | > loss_disc_real_2: 0.24188 (0.21602) | > loss_disc_real_3: 0.19519 (0.21955) | > loss_disc_real_4: 0.21642 (0.21533) | > loss_disc_real_5: 0.22245 (0.21442) | > loss_0: 2.29090 (2.32090) | > grad_norm_0: 31.35644 (17.72480) | > loss_gen: 2.47211 (2.55749) | > loss_kl: 2.62612 (2.65776) | > loss_feat: 8.49452 (8.69579) | > loss_mel: 17.71261 (17.79048) | > loss_duration: 1.73152 (1.70548) | > loss_1: 33.03687 (33.40696) | > grad_norm_1: 174.02490 (147.42607) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85300 (2.01864) | > loader_time: 0.03260 (0.03750)  --> STEP: 2176/15287 -- GLOBAL_STEP: 1013325 | > loss_disc: 2.26063 (2.32075) | > loss_disc_real_0: 0.12334 (0.12104) | > loss_disc_real_1: 0.21712 (0.21179) | > loss_disc_real_2: 0.20766 (0.21602) | > loss_disc_real_3: 0.22781 (0.21953) | > loss_disc_real_4: 0.18142 (0.21531) | > loss_disc_real_5: 0.18716 (0.21442) | > loss_0: 2.26063 (2.32075) | > grad_norm_0: 8.92388 (17.71990) | > loss_gen: 2.58069 (2.55744) | > loss_kl: 2.77947 (2.65817) | > loss_feat: 9.45070 (8.69627) | > loss_mel: 18.26511 (17.78901) | > loss_duration: 1.70038 (1.70561) | > loss_1: 34.77635 (33.40647) | > grad_norm_1: 211.38582 (147.73604) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.12930 (2.01749) | > loader_time: 0.03510 (0.03746)  --> STEP: 2201/15287 -- GLOBAL_STEP: 1013350 | > loss_disc: 2.37977 (2.32107) | > loss_disc_real_0: 0.12896 (0.12113) | > loss_disc_real_1: 0.22063 (0.21179) | > loss_disc_real_2: 0.23037 (0.21603) | > loss_disc_real_3: 0.21476 (0.21955) | > loss_disc_real_4: 0.21122 (0.21531) | > loss_disc_real_5: 0.23037 (0.21456) | > loss_0: 2.37977 (2.32107) | > grad_norm_0: 9.67564 (17.71900) | > loss_gen: 2.63884 (2.55732) | > loss_kl: 2.56570 (2.65780) | > loss_feat: 8.76823 (8.69626) | > loss_mel: 17.54439 (17.78864) | > loss_duration: 1.70789 (1.70571) | > loss_1: 33.22504 (33.40567) | > grad_norm_1: 190.91827 (147.57425) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97490 (2.01720) | > loader_time: 0.03360 (0.03743)  --> STEP: 2226/15287 -- GLOBAL_STEP: 1013375 | > loss_disc: 2.29851 (2.32090) | > loss_disc_real_0: 0.11882 (0.12110) | > loss_disc_real_1: 0.18960 (0.21171) | > loss_disc_real_2: 0.18046 (0.21598) | > loss_disc_real_3: 0.22177 (0.21956) | > loss_disc_real_4: 0.20071 (0.21539) | > loss_disc_real_5: 0.17410 (0.21453) | > loss_0: 2.29851 (2.32090) | > grad_norm_0: 11.36161 (17.73295) | > loss_gen: 2.40195 (2.55717) | > loss_kl: 2.72264 (2.65801) | > loss_feat: 8.69297 (8.69699) | > loss_mel: 17.95275 (17.78798) | > loss_duration: 1.67656 (1.70567) | > loss_1: 33.44687 (33.40576) | > grad_norm_1: 102.24055 (147.61868) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98130 (2.01742) | > loader_time: 0.03360 (0.03741)  --> STEP: 2251/15287 -- GLOBAL_STEP: 1013400 | > loss_disc: 2.41739 (2.32080) | > loss_disc_real_0: 0.12970 (0.12109) | > loss_disc_real_1: 0.16146 (0.21175) | > loss_disc_real_2: 0.21466 (0.21598) | > loss_disc_real_3: 0.23128 (0.21963) | > loss_disc_real_4: 0.22060 (0.21541) | > loss_disc_real_5: 0.20034 (0.21446) | > loss_0: 2.41739 (2.32080) | > grad_norm_0: 37.87889 (17.74917) | > loss_gen: 2.35872 (2.55758) | > loss_kl: 2.85594 (2.65825) | > loss_feat: 8.45787 (8.69650) | > loss_mel: 17.99113 (17.78762) | > loss_duration: 1.68535 (1.70562) | > loss_1: 33.34903 (33.40552) | > grad_norm_1: 219.67268 (147.79947) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.70570 (2.01743) | > loader_time: 0.04830 (0.03740)  --> STEP: 2276/15287 -- GLOBAL_STEP: 1013425 | > loss_disc: 2.17758 (2.32067) | > loss_disc_real_0: 0.08490 (0.12112) | > loss_disc_real_1: 0.21231 (0.21173) | > loss_disc_real_2: 0.20847 (0.21594) | > loss_disc_real_3: 0.22699 (0.21961) | > loss_disc_real_4: 0.18102 (0.21538) | > loss_disc_real_5: 0.20598 (0.21444) | > loss_0: 2.17758 (2.32067) | > grad_norm_0: 13.45956 (17.75028) | > loss_gen: 2.84142 (2.55765) | > loss_kl: 2.67873 (2.65854) | > loss_feat: 9.29713 (8.69700) | > loss_mel: 18.60795 (17.78722) | > loss_duration: 1.70104 (1.70562) | > loss_1: 35.12627 (33.40599) | > grad_norm_1: 270.00134 (147.91443) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.84560 (2.01652) | > loader_time: 0.03340 (0.03736)  --> STEP: 2301/15287 -- GLOBAL_STEP: 1013450 | > loss_disc: 2.22410 (2.32061) | > loss_disc_real_0: 0.11621 (0.12111) | > loss_disc_real_1: 0.19752 (0.21173) | > loss_disc_real_2: 0.21835 (0.21594) | > loss_disc_real_3: 0.22683 (0.21959) | > loss_disc_real_4: 0.19227 (0.21538) | > loss_disc_real_5: 0.17923 (0.21445) | > loss_0: 2.22410 (2.32061) | > grad_norm_0: 17.15600 (17.75165) | > loss_gen: 2.52649 (2.55774) | > loss_kl: 2.53331 (2.65857) | > loss_feat: 9.19164 (8.69847) | > loss_mel: 18.08130 (17.78724) | > loss_duration: 1.72121 (1.70564) | > loss_1: 34.05394 (33.40759) | > grad_norm_1: 164.23837 (147.86475) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87980 (2.01624) | > loader_time: 0.03310 (0.03731)  --> STEP: 2326/15287 -- GLOBAL_STEP: 1013475 | > loss_disc: 2.40204 (2.32040) | > loss_disc_real_0: 0.14356 (0.12108) | > loss_disc_real_1: 0.17348 (0.21166) | > loss_disc_real_2: 0.15625 (0.21586) | > loss_disc_real_3: 0.28591 (0.21959) | > loss_disc_real_4: 0.21916 (0.21538) | > loss_disc_real_5: 0.26386 (0.21441) | > loss_0: 2.40204 (2.32040) | > grad_norm_0: 26.92562 (17.74183) | > loss_gen: 2.51284 (2.55781) | > loss_kl: 2.75058 (2.65833) | > loss_feat: 8.71360 (8.69960) | > loss_mel: 18.15646 (17.78729) | > loss_duration: 1.71218 (1.70564) | > loss_1: 33.84566 (33.40861) | > grad_norm_1: 172.66553 (147.95395) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97880 (2.01560) | > loader_time: 0.03330 (0.03727)  --> STEP: 2351/15287 -- GLOBAL_STEP: 1013500 | > loss_disc: 2.28976 (2.32046) | > loss_disc_real_0: 0.16924 (0.12105) | > loss_disc_real_1: 0.19829 (0.21159) | > loss_disc_real_2: 0.21092 (0.21577) | > loss_disc_real_3: 0.23193 (0.21959) | > loss_disc_real_4: 0.17855 (0.21534) | > loss_disc_real_5: 0.20858 (0.21439) | > loss_0: 2.28976 (2.32046) | > grad_norm_0: 17.59874 (17.71694) | > loss_gen: 2.69646 (2.55748) | > loss_kl: 2.80707 (2.65875) | > loss_feat: 8.37199 (8.69973) | > loss_mel: 17.02590 (17.78760) | > loss_duration: 1.69241 (1.70563) | > loss_1: 32.59383 (33.40912) | > grad_norm_1: 90.65759 (147.92581) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90630 (2.01543) | > loader_time: 0.03520 (0.03724)  --> STEP: 2376/15287 -- GLOBAL_STEP: 1013525 | > loss_disc: 2.31854 (2.32071) | > loss_disc_real_0: 0.11422 (0.12103) | > loss_disc_real_1: 0.23689 (0.21152) | > loss_disc_real_2: 0.24789 (0.21577) | > loss_disc_real_3: 0.22305 (0.21954) | > loss_disc_real_4: 0.22630 (0.21538) | > loss_disc_real_5: 0.21917 (0.21448) | > loss_0: 2.31854 (2.32071) | > grad_norm_0: 5.06038 (17.72874) | > loss_gen: 2.32055 (2.55697) | > loss_kl: 2.52534 (2.65869) | > loss_feat: 8.22446 (8.69938) | > loss_mel: 17.59894 (17.78717) | > loss_duration: 1.71595 (1.70568) | > loss_1: 32.38523 (33.40781) | > grad_norm_1: 170.19981 (147.78818) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.12080 (2.01553) | > loader_time: 0.04050 (0.03722)  --> STEP: 2401/15287 -- GLOBAL_STEP: 1013550 | > loss_disc: 2.36851 (2.32074) | > loss_disc_real_0: 0.07166 (0.12111) | > loss_disc_real_1: 0.18455 (0.21146) | > loss_disc_real_2: 0.22010 (0.21566) | > loss_disc_real_3: 0.20668 (0.21954) | > loss_disc_real_4: 0.22379 (0.21532) | > loss_disc_real_5: 0.21195 (0.21449) | > loss_0: 2.36851 (2.32074) | > grad_norm_0: 11.68176 (17.75854) | > loss_gen: 2.40868 (2.55679) | > loss_kl: 2.59941 (2.65906) | > loss_feat: 8.92317 (8.70059) | > loss_mel: 17.56960 (17.78752) | > loss_duration: 1.66816 (1.70556) | > loss_1: 33.16902 (33.40943) | > grad_norm_1: 195.60191 (147.97147) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98520 (2.01523) | > loader_time: 0.03350 (0.03719)  --> STEP: 2426/15287 -- GLOBAL_STEP: 1013575 | > loss_disc: 2.33067 (2.32114) | > loss_disc_real_0: 0.14049 (0.12136) | > loss_disc_real_1: 0.21390 (0.21157) | > loss_disc_real_2: 0.19169 (0.21573) | > loss_disc_real_3: 0.24276 (0.21959) | > loss_disc_real_4: 0.19576 (0.21533) | > loss_disc_real_5: 0.20692 (0.21445) | > loss_0: 2.33067 (2.32114) | > grad_norm_0: 7.74185 (17.74950) | > loss_gen: 2.61497 (2.55717) | > loss_kl: 2.87052 (2.65922) | > loss_feat: 8.78721 (8.70095) | > loss_mel: 17.77690 (17.78841) | > loss_duration: 1.74471 (1.70559) | > loss_1: 33.79431 (33.41125) | > grad_norm_1: 184.45056 (147.51762) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01120 (2.01531) | > loader_time: 0.03350 (0.03717)  --> STEP: 2451/15287 -- GLOBAL_STEP: 1013600 | > loss_disc: 2.27751 (2.32121) | > loss_disc_real_0: 0.10450 (0.12138) | > loss_disc_real_1: 0.22806 (0.21159) | > loss_disc_real_2: 0.20025 (0.21572) | > loss_disc_real_3: 0.21867 (0.21960) | > loss_disc_real_4: 0.17439 (0.21533) | > loss_disc_real_5: 0.18182 (0.21443) | > loss_0: 2.27751 (2.32121) | > grad_norm_0: 15.21114 (17.71933) | > loss_gen: 2.58918 (2.55732) | > loss_kl: 2.75405 (2.65963) | > loss_feat: 9.11330 (8.70211) | > loss_mel: 18.00100 (17.79034) | > loss_duration: 1.73793 (1.70564) | > loss_1: 34.19545 (33.41496) | > grad_norm_1: 199.87514 (147.40297) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85150 (2.01504) | > loader_time: 0.03250 (0.03715)  --> STEP: 2476/15287 -- GLOBAL_STEP: 1013625 | > loss_disc: 2.33189 (2.32126) | > loss_disc_real_0: 0.10783 (0.12141) | > loss_disc_real_1: 0.21051 (0.21156) | > loss_disc_real_2: 0.21776 (0.21573) | > loss_disc_real_3: 0.23735 (0.21963) | > loss_disc_real_4: 0.21576 (0.21535) | > loss_disc_real_5: 0.24563 (0.21446) | > loss_0: 2.33189 (2.32126) | > grad_norm_0: 13.15863 (17.68048) | > loss_gen: 2.69985 (2.55754) | > loss_kl: 2.62113 (2.65971) | > loss_feat: 8.86670 (8.70240) | > loss_mel: 17.86300 (17.79088) | > loss_duration: 1.75658 (1.70578) | > loss_1: 33.80727 (33.41625) | > grad_norm_1: 118.63993 (147.17332) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87510 (2.01459) | > loader_time: 0.02990 (0.03712)  --> STEP: 2501/15287 -- GLOBAL_STEP: 1013650 | > loss_disc: 2.37090 (2.32135) | > loss_disc_real_0: 0.13620 (0.12153) | > loss_disc_real_1: 0.24339 (0.21157) | > loss_disc_real_2: 0.24514 (0.21574) | > loss_disc_real_3: 0.20414 (0.21961) | > loss_disc_real_4: 0.22552 (0.21535) | > loss_disc_real_5: 0.21523 (0.21445) | > loss_0: 2.37090 (2.32135) | > grad_norm_0: 10.55817 (17.65947) | > loss_gen: 2.43250 (2.55753) | > loss_kl: 2.75148 (2.65974) | > loss_feat: 8.58424 (8.70154) | > loss_mel: 17.47902 (17.79054) | > loss_duration: 1.77793 (1.70576) | > loss_1: 33.02517 (33.41506) | > grad_norm_1: 113.38570 (147.08092) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91030 (2.01391) | > loader_time: 0.03210 (0.03708)  --> STEP: 2526/15287 -- GLOBAL_STEP: 1013675 | > loss_disc: 2.20201 (2.32139) | > loss_disc_real_0: 0.10147 (0.12150) | > loss_disc_real_1: 0.21082 (0.21156) | > loss_disc_real_2: 0.21773 (0.21575) | > loss_disc_real_3: 0.21258 (0.21966) | > loss_disc_real_4: 0.19794 (0.21540) | > loss_disc_real_5: 0.21307 (0.21445) | > loss_0: 2.20201 (2.32139) | > grad_norm_0: 15.38179 (17.65753) | > loss_gen: 2.78211 (2.55767) | > loss_kl: 2.69414 (2.65982) | > loss_feat: 9.04681 (8.70156) | > loss_mel: 17.76321 (17.79014) | > loss_duration: 1.71344 (1.70577) | > loss_1: 33.99971 (33.41492) | > grad_norm_1: 125.74685 (147.09900) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94250 (2.01357) | > loader_time: 0.04020 (0.03706)  --> STEP: 2551/15287 -- GLOBAL_STEP: 1013700 | > loss_disc: 2.28197 (2.32176) | > loss_disc_real_0: 0.11955 (0.12157) | > loss_disc_real_1: 0.22898 (0.21164) | > loss_disc_real_2: 0.21509 (0.21575) | > loss_disc_real_3: 0.21204 (0.21971) | > loss_disc_real_4: 0.21579 (0.21540) | > loss_disc_real_5: 0.19266 (0.21451) | > loss_0: 2.28197 (2.32176) | > grad_norm_0: 23.05596 (17.66603) | > loss_gen: 2.79225 (2.55773) | > loss_kl: 2.69302 (2.65996) | > loss_feat: 9.18327 (8.70067) | > loss_mel: 17.78292 (17.79142) | > loss_duration: 1.69390 (1.70581) | > loss_1: 34.14537 (33.41554) | > grad_norm_1: 158.82823 (147.02554) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95400 (2.01306) | > loader_time: 0.03160 (0.03702)  --> STEP: 2576/15287 -- GLOBAL_STEP: 1013725 | > loss_disc: 2.35131 (2.32153) | > loss_disc_real_0: 0.13933 (0.12151) | > loss_disc_real_1: 0.22831 (0.21163) | > loss_disc_real_2: 0.27229 (0.21574) | > loss_disc_real_3: 0.24893 (0.21972) | > loss_disc_real_4: 0.25747 (0.21542) | > loss_disc_real_5: 0.19661 (0.21452) | > loss_0: 2.35131 (2.32153) | > grad_norm_0: 28.66788 (17.67220) | > loss_gen: 2.50829 (2.55784) | > loss_kl: 2.64727 (2.66005) | > loss_feat: 8.27663 (8.70121) | > loss_mel: 17.15936 (17.79053) | > loss_duration: 1.72305 (1.70578) | > loss_1: 32.31460 (33.41537) | > grad_norm_1: 183.18086 (147.09033) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99540 (2.01256) | > loader_time: 0.03850 (0.03699)  --> STEP: 2601/15287 -- GLOBAL_STEP: 1013750 | > loss_disc: 2.29815 (2.32152) | > loss_disc_real_0: 0.07048 (0.12170) | > loss_disc_real_1: 0.21415 (0.21166) | > loss_disc_real_2: 0.23135 (0.21568) | > loss_disc_real_3: 0.23095 (0.21968) | > loss_disc_real_4: 0.22799 (0.21541) | > loss_disc_real_5: 0.20448 (0.21447) | > loss_0: 2.29815 (2.32152) | > grad_norm_0: 10.43741 (17.69717) | > loss_gen: 2.60778 (2.55809) | > loss_kl: 2.63568 (2.66010) | > loss_feat: 8.80592 (8.70090) | > loss_mel: 18.07522 (17.78971) | > loss_duration: 1.74895 (1.70579) | > loss_1: 33.87355 (33.41455) | > grad_norm_1: 185.10355 (147.20909) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88520 (2.01266) | > loader_time: 0.03590 (0.03697)  --> STEP: 2626/15287 -- GLOBAL_STEP: 1013775 | > loss_disc: 2.22111 (2.32137) | > loss_disc_real_0: 0.12591 (0.12177) | > loss_disc_real_1: 0.22463 (0.21165) | > loss_disc_real_2: 0.21649 (0.21564) | > loss_disc_real_3: 0.22343 (0.21963) | > loss_disc_real_4: 0.25008 (0.21537) | > loss_disc_real_5: 0.22007 (0.21449) | > loss_0: 2.22111 (2.32137) | > grad_norm_0: 13.98782 (17.67669) | > loss_gen: 2.52804 (2.55806) | > loss_kl: 2.63808 (2.66031) | > loss_feat: 9.19622 (8.70067) | > loss_mel: 17.99905 (17.78829) | > loss_duration: 1.66583 (1.70574) | > loss_1: 34.02723 (33.41304) | > grad_norm_1: 160.33037 (147.07883) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06280 (2.01218) | > loader_time: 0.03200 (0.03693)  --> STEP: 2651/15287 -- GLOBAL_STEP: 1013800 | > loss_disc: 2.23484 (2.32137) | > loss_disc_real_0: 0.10951 (0.12183) | > loss_disc_real_1: 0.23120 (0.21163) | > loss_disc_real_2: 0.20889 (0.21562) | > loss_disc_real_3: 0.21727 (0.21959) | > loss_disc_real_4: 0.21530 (0.21531) | > loss_disc_real_5: 0.18318 (0.21448) | > loss_0: 2.23484 (2.32137) | > grad_norm_0: 23.79940 (17.66300) | > loss_gen: 2.48593 (2.55765) | > loss_kl: 2.70864 (2.66032) | > loss_feat: 8.74831 (8.70012) | > loss_mel: 17.85982 (17.78704) | > loss_duration: 1.73899 (1.70575) | > loss_1: 33.54169 (33.41085) | > grad_norm_1: 214.95651 (146.91742) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00600 (2.01183) | > loader_time: 0.03200 (0.03689)  --> STEP: 2676/15287 -- GLOBAL_STEP: 1013825 | > loss_disc: 2.25160 (2.32136) | > loss_disc_real_0: 0.11632 (0.12178) | > loss_disc_real_1: 0.20142 (0.21163) | > loss_disc_real_2: 0.25020 (0.21562) | > loss_disc_real_3: 0.26495 (0.21955) | > loss_disc_real_4: 0.26026 (0.21519) | > loss_disc_real_5: 0.18544 (0.21442) | > loss_0: 2.25160 (2.32136) | > grad_norm_0: 16.95727 (17.66023) | > loss_gen: 2.63057 (2.55752) | > loss_kl: 2.60622 (2.66071) | > loss_feat: 9.11699 (8.70067) | > loss_mel: 18.08119 (17.78739) | > loss_duration: 1.71907 (1.70583) | > loss_1: 34.15404 (33.41208) | > grad_norm_1: 154.69084 (146.96703) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86160 (2.01127) | > loader_time: 0.03670 (0.03686)  --> STEP: 2701/15287 -- GLOBAL_STEP: 1013850 | > loss_disc: 2.26891 (2.32118) | > loss_disc_real_0: 0.09844 (0.12173) | > loss_disc_real_1: 0.21693 (0.21162) | > loss_disc_real_2: 0.21648 (0.21565) | > loss_disc_real_3: 0.22079 (0.21954) | > loss_disc_real_4: 0.20701 (0.21520) | > loss_disc_real_5: 0.19429 (0.21438) | > loss_0: 2.26891 (2.32118) | > grad_norm_0: 16.70644 (17.64215) | > loss_gen: 2.62242 (2.55754) | > loss_kl: 2.65693 (2.66091) | > loss_feat: 8.38713 (8.70114) | > loss_mel: 17.31638 (17.78754) | > loss_duration: 1.67383 (1.70585) | > loss_1: 32.65668 (33.41298) | > grad_norm_1: 73.34596 (147.11345) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98760 (2.01057) | > loader_time: 0.03620 (0.03683)  --> STEP: 2726/15287 -- GLOBAL_STEP: 1013875 | > loss_disc: 2.37916 (2.32109) | > loss_disc_real_0: 0.17370 (0.12172) | > loss_disc_real_1: 0.24289 (0.21162) | > loss_disc_real_2: 0.23318 (0.21567) | > loss_disc_real_3: 0.22768 (0.21955) | > loss_disc_real_4: 0.21569 (0.21517) | > loss_disc_real_5: 0.20927 (0.21436) | > loss_0: 2.37916 (2.32109) | > grad_norm_0: 14.59224 (17.65325) | > loss_gen: 2.43081 (2.55750) | > loss_kl: 2.77178 (2.66066) | > loss_feat: 7.94327 (8.70156) | > loss_mel: 17.54252 (17.78723) | > loss_duration: 1.68026 (1.70585) | > loss_1: 32.36865 (33.41278) | > grad_norm_1: 147.74464 (147.03453) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06740 (2.01012) | > loader_time: 0.03230 (0.03680)  --> STEP: 2751/15287 -- GLOBAL_STEP: 1013900 | > loss_disc: 2.28770 (2.32092) | > loss_disc_real_0: 0.13035 (0.12165) | > loss_disc_real_1: 0.19440 (0.21162) | > loss_disc_real_2: 0.19307 (0.21565) | > loss_disc_real_3: 0.18858 (0.21952) | > loss_disc_real_4: 0.18732 (0.21518) | > loss_disc_real_5: 0.20558 (0.21434) | > loss_0: 2.28770 (2.32092) | > grad_norm_0: 6.18926 (17.64568) | > loss_gen: 2.76545 (2.55763) | > loss_kl: 2.63535 (2.66108) | > loss_feat: 8.86316 (8.70272) | > loss_mel: 17.94106 (17.78663) | > loss_duration: 1.75520 (1.70586) | > loss_1: 33.96022 (33.41392) | > grad_norm_1: 105.56487 (147.09749) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89300 (2.00987) | > loader_time: 0.03220 (0.03677)  --> STEP: 2776/15287 -- GLOBAL_STEP: 1013925 | > loss_disc: 2.31807 (2.32111) | > loss_disc_real_0: 0.12935 (0.12168) | > loss_disc_real_1: 0.17561 (0.21163) | > loss_disc_real_2: 0.21577 (0.21573) | > loss_disc_real_3: 0.20333 (0.21964) | > loss_disc_real_4: 0.22417 (0.21523) | > loss_disc_real_5: 0.21852 (0.21440) | > loss_0: 2.31807 (2.32111) | > grad_norm_0: 7.93128 (17.66087) | > loss_gen: 2.58013 (2.55751) | > loss_kl: 2.61645 (2.66087) | > loss_feat: 9.01194 (8.70094) | > loss_mel: 17.65154 (17.78548) | > loss_duration: 1.71353 (1.70583) | > loss_1: 33.57358 (33.41063) | > grad_norm_1: 101.06296 (146.78453) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93030 (2.00956) | > loader_time: 0.03680 (0.03674)  --> STEP: 2801/15287 -- GLOBAL_STEP: 1013950 | > loss_disc: 2.37083 (2.32142) | > loss_disc_real_0: 0.13072 (0.12179) | > loss_disc_real_1: 0.24046 (0.21169) | > loss_disc_real_2: 0.22733 (0.21569) | > loss_disc_real_3: 0.25402 (0.21964) | > loss_disc_real_4: 0.25990 (0.21527) | > loss_disc_real_5: 0.19504 (0.21439) | > loss_0: 2.37083 (2.32142) | > grad_norm_0: 14.97533 (17.63035) | > loss_gen: 2.65900 (2.55748) | > loss_kl: 2.66340 (2.66143) | > loss_feat: 8.98091 (8.70083) | > loss_mel: 18.28522 (17.78676) | > loss_duration: 1.71734 (1.70589) | > loss_1: 34.30587 (33.41237) | > grad_norm_1: 146.51558 (146.32440) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89350 (2.00887) | > loader_time: 0.03340 (0.03670)  --> STEP: 2826/15287 -- GLOBAL_STEP: 1013975 | > loss_disc: 2.35450 (2.32143) | > loss_disc_real_0: 0.16923 (0.12182) | > loss_disc_real_1: 0.20462 (0.21168) | > loss_disc_real_2: 0.21007 (0.21568) | > loss_disc_real_3: 0.22258 (0.21963) | > loss_disc_real_4: 0.23328 (0.21525) | > loss_disc_real_5: 0.21659 (0.21438) | > loss_0: 2.35450 (2.32143) | > grad_norm_0: 18.28859 (17.63432) | > loss_gen: 2.41622 (2.55741) | > loss_kl: 2.74274 (2.66111) | > loss_feat: 8.75067 (8.70156) | > loss_mel: 17.47836 (17.78742) | > loss_duration: 1.75513 (1.70593) | > loss_1: 33.14312 (33.41343) | > grad_norm_1: 135.44342 (146.44269) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96300 (2.00814) | > loader_time: 0.03210 (0.03666)  --> STEP: 2851/15287 -- GLOBAL_STEP: 1014000 | > loss_disc: 2.37016 (2.32142) | > loss_disc_real_0: 0.10478 (0.12178) | > loss_disc_real_1: 0.24178 (0.21166) | > loss_disc_real_2: 0.24206 (0.21566) | > loss_disc_real_3: 0.20699 (0.21960) | > loss_disc_real_4: 0.19565 (0.21525) | > loss_disc_real_5: 0.24255 (0.21437) | > loss_0: 2.37016 (2.32142) | > grad_norm_0: 21.49634 (17.61936) | > loss_gen: 2.48079 (2.55715) | > loss_kl: 2.56387 (2.66075) | > loss_feat: 8.50486 (8.70120) | > loss_mel: 17.22634 (17.78657) | > loss_duration: 1.67038 (1.70591) | > loss_1: 32.44624 (33.41158) | > grad_norm_1: 109.77111 (146.40533) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.98470 (2.00756) | > loader_time: 0.03590 (0.03662)  --> STEP: 2876/15287 -- GLOBAL_STEP: 1014025 | > loss_disc: 2.25836 (2.32134) | > loss_disc_real_0: 0.10369 (0.12174) | > loss_disc_real_1: 0.19538 (0.21162) | > loss_disc_real_2: 0.19510 (0.21563) | > loss_disc_real_3: 0.17102 (0.21961) | > loss_disc_real_4: 0.19439 (0.21527) | > loss_disc_real_5: 0.21523 (0.21435) | > loss_0: 2.25836 (2.32134) | > grad_norm_0: 14.05140 (17.64075) | > loss_gen: 2.53657 (2.55698) | > loss_kl: 2.61122 (2.66053) | > loss_feat: 9.12203 (8.70072) | > loss_mel: 17.88753 (17.78588) | > loss_duration: 1.69947 (1.70585) | > loss_1: 33.85682 (33.40997) | > grad_norm_1: 250.91992 (146.48334) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87690 (2.00743) | > loader_time: 0.02930 (0.03659)  --> STEP: 2901/15287 -- GLOBAL_STEP: 1014050 | > loss_disc: 2.35719 (2.32158) | > loss_disc_real_0: 0.12584 (0.12178) | > loss_disc_real_1: 0.25106 (0.21168) | > loss_disc_real_2: 0.24961 (0.21564) | > loss_disc_real_3: 0.22089 (0.21970) | > loss_disc_real_4: 0.23648 (0.21534) | > loss_disc_real_5: 0.24810 (0.21432) | > loss_0: 2.35719 (2.32158) | > grad_norm_0: 11.16257 (17.61969) | > loss_gen: 2.51014 (2.55711) | > loss_kl: 2.62163 (2.66058) | > loss_feat: 7.98367 (8.70130) | > loss_mel: 17.24387 (17.78627) | > loss_duration: 1.68086 (1.70588) | > loss_1: 32.04016 (33.41114) | > grad_norm_1: 87.55423 (146.29514) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85990 (2.00738) | > loader_time: 0.03240 (0.03656)  --> STEP: 2926/15287 -- GLOBAL_STEP: 1014075 | > loss_disc: 2.28957 (2.32160) | > loss_disc_real_0: 0.11934 (0.12176) | > loss_disc_real_1: 0.15931 (0.21165) | > loss_disc_real_2: 0.18728 (0.21560) | > loss_disc_real_3: 0.21001 (0.21965) | > loss_disc_real_4: 0.19042 (0.21533) | > loss_disc_real_5: 0.22672 (0.21426) | > loss_0: 2.28957 (2.32160) | > grad_norm_0: 23.75622 (17.61351) | > loss_gen: 2.46372 (2.55681) | > loss_kl: 2.64915 (2.66075) | > loss_feat: 8.93690 (8.69992) | > loss_mel: 17.73791 (17.78598) | > loss_duration: 1.73301 (1.70595) | > loss_1: 33.52069 (33.40942) | > grad_norm_1: 161.09271 (146.22041) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94700 (2.00701) | > loader_time: 0.03580 (0.03653)  --> STEP: 2951/15287 -- GLOBAL_STEP: 1014100 | > loss_disc: 2.32319 (2.32174) | > loss_disc_real_0: 0.14491 (0.12179) | > loss_disc_real_1: 0.21196 (0.21160) | > loss_disc_real_2: 0.20462 (0.21557) | > loss_disc_real_3: 0.23712 (0.21966) | > loss_disc_real_4: 0.20660 (0.21533) | > loss_disc_real_5: 0.24929 (0.21427) | > loss_0: 2.32319 (2.32174) | > grad_norm_0: 20.22176 (17.62810) | > loss_gen: 2.53692 (2.55632) | > loss_kl: 2.64095 (2.66073) | > loss_feat: 8.43954 (8.69841) | > loss_mel: 17.33715 (17.78489) | > loss_duration: 1.66483 (1.70594) | > loss_1: 32.61938 (33.40628) | > grad_norm_1: 190.47443 (146.40814) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90050 (2.00697) | > loader_time: 0.03750 (0.03651)  --> STEP: 2976/15287 -- GLOBAL_STEP: 1014125 | > loss_disc: 2.27349 (2.32161) | > loss_disc_real_0: 0.12826 (0.12175) | > loss_disc_real_1: 0.21112 (0.21159) | > loss_disc_real_2: 0.20145 (0.21557) | > loss_disc_real_3: 0.21043 (0.21967) | > loss_disc_real_4: 0.19383 (0.21530) | > loss_disc_real_5: 0.22490 (0.21428) | > loss_0: 2.27349 (2.32161) | > grad_norm_0: 16.91888 (17.61431) | > loss_gen: 2.48891 (2.55643) | > loss_kl: 2.64161 (2.66065) | > loss_feat: 8.62870 (8.69885) | > loss_mel: 17.58423 (17.78448) | > loss_duration: 1.70228 (1.70605) | > loss_1: 33.04573 (33.40647) | > grad_norm_1: 128.41173 (146.33652) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02020 (2.00679) | > loader_time: 0.03620 (0.03649)  --> STEP: 3001/15287 -- GLOBAL_STEP: 1014150 | > loss_disc: 2.27437 (2.32172) | > loss_disc_real_0: 0.11942 (0.12174) | > loss_disc_real_1: 0.19738 (0.21159) | > loss_disc_real_2: 0.22077 (0.21558) | > loss_disc_real_3: 0.21233 (0.21968) | > loss_disc_real_4: 0.22265 (0.21527) | > loss_disc_real_5: 0.20311 (0.21437) | > loss_0: 2.27437 (2.32172) | > grad_norm_0: 7.53282 (17.63160) | > loss_gen: 2.61750 (2.55643) | > loss_kl: 2.89285 (2.66038) | > loss_feat: 8.67570 (8.69874) | > loss_mel: 17.54503 (17.78470) | > loss_duration: 1.68289 (1.70603) | > loss_1: 33.41397 (33.40629) | > grad_norm_1: 140.25075 (146.37993) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30380 (2.00639) | > loader_time: 0.03530 (0.03647)  --> STEP: 3026/15287 -- GLOBAL_STEP: 1014175 | > loss_disc: 2.41298 (2.32143) | > loss_disc_real_0: 0.16195 (0.12170) | > loss_disc_real_1: 0.24298 (0.21159) | > loss_disc_real_2: 0.21746 (0.21554) | > loss_disc_real_3: 0.19771 (0.21965) | > loss_disc_real_4: 0.20780 (0.21525) | > loss_disc_real_5: 0.23264 (0.21435) | > loss_0: 2.41298 (2.32143) | > grad_norm_0: 31.73971 (17.65517) | > loss_gen: 2.35786 (2.55637) | > loss_kl: 2.65586 (2.66035) | > loss_feat: 8.59588 (8.69947) | > loss_mel: 17.65230 (17.78367) | > loss_duration: 1.67809 (1.70604) | > loss_1: 32.93999 (33.40591) | > grad_norm_1: 187.27223 (146.56915) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99270 (2.00651) | > loader_time: 0.03310 (0.03644)  --> STEP: 3051/15287 -- GLOBAL_STEP: 1014200 | > loss_disc: 2.32111 (2.32136) | > loss_disc_real_0: 0.18913 (0.12174) | > loss_disc_real_1: 0.23801 (0.21160) | > loss_disc_real_2: 0.21521 (0.21553) | > loss_disc_real_3: 0.21062 (0.21964) | > loss_disc_real_4: 0.20935 (0.21525) | > loss_disc_real_5: 0.23710 (0.21432) | > loss_0: 2.32111 (2.32136) | > grad_norm_0: 35.45373 (17.66017) | > loss_gen: 2.59601 (2.55636) | > loss_kl: 2.70468 (2.66062) | > loss_feat: 8.23106 (8.69887) | > loss_mel: 17.91035 (17.78292) | > loss_duration: 1.74547 (1.70602) | > loss_1: 33.18757 (33.40479) | > grad_norm_1: 154.04947 (146.56683) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87420 (2.00655) | > loader_time: 0.03290 (0.03641)  --> STEP: 3076/15287 -- GLOBAL_STEP: 1014225 | > loss_disc: 2.39251 (2.32141) | > loss_disc_real_0: 0.11098 (0.12172) | > loss_disc_real_1: 0.19951 (0.21161) | > loss_disc_real_2: 0.22532 (0.21554) | > loss_disc_real_3: 0.25690 (0.21967) | > loss_disc_real_4: 0.23022 (0.21529) | > loss_disc_real_5: 0.26639 (0.21437) | > loss_0: 2.39251 (2.32141) | > grad_norm_0: 50.31448 (17.69855) | > loss_gen: 2.50701 (2.55652) | > loss_kl: 2.76406 (2.66054) | > loss_feat: 8.33821 (8.69876) | > loss_mel: 17.75911 (17.78196) | > loss_duration: 1.68952 (1.70600) | > loss_1: 33.05791 (33.40380) | > grad_norm_1: 155.48862 (146.66948) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95950 (2.00619) | > loader_time: 0.03400 (0.03638)  --> STEP: 3101/15287 -- GLOBAL_STEP: 1014250 | > loss_disc: 2.34352 (2.32132) | > loss_disc_real_0: 0.14689 (0.12167) | > loss_disc_real_1: 0.20388 (0.21157) | > loss_disc_real_2: 0.19971 (0.21552) | > loss_disc_real_3: 0.19220 (0.21979) | > loss_disc_real_4: 0.22614 (0.21528) | > loss_disc_real_5: 0.19045 (0.21444) | > loss_0: 2.34352 (2.32132) | > grad_norm_0: 22.98569 (17.75500) | > loss_gen: 2.57572 (2.55688) | > loss_kl: 2.63648 (2.66022) | > loss_feat: 9.05483 (8.69936) | > loss_mel: 17.87897 (17.78248) | > loss_duration: 1.72637 (1.70603) | > loss_1: 33.87237 (33.40498) | > grad_norm_1: 107.25881 (146.80653) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94420 (2.00630) | > loader_time: 0.03180 (0.03635)  --> STEP: 3126/15287 -- GLOBAL_STEP: 1014275 | > loss_disc: 2.33021 (2.32112) | > loss_disc_real_0: 0.18221 (0.12169) | > loss_disc_real_1: 0.18395 (0.21158) | > loss_disc_real_2: 0.20246 (0.21550) | > loss_disc_real_3: 0.21420 (0.21976) | > loss_disc_real_4: 0.23343 (0.21532) | > loss_disc_real_5: 0.21345 (0.21443) | > loss_0: 2.33021 (2.32112) | > grad_norm_0: 18.38609 (17.79349) | > loss_gen: 2.61013 (2.55706) | > loss_kl: 2.75366 (2.66021) | > loss_feat: 8.41280 (8.69950) | > loss_mel: 17.71432 (17.78111) | > loss_duration: 1.68606 (1.70601) | > loss_1: 33.17698 (33.40389) | > grad_norm_1: 143.96979 (147.12701) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43270 (2.00979) | > loader_time: 0.03320 (0.03633)  --> STEP: 3151/15287 -- GLOBAL_STEP: 1014300 | > loss_disc: 2.39992 (2.32132) | > loss_disc_real_0: 0.14423 (0.12180) | > loss_disc_real_1: 0.20079 (0.21161) | > loss_disc_real_2: 0.17743 (0.21561) | > loss_disc_real_3: 0.18327 (0.21988) | > loss_disc_real_4: 0.16138 (0.21543) | > loss_disc_real_5: 0.17463 (0.21451) | > loss_0: 2.39992 (2.32132) | > grad_norm_0: 13.81245 (17.82270) | > loss_gen: 2.51044 (2.55805) | > loss_kl: 2.75909 (2.65991) | > loss_feat: 8.56391 (8.70052) | > loss_mel: 17.76549 (17.78067) | > loss_duration: 1.68726 (1.70592) | > loss_1: 33.28620 (33.40509) | > grad_norm_1: 66.22416 (147.39027) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23230 (2.01288) | > loader_time: 0.02910 (0.03630)  --> STEP: 3176/15287 -- GLOBAL_STEP: 1014325 | > loss_disc: 2.32148 (2.32125) | > loss_disc_real_0: 0.11569 (0.12176) | > loss_disc_real_1: 0.20546 (0.21160) | > loss_disc_real_2: 0.19968 (0.21565) | > loss_disc_real_3: 0.20055 (0.21986) | > loss_disc_real_4: 0.18775 (0.21542) | > loss_disc_real_5: 0.20740 (0.21445) | > loss_0: 2.32148 (2.32125) | > grad_norm_0: 10.53707 (17.81033) | > loss_gen: 2.52781 (2.55778) | > loss_kl: 2.69885 (2.65966) | > loss_feat: 9.30853 (8.70013) | > loss_mel: 18.58704 (17.78048) | > loss_duration: 1.71724 (1.70596) | > loss_1: 34.83947 (33.40401) | > grad_norm_1: 107.47481 (147.41542) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.08560 (2.01747) | > loader_time: 0.04660 (0.03630)  --> STEP: 3201/15287 -- GLOBAL_STEP: 1014350 | > loss_disc: 2.26411 (2.32127) | > loss_disc_real_0: 0.08813 (0.12171) | > loss_disc_real_1: 0.20270 (0.21159) | > loss_disc_real_2: 0.23621 (0.21566) | > loss_disc_real_3: 0.22780 (0.21985) | > loss_disc_real_4: 0.22926 (0.21542) | > loss_disc_real_5: 0.19533 (0.21444) | > loss_0: 2.26411 (2.32127) | > grad_norm_0: 8.12508 (17.78143) | > loss_gen: 2.54194 (2.55774) | > loss_kl: 2.63609 (2.65960) | > loss_feat: 8.61701 (8.70069) | > loss_mel: 17.87002 (17.78077) | > loss_duration: 1.71954 (1.70598) | > loss_1: 33.38461 (33.40480) | > grad_norm_1: 156.61502 (147.26680) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.30830 (2.02288) | > loader_time: 0.03390 (0.03629)  --> STEP: 3226/15287 -- GLOBAL_STEP: 1014375 | > loss_disc: 2.37146 (2.32122) | > loss_disc_real_0: 0.15428 (0.12164) | > loss_disc_real_1: 0.21033 (0.21165) | > loss_disc_real_2: 0.22780 (0.21566) | > loss_disc_real_3: 0.23380 (0.21981) | > loss_disc_real_4: 0.23034 (0.21545) | > loss_disc_real_5: 0.19811 (0.21443) | > loss_0: 2.37146 (2.32122) | > grad_norm_0: 7.92825 (17.74524) | > loss_gen: 2.62797 (2.55794) | > loss_kl: 2.74222 (2.65986) | > loss_feat: 8.59562 (8.70195) | > loss_mel: 18.09974 (17.78254) | > loss_duration: 1.67240 (1.70600) | > loss_1: 33.73796 (33.40830) | > grad_norm_1: 124.08070 (147.23961) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.15610 (2.02817) | > loader_time: 0.03260 (0.03627)  --> STEP: 3251/15287 -- GLOBAL_STEP: 1014400 | > loss_disc: 2.42226 (2.32160) | > loss_disc_real_0: 0.27433 (0.12179) | > loss_disc_real_1: 0.26349 (0.21170) | > loss_disc_real_2: 0.25743 (0.21571) | > loss_disc_real_3: 0.24087 (0.21983) | > loss_disc_real_4: 0.25594 (0.21548) | > loss_disc_real_5: 0.23269 (0.21443) | > loss_0: 2.42226 (2.32160) | > grad_norm_0: 16.89340 (17.75663) | > loss_gen: 2.74941 (2.55809) | > loss_kl: 2.67303 (2.66005) | > loss_feat: 8.42359 (8.70236) | > loss_mel: 18.14184 (17.78402) | > loss_duration: 1.67496 (1.70596) | > loss_1: 33.66284 (33.41048) | > grad_norm_1: 120.06755 (147.07481) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.09510 (2.03517) | > loader_time: 0.03570 (0.03626)  --> STEP: 3276/15287 -- GLOBAL_STEP: 1014425 | > loss_disc: 2.30980 (2.32163) | > loss_disc_real_0: 0.10130 (0.12187) | > loss_disc_real_1: 0.22256 (0.21169) | > loss_disc_real_2: 0.20062 (0.21569) | > loss_disc_real_3: 0.24107 (0.21980) | > loss_disc_real_4: 0.22203 (0.21546) | > loss_disc_real_5: 0.17001 (0.21439) | > loss_0: 2.30980 (2.32163) | > grad_norm_0: 6.38182 (17.71862) | > loss_gen: 2.73437 (2.55799) | > loss_kl: 2.80335 (2.66008) | > loss_feat: 8.66265 (8.70329) | > loss_mel: 17.76942 (17.78504) | > loss_duration: 1.73116 (1.70604) | > loss_1: 33.70095 (33.41244) | > grad_norm_1: 89.46795 (146.58678) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.64520 (2.03557) | > loader_time: 0.04480 (0.03629)  --> STEP: 3301/15287 -- GLOBAL_STEP: 1014450 | > loss_disc: 2.36921 (2.32200) | > loss_disc_real_0: 0.09231 (0.12195) | > loss_disc_real_1: 0.20201 (0.21173) | > loss_disc_real_2: 0.22018 (0.21574) | > loss_disc_real_3: 0.22146 (0.21979) | > loss_disc_real_4: 0.20716 (0.21546) | > loss_disc_real_5: 0.24353 (0.21442) | > loss_0: 2.36921 (2.32200) | > grad_norm_0: 11.01833 (17.67435) | > loss_gen: 2.42984 (2.55786) | > loss_kl: 2.85013 (2.66002) | > loss_feat: 8.18784 (8.70149) | > loss_mel: 17.90416 (17.78503) | > loss_duration: 1.69461 (1.70607) | > loss_1: 33.06657 (33.41048) | > grad_norm_1: 56.50990 (145.99823) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.46040 (2.04082) | > loader_time: 0.03150 (0.03627)  --> STEP: 3326/15287 -- GLOBAL_STEP: 1014475 | > loss_disc: 2.43706 (2.32208) | > loss_disc_real_0: 0.11224 (0.12196) | > loss_disc_real_1: 0.25438 (0.21176) | > loss_disc_real_2: 0.23859 (0.21575) | > loss_disc_real_3: 0.24110 (0.21978) | > loss_disc_real_4: 0.22198 (0.21546) | > loss_disc_real_5: 0.17171 (0.21451) | > loss_0: 2.43706 (2.32208) | > grad_norm_0: 4.88963 (17.62687) | > loss_gen: 2.47808 (2.55813) | > loss_kl: 2.65656 (2.65985) | > loss_feat: 8.70909 (8.70222) | > loss_mel: 17.82635 (17.78614) | > loss_duration: 1.72630 (1.70605) | > loss_1: 33.39639 (33.41241) | > grad_norm_1: 65.70857 (145.52980) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72690 (2.04633) | > loader_time: 0.03110 (0.03625)  --> STEP: 3351/15287 -- GLOBAL_STEP: 1014500 | > loss_disc: 2.28667 (2.32209) | > loss_disc_real_0: 0.11760 (0.12198) | > loss_disc_real_1: 0.19677 (0.21174) | > loss_disc_real_2: 0.19661 (0.21572) | > loss_disc_real_3: 0.20402 (0.21979) | > loss_disc_real_4: 0.21446 (0.21548) | > loss_disc_real_5: 0.18918 (0.21451) | > loss_0: 2.28667 (2.32209) | > grad_norm_0: 8.15417 (17.59785) | > loss_gen: 2.68137 (2.55825) | > loss_kl: 2.78444 (2.65966) | > loss_feat: 8.93648 (8.70175) | > loss_mel: 17.99568 (17.78643) | > loss_duration: 1.65438 (1.70599) | > loss_1: 34.05236 (33.41209) | > grad_norm_1: 79.63686 (145.24307) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.13880 (2.05259) | > loader_time: 0.03530 (0.03625)  --> STEP: 3376/15287 -- GLOBAL_STEP: 1014525 | > loss_disc: 2.31627 (2.32203) | > loss_disc_real_0: 0.11216 (0.12196) | > loss_disc_real_1: 0.20682 (0.21175) | > loss_disc_real_2: 0.21231 (0.21570) | > loss_disc_real_3: 0.21208 (0.21978) | > loss_disc_real_4: 0.21209 (0.21549) | > loss_disc_real_5: 0.20737 (0.21451) | > loss_0: 2.31627 (2.32203) | > grad_norm_0: 20.81368 (17.58870) | > loss_gen: 2.41416 (2.55809) | > loss_kl: 2.79182 (2.65972) | > loss_feat: 7.94585 (8.70128) | > loss_mel: 17.45474 (17.78618) | > loss_duration: 1.71529 (1.70603) | > loss_1: 32.32185 (33.41131) | > grad_norm_1: 111.50848 (145.22304) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 4.04790 (2.05930) | > loader_time: 0.03650 (0.03624)  --> STEP: 3401/15287 -- GLOBAL_STEP: 1014550 | > loss_disc: 2.28699 (2.32177) | > loss_disc_real_0: 0.08967 (0.12189) | > loss_disc_real_1: 0.21328 (0.21174) | > loss_disc_real_2: 0.18941 (0.21566) | > loss_disc_real_3: 0.21028 (0.21975) | > loss_disc_real_4: 0.21851 (0.21545) | > loss_disc_real_5: 0.25160 (0.21453) | > loss_0: 2.28699 (2.32177) | > grad_norm_0: 12.00323 (17.58997) | > loss_gen: 2.58451 (2.55806) | > loss_kl: 2.79807 (2.65942) | > loss_feat: 8.85761 (8.70164) | > loss_mel: 17.30216 (17.78537) | > loss_duration: 1.68835 (1.70600) | > loss_1: 33.23070 (33.41050) | > grad_norm_1: 159.31154 (145.17523) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.84340 (2.06404) | > loader_time: 0.03510 (0.03623)  --> STEP: 3426/15287 -- GLOBAL_STEP: 1014575 | > loss_disc: 2.33416 (2.32170) | > loss_disc_real_0: 0.14410 (0.12193) | > loss_disc_real_1: 0.22372 (0.21176) | > loss_disc_real_2: 0.22239 (0.21568) | > loss_disc_real_3: 0.23731 (0.21979) | > loss_disc_real_4: 0.24932 (0.21546) | > loss_disc_real_5: 0.23016 (0.21452) | > loss_0: 2.33416 (2.32170) | > grad_norm_0: 12.46829 (17.57363) | > loss_gen: 2.65674 (2.55826) | > loss_kl: 2.73578 (2.65946) | > loss_feat: 8.45144 (8.70162) | > loss_mel: 17.41089 (17.78450) | > loss_duration: 1.68573 (1.70595) | > loss_1: 32.94058 (33.40981) | > grad_norm_1: 139.98624 (145.10046) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.67930 (2.06621) | > loader_time: 0.03650 (0.03622)  --> STEP: 3451/15287 -- GLOBAL_STEP: 1014600 | > loss_disc: 2.38499 (2.32155) | > loss_disc_real_0: 0.15029 (0.12188) | > loss_disc_real_1: 0.21582 (0.21174) | > loss_disc_real_2: 0.22317 (0.21564) | > loss_disc_real_3: 0.20193 (0.21977) | > loss_disc_real_4: 0.23811 (0.21545) | > loss_disc_real_5: 0.20437 (0.21451) | > loss_0: 2.38499 (2.32155) | > grad_norm_0: 27.67034 (17.55157) | > loss_gen: 2.56976 (2.55816) | > loss_kl: 2.65217 (2.65933) | > loss_feat: 8.76872 (8.70176) | > loss_mel: 17.03381 (17.78375) | > loss_duration: 1.66975 (1.70600) | > loss_1: 32.69421 (33.40902) | > grad_norm_1: 64.11799 (145.04025) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29970 (2.07169) | > loader_time: 0.03320 (0.03620)  --> STEP: 3476/15287 -- GLOBAL_STEP: 1014625 | > loss_disc: 2.27628 (2.32153) | > loss_disc_real_0: 0.11804 (0.12192) | > loss_disc_real_1: 0.24031 (0.21175) | > loss_disc_real_2: 0.20122 (0.21561) | > loss_disc_real_3: 0.21427 (0.21973) | > loss_disc_real_4: 0.21977 (0.21548) | > loss_disc_real_5: 0.21844 (0.21447) | > loss_0: 2.27628 (2.32153) | > grad_norm_0: 13.03030 (17.53446) | > loss_gen: 2.64920 (2.55819) | > loss_kl: 2.60913 (2.65940) | > loss_feat: 9.30742 (8.70232) | > loss_mel: 18.16775 (17.78218) | > loss_duration: 1.69561 (1.70599) | > loss_1: 34.42911 (33.40811) | > grad_norm_1: 86.09402 (144.91994) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29980 (2.07703) | > loader_time: 0.03100 (0.03620)  --> STEP: 3501/15287 -- GLOBAL_STEP: 1014650 | > loss_disc: 2.35971 (2.32146) | > loss_disc_real_0: 0.17075 (0.12192) | > loss_disc_real_1: 0.22812 (0.21173) | > loss_disc_real_2: 0.27919 (0.21567) | > loss_disc_real_3: 0.25977 (0.21972) | > loss_disc_real_4: 0.23507 (0.21550) | > loss_disc_real_5: 0.21073 (0.21446) | > loss_0: 2.35971 (2.32146) | > grad_norm_0: 15.01459 (17.55118) | > loss_gen: 2.73095 (2.55831) | > loss_kl: 2.69924 (2.65946) | > loss_feat: 8.63302 (8.70196) | > loss_mel: 17.67620 (17.78148) | > loss_duration: 1.68682 (1.70599) | > loss_1: 33.42623 (33.40723) | > grad_norm_1: 135.58490 (144.88060) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30850 (2.08086) | > loader_time: 0.03300 (0.03617)  --> STEP: 3526/15287 -- GLOBAL_STEP: 1014675 | > loss_disc: 2.21443 (2.32131) | > loss_disc_real_0: 0.08384 (0.12193) | > loss_disc_real_1: 0.20384 (0.21175) | > loss_disc_real_2: 0.18840 (0.21566) | > loss_disc_real_3: 0.18697 (0.21972) | > loss_disc_real_4: 0.18756 (0.21550) | > loss_disc_real_5: 0.20475 (0.21443) | > loss_0: 2.21443 (2.32131) | > grad_norm_0: 7.00079 (17.53850) | > loss_gen: 2.70201 (2.55834) | > loss_kl: 2.53665 (2.65971) | > loss_feat: 8.47022 (8.70150) | > loss_mel: 17.41931 (17.78036) | > loss_duration: 1.73165 (1.70595) | > loss_1: 32.85985 (33.40589) | > grad_norm_1: 124.13955 (144.82391) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22700 (2.08690) | > loader_time: 0.04310 (0.03616)  --> STEP: 3551/15287 -- GLOBAL_STEP: 1014700 | > loss_disc: 2.28908 (2.32153) | > loss_disc_real_0: 0.17475 (0.12206) | > loss_disc_real_1: 0.22686 (0.21185) | > loss_disc_real_2: 0.18823 (0.21571) | > loss_disc_real_3: 0.19696 (0.21973) | > loss_disc_real_4: 0.22395 (0.21551) | > loss_disc_real_5: 0.21683 (0.21443) | > loss_0: 2.28908 (2.32153) | > grad_norm_0: 24.40020 (17.54648) | > loss_gen: 2.55690 (2.55863) | > loss_kl: 2.64391 (2.65988) | > loss_feat: 9.16205 (8.70190) | > loss_mel: 17.98965 (17.78193) | > loss_duration: 1.70744 (1.70600) | > loss_1: 34.05995 (33.40837) | > grad_norm_1: 202.56911 (144.73465) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.63300 (2.09203) | > loader_time: 0.03390 (0.03616)  --> STEP: 3576/15287 -- GLOBAL_STEP: 1014725 | > loss_disc: 2.25861 (2.32133) | > loss_disc_real_0: 0.11427 (0.12200) | > loss_disc_real_1: 0.22275 (0.21184) | > loss_disc_real_2: 0.24004 (0.21571) | > loss_disc_real_3: 0.18935 (0.21971) | > loss_disc_real_4: 0.18971 (0.21550) | > loss_disc_real_5: 0.22589 (0.21442) | > loss_0: 2.25861 (2.32133) | > grad_norm_0: 20.04205 (17.54876) | > loss_gen: 2.60905 (2.55861) | > loss_kl: 2.72233 (2.65971) | > loss_feat: 9.19681 (8.70208) | > loss_mel: 17.96265 (17.78170) | > loss_duration: 1.70766 (1.70601) | > loss_1: 34.19849 (33.40815) | > grad_norm_1: 144.28986 (144.76636) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29750 (2.09628) | > loader_time: 0.03970 (0.03617)  --> STEP: 3601/15287 -- GLOBAL_STEP: 1014750 | > loss_disc: 2.34789 (2.32153) | > loss_disc_real_0: 0.16050 (0.12203) | > loss_disc_real_1: 0.21153 (0.21181) | > loss_disc_real_2: 0.19251 (0.21570) | > loss_disc_real_3: 0.23643 (0.21975) | > loss_disc_real_4: 0.22578 (0.21552) | > loss_disc_real_5: 0.26266 (0.21447) | > loss_0: 2.34789 (2.32153) | > grad_norm_0: 14.64088 (17.53299) | > loss_gen: 2.74412 (2.55853) | > loss_kl: 2.64636 (2.65996) | > loss_feat: 8.73481 (8.70121) | > loss_mel: 18.35522 (17.78163) | > loss_duration: 1.70087 (1.70597) | > loss_1: 34.18138 (33.40733) | > grad_norm_1: 90.26075 (144.63127) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.06350 (2.10033) | > loader_time: 0.03190 (0.03615)  --> STEP: 3626/15287 -- GLOBAL_STEP: 1014775 | > loss_disc: 2.32165 (2.32163) | > loss_disc_real_0: 0.12273 (0.12201) | > loss_disc_real_1: 0.24639 (0.21191) | > loss_disc_real_2: 0.23143 (0.21576) | > loss_disc_real_3: 0.20232 (0.21975) | > loss_disc_real_4: 0.21338 (0.21557) | > loss_disc_real_5: 0.20688 (0.21448) | > loss_0: 2.32165 (2.32163) | > grad_norm_0: 30.72149 (17.53999) | > loss_gen: 2.41734 (2.55847) | > loss_kl: 2.74665 (2.65996) | > loss_feat: 8.52444 (8.70075) | > loss_mel: 17.68757 (17.78184) | > loss_duration: 1.71190 (1.70603) | > loss_1: 33.08791 (33.40707) | > grad_norm_1: 201.52957 (144.63123) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.33920 (2.10500) | > loader_time: 0.04020 (0.03616)  --> STEP: 3651/15287 -- GLOBAL_STEP: 1014800 | > loss_disc: 2.40495 (2.32155) | > loss_disc_real_0: 0.13078 (0.12198) | > loss_disc_real_1: 0.20569 (0.21188) | > loss_disc_real_2: 0.19952 (0.21571) | > loss_disc_real_3: 0.23568 (0.21974) | > loss_disc_real_4: 0.18830 (0.21553) | > loss_disc_real_5: 0.26179 (0.21448) | > loss_0: 2.40495 (2.32155) | > grad_norm_0: 25.79044 (17.56127) | > loss_gen: 2.39847 (2.55815) | > loss_kl: 3.01665 (2.66014) | > loss_feat: 8.69484 (8.70075) | > loss_mel: 18.02449 (17.78170) | > loss_duration: 1.68245 (1.70595) | > loss_1: 33.81691 (33.40672) | > grad_norm_1: 187.67546 (144.77310) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.52460 (2.10910) | > loader_time: 0.03600 (0.03614)  --> STEP: 3676/15287 -- GLOBAL_STEP: 1014825 | > loss_disc: 2.34559 (2.32141) | > loss_disc_real_0: 0.11868 (0.12198) | > loss_disc_real_1: 0.21257 (0.21188) | > loss_disc_real_2: 0.21743 (0.21569) | > loss_disc_real_3: 0.24381 (0.21971) | > loss_disc_real_4: 0.23341 (0.21548) | > loss_disc_real_5: 0.20509 (0.21446) | > loss_0: 2.34559 (2.32141) | > grad_norm_0: 13.25667 (17.54272) | > loss_gen: 2.45915 (2.55805) | > loss_kl: 2.85208 (2.66052) | > loss_feat: 8.49789 (8.70159) | > loss_mel: 17.65891 (17.78291) | > loss_duration: 1.71191 (1.70593) | > loss_1: 33.17994 (33.40902) | > grad_norm_1: 199.82338 (144.73714) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41430 (2.11427) | > loader_time: 0.03540 (0.03613)  --> STEP: 3701/15287 -- GLOBAL_STEP: 1014850 | > loss_disc: 2.32619 (2.32128) | > loss_disc_real_0: 0.09746 (0.12199) | > loss_disc_real_1: 0.19366 (0.21186) | > loss_disc_real_2: 0.19507 (0.21566) | > loss_disc_real_3: 0.23404 (0.21969) | > loss_disc_real_4: 0.21315 (0.21546) | > loss_disc_real_5: 0.20571 (0.21443) | > loss_0: 2.32619 (2.32128) | > grad_norm_0: 4.99684 (17.52165) | > loss_gen: 2.75038 (2.55809) | > loss_kl: 2.74702 (2.66062) | > loss_feat: 9.17747 (8.70256) | > loss_mel: 17.78099 (17.78358) | > loss_duration: 1.71864 (1.70590) | > loss_1: 34.17450 (33.41076) | > grad_norm_1: 59.23149 (144.54158) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.79700 (2.11923) | > loader_time: 0.03100 (0.03611)  --> STEP: 3726/15287 -- GLOBAL_STEP: 1014875 | > loss_disc: 2.31754 (2.32133) | > loss_disc_real_0: 0.18206 (0.12202) | > loss_disc_real_1: 0.21473 (0.21187) | > loss_disc_real_2: 0.24675 (0.21570) | > loss_disc_real_3: 0.23227 (0.21966) | > loss_disc_real_4: 0.24247 (0.21546) | > loss_disc_real_5: 0.17888 (0.21439) | > loss_0: 2.31754 (2.32133) | > grad_norm_0: 33.84499 (17.50970) | > loss_gen: 2.75051 (2.55803) | > loss_kl: 2.53582 (2.66061) | > loss_feat: 8.40286 (8.70216) | > loss_mel: 17.74883 (17.78425) | > loss_duration: 1.71869 (1.70586) | > loss_1: 33.15670 (33.41092) | > grad_norm_1: 167.73282 (144.45006) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.59550 (2.12324) | > loader_time: 0.03690 (0.03609)  --> STEP: 3751/15287 -- GLOBAL_STEP: 1014900 | > loss_disc: 2.34258 (2.32164) | > loss_disc_real_0: 0.11889 (0.12212) | > loss_disc_real_1: 0.27757 (0.21194) | > loss_disc_real_2: 0.20475 (0.21574) | > loss_disc_real_3: 0.23913 (0.21974) | > loss_disc_real_4: 0.23503 (0.21550) | > loss_disc_real_5: 0.19536 (0.21442) | > loss_0: 2.34258 (2.32164) | > grad_norm_0: 19.37047 (17.50877) | > loss_gen: 2.50917 (2.55837) | > loss_kl: 2.65368 (2.66048) | > loss_feat: 9.00484 (8.70235) | > loss_mel: 18.58260 (17.78435) | > loss_duration: 1.70982 (1.70586) | > loss_1: 34.46011 (33.41140) | > grad_norm_1: 169.57907 (144.32925) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42700 (2.12498) | > loader_time: 0.03640 (0.03608)  --> STEP: 3776/15287 -- GLOBAL_STEP: 1014925 | > loss_disc: 2.48204 (2.32165) | > loss_disc_real_0: 0.15856 (0.12208) | > loss_disc_real_1: 0.23285 (0.21194) | > loss_disc_real_2: 0.20521 (0.21576) | > loss_disc_real_3: 0.24241 (0.21976) | > loss_disc_real_4: 0.22194 (0.21551) | > loss_disc_real_5: 0.20125 (0.21442) | > loss_0: 2.48204 (2.32165) | > grad_norm_0: 28.05189 (17.49084) | > loss_gen: 2.23099 (2.55840) | > loss_kl: 2.60957 (2.66035) | > loss_feat: 7.89137 (8.70227) | > loss_mel: 17.51655 (17.78411) | > loss_duration: 1.73880 (1.70592) | > loss_1: 31.98728 (33.41106) | > grad_norm_1: 203.75859 (144.31575) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.67120 (2.12906) | > loader_time: 0.04430 (0.03607)  --> STEP: 3801/15287 -- GLOBAL_STEP: 1014950 | > loss_disc: 2.23118 (2.32158) | > loss_disc_real_0: 0.06934 (0.12200) | > loss_disc_real_1: 0.18227 (0.21195) | > loss_disc_real_2: 0.20836 (0.21576) | > loss_disc_real_3: 0.21734 (0.21979) | > loss_disc_real_4: 0.20978 (0.21550) | > loss_disc_real_5: 0.22454 (0.21444) | > loss_0: 2.23118 (2.32158) | > grad_norm_0: 10.92478 (17.48541) | > loss_gen: 2.72462 (2.55839) | > loss_kl: 2.48245 (2.66033) | > loss_feat: 8.88701 (8.70263) | > loss_mel: 18.13325 (17.78343) | > loss_duration: 1.74194 (1.70593) | > loss_1: 33.96926 (33.41071) | > grad_norm_1: 173.58005 (144.43872) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.53170 (2.13292) | > loader_time: 0.03780 (0.03606)  --> STEP: 3826/15287 -- GLOBAL_STEP: 1014975 | > loss_disc: 2.29615 (2.32133) | > loss_disc_real_0: 0.12039 (0.12195) | > loss_disc_real_1: 0.20167 (0.21195) | > loss_disc_real_2: 0.21220 (0.21575) | > loss_disc_real_3: 0.21640 (0.21975) | > loss_disc_real_4: 0.21244 (0.21547) | > loss_disc_real_5: 0.18301 (0.21440) | > loss_0: 2.29615 (2.32133) | > grad_norm_0: 11.45679 (17.46151) | > loss_gen: 2.59473 (2.55844) | > loss_kl: 2.77336 (2.66016) | > loss_feat: 8.89994 (8.70316) | > loss_mel: 18.09186 (17.78282) | > loss_duration: 1.69690 (1.70593) | > loss_1: 34.05680 (33.41051) | > grad_norm_1: 161.95284 (144.45740) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.92820 (2.13668) | > loader_time: 0.03050 (0.03606)  --> STEP: 3851/15287 -- GLOBAL_STEP: 1015000 | > loss_disc: 2.33106 (2.32144) | > loss_disc_real_0: 0.13464 (0.12197) | > loss_disc_real_1: 0.20035 (0.21199) | > loss_disc_real_2: 0.20648 (0.21576) | > loss_disc_real_3: 0.20440 (0.21975) | > loss_disc_real_4: 0.22082 (0.21547) | > loss_disc_real_5: 0.19375 (0.21440) | > loss_0: 2.33106 (2.32144) | > grad_norm_0: 12.02034 (17.43336) | > loss_gen: 2.54726 (2.55836) | > loss_kl: 2.54700 (2.66030) | > loss_feat: 8.67813 (8.70339) | > loss_mel: 18.19823 (17.78381) | > loss_duration: 1.70732 (1.70594) | > loss_1: 33.67795 (33.41180) | > grad_norm_1: 109.07203 (144.36070) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34880 (2.14050) | > loader_time: 0.03330 (0.03605)  --> STEP: 3876/15287 -- GLOBAL_STEP: 1015025 | > loss_disc: 2.41783 (2.32153) | > loss_disc_real_0: 0.15577 (0.12200) | > loss_disc_real_1: 0.22947 (0.21199) | > loss_disc_real_2: 0.22530 (0.21577) | > loss_disc_real_3: 0.23665 (0.21976) | > loss_disc_real_4: 0.21438 (0.21548) | > loss_disc_real_5: 0.24357 (0.21440) | > loss_0: 2.41783 (2.32153) | > grad_norm_0: 27.65843 (17.43355) | > loss_gen: 2.44127 (2.55836) | > loss_kl: 2.66544 (2.66009) | > loss_feat: 8.07822 (8.70254) | > loss_mel: 18.22028 (17.78357) | > loss_duration: 1.72034 (1.70598) | > loss_1: 33.12555 (33.41055) | > grad_norm_1: 173.97989 (144.36240) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96520 (2.14386) | > loader_time: 0.03680 (0.03604)  --> STEP: 3901/15287 -- GLOBAL_STEP: 1015050 | > loss_disc: 2.35112 (2.32160) | > loss_disc_real_0: 0.14229 (0.12202) | > loss_disc_real_1: 0.20363 (0.21198) | > loss_disc_real_2: 0.17227 (0.21578) | > loss_disc_real_3: 0.19884 (0.21976) | > loss_disc_real_4: 0.20013 (0.21547) | > loss_disc_real_5: 0.22135 (0.21440) | > loss_0: 2.35112 (2.32160) | > grad_norm_0: 8.84868 (17.39953) | > loss_gen: 2.49711 (2.55823) | > loss_kl: 2.65189 (2.65996) | > loss_feat: 8.66806 (8.70262) | > loss_mel: 18.08023 (17.78402) | > loss_duration: 1.70605 (1.70609) | > loss_1: 33.60334 (33.41092) | > grad_norm_1: 50.57547 (144.07869) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55860 (2.14763) | > loader_time: 0.03180 (0.03603)  --> STEP: 3926/15287 -- GLOBAL_STEP: 1015075 | > loss_disc: 2.36029 (2.32156) | > loss_disc_real_0: 0.13615 (0.12202) | > loss_disc_real_1: 0.25570 (0.21200) | > loss_disc_real_2: 0.23581 (0.21576) | > loss_disc_real_3: 0.24725 (0.21976) | > loss_disc_real_4: 0.25581 (0.21548) | > loss_disc_real_5: 0.24925 (0.21441) | > loss_0: 2.36029 (2.32156) | > grad_norm_0: 23.81376 (17.37899) | > loss_gen: 2.64317 (2.55826) | > loss_kl: 2.60714 (2.65998) | > loss_feat: 8.69285 (8.70315) | > loss_mel: 17.35723 (17.78438) | > loss_duration: 1.67415 (1.70617) | > loss_1: 32.97454 (33.41195) | > grad_norm_1: 156.47490 (144.06358) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43780 (2.15067) | > loader_time: 0.03450 (0.03602)  --> STEP: 3951/15287 -- GLOBAL_STEP: 1015100 | > loss_disc: 2.28154 (2.32145) | > loss_disc_real_0: 0.12334 (0.12198) | > loss_disc_real_1: 0.22574 (0.21199) | > loss_disc_real_2: 0.21514 (0.21577) | > loss_disc_real_3: 0.22049 (0.21976) | > loss_disc_real_4: 0.20071 (0.21550) | > loss_disc_real_5: 0.18274 (0.21442) | > loss_0: 2.28154 (2.32145) | > grad_norm_0: 16.20939 (17.36634) | > loss_gen: 2.59452 (2.55821) | > loss_kl: 2.62975 (2.66000) | > loss_feat: 8.97392 (8.70299) | > loss_mel: 18.15092 (17.78492) | > loss_duration: 1.73145 (1.70622) | > loss_1: 34.08055 (33.41238) | > grad_norm_1: 145.18979 (143.98021) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.68390 (2.15339) | > loader_time: 0.03410 (0.03601)  --> STEP: 3976/15287 -- GLOBAL_STEP: 1015125 | > loss_disc: 2.40126 (2.32134) | > loss_disc_real_0: 0.08903 (0.12200) | > loss_disc_real_1: 0.20754 (0.21197) | > loss_disc_real_2: 0.21165 (0.21574) | > loss_disc_real_3: 0.23227 (0.21973) | > loss_disc_real_4: 0.19935 (0.21548) | > loss_disc_real_5: 0.20219 (0.21442) | > loss_0: 2.40126 (2.32134) | > grad_norm_0: 10.41843 (17.35597) | > loss_gen: 2.54865 (2.55821) | > loss_kl: 2.70150 (2.66010) | > loss_feat: 8.85029 (8.70378) | > loss_mel: 17.46814 (17.78481) | > loss_duration: 1.73569 (1.70628) | > loss_1: 33.30428 (33.41321) | > grad_norm_1: 104.05706 (143.80719) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 4.00690 (2.15674) | > loader_time: 0.05150 (0.03599)  --> STEP: 4001/15287 -- GLOBAL_STEP: 1015150 | > loss_disc: 2.26486 (2.32140) | > loss_disc_real_0: 0.09582 (0.12201) | > loss_disc_real_1: 0.21184 (0.21195) | > loss_disc_real_2: 0.21753 (0.21573) | > loss_disc_real_3: 0.18857 (0.21973) | > loss_disc_real_4: 0.23369 (0.21549) | > loss_disc_real_5: 0.21847 (0.21442) | > loss_0: 2.26486 (2.32140) | > grad_norm_0: 7.93149 (17.31674) | > loss_gen: 2.68874 (2.55800) | > loss_kl: 2.74441 (2.66025) | > loss_feat: 8.87529 (8.70325) | > loss_mel: 17.94488 (17.78492) | > loss_duration: 1.72320 (1.70633) | > loss_1: 33.97652 (33.41277) | > grad_norm_1: 134.60861 (143.38680) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37870 (2.15951) | > loader_time: 0.03190 (0.03600)  --> STEP: 4026/15287 -- GLOBAL_STEP: 1015175 | > loss_disc: 2.29957 (2.32141) | > loss_disc_real_0: 0.09632 (0.12198) | > loss_disc_real_1: 0.18742 (0.21194) | > loss_disc_real_2: 0.20038 (0.21572) | > loss_disc_real_3: 0.22570 (0.21974) | > loss_disc_real_4: 0.26430 (0.21549) | > loss_disc_real_5: 0.19902 (0.21441) | > loss_0: 2.29957 (2.32141) | > grad_norm_0: 12.83391 (17.29965) | > loss_gen: 2.58071 (2.55802) | > loss_kl: 2.70220 (2.66010) | > loss_feat: 8.86719 (8.70325) | > loss_mel: 18.58449 (17.78509) | > loss_duration: 1.70413 (1.70633) | > loss_1: 34.43872 (33.41281) | > grad_norm_1: 223.09514 (143.33003) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.54360 (2.16329) | > loader_time: 0.03360 (0.03599)  --> STEP: 4051/15287 -- GLOBAL_STEP: 1015200 | > loss_disc: 2.29670 (2.32166) | > loss_disc_real_0: 0.10869 (0.12209) | > loss_disc_real_1: 0.21547 (0.21197) | > loss_disc_real_2: 0.21658 (0.21572) | > loss_disc_real_3: 0.18208 (0.21975) | > loss_disc_real_4: 0.24749 (0.21545) | > loss_disc_real_5: 0.22797 (0.21446) | > loss_0: 2.29670 (2.32166) | > grad_norm_0: 7.67602 (17.29879) | > loss_gen: 2.43352 (2.55790) | > loss_kl: 2.54897 (2.66006) | > loss_feat: 8.46380 (8.70242) | > loss_mel: 17.47024 (17.78523) | > loss_duration: 1.71736 (1.70636) | > loss_1: 32.63388 (33.41198) | > grad_norm_1: 81.93784 (143.14073) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.02690 (2.16705) | > loader_time: 0.03350 (0.03599)  --> STEP: 4076/15287 -- GLOBAL_STEP: 1015225 | > loss_disc: 2.35009 (2.32179) | > loss_disc_real_0: 0.10886 (0.12213) | > loss_disc_real_1: 0.21300 (0.21199) | > loss_disc_real_2: 0.23420 (0.21573) | > loss_disc_real_3: 0.23346 (0.21975) | > loss_disc_real_4: 0.23523 (0.21546) | > loss_disc_real_5: 0.20215 (0.21444) | > loss_0: 2.35009 (2.32179) | > grad_norm_0: 11.23516 (17.26344) | > loss_gen: 2.45207 (2.55791) | > loss_kl: 2.69126 (2.65985) | > loss_feat: 8.13370 (8.70214) | > loss_mel: 17.34757 (17.78587) | > loss_duration: 1.74003 (1.70636) | > loss_1: 32.36464 (33.41213) | > grad_norm_1: 149.68568 (142.99959) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96000 (2.16925) | > loader_time: 0.04450 (0.03599)  --> STEP: 4101/15287 -- GLOBAL_STEP: 1015250 | > loss_disc: 2.32598 (2.32189) | > loss_disc_real_0: 0.13139 (0.12215) | > loss_disc_real_1: 0.19953 (0.21198) | > loss_disc_real_2: 0.23877 (0.21577) | > loss_disc_real_3: 0.24001 (0.21973) | > loss_disc_real_4: 0.18941 (0.21544) | > loss_disc_real_5: 0.20859 (0.21444) | > loss_0: 2.32598 (2.32189) | > grad_norm_0: 20.75107 (17.24682) | > loss_gen: 2.47564 (2.55758) | > loss_kl: 2.70585 (2.65964) | > loss_feat: 8.49093 (8.70147) | > loss_mel: 17.75695 (17.78545) | > loss_duration: 1.75347 (1.70642) | > loss_1: 33.18283 (33.41057) | > grad_norm_1: 127.45577 (142.79875) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28560 (2.17138) | > loader_time: 0.03000 (0.03600)  --> STEP: 4126/15287 -- GLOBAL_STEP: 1015275 | > loss_disc: 2.32904 (2.32183) | > loss_disc_real_0: 0.11189 (0.12216) | > loss_disc_real_1: 0.22617 (0.21197) | > loss_disc_real_2: 0.20027 (0.21577) | > loss_disc_real_3: 0.21365 (0.21972) | > loss_disc_real_4: 0.21511 (0.21542) | > loss_disc_real_5: 0.20566 (0.21445) | > loss_0: 2.32904 (2.32183) | > grad_norm_0: 9.13280 (17.24255) | > loss_gen: 2.47598 (2.55750) | > loss_kl: 2.70277 (2.65958) | > loss_feat: 9.11049 (8.70213) | > loss_mel: 17.76557 (17.78517) | > loss_duration: 1.70991 (1.70644) | > loss_1: 33.76472 (33.41082) | > grad_norm_1: 54.35616 (142.72868) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43150 (2.17405) | > loader_time: 0.03670 (0.03599)  --> STEP: 4151/15287 -- GLOBAL_STEP: 1015300 | > loss_disc: 2.27505 (2.32166) | > loss_disc_real_0: 0.14145 (0.12215) | > loss_disc_real_1: 0.24428 (0.21198) | > loss_disc_real_2: 0.21375 (0.21576) | > loss_disc_real_3: 0.22559 (0.21970) | > loss_disc_real_4: 0.21327 (0.21540) | > loss_disc_real_5: 0.20449 (0.21444) | > loss_0: 2.27505 (2.32166) | > grad_norm_0: 29.41905 (17.24077) | > loss_gen: 2.58241 (2.55756) | > loss_kl: 2.62138 (2.65958) | > loss_feat: 9.20940 (8.70261) | > loss_mel: 17.60701 (17.78431) | > loss_duration: 1.70674 (1.70643) | > loss_1: 33.72694 (33.41050) | > grad_norm_1: 183.28497 (142.75352) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.91430 (2.17730) | > loader_time: 0.03450 (0.03598)  --> STEP: 4176/15287 -- GLOBAL_STEP: 1015325 | > loss_disc: 2.25329 (2.32140) | > loss_disc_real_0: 0.11499 (0.12209) | > loss_disc_real_1: 0.22247 (0.21196) | > loss_disc_real_2: 0.22202 (0.21575) | > loss_disc_real_3: 0.21119 (0.21965) | > loss_disc_real_4: 0.23757 (0.21534) | > loss_disc_real_5: 0.20774 (0.21441) | > loss_0: 2.25329 (2.32140) | > grad_norm_0: 14.05279 (17.23922) | > loss_gen: 2.55856 (2.55750) | > loss_kl: 2.61984 (2.65943) | > loss_feat: 8.89021 (8.70346) | > loss_mel: 17.67857 (17.78356) | > loss_duration: 1.72977 (1.70642) | > loss_1: 33.47696 (33.41039) | > grad_norm_1: 53.75296 (142.83165) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.83660 (2.18088) | > loader_time: 0.03760 (0.03597)  --> STEP: 4201/15287 -- GLOBAL_STEP: 1015350 | > loss_disc: 2.31853 (2.32129) | > loss_disc_real_0: 0.15774 (0.12204) | > loss_disc_real_1: 0.18729 (0.21193) | > loss_disc_real_2: 0.20116 (0.21573) | > loss_disc_real_3: 0.21932 (0.21963) | > loss_disc_real_4: 0.22873 (0.21533) | > loss_disc_real_5: 0.19644 (0.21441) | > loss_0: 2.31853 (2.32129) | > grad_norm_0: 9.54178 (17.22019) | > loss_gen: 2.44573 (2.55740) | > loss_kl: 2.84797 (2.65959) | > loss_feat: 8.64946 (8.70410) | > loss_mel: 17.39531 (17.78323) | > loss_duration: 1.66325 (1.70641) | > loss_1: 33.00172 (33.41075) | > grad_norm_1: 66.46201 (142.81406) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.77040 (2.18435) | > loader_time: 0.03210 (0.03597)  --> STEP: 4226/15287 -- GLOBAL_STEP: 1015375 | > loss_disc: 2.35470 (2.32136) | > loss_disc_real_0: 0.15068 (0.12205) | > loss_disc_real_1: 0.20781 (0.21193) | > loss_disc_real_2: 0.25194 (0.21574) | > loss_disc_real_3: 0.27212 (0.21965) | > loss_disc_real_4: 0.26471 (0.21531) | > loss_disc_real_5: 0.18418 (0.21441) | > loss_0: 2.35470 (2.32136) | > grad_norm_0: 14.75306 (17.20685) | > loss_gen: 2.70427 (2.55730) | > loss_kl: 2.70151 (2.65976) | > loss_feat: 9.07501 (8.70481) | > loss_mel: 18.09013 (17.78331) | > loss_duration: 1.70834 (1.70643) | > loss_1: 34.27925 (33.41162) | > grad_norm_1: 38.32661 (142.80286) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.29970 (2.18721) | > loader_time: 0.03100 (0.03595)  --> STEP: 4251/15287 -- GLOBAL_STEP: 1015400 | > loss_disc: 2.40237 (2.32134) | > loss_disc_real_0: 0.12495 (0.12201) | > loss_disc_real_1: 0.24089 (0.21192) | > loss_disc_real_2: 0.23246 (0.21575) | > loss_disc_real_3: 0.23794 (0.21968) | > loss_disc_real_4: 0.20803 (0.21533) | > loss_disc_real_5: 0.18466 (0.21437) | > loss_0: 2.40237 (2.32134) | > grad_norm_0: 11.76148 (17.18134) | > loss_gen: 2.46976 (2.55731) | > loss_kl: 2.69814 (2.65992) | > loss_feat: 8.19711 (8.70531) | > loss_mel: 17.70248 (17.78356) | > loss_duration: 1.73110 (1.70649) | > loss_1: 32.79858 (33.41262) | > grad_norm_1: 108.36982 (142.75948) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.87610 (2.18980) | > loader_time: 0.03650 (0.03595)  --> STEP: 4276/15287 -- GLOBAL_STEP: 1015425 | > loss_disc: 2.35300 (2.32136) | > loss_disc_real_0: 0.09299 (0.12198) | > loss_disc_real_1: 0.22353 (0.21194) | > loss_disc_real_2: 0.21162 (0.21579) | > loss_disc_real_3: 0.21814 (0.21968) | > loss_disc_real_4: 0.20129 (0.21533) | > loss_disc_real_5: 0.21035 (0.21438) | > loss_0: 2.35300 (2.32136) | > grad_norm_0: 7.25010 (17.19022) | > loss_gen: 2.62685 (2.55734) | > loss_kl: 2.54090 (2.66012) | > loss_feat: 8.74522 (8.70488) | > loss_mel: 18.08531 (17.78408) | > loss_duration: 1.68126 (1.70645) | > loss_1: 33.67955 (33.41289) | > grad_norm_1: 229.65628 (142.82628) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.92360 (2.19330) | > loader_time: 0.03220 (0.03593)  --> STEP: 4301/15287 -- GLOBAL_STEP: 1015450 | > loss_disc: 2.28599 (2.32124) | > loss_disc_real_0: 0.15461 (0.12207) | > loss_disc_real_1: 0.17340 (0.21186) | > loss_disc_real_2: 0.23090 (0.21575) | > loss_disc_real_3: 0.21452 (0.21966) | > loss_disc_real_4: 0.20036 (0.21534) | > loss_disc_real_5: 0.21513 (0.21438) | > loss_0: 2.28599 (2.32124) | > grad_norm_0: 10.23506 (17.18527) | > loss_gen: 2.54263 (2.55750) | > loss_kl: 2.79379 (2.66020) | > loss_feat: 9.03796 (8.70586) | > loss_mel: 18.06807 (17.78428) | > loss_duration: 1.69538 (1.70642) | > loss_1: 34.13783 (33.41428) | > grad_norm_1: 48.93625 (142.74991) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96360 (2.19649) | > loader_time: 0.03530 (0.03593)  --> STEP: 4326/15287 -- GLOBAL_STEP: 1015475 | > loss_disc: 2.28864 (2.32125) | > loss_disc_real_0: 0.13978 (0.12205) | > loss_disc_real_1: 0.19379 (0.21185) | > loss_disc_real_2: 0.20123 (0.21578) | > loss_disc_real_3: 0.18829 (0.21966) | > loss_disc_real_4: 0.20612 (0.21533) | > loss_disc_real_5: 0.19728 (0.21436) | > loss_0: 2.28864 (2.32125) | > grad_norm_0: 16.51165 (17.18092) | > loss_gen: 2.40951 (2.55743) | > loss_kl: 2.69354 (2.66020) | > loss_feat: 8.78209 (8.70596) | > loss_mel: 17.74910 (17.78479) | > loss_duration: 1.71565 (1.70649) | > loss_1: 33.34988 (33.41492) | > grad_norm_1: 94.06741 (142.67966) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34230 (2.19809) | > loader_time: 0.03630 (0.03591)  --> STEP: 4351/15287 -- GLOBAL_STEP: 1015500 | > loss_disc: 2.32700 (2.32114) | > loss_disc_real_0: 0.13803 (0.12202) | > loss_disc_real_1: 0.22992 (0.21183) | > loss_disc_real_2: 0.19134 (0.21578) | > loss_disc_real_3: 0.27799 (0.21965) | > loss_disc_real_4: 0.22710 (0.21532) | > loss_disc_real_5: 0.24310 (0.21436) | > loss_0: 2.32700 (2.32114) | > grad_norm_0: 28.78996 (17.16903) | > loss_gen: 2.58149 (2.55743) | > loss_kl: 2.69335 (2.66005) | > loss_feat: 7.94260 (8.70588) | > loss_mel: 17.55948 (17.78406) | > loss_duration: 1.65684 (1.70650) | > loss_1: 32.43377 (33.41398) | > grad_norm_1: 58.93515 (142.66780) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36340 (2.20010) | > loader_time: 0.03410 (0.03590)  --> STEP: 4376/15287 -- GLOBAL_STEP: 1015525 | > loss_disc: 2.37061 (2.32123) | > loss_disc_real_0: 0.13432 (0.12203) | > loss_disc_real_1: 0.18735 (0.21182) | > loss_disc_real_2: 0.21431 (0.21579) | > loss_disc_real_3: 0.15426 (0.21965) | > loss_disc_real_4: 0.18702 (0.21530) | > loss_disc_real_5: 0.18135 (0.21436) | > loss_0: 2.37061 (2.32123) | > grad_norm_0: 21.42878 (17.14423) | > loss_gen: 2.44854 (2.55727) | > loss_kl: 2.72283 (2.66028) | > loss_feat: 8.83167 (8.70650) | > loss_mel: 17.97561 (17.78486) | > loss_duration: 1.72755 (1.70654) | > loss_1: 33.70620 (33.41552) | > grad_norm_1: 99.47461 (142.40218) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24490 (2.20321) | > loader_time: 0.03710 (0.03589)  --> STEP: 4401/15287 -- GLOBAL_STEP: 1015550 | > loss_disc: 2.43759 (2.32135) | > loss_disc_real_0: 0.16826 (0.12201) | > loss_disc_real_1: 0.20414 (0.21185) | > loss_disc_real_2: 0.20442 (0.21582) | > loss_disc_real_3: 0.24281 (0.21966) | > loss_disc_real_4: 0.22007 (0.21529) | > loss_disc_real_5: 0.24383 (0.21439) | > loss_0: 2.43759 (2.32135) | > grad_norm_0: 10.54827 (17.12059) | > loss_gen: 2.35006 (2.55721) | > loss_kl: 2.80235 (2.66019) | > loss_feat: 7.74432 (8.70588) | > loss_mel: 17.71680 (17.78562) | > loss_duration: 1.74557 (1.70655) | > loss_1: 32.35909 (33.41552) | > grad_norm_1: 93.69584 (142.24199) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.43400 (2.20642) | > loader_time: 0.03790 (0.03587)  --> STEP: 4426/15287 -- GLOBAL_STEP: 1015575 | > loss_disc: 2.33757 (2.32151) | > loss_disc_real_0: 0.11556 (0.12198) | > loss_disc_real_1: 0.21295 (0.21186) | > loss_disc_real_2: 0.21309 (0.21583) | > loss_disc_real_3: 0.26231 (0.21970) | > loss_disc_real_4: 0.24116 (0.21533) | > loss_disc_real_5: 0.22661 (0.21440) | > loss_0: 2.33757 (2.32151) | > grad_norm_0: 25.96046 (17.12636) | > loss_gen: 2.58764 (2.55708) | > loss_kl: 2.68745 (2.66004) | > loss_feat: 9.02837 (8.70526) | > loss_mel: 18.11732 (17.78568) | > loss_duration: 1.65263 (1.70655) | > loss_1: 34.07341 (33.41467) | > grad_norm_1: 146.22755 (142.22340) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.66010 (2.20938) | > loader_time: 0.03150 (0.03586)  --> STEP: 4451/15287 -- GLOBAL_STEP: 1015600 | > loss_disc: 2.32116 (2.32156) | > loss_disc_real_0: 0.09960 (0.12198) | > loss_disc_real_1: 0.19370 (0.21190) | > loss_disc_real_2: 0.22064 (0.21584) | > loss_disc_real_3: 0.21230 (0.21968) | > loss_disc_real_4: 0.20504 (0.21532) | > loss_disc_real_5: 0.21303 (0.21438) | > loss_0: 2.32116 (2.32156) | > grad_norm_0: 8.65890 (17.14861) | > loss_gen: 2.77348 (2.55692) | > loss_kl: 2.66372 (2.65994) | > loss_feat: 9.16733 (8.70474) | > loss_mel: 18.05008 (17.78553) | > loss_duration: 1.72302 (1.70654) | > loss_1: 34.37763 (33.41372) | > grad_norm_1: 58.11193 (142.24484) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.61940 (2.21267) | > loader_time: 0.03660 (0.03586)  --> STEP: 4476/15287 -- GLOBAL_STEP: 1015625 | > loss_disc: 2.38511 (2.32167) | > loss_disc_real_0: 0.08326 (0.12208) | > loss_disc_real_1: 0.19655 (0.21191) | > loss_disc_real_2: 0.21895 (0.21583) | > loss_disc_real_3: 0.24915 (0.21965) | > loss_disc_real_4: 0.23801 (0.21531) | > loss_disc_real_5: 0.19253 (0.21434) | > loss_0: 2.38511 (2.32167) | > grad_norm_0: 29.83631 (17.13963) | > loss_gen: 2.33132 (2.55675) | > loss_kl: 2.83068 (2.65992) | > loss_feat: 8.54976 (8.70364) | > loss_mel: 17.95538 (17.78560) | > loss_duration: 1.70252 (1.70652) | > loss_1: 33.36966 (33.41251) | > grad_norm_1: 93.02656 (142.01851) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58870 (2.21582) | > loader_time: 0.03640 (0.03586)  --> STEP: 4501/15287 -- GLOBAL_STEP: 1015650 | > loss_disc: 2.30801 (2.32166) | > loss_disc_real_0: 0.12901 (0.12206) | > loss_disc_real_1: 0.23038 (0.21190) | > loss_disc_real_2: 0.23346 (0.21585) | > loss_disc_real_3: 0.21111 (0.21966) | > loss_disc_real_4: 0.23755 (0.21530) | > loss_disc_real_5: 0.22645 (0.21434) | > loss_0: 2.30801 (2.32166) | > grad_norm_0: 8.63448 (17.11183) | > loss_gen: 2.70920 (2.55676) | > loss_kl: 2.66368 (2.65974) | > loss_feat: 8.86670 (8.70346) | > loss_mel: 17.82870 (17.78595) | > loss_duration: 1.69788 (1.70652) | > loss_1: 33.76617 (33.41250) | > grad_norm_1: 145.58374 (141.76418) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.61560 (2.21845) | > loader_time: 0.03480 (0.03585)  --> STEP: 4526/15287 -- GLOBAL_STEP: 1015675 | > loss_disc: 2.40509 (2.32195) | > loss_disc_real_0: 0.09238 (0.12210) | > loss_disc_real_1: 0.21434 (0.21189) | > loss_disc_real_2: 0.21538 (0.21586) | > loss_disc_real_3: 0.22919 (0.21967) | > loss_disc_real_4: 0.22956 (0.21530) | > loss_disc_real_5: 0.26063 (0.21434) | > loss_0: 2.40509 (2.32195) | > grad_norm_0: 25.22285 (17.11069) | > loss_gen: 2.37549 (2.55646) | > loss_kl: 2.58140 (2.65979) | > loss_feat: 7.98137 (8.70272) | > loss_mel: 17.72063 (17.78582) | > loss_duration: 1.68834 (1.70654) | > loss_1: 32.34723 (33.41139) | > grad_norm_1: 181.78758 (141.65210) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.29800 (2.22136) | > loader_time: 0.03790 (0.03584)  --> STEP: 4551/15287 -- GLOBAL_STEP: 1015700 | > loss_disc: 2.32042 (2.32182) | > loss_disc_real_0: 0.12539 (0.12211) | > loss_disc_real_1: 0.20737 (0.21190) | > loss_disc_real_2: 0.19788 (0.21584) | > loss_disc_real_3: 0.22722 (0.21965) | > loss_disc_real_4: 0.23010 (0.21528) | > loss_disc_real_5: 0.24188 (0.21433) | > loss_0: 2.32042 (2.32182) | > grad_norm_0: 32.34311 (17.11052) | > loss_gen: 2.52227 (2.55645) | > loss_kl: 2.60943 (2.65972) | > loss_feat: 8.33499 (8.70250) | > loss_mel: 17.06165 (17.78568) | > loss_duration: 1.66607 (1.70653) | > loss_1: 32.19440 (33.41091) | > grad_norm_1: 155.39949 (141.63666) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.59060 (2.22345) | > loader_time: 0.03640 (0.03583)  --> STEP: 4576/15287 -- GLOBAL_STEP: 1015725 | > loss_disc: 2.29919 (2.32191) | > loss_disc_real_0: 0.11582 (0.12212) | > loss_disc_real_1: 0.16856 (0.21200) | > loss_disc_real_2: 0.19299 (0.21591) | > loss_disc_real_3: 0.21074 (0.21965) | > loss_disc_real_4: 0.23230 (0.21525) | > loss_disc_real_5: 0.22341 (0.21434) | > loss_0: 2.29919 (2.32191) | > grad_norm_0: 13.79568 (17.10645) | > loss_gen: 2.42454 (2.55646) | > loss_kl: 2.68212 (2.65949) | > loss_feat: 8.68431 (8.70153) | > loss_mel: 17.28479 (17.78449) | > loss_duration: 1.69445 (1.70653) | > loss_1: 32.77021 (33.40854) | > grad_norm_1: 133.08282 (141.52715) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.70510 (2.22557) | > loader_time: 0.03720 (0.03583)  --> STEP: 4601/15287 -- GLOBAL_STEP: 1015750 | > loss_disc: 2.34231 (2.32181) | > loss_disc_real_0: 0.10545 (0.12205) | > loss_disc_real_1: 0.20694 (0.21202) | > loss_disc_real_2: 0.24201 (0.21592) | > loss_disc_real_3: 0.22450 (0.21965) | > loss_disc_real_4: 0.22416 (0.21524) | > loss_disc_real_5: 0.22865 (0.21435) | > loss_0: 2.34231 (2.32181) | > grad_norm_0: 7.87150 (17.10947) | > loss_gen: 2.66351 (2.55666) | > loss_kl: 2.56032 (2.65977) | > loss_feat: 8.87301 (8.70192) | > loss_mel: 17.45441 (17.78443) | > loss_duration: 1.68222 (1.70652) | > loss_1: 33.23346 (33.40934) | > grad_norm_1: 187.44121 (141.60716) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.47360 (2.22887) | > loader_time: 0.03570 (0.03583)  --> STEP: 4626/15287 -- GLOBAL_STEP: 1015775 | > loss_disc: 2.33875 (2.32181) | > loss_disc_real_0: 0.11948 (0.12201) | > loss_disc_real_1: 0.21185 (0.21201) | > loss_disc_real_2: 0.19798 (0.21591) | > loss_disc_real_3: 0.22378 (0.21967) | > loss_disc_real_4: 0.20270 (0.21521) | > loss_disc_real_5: 0.22437 (0.21437) | > loss_0: 2.33875 (2.32181) | > grad_norm_0: 21.29374 (17.13308) | > loss_gen: 2.59346 (2.55645) | > loss_kl: 2.72357 (2.65965) | > loss_feat: 8.44946 (8.70132) | > loss_mel: 17.94620 (17.78359) | > loss_duration: 1.75465 (1.70651) | > loss_1: 33.46733 (33.40759) | > grad_norm_1: 193.00966 (141.70346) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.71230 (2.23125) | > loader_time: 0.03890 (0.03582)  --> STEP: 4651/15287 -- GLOBAL_STEP: 1015800 | > loss_disc: 2.21929 (2.32176) | > loss_disc_real_0: 0.08778 (0.12203) | > loss_disc_real_1: 0.19008 (0.21200) | > loss_disc_real_2: 0.19685 (0.21591) | > loss_disc_real_3: 0.20160 (0.21965) | > loss_disc_real_4: 0.22632 (0.21521) | > loss_disc_real_5: 0.22506 (0.21435) | > loss_0: 2.21929 (2.32176) | > grad_norm_0: 23.49668 (17.13317) | > loss_gen: 2.55500 (2.55634) | > loss_kl: 2.65787 (2.65954) | > loss_feat: 8.11402 (8.70108) | > loss_mel: 17.75647 (17.78338) | > loss_duration: 1.73072 (1.70656) | > loss_1: 32.81408 (33.40696) | > grad_norm_1: 189.38333 (141.68523) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.47890 (2.23326) | > loader_time: 0.03730 (0.03582)  --> STEP: 4676/15287 -- GLOBAL_STEP: 1015825 | > loss_disc: 2.32001 (2.32154) | > loss_disc_real_0: 0.09903 (0.12195) | > loss_disc_real_1: 0.19189 (0.21198) | > loss_disc_real_2: 0.22728 (0.21591) | > loss_disc_real_3: 0.20899 (0.21964) | > loss_disc_real_4: 0.22232 (0.21522) | > loss_disc_real_5: 0.20184 (0.21435) | > loss_0: 2.32001 (2.32154) | > grad_norm_0: 40.09813 (17.14969) | > loss_gen: 2.40495 (2.55645) | > loss_kl: 2.48032 (2.65933) | > loss_feat: 8.87005 (8.70157) | > loss_mel: 17.28539 (17.78339) | > loss_duration: 1.69612 (1.70656) | > loss_1: 32.73682 (33.40736) | > grad_norm_1: 188.94934 (141.73936) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.87420 (2.23527) | > loader_time: 0.03170 (0.03581)  --> STEP: 4701/15287 -- GLOBAL_STEP: 1015850 | > loss_disc: 2.36036 (2.32132) | > loss_disc_real_0: 0.15377 (0.12193) | > loss_disc_real_1: 0.25667 (0.21195) | > loss_disc_real_2: 0.22512 (0.21590) | > loss_disc_real_3: 0.23613 (0.21962) | > loss_disc_real_4: 0.22461 (0.21522) | > loss_disc_real_5: 0.23436 (0.21432) | > loss_0: 2.36036 (2.32132) | > grad_norm_0: 18.29835 (17.15581) | > loss_gen: 2.74462 (2.55670) | > loss_kl: 2.65255 (2.65915) | > loss_feat: 8.88304 (8.70227) | > loss_mel: 18.60923 (17.78310) | > loss_duration: 1.69062 (1.70655) | > loss_1: 34.58007 (33.40784) | > grad_norm_1: 139.50465 (141.82140) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72360 (2.23756) | > loader_time: 0.03120 (0.03580)  --> STEP: 4726/15287 -- GLOBAL_STEP: 1015875 | > loss_disc: 2.43463 (2.32140) | > loss_disc_real_0: 0.25012 (0.12203) | > loss_disc_real_1: 0.16871 (0.21194) | > loss_disc_real_2: 0.19510 (0.21587) | > loss_disc_real_3: 0.23021 (0.21961) | > loss_disc_real_4: 0.20965 (0.21522) | > loss_disc_real_5: 0.23442 (0.21431) | > loss_0: 2.43463 (2.32140) | > grad_norm_0: 63.06590 (17.21445) | > loss_gen: 2.57637 (2.55669) | > loss_kl: 2.59719 (2.65904) | > loss_feat: 8.41969 (8.70172) | > loss_mel: 17.46299 (17.78240) | > loss_duration: 1.73282 (1.70654) | > loss_1: 32.78907 (33.40646) | > grad_norm_1: 214.27240 (141.76988) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.68400 (2.23985) | > loader_time: 0.03120 (0.03579)  --> STEP: 4751/15287 -- GLOBAL_STEP: 1015900 | > loss_disc: 2.32965 (2.32138) | > loss_disc_real_0: 0.11043 (0.12203) | > loss_disc_real_1: 0.21613 (0.21192) | > loss_disc_real_2: 0.21279 (0.21588) | > loss_disc_real_3: 0.23611 (0.21964) | > loss_disc_real_4: 0.20574 (0.21522) | > loss_disc_real_5: 0.18972 (0.21433) | > loss_0: 2.32965 (2.32138) | > grad_norm_0: 6.76773 (17.24882) | > loss_gen: 2.63496 (2.55666) | > loss_kl: 2.77089 (2.65901) | > loss_feat: 8.43844 (8.70105) | > loss_mel: 17.41802 (17.78149) | > loss_duration: 1.68968 (1.70655) | > loss_1: 32.95198 (33.40483) | > grad_norm_1: 106.00630 (141.69490) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56680 (2.24182) | > loader_time: 0.03180 (0.03577)  --> STEP: 4776/15287 -- GLOBAL_STEP: 1015925 | > loss_disc: 2.26570 (2.32141) | > loss_disc_real_0: 0.12258 (0.12203) | > loss_disc_real_1: 0.21865 (0.21194) | > loss_disc_real_2: 0.21812 (0.21588) | > loss_disc_real_3: 0.22198 (0.21964) | > loss_disc_real_4: 0.22521 (0.21521) | > loss_disc_real_5: 0.19538 (0.21431) | > loss_0: 2.26570 (2.32141) | > grad_norm_0: 17.75417 (17.25690) | > loss_gen: 2.59557 (2.55656) | > loss_kl: 2.61918 (2.65908) | > loss_feat: 8.79435 (8.70088) | > loss_mel: 17.45833 (17.78127) | > loss_duration: 1.72979 (1.70652) | > loss_1: 33.19722 (33.40438) | > grad_norm_1: 301.28351 (141.72507) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33670 (2.24360) | > loader_time: 0.03290 (0.03576)  --> STEP: 4801/15287 -- GLOBAL_STEP: 1015950 | > loss_disc: 2.33035 (2.32172) | > loss_disc_real_0: 0.10002 (0.12209) | > loss_disc_real_1: 0.21963 (0.21198) | > loss_disc_real_2: 0.22861 (0.21592) | > loss_disc_real_3: 0.22376 (0.21966) | > loss_disc_real_4: 0.20914 (0.21522) | > loss_disc_real_5: 0.22608 (0.21434) | > loss_0: 2.33035 (2.32172) | > grad_norm_0: 11.43531 (17.27017) | > loss_gen: 2.64504 (2.55655) | > loss_kl: 2.67441 (2.65915) | > loss_feat: 9.26420 (8.69972) | > loss_mel: 17.51168 (17.78184) | > loss_duration: 1.72614 (1.70654) | > loss_1: 33.82147 (33.40386) | > grad_norm_1: 193.64093 (141.66187) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.95600 (2.24567) | > loader_time: 0.03580 (0.03575)  --> STEP: 4826/15287 -- GLOBAL_STEP: 1015975 | > loss_disc: 2.32157 (2.32173) | > loss_disc_real_0: 0.07206 (0.12209) | > loss_disc_real_1: 0.17807 (0.21199) | > loss_disc_real_2: 0.17398 (0.21594) | > loss_disc_real_3: 0.18760 (0.21967) | > loss_disc_real_4: 0.21215 (0.21527) | > loss_disc_real_5: 0.20610 (0.21433) | > loss_0: 2.32157 (2.32173) | > grad_norm_0: 26.23206 (17.29531) | > loss_gen: 2.31237 (2.55654) | > loss_kl: 2.59108 (2.65920) | > loss_feat: 8.56891 (8.69999) | > loss_mel: 17.79306 (17.78190) | > loss_duration: 1.70644 (1.70656) | > loss_1: 32.97186 (33.40426) | > grad_norm_1: 159.46243 (141.78012) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.70720 (2.24714) | > loader_time: 0.03350 (0.03574)  --> STEP: 4851/15287 -- GLOBAL_STEP: 1016000 | > loss_disc: 2.26907 (2.32159) | > loss_disc_real_0: 0.11141 (0.12206) | > loss_disc_real_1: 0.19663 (0.21195) | > loss_disc_real_2: 0.23057 (0.21592) | > loss_disc_real_3: 0.20710 (0.21966) | > loss_disc_real_4: 0.19250 (0.21525) | > loss_disc_real_5: 0.19419 (0.21432) | > loss_0: 2.26907 (2.32159) | > grad_norm_0: 30.81390 (17.31176) | > loss_gen: 2.60761 (2.55661) | > loss_kl: 2.80738 (2.65924) | > loss_feat: 9.51369 (8.70051) | > loss_mel: 17.98884 (17.78144) | > loss_duration: 1.70974 (1.70658) | > loss_1: 34.62726 (33.40441) | > grad_norm_1: 204.43158 (141.90854) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.01780 (2.24891) | > loader_time: 0.03260 (0.03573)  --> STEP: 4876/15287 -- GLOBAL_STEP: 1016025 | > loss_disc: 2.33415 (2.32172) | > loss_disc_real_0: 0.10923 (0.12210) | > loss_disc_real_1: 0.24536 (0.21198) | > loss_disc_real_2: 0.23106 (0.21592) | > loss_disc_real_3: 0.23412 (0.21965) | > loss_disc_real_4: 0.25273 (0.21525) | > loss_disc_real_5: 0.21856 (0.21429) | > loss_0: 2.33415 (2.32172) | > grad_norm_0: 13.26058 (17.32660) | > loss_gen: 2.62805 (2.55656) | > loss_kl: 2.65381 (2.65936) | > loss_feat: 8.27409 (8.70050) | > loss_mel: 17.40719 (17.78135) | > loss_duration: 1.72080 (1.70660) | > loss_1: 32.68392 (33.40440) | > grad_norm_1: 199.04942 (142.00253) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.00860 (2.25097) | > loader_time: 0.03920 (0.03573)  --> STEP: 4901/15287 -- GLOBAL_STEP: 1016050 | > loss_disc: 2.36598 (2.32172) | > loss_disc_real_0: 0.16528 (0.12207) | > loss_disc_real_1: 0.19115 (0.21198) | > loss_disc_real_2: 0.20606 (0.21594) | > loss_disc_real_3: 0.19841 (0.21965) | > loss_disc_real_4: 0.20934 (0.21521) | > loss_disc_real_5: 0.21571 (0.21428) | > loss_0: 2.36598 (2.32172) | > grad_norm_0: 26.96213 (17.31871) | > loss_gen: 2.54512 (2.55641) | > loss_kl: 2.67950 (2.65953) | > loss_feat: 8.61233 (8.70068) | > loss_mel: 17.47256 (17.78131) | > loss_duration: 1.69394 (1.70662) | > loss_1: 33.00344 (33.40458) | > grad_norm_1: 172.18466 (142.01772) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38440 (2.25246) | > loader_time: 0.03570 (0.03572)  --> STEP: 4926/15287 -- GLOBAL_STEP: 1016075 | > loss_disc: 2.35100 (2.32168) | > loss_disc_real_0: 0.10337 (0.12206) | > loss_disc_real_1: 0.22026 (0.21197) | > loss_disc_real_2: 0.20947 (0.21592) | > loss_disc_real_3: 0.22661 (0.21964) | > loss_disc_real_4: 0.19977 (0.21519) | > loss_disc_real_5: 0.17584 (0.21425) | > loss_0: 2.35100 (2.32168) | > grad_norm_0: 27.64170 (17.32634) | > loss_gen: 2.47741 (2.55628) | > loss_kl: 2.51594 (2.65960) | > loss_feat: 8.47242 (8.70066) | > loss_mel: 17.72956 (17.78050) | > loss_duration: 1.68950 (1.70663) | > loss_1: 32.88483 (33.40370) | > grad_norm_1: 117.51660 (142.11618) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.66190 (2.25540) | > loader_time: 0.03670 (0.03572)  --> STEP: 4951/15287 -- GLOBAL_STEP: 1016100 | > loss_disc: 2.26111 (2.32177) | > loss_disc_real_0: 0.10824 (0.12209) | > loss_disc_real_1: 0.18378 (0.21199) | > loss_disc_real_2: 0.21821 (0.21595) | > loss_disc_real_3: 0.23943 (0.21965) | > loss_disc_real_4: 0.22072 (0.21517) | > loss_disc_real_5: 0.18432 (0.21423) | > loss_0: 2.26111 (2.32177) | > grad_norm_0: 39.65201 (17.33464) | > loss_gen: 2.52244 (2.55626) | > loss_kl: 2.73097 (2.65972) | > loss_feat: 8.72959 (8.70009) | > loss_mel: 17.97005 (17.78114) | > loss_duration: 1.71681 (1.70659) | > loss_1: 33.66986 (33.40384) | > grad_norm_1: 257.46881 (142.23552) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58620 (2.25717) | > loader_time: 0.03370 (0.03571)  --> STEP: 4976/15287 -- GLOBAL_STEP: 1016125 | > loss_disc: 2.30760 (2.32177) | > loss_disc_real_0: 0.07020 (0.12210) | > loss_disc_real_1: 0.23459 (0.21196) | > loss_disc_real_2: 0.21167 (0.21596) | > loss_disc_real_3: 0.21120 (0.21966) | > loss_disc_real_4: 0.21606 (0.21518) | > loss_disc_real_5: 0.19215 (0.21422) | > loss_0: 2.30760 (2.32177) | > grad_norm_0: 21.16505 (17.35592) | > loss_gen: 2.49406 (2.55619) | > loss_kl: 2.47098 (2.65967) | > loss_feat: 8.53913 (8.70026) | > loss_mel: 17.43313 (17.78072) | > loss_duration: 1.75421 (1.70660) | > loss_1: 32.69151 (33.40347) | > grad_norm_1: 133.91888 (142.35251) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.60350 (2.25881) | > loader_time: 0.03650 (0.03572)  --> STEP: 5001/15287 -- GLOBAL_STEP: 1016150 | > loss_disc: 2.25384 (2.32169) | > loss_disc_real_0: 0.09250 (0.12207) | > loss_disc_real_1: 0.22102 (0.21196) | > loss_disc_real_2: 0.21270 (0.21597) | > loss_disc_real_3: 0.22477 (0.21966) | > loss_disc_real_4: 0.21041 (0.21517) | > loss_disc_real_5: 0.22080 (0.21421) | > loss_0: 2.25384 (2.32169) | > grad_norm_0: 15.19346 (17.36706) | > loss_gen: 2.72328 (2.55619) | > loss_kl: 2.58605 (2.65967) | > loss_feat: 8.89391 (8.70021) | > loss_mel: 18.10862 (17.78081) | > loss_duration: 1.70994 (1.70660) | > loss_1: 34.02180 (33.40351) | > grad_norm_1: 134.94556 (142.43089) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.53740 (2.26056) | > loader_time: 0.03380 (0.03571)  --> STEP: 5026/15287 -- GLOBAL_STEP: 1016175 | > loss_disc: 2.38752 (2.32170) | > loss_disc_real_0: 0.11353 (0.12204) | > loss_disc_real_1: 0.21091 (0.21197) | > loss_disc_real_2: 0.24759 (0.21599) | > loss_disc_real_3: 0.23032 (0.21966) | > loss_disc_real_4: 0.26594 (0.21520) | > loss_disc_real_5: 0.24434 (0.21422) | > loss_0: 2.38752 (2.32170) | > grad_norm_0: 23.60319 (17.37834) | > loss_gen: 2.65985 (2.55616) | > loss_kl: 2.88064 (2.65978) | > loss_feat: 9.16463 (8.69977) | > loss_mel: 18.03926 (17.78021) | > loss_duration: 1.71402 (1.70663) | > loss_1: 34.45840 (33.40259) | > grad_norm_1: 160.16472 (142.46083) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.94110 (2.26290) | > loader_time: 0.03250 (0.03570)  --> STEP: 5051/15287 -- GLOBAL_STEP: 1016200 | > loss_disc: 2.35169 (2.32181) | > loss_disc_real_0: 0.11292 (0.12203) | > loss_disc_real_1: 0.18306 (0.21197) | > loss_disc_real_2: 0.18748 (0.21599) | > loss_disc_real_3: 0.25601 (0.21970) | > loss_disc_real_4: 0.25724 (0.21523) | > loss_disc_real_5: 0.27161 (0.21427) | > loss_0: 2.35169 (2.32181) | > grad_norm_0: 12.41497 (17.37636) | > loss_gen: 2.40405 (2.55627) | > loss_kl: 2.73929 (2.65991) | > loss_feat: 8.70115 (8.70034) | > loss_mel: 18.05987 (17.78085) | > loss_duration: 1.71627 (1.70668) | > loss_1: 33.62062 (33.40410) | > grad_norm_1: 118.14095 (142.53783) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36830 (2.26442) | > loader_time: 0.03230 (0.03569)  --> STEP: 5076/15287 -- GLOBAL_STEP: 1016225 | > loss_disc: 2.37851 (2.32224) | > loss_disc_real_0: 0.10951 (0.12208) | > loss_disc_real_1: 0.21850 (0.21205) | > loss_disc_real_2: 0.19775 (0.21598) | > loss_disc_real_3: 0.22866 (0.21968) | > loss_disc_real_4: 0.19936 (0.21522) | > loss_disc_real_5: 0.28844 (0.21435) | > loss_0: 2.37851 (2.32224) | > grad_norm_0: 22.06755 (17.47122) | > loss_gen: 2.44172 (2.55595) | > loss_kl: 2.62495 (2.65988) | > loss_feat: 8.31513 (8.69918) | > loss_mel: 18.06473 (17.78111) | > loss_duration: 1.72337 (1.70666) | > loss_1: 33.16991 (33.40283) | > grad_norm_1: 188.35823 (142.74423) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43000 (2.26708) | > loader_time: 0.03210 (0.03569)  --> STEP: 5101/15287 -- GLOBAL_STEP: 1016250 | > loss_disc: 2.36698 (2.32245) | > loss_disc_real_0: 0.12878 (0.12225) | > loss_disc_real_1: 0.18398 (0.21205) | > loss_disc_real_2: 0.22051 (0.21600) | > loss_disc_real_3: 0.24540 (0.21965) | > loss_disc_real_4: 0.20662 (0.21520) | > loss_disc_real_5: 0.22100 (0.21434) | > loss_0: 2.36698 (2.32245) | > grad_norm_0: 15.68188 (17.50352) | > loss_gen: 2.57465 (2.55605) | > loss_kl: 2.69111 (2.65974) | > loss_feat: 8.73566 (8.69860) | > loss_mel: 18.01756 (17.78062) | > loss_duration: 1.67904 (1.70662) | > loss_1: 33.69801 (33.40169) | > grad_norm_1: 152.59047 (142.83740) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.87640 (2.26893) | > loader_time: 0.03360 (0.03568)  --> STEP: 5126/15287 -- GLOBAL_STEP: 1016275 | > loss_disc: 2.31427 (2.32235) | > loss_disc_real_0: 0.11677 (0.12225) | > loss_disc_real_1: 0.24619 (0.21204) | > loss_disc_real_2: 0.21967 (0.21602) | > loss_disc_real_3: 0.20654 (0.21963) | > loss_disc_real_4: 0.22713 (0.21519) | > loss_disc_real_5: 0.20360 (0.21433) | > loss_0: 2.31427 (2.32235) | > grad_norm_0: 7.89957 (17.51024) | > loss_gen: 2.59315 (2.55619) | > loss_kl: 2.71256 (2.65958) | > loss_feat: 8.73026 (8.69845) | > loss_mel: 17.92533 (17.78048) | > loss_duration: 1.69451 (1.70660) | > loss_1: 33.65582 (33.40137) | > grad_norm_1: 212.89117 (142.89249) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34740 (2.27037) | > loader_time: 0.03170 (0.03567)  --> STEP: 5151/15287 -- GLOBAL_STEP: 1016300 | > loss_disc: 2.37225 (2.32255) | > loss_disc_real_0: 0.13732 (0.12228) | > loss_disc_real_1: 0.22735 (0.21206) | > loss_disc_real_2: 0.22820 (0.21602) | > loss_disc_real_3: 0.21370 (0.21965) | > loss_disc_real_4: 0.19679 (0.21519) | > loss_disc_real_5: 0.18608 (0.21435) | > loss_0: 2.37225 (2.32255) | > grad_norm_0: 14.49743 (17.51119) | > loss_gen: 2.54786 (2.55606) | > loss_kl: 2.67176 (2.65962) | > loss_feat: 9.08724 (8.69773) | > loss_mel: 18.00357 (17.78071) | > loss_duration: 1.69189 (1.70659) | > loss_1: 34.00232 (33.40078) | > grad_norm_1: 100.26140 (142.79250) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.65290 (2.27270) | > loader_time: 0.03110 (0.03566)  --> STEP: 5176/15287 -- GLOBAL_STEP: 1016325 | > loss_disc: 2.42278 (2.32275) | > loss_disc_real_0: 0.17329 (0.12241) | > loss_disc_real_1: 0.22301 (0.21211) | > loss_disc_real_2: 0.24495 (0.21605) | > loss_disc_real_3: 0.22907 (0.21967) | > loss_disc_real_4: 0.24168 (0.21520) | > loss_disc_real_5: 0.23388 (0.21433) | > loss_0: 2.42278 (2.32275) | > grad_norm_0: 18.62273 (17.50916) | > loss_gen: 2.76823 (2.55626) | > loss_kl: 2.75977 (2.65978) | > loss_feat: 8.58724 (8.69704) | > loss_mel: 18.05218 (17.78117) | > loss_duration: 1.65871 (1.70653) | > loss_1: 33.82612 (33.40083) | > grad_norm_1: 87.96588 (142.64337) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.87770 (2.27395) | > loader_time: 0.03720 (0.03565)  --> STEP: 5201/15287 -- GLOBAL_STEP: 1016350 | > loss_disc: 2.39192 (2.32286) | > loss_disc_real_0: 0.12128 (0.12242) | > loss_disc_real_1: 0.20964 (0.21212) | > loss_disc_real_2: 0.24426 (0.21605) | > loss_disc_real_3: 0.23006 (0.21970) | > loss_disc_real_4: 0.22094 (0.21519) | > loss_disc_real_5: 0.21868 (0.21433) | > loss_0: 2.39192 (2.32286) | > grad_norm_0: 7.05790 (17.48822) | > loss_gen: 2.48772 (2.55617) | > loss_kl: 2.68502 (2.65979) | > loss_feat: 8.86984 (8.69724) | > loss_mel: 17.93950 (17.78156) | > loss_duration: 1.67808 (1.70654) | > loss_1: 33.66016 (33.40136) | > grad_norm_1: 136.35677 (142.57822) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.59810 (2.27466) | > loader_time: 0.03290 (0.03565)  --> STEP: 5226/15287 -- GLOBAL_STEP: 1016375 | > loss_disc: 2.28592 (2.32302) | > loss_disc_real_0: 0.09883 (0.12243) | > loss_disc_real_1: 0.16067 (0.21212) | > loss_disc_real_2: 0.18160 (0.21604) | > loss_disc_real_3: 0.18508 (0.21969) | > loss_disc_real_4: 0.18143 (0.21518) | > loss_disc_real_5: 0.23851 (0.21438) | > loss_0: 2.28592 (2.32302) | > grad_norm_0: 27.12128 (17.49406) | > loss_gen: 2.53381 (2.55607) | > loss_kl: 2.64168 (2.65959) | > loss_feat: 9.21320 (8.69665) | > loss_mel: 18.34652 (17.78226) | > loss_duration: 1.66027 (1.70653) | > loss_1: 34.39548 (33.40115) | > grad_norm_1: 135.72316 (142.55698) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.46920 (2.27562) | > loader_time: 0.03240 (0.03564)  --> STEP: 5251/15287 -- GLOBAL_STEP: 1016400 | > loss_disc: 2.29115 (2.32315) | > loss_disc_real_0: 0.14270 (0.12241) | > loss_disc_real_1: 0.26413 (0.21219) | > loss_disc_real_2: 0.22407 (0.21610) | > loss_disc_real_3: 0.21344 (0.21972) | > loss_disc_real_4: 0.22719 (0.21521) | > loss_disc_real_5: 0.20221 (0.21442) | > loss_0: 2.29115 (2.32315) | > grad_norm_0: 34.60746 (17.50383) | > loss_gen: 2.56410 (2.55620) | > loss_kl: 2.70284 (2.65961) | > loss_feat: 9.05965 (8.69604) | > loss_mel: 17.94389 (17.78287) | > loss_duration: 1.73492 (1.70653) | > loss_1: 34.00539 (33.40130) | > grad_norm_1: 172.44461 (142.65343) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55720 (2.27712) | > loader_time: 0.03770 (0.03563)  --> STEP: 5276/15287 -- GLOBAL_STEP: 1016425 | > loss_disc: 2.34644 (2.32323) | > loss_disc_real_0: 0.10644 (0.12240) | > loss_disc_real_1: 0.21955 (0.21224) | > loss_disc_real_2: 0.21403 (0.21611) | > loss_disc_real_3: 0.23331 (0.21973) | > loss_disc_real_4: 0.21613 (0.21520) | > loss_disc_real_5: 0.21681 (0.21442) | > loss_0: 2.34644 (2.32323) | > grad_norm_0: 13.27675 (17.50191) | > loss_gen: 2.50665 (2.55602) | > loss_kl: 2.62115 (2.65956) | > loss_feat: 8.49689 (8.69512) | > loss_mel: 17.47762 (17.78259) | > loss_duration: 1.68876 (1.70653) | > loss_1: 32.79106 (33.39986) | > grad_norm_1: 113.32801 (142.66603) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72440 (2.27962) | > loader_time: 0.03160 (0.03563)  --> STEP: 5301/15287 -- GLOBAL_STEP: 1016450 | > loss_disc: 2.45448 (2.32332) | > loss_disc_real_0: 0.12702 (0.12240) | > loss_disc_real_1: 0.18230 (0.21225) | > loss_disc_real_2: 0.20982 (0.21612) | > loss_disc_real_3: 0.21760 (0.21975) | > loss_disc_real_4: 0.24161 (0.21522) | > loss_disc_real_5: 0.21251 (0.21443) | > loss_0: 2.45448 (2.32332) | > grad_norm_0: 7.77976 (17.49455) | > loss_gen: 2.65140 (2.55613) | > loss_kl: 2.57868 (2.65975) | > loss_feat: 8.26924 (8.69532) | > loss_mel: 17.75431 (17.78321) | > loss_duration: 1.70637 (1.70653) | > loss_1: 32.96001 (33.40098) | > grad_norm_1: 99.12920 (142.70302) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58530 (2.28138) | > loader_time: 0.03310 (0.03563)  --> STEP: 5326/15287 -- GLOBAL_STEP: 1016475 | > loss_disc: 2.34659 (2.32338) | > loss_disc_real_0: 0.13027 (0.12244) | > loss_disc_real_1: 0.25486 (0.21228) | > loss_disc_real_2: 0.22864 (0.21613) | > loss_disc_real_3: 0.22947 (0.21974) | > loss_disc_real_4: 0.23673 (0.21522) | > loss_disc_real_5: 0.21068 (0.21444) | > loss_0: 2.34659 (2.32338) | > grad_norm_0: 6.98196 (17.47480) | > loss_gen: 2.38619 (2.55605) | > loss_kl: 2.67513 (2.65980) | > loss_feat: 8.44541 (8.69464) | > loss_mel: 17.60816 (17.78296) | > loss_duration: 1.70813 (1.70652) | > loss_1: 32.82302 (33.40005) | > grad_norm_1: 117.34874 (142.54570) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.64360 (2.28330) | > loader_time: 0.03240 (0.03562)  --> STEP: 5351/15287 -- GLOBAL_STEP: 1016500 | > loss_disc: 2.40783 (2.32356) | > loss_disc_real_0: 0.18215 (0.12247) | > loss_disc_real_1: 0.23931 (0.21227) | > loss_disc_real_2: 0.23150 (0.21614) | > loss_disc_real_3: 0.22207 (0.21974) | > loss_disc_real_4: 0.22795 (0.21522) | > loss_disc_real_5: 0.21059 (0.21445) | > loss_0: 2.40783 (2.32356) | > grad_norm_0: 9.71731 (17.44708) | > loss_gen: 2.46119 (2.55593) | > loss_kl: 2.64404 (2.65993) | > loss_feat: 8.34618 (8.69440) | > loss_mel: 17.88715 (17.78339) | > loss_duration: 1.69319 (1.70653) | > loss_1: 33.03173 (33.40024) | > grad_norm_1: 101.18204 (142.20920) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.49770 (2.28437) | > loader_time: 0.03120 (0.03562)  --> STEP: 5376/15287 -- GLOBAL_STEP: 1016525 | > loss_disc: 2.34234 (2.32365) | > loss_disc_real_0: 0.10715 (0.12253) | > loss_disc_real_1: 0.21583 (0.21226) | > loss_disc_real_2: 0.22426 (0.21614) | > loss_disc_real_3: 0.20982 (0.21973) | > loss_disc_real_4: 0.22597 (0.21524) | > loss_disc_real_5: 0.22073 (0.21444) | > loss_0: 2.34234 (2.32365) | > grad_norm_0: 8.53174 (17.41465) | > loss_gen: 2.45996 (2.55592) | > loss_kl: 2.68968 (2.65985) | > loss_feat: 8.79995 (8.69446) | > loss_mel: 17.47199 (17.78429) | > loss_duration: 1.67452 (1.70652) | > loss_1: 33.09610 (33.40110) | > grad_norm_1: 91.27290 (141.93324) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.62140 (2.28595) | > loader_time: 0.03400 (0.03562)  --> STEP: 5401/15287 -- GLOBAL_STEP: 1016550 | > loss_disc: 2.28570 (2.32364) | > loss_disc_real_0: 0.11064 (0.12252) | > loss_disc_real_1: 0.18876 (0.21226) | > loss_disc_real_2: 0.17995 (0.21613) | > loss_disc_real_3: 0.23211 (0.21975) | > loss_disc_real_4: 0.21633 (0.21526) | > loss_disc_real_5: 0.20761 (0.21443) | > loss_0: 2.28570 (2.32364) | > grad_norm_0: 16.29823 (17.40142) | > loss_gen: 2.58987 (2.55600) | > loss_kl: 2.69050 (2.66000) | > loss_feat: 9.26458 (8.69469) | > loss_mel: 18.04836 (17.78528) | > loss_duration: 1.71389 (1.70648) | > loss_1: 34.30719 (33.40250) | > grad_norm_1: 214.38593 (141.87221) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33720 (2.28779) | > loader_time: 0.03020 (0.03561)  --> STEP: 5426/15287 -- GLOBAL_STEP: 1016575 | > loss_disc: 2.35873 (2.32362) | > loss_disc_real_0: 0.14130 (0.12252) | > loss_disc_real_1: 0.23454 (0.21227) | > loss_disc_real_2: 0.21649 (0.21612) | > loss_disc_real_3: 0.24339 (0.21976) | > loss_disc_real_4: 0.21367 (0.21525) | > loss_disc_real_5: 0.22082 (0.21446) | > loss_0: 2.35873 (2.32362) | > grad_norm_0: 10.54318 (17.39606) | > loss_gen: 2.46456 (2.55600) | > loss_kl: 2.58021 (2.66008) | > loss_feat: 8.32932 (8.69425) | > loss_mel: 17.94075 (17.78518) | > loss_duration: 1.71321 (1.70645) | > loss_1: 33.02805 (33.40205) | > grad_norm_1: 143.21150 (141.84599) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.45320 (2.28989) | > loader_time: 0.03260 (0.03560)  --> STEP: 5451/15287 -- GLOBAL_STEP: 1016600 | > loss_disc: 2.38689 (2.32364) | > loss_disc_real_0: 0.15804 (0.12259) | > loss_disc_real_1: 0.20959 (0.21228) | > loss_disc_real_2: 0.24239 (0.21611) | > loss_disc_real_3: 0.19776 (0.21974) | > loss_disc_real_4: 0.19998 (0.21524) | > loss_disc_real_5: 0.20526 (0.21446) | > loss_0: 2.38689 (2.32364) | > grad_norm_0: 21.45016 (17.37805) | > loss_gen: 2.37077 (2.55596) | > loss_kl: 2.70323 (2.66002) | > loss_feat: 8.25951 (8.69413) | > loss_mel: 17.14782 (17.78484) | > loss_duration: 1.66125 (1.70644) | > loss_1: 32.14257 (33.40147) | > grad_norm_1: 76.95495 (141.63385) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.71810 (2.29099) | > loader_time: 0.03280 (0.03560)  --> STEP: 5476/15287 -- GLOBAL_STEP: 1016625 | > loss_disc: 2.36440 (2.32376) | > loss_disc_real_0: 0.15200 (0.12270) | > loss_disc_real_1: 0.20514 (0.21227) | > loss_disc_real_2: 0.20288 (0.21612) | > loss_disc_real_3: 0.24125 (0.21975) | > loss_disc_real_4: 0.19575 (0.21524) | > loss_disc_real_5: 0.19756 (0.21443) | > loss_0: 2.36440 (2.32376) | > grad_norm_0: 24.38775 (17.36938) | > loss_gen: 2.52118 (2.55600) | > loss_kl: 2.63426 (2.66005) | > loss_feat: 9.33203 (8.69391) | > loss_mel: 18.58001 (17.78447) | > loss_duration: 1.69964 (1.70645) | > loss_1: 34.76712 (33.40097) | > grad_norm_1: 139.33376 (141.51636) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34950 (2.29211) | > loader_time: 0.03830 (0.03559)  --> STEP: 5501/15287 -- GLOBAL_STEP: 1016650 | > loss_disc: 2.29255 (2.32378) | > loss_disc_real_0: 0.10367 (0.12274) | > loss_disc_real_1: 0.19897 (0.21228) | > loss_disc_real_2: 0.17820 (0.21610) | > loss_disc_real_3: 0.21951 (0.21977) | > loss_disc_real_4: 0.21336 (0.21523) | > loss_disc_real_5: 0.19219 (0.21441) | > loss_0: 2.29255 (2.32378) | > grad_norm_0: 9.77893 (17.34935) | > loss_gen: 2.64580 (2.55590) | > loss_kl: 2.77642 (2.66015) | > loss_feat: 9.36028 (8.69376) | > loss_mel: 17.94990 (17.78444) | > loss_duration: 1.69528 (1.70642) | > loss_1: 34.42768 (33.40076) | > grad_norm_1: 143.92586 (141.41304) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.51020 (2.29328) | > loader_time: 0.03190 (0.03558)  --> STEP: 5526/15287 -- GLOBAL_STEP: 1016675 | > loss_disc: 2.34995 (2.32366) | > loss_disc_real_0: 0.11469 (0.12274) | > loss_disc_real_1: 0.21922 (0.21229) | > loss_disc_real_2: 0.23592 (0.21612) | > loss_disc_real_3: 0.26585 (0.21976) | > loss_disc_real_4: 0.23901 (0.21524) | > loss_disc_real_5: 0.21398 (0.21443) | > loss_0: 2.34995 (2.32366) | > grad_norm_0: 11.50591 (17.35208) | > loss_gen: 2.48977 (2.55605) | > loss_kl: 2.77392 (2.66011) | > loss_feat: 8.22921 (8.69388) | > loss_mel: 16.85626 (17.78442) | > loss_duration: 1.67771 (1.70639) | > loss_1: 32.02686 (33.40094) | > grad_norm_1: 190.15321 (141.43994) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.63260 (2.29391) | > loader_time: 0.03060 (0.03559)  --> STEP: 5551/15287 -- GLOBAL_STEP: 1016700 | > loss_disc: 2.32796 (2.32360) | > loss_disc_real_0: 0.15583 (0.12279) | > loss_disc_real_1: 0.21361 (0.21226) | > loss_disc_real_2: 0.21143 (0.21609) | > loss_disc_real_3: 0.23988 (0.21973) | > loss_disc_real_4: 0.22753 (0.21522) | > loss_disc_real_5: 0.23342 (0.21443) | > loss_0: 2.32796 (2.32360) | > grad_norm_0: 24.29187 (17.34476) | > loss_gen: 2.69377 (2.55612) | > loss_kl: 2.54993 (2.66022) | > loss_feat: 9.02781 (8.69424) | > loss_mel: 17.93762 (17.78416) | > loss_duration: 1.69483 (1.70635) | > loss_1: 33.90395 (33.40117) | > grad_norm_1: 177.02026 (141.34978) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.50510 (2.29551) | > loader_time: 0.03110 (0.03558)  --> STEP: 5576/15287 -- GLOBAL_STEP: 1016725 | > loss_disc: 2.29364 (2.32362) | > loss_disc_real_0: 0.11771 (0.12280) | > loss_disc_real_1: 0.18353 (0.21227) | > loss_disc_real_2: 0.21143 (0.21608) | > loss_disc_real_3: 0.21756 (0.21974) | > loss_disc_real_4: 0.21665 (0.21521) | > loss_disc_real_5: 0.24908 (0.21445) | > loss_0: 2.29364 (2.32362) | > grad_norm_0: 11.70528 (17.32419) | > loss_gen: 2.51231 (2.55603) | > loss_kl: 2.54445 (2.66038) | > loss_feat: 8.46754 (8.69399) | > loss_mel: 17.68765 (17.78429) | > loss_duration: 1.66521 (1.70637) | > loss_1: 32.87716 (33.40115) | > grad_norm_1: 109.71850 (141.20428) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.89430 (2.29653) | > loader_time: 0.03390 (0.03557)  --> STEP: 5601/15287 -- GLOBAL_STEP: 1016750 | > loss_disc: 2.29787 (2.32355) | > loss_disc_real_0: 0.11272 (0.12277) | > loss_disc_real_1: 0.21323 (0.21228) | > loss_disc_real_2: 0.19824 (0.21607) | > loss_disc_real_3: 0.19827 (0.21973) | > loss_disc_real_4: 0.19430 (0.21521) | > loss_disc_real_5: 0.23919 (0.21444) | > loss_0: 2.29787 (2.32355) | > grad_norm_0: 25.66392 (17.31483) | > loss_gen: 2.52717 (2.55603) | > loss_kl: 2.61501 (2.66042) | > loss_feat: 8.62364 (8.69409) | > loss_mel: 17.83970 (17.78432) | > loss_duration: 1.65459 (1.70631) | > loss_1: 33.26012 (33.40127) | > grad_norm_1: 126.05878 (141.19099) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.80950 (2.29797) | > loader_time: 0.02980 (0.03556)  --> STEP: 5626/15287 -- GLOBAL_STEP: 1016775 | > loss_disc: 2.35219 (2.32360) | > loss_disc_real_0: 0.13746 (0.12278) | > loss_disc_real_1: 0.21003 (0.21232) | > loss_disc_real_2: 0.21114 (0.21607) | > loss_disc_real_3: 0.21789 (0.21972) | > loss_disc_real_4: 0.22867 (0.21520) | > loss_disc_real_5: 0.20969 (0.21444) | > loss_0: 2.35219 (2.32360) | > grad_norm_0: 11.43996 (17.31910) | > loss_gen: 2.54156 (2.55589) | > loss_kl: 2.61880 (2.66036) | > loss_feat: 8.61726 (8.69351) | > loss_mel: 17.81983 (17.78413) | > loss_duration: 1.72315 (1.70635) | > loss_1: 33.32060 (33.40035) | > grad_norm_1: 79.49688 (141.11235) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.75250 (2.29955) | > loader_time: 0.03720 (0.03556)  --> STEP: 5651/15287 -- GLOBAL_STEP: 1016800 | > loss_disc: 2.25781 (2.32344) | > loss_disc_real_0: 0.10040 (0.12278) | > loss_disc_real_1: 0.21509 (0.21230) | > loss_disc_real_2: 0.20836 (0.21606) | > loss_disc_real_3: 0.17226 (0.21970) | > loss_disc_real_4: 0.18133 (0.21518) | > loss_disc_real_5: 0.17973 (0.21443) | > loss_0: 2.25781 (2.32344) | > grad_norm_0: 20.52154 (17.30787) | > loss_gen: 2.50560 (2.55587) | > loss_kl: 2.50542 (2.66051) | > loss_feat: 9.14698 (8.69432) | > loss_mel: 18.07464 (17.78404) | > loss_duration: 1.76515 (1.70635) | > loss_1: 33.99780 (33.40120) | > grad_norm_1: 51.07135 (141.04625) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40420 (2.30112) | > loader_time: 0.03150 (0.03555)  --> STEP: 5676/15287 -- GLOBAL_STEP: 1016825 | > loss_disc: 2.26879 (2.32330) | > loss_disc_real_0: 0.13887 (0.12278) | > loss_disc_real_1: 0.23267 (0.21227) | > loss_disc_real_2: 0.21634 (0.21606) | > loss_disc_real_3: 0.24522 (0.21970) | > loss_disc_real_4: 0.20107 (0.21518) | > loss_disc_real_5: 0.17111 (0.21441) | > loss_0: 2.26879 (2.32330) | > grad_norm_0: 6.87065 (17.31652) | > loss_gen: 2.52853 (2.55592) | > loss_kl: 2.57071 (2.66034) | > loss_feat: 9.22565 (8.69390) | > loss_mel: 17.65748 (17.78276) | > loss_duration: 1.70572 (1.70635) | > loss_1: 33.68810 (33.39941) | > grad_norm_1: 42.64523 (141.02541) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.53920 (2.30207) | > loader_time: 0.03490 (0.03554)  --> STEP: 5701/15287 -- GLOBAL_STEP: 1016850 | > loss_disc: 2.26780 (2.32328) | > loss_disc_real_0: 0.10903 (0.12280) | > loss_disc_real_1: 0.18358 (0.21231) | > loss_disc_real_2: 0.19503 (0.21609) | > loss_disc_real_3: 0.19290 (0.21970) | > loss_disc_real_4: 0.18669 (0.21518) | > loss_disc_real_5: 0.21066 (0.21442) | > loss_0: 2.26780 (2.32328) | > grad_norm_0: 9.22040 (17.32049) | > loss_gen: 2.66059 (2.55594) | > loss_kl: 2.55705 (2.66027) | > loss_feat: 9.24513 (8.69356) | > loss_mel: 17.19790 (17.78187) | > loss_duration: 1.70822 (1.70634) | > loss_1: 33.36889 (33.39811) | > grad_norm_1: 99.73679 (141.02713) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.98430 (2.30369) | > loader_time: 0.03260 (0.03553)  --> STEP: 5726/15287 -- GLOBAL_STEP: 1016875 | > loss_disc: 2.34085 (2.32328) | > loss_disc_real_0: 0.11437 (0.12279) | > loss_disc_real_1: 0.20159 (0.21233) | > loss_disc_real_2: 0.21295 (0.21610) | > loss_disc_real_3: 0.19137 (0.21970) | > loss_disc_real_4: 0.20203 (0.21519) | > loss_disc_real_5: 0.19062 (0.21442) | > loss_0: 2.34085 (2.32328) | > grad_norm_0: 23.22185 (17.30165) | > loss_gen: 2.41921 (2.55601) | > loss_kl: 2.69385 (2.66046) | > loss_feat: 8.47090 (8.69353) | > loss_mel: 17.87822 (17.78160) | > loss_duration: 1.70179 (1.70631) | > loss_1: 33.16397 (33.39801) | > grad_norm_1: 145.21629 (140.91217) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.62660 (2.30477) | > loader_time: 0.03280 (0.03553)  --> STEP: 5751/15287 -- GLOBAL_STEP: 1016900 | > loss_disc: 2.32000 (2.32340) | > loss_disc_real_0: 0.09350 (0.12278) | > loss_disc_real_1: 0.21118 (0.21234) | > loss_disc_real_2: 0.23125 (0.21611) | > loss_disc_real_3: 0.20570 (0.21973) | > loss_disc_real_4: 0.19602 (0.21522) | > loss_disc_real_5: 0.20192 (0.21443) | > loss_0: 2.32000 (2.32340) | > grad_norm_0: 7.83438 (17.29246) | > loss_gen: 2.69204 (2.55606) | > loss_kl: 2.61984 (2.66036) | > loss_feat: 8.14187 (8.69309) | > loss_mel: 17.12114 (17.78100) | > loss_duration: 1.66286 (1.70629) | > loss_1: 32.23775 (33.39690) | > grad_norm_1: 126.80237 (140.81586) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.81800 (2.30564) | > loader_time: 0.03170 (0.03552)  --> STEP: 5776/15287 -- GLOBAL_STEP: 1016925 | > loss_disc: 2.30595 (2.32346) | > loss_disc_real_0: 0.08137 (0.12278) | > loss_disc_real_1: 0.20064 (0.21233) | > loss_disc_real_2: 0.22090 (0.21612) | > loss_disc_real_3: 0.22902 (0.21974) | > loss_disc_real_4: 0.23361 (0.21522) | > loss_disc_real_5: 0.24111 (0.21443) | > loss_0: 2.30595 (2.32346) | > grad_norm_0: 29.50551 (17.30207) | > loss_gen: 2.58772 (2.55602) | > loss_kl: 2.70865 (2.66027) | > loss_feat: 8.25851 (8.69260) | > loss_mel: 18.12545 (17.78146) | > loss_duration: 1.75000 (1.70630) | > loss_1: 33.43033 (33.39676) | > grad_norm_1: 250.69742 (140.82098) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.80320 (2.30716) | > loader_time: 0.03230 (0.03551)  --> STEP: 5801/15287 -- GLOBAL_STEP: 1016950 | > loss_disc: 2.25204 (2.32358) | > loss_disc_real_0: 0.13815 (0.12275) | > loss_disc_real_1: 0.20180 (0.21234) | > loss_disc_real_2: 0.23686 (0.21614) | > loss_disc_real_3: 0.22392 (0.21980) | > loss_disc_real_4: 0.21074 (0.21530) | > loss_disc_real_5: 0.20482 (0.21452) | > loss_0: 2.25204 (2.32358) | > grad_norm_0: 15.98182 (17.35127) | > loss_gen: 2.71823 (2.55618) | > loss_kl: 2.47141 (2.66014) | > loss_feat: 8.14166 (8.69214) | > loss_mel: 17.35145 (17.78163) | > loss_duration: 1.68417 (1.70629) | > loss_1: 32.36692 (33.39647) | > grad_norm_1: 93.30446 (141.06636) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42390 (2.30897) | > loader_time: 0.03300 (0.03552)  --> STEP: 5826/15287 -- GLOBAL_STEP: 1016975 | > loss_disc: 2.25462 (2.32344) | > loss_disc_real_0: 0.07968 (0.12272) | > loss_disc_real_1: 0.21027 (0.21232) | > loss_disc_real_2: 0.20308 (0.21614) | > loss_disc_real_3: 0.21392 (0.21978) | > loss_disc_real_4: 0.20765 (0.21527) | > loss_disc_real_5: 0.18572 (0.21450) | > loss_0: 2.25462 (2.32344) | > grad_norm_0: 18.25585 (17.36450) | > loss_gen: 2.60947 (2.55607) | > loss_kl: 2.60615 (2.65995) | > loss_feat: 8.62012 (8.69213) | > loss_mel: 17.44142 (17.78125) | > loss_duration: 1.68117 (1.70624) | > loss_1: 32.95834 (33.39573) | > grad_norm_1: 173.36343 (141.25258) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.62860 (2.31029) | > loader_time: 0.03210 (0.03551)  --> STEP: 5851/15287 -- GLOBAL_STEP: 1017000 | > loss_disc: 2.29730 (2.32335) | > loss_disc_real_0: 0.08960 (0.12271) | > loss_disc_real_1: 0.19527 (0.21231) | > loss_disc_real_2: 0.20900 (0.21612) | > loss_disc_real_3: 0.20851 (0.21976) | > loss_disc_real_4: 0.21395 (0.21524) | > loss_disc_real_5: 0.22649 (0.21451) | > loss_0: 2.29730 (2.32335) | > grad_norm_0: 8.65131 (17.38148) | > loss_gen: 2.67928 (2.55610) | > loss_kl: 2.68835 (2.65986) | > loss_feat: 9.17630 (8.69273) | > loss_mel: 18.09308 (17.78117) | > loss_duration: 1.68341 (1.70625) | > loss_1: 34.32041 (33.39618) | > grad_norm_1: 125.52097 (141.37733) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.59230 (2.31116) | > loader_time: 0.03270 (0.03550)  --> STEP: 5876/15287 -- GLOBAL_STEP: 1017025 | > loss_disc: 2.27879 (2.32326) | > loss_disc_real_0: 0.08851 (0.12271) | > loss_disc_real_1: 0.17350 (0.21228) | > loss_disc_real_2: 0.19018 (0.21608) | > loss_disc_real_3: 0.25214 (0.21978) | > loss_disc_real_4: 0.21884 (0.21525) | > loss_disc_real_5: 0.18194 (0.21449) | > loss_0: 2.27879 (2.32326) | > grad_norm_0: 13.80274 (17.38452) | > loss_gen: 2.55467 (2.55605) | > loss_kl: 2.67744 (2.65983) | > loss_feat: 8.89490 (8.69272) | > loss_mel: 17.93857 (17.78050) | > loss_duration: 1.68067 (1.70627) | > loss_1: 33.74625 (33.39545) | > grad_norm_1: 205.14496 (141.42758) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.84110 (2.31220) | > loader_time: 0.03150 (0.03549)  --> STEP: 5901/15287 -- GLOBAL_STEP: 1017050 | > loss_disc: 2.29525 (2.32330) | > loss_disc_real_0: 0.08145 (0.12269) | > loss_disc_real_1: 0.19653 (0.21227) | > loss_disc_real_2: 0.23525 (0.21610) | > loss_disc_real_3: 0.23360 (0.21977) | > loss_disc_real_4: 0.23984 (0.21526) | > loss_disc_real_5: 0.22539 (0.21450) | > loss_0: 2.29525 (2.32330) | > grad_norm_0: 25.85434 (17.38708) | > loss_gen: 2.60895 (2.55601) | > loss_kl: 2.54219 (2.65990) | > loss_feat: 8.68977 (8.69301) | > loss_mel: 17.67589 (17.78081) | > loss_duration: 1.73321 (1.70628) | > loss_1: 33.25001 (33.39607) | > grad_norm_1: 163.44116 (141.43372) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.45560 (2.31318) | > loader_time: 0.03130 (0.03549)  --> STEP: 5926/15287 -- GLOBAL_STEP: 1017075 | > loss_disc: 2.33365 (2.32349) | > loss_disc_real_0: 0.12671 (0.12273) | > loss_disc_real_1: 0.21760 (0.21229) | > loss_disc_real_2: 0.24322 (0.21611) | > loss_disc_real_3: 0.24135 (0.21979) | > loss_disc_real_4: 0.22283 (0.21526) | > loss_disc_real_5: 0.22725 (0.21450) | > loss_0: 2.33365 (2.32349) | > grad_norm_0: 8.52881 (17.37929) | > loss_gen: 2.42736 (2.55598) | > loss_kl: 2.70273 (2.66017) | > loss_feat: 8.50421 (8.69274) | > loss_mel: 17.88217 (17.78057) | > loss_duration: 1.73284 (1.70630) | > loss_1: 33.24931 (33.39579) | > grad_norm_1: 166.83693 (141.26830) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.10210 (2.31434) | > loader_time: 0.03230 (0.03548)  --> STEP: 5951/15287 -- GLOBAL_STEP: 1017100 | > loss_disc: 2.34400 (2.32360) | > loss_disc_real_0: 0.12442 (0.12272) | > loss_disc_real_1: 0.21137 (0.21230) | > loss_disc_real_2: 0.21887 (0.21613) | > loss_disc_real_3: 0.27439 (0.21981) | > loss_disc_real_4: 0.25800 (0.21528) | > loss_disc_real_5: 0.22430 (0.21451) | > loss_0: 2.34400 (2.32360) | > grad_norm_0: 22.00658 (17.37865) | > loss_gen: 2.67002 (2.55591) | > loss_kl: 2.76146 (2.66016) | > loss_feat: 8.43912 (8.69190) | > loss_mel: 17.41074 (17.78094) | > loss_duration: 1.71225 (1.70630) | > loss_1: 32.99360 (33.39529) | > grad_norm_1: 138.77406 (141.20580) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.73310 (2.31515) | > loader_time: 0.03480 (0.03547)  --> STEP: 5976/15287 -- GLOBAL_STEP: 1017125 | > loss_disc: 2.29170 (2.32362) | > loss_disc_real_0: 0.09286 (0.12269) | > loss_disc_real_1: 0.17944 (0.21230) | > loss_disc_real_2: 0.21251 (0.21612) | > loss_disc_real_3: 0.20880 (0.21983) | > loss_disc_real_4: 0.22378 (0.21527) | > loss_disc_real_5: 0.21564 (0.21451) | > loss_0: 2.29170 (2.32362) | > grad_norm_0: 15.97160 (17.36893) | > loss_gen: 2.64941 (2.55585) | > loss_kl: 2.64254 (2.66011) | > loss_feat: 8.55167 (8.69216) | > loss_mel: 17.59992 (17.78104) | > loss_duration: 1.69257 (1.70629) | > loss_1: 33.13611 (33.39552) | > grad_norm_1: 190.51939 (141.17241) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37030 (2.31631) | > loader_time: 0.03430 (0.03547)  --> STEP: 6001/15287 -- GLOBAL_STEP: 1017150 | > loss_disc: 2.41055 (2.32361) | > loss_disc_real_0: 0.20218 (0.12268) | > loss_disc_real_1: 0.22153 (0.21229) | > loss_disc_real_2: 0.23065 (0.21613) | > loss_disc_real_3: 0.21084 (0.21984) | > loss_disc_real_4: 0.22510 (0.21527) | > loss_disc_real_5: 0.20967 (0.21451) | > loss_0: 2.41055 (2.32361) | > grad_norm_0: 22.55564 (17.37736) | > loss_gen: 2.72042 (2.55587) | > loss_kl: 2.69683 (2.66014) | > loss_feat: 8.36711 (8.69220) | > loss_mel: 17.62608 (17.78110) | > loss_duration: 1.68857 (1.70630) | > loss_1: 33.09902 (33.39567) | > grad_norm_1: 89.77367 (141.16499) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55020 (2.31732) | > loader_time: 0.03580 (0.03546)  --> STEP: 6026/15287 -- GLOBAL_STEP: 1017175 | > loss_disc: 2.26519 (2.32367) | > loss_disc_real_0: 0.11285 (0.12270) | > loss_disc_real_1: 0.18241 (0.21228) | > loss_disc_real_2: 0.22014 (0.21615) | > loss_disc_real_3: 0.21972 (0.21985) | > loss_disc_real_4: 0.21735 (0.21526) | > loss_disc_real_5: 0.20997 (0.21449) | > loss_0: 2.26519 (2.32367) | > grad_norm_0: 25.47485 (17.40088) | > loss_gen: 2.52189 (2.55564) | > loss_kl: 2.63726 (2.66010) | > loss_feat: 9.37631 (8.69160) | > loss_mel: 17.71433 (17.78102) | > loss_duration: 1.72700 (1.70629) | > loss_1: 33.97679 (33.39472) | > grad_norm_1: 195.46495 (141.23990) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.49780 (2.31853) | > loader_time: 0.03200 (0.03547)  --> STEP: 6051/15287 -- GLOBAL_STEP: 1017200 | > loss_disc: 2.36825 (2.32371) | > loss_disc_real_0: 0.10869 (0.12270) | > loss_disc_real_1: 0.22028 (0.21228) | > loss_disc_real_2: 0.21234 (0.21614) | > loss_disc_real_3: 0.19736 (0.21986) | > loss_disc_real_4: 0.22171 (0.21526) | > loss_disc_real_5: 0.21840 (0.21447) | > loss_0: 2.36825 (2.32371) | > grad_norm_0: 9.48711 (17.40988) | > loss_gen: 2.65074 (2.55562) | > loss_kl: 2.43926 (2.66003) | > loss_feat: 7.52708 (8.69126) | > loss_mel: 16.95861 (17.78059) | > loss_duration: 1.76974 (1.70631) | > loss_1: 31.34543 (33.39388) | > grad_norm_1: 96.55815 (141.19307) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.50830 (2.31981) | > loader_time: 0.03080 (0.03547)  --> STEP: 6076/15287 -- GLOBAL_STEP: 1017225 | > loss_disc: 2.37225 (2.32380) | > loss_disc_real_0: 0.09820 (0.12270) | > loss_disc_real_1: 0.21587 (0.21228) | > loss_disc_real_2: 0.21861 (0.21615) | > loss_disc_real_3: 0.23838 (0.21988) | > loss_disc_real_4: 0.22596 (0.21528) | > loss_disc_real_5: 0.20675 (0.21448) | > loss_0: 2.37225 (2.32380) | > grad_norm_0: 15.43950 (17.41895) | > loss_gen: 2.46495 (2.55558) | > loss_kl: 2.61756 (2.66004) | > loss_feat: 8.55963 (8.69115) | > loss_mel: 17.88969 (17.78036) | > loss_duration: 1.70535 (1.70630) | > loss_1: 33.23718 (33.39347) | > grad_norm_1: 201.46057 (141.23097) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.53860 (2.32069) | > loader_time: 0.03990 (0.03546)  --> STEP: 6101/15287 -- GLOBAL_STEP: 1017250 | > loss_disc: 2.30828 (2.32375) | > loss_disc_real_0: 0.13751 (0.12269) | > loss_disc_real_1: 0.22349 (0.21226) | > loss_disc_real_2: 0.21456 (0.21614) | > loss_disc_real_3: 0.21657 (0.21986) | > loss_disc_real_4: 0.20985 (0.21524) | > loss_disc_real_5: 0.20970 (0.21447) | > loss_0: 2.30828 (2.32375) | > grad_norm_0: 11.91028 (17.42164) | > loss_gen: 2.67543 (2.55545) | > loss_kl: 2.62547 (2.66004) | > loss_feat: 8.52809 (8.69090) | > loss_mel: 17.60238 (17.78021) | > loss_duration: 1.71693 (1.70630) | > loss_1: 33.14829 (33.39296) | > grad_norm_1: 161.47134 (141.23956) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72430 (2.32121) | > loader_time: 0.03080 (0.03545)  --> STEP: 6126/15287 -- GLOBAL_STEP: 1017275 | > loss_disc: 2.31318 (2.32377) | > loss_disc_real_0: 0.11317 (0.12268) | > loss_disc_real_1: 0.20163 (0.21226) | > loss_disc_real_2: 0.20728 (0.21614) | > loss_disc_real_3: 0.26190 (0.21986) | > loss_disc_real_4: 0.19980 (0.21524) | > loss_disc_real_5: 0.19762 (0.21447) | > loss_0: 2.31318 (2.32377) | > grad_norm_0: 16.11964 (17.41851) | > loss_gen: 2.42393 (2.55540) | > loss_kl: 2.84550 (2.66018) | > loss_feat: 8.28617 (8.69079) | > loss_mel: 17.58595 (17.77998) | > loss_duration: 1.70879 (1.70629) | > loss_1: 32.85033 (33.39268) | > grad_norm_1: 88.67195 (141.21255) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35600 (2.32137) | > loader_time: 0.03270 (0.03544)  --> STEP: 6151/15287 -- GLOBAL_STEP: 1017300 | > loss_disc: 2.48194 (2.32383) | > loss_disc_real_0: 0.15203 (0.12269) | > loss_disc_real_1: 0.23577 (0.21226) | > loss_disc_real_2: 0.21736 (0.21614) | > loss_disc_real_3: 0.23625 (0.21986) | > loss_disc_real_4: 0.24285 (0.21523) | > loss_disc_real_5: 0.25010 (0.21449) | > loss_0: 2.48194 (2.32383) | > grad_norm_0: 7.18235 (17.39987) | > loss_gen: 2.33117 (2.55539) | > loss_kl: 2.68674 (2.66011) | > loss_feat: 8.74417 (8.69065) | > loss_mel: 17.53884 (17.77994) | > loss_duration: 1.72400 (1.70630) | > loss_1: 33.02492 (33.39241) | > grad_norm_1: 68.13289 (141.10872) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72950 (2.32210) | > loader_time: 0.03250 (0.03543)  --> STEP: 6176/15287 -- GLOBAL_STEP: 1017325 | > loss_disc: 2.44922 (2.32408) | > loss_disc_real_0: 0.11850 (0.12278) | > loss_disc_real_1: 0.23026 (0.21228) | > loss_disc_real_2: 0.23756 (0.21618) | > loss_disc_real_3: 0.24989 (0.21987) | > loss_disc_real_4: 0.20897 (0.21523) | > loss_disc_real_5: 0.21701 (0.21449) | > loss_0: 2.44922 (2.32408) | > grad_norm_0: 18.03074 (17.38627) | > loss_gen: 2.47555 (2.55539) | > loss_kl: 2.66653 (2.66023) | > loss_feat: 8.69279 (8.68991) | > loss_mel: 19.18449 (17.78058) | > loss_duration: 1.73167 (1.70632) | > loss_1: 34.75103 (33.39244) | > grad_norm_1: 171.98108 (140.98201) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.47730 (2.32314) | > loader_time: 0.03550 (0.03556)  --> STEP: 6201/15287 -- GLOBAL_STEP: 1017350 | > loss_disc: 2.22949 (2.32410) | > loss_disc_real_0: 0.10472 (0.12277) | > loss_disc_real_1: 0.20561 (0.21229) | > loss_disc_real_2: 0.20200 (0.21619) | > loss_disc_real_3: 0.20998 (0.21985) | > loss_disc_real_4: 0.20391 (0.21525) | > loss_disc_real_5: 0.20910 (0.21448) | > loss_0: 2.22949 (2.32410) | > grad_norm_0: 9.26956 (17.38427) | > loss_gen: 2.74604 (2.55539) | > loss_kl: 2.63180 (2.66016) | > loss_feat: 9.11964 (8.68951) | > loss_mel: 18.07516 (17.78122) | > loss_duration: 1.71141 (1.70631) | > loss_1: 34.28405 (33.39262) | > grad_norm_1: 174.35478 (140.98518) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.93740 (2.32412) | > loader_time: 0.03140 (0.03556)  --> STEP: 6226/15287 -- GLOBAL_STEP: 1017375 | > loss_disc: 2.27904 (2.32407) | > loss_disc_real_0: 0.10972 (0.12276) | > loss_disc_real_1: 0.22122 (0.21227) | > loss_disc_real_2: 0.19416 (0.21618) | > loss_disc_real_3: 0.19360 (0.21984) | > loss_disc_real_4: 0.20067 (0.21525) | > loss_disc_real_5: 0.21915 (0.21448) | > loss_0: 2.27904 (2.32407) | > grad_norm_0: 8.82130 (17.39550) | > loss_gen: 2.74813 (2.55523) | > loss_kl: 2.68639 (2.66000) | > loss_feat: 8.88751 (8.68919) | > loss_mel: 17.69731 (17.78125) | > loss_duration: 1.70733 (1.70632) | > loss_1: 33.72668 (33.39202) | > grad_norm_1: 126.02871 (141.00841) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36740 (2.32525) | > loader_time: 0.03760 (0.03556)  --> STEP: 6251/15287 -- GLOBAL_STEP: 1017400 | > loss_disc: 2.35258 (2.32400) | > loss_disc_real_0: 0.15755 (0.12273) | > loss_disc_real_1: 0.21309 (0.21225) | > loss_disc_real_2: 0.23391 (0.21618) | > loss_disc_real_3: 0.21112 (0.21987) | > loss_disc_real_4: 0.20633 (0.21526) | > loss_disc_real_5: 0.21281 (0.21448) | > loss_0: 2.35258 (2.32400) | > grad_norm_0: 19.85710 (17.40211) | > loss_gen: 2.53038 (2.55527) | > loss_kl: 2.71192 (2.66001) | > loss_feat: 8.14649 (8.68970) | > loss_mel: 17.54630 (17.78107) | > loss_duration: 1.69698 (1.70632) | > loss_1: 32.63207 (33.39239) | > grad_norm_1: 124.81075 (141.08809) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.63350 (2.32659) | > loader_time: 0.03680 (0.03556)  --> STEP: 6276/15287 -- GLOBAL_STEP: 1017425 | > loss_disc: 2.31371 (2.32394) | > loss_disc_real_0: 0.10254 (0.12270) | > loss_disc_real_1: 0.24509 (0.21227) | > loss_disc_real_2: 0.25030 (0.21618) | > loss_disc_real_3: 0.22888 (0.21986) | > loss_disc_real_4: 0.20587 (0.21527) | > loss_disc_real_5: 0.19632 (0.21449) | > loss_0: 2.31371 (2.32394) | > grad_norm_0: 7.10923 (17.40055) | > loss_gen: 2.56818 (2.55536) | > loss_kl: 2.62656 (2.65993) | > loss_feat: 8.45137 (8.68956) | > loss_mel: 17.48239 (17.78033) | > loss_duration: 1.72592 (1.70635) | > loss_1: 32.85442 (33.39157) | > grad_norm_1: 196.99937 (141.08200) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55350 (2.32748) | > loader_time: 0.03150 (0.03555)  --> STEP: 6301/15287 -- GLOBAL_STEP: 1017450 | > loss_disc: 2.25087 (2.32391) | > loss_disc_real_0: 0.11999 (0.12268) | > loss_disc_real_1: 0.21770 (0.21226) | > loss_disc_real_2: 0.21241 (0.21621) | > loss_disc_real_3: 0.22180 (0.21983) | > loss_disc_real_4: 0.20664 (0.21524) | > loss_disc_real_5: 0.16795 (0.21454) | > loss_0: 2.25087 (2.32391) | > grad_norm_0: 9.38102 (17.42999) | > loss_gen: 2.59657 (2.55538) | > loss_kl: 2.73968 (2.65980) | > loss_feat: 8.69422 (8.68924) | > loss_mel: 18.08381 (17.77997) | > loss_duration: 1.74196 (1.70633) | > loss_1: 33.85624 (33.39077) | > grad_norm_1: 48.22197 (141.17781) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.51950 (2.32864) | > loader_time: 0.03620 (0.03555)  --> STEP: 6326/15287 -- GLOBAL_STEP: 1017475 | > loss_disc: 2.34571 (2.32383) | > loss_disc_real_0: 0.09861 (0.12265) | > loss_disc_real_1: 0.21030 (0.21227) | > loss_disc_real_2: 0.21688 (0.21620) | > loss_disc_real_3: 0.20964 (0.21982) | > loss_disc_real_4: 0.23382 (0.21523) | > loss_disc_real_5: 0.21252 (0.21455) | > loss_0: 2.34571 (2.32383) | > grad_norm_0: 21.84110 (17.44033) | > loss_gen: 2.42814 (2.55535) | > loss_kl: 2.66646 (2.65992) | > loss_feat: 8.41228 (8.68937) | > loss_mel: 17.31699 (17.77950) | > loss_duration: 1.74834 (1.70634) | > loss_1: 32.57222 (33.39051) | > grad_norm_1: 185.21671 (141.30240) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.62640 (2.32961) | > loader_time: 0.03560 (0.03555)  --> STEP: 6351/15287 -- GLOBAL_STEP: 1017500 | > loss_disc: 2.29973 (2.32380) | > loss_disc_real_0: 0.13239 (0.12265) | > loss_disc_real_1: 0.22391 (0.21226) | > loss_disc_real_2: 0.25150 (0.21618) | > loss_disc_real_3: 0.22076 (0.21983) | > loss_disc_real_4: 0.21286 (0.21525) | > loss_disc_real_5: 0.23037 (0.21453) | > loss_0: 2.29973 (2.32380) | > grad_norm_0: 9.02593 (17.44778) | > loss_gen: 2.38216 (2.55522) | > loss_kl: 2.65118 (2.66003) | > loss_feat: 8.79526 (8.68882) | > loss_mel: 17.23953 (17.77915) | > loss_duration: 1.66726 (1.70634) | > loss_1: 32.73540 (33.38959) | > grad_norm_1: 143.65367 (141.38954) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56330 (2.33075) | > loader_time: 0.03110 (0.03554)  --> STEP: 6376/15287 -- GLOBAL_STEP: 1017525 | > loss_disc: 2.24828 (2.32376) | > loss_disc_real_0: 0.09278 (0.12264) | > loss_disc_real_1: 0.18248 (0.21224) | > loss_disc_real_2: 0.17274 (0.21617) | > loss_disc_real_3: 0.21247 (0.21981) | > loss_disc_real_4: 0.25129 (0.21524) | > loss_disc_real_5: 0.22589 (0.21453) | > loss_0: 2.24828 (2.32376) | > grad_norm_0: 20.18157 (17.45525) | > loss_gen: 2.64840 (2.55515) | > loss_kl: 2.58147 (2.66019) | > loss_feat: 8.84498 (8.68939) | > loss_mel: 17.39736 (17.77915) | > loss_duration: 1.68495 (1.70634) | > loss_1: 33.15717 (33.39023) | > grad_norm_1: 169.13097 (141.45396) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00680 (2.33139) | > loader_time: 0.03690 (0.03554)  --> STEP: 6401/15287 -- GLOBAL_STEP: 1017550 | > loss_disc: 2.38299 (2.32370) | > loss_disc_real_0: 0.14585 (0.12266) | > loss_disc_real_1: 0.19367 (0.21223) | > loss_disc_real_2: 0.21533 (0.21617) | > loss_disc_real_3: 0.23639 (0.21981) | > loss_disc_real_4: 0.21830 (0.21524) | > loss_disc_real_5: 0.22621 (0.21453) | > loss_0: 2.38299 (2.32370) | > grad_norm_0: 16.08420 (17.45750) | > loss_gen: 2.64623 (2.55525) | > loss_kl: 2.73057 (2.66033) | > loss_feat: 8.18038 (8.68935) | > loss_mel: 17.40920 (17.77859) | > loss_duration: 1.67273 (1.70633) | > loss_1: 32.63910 (33.38987) | > grad_norm_1: 187.63658 (141.57162) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.69380 (2.33216) | > loader_time: 0.04330 (0.03553)  --> STEP: 6426/15287 -- GLOBAL_STEP: 1017575 | > loss_disc: 2.36651 (2.32368) | > loss_disc_real_0: 0.09748 (0.12266) | > loss_disc_real_1: 0.23405 (0.21222) | > loss_disc_real_2: 0.23177 (0.21615) | > loss_disc_real_3: 0.20208 (0.21978) | > loss_disc_real_4: 0.17975 (0.21522) | > loss_disc_real_5: 0.21067 (0.21453) | > loss_0: 2.36651 (2.32368) | > grad_norm_0: 19.76142 (17.45715) | > loss_gen: 2.37187 (2.55509) | > loss_kl: 2.66863 (2.66034) | > loss_feat: 8.12840 (8.68897) | > loss_mel: 17.43094 (17.77804) | > loss_duration: 1.70919 (1.70638) | > loss_1: 32.30904 (33.38882) | > grad_norm_1: 145.00299 (141.54564) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34890 (2.33330) | > loader_time: 0.03380 (0.03553)  --> STEP: 6451/15287 -- GLOBAL_STEP: 1017600 | > loss_disc: 2.37437 (2.32377) | > loss_disc_real_0: 0.16997 (0.12269) | > loss_disc_real_1: 0.20543 (0.21222) | > loss_disc_real_2: 0.21331 (0.21616) | > loss_disc_real_3: 0.20023 (0.21978) | > loss_disc_real_4: 0.22376 (0.21524) | > loss_disc_real_5: 0.23950 (0.21452) | > loss_0: 2.37437 (2.32377) | > grad_norm_0: 18.28367 (17.44897) | > loss_gen: 2.64110 (2.55508) | > loss_kl: 2.63771 (2.66045) | > loss_feat: 8.83034 (8.68886) | > loss_mel: 18.03880 (17.77875) | > loss_duration: 1.68176 (1.70641) | > loss_1: 33.82970 (33.38953) | > grad_norm_1: 131.03282 (141.34850) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.80750 (2.33435) | > loader_time: 0.03350 (0.03552)  --> STEP: 6476/15287 -- GLOBAL_STEP: 1017625 | > loss_disc: 2.38797 (2.32380) | > loss_disc_real_0: 0.12581 (0.12268) | > loss_disc_real_1: 0.22856 (0.21221) | > loss_disc_real_2: 0.24206 (0.21616) | > loss_disc_real_3: 0.22957 (0.21978) | > loss_disc_real_4: 0.22011 (0.21525) | > loss_disc_real_5: 0.19573 (0.21451) | > loss_0: 2.38797 (2.32380) | > grad_norm_0: 7.81257 (17.43966) | > loss_gen: 2.45840 (2.55506) | > loss_kl: 2.54662 (2.66038) | > loss_feat: 8.08372 (8.68889) | > loss_mel: 17.43080 (17.77873) | > loss_duration: 1.74932 (1.70641) | > loss_1: 32.26886 (33.38945) | > grad_norm_1: 64.25269 (141.33826) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36200 (2.33553) | > loader_time: 0.03850 (0.03553)  --> STEP: 6501/15287 -- GLOBAL_STEP: 1017650 | > loss_disc: 2.38204 (2.32383) | > loss_disc_real_0: 0.10804 (0.12267) | > loss_disc_real_1: 0.18946 (0.21221) | > loss_disc_real_2: 0.20744 (0.21616) | > loss_disc_real_3: 0.23537 (0.21980) | > loss_disc_real_4: 0.19505 (0.21525) | > loss_disc_real_5: 0.19015 (0.21451) | > loss_0: 2.38204 (2.32383) | > grad_norm_0: 6.44241 (17.42786) | > loss_gen: 2.63830 (2.55510) | > loss_kl: 2.70558 (2.66019) | > loss_feat: 8.33778 (8.68878) | > loss_mel: 18.04436 (17.77901) | > loss_duration: 1.67485 (1.70640) | > loss_1: 33.40087 (33.38947) | > grad_norm_1: 119.41885 (141.28358) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55570 (2.33668) | > loader_time: 0.04130 (0.03553)  --> STEP: 6526/15287 -- GLOBAL_STEP: 1017675 | > loss_disc: 2.39380 (2.32391) | > loss_disc_real_0: 0.17124 (0.12269) | > loss_disc_real_1: 0.21563 (0.21224) | > loss_disc_real_2: 0.21936 (0.21616) | > loss_disc_real_3: 0.24165 (0.21978) | > loss_disc_real_4: 0.18250 (0.21524) | > loss_disc_real_5: 0.22495 (0.21452) | > loss_0: 2.39380 (2.32391) | > grad_norm_0: 15.51526 (17.42328) | > loss_gen: 2.35094 (2.55502) | > loss_kl: 2.66937 (2.66034) | > loss_feat: 8.39168 (8.68856) | > loss_mel: 17.60041 (17.77908) | > loss_duration: 1.69508 (1.70643) | > loss_1: 32.70749 (33.38943) | > grad_norm_1: 87.04118 (141.23999) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.49870 (2.33783) | > loader_time: 0.03750 (0.03553)  --> STEP: 6551/15287 -- GLOBAL_STEP: 1017700 | > loss_disc: 2.30382 (2.32406) | > loss_disc_real_0: 0.14309 (0.12270) | > loss_disc_real_1: 0.19230 (0.21225) | > loss_disc_real_2: 0.19202 (0.21618) | > loss_disc_real_3: 0.19257 (0.21978) | > loss_disc_real_4: 0.19183 (0.21527) | > loss_disc_real_5: 0.19146 (0.21450) | > loss_0: 2.30382 (2.32406) | > grad_norm_0: 9.57398 (17.40664) | > loss_gen: 2.54741 (2.55488) | > loss_kl: 2.57494 (2.66037) | > loss_feat: 8.60820 (8.68797) | > loss_mel: 18.44882 (17.77923) | > loss_duration: 1.73954 (1.70641) | > loss_1: 33.91891 (33.38887) | > grad_norm_1: 97.17799 (141.09482) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41730 (2.33864) | > loader_time: 0.03320 (0.03553)  --> STEP: 6576/15287 -- GLOBAL_STEP: 1017725 | > loss_disc: 2.30196 (2.32422) | > loss_disc_real_0: 0.12675 (0.12272) | > loss_disc_real_1: 0.15637 (0.21225) | > loss_disc_real_2: 0.21471 (0.21620) | > loss_disc_real_3: 0.18953 (0.21979) | > loss_disc_real_4: 0.20919 (0.21528) | > loss_disc_real_5: 0.21655 (0.21450) | > loss_0: 2.30196 (2.32422) | > grad_norm_0: 22.55169 (17.39173) | > loss_gen: 2.48466 (2.55491) | > loss_kl: 2.59079 (2.66034) | > loss_feat: 9.12067 (8.68816) | > loss_mel: 17.94064 (17.78069) | > loss_duration: 1.71678 (1.70645) | > loss_1: 33.85355 (33.39056) | > grad_norm_1: 201.73065 (140.98923) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.50740 (2.33963) | > loader_time: 0.03810 (0.03552)  --> STEP: 6601/15287 -- GLOBAL_STEP: 1017750 | > loss_disc: 2.34654 (2.32441) | > loss_disc_real_0: 0.18476 (0.12276) | > loss_disc_real_1: 0.22261 (0.21227) | > loss_disc_real_2: 0.22554 (0.21620) | > loss_disc_real_3: 0.19801 (0.21979) | > loss_disc_real_4: 0.22696 (0.21529) | > loss_disc_real_5: 0.22071 (0.21449) | > loss_0: 2.34654 (2.32441) | > grad_norm_0: 41.43246 (17.38304) | > loss_gen: 2.55887 (2.55479) | > loss_kl: 2.64831 (2.66024) | > loss_feat: 8.19083 (8.68692) | > loss_mel: 17.69986 (17.78087) | > loss_duration: 1.72062 (1.70646) | > loss_1: 32.81849 (33.38929) | > grad_norm_1: 86.48858 (140.94528) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30030 (2.34012) | > loader_time: 0.03420 (0.03551)  --> STEP: 6626/15287 -- GLOBAL_STEP: 1017775 | > loss_disc: 2.31668 (2.32439) | > loss_disc_real_0: 0.12987 (0.12274) | > loss_disc_real_1: 0.21311 (0.21227) | > loss_disc_real_2: 0.21995 (0.21620) | > loss_disc_real_3: 0.21924 (0.21979) | > loss_disc_real_4: 0.21591 (0.21530) | > loss_disc_real_5: 0.21027 (0.21450) | > loss_0: 2.31668 (2.32439) | > grad_norm_0: 14.24555 (17.38282) | > loss_gen: 2.60474 (2.55468) | > loss_kl: 2.70401 (2.66000) | > loss_feat: 8.27157 (8.68629) | > loss_mel: 17.15412 (17.78041) | > loss_duration: 1.68077 (1.70646) | > loss_1: 32.41520 (33.38786) | > grad_norm_1: 106.00187 (140.95650) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41540 (2.34098) | > loader_time: 0.03330 (0.03551)  --> STEP: 6651/15287 -- GLOBAL_STEP: 1017800 | > loss_disc: 2.21196 (2.32445) | > loss_disc_real_0: 0.09590 (0.12275) | > loss_disc_real_1: 0.22347 (0.21227) | > loss_disc_real_2: 0.23378 (0.21620) | > loss_disc_real_3: 0.22850 (0.21980) | > loss_disc_real_4: 0.26217 (0.21530) | > loss_disc_real_5: 0.22698 (0.21451) | > loss_0: 2.21196 (2.32445) | > grad_norm_0: 12.60944 (17.39466) | > loss_gen: 2.77241 (2.55465) | > loss_kl: 2.51123 (2.65987) | > loss_feat: 9.10653 (8.68629) | > loss_mel: 17.85992 (17.78037) | > loss_duration: 1.71339 (1.70647) | > loss_1: 33.96348 (33.38768) | > grad_norm_1: 143.94106 (140.95131) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.48760 (2.34182) | > loader_time: 0.03310 (0.03550)  --> STEP: 6676/15287 -- GLOBAL_STEP: 1017825 | > loss_disc: 2.29924 (2.32451) | > loss_disc_real_0: 0.10524 (0.12271) | > loss_disc_real_1: 0.21202 (0.21228) | > loss_disc_real_2: 0.20235 (0.21620) | > loss_disc_real_3: 0.23376 (0.21981) | > loss_disc_real_4: 0.19907 (0.21531) | > loss_disc_real_5: 0.19541 (0.21451) | > loss_0: 2.29924 (2.32451) | > grad_norm_0: 9.47085 (17.39470) | > loss_gen: 2.61693 (2.55448) | > loss_kl: 2.66622 (2.65970) | > loss_feat: 8.48986 (8.68544) | > loss_mel: 17.66657 (17.77984) | > loss_duration: 1.75247 (1.70649) | > loss_1: 33.19205 (33.38598) | > grad_norm_1: 93.25803 (140.87773) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.99560 (2.34302) | > loader_time: 0.03380 (0.03551)  --> STEP: 6701/15287 -- GLOBAL_STEP: 1017850 | > loss_disc: 2.31521 (2.32452) | > loss_disc_real_0: 0.17924 (0.12272) | > loss_disc_real_1: 0.24632 (0.21228) | > loss_disc_real_2: 0.24067 (0.21620) | > loss_disc_real_3: 0.22788 (0.21980) | > loss_disc_real_4: 0.18589 (0.21531) | > loss_disc_real_5: 0.21338 (0.21450) | > loss_0: 2.31521 (2.32452) | > grad_norm_0: 19.75083 (17.38279) | > loss_gen: 2.82914 (2.55449) | > loss_kl: 2.65386 (2.65987) | > loss_feat: 8.30662 (8.68535) | > loss_mel: 17.61425 (17.77966) | > loss_duration: 1.70732 (1.70649) | > loss_1: 33.11121 (33.38589) | > grad_norm_1: 63.62502 (140.82349) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.19430 (2.34386) | > loader_time: 0.03780 (0.03550)  --> STEP: 6726/15287 -- GLOBAL_STEP: 1017875 | > loss_disc: 2.36839 (2.32449) | > loss_disc_real_0: 0.10168 (0.12272) | > loss_disc_real_1: 0.22322 (0.21226) | > loss_disc_real_2: 0.25138 (0.21620) | > loss_disc_real_3: 0.18695 (0.21981) | > loss_disc_real_4: 0.21304 (0.21531) | > loss_disc_real_5: 0.21426 (0.21449) | > loss_0: 2.36839 (2.32449) | > grad_norm_0: 24.86595 (17.38458) | > loss_gen: 2.51797 (2.55442) | > loss_kl: 2.70752 (2.66004) | > loss_feat: 8.92107 (8.68553) | > loss_mel: 18.01155 (17.77962) | > loss_duration: 1.73931 (1.70649) | > loss_1: 33.89742 (33.38614) | > grad_norm_1: 182.54573 (140.80240) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43510 (2.34501) | > loader_time: 0.03200 (0.03551)  --> STEP: 6751/15287 -- GLOBAL_STEP: 1017900 | > loss_disc: 2.37077 (2.32451) | > loss_disc_real_0: 0.10069 (0.12270) | > loss_disc_real_1: 0.20552 (0.21227) | > loss_disc_real_2: 0.23198 (0.21621) | > loss_disc_real_3: 0.22927 (0.21981) | > loss_disc_real_4: 0.20058 (0.21530) | > loss_disc_real_5: 0.20717 (0.21449) | > loss_0: 2.37077 (2.32451) | > grad_norm_0: 7.62985 (17.37726) | > loss_gen: 2.77843 (2.55445) | > loss_kl: 2.67646 (2.66010) | > loss_feat: 8.22489 (8.68545) | > loss_mel: 17.70146 (17.77990) | > loss_duration: 1.70653 (1.70652) | > loss_1: 33.08778 (33.38644) | > grad_norm_1: 181.89340 (140.85396) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26710 (2.34584) | > loader_time: 0.03560 (0.03551)  --> STEP: 6776/15287 -- GLOBAL_STEP: 1017925 | > loss_disc: 2.40612 (2.32458) | > loss_disc_real_0: 0.10125 (0.12274) | > loss_disc_real_1: 0.20192 (0.21228) | > loss_disc_real_2: 0.20909 (0.21621) | > loss_disc_real_3: 0.20538 (0.21981) | > loss_disc_real_4: 0.20002 (0.21528) | > loss_disc_real_5: 0.22947 (0.21452) | > loss_0: 2.40612 (2.32458) | > grad_norm_0: 14.97874 (17.37600) | > loss_gen: 2.53887 (2.55442) | > loss_kl: 2.62037 (2.66009) | > loss_feat: 8.09076 (8.68497) | > loss_mel: 17.20498 (17.77931) | > loss_duration: 1.70424 (1.70650) | > loss_1: 32.15921 (33.38530) | > grad_norm_1: 110.83614 (140.79582) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56140 (2.34639) | > loader_time: 0.04000 (0.03550)  --> STEP: 6801/15287 -- GLOBAL_STEP: 1017950 | > loss_disc: 2.27844 (2.32452) | > loss_disc_real_0: 0.12457 (0.12272) | > loss_disc_real_1: 0.22391 (0.21226) | > loss_disc_real_2: 0.25660 (0.21621) | > loss_disc_real_3: 0.23314 (0.21980) | > loss_disc_real_4: 0.25441 (0.21529) | > loss_disc_real_5: 0.20653 (0.21451) | > loss_0: 2.27844 (2.32452) | > grad_norm_0: 11.56740 (17.37392) | > loss_gen: 2.70963 (2.55438) | > loss_kl: 2.65692 (2.65998) | > loss_feat: 9.03009 (8.68490) | > loss_mel: 17.75928 (17.77874) | > loss_duration: 1.69054 (1.70652) | > loss_1: 33.84645 (33.38454) | > grad_norm_1: 142.91290 (140.83568) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52630 (2.34720) | > loader_time: 0.03160 (0.03549)  --> STEP: 6826/15287 -- GLOBAL_STEP: 1017975 | > loss_disc: 2.32120 (2.32443) | > loss_disc_real_0: 0.10292 (0.12270) | > loss_disc_real_1: 0.17931 (0.21225) | > loss_disc_real_2: 0.19521 (0.21619) | > loss_disc_real_3: 0.20449 (0.21979) | > loss_disc_real_4: 0.20509 (0.21528) | > loss_disc_real_5: 0.24771 (0.21453) | > loss_0: 2.32120 (2.32443) | > grad_norm_0: 24.99489 (17.37814) | > loss_gen: 2.45455 (2.55442) | > loss_kl: 2.69925 (2.66011) | > loss_feat: 9.06775 (8.68516) | > loss_mel: 17.53033 (17.77865) | > loss_duration: 1.72650 (1.70655) | > loss_1: 33.47838 (33.38491) | > grad_norm_1: 176.62917 (140.93370) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40210 (2.34784) | > loader_time: 0.03350 (0.03549)  --> STEP: 6851/15287 -- GLOBAL_STEP: 1018000 | > loss_disc: 2.40205 (2.32450) | > loss_disc_real_0: 0.10772 (0.12272) | > loss_disc_real_1: 0.21642 (0.21226) | > loss_disc_real_2: 0.19669 (0.21619) | > loss_disc_real_3: 0.20967 (0.21980) | > loss_disc_real_4: 0.19644 (0.21527) | > loss_disc_real_5: 0.21352 (0.21452) | > loss_0: 2.40205 (2.32450) | > grad_norm_0: 27.77831 (17.37943) | > loss_gen: 2.34680 (2.55432) | > loss_kl: 2.71667 (2.66030) | > loss_feat: 8.26801 (8.68485) | > loss_mel: 17.50255 (17.77868) | > loss_duration: 1.69690 (1.70655) | > loss_1: 32.53092 (33.38470) | > grad_norm_1: 202.90424 (140.99409) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42770 (2.34871) | > loader_time: 0.03370 (0.03548)  --> STEP: 6876/15287 -- GLOBAL_STEP: 1018025 | > loss_disc: 2.33996 (2.32449) | > loss_disc_real_0: 0.09267 (0.12271) | > loss_disc_real_1: 0.21631 (0.21226) | > loss_disc_real_2: 0.19492 (0.21619) | > loss_disc_real_3: 0.23548 (0.21981) | > loss_disc_real_4: 0.22886 (0.21526) | > loss_disc_real_5: 0.22153 (0.21453) | > loss_0: 2.33996 (2.32449) | > grad_norm_0: 17.17997 (17.36900) | > loss_gen: 2.47529 (2.55430) | > loss_kl: 2.73068 (2.66026) | > loss_feat: 8.46874 (8.68464) | > loss_mel: 17.57533 (17.77860) | > loss_duration: 1.67405 (1.70656) | > loss_1: 32.92409 (33.38436) | > grad_norm_1: 167.53569 (140.99501) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39680 (2.34938) | > loader_time: 0.03630 (0.03548)  --> STEP: 6901/15287 -- GLOBAL_STEP: 1018050 | > loss_disc: 2.35835 (2.32446) | > loss_disc_real_0: 0.17483 (0.12270) | > loss_disc_real_1: 0.27532 (0.21227) | > loss_disc_real_2: 0.24461 (0.21618) | > loss_disc_real_3: 0.26285 (0.21984) | > loss_disc_real_4: 0.22664 (0.21528) | > loss_disc_real_5: 0.25753 (0.21452) | > loss_0: 2.35835 (2.32446) | > grad_norm_0: 28.33742 (17.36831) | > loss_gen: 2.77892 (2.55446) | > loss_kl: 2.55560 (2.66035) | > loss_feat: 8.35108 (8.68473) | > loss_mel: 17.54922 (17.77838) | > loss_duration: 1.67712 (1.70650) | > loss_1: 32.91194 (33.38442) | > grad_norm_1: 116.31372 (141.03479) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.75580 (2.35085) | > loader_time: 0.03830 (0.03548)  --> STEP: 6926/15287 -- GLOBAL_STEP: 1018075 | > loss_disc: 2.30442 (2.32439) | > loss_disc_real_0: 0.09465 (0.12269) | > loss_disc_real_1: 0.20681 (0.21226) | > loss_disc_real_2: 0.18036 (0.21618) | > loss_disc_real_3: 0.18452 (0.21984) | > loss_disc_real_4: 0.20407 (0.21529) | > loss_disc_real_5: 0.19519 (0.21456) | > loss_0: 2.30442 (2.32439) | > grad_norm_0: 14.86438 (17.36840) | > loss_gen: 2.55649 (2.55447) | > loss_kl: 2.63952 (2.66037) | > loss_feat: 8.91019 (8.68476) | > loss_mel: 17.23351 (17.77824) | > loss_duration: 1.70094 (1.70648) | > loss_1: 33.04065 (33.38433) | > grad_norm_1: 235.87558 (141.15556) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.46170 (2.35146) | > loader_time: 0.03550 (0.03549)  --> STEP: 6951/15287 -- GLOBAL_STEP: 1018100 | > loss_disc: 2.31082 (2.32433) | > loss_disc_real_0: 0.09240 (0.12265) | > loss_disc_real_1: 0.18828 (0.21222) | > loss_disc_real_2: 0.21045 (0.21617) | > loss_disc_real_3: 0.21740 (0.21985) | > loss_disc_real_4: 0.20640 (0.21528) | > loss_disc_real_5: 0.20408 (0.21456) | > loss_0: 2.31082 (2.32433) | > grad_norm_0: 13.52928 (17.37019) | > loss_gen: 2.56314 (2.55437) | > loss_kl: 2.63813 (2.66043) | > loss_feat: 8.45403 (8.68455) | > loss_mel: 17.20783 (17.77792) | > loss_duration: 1.70468 (1.70645) | > loss_1: 32.56781 (33.38372) | > grad_norm_1: 157.54724 (141.23370) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37490 (2.35268) | > loader_time: 0.03130 (0.03549)  --> STEP: 6976/15287 -- GLOBAL_STEP: 1018125 | > loss_disc: 2.31571 (2.32433) | > loss_disc_real_0: 0.09485 (0.12265) | > loss_disc_real_1: 0.21179 (0.21221) | > loss_disc_real_2: 0.22775 (0.21619) | > loss_disc_real_3: 0.24152 (0.21985) | > loss_disc_real_4: 0.23102 (0.21529) | > loss_disc_real_5: 0.19913 (0.21454) | > loss_0: 2.31571 (2.32433) | > grad_norm_0: 20.12130 (17.36452) | > loss_gen: 2.47505 (2.55435) | > loss_kl: 2.80516 (2.66054) | > loss_feat: 9.04577 (8.68443) | > loss_mel: 17.82008 (17.77757) | > loss_duration: 1.66486 (1.70645) | > loss_1: 33.81092 (33.38333) | > grad_norm_1: 168.09802 (141.20082) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.49180 (2.35325) | > loader_time: 0.03140 (0.03548)  --> STEP: 7001/15287 -- GLOBAL_STEP: 1018150 | > loss_disc: 2.29781 (2.32426) | > loss_disc_real_0: 0.09228 (0.12262) | > loss_disc_real_1: 0.16042 (0.21218) | > loss_disc_real_2: 0.14303 (0.21616) | > loss_disc_real_3: 0.16969 (0.21983) | > loss_disc_real_4: 0.17604 (0.21528) | > loss_disc_real_5: 0.17072 (0.21453) | > loss_0: 2.29781 (2.32426) | > grad_norm_0: 23.83188 (17.35869) | > loss_gen: 2.44860 (2.55425) | > loss_kl: 2.64396 (2.66055) | > loss_feat: 8.97475 (8.68440) | > loss_mel: 17.70451 (17.77729) | > loss_duration: 1.68340 (1.70643) | > loss_1: 33.45523 (33.38291) | > grad_norm_1: 166.97458 (141.18993) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.63040 (2.35406) | > loader_time: 0.03190 (0.03548)  --> STEP: 7026/15287 -- GLOBAL_STEP: 1018175 | > loss_disc: 2.38362 (2.32432) | > loss_disc_real_0: 0.23241 (0.12265) | > loss_disc_real_1: 0.21560 (0.21218) | > loss_disc_real_2: 0.24837 (0.21616) | > loss_disc_real_3: 0.24229 (0.21984) | > loss_disc_real_4: 0.21148 (0.21528) | > loss_disc_real_5: 0.23685 (0.21453) | > loss_0: 2.38362 (2.32432) | > grad_norm_0: 23.31657 (17.35374) | > loss_gen: 2.66531 (2.55423) | > loss_kl: 2.55062 (2.66053) | > loss_feat: 8.14983 (8.68414) | > loss_mel: 16.98524 (17.77737) | > loss_duration: 1.67565 (1.70643) | > loss_1: 32.02665 (33.38270) | > grad_norm_1: 110.40630 (141.22473) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.11830 (2.35541) | > loader_time: 0.03110 (0.03548)  --> STEP: 7051/15287 -- GLOBAL_STEP: 1018200 | > loss_disc: 2.20799 (2.32431) | > loss_disc_real_0: 0.08557 (0.12268) | > loss_disc_real_1: 0.19036 (0.21218) | > loss_disc_real_2: 0.20474 (0.21616) | > loss_disc_real_3: 0.22680 (0.21984) | > loss_disc_real_4: 0.18171 (0.21528) | > loss_disc_real_5: 0.20691 (0.21453) | > loss_0: 2.20799 (2.32431) | > grad_norm_0: 12.23864 (17.34410) | > loss_gen: 2.61115 (2.55423) | > loss_kl: 2.61097 (2.66062) | > loss_feat: 8.60743 (8.68399) | > loss_mel: 18.22559 (17.77717) | > loss_duration: 1.74266 (1.70643) | > loss_1: 33.79779 (33.38243) | > grad_norm_1: 165.97026 (141.09610) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.82570 (2.35623) | > loader_time: 0.03760 (0.03547)  --> STEP: 7076/15287 -- GLOBAL_STEP: 1018225 | > loss_disc: 2.26835 (2.32435) | > loss_disc_real_0: 0.10357 (0.12266) | > loss_disc_real_1: 0.20353 (0.21218) | > loss_disc_real_2: 0.22607 (0.21616) | > loss_disc_real_3: 0.19984 (0.21985) | > loss_disc_real_4: 0.19436 (0.21528) | > loss_disc_real_5: 0.21042 (0.21453) | > loss_0: 2.26835 (2.32435) | > grad_norm_0: 11.31956 (17.33566) | > loss_gen: 2.41144 (2.55414) | > loss_kl: 2.67058 (2.66063) | > loss_feat: 8.97791 (8.68378) | > loss_mel: 17.58933 (17.77703) | > loss_duration: 1.65760 (1.70642) | > loss_1: 33.30686 (33.38200) | > grad_norm_1: 167.99612 (141.09137) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.12500 (2.35771) | > loader_time: 0.03320 (0.03547)  --> STEP: 7101/15287 -- GLOBAL_STEP: 1018250 | > loss_disc: 2.33169 (2.32431) | > loss_disc_real_0: 0.13910 (0.12265) | > loss_disc_real_1: 0.22473 (0.21217) | > loss_disc_real_2: 0.22022 (0.21614) | > loss_disc_real_3: 0.22767 (0.21983) | > loss_disc_real_4: 0.18404 (0.21524) | > loss_disc_real_5: 0.17673 (0.21452) | > loss_0: 2.33169 (2.32431) | > grad_norm_0: 12.63167 (17.34307) | > loss_gen: 2.45427 (2.55402) | > loss_kl: 2.63958 (2.66052) | > loss_feat: 8.46665 (8.68337) | > loss_mel: 17.39518 (17.77637) | > loss_duration: 1.72435 (1.70642) | > loss_1: 32.68002 (33.38068) | > grad_norm_1: 134.13599 (141.08867) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.40110 (2.35892) | > loader_time: 0.04020 (0.03547)  --> STEP: 7126/15287 -- GLOBAL_STEP: 1018275 | > loss_disc: 2.37397 (2.32439) | > loss_disc_real_0: 0.16090 (0.12264) | > loss_disc_real_1: 0.20557 (0.21219) | > loss_disc_real_2: 0.21235 (0.21617) | > loss_disc_real_3: 0.22291 (0.21984) | > loss_disc_real_4: 0.20250 (0.21524) | > loss_disc_real_5: 0.25964 (0.21455) | > loss_0: 2.37397 (2.32439) | > grad_norm_0: 21.98073 (17.33013) | > loss_gen: 2.58197 (2.55411) | > loss_kl: 2.63977 (2.66057) | > loss_feat: 8.74351 (8.68322) | > loss_mel: 17.93755 (17.77631) | > loss_duration: 1.71582 (1.70640) | > loss_1: 33.61863 (33.38060) | > grad_norm_1: 161.02838 (141.09325) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39120 (2.35980) | > loader_time: 0.03680 (0.03546)  --> STEP: 7151/15287 -- GLOBAL_STEP: 1018300 | > loss_disc: 2.18317 (2.32431) | > loss_disc_real_0: 0.09517 (0.12261) | > loss_disc_real_1: 0.21432 (0.21218) | > loss_disc_real_2: 0.21099 (0.21616) | > loss_disc_real_3: 0.20915 (0.21983) | > loss_disc_real_4: 0.19270 (0.21524) | > loss_disc_real_5: 0.20216 (0.21456) | > loss_0: 2.18317 (2.32431) | > grad_norm_0: 8.39399 (17.34442) | > loss_gen: 2.71531 (2.55408) | > loss_kl: 2.60759 (2.66052) | > loss_feat: 8.85735 (8.68308) | > loss_mel: 17.67542 (17.77613) | > loss_duration: 1.69355 (1.70638) | > loss_1: 33.54920 (33.38019) | > grad_norm_1: 199.74968 (141.16382) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.69710 (2.36080) | > loader_time: 0.03560 (0.03546)  --> STEP: 7176/15287 -- GLOBAL_STEP: 1018325 | > loss_disc: 2.35690 (2.32423) | > loss_disc_real_0: 0.09322 (0.12262) | > loss_disc_real_1: 0.22439 (0.21217) | > loss_disc_real_2: 0.24031 (0.21615) | > loss_disc_real_3: 0.22473 (0.21981) | > loss_disc_real_4: 0.20641 (0.21525) | > loss_disc_real_5: 0.21732 (0.21457) | > loss_0: 2.35690 (2.32423) | > grad_norm_0: 29.67208 (17.36255) | > loss_gen: 2.25552 (2.55416) | > loss_kl: 2.71945 (2.66050) | > loss_feat: 8.50372 (8.68338) | > loss_mel: 17.80185 (17.77538) | > loss_duration: 1.69166 (1.70641) | > loss_1: 32.97219 (33.37983) | > grad_norm_1: 172.94176 (141.20178) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.68920 (2.36174) | > loader_time: 0.03370 (0.03546)  --> STEP: 7201/15287 -- GLOBAL_STEP: 1018350 | > loss_disc: 2.45555 (2.32428) | > loss_disc_real_0: 0.27583 (0.12269) | > loss_disc_real_1: 0.13067 (0.21213) | > loss_disc_real_2: 0.15058 (0.21613) | > loss_disc_real_3: 0.18027 (0.21979) | > loss_disc_real_4: 0.20797 (0.21523) | > loss_disc_real_5: 0.20450 (0.21457) | > loss_0: 2.45555 (2.32428) | > grad_norm_0: 35.88099 (17.37309) | > loss_gen: 2.46991 (2.55415) | > loss_kl: 2.68283 (2.66058) | > loss_feat: 8.58813 (8.68348) | > loss_mel: 17.77379 (17.77560) | > loss_duration: 1.69997 (1.70642) | > loss_1: 33.21462 (33.38023) | > grad_norm_1: 112.97568 (141.20979) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.75550 (2.36298) | > loader_time: 0.03200 (0.03546)  --> STEP: 7226/15287 -- GLOBAL_STEP: 1018375 | > loss_disc: 2.38901 (2.32434) | > loss_disc_real_0: 0.10403 (0.12269) | > loss_disc_real_1: 0.22210 (0.21214) | > loss_disc_real_2: 0.22677 (0.21613) | > loss_disc_real_3: 0.22335 (0.21979) | > loss_disc_real_4: 0.22771 (0.21523) | > loss_disc_real_5: 0.20896 (0.21457) | > loss_0: 2.38901 (2.32434) | > grad_norm_0: 28.13343 (17.36484) | > loss_gen: 2.52956 (2.55415) | > loss_kl: 2.60821 (2.66076) | > loss_feat: 8.78555 (8.68387) | > loss_mel: 17.49988 (17.77579) | > loss_duration: 1.70945 (1.70645) | > loss_1: 33.13266 (33.38102) | > grad_norm_1: 163.10738 (141.16061) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.95950 (2.36404) | > loader_time: 0.03210 (0.03546)  --> STEP: 7251/15287 -- GLOBAL_STEP: 1018400 | > loss_disc: 2.38520 (2.32457) | > loss_disc_real_0: 0.09687 (0.12280) | > loss_disc_real_1: 0.20943 (0.21213) | > loss_disc_real_2: 0.21826 (0.21615) | > loss_disc_real_3: 0.22386 (0.21983) | > loss_disc_real_4: 0.25869 (0.21529) | > loss_disc_real_5: 0.22547 (0.21457) | > loss_0: 2.38520 (2.32457) | > grad_norm_0: 7.14322 (17.37002) | > loss_gen: 2.54424 (2.55431) | > loss_kl: 2.70096 (2.66071) | > loss_feat: 8.74225 (8.68366) | > loss_mel: 17.93853 (17.77608) | > loss_duration: 1.69807 (1.70646) | > loss_1: 33.62404 (33.38123) | > grad_norm_1: 118.47649 (141.12926) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43190 (2.36481) | > loader_time: 0.03600 (0.03546)  --> STEP: 7276/15287 -- GLOBAL_STEP: 1018425 | > loss_disc: 2.28707 (2.32463) | > loss_disc_real_0: 0.16539 (0.12281) | > loss_disc_real_1: 0.20057 (0.21215) | > loss_disc_real_2: 0.21173 (0.21615) | > loss_disc_real_3: 0.20511 (0.21982) | > loss_disc_real_4: 0.20956 (0.21529) | > loss_disc_real_5: 0.21536 (0.21457) | > loss_0: 2.28707 (2.32463) | > grad_norm_0: 26.21732 (17.35814) | > loss_gen: 2.56626 (2.55427) | > loss_kl: 2.67237 (2.66073) | > loss_feat: 8.29221 (8.68317) | > loss_mel: 17.56467 (17.77597) | > loss_duration: 1.70524 (1.70647) | > loss_1: 32.80075 (33.38061) | > grad_norm_1: 103.20009 (141.00151) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37340 (2.36558) | > loader_time: 0.03640 (0.03545)  --> STEP: 7301/15287 -- GLOBAL_STEP: 1018450 | > loss_disc: 2.38022 (2.32469) | > loss_disc_real_0: 0.09691 (0.12282) | > loss_disc_real_1: 0.19615 (0.21215) | > loss_disc_real_2: 0.22493 (0.21617) | > loss_disc_real_3: 0.25696 (0.21982) | > loss_disc_real_4: 0.27263 (0.21529) | > loss_disc_real_5: 0.20060 (0.21459) | > loss_0: 2.38022 (2.32469) | > grad_norm_0: 9.03563 (17.35023) | > loss_gen: 2.40291 (2.55433) | > loss_kl: 2.72833 (2.66091) | > loss_feat: 8.42998 (8.68284) | > loss_mel: 18.13274 (17.77654) | > loss_duration: 1.73654 (1.70649) | > loss_1: 33.43050 (33.38110) | > grad_norm_1: 166.54089 (140.96762) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43630 (2.36627) | > loader_time: 0.03360 (0.03545)  --> STEP: 7326/15287 -- GLOBAL_STEP: 1018475 | > loss_disc: 2.32334 (2.32476) | > loss_disc_real_0: 0.15538 (0.12287) | > loss_disc_real_1: 0.21460 (0.21214) | > loss_disc_real_2: 0.22422 (0.21616) | > loss_disc_real_3: 0.20342 (0.21980) | > loss_disc_real_4: 0.19738 (0.21526) | > loss_disc_real_5: 0.20474 (0.21460) | > loss_0: 2.32334 (2.32476) | > grad_norm_0: 14.67329 (17.34808) | > loss_gen: 2.50985 (2.55414) | > loss_kl: 2.61683 (2.66097) | > loss_feat: 8.54611 (8.68207) | > loss_mel: 17.37672 (17.77650) | > loss_duration: 1.65180 (1.70648) | > loss_1: 32.70131 (33.38014) | > grad_norm_1: 96.67441 (140.90767) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.83440 (2.36726) | > loader_time: 0.03140 (0.03545)  --> STEP: 7351/15287 -- GLOBAL_STEP: 1018500 | > loss_disc: 2.31051 (2.32474) | > loss_disc_real_0: 0.08449 (0.12285) | > loss_disc_real_1: 0.18953 (0.21213) | > loss_disc_real_2: 0.22029 (0.21616) | > loss_disc_real_3: 0.22947 (0.21980) | > loss_disc_real_4: 0.21814 (0.21525) | > loss_disc_real_5: 0.21367 (0.21460) | > loss_0: 2.31051 (2.32474) | > grad_norm_0: 10.31340 (17.35242) | > loss_gen: 2.62316 (2.55403) | > loss_kl: 2.82084 (2.66108) | > loss_feat: 8.96933 (8.68225) | > loss_mel: 17.64796 (17.77631) | > loss_duration: 1.71493 (1.70648) | > loss_1: 33.77622 (33.38013) | > grad_norm_1: 151.48895 (140.92195) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72490 (2.36826) | > loader_time: 0.03190 (0.03545)  --> STEP: 7376/15287 -- GLOBAL_STEP: 1018525 | > loss_disc: 2.30583 (2.32471) | > loss_disc_real_0: 0.11877 (0.12286) | > loss_disc_real_1: 0.19619 (0.21212) | > loss_disc_real_2: 0.21581 (0.21616) | > loss_disc_real_3: 0.22544 (0.21980) | > loss_disc_real_4: 0.21911 (0.21526) | > loss_disc_real_5: 0.21542 (0.21461) | > loss_0: 2.30583 (2.32471) | > grad_norm_0: 25.77916 (17.36136) | > loss_gen: 2.42401 (2.55413) | > loss_kl: 2.59619 (2.66123) | > loss_feat: 8.58607 (8.68217) | > loss_mel: 17.58111 (17.77609) | > loss_duration: 1.71144 (1.70646) | > loss_1: 32.89883 (33.38007) | > grad_norm_1: 124.97871 (140.91241) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.48110 (2.36956) | > loader_time: 0.03660 (0.03545)  --> STEP: 7401/15287 -- GLOBAL_STEP: 1018550 | > loss_disc: 2.31788 (2.32472) | > loss_disc_real_0: 0.11759 (0.12285) | > loss_disc_real_1: 0.21710 (0.21211) | > loss_disc_real_2: 0.20442 (0.21613) | > loss_disc_real_3: 0.18803 (0.21981) | > loss_disc_real_4: 0.19593 (0.21524) | > loss_disc_real_5: 0.20956 (0.21462) | > loss_0: 2.31788 (2.32472) | > grad_norm_0: 32.06724 (17.35681) | > loss_gen: 2.46377 (2.55402) | > loss_kl: 2.51145 (2.66127) | > loss_feat: 8.10130 (8.68210) | > loss_mel: 17.83712 (17.77585) | > loss_duration: 1.70734 (1.70646) | > loss_1: 32.62098 (33.37968) | > grad_norm_1: 195.26401 (140.91161) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.62490 (2.37015) | > loader_time: 0.03860 (0.03545)  --> STEP: 7426/15287 -- GLOBAL_STEP: 1018575 | > loss_disc: 2.28987 (2.32463) | > loss_disc_real_0: 0.14146 (0.12281) | > loss_disc_real_1: 0.22009 (0.21209) | > loss_disc_real_2: 0.22993 (0.21613) | > loss_disc_real_3: 0.20968 (0.21980) | > loss_disc_real_4: 0.23053 (0.21524) | > loss_disc_real_5: 0.19049 (0.21462) | > loss_0: 2.28987 (2.32463) | > grad_norm_0: 9.96508 (17.36659) | > loss_gen: 2.56704 (2.55397) | > loss_kl: 2.68724 (2.66134) | > loss_feat: 8.50074 (8.68233) | > loss_mel: 17.80931 (17.77556) | > loss_duration: 1.69269 (1.70646) | > loss_1: 33.25702 (33.37966) | > grad_norm_1: 194.62517 (140.98209) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.97880 (2.37094) | > loader_time: 0.04130 (0.03544)  --> STEP: 7451/15287 -- GLOBAL_STEP: 1018600 | > loss_disc: 2.41486 (2.32466) | > loss_disc_real_0: 0.20655 (0.12286) | > loss_disc_real_1: 0.22646 (0.21212) | > loss_disc_real_2: 0.25405 (0.21611) | > loss_disc_real_3: 0.23449 (0.21979) | > loss_disc_real_4: 0.20139 (0.21526) | > loss_disc_real_5: 0.21383 (0.21465) | > loss_0: 2.41486 (2.32466) | > grad_norm_0: 14.14881 (17.38155) | > loss_gen: 2.66490 (2.55424) | > loss_kl: 2.46976 (2.66137) | > loss_feat: 7.94561 (8.68235) | > loss_mel: 17.04034 (17.77536) | > loss_duration: 1.72292 (1.70647) | > loss_1: 31.84353 (33.37978) | > grad_norm_1: 136.48950 (141.06866) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.70630 (2.37164) | > loader_time: 0.03600 (0.03544)  --> STEP: 7476/15287 -- GLOBAL_STEP: 1018625 | > loss_disc: 2.41840 (2.32472) | > loss_disc_real_0: 0.16353 (0.12287) | > loss_disc_real_1: 0.22561 (0.21213) | > loss_disc_real_2: 0.23571 (0.21611) | > loss_disc_real_3: 0.23307 (0.21980) | > loss_disc_real_4: 0.22409 (0.21527) | > loss_disc_real_5: 0.18211 (0.21464) | > loss_0: 2.41840 (2.32472) | > grad_norm_0: 36.43985 (17.38357) | > loss_gen: 2.39149 (2.55407) | > loss_kl: 2.59996 (2.66147) | > loss_feat: 7.96692 (8.68196) | > loss_mel: 16.86341 (17.77505) | > loss_duration: 1.75248 (1.70646) | > loss_1: 31.57426 (33.37902) | > grad_norm_1: 80.11574 (141.06703) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.66910 (2.37270) | > loader_time: 0.03670 (0.03544)  --> STEP: 7501/15287 -- GLOBAL_STEP: 1018650 | > loss_disc: 2.34162 (2.32465) | > loss_disc_real_0: 0.12984 (0.12287) | > loss_disc_real_1: 0.22517 (0.21213) | > loss_disc_real_2: 0.22002 (0.21611) | > loss_disc_real_3: 0.25029 (0.21979) | > loss_disc_real_4: 0.25742 (0.21526) | > loss_disc_real_5: 0.22194 (0.21462) | > loss_0: 2.34162 (2.32465) | > grad_norm_0: 10.68954 (17.38647) | > loss_gen: 2.49819 (2.55402) | > loss_kl: 2.69648 (2.66144) | > loss_feat: 8.69926 (8.68202) | > loss_mel: 17.91997 (17.77468) | > loss_duration: 1.72303 (1.70648) | > loss_1: 33.53693 (33.37864) | > grad_norm_1: 77.76867 (141.08203) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.76290 (2.37342) | > loader_time: 0.03110 (0.03543)  --> STEP: 7526/15287 -- GLOBAL_STEP: 1018675 | > loss_disc: 2.39579 (2.32464) | > loss_disc_real_0: 0.13965 (0.12286) | > loss_disc_real_1: 0.22767 (0.21211) | > loss_disc_real_2: 0.21634 (0.21610) | > loss_disc_real_3: 0.20045 (0.21981) | > loss_disc_real_4: 0.22924 (0.21529) | > loss_disc_real_5: 0.22474 (0.21462) | > loss_0: 2.39579 (2.32464) | > grad_norm_0: 16.64528 (17.38271) | > loss_gen: 2.49360 (2.55400) | > loss_kl: 2.65422 (2.66153) | > loss_feat: 8.54800 (8.68190) | > loss_mel: 17.64977 (17.77454) | > loss_duration: 1.73687 (1.70649) | > loss_1: 33.08246 (33.37845) | > grad_norm_1: 134.42603 (141.11052) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58230 (2.37410) | > loader_time: 0.03130 (0.03543)  --> STEP: 7551/15287 -- GLOBAL_STEP: 1018700 | > loss_disc: 2.35147 (2.32470) | > loss_disc_real_0: 0.09352 (0.12284) | > loss_disc_real_1: 0.21534 (0.21211) | > loss_disc_real_2: 0.23372 (0.21612) | > loss_disc_real_3: 0.23496 (0.21982) | > loss_disc_real_4: 0.19679 (0.21532) | > loss_disc_real_5: 0.19894 (0.21465) | > loss_0: 2.35147 (2.32470) | > grad_norm_0: 12.61045 (17.38599) | > loss_gen: 2.63719 (2.55414) | > loss_kl: 2.64413 (2.66149) | > loss_feat: 8.32464 (8.68191) | > loss_mel: 17.40494 (17.77406) | > loss_duration: 1.69830 (1.70652) | > loss_1: 32.70919 (33.37811) | > grad_norm_1: 146.07892 (141.12303) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32930 (2.37443) | > loader_time: 0.03050 (0.03543)  --> STEP: 7576/15287 -- GLOBAL_STEP: 1018725 | > loss_disc: 2.30480 (2.32461) | > loss_disc_real_0: 0.10328 (0.12281) | > loss_disc_real_1: 0.20506 (0.21210) | > loss_disc_real_2: 0.21261 (0.21611) | > loss_disc_real_3: 0.24007 (0.21983) | > loss_disc_real_4: 0.22677 (0.21532) | > loss_disc_real_5: 0.21226 (0.21465) | > loss_0: 2.30480 (2.32461) | > grad_norm_0: 20.85313 (17.38062) | > loss_gen: 2.52632 (2.55414) | > loss_kl: 2.74376 (2.66154) | > loss_feat: 8.96906 (8.68183) | > loss_mel: 18.13919 (17.77380) | > loss_duration: 1.69150 (1.70654) | > loss_1: 34.06984 (33.37785) | > grad_norm_1: 174.87817 (141.13602) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.06370 (2.37486) | > loader_time: 0.04710 (0.03542)  --> STEP: 7601/15287 -- GLOBAL_STEP: 1018750 | > loss_disc: 2.33908 (2.32463) | > loss_disc_real_0: 0.12405 (0.12280) | > loss_disc_real_1: 0.18323 (0.21211) | > loss_disc_real_2: 0.20221 (0.21611) | > loss_disc_real_3: 0.19478 (0.21983) | > loss_disc_real_4: 0.20697 (0.21532) | > loss_disc_real_5: 0.22096 (0.21467) | > loss_0: 2.33908 (2.32463) | > grad_norm_0: 7.44803 (17.36624) | > loss_gen: 2.71391 (2.55415) | > loss_kl: 2.69046 (2.66163) | > loss_feat: 8.46723 (8.68176) | > loss_mel: 17.17640 (17.77366) | > loss_duration: 1.71174 (1.70654) | > loss_1: 32.75975 (33.37773) | > grad_norm_1: 170.73872 (141.14964) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72970 (2.37538) | > loader_time: 0.03110 (0.03542)  --> STEP: 7626/15287 -- GLOBAL_STEP: 1018775 | > loss_disc: 2.37611 (2.32458) | > loss_disc_real_0: 0.10954 (0.12279) | > loss_disc_real_1: 0.21864 (0.21211) | > loss_disc_real_2: 0.22755 (0.21612) | > loss_disc_real_3: 0.23623 (0.21983) | > loss_disc_real_4: 0.20607 (0.21532) | > loss_disc_real_5: 0.24767 (0.21465) | > loss_0: 2.37611 (2.32458) | > grad_norm_0: 13.66655 (17.35551) | > loss_gen: 2.50176 (2.55412) | > loss_kl: 2.73508 (2.66159) | > loss_feat: 8.50147 (8.68192) | > loss_mel: 17.60976 (17.77349) | > loss_duration: 1.71374 (1.70655) | > loss_1: 33.06180 (33.37767) | > grad_norm_1: 182.61183 (141.17740) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72820 (2.37604) | > loader_time: 0.03350 (0.03541)  --> STEP: 7651/15287 -- GLOBAL_STEP: 1018800 | > loss_disc: 2.39447 (2.32453) | > loss_disc_real_0: 0.16916 (0.12280) | > loss_disc_real_1: 0.20427 (0.21211) | > loss_disc_real_2: 0.20276 (0.21610) | > loss_disc_real_3: 0.22170 (0.21982) | > loss_disc_real_4: 0.17904 (0.21531) | > loss_disc_real_5: 0.21399 (0.21462) | > loss_0: 2.39447 (2.32453) | > grad_norm_0: 24.40145 (17.35313) | > loss_gen: 2.45249 (2.55408) | > loss_kl: 2.55648 (2.66156) | > loss_feat: 8.66009 (8.68180) | > loss_mel: 17.82141 (17.77321) | > loss_duration: 1.65950 (1.70655) | > loss_1: 33.14997 (33.37720) | > grad_norm_1: 154.98810 (141.19734) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.47260 (2.37652) | > loader_time: 0.03380 (0.03541)  --> STEP: 7676/15287 -- GLOBAL_STEP: 1018825 | > loss_disc: 2.38541 (2.32453) | > loss_disc_real_0: 0.14117 (0.12279) | > loss_disc_real_1: 0.20017 (0.21210) | > loss_disc_real_2: 0.19475 (0.21610) | > loss_disc_real_3: 0.21660 (0.21981) | > loss_disc_real_4: 0.19299 (0.21530) | > loss_disc_real_5: 0.19795 (0.21460) | > loss_0: 2.38541 (2.32453) | > grad_norm_0: 33.10139 (17.35138) | > loss_gen: 2.47433 (2.55403) | > loss_kl: 2.65990 (2.66156) | > loss_feat: 8.96802 (8.68215) | > loss_mel: 17.33995 (17.77316) | > loss_duration: 1.74969 (1.70657) | > loss_1: 33.19188 (33.37749) | > grad_norm_1: 187.59206 (141.19270) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35170 (2.37716) | > loader_time: 0.04130 (0.03542)  --> STEP: 7701/15287 -- GLOBAL_STEP: 1018850 | > loss_disc: 2.28639 (2.32447) | > loss_disc_real_0: 0.07961 (0.12277) | > loss_disc_real_1: 0.18933 (0.21209) | > loss_disc_real_2: 0.21210 (0.21608) | > loss_disc_real_3: 0.22259 (0.21980) | > loss_disc_real_4: 0.22729 (0.21529) | > loss_disc_real_5: 0.21406 (0.21459) | > loss_0: 2.28639 (2.32447) | > grad_norm_0: 20.67074 (17.36426) | > loss_gen: 2.49690 (2.55388) | > loss_kl: 2.54101 (2.66143) | > loss_feat: 8.81290 (8.68225) | > loss_mel: 17.27288 (17.77299) | > loss_duration: 1.67501 (1.70658) | > loss_1: 32.79871 (33.37717) | > grad_norm_1: 183.67470 (141.34657) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40190 (2.37695) | > loader_time: 0.07520 (0.03544)  --> STEP: 7726/15287 -- GLOBAL_STEP: 1018875 | > loss_disc: 2.38843 (2.32439) | > loss_disc_real_0: 0.09940 (0.12278) | > loss_disc_real_1: 0.20399 (0.21207) | > loss_disc_real_2: 0.21352 (0.21607) | > loss_disc_real_3: 0.27257 (0.21982) | > loss_disc_real_4: 0.21891 (0.21527) | > loss_disc_real_5: 0.22972 (0.21459) | > loss_0: 2.38843 (2.32439) | > grad_norm_0: 17.10242 (17.37520) | > loss_gen: 2.41171 (2.55396) | > loss_kl: 2.82724 (2.66136) | > loss_feat: 8.60456 (8.68223) | > loss_mel: 17.77167 (17.77253) | > loss_duration: 1.67694 (1.70662) | > loss_1: 33.29213 (33.37672) | > grad_norm_1: 202.51799 (141.42607) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56860 (2.37693) | > loader_time: 0.03050 (0.03546)  --> STEP: 7751/15287 -- GLOBAL_STEP: 1018900 | > loss_disc: 2.26386 (2.32441) | > loss_disc_real_0: 0.11548 (0.12279) | > loss_disc_real_1: 0.23816 (0.21208) | > loss_disc_real_2: 0.25633 (0.21611) | > loss_disc_real_3: 0.23255 (0.21982) | > loss_disc_real_4: 0.25948 (0.21530) | > loss_disc_real_5: 0.20883 (0.21458) | > loss_0: 2.26386 (2.32441) | > grad_norm_0: 17.45587 (17.37013) | > loss_gen: 2.66094 (2.55403) | > loss_kl: 2.68466 (2.66147) | > loss_feat: 8.74366 (8.68227) | > loss_mel: 18.19909 (17.77260) | > loss_duration: 1.67310 (1.70665) | > loss_1: 33.96145 (33.37704) | > grad_norm_1: 201.90176 (141.45073) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.68680 (2.37756) | > loader_time: 0.03650 (0.03545)  --> STEP: 7776/15287 -- GLOBAL_STEP: 1018925 | > loss_disc: 2.35157 (2.32442) | > loss_disc_real_0: 0.10741 (0.12282) | > loss_disc_real_1: 0.22415 (0.21207) | > loss_disc_real_2: 0.23153 (0.21610) | > loss_disc_real_3: 0.20182 (0.21982) | > loss_disc_real_4: 0.23259 (0.21530) | > loss_disc_real_5: 0.20057 (0.21459) | > loss_0: 2.35157 (2.32442) | > grad_norm_0: 9.37271 (17.36731) | > loss_gen: 2.59961 (2.55399) | > loss_kl: 2.63328 (2.66159) | > loss_feat: 8.66122 (8.68185) | > loss_mel: 17.79270 (17.77271) | > loss_duration: 1.67214 (1.70666) | > loss_1: 33.35896 (33.37682) | > grad_norm_1: 152.25037 (141.43245) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.01940 (2.37888) | > loader_time: 0.03110 (0.03545)  --> STEP: 7801/15287 -- GLOBAL_STEP: 1018950 | > loss_disc: 2.41549 (2.32443) | > loss_disc_real_0: 0.12282 (0.12281) | > loss_disc_real_1: 0.21494 (0.21208) | > loss_disc_real_2: 0.21476 (0.21610) | > loss_disc_real_3: 0.19809 (0.21981) | > loss_disc_real_4: 0.21948 (0.21528) | > loss_disc_real_5: 0.19470 (0.21456) | > loss_0: 2.41549 (2.32443) | > grad_norm_0: 9.49993 (17.36340) | > loss_gen: 2.72894 (2.55394) | > loss_kl: 2.58016 (2.66157) | > loss_feat: 8.51197 (8.68218) | > loss_mel: 18.19964 (17.77300) | > loss_duration: 1.73292 (1.70669) | > loss_1: 33.75362 (33.37740) | > grad_norm_1: 136.02495 (141.44821) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.61500 (2.37985) | > loader_time: 0.03340 (0.03545)  --> STEP: 7826/15287 -- GLOBAL_STEP: 1018975 | > loss_disc: 2.37561 (2.32446) | > loss_disc_real_0: 0.12096 (0.12280) | > loss_disc_real_1: 0.18688 (0.21208) | > loss_disc_real_2: 0.22166 (0.21612) | > loss_disc_real_3: 0.26368 (0.21982) | > loss_disc_real_4: 0.19462 (0.21528) | > loss_disc_real_5: 0.19758 (0.21457) | > loss_0: 2.37561 (2.32446) | > grad_norm_0: 28.74453 (17.35110) | > loss_gen: 2.39979 (2.55392) | > loss_kl: 2.87272 (2.66178) | > loss_feat: 8.32624 (8.68224) | > loss_mel: 17.36343 (17.77309) | > loss_duration: 1.71190 (1.70673) | > loss_1: 32.67408 (33.37779) | > grad_norm_1: 169.33240 (141.44756) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.50160 (2.38063) | > loader_time: 0.03530 (0.03544)  --> STEP: 7851/15287 -- GLOBAL_STEP: 1019000 | > loss_disc: 2.30646 (2.32446) | > loss_disc_real_0: 0.06683 (0.12280) | > loss_disc_real_1: 0.23211 (0.21208) | > loss_disc_real_2: 0.21422 (0.21612) | > loss_disc_real_3: 0.22413 (0.21982) | > loss_disc_real_4: 0.22339 (0.21527) | > loss_disc_real_5: 0.22231 (0.21457) | > loss_0: 2.30646 (2.32446) | > grad_norm_0: 15.21268 (17.35096) | > loss_gen: 2.52513 (2.55386) | > loss_kl: 2.55636 (2.66179) | > loss_feat: 8.35309 (8.68224) | > loss_mel: 17.25868 (17.77287) | > loss_duration: 1.68828 (1.70675) | > loss_1: 32.38155 (33.37756) | > grad_norm_1: 152.31081 (141.48485) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.48690 (2.38150) | > loader_time: 0.03620 (0.03543)  --> STEP: 7876/15287 -- GLOBAL_STEP: 1019025 | > loss_disc: 2.29222 (2.32449) | > loss_disc_real_0: 0.12211 (0.12288) | > loss_disc_real_1: 0.22247 (0.21205) | > loss_disc_real_2: 0.25221 (0.21611) | > loss_disc_real_3: 0.20719 (0.21982) | > loss_disc_real_4: 0.21982 (0.21524) | > loss_disc_real_5: 0.22822 (0.21455) | > loss_0: 2.29222 (2.32449) | > grad_norm_0: 6.59696 (17.35431) | > loss_gen: 2.64950 (2.55390) | > loss_kl: 2.65440 (2.66182) | > loss_feat: 9.31320 (8.68229) | > loss_mel: 17.98853 (17.77327) | > loss_duration: 1.69273 (1.70676) | > loss_1: 34.29836 (33.37807) | > grad_norm_1: 114.40382 (141.47850) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32340 (2.38204) | > loader_time: 0.03230 (0.03543)  --> STEP: 7901/15287 -- GLOBAL_STEP: 1019050 | > loss_disc: 2.44706 (2.32454) | > loss_disc_real_0: 0.17619 (0.12287) | > loss_disc_real_1: 0.21145 (0.21205) | > loss_disc_real_2: 0.20668 (0.21610) | > loss_disc_real_3: 0.23748 (0.21982) | > loss_disc_real_4: 0.21632 (0.21522) | > loss_disc_real_5: 0.23965 (0.21456) | > loss_0: 2.44706 (2.32454) | > grad_norm_0: 17.85555 (17.34410) | > loss_gen: 2.46650 (2.55374) | > loss_kl: 2.54061 (2.66183) | > loss_feat: 7.92021 (8.68198) | > loss_mel: 17.36241 (17.77307) | > loss_duration: 1.74409 (1.70677) | > loss_1: 32.03384 (33.37743) | > grad_norm_1: 120.06625 (141.39009) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36160 (2.38284) | > loader_time: 0.03390 (0.03542)  --> STEP: 7926/15287 -- GLOBAL_STEP: 1019075 | > loss_disc: 2.52061 (2.32464) | > loss_disc_real_0: 0.22354 (0.12290) | > loss_disc_real_1: 0.23545 (0.21206) | > loss_disc_real_2: 0.25545 (0.21612) | > loss_disc_real_3: 0.23569 (0.21985) | > loss_disc_real_4: 0.22780 (0.21524) | > loss_disc_real_5: 0.25365 (0.21456) | > loss_0: 2.52061 (2.32464) | > grad_norm_0: 18.01824 (17.33329) | > loss_gen: 2.52234 (2.55383) | > loss_kl: 2.81571 (2.66190) | > loss_feat: 7.48422 (8.68170) | > loss_mel: 16.96958 (17.77263) | > loss_duration: 1.68524 (1.70679) | > loss_1: 31.47709 (33.37687) | > grad_norm_1: 96.22679 (141.32326) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.64160 (2.38331) | > loader_time: 0.03380 (0.03542)  --> STEP: 7951/15287 -- GLOBAL_STEP: 1019100 | > loss_disc: 2.35674 (2.32466) | > loss_disc_real_0: 0.10890 (0.12289) | > loss_disc_real_1: 0.19389 (0.21206) | > loss_disc_real_2: 0.23293 (0.21612) | > loss_disc_real_3: 0.26412 (0.21985) | > loss_disc_real_4: 0.23821 (0.21523) | > loss_disc_real_5: 0.21638 (0.21456) | > loss_0: 2.35674 (2.32466) | > grad_norm_0: 6.94088 (17.31424) | > loss_gen: 2.56827 (2.55369) | > loss_kl: 2.71265 (2.66194) | > loss_feat: 8.09065 (8.68132) | > loss_mel: 17.43204 (17.77259) | > loss_duration: 1.73496 (1.70678) | > loss_1: 32.53857 (33.37632) | > grad_norm_1: 95.10796 (141.11507) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.74220 (2.38398) | > loader_time: 0.03470 (0.03542)  --> STEP: 7976/15287 -- GLOBAL_STEP: 1019125 | > loss_disc: 2.30877 (2.32469) | > loss_disc_real_0: 0.10977 (0.12291) | > loss_disc_real_1: 0.20551 (0.21205) | > loss_disc_real_2: 0.23320 (0.21612) | > loss_disc_real_3: 0.20028 (0.21985) | > loss_disc_real_4: 0.19915 (0.21524) | > loss_disc_real_5: 0.20185 (0.21456) | > loss_0: 2.30877 (2.32469) | > grad_norm_0: 7.65758 (17.30669) | > loss_gen: 2.42905 (2.55367) | > loss_kl: 2.72688 (2.66194) | > loss_feat: 8.39674 (8.68144) | > loss_mel: 17.55950 (17.77270) | > loss_duration: 1.70221 (1.70676) | > loss_1: 32.81438 (33.37651) | > grad_norm_1: 31.13229 (141.01430) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.64880 (2.38432) | > loader_time: 0.03210 (0.03541)  --> STEP: 8001/15287 -- GLOBAL_STEP: 1019150 | > loss_disc: 2.31915 (2.32462) | > loss_disc_real_0: 0.12695 (0.12289) | > loss_disc_real_1: 0.21252 (0.21205) | > loss_disc_real_2: 0.21809 (0.21613) | > loss_disc_real_3: 0.23680 (0.21985) | > loss_disc_real_4: 0.23106 (0.21523) | > loss_disc_real_5: 0.23275 (0.21457) | > loss_0: 2.31915 (2.32462) | > grad_norm_0: 20.72363 (17.30675) | > loss_gen: 2.55537 (2.55373) | > loss_kl: 2.67252 (2.66206) | > loss_feat: 8.34061 (8.68160) | > loss_mel: 17.84559 (17.77279) | > loss_duration: 1.72303 (1.70678) | > loss_1: 33.13711 (33.37695) | > grad_norm_1: 166.83957 (141.03024) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35610 (2.38509) | > loader_time: 0.03880 (0.03541)  --> STEP: 8026/15287 -- GLOBAL_STEP: 1019175 | > loss_disc: 2.36169 (2.32456) | > loss_disc_real_0: 0.16178 (0.12289) | > loss_disc_real_1: 0.20422 (0.21203) | > loss_disc_real_2: 0.21841 (0.21613) | > loss_disc_real_3: 0.22362 (0.21984) | > loss_disc_real_4: 0.24021 (0.21523) | > loss_disc_real_5: 0.22201 (0.21455) | > loss_0: 2.36169 (2.32456) | > grad_norm_0: 16.64669 (17.32812) | > loss_gen: 2.55995 (2.55374) | > loss_kl: 2.57176 (2.66200) | > loss_feat: 8.67847 (8.68172) | > loss_mel: 17.61685 (17.77234) | > loss_duration: 1.66693 (1.70679) | > loss_1: 33.09397 (33.37660) | > grad_norm_1: 198.38808 (141.17223) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.57490 (2.38552) | > loader_time: 0.03320 (0.03540)  --> STEP: 8051/15287 -- GLOBAL_STEP: 1019200 | > loss_disc: 2.36841 (2.32450) | > loss_disc_real_0: 0.12637 (0.12289) | > loss_disc_real_1: 0.18412 (0.21203) | > loss_disc_real_2: 0.22005 (0.21611) | > loss_disc_real_3: 0.18769 (0.21984) | > loss_disc_real_4: 0.21595 (0.21520) | > loss_disc_real_5: 0.22804 (0.21455) | > loss_0: 2.36841 (2.32450) | > grad_norm_0: 6.02749 (17.34339) | > loss_gen: 2.70125 (2.55379) | > loss_kl: 2.67224 (2.66194) | > loss_feat: 9.14330 (8.68232) | > loss_mel: 17.59076 (17.77222) | > loss_duration: 1.70850 (1.70677) | > loss_1: 33.81604 (33.37704) | > grad_norm_1: 109.92964 (141.28349) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.49580 (2.38632) | > loader_time: 0.03460 (0.03540)  --> STEP: 8076/15287 -- GLOBAL_STEP: 1019225 | > loss_disc: 2.27312 (2.32446) | > loss_disc_real_0: 0.11987 (0.12291) | > loss_disc_real_1: 0.19580 (0.21203) | > loss_disc_real_2: 0.22160 (0.21611) | > loss_disc_real_3: 0.22773 (0.21985) | > loss_disc_real_4: 0.22404 (0.21519) | > loss_disc_real_5: 0.22040 (0.21455) | > loss_0: 2.27312 (2.32446) | > grad_norm_0: 13.45019 (17.34223) | > loss_gen: 2.59412 (2.55385) | > loss_kl: 2.64871 (2.66198) | > loss_feat: 8.82393 (8.68244) | > loss_mel: 17.69587 (17.77180) | > loss_duration: 1.70141 (1.70678) | > loss_1: 33.46405 (33.37687) | > grad_norm_1: 92.33250 (141.30209) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.23830 (2.38706) | > loader_time: 0.03330 (0.03539)  --> STEP: 8101/15287 -- GLOBAL_STEP: 1019250 | > loss_disc: 1.78268 (2.32442) | > loss_disc_real_0: 0.07726 (0.12292) | > loss_disc_real_1: 0.19603 (0.21204) | > loss_disc_real_2: 0.19019 (0.21612) | > loss_disc_real_3: 0.14029 (0.21985) | > loss_disc_real_4: 0.16444 (0.21519) | > loss_disc_real_5: 0.10618 (0.21453) | > loss_0: 1.78268 (2.32442) | > grad_norm_0: 11.62257 (17.35269) | > loss_gen: 3.34685 (2.55405) | > loss_kl: 2.63459 (2.66198) | > loss_feat: 10.68958 (8.68260) | > loss_mel: 17.50946 (17.77179) | > loss_duration: 1.70701 (1.70679) | > loss_1: 35.88748 (33.37721) | > grad_norm_1: 420.16443 (141.31958) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55470 (2.38807) | > loader_time: 0.03190 (0.03539)  --> STEP: 8126/15287 -- GLOBAL_STEP: 1019275 | > loss_disc: 2.16050 (2.32419) | > loss_disc_real_0: 0.07809 (0.12283) | > loss_disc_real_1: 0.18631 (0.21203) | > loss_disc_real_2: 0.20730 (0.21612) | > loss_disc_real_3: 0.29047 (0.21990) | > loss_disc_real_4: 0.20383 (0.21521) | > loss_disc_real_5: 0.09914 (0.21440) | > loss_0: 2.16050 (2.32419) | > grad_norm_0: 38.05961 (17.37953) | > loss_gen: 3.11425 (2.55569) | > loss_kl: 2.55543 (2.66202) | > loss_feat: 9.55324 (8.68617) | > loss_mel: 17.88703 (17.77353) | > loss_duration: 1.70903 (1.70681) | > loss_1: 34.81898 (33.38420) | > grad_norm_1: 491.07468 (141.91209) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.84180 (2.38854) | > loader_time: 0.03530 (0.03538)  --> STEP: 8151/15287 -- GLOBAL_STEP: 1019300 | > loss_disc: 2.30049 (2.32473) | > loss_disc_real_0: 0.10668 (0.12285) | > loss_disc_real_1: 0.21526 (0.21203) | > loss_disc_real_2: 0.21206 (0.21614) | > loss_disc_real_3: 0.22701 (0.21990) | > loss_disc_real_4: 0.21485 (0.21524) | > loss_disc_real_5: 0.19619 (0.21458) | > loss_0: 2.30049 (2.32473) | > grad_norm_0: 34.21141 (17.46899) | > loss_gen: 2.43397 (2.55544) | > loss_kl: 2.70650 (2.66184) | > loss_feat: 8.39283 (8.68549) | > loss_mel: 17.71259 (17.77390) | > loss_duration: 1.72860 (1.70680) | > loss_1: 32.97449 (33.38346) | > grad_norm_1: 303.35327 (142.29062) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.74870 (2.38954) | > loader_time: 0.03140 (0.03538)  --> STEP: 8176/15287 -- GLOBAL_STEP: 1019325 | > loss_disc: 2.31503 (2.32481) | > loss_disc_real_0: 0.11992 (0.12283) | > loss_disc_real_1: 0.21689 (0.21203) | > loss_disc_real_2: 0.23385 (0.21613) | > loss_disc_real_3: 0.21631 (0.21991) | > loss_disc_real_4: 0.19016 (0.21524) | > loss_disc_real_5: 0.22322 (0.21463) | > loss_0: 2.31503 (2.32481) | > grad_norm_0: 20.05488 (17.47342) | > loss_gen: 2.51564 (2.55513) | > loss_kl: 2.75099 (2.66189) | > loss_feat: 8.69346 (8.68432) | > loss_mel: 17.92092 (17.77356) | > loss_duration: 1.69969 (1.70679) | > loss_1: 33.58070 (33.38166) | > grad_norm_1: 162.33092 (142.31615) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33770 (2.39066) | > loader_time: 0.03760 (0.03538)  --> STEP: 8201/15287 -- GLOBAL_STEP: 1019350 | > loss_disc: 2.34202 (2.32483) | > loss_disc_real_0: 0.11992 (0.12282) | > loss_disc_real_1: 0.24033 (0.21202) | > loss_disc_real_2: 0.22958 (0.21614) | > loss_disc_real_3: 0.22335 (0.21991) | > loss_disc_real_4: 0.21754 (0.21524) | > loss_disc_real_5: 0.21376 (0.21464) | > loss_0: 2.34202 (2.32483) | > grad_norm_0: 15.34469 (17.47363) | > loss_gen: 2.50869 (2.55511) | > loss_kl: 2.71418 (2.66177) | > loss_feat: 8.50490 (8.68431) | > loss_mel: 17.82469 (17.77354) | > loss_duration: 1.69019 (1.70682) | > loss_1: 33.24265 (33.38155) | > grad_norm_1: 133.83426 (142.27986) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42020 (2.39121) | > loader_time: 0.03430 (0.03538)  --> STEP: 8226/15287 -- GLOBAL_STEP: 1019375 | > loss_disc: 2.38433 (2.32484) | > loss_disc_real_0: 0.13067 (0.12283) | > loss_disc_real_1: 0.21231 (0.21203) | > loss_disc_real_2: 0.23320 (0.21613) | > loss_disc_real_3: 0.21267 (0.21990) | > loss_disc_real_4: 0.26023 (0.21522) | > loss_disc_real_5: 0.20221 (0.21465) | > loss_0: 2.38433 (2.32484) | > grad_norm_0: 6.30773 (17.45887) | > loss_gen: 2.38050 (2.55514) | > loss_kl: 2.79556 (2.66179) | > loss_feat: 8.10978 (8.68432) | > loss_mel: 17.75356 (17.77375) | > loss_duration: 1.69313 (1.70681) | > loss_1: 32.73252 (33.38179) | > grad_norm_1: 215.33002 (142.26694) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.61050 (2.39155) | > loader_time: 0.03750 (0.03537)  --> STEP: 8251/15287 -- GLOBAL_STEP: 1019400 | > loss_disc: 2.30962 (2.32496) | > loss_disc_real_0: 0.07862 (0.12286) | > loss_disc_real_1: 0.21695 (0.21205) | > loss_disc_real_2: 0.22895 (0.21614) | > loss_disc_real_3: 0.20814 (0.21990) | > loss_disc_real_4: 0.20624 (0.21519) | > loss_disc_real_5: 0.21960 (0.21466) | > loss_0: 2.30962 (2.32496) | > grad_norm_0: 20.08465 (17.47667) | > loss_gen: 2.66577 (2.55505) | > loss_kl: 2.56692 (2.66179) | > loss_feat: 9.00142 (8.68401) | > loss_mel: 17.73766 (17.77341) | > loss_duration: 1.69630 (1.70682) | > loss_1: 33.66806 (33.38106) | > grad_norm_1: 213.81863 (142.32861) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55330 (2.39203) | > loader_time: 0.03130 (0.03536)  --> STEP: 8276/15287 -- GLOBAL_STEP: 1019425 | > loss_disc: 2.24504 (2.32491) | > loss_disc_real_0: 0.12048 (0.12285) | > loss_disc_real_1: 0.18959 (0.21204) | > loss_disc_real_2: 0.21535 (0.21613) | > loss_disc_real_3: 0.24012 (0.21989) | > loss_disc_real_4: 0.21442 (0.21519) | > loss_disc_real_5: 0.21644 (0.21466) | > loss_0: 2.24504 (2.32491) | > grad_norm_0: 13.59683 (17.47854) | > loss_gen: 2.62091 (2.55499) | > loss_kl: 2.59703 (2.66191) | > loss_feat: 8.57878 (8.68384) | > loss_mel: 17.12169 (17.77294) | > loss_duration: 1.71959 (1.70683) | > loss_1: 32.63800 (33.38049) | > grad_norm_1: 156.29681 (142.37143) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.48110 (2.39270) | > loader_time: 0.03690 (0.03536)  --> STEP: 8301/15287 -- GLOBAL_STEP: 1019450 | > loss_disc: 2.40121 (2.32496) | > loss_disc_real_0: 0.07848 (0.12288) | > loss_disc_real_1: 0.19486 (0.21204) | > loss_disc_real_2: 0.20583 (0.21613) | > loss_disc_real_3: 0.21636 (0.21989) | > loss_disc_real_4: 0.21866 (0.21518) | > loss_disc_real_5: 0.33071 (0.21471) | > loss_0: 2.40121 (2.32496) | > grad_norm_0: 28.58601 (17.48449) | > loss_gen: 2.35501 (2.55508) | > loss_kl: 2.71834 (2.66192) | > loss_feat: 8.77324 (8.68420) | > loss_mel: 18.06765 (17.77333) | > loss_duration: 1.72404 (1.70683) | > loss_1: 33.63828 (33.38132) | > grad_norm_1: 160.01118 (142.45161) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.53290 (2.39364) | > loader_time: 0.03580 (0.03535)  --> STEP: 8326/15287 -- GLOBAL_STEP: 1019475 | > loss_disc: 2.34031 (2.32498) | > loss_disc_real_0: 0.09520 (0.12289) | > loss_disc_real_1: 0.22382 (0.21204) | > loss_disc_real_2: 0.23632 (0.21613) | > loss_disc_real_3: 0.21125 (0.21990) | > loss_disc_real_4: 0.22326 (0.21518) | > loss_disc_real_5: 0.24380 (0.21470) | > loss_0: 2.34031 (2.32498) | > grad_norm_0: 15.14224 (17.48363) | > loss_gen: 2.58739 (2.55508) | > loss_kl: 2.72559 (2.66196) | > loss_feat: 8.92864 (8.68419) | > loss_mel: 17.79901 (17.77324) | > loss_duration: 1.72787 (1.70683) | > loss_1: 33.76850 (33.38127) | > grad_norm_1: 173.25662 (142.47340) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58860 (2.39441) | > loader_time: 0.03230 (0.03535)  --> STEP: 8351/15287 -- GLOBAL_STEP: 1019500 | > loss_disc: 2.37779 (2.32494) | > loss_disc_real_0: 0.22117 (0.12290) | > loss_disc_real_1: 0.24674 (0.21204) | > loss_disc_real_2: 0.24395 (0.21613) | > loss_disc_real_3: 0.26375 (0.21991) | > loss_disc_real_4: 0.26326 (0.21518) | > loss_disc_real_5: 0.24500 (0.21470) | > loss_0: 2.37779 (2.32494) | > grad_norm_0: 23.69866 (17.48418) | > loss_gen: 2.64877 (2.55513) | > loss_kl: 2.67413 (2.66208) | > loss_feat: 8.30414 (8.68432) | > loss_mel: 17.65488 (17.77336) | > loss_duration: 1.68130 (1.70685) | > loss_1: 32.96322 (33.38169) | > grad_norm_1: 129.64081 (142.47107) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55330 (2.39537) | > loader_time: 0.03100 (0.03534)  --> STEP: 8376/15287 -- GLOBAL_STEP: 1019525 | > loss_disc: 2.21680 (2.32491) | > loss_disc_real_0: 0.08900 (0.12288) | > loss_disc_real_1: 0.19514 (0.21204) | > loss_disc_real_2: 0.16729 (0.21612) | > loss_disc_real_3: 0.18444 (0.21991) | > loss_disc_real_4: 0.19072 (0.21518) | > loss_disc_real_5: 0.16783 (0.21470) | > loss_0: 2.21680 (2.32491) | > grad_norm_0: 8.40808 (17.47531) | > loss_gen: 2.79936 (2.55511) | > loss_kl: 2.58178 (2.66217) | > loss_feat: 8.92239 (8.68450) | > loss_mel: 17.61781 (17.77332) | > loss_duration: 1.72980 (1.70685) | > loss_1: 33.65113 (33.38190) | > grad_norm_1: 165.57635 (142.49277) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.53130 (2.39580) | > loader_time: 0.03700 (0.03534)  --> STEP: 8401/15287 -- GLOBAL_STEP: 1019550 | > loss_disc: 2.35188 (2.32490) | > loss_disc_real_0: 0.12879 (0.12288) | > loss_disc_real_1: 0.22201 (0.21204) | > loss_disc_real_2: 0.20495 (0.21611) | > loss_disc_real_3: 0.21676 (0.21992) | > loss_disc_real_4: 0.20985 (0.21519) | > loss_disc_real_5: 0.22544 (0.21471) | > loss_0: 2.35188 (2.32490) | > grad_norm_0: 11.26267 (17.48285) | > loss_gen: 2.47774 (2.55510) | > loss_kl: 2.78086 (2.66232) | > loss_feat: 8.59300 (8.68451) | > loss_mel: 17.80817 (17.77346) | > loss_duration: 1.69618 (1.70683) | > loss_1: 33.35595 (33.38215) | > grad_norm_1: 95.40441 (142.50421) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.63960 (2.39644) | > loader_time: 0.02980 (0.03533)  --> STEP: 8426/15287 -- GLOBAL_STEP: 1019575 | > loss_disc: 2.30086 (2.32493) | > loss_disc_real_0: 0.12059 (0.12287) | > loss_disc_real_1: 0.19231 (0.21204) | > loss_disc_real_2: 0.20436 (0.21611) | > loss_disc_real_3: 0.24192 (0.21993) | > loss_disc_real_4: 0.20082 (0.21519) | > loss_disc_real_5: 0.20284 (0.21471) | > loss_0: 2.30086 (2.32493) | > grad_norm_0: 11.46181 (17.47567) | > loss_gen: 2.42022 (2.55510) | > loss_kl: 2.78118 (2.66237) | > loss_feat: 8.89424 (8.68472) | > loss_mel: 17.70046 (17.77349) | > loss_duration: 1.69409 (1.70683) | > loss_1: 33.49019 (33.38246) | > grad_norm_1: 63.30101 (142.58438) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.61090 (2.39707) | > loader_time: 0.03850 (0.03533)  --> STEP: 8451/15287 -- GLOBAL_STEP: 1019600 | > loss_disc: 2.31564 (2.32490) | > loss_disc_real_0: 0.10984 (0.12286) | > loss_disc_real_1: 0.18661 (0.21204) | > loss_disc_real_2: 0.23019 (0.21610) | > loss_disc_real_3: 0.26635 (0.21990) | > loss_disc_real_4: 0.26257 (0.21518) | > loss_disc_real_5: 0.23548 (0.21470) | > loss_0: 2.31564 (2.32490) | > grad_norm_0: 18.65328 (17.47628) | > loss_gen: 2.79160 (2.55508) | > loss_kl: 2.53034 (2.66234) | > loss_feat: 8.63334 (8.68493) | > loss_mel: 17.80759 (17.77358) | > loss_duration: 1.67520 (1.70683) | > loss_1: 33.43807 (33.38271) | > grad_norm_1: 128.50966 (142.57936) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38270 (2.39797) | > loader_time: 0.03200 (0.03533)  --> STEP: 8476/15287 -- GLOBAL_STEP: 1019625 | > loss_disc: 2.44744 (2.32497) | > loss_disc_real_0: 0.13019 (0.12286) | > loss_disc_real_1: 0.23317 (0.21206) | > loss_disc_real_2: 0.27843 (0.21613) | > loss_disc_real_3: 0.18711 (0.21989) | > loss_disc_real_4: 0.13331 (0.21517) | > loss_disc_real_5: 0.18244 (0.21469) | > loss_0: 2.44744 (2.32497) | > grad_norm_0: 25.49527 (17.46491) | > loss_gen: 2.37546 (2.55505) | > loss_kl: 2.46612 (2.66233) | > loss_feat: 8.17667 (8.68472) | > loss_mel: 17.61369 (17.77352) | > loss_duration: 1.69440 (1.70682) | > loss_1: 32.32634 (33.38239) | > grad_norm_1: 83.43594 (142.48459) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.77500 (2.39868) | > loader_time: 0.03270 (0.03533)  --> STEP: 8501/15287 -- GLOBAL_STEP: 1019650 | > loss_disc: 2.30670 (2.32500) | > loss_disc_real_0: 0.10695 (0.12286) | > loss_disc_real_1: 0.21754 (0.21206) | > loss_disc_real_2: 0.22059 (0.21614) | > loss_disc_real_3: 0.23637 (0.21989) | > loss_disc_real_4: 0.21277 (0.21517) | > loss_disc_real_5: 0.20346 (0.21468) | > loss_0: 2.30670 (2.32500) | > grad_norm_0: 16.88292 (17.45592) | > loss_gen: 2.57518 (2.55503) | > loss_kl: 2.58845 (2.66231) | > loss_feat: 8.81240 (8.68436) | > loss_mel: 17.82021 (17.77358) | > loss_duration: 1.72065 (1.70684) | > loss_1: 33.51689 (33.38204) | > grad_norm_1: 122.16846 (142.41969) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34640 (2.39822) | > loader_time: 0.03170 (0.03534)  --> STEP: 8526/15287 -- GLOBAL_STEP: 1019675 | > loss_disc: 2.33321 (2.32498) | > loss_disc_real_0: 0.15453 (0.12286) | > loss_disc_real_1: 0.24153 (0.21208) | > loss_disc_real_2: 0.23005 (0.21612) | > loss_disc_real_3: 0.21076 (0.21989) | > loss_disc_real_4: 0.22479 (0.21517) | > loss_disc_real_5: 0.19055 (0.21468) | > loss_0: 2.33321 (2.32498) | > grad_norm_0: 22.07659 (17.45282) | > loss_gen: 2.60791 (2.55504) | > loss_kl: 2.67230 (2.66234) | > loss_feat: 8.38748 (8.68396) | > loss_mel: 17.53712 (17.77332) | > loss_duration: 1.68802 (1.70683) | > loss_1: 32.89283 (33.38140) | > grad_norm_1: 65.03470 (142.42105) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06580 (2.39776) | > loader_time: 0.04250 (0.03535)  --> STEP: 8551/15287 -- GLOBAL_STEP: 1019700 | > loss_disc: 2.27042 (2.32501) | > loss_disc_real_0: 0.12318 (0.12287) | > loss_disc_real_1: 0.23664 (0.21210) | > loss_disc_real_2: 0.21593 (0.21612) | > loss_disc_real_3: 0.20022 (0.21989) | > loss_disc_real_4: 0.21853 (0.21517) | > loss_disc_real_5: 0.19665 (0.21466) | > loss_0: 2.27042 (2.32501) | > grad_norm_0: 4.72512 (17.47334) | > loss_gen: 2.39879 (2.55495) | > loss_kl: 2.54876 (2.66224) | > loss_feat: 8.35327 (8.68375) | > loss_mel: 17.66024 (17.77324) | > loss_duration: 1.75041 (1.70682) | > loss_1: 32.71148 (33.38094) | > grad_norm_1: 70.55439 (142.44931) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90440 (2.39711) | > loader_time: 0.04240 (0.03537)  --> STEP: 8576/15287 -- GLOBAL_STEP: 1019725 | > loss_disc: 2.37993 (2.32509) | > loss_disc_real_0: 0.09962 (0.12291) | > loss_disc_real_1: 0.22893 (0.21209) | > loss_disc_real_2: 0.22160 (0.21613) | > loss_disc_real_3: 0.21769 (0.21991) | > loss_disc_real_4: 0.23287 (0.21517) | > loss_disc_real_5: 0.23261 (0.21466) | > loss_0: 2.37993 (2.32509) | > grad_norm_0: 14.80545 (17.46858) | > loss_gen: 2.52119 (2.55498) | > loss_kl: 2.84361 (2.66236) | > loss_feat: 7.84324 (8.68364) | > loss_mel: 17.24022 (17.77374) | > loss_duration: 1.71627 (1.70682) | > loss_1: 32.16454 (33.38146) | > grad_norm_1: 119.33511 (142.33086) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13630 (2.39616) | > loader_time: 0.03670 (0.03537)  --> STEP: 8601/15287 -- GLOBAL_STEP: 1019750 | > loss_disc: 2.31812 (2.32511) | > loss_disc_real_0: 0.14541 (0.12293) | > loss_disc_real_1: 0.22349 (0.21209) | > loss_disc_real_2: 0.20816 (0.21613) | > loss_disc_real_3: 0.23116 (0.21990) | > loss_disc_real_4: 0.23669 (0.21517) | > loss_disc_real_5: 0.23466 (0.21464) | > loss_0: 2.31812 (2.32511) | > grad_norm_0: 37.38662 (17.45794) | > loss_gen: 2.77318 (2.55500) | > loss_kl: 2.51529 (2.66228) | > loss_feat: 8.42061 (8.68328) | > loss_mel: 17.43169 (17.77358) | > loss_duration: 1.66030 (1.70681) | > loss_1: 32.80107 (33.38089) | > grad_norm_1: 38.33546 (142.22026) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58250 (2.39587) | > loader_time: 0.03430 (0.03538)  --> STEP: 8626/15287 -- GLOBAL_STEP: 1019775 | > loss_disc: 2.27505 (2.32524) | > loss_disc_real_0: 0.13448 (0.12298) | > loss_disc_real_1: 0.16858 (0.21209) | > loss_disc_real_2: 0.16354 (0.21613) | > loss_disc_real_3: 0.21112 (0.21991) | > loss_disc_real_4: 0.18883 (0.21517) | > loss_disc_real_5: 0.21091 (0.21466) | > loss_0: 2.27505 (2.32524) | > grad_norm_0: 13.52492 (17.44673) | > loss_gen: 2.41760 (2.55494) | > loss_kl: 2.68852 (2.66244) | > loss_feat: 8.84893 (8.68299) | > loss_mel: 17.74151 (17.77390) | > loss_duration: 1.70700 (1.70680) | > loss_1: 33.40356 (33.38100) | > grad_norm_1: 102.23544 (142.03787) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.91910 (2.39690) | > loader_time: 0.03420 (0.03538)  --> STEP: 8651/15287 -- GLOBAL_STEP: 1019800 | > loss_disc: 2.30223 (2.32524) | > loss_disc_real_0: 0.13285 (0.12299) | > loss_disc_real_1: 0.23005 (0.21210) | > loss_disc_real_2: 0.20799 (0.21614) | > loss_disc_real_3: 0.20856 (0.21992) | > loss_disc_real_4: 0.20000 (0.21517) | > loss_disc_real_5: 0.21593 (0.21465) | > loss_0: 2.30223 (2.32524) | > grad_norm_0: 26.39834 (17.44700) | > loss_gen: 2.50490 (2.55503) | > loss_kl: 2.74829 (2.66231) | > loss_feat: 8.57302 (8.68305) | > loss_mel: 18.15787 (17.77412) | > loss_duration: 1.68945 (1.70679) | > loss_1: 33.67353 (33.38124) | > grad_norm_1: 140.13370 (141.99095) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.89210 (2.39732) | > loader_time: 0.03240 (0.03537)  --> STEP: 8676/15287 -- GLOBAL_STEP: 1019825 | > loss_disc: 2.35594 (2.32515) | > loss_disc_real_0: 0.17241 (0.12298) | > loss_disc_real_1: 0.20937 (0.21209) | > loss_disc_real_2: 0.18749 (0.21613) | > loss_disc_real_3: 0.19427 (0.21991) | > loss_disc_real_4: 0.20511 (0.21516) | > loss_disc_real_5: 0.20050 (0.21466) | > loss_0: 2.35594 (2.32515) | > grad_norm_0: 26.17817 (17.44160) | > loss_gen: 2.37685 (2.55512) | > loss_kl: 2.72951 (2.66217) | > loss_feat: 8.89829 (8.68343) | > loss_mel: 17.69444 (17.77376) | > loss_duration: 1.65886 (1.70676) | > loss_1: 33.35795 (33.38117) | > grad_norm_1: 122.71613 (141.96451) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.60300 (2.39771) | > loader_time: 0.03280 (0.03536)  --> STEP: 8701/15287 -- GLOBAL_STEP: 1019850 | > loss_disc: 2.23695 (2.32506) | > loss_disc_real_0: 0.08980 (0.12295) | > loss_disc_real_1: 0.20706 (0.21208) | > loss_disc_real_2: 0.22500 (0.21612) | > loss_disc_real_3: 0.20625 (0.21990) | > loss_disc_real_4: 0.19942 (0.21515) | > loss_disc_real_5: 0.22407 (0.21466) | > loss_0: 2.23695 (2.32506) | > grad_norm_0: 10.49514 (17.43780) | > loss_gen: 2.72335 (2.55518) | > loss_kl: 2.60511 (2.66218) | > loss_feat: 8.89193 (8.68346) | > loss_mel: 17.51487 (17.77353) | > loss_duration: 1.73559 (1.70675) | > loss_1: 33.47085 (33.38103) | > grad_norm_1: 74.92884 (141.95073) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.04250 (2.39805) | > loader_time: 0.03330 (0.03536)  --> STEP: 8726/15287 -- GLOBAL_STEP: 1019875 | > loss_disc: 2.32927 (2.32509) | > loss_disc_real_0: 0.10995 (0.12298) | > loss_disc_real_1: 0.21739 (0.21209) | > loss_disc_real_2: 0.22549 (0.21613) | > loss_disc_real_3: 0.24910 (0.21992) | > loss_disc_real_4: 0.19642 (0.21516) | > loss_disc_real_5: 0.23777 (0.21467) | > loss_0: 2.32927 (2.32509) | > grad_norm_0: 9.26807 (17.46224) | > loss_gen: 2.51082 (2.55518) | > loss_kl: 2.63820 (2.66215) | > loss_feat: 7.94484 (8.68335) | > loss_mel: 17.24743 (17.77335) | > loss_duration: 1.70799 (1.70676) | > loss_1: 32.04929 (33.38073) | > grad_norm_1: 195.83003 (141.98340) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52470 (2.39852) | > loader_time: 0.03340 (0.03536)  --> STEP: 8751/15287 -- GLOBAL_STEP: 1019900 | > loss_disc: 2.36055 (2.32505) | > loss_disc_real_0: 0.15616 (0.12297) | > loss_disc_real_1: 0.22767 (0.21209) | > loss_disc_real_2: 0.23772 (0.21613) | > loss_disc_real_3: 0.24054 (0.21992) | > loss_disc_real_4: 0.22187 (0.21517) | > loss_disc_real_5: 0.17219 (0.21466) | > loss_0: 2.36055 (2.32505) | > grad_norm_0: 14.38352 (17.46891) | > loss_gen: 2.40407 (2.55517) | > loss_kl: 2.74123 (2.66218) | > loss_feat: 8.20639 (8.68326) | > loss_mel: 17.45653 (17.77301) | > loss_duration: 1.66372 (1.70673) | > loss_1: 32.47194 (33.38028) | > grad_norm_1: 138.07272 (142.02812) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.05560 (2.39964) | > loader_time: 0.03880 (0.03536)  --> STEP: 8776/15287 -- GLOBAL_STEP: 1019925 | > loss_disc: 2.33290 (2.32495) | > loss_disc_real_0: 0.12370 (0.12295) | > loss_disc_real_1: 0.21305 (0.21208) | > loss_disc_real_2: 0.20058 (0.21611) | > loss_disc_real_3: 0.21102 (0.21991) | > loss_disc_real_4: 0.20567 (0.21516) | > loss_disc_real_5: 0.23579 (0.21465) | > loss_0: 2.33290 (2.32495) | > grad_norm_0: 11.33724 (17.47022) | > loss_gen: 2.59632 (2.55518) | > loss_kl: 2.62622 (2.66220) | > loss_feat: 8.53881 (8.68341) | > loss_mel: 17.43864 (17.77280) | > loss_duration: 1.66834 (1.70671) | > loss_1: 32.86833 (33.38023) | > grad_norm_1: 50.88706 (142.03233) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.50010 (2.40003) | > loader_time: 0.03410 (0.03535)  --> STEP: 8801/15287 -- GLOBAL_STEP: 1019950 | > loss_disc: 2.27263 (2.32490) | > loss_disc_real_0: 0.16743 (0.12294) | > loss_disc_real_1: 0.18664 (0.21207) | > loss_disc_real_2: 0.21927 (0.21612) | > loss_disc_real_3: 0.18416 (0.21989) | > loss_disc_real_4: 0.17477 (0.21515) | > loss_disc_real_5: 0.20295 (0.21464) | > loss_0: 2.27263 (2.32490) | > grad_norm_0: 20.85669 (17.47375) | > loss_gen: 2.57939 (2.55514) | > loss_kl: 2.66917 (2.66221) | > loss_feat: 9.47354 (8.68336) | > loss_mel: 17.96170 (17.77276) | > loss_duration: 1.70086 (1.70670) | > loss_1: 34.38466 (33.38010) | > grad_norm_1: 139.94051 (142.06451) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35630 (2.40071) | > loader_time: 0.03270 (0.03535)  --> STEP: 8826/15287 -- GLOBAL_STEP: 1019975 | > loss_disc: 2.27675 (2.32504) | > loss_disc_real_0: 0.12542 (0.12305) | > loss_disc_real_1: 0.20513 (0.21207) | > loss_disc_real_2: 0.25160 (0.21616) | > loss_disc_real_3: 0.20540 (0.21991) | > loss_disc_real_4: 0.22046 (0.21516) | > loss_disc_real_5: 0.22375 (0.21464) | > loss_0: 2.27675 (2.32504) | > grad_norm_0: 20.43214 (17.48920) | > loss_gen: 2.56230 (2.55523) | > loss_kl: 2.65553 (2.66225) | > loss_feat: 8.45446 (8.68302) | > loss_mel: 17.54535 (17.77265) | > loss_duration: 1.70688 (1.70672) | > loss_1: 32.92451 (33.37981) | > grad_norm_1: 82.28087 (141.95898) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.62050 (2.40150) | > loader_time: 0.03070 (0.03534)  --> STEP: 8851/15287 -- GLOBAL_STEP: 1020000 | > loss_disc: 2.33235 (2.32505) | > loss_disc_real_0: 0.12557 (0.12303) | > loss_disc_real_1: 0.19743 (0.21208) | > loss_disc_real_2: 0.22075 (0.21616) | > loss_disc_real_3: 0.19347 (0.21991) | > loss_disc_real_4: 0.19984 (0.21517) | > loss_disc_real_5: 0.17666 (0.21464) | > loss_0: 2.33235 (2.32505) | > grad_norm_0: 10.48249 (17.47882) | > loss_gen: 2.65252 (2.55526) | > loss_kl: 2.65200 (2.66230) | > loss_feat: 8.67620 (8.68314) | > loss_mel: 18.08600 (17.77264) | > loss_duration: 1.76510 (1.70673) | > loss_1: 33.83183 (33.38002) | > grad_norm_1: 151.65553 (141.90619) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.83770 (2.40203) | > loader_time: 0.03660 (0.03534) > CHECKPOINT : ./checkpoints/yourtts_multilingual/yourtts-du_en_fr_ge_it_pl_ptbr_sp-November-08-2022_12+19PM-0cbaa0f6/checkpoint_1020000.pth  --> STEP: 8876/15287 -- GLOBAL_STEP: 1020025 | > loss_disc: 2.28404 (2.32500) | > loss_disc_real_0: 0.12368 (0.12301) | > loss_disc_real_1: 0.21538 (0.21207) | > loss_disc_real_2: 0.23486 (0.21617) | > loss_disc_real_3: 0.22858 (0.21991) | > loss_disc_real_4: 0.22704 (0.21518) | > loss_disc_real_5: 0.20151 (0.21463) | > loss_0: 2.28404 (2.32500) | > grad_norm_0: 17.42546 (17.47964) | > loss_gen: 2.67359 (2.55523) | > loss_kl: 2.65031 (2.66227) | > loss_feat: 9.18398 (8.68316) | > loss_mel: 17.67000 (17.77251) | > loss_duration: 1.67714 (1.70672) | > loss_1: 33.85503 (33.37982) | > grad_norm_1: 176.99197 (141.93896) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36720 (2.40260) | > loader_time: 0.03230 (0.03534)  --> STEP: 8901/15287 -- GLOBAL_STEP: 1020050 | > loss_disc: 2.34957 (2.32496) | > loss_disc_real_0: 0.14799 (0.12300) | > loss_disc_real_1: 0.17641 (0.21208) | > loss_disc_real_2: 0.19518 (0.21616) | > loss_disc_real_3: 0.21232 (0.21992) | > loss_disc_real_4: 0.21443 (0.21518) | > loss_disc_real_5: 0.20360 (0.21463) | > loss_0: 2.34957 (2.32496) | > grad_norm_0: 25.41324 (17.46834) | > loss_gen: 2.45227 (2.55529) | > loss_kl: 2.62153 (2.66230) | > loss_feat: 8.69745 (8.68319) | > loss_mel: 18.05842 (17.77216) | > loss_duration: 1.69424 (1.70671) | > loss_1: 33.52393 (33.37960) | > grad_norm_1: 176.29918 (141.93413) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.54520 (2.40358) | > loader_time: 0.03410 (0.03534)  --> STEP: 8926/15287 -- GLOBAL_STEP: 1020075 | > loss_disc: 2.21412 (2.32498) | > loss_disc_real_0: 0.10601 (0.12298) | > loss_disc_real_1: 0.21156 (0.21208) | > loss_disc_real_2: 0.22419 (0.21617) | > loss_disc_real_3: 0.19345 (0.21992) | > loss_disc_real_4: 0.19853 (0.21518) | > loss_disc_real_5: 0.22949 (0.21464) | > loss_0: 2.21412 (2.32498) | > grad_norm_0: 19.86160 (17.46598) | > loss_gen: 2.76154 (2.55541) | > loss_kl: 2.79341 (2.66231) | > loss_feat: 9.07741 (8.68326) | > loss_mel: 17.58275 (17.77240) | > loss_duration: 1.65591 (1.70670) | > loss_1: 33.87102 (33.38003) | > grad_norm_1: 335.91565 (141.96648) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.90650 (2.40421) | > loader_time: 0.03970 (0.03533)  --> STEP: 8951/15287 -- GLOBAL_STEP: 1020100 | > loss_disc: 2.39640 (2.32505) | > loss_disc_real_0: 0.07212 (0.12294) | > loss_disc_real_1: 0.25354 (0.21206) | > loss_disc_real_2: 0.27908 (0.21618) | > loss_disc_real_3: 0.26652 (0.21994) | > loss_disc_real_4: 0.25533 (0.21520) | > loss_disc_real_5: 0.22873 (0.21469) | > loss_0: 2.39640 (2.32505) | > grad_norm_0: 19.89509 (17.50188) | > loss_gen: 2.64015 (2.55579) | > loss_kl: 2.67360 (2.66244) | > loss_feat: 8.04274 (8.68390) | > loss_mel: 17.82715 (17.77317) | > loss_duration: 1.71125 (1.70671) | > loss_1: 32.89489 (33.38195) | > grad_norm_1: 210.05176 (142.15225) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.05280 (2.40496) | > loader_time: 0.03510 (0.03533)  --> STEP: 8976/15287 -- GLOBAL_STEP: 1020125 | > loss_disc: 2.30002 (2.32509) | > loss_disc_real_0: 0.07940 (0.12298) | > loss_disc_real_1: 0.23552 (0.21205) | > loss_disc_real_2: 0.20279 (0.21617) | > loss_disc_real_3: 0.23059 (0.21995) | > loss_disc_real_4: 0.22377 (0.21520) | > loss_disc_real_5: 0.25440 (0.21471) | > loss_0: 2.30002 (2.32509) | > grad_norm_0: 12.29035 (17.56324) | > loss_gen: 2.53634 (2.55574) | > loss_kl: 2.59175 (2.66232) | > loss_feat: 8.54755 (8.68360) | > loss_mel: 17.74022 (17.77267) | > loss_duration: 1.68711 (1.70672) | > loss_1: 33.10297 (33.38098) | > grad_norm_1: 117.62878 (142.37671) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.94450 (2.40563) | > loader_time: 0.03080 (0.03533)  --> STEP: 9001/15287 -- GLOBAL_STEP: 1020150 | > loss_disc: 2.46904 (2.32518) | > loss_disc_real_0: 0.08166 (0.12303) | > loss_disc_real_1: 0.22653 (0.21205) | > loss_disc_real_2: 0.21925 (0.21618) | > loss_disc_real_3: 0.21727 (0.21994) | > loss_disc_real_4: 0.20535 (0.21519) | > loss_disc_real_5: 0.22919 (0.21472) | > loss_0: 2.46904 (2.32518) | > grad_norm_0: 21.19593 (17.58075) | > loss_gen: 2.34053 (2.55571) | > loss_kl: 2.72402 (2.66238) | > loss_feat: 7.98346 (8.68332) | > loss_mel: 17.68008 (17.77255) | > loss_duration: 1.68007 (1.70669) | > loss_1: 32.40817 (33.38059) | > grad_norm_1: 99.36591 (142.41101) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.73400 (2.40641) | > loader_time: 0.03260 (0.03532)  --> STEP: 9026/15287 -- GLOBAL_STEP: 1020175 | > loss_disc: 2.30533 (2.32521) | > loss_disc_real_0: 0.13161 (0.12303) | > loss_disc_real_1: 0.19661 (0.21204) | > loss_disc_real_2: 0.19160 (0.21618) | > loss_disc_real_3: 0.23645 (0.21994) | > loss_disc_real_4: 0.21323 (0.21519) | > loss_disc_real_5: 0.17886 (0.21473) | > loss_0: 2.30533 (2.32521) | > grad_norm_0: 12.82876 (17.57055) | > loss_gen: 2.61362 (2.55572) | > loss_kl: 2.57921 (2.66240) | > loss_feat: 9.21455 (8.68350) | > loss_mel: 17.76747 (17.77283) | > loss_duration: 1.72470 (1.70670) | > loss_1: 33.89956 (33.38109) | > grad_norm_1: 208.23260 (142.35802) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34310 (2.40735) | > loader_time: 0.03340 (0.03532)  --> STEP: 9051/15287 -- GLOBAL_STEP: 1020200 | > loss_disc: 2.34390 (2.32541) | > loss_disc_real_0: 0.17380 (0.12308) | > loss_disc_real_1: 0.20560 (0.21206) | > loss_disc_real_2: 0.23856 (0.21618) | > loss_disc_real_3: 0.26299 (0.21996) | > loss_disc_real_4: 0.22443 (0.21520) | > loss_disc_real_5: 0.22579 (0.21471) | > loss_0: 2.34390 (2.32541) | > grad_norm_0: 30.19761 (17.57635) | > loss_gen: 2.69963 (2.55563) | > loss_kl: 2.55977 (2.66235) | > loss_feat: 8.52577 (8.68285) | > loss_mel: 17.64711 (17.77301) | > loss_duration: 1.69684 (1.70670) | > loss_1: 33.12912 (33.38048) | > grad_norm_1: 128.66377 (142.32480) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.97390 (2.40827) | > loader_time: 0.03260 (0.03532)  --> STEP: 9076/15287 -- GLOBAL_STEP: 1020225 | > loss_disc: 2.40759 (2.32551) | > loss_disc_real_0: 0.17641 (0.12310) | > loss_disc_real_1: 0.19364 (0.21207) | > loss_disc_real_2: 0.22309 (0.21619) | > loss_disc_real_3: 0.19128 (0.21997) | > loss_disc_real_4: 0.21576 (0.21521) | > loss_disc_real_5: 0.21863 (0.21473) | > loss_0: 2.40759 (2.32551) | > grad_norm_0: 21.10887 (17.56063) | > loss_gen: 2.43882 (2.55563) | > loss_kl: 2.56478 (2.66228) | > loss_feat: 8.52300 (8.68281) | > loss_mel: 17.72839 (17.77328) | > loss_duration: 1.71422 (1.70672) | > loss_1: 32.96921 (33.38068) | > grad_norm_1: 63.28281 (142.17366) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52550 (2.40862) | > loader_time: 0.03880 (0.03531)  --> STEP: 9101/15287 -- GLOBAL_STEP: 1020250 | > loss_disc: 2.44777 (2.32559) | > loss_disc_real_0: 0.16479 (0.12313) | > loss_disc_real_1: 0.27271 (0.21209) | > loss_disc_real_2: 0.24808 (0.21620) | > loss_disc_real_3: 0.18122 (0.21997) | > loss_disc_real_4: 0.16186 (0.21520) | > loss_disc_real_5: 0.18388 (0.21472) | > loss_0: 2.44777 (2.32559) | > grad_norm_0: 19.14353 (17.54441) | > loss_gen: 2.41475 (2.55564) | > loss_kl: 2.63498 (2.66228) | > loss_feat: 8.42825 (8.68252) | > loss_mel: 17.29321 (17.77364) | > loss_duration: 1.68352 (1.70672) | > loss_1: 32.45471 (33.38075) | > grad_norm_1: 64.06779 (141.96106) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38480 (2.40893) | > loader_time: 0.03290 (0.03531)  --> STEP: 9126/15287 -- GLOBAL_STEP: 1020275 | > loss_disc: 2.30429 (2.32572) | > loss_disc_real_0: 0.13882 (0.12317) | > loss_disc_real_1: 0.22662 (0.21211) | > loss_disc_real_2: 0.22957 (0.21620) | > loss_disc_real_3: 0.19728 (0.21997) | > loss_disc_real_4: 0.20692 (0.21520) | > loss_disc_real_5: 0.20925 (0.21472) | > loss_0: 2.30429 (2.32572) | > grad_norm_0: 9.82219 (17.53081) | > loss_gen: 2.66190 (2.55561) | > loss_kl: 2.75460 (2.66230) | > loss_feat: 9.05692 (8.68196) | > loss_mel: 17.97123 (17.77394) | > loss_duration: 1.71729 (1.70671) | > loss_1: 34.16193 (33.38048) | > grad_norm_1: 64.55053 (141.80405) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96400 (2.40887) | > loader_time: 0.03610 (0.03531)  --> STEP: 9151/15287 -- GLOBAL_STEP: 1020300 | > loss_disc: 2.23753 (2.32570) | > loss_disc_real_0: 0.10977 (0.12318) | > loss_disc_real_1: 0.19818 (0.21211) | > loss_disc_real_2: 0.17353 (0.21621) | > loss_disc_real_3: 0.20182 (0.21997) | > loss_disc_real_4: 0.18720 (0.21520) | > loss_disc_real_5: 0.17689 (0.21471) | > loss_0: 2.23753 (2.32570) | > grad_norm_0: 27.49665 (17.53196) | > loss_gen: 2.38007 (2.55553) | > loss_kl: 2.63663 (2.66216) | > loss_feat: 9.04099 (8.68146) | > loss_mel: 18.46903 (17.77428) | > loss_duration: 1.74352 (1.70670) | > loss_1: 34.27025 (33.38008) | > grad_norm_1: 218.89798 (141.81212) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.05540 (2.40867) | > loader_time: 0.04210 (0.03531)  --> STEP: 9176/15287 -- GLOBAL_STEP: 1020325 | > loss_disc: 2.38836 (2.32562) | > loss_disc_real_0: 0.09745 (0.12314) | > loss_disc_real_1: 0.21610 (0.21210) | > loss_disc_real_2: 0.22090 (0.21618) | > loss_disc_real_3: 0.24032 (0.21996) | > loss_disc_real_4: 0.23545 (0.21519) | > loss_disc_real_5: 0.18922 (0.21469) | > loss_0: 2.38836 (2.32562) | > grad_norm_0: 11.64695 (17.52302) | > loss_gen: 2.59404 (2.55549) | > loss_kl: 2.72687 (2.66215) | > loss_feat: 8.39379 (8.68156) | > loss_mel: 17.13648 (17.77411) | > loss_duration: 1.73613 (1.70667) | > loss_1: 32.58731 (33.37995) | > grad_norm_1: 119.26243 (141.82063) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58790 (2.40908) | > loader_time: 0.03020 (0.03530)  --> STEP: 9201/15287 -- GLOBAL_STEP: 1020350 | > loss_disc: 2.30037 (2.32557) | > loss_disc_real_0: 0.10117 (0.12313) | > loss_disc_real_1: 0.20329 (0.21209) | > loss_disc_real_2: 0.20041 (0.21618) | > loss_disc_real_3: 0.20034 (0.21995) | > loss_disc_real_4: 0.20901 (0.21518) | > loss_disc_real_5: 0.20191 (0.21469) | > loss_0: 2.30037 (2.32557) | > grad_norm_0: 10.67588 (17.52127) | > loss_gen: 2.55734 (2.55542) | > loss_kl: 2.51693 (2.66207) | > loss_feat: 8.72183 (8.68139) | > loss_mel: 17.71509 (17.77375) | > loss_duration: 1.69978 (1.70668) | > loss_1: 33.21098 (33.37929) | > grad_norm_1: 139.77422 (141.82890) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39710 (2.40940) | > loader_time: 0.03200 (0.03530)  --> STEP: 9226/15287 -- GLOBAL_STEP: 1020375 | > loss_disc: 2.32625 (2.32549) | > loss_disc_real_0: 0.14572 (0.12310) | > loss_disc_real_1: 0.21741 (0.21208) | > loss_disc_real_2: 0.23791 (0.21617) | > loss_disc_real_3: 0.21754 (0.21994) | > loss_disc_real_4: 0.21255 (0.21517) | > loss_disc_real_5: 0.19642 (0.21469) | > loss_0: 2.32625 (2.32549) | > grad_norm_0: 13.32769 (17.51170) | > loss_gen: 2.57411 (2.55540) | > loss_kl: 2.83869 (2.66203) | > loss_feat: 8.30328 (8.68148) | > loss_mel: 17.53951 (17.77344) | > loss_duration: 1.67305 (1.70666) | > loss_1: 32.92864 (33.37898) | > grad_norm_1: 142.21127 (141.81041) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.63760 (2.40993) | > loader_time: 0.03930 (0.03530)  --> STEP: 9251/15287 -- GLOBAL_STEP: 1020400 | > loss_disc: 2.34760 (2.32545) | > loss_disc_real_0: 0.24276 (0.12312) | > loss_disc_real_1: 0.18857 (0.21207) | > loss_disc_real_2: 0.19117 (0.21616) | > loss_disc_real_3: 0.18645 (0.21994) | > loss_disc_real_4: 0.19480 (0.21517) | > loss_disc_real_5: 0.20849 (0.21468) | > loss_0: 2.34760 (2.32545) | > grad_norm_0: 36.34657 (17.50608) | > loss_gen: 2.68006 (2.55540) | > loss_kl: 2.59633 (2.66206) | > loss_feat: 8.80230 (8.68161) | > loss_mel: 17.86537 (17.77329) | > loss_duration: 1.73088 (1.70663) | > loss_1: 33.67493 (33.37899) | > grad_norm_1: 50.59224 (141.70651) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.45160 (2.41051) | > loader_time: 0.03370 (0.03529)  --> STEP: 9276/15287 -- GLOBAL_STEP: 1020425 | > loss_disc: 2.32621 (2.32550) | > loss_disc_real_0: 0.12148 (0.12314) | > loss_disc_real_1: 0.18149 (0.21204) | > loss_disc_real_2: 0.22597 (0.21616) | > loss_disc_real_3: 0.27613 (0.21993) | > loss_disc_real_4: 0.25233 (0.21516) | > loss_disc_real_5: 0.18632 (0.21467) | > loss_0: 2.32621 (2.32550) | > grad_norm_0: 11.13464 (17.49259) | > loss_gen: 2.44828 (2.55524) | > loss_kl: 2.65596 (2.66213) | > loss_feat: 8.01394 (8.68135) | > loss_mel: 17.37523 (17.77326) | > loss_duration: 1.67330 (1.70662) | > loss_1: 32.16670 (33.37858) | > grad_norm_1: 66.53031 (141.55948) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.65650 (2.41111) | > loader_time: 0.03630 (0.03529)  --> STEP: 9301/15287 -- GLOBAL_STEP: 1020450 | > loss_disc: 2.28725 (2.32556) | > loss_disc_real_0: 0.13437 (0.12314) | > loss_disc_real_1: 0.19562 (0.21208) | > loss_disc_real_2: 0.22376 (0.21617) | > loss_disc_real_3: 0.21097 (0.21994) | > loss_disc_real_4: 0.25917 (0.21517) | > loss_disc_real_5: 0.23137 (0.21467) | > loss_0: 2.28725 (2.32556) | > grad_norm_0: 18.17564 (17.48654) | > loss_gen: 2.53787 (2.55518) | > loss_kl: 2.64789 (2.66200) | > loss_feat: 8.97699 (8.68082) | > loss_mel: 18.12940 (17.77335) | > loss_duration: 1.74249 (1.70665) | > loss_1: 34.03463 (33.37799) | > grad_norm_1: 170.02899 (141.52289) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.47970 (2.41154) | > loader_time: 0.03190 (0.03529)  --> STEP: 9326/15287 -- GLOBAL_STEP: 1020475 | > loss_disc: 2.24170 (2.32549) | > loss_disc_real_0: 0.08052 (0.12312) | > loss_disc_real_1: 0.20459 (0.21207) | > loss_disc_real_2: 0.20619 (0.21617) | > loss_disc_real_3: 0.18627 (0.21993) | > loss_disc_real_4: 0.21646 (0.21517) | > loss_disc_real_5: 0.20968 (0.21467) | > loss_0: 2.24170 (2.32549) | > grad_norm_0: 14.85473 (17.48877) | > loss_gen: 2.50310 (2.55516) | > loss_kl: 2.69646 (2.66197) | > loss_feat: 9.17190 (8.68069) | > loss_mel: 18.12573 (17.77335) | > loss_duration: 1.69732 (1.70664) | > loss_1: 34.19451 (33.37778) | > grad_norm_1: 162.39349 (141.54849) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72230 (2.41181) | > loader_time: 0.03690 (0.03528)  --> STEP: 9351/15287 -- GLOBAL_STEP: 1020500 | > loss_disc: 2.31729 (2.32539) | > loss_disc_real_0: 0.11432 (0.12310) | > loss_disc_real_1: 0.21698 (0.21207) | > loss_disc_real_2: 0.21712 (0.21617) | > loss_disc_real_3: 0.21900 (0.21992) | > loss_disc_real_4: 0.21886 (0.21517) | > loss_disc_real_5: 0.21474 (0.21466) | > loss_0: 2.31729 (2.32539) | > grad_norm_0: 7.29689 (17.48290) | > loss_gen: 2.57645 (2.55522) | > loss_kl: 2.75309 (2.66195) | > loss_feat: 8.82740 (8.68121) | > loss_mel: 17.64777 (17.77291) | > loss_duration: 1.69582 (1.70663) | > loss_1: 33.50053 (33.37789) | > grad_norm_1: 177.25931 (141.58705) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.91040 (2.41220) | > loader_time: 0.03150 (0.03528)  --> STEP: 9376/15287 -- GLOBAL_STEP: 1020525 | > loss_disc: 2.27654 (2.32535) | > loss_disc_real_0: 0.07266 (0.12308) | > loss_disc_real_1: 0.21075 (0.21207) | > loss_disc_real_2: 0.22553 (0.21620) | > loss_disc_real_3: 0.20997 (0.21993) | > loss_disc_real_4: 0.22868 (0.21517) | > loss_disc_real_5: 0.21883 (0.21467) | > loss_0: 2.27654 (2.32535) | > grad_norm_0: 12.26304 (17.47797) | > loss_gen: 2.56136 (2.55520) | > loss_kl: 2.63352 (2.66186) | > loss_feat: 8.31260 (8.68089) | > loss_mel: 17.20083 (17.77255) | > loss_duration: 1.69852 (1.70663) | > loss_1: 32.40683 (33.37711) | > grad_norm_1: 125.66172 (141.56859) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.45950 (2.41271) | > loader_time: 0.03360 (0.03527)  --> STEP: 9401/15287 -- GLOBAL_STEP: 1020550 | > loss_disc: 2.37347 (2.32528) | > loss_disc_real_0: 0.15554 (0.12307) | > loss_disc_real_1: 0.25491 (0.21206) | > loss_disc_real_2: 0.21263 (0.21619) | > loss_disc_real_3: 0.22809 (0.21992) | > loss_disc_real_4: 0.21120 (0.21516) | > loss_disc_real_5: 0.18273 (0.21466) | > loss_0: 2.37347 (2.32528) | > grad_norm_0: 10.55278 (17.46129) | > loss_gen: 2.48461 (2.55530) | > loss_kl: 2.59949 (2.66187) | > loss_feat: 8.12594 (8.68140) | > loss_mel: 17.83784 (17.77236) | > loss_duration: 1.74300 (1.70663) | > loss_1: 32.79089 (33.37755) | > grad_norm_1: 156.55508 (141.50090) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42880 (2.41392) | > loader_time: 0.03700 (0.03527)  --> STEP: 9426/15287 -- GLOBAL_STEP: 1020575 | > loss_disc: 2.23817 (2.32524) | > loss_disc_real_0: 0.08646 (0.12305) | > loss_disc_real_1: 0.20091 (0.21206) | > loss_disc_real_2: 0.18387 (0.21619) | > loss_disc_real_3: 0.20164 (0.21993) | > loss_disc_real_4: 0.19500 (0.21515) | > loss_disc_real_5: 0.19539 (0.21467) | > loss_0: 2.23817 (2.32524) | > grad_norm_0: 11.71640 (17.46155) | > loss_gen: 2.55399 (2.55528) | > loss_kl: 2.69160 (2.66195) | > loss_feat: 8.82155 (8.68171) | > loss_mel: 17.95489 (17.77245) | > loss_duration: 1.69246 (1.70665) | > loss_1: 33.71449 (33.37804) | > grad_norm_1: 194.98473 (141.49133) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.61530 (2.41439) | > loader_time: 0.03440 (0.03528)  --> STEP: 9451/15287 -- GLOBAL_STEP: 1020600 | > loss_disc: 2.24275 (2.32513) | > loss_disc_real_0: 0.15247 (0.12303) | > loss_disc_real_1: 0.21295 (0.21204) | > loss_disc_real_2: 0.18709 (0.21618) | > loss_disc_real_3: 0.21579 (0.21993) | > loss_disc_real_4: 0.19897 (0.21514) | > loss_disc_real_5: 0.21333 (0.21467) | > loss_0: 2.24275 (2.32513) | > grad_norm_0: 12.99392 (17.45146) | > loss_gen: 2.58409 (2.55533) | > loss_kl: 2.62446 (2.66198) | > loss_feat: 9.15951 (8.68217) | > loss_mel: 17.98037 (17.77217) | > loss_duration: 1.67456 (1.70665) | > loss_1: 34.02299 (33.37830) | > grad_norm_1: 174.26543 (141.48447) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35120 (2.41493) | > loader_time: 0.03030 (0.03527)  --> STEP: 9476/15287 -- GLOBAL_STEP: 1020625 | > loss_disc: 2.21633 (2.32504) | > loss_disc_real_0: 0.11136 (0.12301) | > loss_disc_real_1: 0.19852 (0.21203) | > loss_disc_real_2: 0.23092 (0.21618) | > loss_disc_real_3: 0.19832 (0.21993) | > loss_disc_real_4: 0.18753 (0.21514) | > loss_disc_real_5: 0.20122 (0.21467) | > loss_0: 2.21633 (2.32504) | > grad_norm_0: 10.55968 (17.45308) | > loss_gen: 2.52472 (2.55529) | > loss_kl: 2.66509 (2.66207) | > loss_feat: 8.68881 (8.68239) | > loss_mel: 17.94369 (17.77190) | > loss_duration: 1.67868 (1.70661) | > loss_1: 33.50100 (33.37827) | > grad_norm_1: 118.38231 (141.48383) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27470 (2.41558) | > loader_time: 0.03740 (0.03527)  --> STEP: 9501/15287 -- GLOBAL_STEP: 1020650 | > loss_disc: 2.30607 (2.32501) | > loss_disc_real_0: 0.10634 (0.12301) | > loss_disc_real_1: 0.20131 (0.21202) | > loss_disc_real_2: 0.22507 (0.21617) | > loss_disc_real_3: 0.22255 (0.21992) | > loss_disc_real_4: 0.22097 (0.21512) | > loss_disc_real_5: 0.21315 (0.21467) | > loss_0: 2.30607 (2.32501) | > grad_norm_0: 19.71643 (17.44524) | > loss_gen: 2.67076 (2.55528) | > loss_kl: 2.65366 (2.66209) | > loss_feat: 8.57217 (8.68277) | > loss_mel: 17.90111 (17.77170) | > loss_duration: 1.71521 (1.70662) | > loss_1: 33.51292 (33.37846) | > grad_norm_1: 88.02531 (141.49210) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.64400 (2.41579) | > loader_time: 0.03160 (0.03527)  --> STEP: 9526/15287 -- GLOBAL_STEP: 1020675 | > loss_disc: 2.26841 (2.32495) | > loss_disc_real_0: 0.11816 (0.12300) | > loss_disc_real_1: 0.20866 (0.21202) | > loss_disc_real_2: 0.20169 (0.21616) | > loss_disc_real_3: 0.19195 (0.21991) | > loss_disc_real_4: 0.22589 (0.21512) | > loss_disc_real_5: 0.22684 (0.21467) | > loss_0: 2.26841 (2.32495) | > grad_norm_0: 25.24363 (17.44628) | > loss_gen: 2.53496 (2.55525) | > loss_kl: 2.80465 (2.66210) | > loss_feat: 8.59148 (8.68305) | > loss_mel: 17.63039 (17.77196) | > loss_duration: 1.69627 (1.70662) | > loss_1: 33.25776 (33.37897) | > grad_norm_1: 120.00348 (141.50992) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.47690 (2.41633) | > loader_time: 0.03170 (0.03527)  --> STEP: 9551/15287 -- GLOBAL_STEP: 1020700 | > loss_disc: 2.35283 (2.32492) | > loss_disc_real_0: 0.13976 (0.12301) | > loss_disc_real_1: 0.22570 (0.21202) | > loss_disc_real_2: 0.22214 (0.21616) | > loss_disc_real_3: 0.22704 (0.21991) | > loss_disc_real_4: 0.23291 (0.21512) | > loss_disc_real_5: 0.20725 (0.21467) | > loss_0: 2.35283 (2.32492) | > grad_norm_0: 16.18274 (17.43745) | > loss_gen: 2.49536 (2.55533) | > loss_kl: 2.74262 (2.66217) | > loss_feat: 8.93320 (8.68321) | > loss_mel: 17.76935 (17.77209) | > loss_duration: 1.72577 (1.70661) | > loss_1: 33.66629 (33.37941) | > grad_norm_1: 154.44592 (141.44588) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.80450 (2.41675) | > loader_time: 0.03190 (0.03526)  --> STEP: 9576/15287 -- GLOBAL_STEP: 1020725 | > loss_disc: 2.28188 (2.32494) | > loss_disc_real_0: 0.10887 (0.12301) | > loss_disc_real_1: 0.22064 (0.21202) | > loss_disc_real_2: 0.17671 (0.21616) | > loss_disc_real_3: 0.22233 (0.21991) | > loss_disc_real_4: 0.19417 (0.21512) | > loss_disc_real_5: 0.21361 (0.21467) | > loss_0: 2.28188 (2.32494) | > grad_norm_0: 4.50996 (17.42762) | > loss_gen: 2.81994 (2.55528) | > loss_kl: 2.78206 (2.66221) | > loss_feat: 9.78828 (8.68344) | > loss_mel: 18.47093 (17.77241) | > loss_duration: 1.73100 (1.70665) | > loss_1: 35.59221 (33.37998) | > grad_norm_1: 73.70640 (141.39343) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 4.22730 (2.41754) | > loader_time: 0.03080 (0.03526)  --> STEP: 9601/15287 -- GLOBAL_STEP: 1020750 | > loss_disc: 2.31633 (2.32501) | > loss_disc_real_0: 0.08684 (0.12303) | > loss_disc_real_1: 0.20798 (0.21202) | > loss_disc_real_2: 0.19962 (0.21617) | > loss_disc_real_3: 0.22966 (0.21992) | > loss_disc_real_4: 0.22318 (0.21512) | > loss_disc_real_5: 0.21196 (0.21466) | > loss_0: 2.31633 (2.32501) | > grad_norm_0: 11.39731 (17.41474) | > loss_gen: 2.54726 (2.55520) | > loss_kl: 2.74615 (2.66227) | > loss_feat: 8.68012 (8.68332) | > loss_mel: 17.95907 (17.77243) | > loss_duration: 1.71232 (1.70665) | > loss_1: 33.64492 (33.37987) | > grad_norm_1: 136.37440 (141.33842) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.79220 (2.41813) | > loader_time: 0.04030 (0.03526)  --> STEP: 9626/15287 -- GLOBAL_STEP: 1020775 | > loss_disc: 2.36561 (2.32508) | > loss_disc_real_0: 0.13046 (0.12304) | > loss_disc_real_1: 0.22002 (0.21202) | > loss_disc_real_2: 0.19346 (0.21617) | > loss_disc_real_3: 0.22313 (0.21991) | > loss_disc_real_4: 0.24120 (0.21513) | > loss_disc_real_5: 0.23048 (0.21466) | > loss_0: 2.36561 (2.32508) | > grad_norm_0: 11.74832 (17.40546) | > loss_gen: 2.51929 (2.55518) | > loss_kl: 2.73043 (2.66225) | > loss_feat: 8.75957 (8.68364) | > loss_mel: 17.87733 (17.77292) | > loss_duration: 1.74125 (1.70666) | > loss_1: 33.62788 (33.38065) | > grad_norm_1: 140.54253 (141.28575) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 4.00110 (2.41886) | > loader_time: 0.04930 (0.03525)  --> STEP: 9651/15287 -- GLOBAL_STEP: 1020800 | > loss_disc: 2.42735 (2.32508) | > loss_disc_real_0: 0.23004 (0.12302) | > loss_disc_real_1: 0.22840 (0.21201) | > loss_disc_real_2: 0.20175 (0.21618) | > loss_disc_real_3: 0.23160 (0.21991) | > loss_disc_real_4: 0.22555 (0.21513) | > loss_disc_real_5: 0.23544 (0.21466) | > loss_0: 2.42735 (2.32508) | > grad_norm_0: 26.53088 (17.40626) | > loss_gen: 2.80965 (2.55521) | > loss_kl: 2.59508 (2.66207) | > loss_feat: 7.91254 (8.68369) | > loss_mel: 17.20648 (17.77320) | > loss_duration: 1.68782 (1.70666) | > loss_1: 32.21157 (33.38083) | > grad_norm_1: 59.01400 (141.32069) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58140 (2.41896) | > loader_time: 0.03090 (0.03525)  --> STEP: 9676/15287 -- GLOBAL_STEP: 1020825 | > loss_disc: 2.42093 (2.32510) | > loss_disc_real_0: 0.10547 (0.12307) | > loss_disc_real_1: 0.20481 (0.21200) | > loss_disc_real_2: 0.23211 (0.21618) | > loss_disc_real_3: 0.22722 (0.21991) | > loss_disc_real_4: 0.25140 (0.21513) | > loss_disc_real_5: 0.21995 (0.21466) | > loss_0: 2.42093 (2.32510) | > grad_norm_0: 25.57835 (17.40945) | > loss_gen: 2.33691 (2.55515) | > loss_kl: 2.58847 (2.66201) | > loss_feat: 8.22294 (8.68341) | > loss_mel: 17.42045 (17.77301) | > loss_duration: 1.68292 (1.70666) | > loss_1: 32.25171 (33.38025) | > grad_norm_1: 187.50227 (141.28992) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.81590 (2.41947) | > loader_time: 0.03090 (0.03525)  --> STEP: 9701/15287 -- GLOBAL_STEP: 1020850 | > loss_disc: 2.31300 (2.32503) | > loss_disc_real_0: 0.11028 (0.12306) | > loss_disc_real_1: 0.21446 (0.21201) | > loss_disc_real_2: 0.21141 (0.21620) | > loss_disc_real_3: 0.21677 (0.21991) | > loss_disc_real_4: 0.22027 (0.21512) | > loss_disc_real_5: 0.22918 (0.21466) | > loss_0: 2.31300 (2.32503) | > grad_norm_0: 23.80765 (17.40490) | > loss_gen: 2.53716 (2.55530) | > loss_kl: 2.79543 (2.66197) | > loss_feat: 8.75904 (8.68335) | > loss_mel: 18.05270 (17.77274) | > loss_duration: 1.71961 (1.70667) | > loss_1: 33.86395 (33.38005) | > grad_norm_1: 168.67973 (141.30756) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21630 (2.41963) | > loader_time: 0.03090 (0.03524)  --> STEP: 9726/15287 -- GLOBAL_STEP: 1020875 | > loss_disc: 2.32394 (2.32498) | > loss_disc_real_0: 0.12553 (0.12305) | > loss_disc_real_1: 0.22527 (0.21200) | > loss_disc_real_2: 0.22487 (0.21621) | > loss_disc_real_3: 0.23818 (0.21991) | > loss_disc_real_4: 0.22967 (0.21511) | > loss_disc_real_5: 0.22877 (0.21466) | > loss_0: 2.32394 (2.32498) | > grad_norm_0: 16.20938 (17.40793) | > loss_gen: 2.53299 (2.55529) | > loss_kl: 2.69110 (2.66209) | > loss_feat: 8.22727 (8.68336) | > loss_mel: 17.50410 (17.77261) | > loss_duration: 1.72457 (1.70666) | > loss_1: 32.68005 (33.38003) | > grad_norm_1: 131.17114 (141.32274) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41320 (2.42026) | > loader_time: 0.03280 (0.03524)  --> STEP: 9751/15287 -- GLOBAL_STEP: 1020900 | > loss_disc: 2.33048 (2.32497) | > loss_disc_real_0: 0.11356 (0.12304) | > loss_disc_real_1: 0.19224 (0.21199) | > loss_disc_real_2: 0.19911 (0.21621) | > loss_disc_real_3: 0.22701 (0.21992) | > loss_disc_real_4: 0.20977 (0.21510) | > loss_disc_real_5: 0.23501 (0.21466) | > loss_0: 2.33048 (2.32497) | > grad_norm_0: 5.38177 (17.40371) | > loss_gen: 2.72597 (2.55526) | > loss_kl: 2.75041 (2.66197) | > loss_feat: 9.15371 (8.68347) | > loss_mel: 17.52358 (17.77237) | > loss_duration: 1.67606 (1.70665) | > loss_1: 33.82974 (33.37973) | > grad_norm_1: 170.42232 (141.36783) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42030 (2.42069) | > loader_time: 0.03140 (0.03523)  --> STEP: 9776/15287 -- GLOBAL_STEP: 1020925 | > loss_disc: 2.27111 (2.32489) | > loss_disc_real_0: 0.10357 (0.12302) | > loss_disc_real_1: 0.18722 (0.21198) | > loss_disc_real_2: 0.20052 (0.21622) | > loss_disc_real_3: 0.22575 (0.21992) | > loss_disc_real_4: 0.19436 (0.21510) | > loss_disc_real_5: 0.20528 (0.21464) | > loss_0: 2.27111 (2.32489) | > grad_norm_0: 17.21898 (17.40061) | > loss_gen: 2.62615 (2.55527) | > loss_kl: 2.56320 (2.66196) | > loss_feat: 8.73999 (8.68365) | > loss_mel: 17.72871 (17.77215) | > loss_duration: 1.69785 (1.70665) | > loss_1: 33.35590 (33.37970) | > grad_norm_1: 93.59544 (141.38461) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40160 (2.42111) | > loader_time: 0.03190 (0.03523)  --> STEP: 9801/15287 -- GLOBAL_STEP: 1020950 | > loss_disc: 2.27700 (2.32480) | > loss_disc_real_0: 0.11834 (0.12302) | > loss_disc_real_1: 0.21149 (0.21198) | > loss_disc_real_2: 0.21521 (0.21621) | > loss_disc_real_3: 0.21573 (0.21992) | > loss_disc_real_4: 0.21057 (0.21510) | > loss_disc_real_5: 0.20649 (0.21463) | > loss_0: 2.27700 (2.32480) | > grad_norm_0: 6.70518 (17.40522) | > loss_gen: 2.56185 (2.55536) | > loss_kl: 2.59461 (2.66201) | > loss_feat: 9.32633 (8.68416) | > loss_mel: 18.09432 (17.77203) | > loss_duration: 1.71414 (1.70664) | > loss_1: 34.29126 (33.38023) | > grad_norm_1: 71.06219 (141.42307) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55390 (2.42129) | > loader_time: 0.05600 (0.03522)  --> STEP: 9826/15287 -- GLOBAL_STEP: 1020975 | > loss_disc: 2.25264 (2.32471) | > loss_disc_real_0: 0.09709 (0.12300) | > loss_disc_real_1: 0.18476 (0.21198) | > loss_disc_real_2: 0.19302 (0.21621) | > loss_disc_real_3: 0.21010 (0.21991) | > loss_disc_real_4: 0.20512 (0.21512) | > loss_disc_real_5: 0.21310 (0.21462) | > loss_0: 2.25264 (2.32471) | > grad_norm_0: 21.45864 (17.40582) | > loss_gen: 2.49431 (2.55535) | > loss_kl: 2.79252 (2.66204) | > loss_feat: 8.79346 (8.68422) | > loss_mel: 17.78819 (17.77169) | > loss_duration: 1.72155 (1.70663) | > loss_1: 33.59003 (33.37995) | > grad_norm_1: 177.25731 (141.46117) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.69890 (2.42179) | > loader_time: 0.03070 (0.03521)  --> STEP: 9851/15287 -- GLOBAL_STEP: 1021000 | > loss_disc: 2.30299 (2.32464) | > loss_disc_real_0: 0.13047 (0.12297) | > loss_disc_real_1: 0.20907 (0.21198) | > loss_disc_real_2: 0.21438 (0.21620) | > loss_disc_real_3: 0.21975 (0.21990) | > loss_disc_real_4: 0.24104 (0.21511) | > loss_disc_real_5: 0.21365 (0.21461) | > loss_0: 2.30299 (2.32464) | > grad_norm_0: 16.50606 (17.40651) | > loss_gen: 2.59634 (2.55534) | > loss_kl: 2.67189 (2.66210) | > loss_feat: 8.59627 (8.68461) | > loss_mel: 18.02020 (17.77145) | > loss_duration: 1.76106 (1.70663) | > loss_1: 33.64577 (33.38017) | > grad_norm_1: 52.16892 (141.49515) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35130 (2.42190) | > loader_time: 0.03730 (0.03520)  --> STEP: 9876/15287 -- GLOBAL_STEP: 1021025 | > loss_disc: 2.40207 (2.32461) | > loss_disc_real_0: 0.13582 (0.12296) | > loss_disc_real_1: 0.23342 (0.21198) | > loss_disc_real_2: 0.24956 (0.21621) | > loss_disc_real_3: 0.25684 (0.21990) | > loss_disc_real_4: 0.24701 (0.21511) | > loss_disc_real_5: 0.22443 (0.21460) | > loss_0: 2.40207 (2.32461) | > grad_norm_0: 14.77091 (17.39823) | > loss_gen: 2.62718 (2.55535) | > loss_kl: 2.72425 (2.66213) | > loss_feat: 8.63158 (8.68491) | > loss_mel: 17.63274 (17.77139) | > loss_duration: 1.70204 (1.70665) | > loss_1: 33.31779 (33.38048) | > grad_norm_1: 112.71366 (141.43755) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.49510 (2.42230) | > loader_time: 0.03220 (0.03520)  --> STEP: 9901/15287 -- GLOBAL_STEP: 1021050 | > loss_disc: 2.37166 (2.32475) | > loss_disc_real_0: 0.10558 (0.12300) | > loss_disc_real_1: 0.19588 (0.21199) | > loss_disc_real_2: 0.20627 (0.21622) | > loss_disc_real_3: 0.19982 (0.21990) | > loss_disc_real_4: 0.21233 (0.21512) | > loss_disc_real_5: 0.25104 (0.21460) | > loss_0: 2.37166 (2.32475) | > grad_norm_0: 5.55260 (17.39429) | > loss_gen: 2.46321 (2.55533) | > loss_kl: 2.60047 (2.66218) | > loss_feat: 8.45841 (8.68503) | > loss_mel: 17.90062 (17.77175) | > loss_duration: 1.70543 (1.70666) | > loss_1: 33.12813 (33.38098) | > grad_norm_1: 144.04430 (141.33939) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72630 (2.42270) | > loader_time: 0.03210 (0.03520)  --> STEP: 9926/15287 -- GLOBAL_STEP: 1021075 | > loss_disc: 2.30355 (2.32478) | > loss_disc_real_0: 0.10121 (0.12301) | > loss_disc_real_1: 0.18842 (0.21200) | > loss_disc_real_2: 0.19497 (0.21623) | > loss_disc_real_3: 0.19112 (0.21990) | > loss_disc_real_4: 0.17402 (0.21512) | > loss_disc_real_5: 0.18824 (0.21460) | > loss_0: 2.30355 (2.32478) | > grad_norm_0: 7.52663 (17.38538) | > loss_gen: 2.63290 (2.55538) | > loss_kl: 2.63284 (2.66217) | > loss_feat: 8.65533 (8.68510) | > loss_mel: 17.80866 (17.77197) | > loss_duration: 1.65794 (1.70665) | > loss_1: 33.38767 (33.38131) | > grad_norm_1: 143.42717 (141.31845) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.53840 (2.42331) | > loader_time: 0.03390 (0.03519)  --> STEP: 9951/15287 -- GLOBAL_STEP: 1021100 | > loss_disc: 2.31863 (2.32488) | > loss_disc_real_0: 0.14011 (0.12302) | > loss_disc_real_1: 0.24419 (0.21202) | > loss_disc_real_2: 0.21989 (0.21624) | > loss_disc_real_3: 0.23961 (0.21991) | > loss_disc_real_4: 0.23296 (0.21512) | > loss_disc_real_5: 0.21592 (0.21462) | > loss_0: 2.31863 (2.32488) | > grad_norm_0: 16.13390 (17.39669) | > loss_gen: 2.49696 (2.55535) | > loss_kl: 2.55627 (2.66214) | > loss_feat: 8.28216 (8.68488) | > loss_mel: 17.50766 (17.77221) | > loss_duration: 1.66299 (1.70662) | > loss_1: 32.50604 (33.38124) | > grad_norm_1: 181.26793 (141.29788) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.01460 (2.42364) | > loader_time: 0.03190 (0.03519)  --> STEP: 9976/15287 -- GLOBAL_STEP: 1021125 | > loss_disc: 2.28451 (2.32492) | > loss_disc_real_0: 0.14904 (0.12303) | > loss_disc_real_1: 0.18972 (0.21205) | > loss_disc_real_2: 0.20218 (0.21624) | > loss_disc_real_3: 0.23484 (0.21991) | > loss_disc_real_4: 0.21883 (0.21512) | > loss_disc_real_5: 0.22800 (0.21462) | > loss_0: 2.28451 (2.32492) | > grad_norm_0: 16.99883 (17.39394) | > loss_gen: 2.49215 (2.55537) | > loss_kl: 2.66927 (2.66213) | > loss_feat: 9.17163 (8.68446) | > loss_mel: 18.30886 (17.77213) | > loss_duration: 1.71922 (1.70663) | > loss_1: 34.36114 (33.38075) | > grad_norm_1: 169.91772 (141.29494) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.33130 (2.42416) | > loader_time: 0.03050 (0.03518)  --> STEP: 10001/15287 -- GLOBAL_STEP: 1021150 | > loss_disc: 2.34849 (2.32486) | > loss_disc_real_0: 0.18581 (0.12303) | > loss_disc_real_1: 0.14643 (0.21204) | > loss_disc_real_2: 0.16677 (0.21623) | > loss_disc_real_3: 0.14317 (0.21990) | > loss_disc_real_4: 0.15024 (0.21510) | > loss_disc_real_5: 0.22952 (0.21461) | > loss_0: 2.34849 (2.32486) | > grad_norm_0: 26.50051 (17.38681) | > loss_gen: 2.48105 (2.55538) | > loss_kl: 2.57850 (2.66219) | > loss_feat: 9.28843 (8.68489) | > loss_mel: 17.91003 (17.77221) | > loss_duration: 1.70907 (1.70664) | > loss_1: 33.96708 (33.38134) | > grad_norm_1: 176.54561 (141.23863) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.64420 (2.42450) | > loader_time: 0.03220 (0.03518)  --> STEP: 10026/15287 -- GLOBAL_STEP: 1021175 | > loss_disc: 2.30892 (2.32485) | > loss_disc_real_0: 0.13196 (0.12302) | > loss_disc_real_1: 0.20256 (0.21201) | > loss_disc_real_2: 0.20732 (0.21620) | > loss_disc_real_3: 0.22685 (0.21989) | > loss_disc_real_4: 0.19864 (0.21510) | > loss_disc_real_5: 0.24006 (0.21461) | > loss_0: 2.30892 (2.32485) | > grad_norm_0: 13.87452 (17.38794) | > loss_gen: 2.43489 (2.55528) | > loss_kl: 2.52552 (2.66219) | > loss_feat: 7.96296 (8.68506) | > loss_mel: 17.21470 (17.77238) | > loss_duration: 1.70276 (1.70665) | > loss_1: 31.84084 (33.38159) | > grad_norm_1: 132.35707 (141.26089) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56410 (2.42489) | > loader_time: 0.03520 (0.03517)  --> STEP: 10051/15287 -- GLOBAL_STEP: 1021200 | > loss_disc: 2.30790 (2.32482) | > loss_disc_real_0: 0.14003 (0.12300) | > loss_disc_real_1: 0.18195 (0.21200) | > loss_disc_real_2: 0.14518 (0.21619) | > loss_disc_real_3: 0.16148 (0.21989) | > loss_disc_real_4: 0.19868 (0.21509) | > loss_disc_real_5: 0.17830 (0.21461) | > loss_0: 2.30790 (2.32482) | > grad_norm_0: 30.06957 (17.38916) | > loss_gen: 2.23875 (2.55520) | > loss_kl: 2.62336 (2.66220) | > loss_feat: 8.58813 (8.68492) | > loss_mel: 17.80057 (17.77200) | > loss_duration: 1.68457 (1.70662) | > loss_1: 32.93539 (33.38096) | > grad_norm_1: 177.75810 (141.25957) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.74600 (2.42522) | > loader_time: 0.03040 (0.03517)  --> STEP: 10076/15287 -- GLOBAL_STEP: 1021225 | > loss_disc: 2.30730 (2.32474) | > loss_disc_real_0: 0.12963 (0.12301) | > loss_disc_real_1: 0.20814 (0.21199) | > loss_disc_real_2: 0.19168 (0.21618) | > loss_disc_real_3: 0.20432 (0.21988) | > loss_disc_real_4: 0.22367 (0.21508) | > loss_disc_real_5: 0.23223 (0.21461) | > loss_0: 2.30730 (2.32474) | > grad_norm_0: 12.59634 (17.38667) | > loss_gen: 2.51623 (2.55527) | > loss_kl: 2.62810 (2.66220) | > loss_feat: 8.93453 (8.68524) | > loss_mel: 18.08327 (17.77200) | > loss_duration: 1.72225 (1.70661) | > loss_1: 33.88438 (33.38133) | > grad_norm_1: 131.93465 (141.26259) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.51320 (2.42536) | > loader_time: 0.03030 (0.03517)  --> STEP: 10101/15287 -- GLOBAL_STEP: 1021250 | > loss_disc: 2.29901 (2.32471) | > loss_disc_real_0: 0.19353 (0.12301) | > loss_disc_real_1: 0.24316 (0.21199) | > loss_disc_real_2: 0.20092 (0.21617) | > loss_disc_real_3: 0.25420 (0.21989) | > loss_disc_real_4: 0.18922 (0.21508) | > loss_disc_real_5: 0.20552 (0.21461) | > loss_0: 2.29901 (2.32471) | > grad_norm_0: 26.96877 (17.37671) | > loss_gen: 2.61841 (2.55534) | > loss_kl: 2.69641 (2.66225) | > loss_feat: 9.06860 (8.68552) | > loss_mel: 17.38778 (17.77213) | > loss_duration: 1.69825 (1.70660) | > loss_1: 33.46946 (33.38184) | > grad_norm_1: 108.76691 (141.24109) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39750 (2.42603) | > loader_time: 0.03170 (0.03516)  --> STEP: 10126/15287 -- GLOBAL_STEP: 1021275 | > loss_disc: 2.32632 (2.32469) | > loss_disc_real_0: 0.07578 (0.12297) | > loss_disc_real_1: 0.24596 (0.21198) | > loss_disc_real_2: 0.21655 (0.21616) | > loss_disc_real_3: 0.22580 (0.21989) | > loss_disc_real_4: 0.21834 (0.21508) | > loss_disc_real_5: 0.21643 (0.21462) | > loss_0: 2.32632 (2.32469) | > grad_norm_0: 10.76265 (17.37964) | > loss_gen: 2.61989 (2.55535) | > loss_kl: 2.72655 (2.66215) | > loss_feat: 9.07068 (8.68545) | > loss_mel: 17.81015 (17.77179) | > loss_duration: 1.71186 (1.70661) | > loss_1: 33.93914 (33.38136) | > grad_norm_1: 104.35418 (141.25154) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.49080 (2.42662) | > loader_time: 0.03220 (0.03516)  --> STEP: 10151/15287 -- GLOBAL_STEP: 1021300 | > loss_disc: 2.36508 (2.32473) | > loss_disc_real_0: 0.13202 (0.12300) | > loss_disc_real_1: 0.21719 (0.21197) | > loss_disc_real_2: 0.21539 (0.21615) | > loss_disc_real_3: 0.21544 (0.21988) | > loss_disc_real_4: 0.22476 (0.21506) | > loss_disc_real_5: 0.20990 (0.21462) | > loss_0: 2.36508 (2.32473) | > grad_norm_0: 14.90024 (17.38474) | > loss_gen: 2.61039 (2.55519) | > loss_kl: 2.76600 (2.66223) | > loss_feat: 8.76683 (8.68519) | > loss_mel: 18.16065 (17.77143) | > loss_duration: 1.70172 (1.70661) | > loss_1: 34.00560 (33.38068) | > grad_norm_1: 83.64032 (141.18768) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58720 (2.42678) | > loader_time: 0.03390 (0.03515)  --> STEP: 10176/15287 -- GLOBAL_STEP: 1021325 | > loss_disc: 2.31708 (2.32467) | > loss_disc_real_0: 0.15687 (0.12299) | > loss_disc_real_1: 0.22267 (0.21197) | > loss_disc_real_2: 0.20265 (0.21614) | > loss_disc_real_3: 0.24171 (0.21988) | > loss_disc_real_4: 0.24802 (0.21506) | > loss_disc_real_5: 0.24026 (0.21461) | > loss_0: 2.31708 (2.32467) | > grad_norm_0: 6.55922 (17.37831) | > loss_gen: 2.54485 (2.55522) | > loss_kl: 2.63503 (2.66222) | > loss_feat: 8.36767 (8.68534) | > loss_mel: 17.92404 (17.77134) | > loss_duration: 1.71729 (1.70660) | > loss_1: 33.18890 (33.38075) | > grad_norm_1: 159.52408 (141.19910) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.46860 (2.42715) | > loader_time: 0.03120 (0.03515)  --> STEP: 10201/15287 -- GLOBAL_STEP: 1021350 | > loss_disc: 2.31661 (2.32470) | > loss_disc_real_0: 0.13506 (0.12300) | > loss_disc_real_1: 0.21429 (0.21196) | > loss_disc_real_2: 0.21751 (0.21614) | > loss_disc_real_3: 0.20086 (0.21987) | > loss_disc_real_4: 0.22794 (0.21505) | > loss_disc_real_5: 0.20804 (0.21462) | > loss_0: 2.31661 (2.32470) | > grad_norm_0: 11.17481 (17.37684) | > loss_gen: 2.50993 (2.55523) | > loss_kl: 2.53818 (2.66219) | > loss_feat: 8.75547 (8.68541) | > loss_mel: 17.60353 (17.77134) | > loss_duration: 1.74048 (1.70659) | > loss_1: 33.14759 (33.38078) | > grad_norm_1: 68.57554 (141.18736) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15830 (2.42734) | > loader_time: 0.03310 (0.03515)  --> STEP: 10226/15287 -- GLOBAL_STEP: 1021375 | > loss_disc: 2.36952 (2.32483) | > loss_disc_real_0: 0.21064 (0.12308) | > loss_disc_real_1: 0.21188 (0.21196) | > loss_disc_real_2: 0.23406 (0.21614) | > loss_disc_real_3: 0.23756 (0.21988) | > loss_disc_real_4: 0.24772 (0.21506) | > loss_disc_real_5: 0.20934 (0.21464) | > loss_0: 2.36952 (2.32483) | > grad_norm_0: 39.02753 (17.38951) | > loss_gen: 2.45685 (2.55513) | > loss_kl: 2.72799 (2.66226) | > loss_feat: 7.87270 (8.68496) | > loss_mel: 16.83780 (17.77116) | > loss_duration: 1.69656 (1.70656) | > loss_1: 31.59189 (33.38010) | > grad_norm_1: 133.47809 (141.13487) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.48830 (2.42776) | > loader_time: 0.03130 (0.03514)  --> STEP: 10251/15287 -- GLOBAL_STEP: 1021400 | > loss_disc: 2.38476 (2.32479) | > loss_disc_real_0: 0.10225 (0.12307) | > loss_disc_real_1: 0.17422 (0.21195) | > loss_disc_real_2: 0.17833 (0.21613) | > loss_disc_real_3: 0.24985 (0.21989) | > loss_disc_real_4: 0.21153 (0.21506) | > loss_disc_real_5: 0.21167 (0.21463) | > loss_0: 2.38476 (2.32479) | > grad_norm_0: 13.46674 (17.38643) | > loss_gen: 2.52767 (2.55514) | > loss_kl: 2.64242 (2.66234) | > loss_feat: 8.60151 (8.68514) | > loss_mel: 17.56946 (17.77083) | > loss_duration: 1.68459 (1.70654) | > loss_1: 33.02565 (33.38001) | > grad_norm_1: 208.18788 (141.13959) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52190 (2.42805) | > loader_time: 0.03190 (0.03514)  --> STEP: 10276/15287 -- GLOBAL_STEP: 1021425 | > loss_disc: 2.32257 (2.32472) | > loss_disc_real_0: 0.10653 (0.12305) | > loss_disc_real_1: 0.21157 (0.21195) | > loss_disc_real_2: 0.23865 (0.21613) | > loss_disc_real_3: 0.21620 (0.21989) | > loss_disc_real_4: 0.22929 (0.21505) | > loss_disc_real_5: 0.19093 (0.21462) | > loss_0: 2.32257 (2.32472) | > grad_norm_0: 12.29615 (17.38258) | > loss_gen: 2.58799 (2.55510) | > loss_kl: 2.84251 (2.66239) | > loss_feat: 8.12885 (8.68537) | > loss_mel: 17.81710 (17.77066) | > loss_duration: 1.66932 (1.70652) | > loss_1: 33.04578 (33.38006) | > grad_norm_1: 192.07475 (141.15915) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.00310 (2.42840) | > loader_time: 0.03090 (0.03514)  --> STEP: 10301/15287 -- GLOBAL_STEP: 1021450 | > loss_disc: 2.38002 (2.32469) | > loss_disc_real_0: 0.11584 (0.12304) | > loss_disc_real_1: 0.23158 (0.21195) | > loss_disc_real_2: 0.21171 (0.21613) | > loss_disc_real_3: 0.25072 (0.21988) | > loss_disc_real_4: 0.23804 (0.21505) | > loss_disc_real_5: 0.19046 (0.21462) | > loss_0: 2.38002 (2.32469) | > grad_norm_0: 23.58349 (17.38093) | > loss_gen: 2.48335 (2.55512) | > loss_kl: 2.66870 (2.66232) | > loss_feat: 8.43469 (8.68562) | > loss_mel: 17.47605 (17.77066) | > loss_duration: 1.70308 (1.70653) | > loss_1: 32.76589 (33.38029) | > grad_norm_1: 171.20084 (141.18008) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36930 (2.42871) | > loader_time: 0.03050 (0.03513)  --> STEP: 10326/15287 -- GLOBAL_STEP: 1021475 | > loss_disc: 2.27830 (2.32470) | > loss_disc_real_0: 0.15465 (0.12303) | > loss_disc_real_1: 0.20061 (0.21196) | > loss_disc_real_2: 0.20658 (0.21613) | > loss_disc_real_3: 0.20752 (0.21988) | > loss_disc_real_4: 0.22067 (0.21505) | > loss_disc_real_5: 0.21196 (0.21462) | > loss_0: 2.27830 (2.32470) | > grad_norm_0: 7.91466 (17.37210) | > loss_gen: 2.58560 (2.55507) | > loss_kl: 2.75691 (2.66231) | > loss_feat: 8.31894 (8.68530) | > loss_mel: 17.65974 (17.77056) | > loss_duration: 1.70600 (1.70653) | > loss_1: 33.02719 (33.37980) | > grad_norm_1: 94.92153 (141.11824) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.97010 (2.42894) | > loader_time: 0.03400 (0.03513)  --> STEP: 10351/15287 -- GLOBAL_STEP: 1021500 | > loss_disc: 2.27079 (2.32469) | > loss_disc_real_0: 0.10248 (0.12301) | > loss_disc_real_1: 0.21397 (0.21197) | > loss_disc_real_2: 0.21280 (0.21614) | > loss_disc_real_3: 0.24446 (0.21988) | > loss_disc_real_4: 0.21711 (0.21505) | > loss_disc_real_5: 0.20474 (0.21462) | > loss_0: 2.27079 (2.32469) | > grad_norm_0: 7.45724 (17.37029) | > loss_gen: 2.60163 (2.55506) | > loss_kl: 2.74327 (2.66237) | > loss_feat: 8.89937 (8.68539) | > loss_mel: 17.96832 (17.77083) | > loss_duration: 1.72288 (1.70653) | > loss_1: 33.93548 (33.38021) | > grad_norm_1: 226.54926 (141.12027) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43460 (2.42912) | > loader_time: 0.03140 (0.03512)  --> STEP: 10376/15287 -- GLOBAL_STEP: 1021525 | > loss_disc: 2.37468 (2.32475) | > loss_disc_real_0: 0.10980 (0.12302) | > loss_disc_real_1: 0.22503 (0.21200) | > loss_disc_real_2: 0.22836 (0.21613) | > loss_disc_real_3: 0.22718 (0.21987) | > loss_disc_real_4: 0.22980 (0.21505) | > loss_disc_real_5: 0.21921 (0.21463) | > loss_0: 2.37468 (2.32475) | > grad_norm_0: 11.84393 (17.36846) | > loss_gen: 2.51398 (2.55503) | > loss_kl: 2.63654 (2.66249) | > loss_feat: 9.02238 (8.68540) | > loss_mel: 18.05179 (17.77084) | > loss_duration: 1.73429 (1.70651) | > loss_1: 33.95898 (33.38029) | > grad_norm_1: 57.35765 (141.05116) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55040 (2.42951) | > loader_time: 0.03300 (0.03512)  --> STEP: 10401/15287 -- GLOBAL_STEP: 1021550 | > loss_disc: 2.39443 (2.32489) | > loss_disc_real_0: 0.10795 (0.12306) | > loss_disc_real_1: 0.20033 (0.21200) | > loss_disc_real_2: 0.19861 (0.21615) | > loss_disc_real_3: 0.20648 (0.21988) | > loss_disc_real_4: 0.21852 (0.21506) | > loss_disc_real_5: 0.20921 (0.21464) | > loss_0: 2.39443 (2.32489) | > grad_norm_0: 10.81560 (17.36033) | > loss_gen: 2.50982 (2.55499) | > loss_kl: 2.62700 (2.66255) | > loss_feat: 8.07835 (8.68509) | > loss_mel: 17.69523 (17.77108) | > loss_duration: 1.74712 (1.70652) | > loss_1: 32.65752 (33.38024) | > grad_norm_1: 133.76744 (140.93761) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.50730 (2.42966) | > loader_time: 0.03060 (0.03512)  --> STEP: 10426/15287 -- GLOBAL_STEP: 1021575 | > loss_disc: 2.26883 (2.32488) | > loss_disc_real_0: 0.10696 (0.12306) | > loss_disc_real_1: 0.20291 (0.21200) | > loss_disc_real_2: 0.21308 (0.21615) | > loss_disc_real_3: 0.20522 (0.21988) | > loss_disc_real_4: 0.19769 (0.21506) | > loss_disc_real_5: 0.20435 (0.21464) | > loss_0: 2.26883 (2.32488) | > grad_norm_0: 17.46357 (17.35584) | > loss_gen: 2.63786 (2.55498) | > loss_kl: 2.58836 (2.66251) | > loss_feat: 8.95783 (8.68476) | > loss_mel: 18.07607 (17.77103) | > loss_duration: 1.68872 (1.70652) | > loss_1: 33.94883 (33.37982) | > grad_norm_1: 122.07377 (140.90865) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35520 (2.43004) | > loader_time: 0.03340 (0.03511)  --> STEP: 10451/15287 -- GLOBAL_STEP: 1021600 | > loss_disc: 2.26507 (2.32489) | > loss_disc_real_0: 0.15031 (0.12306) | > loss_disc_real_1: 0.22360 (0.21201) | > loss_disc_real_2: 0.21743 (0.21615) | > loss_disc_real_3: 0.20681 (0.21988) | > loss_disc_real_4: 0.22057 (0.21507) | > loss_disc_real_5: 0.22362 (0.21463) | > loss_0: 2.26507 (2.32489) | > grad_norm_0: 16.53214 (17.35758) | > loss_gen: 2.66473 (2.55496) | > loss_kl: 2.54674 (2.66247) | > loss_feat: 8.73074 (8.68476) | > loss_mel: 17.50680 (17.77102) | > loss_duration: 1.68152 (1.70652) | > loss_1: 33.13054 (33.37975) | > grad_norm_1: 131.67914 (140.91821) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22290 (2.43045) | > loader_time: 0.03490 (0.03511)  --> STEP: 10476/15287 -- GLOBAL_STEP: 1021625 | > loss_disc: 2.29135 (2.32482) | > loss_disc_real_0: 0.11866 (0.12303) | > loss_disc_real_1: 0.21320 (0.21201) | > loss_disc_real_2: 0.20347 (0.21614) | > loss_disc_real_3: 0.22402 (0.21988) | > loss_disc_real_4: 0.20449 (0.21506) | > loss_disc_real_5: 0.22903 (0.21464) | > loss_0: 2.29135 (2.32482) | > grad_norm_0: 40.25566 (17.36700) | > loss_gen: 2.56895 (2.55489) | > loss_kl: 2.68588 (2.66252) | > loss_feat: 9.02583 (8.68470) | > loss_mel: 18.06465 (17.77074) | > loss_duration: 1.67661 (1.70650) | > loss_1: 34.02191 (33.37939) | > grad_norm_1: 244.65663 (140.99098) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.66010 (2.43077) | > loader_time: 0.02920 (0.03511)  --> STEP: 10501/15287 -- GLOBAL_STEP: 1021650 | > loss_disc: 2.37156 (2.32482) | > loss_disc_real_0: 0.13336 (0.12302) | > loss_disc_real_1: 0.21558 (0.21200) | > loss_disc_real_2: 0.21784 (0.21613) | > loss_disc_real_3: 0.23938 (0.21989) | > loss_disc_real_4: 0.24096 (0.21505) | > loss_disc_real_5: 0.24180 (0.21464) | > loss_0: 2.37156 (2.32482) | > grad_norm_0: 39.25016 (17.38169) | > loss_gen: 2.54822 (2.55491) | > loss_kl: 2.58130 (2.66254) | > loss_feat: 8.47145 (8.68480) | > loss_mel: 18.08759 (17.77065) | > loss_duration: 1.71383 (1.70651) | > loss_1: 33.40239 (33.37944) | > grad_norm_1: 233.24953 (141.06171) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.61680 (2.43102) | > loader_time: 0.03130 (0.03510)  --> STEP: 10526/15287 -- GLOBAL_STEP: 1021675 | > loss_disc: 2.30596 (2.32480) | > loss_disc_real_0: 0.17993 (0.12305) | > loss_disc_real_1: 0.19409 (0.21199) | > loss_disc_real_2: 0.20911 (0.21613) | > loss_disc_real_3: 0.27015 (0.21989) | > loss_disc_real_4: 0.25906 (0.21505) | > loss_disc_real_5: 0.21596 (0.21465) | > loss_0: 2.30596 (2.32480) | > grad_norm_0: 11.20404 (17.38412) | > loss_gen: 2.83451 (2.55497) | > loss_kl: 2.77165 (2.66259) | > loss_feat: 8.50933 (8.68467) | > loss_mel: 17.36531 (17.77041) | > loss_duration: 1.70903 (1.70652) | > loss_1: 33.18982 (33.37922) | > grad_norm_1: 45.29751 (141.11119) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.52820 (2.43202) | > loader_time: 0.04510 (0.03511)  --> STEP: 10551/15287 -- GLOBAL_STEP: 1021700 | > loss_disc: 2.26842 (2.32474) | > loss_disc_real_0: 0.10390 (0.12305) | > loss_disc_real_1: 0.19896 (0.21198) | > loss_disc_real_2: 0.20818 (0.21612) | > loss_disc_real_3: 0.21995 (0.21989) | > loss_disc_real_4: 0.19848 (0.21505) | > loss_disc_real_5: 0.20588 (0.21465) | > loss_0: 2.26842 (2.32474) | > grad_norm_0: 15.92537 (17.38825) | > loss_gen: 2.56514 (2.55495) | > loss_kl: 2.73388 (2.66259) | > loss_feat: 8.89677 (8.68497) | > loss_mel: 17.55570 (17.77062) | > loss_duration: 1.72099 (1.70652) | > loss_1: 33.47248 (33.37970) | > grad_norm_1: 163.93948 (141.17258) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.29880 (2.43263) | > loader_time: 0.03080 (0.03510)  --> STEP: 10576/15287 -- GLOBAL_STEP: 1021725 | > loss_disc: 2.24687 (2.32466) | > loss_disc_real_0: 0.10420 (0.12302) | > loss_disc_real_1: 0.19834 (0.21197) | > loss_disc_real_2: 0.21417 (0.21610) | > loss_disc_real_3: 0.21679 (0.21988) | > loss_disc_real_4: 0.20616 (0.21505) | > loss_disc_real_5: 0.19081 (0.21464) | > loss_0: 2.24687 (2.32466) | > grad_norm_0: 16.09104 (17.38799) | > loss_gen: 2.63580 (2.55486) | > loss_kl: 2.70995 (2.66256) | > loss_feat: 8.73288 (8.68531) | > loss_mel: 17.70489 (17.77020) | > loss_duration: 1.70081 (1.70651) | > loss_1: 33.48433 (33.37949) | > grad_norm_1: 169.15012 (141.17896) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.65470 (2.43348) | > loader_time: 0.03100 (0.03510)  --> STEP: 10601/15287 -- GLOBAL_STEP: 1021750 | > loss_disc: 2.40383 (2.32467) | > loss_disc_real_0: 0.18284 (0.12304) | > loss_disc_real_1: 0.23476 (0.21197) | > loss_disc_real_2: 0.23401 (0.21610) | > loss_disc_real_3: 0.22085 (0.21989) | > loss_disc_real_4: 0.21723 (0.21506) | > loss_disc_real_5: 0.25584 (0.21465) | > loss_0: 2.40383 (2.32467) | > grad_norm_0: 8.21684 (17.38554) | > loss_gen: 2.46692 (2.55496) | > loss_kl: 2.75268 (2.66262) | > loss_feat: 7.98712 (8.68548) | > loss_mel: 17.22548 (17.77007) | > loss_duration: 1.65675 (1.70650) | > loss_1: 32.08894 (33.37967) | > grad_norm_1: 112.13408 (141.16904) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28300 (2.43393) | > loader_time: 0.04130 (0.03510)  --> STEP: 10626/15287 -- GLOBAL_STEP: 1021775 | > loss_disc: 2.39300 (2.32476) | > loss_disc_real_0: 0.10026 (0.12309) | > loss_disc_real_1: 0.20329 (0.21198) | > loss_disc_real_2: 0.20339 (0.21613) | > loss_disc_real_3: 0.24774 (0.21989) | > loss_disc_real_4: 0.22819 (0.21508) | > loss_disc_real_5: 0.24009 (0.21466) | > loss_0: 2.39300 (2.32476) | > grad_norm_0: 6.67962 (17.38122) | > loss_gen: 2.20215 (2.55505) | > loss_kl: 2.71157 (2.66269) | > loss_feat: 8.21705 (8.68512) | > loss_mel: 17.73103 (17.76982) | > loss_duration: 1.72137 (1.70648) | > loss_1: 32.58316 (33.37923) | > grad_norm_1: 48.95491 (141.10284) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55060 (2.43427) | > loader_time: 0.03120 (0.03509)  --> STEP: 10651/15287 -- GLOBAL_STEP: 1021800 | > loss_disc: 2.40550 (2.32477) | > loss_disc_real_0: 0.09042 (0.12312) | > loss_disc_real_1: 0.23172 (0.21197) | > loss_disc_real_2: 0.23568 (0.21613) | > loss_disc_real_3: 0.20868 (0.21989) | > loss_disc_real_4: 0.21085 (0.21508) | > loss_disc_real_5: 0.20832 (0.21465) | > loss_0: 2.40550 (2.32477) | > grad_norm_0: 12.94569 (17.37141) | > loss_gen: 2.46238 (2.55509) | > loss_kl: 2.63537 (2.66277) | > loss_feat: 8.02720 (8.68493) | > loss_mel: 17.41806 (17.77003) | > loss_duration: 1.73637 (1.70648) | > loss_1: 32.27938 (33.37938) | > grad_norm_1: 101.49173 (141.04825) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.05920 (2.43462) | > loader_time: 0.03050 (0.03509)  --> STEP: 10676/15287 -- GLOBAL_STEP: 1021825 | > loss_disc: 2.25101 (2.32478) | > loss_disc_real_0: 0.15575 (0.12314) | > loss_disc_real_1: 0.22799 (0.21198) | > loss_disc_real_2: 0.19293 (0.21612) | > loss_disc_real_3: 0.24495 (0.21988) | > loss_disc_real_4: 0.22705 (0.21508) | > loss_disc_real_5: 0.20170 (0.21466) | > loss_0: 2.25101 (2.32478) | > grad_norm_0: 16.01783 (17.37296) | > loss_gen: 2.55375 (2.55512) | > loss_kl: 2.65462 (2.66271) | > loss_feat: 8.79147 (8.68497) | > loss_mel: 17.67770 (17.76982) | > loss_duration: 1.67013 (1.70646) | > loss_1: 33.34767 (33.37916) | > grad_norm_1: 123.22571 (141.01253) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.93510 (2.43512) | > loader_time: 0.03170 (0.03509)  --> STEP: 10701/15287 -- GLOBAL_STEP: 1021850 | > loss_disc: 2.21038 (2.32475) | > loss_disc_real_0: 0.10112 (0.12312) | > loss_disc_real_1: 0.22814 (0.21197) | > loss_disc_real_2: 0.21620 (0.21612) | > loss_disc_real_3: 0.21547 (0.21988) | > loss_disc_real_4: 0.23121 (0.21509) | > loss_disc_real_5: 0.21757 (0.21466) | > loss_0: 2.21038 (2.32475) | > grad_norm_0: 17.32738 (17.36693) | > loss_gen: 2.66746 (2.55512) | > loss_kl: 2.58184 (2.66266) | > loss_feat: 9.06884 (8.68511) | > loss_mel: 18.04921 (17.76969) | > loss_duration: 1.72662 (1.70645) | > loss_1: 34.09397 (33.37911) | > grad_norm_1: 82.47461 (140.98210) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 4.23120 (2.43557) | > loader_time: 0.04340 (0.03508)  --> STEP: 10726/15287 -- GLOBAL_STEP: 1021875 | > loss_disc: 2.33958 (2.32475) | > loss_disc_real_0: 0.11294 (0.12311) | > loss_disc_real_1: 0.22398 (0.21197) | > loss_disc_real_2: 0.21765 (0.21613) | > loss_disc_real_3: 0.19526 (0.21987) | > loss_disc_real_4: 0.20652 (0.21509) | > loss_disc_real_5: 0.21249 (0.21466) | > loss_0: 2.33958 (2.32475) | > grad_norm_0: 19.89168 (17.36070) | > loss_gen: 2.56548 (2.55510) | > loss_kl: 2.60911 (2.66266) | > loss_feat: 8.88428 (8.68515) | > loss_mel: 17.33471 (17.77001) | > loss_duration: 1.73176 (1.70644) | > loss_1: 33.12534 (33.37944) | > grad_norm_1: 165.91539 (140.97905) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34020 (2.43613) | > loader_time: 0.03170 (0.03508)  --> STEP: 10751/15287 -- GLOBAL_STEP: 1021900 | > loss_disc: 2.36776 (2.32481) | > loss_disc_real_0: 0.11627 (0.12311) | > loss_disc_real_1: 0.24253 (0.21198) | > loss_disc_real_2: 0.22534 (0.21613) | > loss_disc_real_3: 0.25192 (0.21988) | > loss_disc_real_4: 0.22842 (0.21510) | > loss_disc_real_5: 0.24217 (0.21466) | > loss_0: 2.36776 (2.32481) | > grad_norm_0: 17.29599 (17.35234) | > loss_gen: 2.36264 (2.55506) | > loss_kl: 2.50064 (2.66267) | > loss_feat: 8.33873 (8.68521) | > loss_mel: 17.50664 (17.77014) | > loss_duration: 1.68656 (1.70644) | > loss_1: 32.39521 (33.37959) | > grad_norm_1: 114.46671 (140.96071) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34630 (2.43630) | > loader_time: 0.03180 (0.03507)  --> STEP: 10776/15287 -- GLOBAL_STEP: 1021925 | > loss_disc: 2.30546 (2.32478) | > loss_disc_real_0: 0.10728 (0.12308) | > loss_disc_real_1: 0.23370 (0.21198) | > loss_disc_real_2: 0.21981 (0.21612) | > loss_disc_real_3: 0.20249 (0.21988) | > loss_disc_real_4: 0.20169 (0.21509) | > loss_disc_real_5: 0.20463 (0.21465) | > loss_0: 2.30546 (2.32478) | > grad_norm_0: 16.60674 (17.34817) | > loss_gen: 2.66691 (2.55498) | > loss_kl: 2.68982 (2.66270) | > loss_feat: 9.09705 (8.68520) | > loss_mel: 17.96778 (17.77041) | > loss_duration: 1.72263 (1.70645) | > loss_1: 34.14420 (33.37980) | > grad_norm_1: 148.64267 (141.01761) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.61240 (2.43656) | > loader_time: 0.03250 (0.03507)  --> STEP: 10801/15287 -- GLOBAL_STEP: 1021950 | > loss_disc: 2.38290 (2.32474) | > loss_disc_real_0: 0.13234 (0.12307) | > loss_disc_real_1: 0.23143 (0.21198) | > loss_disc_real_2: 0.21033 (0.21612) | > loss_disc_real_3: 0.21444 (0.21988) | > loss_disc_real_4: 0.21092 (0.21509) | > loss_disc_real_5: 0.22995 (0.21465) | > loss_0: 2.38290 (2.32474) | > grad_norm_0: 23.58244 (17.34017) | > loss_gen: 2.41499 (2.55500) | > loss_kl: 2.64423 (2.66264) | > loss_feat: 9.10007 (8.68528) | > loss_mel: 18.63733 (17.77032) | > loss_duration: 1.69895 (1.70646) | > loss_1: 34.49557 (33.37975) | > grad_norm_1: 184.44701 (141.00261) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52090 (2.43688) | > loader_time: 0.03320 (0.03507)  --> STEP: 10826/15287 -- GLOBAL_STEP: 1021975 | > loss_disc: 2.21198 (2.32471) | > loss_disc_real_0: 0.12355 (0.12309) | > loss_disc_real_1: 0.24629 (0.21198) | > loss_disc_real_2: 0.20796 (0.21612) | > loss_disc_real_3: 0.22832 (0.21989) | > loss_disc_real_4: 0.21665 (0.21510) | > loss_disc_real_5: 0.22893 (0.21465) | > loss_0: 2.21198 (2.32471) | > grad_norm_0: 9.56705 (17.33978) | > loss_gen: 2.56843 (2.55504) | > loss_kl: 2.84488 (2.66265) | > loss_feat: 9.37323 (8.68522) | > loss_mel: 17.73601 (17.77029) | > loss_duration: 1.70668 (1.70644) | > loss_1: 34.22923 (33.37971) | > grad_norm_1: 168.47841 (140.98717) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24690 (2.43732) | > loader_time: 0.08050 (0.03507)  --> STEP: 10851/15287 -- GLOBAL_STEP: 1022000 | > loss_disc: 2.30348 (2.32476) | > loss_disc_real_0: 0.11104 (0.12312) | > loss_disc_real_1: 0.21425 (0.21200) | > loss_disc_real_2: 0.19001 (0.21612) | > loss_disc_real_3: 0.17501 (0.21988) | > loss_disc_real_4: 0.18757 (0.21510) | > loss_disc_real_5: 0.18607 (0.21463) | > loss_0: 2.30348 (2.32476) | > grad_norm_0: 12.12168 (17.33032) | > loss_gen: 2.47258 (2.55504) | > loss_kl: 2.58157 (2.66263) | > loss_feat: 8.35859 (8.68514) | > loss_mel: 17.64944 (17.77019) | > loss_duration: 1.73770 (1.70646) | > loss_1: 32.79988 (33.37953) | > grad_norm_1: 59.11419 (140.94331) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.82050 (2.43762) | > loader_time: 0.03330 (0.03507)  --> STEP: 10876/15287 -- GLOBAL_STEP: 1022025 | > loss_disc: 2.25913 (2.32475) | > loss_disc_real_0: 0.11472 (0.12312) | > loss_disc_real_1: 0.21246 (0.21200) | > loss_disc_real_2: 0.20793 (0.21612) | > loss_disc_real_3: 0.22185 (0.21987) | > loss_disc_real_4: 0.22884 (0.21509) | > loss_disc_real_5: 0.19719 (0.21462) | > loss_0: 2.25913 (2.32475) | > grad_norm_0: 8.21268 (17.32743) | > loss_gen: 2.54474 (2.55500) | > loss_kl: 2.74888 (2.66258) | > loss_feat: 8.87721 (8.68505) | > loss_mel: 18.26215 (17.77011) | > loss_duration: 1.65042 (1.70646) | > loss_1: 34.08339 (33.37927) | > grad_norm_1: 91.69515 (140.89906) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.83770 (2.43784) | > loader_time: 0.03150 (0.03507)  --> STEP: 10901/15287 -- GLOBAL_STEP: 1022050 | > loss_disc: 2.31416 (2.32471) | > loss_disc_real_0: 0.09967 (0.12310) | > loss_disc_real_1: 0.20046 (0.21201) | > loss_disc_real_2: 0.22620 (0.21612) | > loss_disc_real_3: 0.22704 (0.21987) | > loss_disc_real_4: 0.21040 (0.21509) | > loss_disc_real_5: 0.20886 (0.21462) | > loss_0: 2.31416 (2.32471) | > grad_norm_0: 12.85795 (17.32186) | > loss_gen: 2.45737 (2.55496) | > loss_kl: 2.79882 (2.66257) | > loss_feat: 9.10001 (8.68524) | > loss_mel: 17.70998 (17.76999) | > loss_duration: 1.71384 (1.70647) | > loss_1: 33.78002 (33.37929) | > grad_norm_1: 122.02942 (140.88808) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58220 (2.43824) | > loader_time: 0.03100 (0.03506)  --> STEP: 10926/15287 -- GLOBAL_STEP: 1022075 | > loss_disc: 2.23865 (2.32461) | > loss_disc_real_0: 0.09415 (0.12308) | > loss_disc_real_1: 0.20042 (0.21200) | > loss_disc_real_2: 0.19270 (0.21612) | > loss_disc_real_3: 0.22073 (0.21986) | > loss_disc_real_4: 0.23606 (0.21509) | > loss_disc_real_5: 0.20469 (0.21461) | > loss_0: 2.23865 (2.32461) | > grad_norm_0: 9.32080 (17.32217) | > loss_gen: 2.61805 (2.55499) | > loss_kl: 2.67888 (2.66254) | > loss_feat: 8.53040 (8.68552) | > loss_mel: 17.51764 (17.76979) | > loss_duration: 1.68471 (1.70648) | > loss_1: 33.02967 (33.37938) | > grad_norm_1: 119.10729 (140.90604) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.76130 (2.43883) | > loader_time: 0.03150 (0.03506)  --> STEP: 10951/15287 -- GLOBAL_STEP: 1022100 | > loss_disc: 2.30340 (2.32459) | > loss_disc_real_0: 0.08124 (0.12309) | > loss_disc_real_1: 0.18735 (0.21200) | > loss_disc_real_2: 0.20587 (0.21612) | > loss_disc_real_3: 0.20970 (0.21986) | > loss_disc_real_4: 0.20735 (0.21508) | > loss_disc_real_5: 0.20757 (0.21461) | > loss_0: 2.30340 (2.32459) | > grad_norm_0: 8.99436 (17.32021) | > loss_gen: 2.44897 (2.55501) | > loss_kl: 2.57226 (2.66252) | > loss_feat: 8.42055 (8.68552) | > loss_mel: 17.87704 (17.76967) | > loss_duration: 1.67983 (1.70645) | > loss_1: 32.99864 (33.37923) | > grad_norm_1: 107.25730 (140.91824) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.78200 (2.43923) | > loader_time: 0.03350 (0.03506)  --> STEP: 10976/15287 -- GLOBAL_STEP: 1022125 | > loss_disc: 2.40447 (2.32454) | > loss_disc_real_0: 0.12971 (0.12308) | > loss_disc_real_1: 0.22521 (0.21201) | > loss_disc_real_2: 0.20094 (0.21611) | > loss_disc_real_3: 0.20173 (0.21985) | > loss_disc_real_4: 0.20572 (0.21507) | > loss_disc_real_5: 0.21527 (0.21461) | > loss_0: 2.40447 (2.32454) | > grad_norm_0: 10.83923 (17.31930) | > loss_gen: 2.45612 (2.55501) | > loss_kl: 2.63176 (2.66258) | > loss_feat: 8.13703 (8.68562) | > loss_mel: 16.86913 (17.76958) | > loss_duration: 1.72060 (1.70646) | > loss_1: 31.81464 (33.37931) | > grad_norm_1: 126.22697 (140.92276) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.87210 (2.43982) | > loader_time: 0.03180 (0.03506)  --> STEP: 11001/15287 -- GLOBAL_STEP: 1022150 | > loss_disc: 2.35454 (2.32454) | > loss_disc_real_0: 0.13294 (0.12307) | > loss_disc_real_1: 0.19831 (0.21201) | > loss_disc_real_2: 0.19743 (0.21610) | > loss_disc_real_3: 0.24628 (0.21986) | > loss_disc_real_4: 0.18621 (0.21507) | > loss_disc_real_5: 0.19795 (0.21461) | > loss_0: 2.35454 (2.32454) | > grad_norm_0: 24.11103 (17.31596) | > loss_gen: 2.58158 (2.55500) | > loss_kl: 2.76800 (2.66260) | > loss_feat: 9.31879 (8.68561) | > loss_mel: 18.59273 (17.76931) | > loss_duration: 1.69361 (1.70646) | > loss_1: 34.95470 (33.37903) | > grad_norm_1: 221.54668 (140.92743) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.70790 (2.44039) | > loader_time: 0.03570 (0.03506)  --> STEP: 11026/15287 -- GLOBAL_STEP: 1022175 | > loss_disc: 2.25814 (2.32451) | > loss_disc_real_0: 0.10765 (0.12305) | > loss_disc_real_1: 0.22238 (0.21201) | > loss_disc_real_2: 0.21613 (0.21610) | > loss_disc_real_3: 0.19549 (0.21986) | > loss_disc_real_4: 0.21162 (0.21505) | > loss_disc_real_5: 0.18833 (0.21461) | > loss_0: 2.25814 (2.32451) | > grad_norm_0: 9.61546 (17.31652) | > loss_gen: 2.73599 (2.55495) | > loss_kl: 2.52913 (2.66256) | > loss_feat: 9.63163 (8.68568) | > loss_mel: 17.83404 (17.76941) | > loss_duration: 1.71780 (1.70647) | > loss_1: 34.44858 (33.37912) | > grad_norm_1: 144.75299 (140.96332) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.01190 (2.44055) | > loader_time: 0.03580 (0.03506)  --> STEP: 11051/15287 -- GLOBAL_STEP: 1022200 | > loss_disc: 2.35298 (2.32450) | > loss_disc_real_0: 0.11429 (0.12305) | > loss_disc_real_1: 0.21363 (0.21201) | > loss_disc_real_2: 0.21577 (0.21610) | > loss_disc_real_3: 0.23235 (0.21985) | > loss_disc_real_4: 0.23177 (0.21505) | > loss_disc_real_5: 0.21864 (0.21461) | > loss_0: 2.35298 (2.32450) | > grad_norm_0: 8.80834 (17.30817) | > loss_gen: 2.60580 (2.55503) | > loss_kl: 2.69658 (2.66255) | > loss_feat: 8.95985 (8.68608) | > loss_mel: 18.33278 (17.76939) | > loss_duration: 1.70827 (1.70646) | > loss_1: 34.30328 (33.37958) | > grad_norm_1: 63.82404 (140.94028) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05460 (2.44079) | > loader_time: 0.06590 (0.03506)  --> STEP: 11076/15287 -- GLOBAL_STEP: 1022225 | > loss_disc: 2.39339 (2.32451) | > loss_disc_real_0: 0.10205 (0.12304) | > loss_disc_real_1: 0.20535 (0.21201) | > loss_disc_real_2: 0.25394 (0.21611) | > loss_disc_real_3: 0.21526 (0.21984) | > loss_disc_real_4: 0.25132 (0.21506) | > loss_disc_real_5: 0.23637 (0.21463) | > loss_0: 2.39339 (2.32451) | > grad_norm_0: 25.77813 (17.31314) | > loss_gen: 2.46955 (2.55504) | > loss_kl: 2.63478 (2.66252) | > loss_feat: 8.33436 (8.68576) | > loss_mel: 17.77898 (17.76935) | > loss_duration: 1.72957 (1.70647) | > loss_1: 32.94723 (33.37921) | > grad_norm_1: 168.05943 (140.95946) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27060 (2.44165) | > loader_time: 0.03190 (0.03506)  --> STEP: 11101/15287 -- GLOBAL_STEP: 1022250 | > loss_disc: 2.31231 (2.32453) | > loss_disc_real_0: 0.12379 (0.12305) | > loss_disc_real_1: 0.21147 (0.21203) | > loss_disc_real_2: 0.23543 (0.21613) | > loss_disc_real_3: 0.19517 (0.21983) | > loss_disc_real_4: 0.19138 (0.21505) | > loss_disc_real_5: 0.23618 (0.21463) | > loss_0: 2.31231 (2.32453) | > grad_norm_0: 19.76055 (17.31580) | > loss_gen: 2.59502 (2.55504) | > loss_kl: 2.62148 (2.66252) | > loss_feat: 8.75852 (8.68576) | > loss_mel: 18.03576 (17.76933) | > loss_duration: 1.69724 (1.70646) | > loss_1: 33.70802 (33.37919) | > grad_norm_1: 156.39507 (140.97034) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27650 (2.44192) | > loader_time: 0.03070 (0.03506)  --> STEP: 11126/15287 -- GLOBAL_STEP: 1022275 | > loss_disc: 2.37665 (2.32458) | > loss_disc_real_0: 0.12203 (0.12308) | > loss_disc_real_1: 0.24429 (0.21202) | > loss_disc_real_2: 0.21911 (0.21612) | > loss_disc_real_3: 0.26596 (0.21983) | > loss_disc_real_4: 0.22652 (0.21505) | > loss_disc_real_5: 0.24720 (0.21463) | > loss_0: 2.37665 (2.32458) | > grad_norm_0: 5.59143 (17.31690) | > loss_gen: 2.65376 (2.55494) | > loss_kl: 2.75940 (2.66260) | > loss_feat: 8.35245 (8.68565) | > loss_mel: 17.55246 (17.76948) | > loss_duration: 1.72209 (1.70646) | > loss_1: 33.04016 (33.37923) | > grad_norm_1: 87.37041 (140.98628) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.61340 (2.44222) | > loader_time: 0.03330 (0.03505)  --> STEP: 11151/15287 -- GLOBAL_STEP: 1022300 | > loss_disc: 2.33767 (2.32461) | > loss_disc_real_0: 0.16201 (0.12309) | > loss_disc_real_1: 0.21082 (0.21201) | > loss_disc_real_2: 0.23328 (0.21612) | > loss_disc_real_3: 0.21862 (0.21982) | > loss_disc_real_4: 0.24547 (0.21505) | > loss_disc_real_5: 0.22439 (0.21462) | > loss_0: 2.33767 (2.32461) | > grad_norm_0: 12.70881 (17.30957) | > loss_gen: 2.84402 (2.55490) | > loss_kl: 2.73273 (2.66257) | > loss_feat: 9.02496 (8.68571) | > loss_mel: 17.82290 (17.76944) | > loss_duration: 1.71428 (1.70646) | > loss_1: 34.13889 (33.37917) | > grad_norm_1: 79.87697 (140.93074) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.57900 (2.44266) | > loader_time: 0.03260 (0.03505)  --> STEP: 11176/15287 -- GLOBAL_STEP: 1022325 | > loss_disc: 2.35338 (2.32465) | > loss_disc_real_0: 0.09940 (0.12310) | > loss_disc_real_1: 0.20043 (0.21201) | > loss_disc_real_2: 0.21958 (0.21612) | > loss_disc_real_3: 0.18655 (0.21983) | > loss_disc_real_4: 0.20555 (0.21506) | > loss_disc_real_5: 0.23209 (0.21461) | > loss_0: 2.35338 (2.32465) | > grad_norm_0: 11.51458 (17.29901) | > loss_gen: 2.56280 (2.55483) | > loss_kl: 2.72499 (2.66261) | > loss_feat: 8.70952 (8.68559) | > loss_mel: 17.64692 (17.76946) | > loss_duration: 1.71115 (1.70646) | > loss_1: 33.35538 (33.37904) | > grad_norm_1: 153.45903 (140.86224) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23000 (2.44296) | > loader_time: 0.03660 (0.03505)  --> STEP: 11201/15287 -- GLOBAL_STEP: 1022350 | > loss_disc: 2.36582 (2.32471) | > loss_disc_real_0: 0.09638 (0.12311) | > loss_disc_real_1: 0.22107 (0.21203) | > loss_disc_real_2: 0.21000 (0.21612) | > loss_disc_real_3: 0.21764 (0.21984) | > loss_disc_real_4: 0.21692 (0.21507) | > loss_disc_real_5: 0.21663 (0.21461) | > loss_0: 2.36582 (2.32471) | > grad_norm_0: 9.51939 (17.29526) | > loss_gen: 2.50744 (2.55478) | > loss_kl: 2.81102 (2.66268) | > loss_feat: 8.36793 (8.68492) | > loss_mel: 17.48749 (17.76954) | > loss_duration: 1.70640 (1.70647) | > loss_1: 32.88029 (33.37848) | > grad_norm_1: 115.50524 (140.83536) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.98000 (2.44340) | > loader_time: 0.03710 (0.03505)  --> STEP: 11226/15287 -- GLOBAL_STEP: 1022375 | > loss_disc: 2.28878 (2.32470) | > loss_disc_real_0: 0.12483 (0.12311) | > loss_disc_real_1: 0.20282 (0.21204) | > loss_disc_real_2: 0.20957 (0.21612) | > loss_disc_real_3: 0.21170 (0.21985) | > loss_disc_real_4: 0.20481 (0.21506) | > loss_disc_real_5: 0.19791 (0.21460) | > loss_0: 2.28878 (2.32470) | > grad_norm_0: 7.28468 (17.28769) | > loss_gen: 2.65939 (2.55478) | > loss_kl: 2.57305 (2.66273) | > loss_feat: 8.95165 (8.68460) | > loss_mel: 17.70702 (17.76964) | > loss_duration: 1.68438 (1.70649) | > loss_1: 33.57549 (33.37832) | > grad_norm_1: 130.04329 (140.79707) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56630 (2.44371) | > loader_time: 0.04080 (0.03504)  --> STEP: 11251/15287 -- GLOBAL_STEP: 1022400 | > loss_disc: 2.33519 (2.32475) | > loss_disc_real_0: 0.07122 (0.12317) | > loss_disc_real_1: 0.20658 (0.21204) | > loss_disc_real_2: 0.19747 (0.21612) | > loss_disc_real_3: 0.25106 (0.21986) | > loss_disc_real_4: 0.20461 (0.21507) | > loss_disc_real_5: 0.19165 (0.21459) | > loss_0: 2.33519 (2.32475) | > grad_norm_0: 24.26180 (17.29983) | > loss_gen: 2.38759 (2.55473) | > loss_kl: 2.74502 (2.66266) | > loss_feat: 9.23142 (8.68476) | > loss_mel: 17.86849 (17.76979) | > loss_duration: 1.66344 (1.70651) | > loss_1: 33.89598 (33.37853) | > grad_norm_1: 201.03398 (140.86133) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.77550 (2.44392) | > loader_time: 0.03120 (0.03504)  --> STEP: 11276/15287 -- GLOBAL_STEP: 1022425 | > loss_disc: 2.31547 (2.32480) | > loss_disc_real_0: 0.12990 (0.12317) | > loss_disc_real_1: 0.22672 (0.21204) | > loss_disc_real_2: 0.22045 (0.21612) | > loss_disc_real_3: 0.21301 (0.21986) | > loss_disc_real_4: 0.20146 (0.21507) | > loss_disc_real_5: 0.21295 (0.21459) | > loss_0: 2.31547 (2.32480) | > grad_norm_0: 7.73743 (17.28987) | > loss_gen: 2.51896 (2.55468) | > loss_kl: 2.69914 (2.66272) | > loss_feat: 8.66487 (8.68465) | > loss_mel: 17.68225 (17.77000) | > loss_duration: 1.67586 (1.70652) | > loss_1: 33.24109 (33.37864) | > grad_norm_1: 142.28365 (140.85789) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.96570 (2.44473) | > loader_time: 0.03220 (0.03504)  --> STEP: 11301/15287 -- GLOBAL_STEP: 1022450 | > loss_disc: 2.27287 (2.32476) | > loss_disc_real_0: 0.11043 (0.12315) | > loss_disc_real_1: 0.19818 (0.21203) | > loss_disc_real_2: 0.22560 (0.21611) | > loss_disc_real_3: 0.20297 (0.21986) | > loss_disc_real_4: 0.19766 (0.21507) | > loss_disc_real_5: 0.21004 (0.21460) | > loss_0: 2.27287 (2.32476) | > grad_norm_0: 35.51912 (17.29613) | > loss_gen: 2.46547 (2.55470) | > loss_kl: 2.61149 (2.66271) | > loss_feat: 8.50607 (8.68466) | > loss_mel: 17.78196 (17.76984) | > loss_duration: 1.69843 (1.70651) | > loss_1: 33.06342 (33.37849) | > grad_norm_1: 72.90229 (140.85252) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.85580 (2.44519) | > loader_time: 0.03080 (0.03504)  --> STEP: 11326/15287 -- GLOBAL_STEP: 1022475 | > loss_disc: 2.30344 (2.32467) | > loss_disc_real_0: 0.11397 (0.12316) | > loss_disc_real_1: 0.17756 (0.21202) | > loss_disc_real_2: 0.22807 (0.21610) | > loss_disc_real_3: 0.23995 (0.21984) | > loss_disc_real_4: 0.22561 (0.21506) | > loss_disc_real_5: 0.22942 (0.21460) | > loss_0: 2.30344 (2.32467) | > grad_norm_0: 6.87104 (17.31184) | > loss_gen: 2.71970 (2.55477) | > loss_kl: 2.68911 (2.66268) | > loss_feat: 8.98103 (8.68510) | > loss_mel: 17.84259 (17.76992) | > loss_duration: 1.72558 (1.70654) | > loss_1: 33.95801 (33.37909) | > grad_norm_1: 219.36740 (140.96555) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.63980 (2.44554) | > loader_time: 0.03260 (0.03504)  --> STEP: 11351/15287 -- GLOBAL_STEP: 1022500 | > loss_disc: 2.36300 (2.32464) | > loss_disc_real_0: 0.12120 (0.12314) | > loss_disc_real_1: 0.21873 (0.21202) | > loss_disc_real_2: 0.22178 (0.21610) | > loss_disc_real_3: 0.24478 (0.21983) | > loss_disc_real_4: 0.19915 (0.21506) | > loss_disc_real_5: 0.22954 (0.21460) | > loss_0: 2.36300 (2.32464) | > grad_norm_0: 21.75086 (17.31266) | > loss_gen: 2.44097 (2.55471) | > loss_kl: 2.67807 (2.66269) | > loss_feat: 8.48329 (8.68504) | > loss_mel: 17.34378 (17.76958) | > loss_duration: 1.68505 (1.70653) | > loss_1: 32.63116 (33.37865) | > grad_norm_1: 118.55674 (140.98062) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.59950 (2.44583) | > loader_time: 0.03700 (0.03504)  --> STEP: 11376/15287 -- GLOBAL_STEP: 1022525 | > loss_disc: 2.41581 (2.32460) | > loss_disc_real_0: 0.19399 (0.12313) | > loss_disc_real_1: 0.22377 (0.21201) | > loss_disc_real_2: 0.22004 (0.21609) | > loss_disc_real_3: 0.27875 (0.21984) | > loss_disc_real_4: 0.22162 (0.21506) | > loss_disc_real_5: 0.27212 (0.21460) | > loss_0: 2.41581 (2.32460) | > grad_norm_0: 18.13384 (17.31297) | > loss_gen: 2.53019 (2.55469) | > loss_kl: 2.80009 (2.66267) | > loss_feat: 7.99662 (8.68495) | > loss_mel: 17.46197 (17.76948) | > loss_duration: 1.70337 (1.70655) | > loss_1: 32.49224 (33.37843) | > grad_norm_1: 127.05804 (140.99751) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.47390 (2.44588) | > loader_time: 0.03190 (0.03503)  --> STEP: 11401/15287 -- GLOBAL_STEP: 1022550 | > loss_disc: 2.31809 (2.32467) | > loss_disc_real_0: 0.14071 (0.12318) | > loss_disc_real_1: 0.25715 (0.21202) | > loss_disc_real_2: 0.28308 (0.21611) | > loss_disc_real_3: 0.21940 (0.21984) | > loss_disc_real_4: 0.20343 (0.21507) | > loss_disc_real_5: 0.23243 (0.21460) | > loss_0: 2.31809 (2.32467) | > grad_norm_0: 10.82495 (17.30811) | > loss_gen: 2.53758 (2.55470) | > loss_kl: 2.62797 (2.66274) | > loss_feat: 8.57150 (8.68502) | > loss_mel: 17.76954 (17.76970) | > loss_duration: 1.72483 (1.70655) | > loss_1: 33.23143 (33.37876) | > grad_norm_1: 118.37283 (140.92235) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29110 (2.44607) | > loader_time: 0.03200 (0.03503)  --> STEP: 11426/15287 -- GLOBAL_STEP: 1022575 | > loss_disc: 2.35971 (2.32473) | > loss_disc_real_0: 0.12277 (0.12318) | > loss_disc_real_1: 0.27772 (0.21204) | > loss_disc_real_2: 0.15621 (0.21610) | > loss_disc_real_3: 0.20271 (0.21984) | > loss_disc_real_4: 0.25809 (0.21507) | > loss_disc_real_5: 0.24078 (0.21461) | > loss_0: 2.35971 (2.32473) | > grad_norm_0: 9.51315 (17.29991) | > loss_gen: 2.47626 (2.55466) | > loss_kl: 2.63046 (2.66269) | > loss_feat: 8.31211 (8.68474) | > loss_mel: 17.70261 (17.76972) | > loss_duration: 1.72098 (1.70656) | > loss_1: 32.84242 (33.37842) | > grad_norm_1: 154.52921 (140.83263) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16560 (2.44617) | > loader_time: 0.03180 (0.03503)  --> STEP: 11451/15287 -- GLOBAL_STEP: 1022600 | > loss_disc: 2.27752 (2.32483) | > loss_disc_real_0: 0.16693 (0.12319) | > loss_disc_real_1: 0.17322 (0.21207) | > loss_disc_real_2: 0.23557 (0.21611) | > loss_disc_real_3: 0.25578 (0.21985) | > loss_disc_real_4: 0.21277 (0.21509) | > loss_disc_real_5: 0.22641 (0.21461) | > loss_0: 2.27752 (2.32483) | > grad_norm_0: 19.92709 (17.29141) | > loss_gen: 2.65660 (2.55465) | > loss_kl: 2.52938 (2.66266) | > loss_feat: 8.70713 (8.68430) | > loss_mel: 17.89989 (17.76985) | > loss_duration: 1.72205 (1.70656) | > loss_1: 33.51505 (33.37805) | > grad_norm_1: 108.59419 (140.78249) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.68890 (2.44675) | > loader_time: 0.03400 (0.03503)  --> STEP: 11476/15287 -- GLOBAL_STEP: 1022625 | > loss_disc: 2.33522 (2.32487) | > loss_disc_real_0: 0.10563 (0.12320) | > loss_disc_real_1: 0.20532 (0.21207) | > loss_disc_real_2: 0.22189 (0.21611) | > loss_disc_real_3: 0.19108 (0.21984) | > loss_disc_real_4: 0.21983 (0.21508) | > loss_disc_real_5: 0.20401 (0.21462) | > loss_0: 2.33522 (2.32487) | > grad_norm_0: 13.56385 (17.28785) | > loss_gen: 2.50205 (2.55450) | > loss_kl: 2.66375 (2.66257) | > loss_feat: 8.78370 (8.68391) | > loss_mel: 17.76849 (17.76965) | > loss_duration: 1.71928 (1.70655) | > loss_1: 33.43727 (33.37722) | > grad_norm_1: 145.76915 (140.75359) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.62380 (2.44723) | > loader_time: 0.03490 (0.03503)  --> STEP: 11501/15287 -- GLOBAL_STEP: 1022650 | > loss_disc: 2.20385 (2.32482) | > loss_disc_real_0: 0.10440 (0.12317) | > loss_disc_real_1: 0.20334 (0.21205) | > loss_disc_real_2: 0.19913 (0.21610) | > loss_disc_real_3: 0.19487 (0.21984) | > loss_disc_real_4: 0.21409 (0.21507) | > loss_disc_real_5: 0.20438 (0.21462) | > loss_0: 2.20385 (2.32482) | > grad_norm_0: 9.99362 (17.29012) | > loss_gen: 2.65908 (2.55451) | > loss_kl: 2.70546 (2.66253) | > loss_feat: 8.87312 (8.68389) | > loss_mel: 18.26285 (17.76942) | > loss_duration: 1.71327 (1.70652) | > loss_1: 34.21379 (33.37693) | > grad_norm_1: 170.50452 (140.77402) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37940 (2.44748) | > loader_time: 0.03640 (0.03503)  --> STEP: 11526/15287 -- GLOBAL_STEP: 1022675 | > loss_disc: 2.30788 (2.32477) | > loss_disc_real_0: 0.07302 (0.12316) | > loss_disc_real_1: 0.21341 (0.21204) | > loss_disc_real_2: 0.17138 (0.21610) | > loss_disc_real_3: 0.20084 (0.21983) | > loss_disc_real_4: 0.22997 (0.21506) | > loss_disc_real_5: 0.20104 (0.21461) | > loss_0: 2.30788 (2.32477) | > grad_norm_0: 23.36526 (17.30415) | > loss_gen: 2.55976 (2.55450) | > loss_kl: 2.67136 (2.66244) | > loss_feat: 8.62397 (8.68393) | > loss_mel: 17.54143 (17.76937) | > loss_duration: 1.68975 (1.70651) | > loss_1: 33.08627 (33.37681) | > grad_norm_1: 157.95924 (140.86624) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19430 (2.44785) | > loader_time: 0.03240 (0.03503)  --> STEP: 11551/15287 -- GLOBAL_STEP: 1022700 | > loss_disc: 2.35394 (2.32474) | > loss_disc_real_0: 0.10227 (0.12317) | > loss_disc_real_1: 0.22344 (0.21202) | > loss_disc_real_2: 0.23512 (0.21610) | > loss_disc_real_3: 0.24647 (0.21983) | > loss_disc_real_4: 0.23193 (0.21506) | > loss_disc_real_5: 0.19877 (0.21461) | > loss_0: 2.35394 (2.32474) | > grad_norm_0: 5.11576 (17.29204) | > loss_gen: 2.66800 (2.55452) | > loss_kl: 2.65011 (2.66246) | > loss_feat: 8.70307 (8.68384) | > loss_mel: 17.95092 (17.76907) | > loss_duration: 1.69380 (1.70651) | > loss_1: 33.66589 (33.37645) | > grad_norm_1: 97.20859 (140.73816) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.48740 (2.44806) | > loader_time: 0.03260 (0.03502)  --> STEP: 11576/15287 -- GLOBAL_STEP: 1022725 | > loss_disc: 2.38320 (2.32477) | > loss_disc_real_0: 0.13226 (0.12316) | > loss_disc_real_1: 0.20649 (0.21202) | > loss_disc_real_2: 0.21056 (0.21608) | > loss_disc_real_3: 0.22301 (0.21983) | > loss_disc_real_4: 0.22448 (0.21506) | > loss_disc_real_5: 0.20566 (0.21461) | > loss_0: 2.38320 (2.32477) | > grad_norm_0: 9.38290 (17.28583) | > loss_gen: 2.60170 (2.55449) | > loss_kl: 2.70822 (2.66248) | > loss_feat: 9.03022 (8.68371) | > loss_mel: 18.19655 (17.76944) | > loss_duration: 1.73669 (1.70650) | > loss_1: 34.27339 (33.37667) | > grad_norm_1: 119.24751 (140.72986) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.06460 (2.44863) | > loader_time: 0.03220 (0.03502)  --> STEP: 11601/15287 -- GLOBAL_STEP: 1022750 | > loss_disc: 2.29077 (2.32476) | > loss_disc_real_0: 0.09464 (0.12317) | > loss_disc_real_1: 0.22126 (0.21203) | > loss_disc_real_2: 0.20041 (0.21610) | > loss_disc_real_3: 0.20608 (0.21984) | > loss_disc_real_4: 0.19242 (0.21506) | > loss_disc_real_5: 0.20708 (0.21461) | > loss_0: 2.29077 (2.32476) | > grad_norm_0: 5.73045 (17.28958) | > loss_gen: 2.85643 (2.55452) | > loss_kl: 2.81787 (2.66241) | > loss_feat: 8.95020 (8.68377) | > loss_mel: 17.98521 (17.76933) | > loss_duration: 1.66303 (1.70651) | > loss_1: 34.27274 (33.37661) | > grad_norm_1: 164.19788 (140.75484) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.88050 (2.44888) | > loader_time: 0.03270 (0.03502)  --> STEP: 11626/15287 -- GLOBAL_STEP: 1022775 | > loss_disc: 2.32219 (2.32471) | > loss_disc_real_0: 0.15813 (0.12316) | > loss_disc_real_1: 0.20788 (0.21202) | > loss_disc_real_2: 0.21883 (0.21610) | > loss_disc_real_3: 0.22506 (0.21984) | > loss_disc_real_4: 0.21112 (0.21508) | > loss_disc_real_5: 0.19332 (0.21461) | > loss_0: 2.32219 (2.32471) | > grad_norm_0: 10.58635 (17.29034) | > loss_gen: 2.36680 (2.55451) | > loss_kl: 2.91532 (2.66239) | > loss_feat: 8.76859 (8.68383) | > loss_mel: 17.52108 (17.76907) | > loss_duration: 1.67565 (1.70649) | > loss_1: 33.24745 (33.37636) | > grad_norm_1: 63.56111 (140.78792) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.83300 (2.44906) | > loader_time: 0.04200 (0.03502)  --> STEP: 11651/15287 -- GLOBAL_STEP: 1022800 | > loss_disc: 2.29885 (2.32467) | > loss_disc_real_0: 0.11933 (0.12316) | > loss_disc_real_1: 0.21173 (0.21202) | > loss_disc_real_2: 0.21712 (0.21610) | > loss_disc_real_3: 0.23569 (0.21984) | > loss_disc_real_4: 0.21083 (0.21508) | > loss_disc_real_5: 0.22988 (0.21461) | > loss_0: 2.29885 (2.32467) | > grad_norm_0: 15.20235 (17.29201) | > loss_gen: 2.58470 (2.55452) | > loss_kl: 2.61917 (2.66241) | > loss_feat: 8.95282 (8.68385) | > loss_mel: 17.18966 (17.76897) | > loss_duration: 1.67668 (1.70649) | > loss_1: 33.02303 (33.37629) | > grad_norm_1: 143.41664 (140.83896) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.90280 (2.44943) | > loader_time: 0.03800 (0.03502)  --> STEP: 11676/15287 -- GLOBAL_STEP: 1022825 | > loss_disc: 2.45022 (2.32464) | > loss_disc_real_0: 0.16309 (0.12316) | > loss_disc_real_1: 0.23295 (0.21202) | > loss_disc_real_2: 0.25006 (0.21609) | > loss_disc_real_3: 0.19312 (0.21983) | > loss_disc_real_4: 0.20274 (0.21508) | > loss_disc_real_5: 0.22936 (0.21460) | > loss_0: 2.45022 (2.32464) | > grad_norm_0: 22.96820 (17.28992) | > loss_gen: 2.35889 (2.55449) | > loss_kl: 2.95294 (2.66246) | > loss_feat: 8.21855 (8.68401) | > loss_mel: 17.83965 (17.76885) | > loss_duration: 1.72650 (1.70648) | > loss_1: 33.09653 (33.37636) | > grad_norm_1: 184.68376 (140.86162) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38240 (2.44930) | > loader_time: 0.03380 (0.03501)  --> STEP: 11701/15287 -- GLOBAL_STEP: 1022850 | > loss_disc: 2.35813 (2.32461) | > loss_disc_real_0: 0.11690 (0.12315) | > loss_disc_real_1: 0.20941 (0.21201) | > loss_disc_real_2: 0.20643 (0.21608) | > loss_disc_real_3: 0.21655 (0.21984) | > loss_disc_real_4: 0.22380 (0.21508) | > loss_disc_real_5: 0.22320 (0.21460) | > loss_0: 2.35813 (2.32461) | > grad_norm_0: 18.70197 (17.28451) | > loss_gen: 2.50986 (2.55447) | > loss_kl: 2.59461 (2.66248) | > loss_feat: 8.86945 (8.68398) | > loss_mel: 17.33963 (17.76896) | > loss_duration: 1.70340 (1.70648) | > loss_1: 33.01695 (33.37645) | > grad_norm_1: 131.79526 (140.85274) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.33270 (2.45004) | > loader_time: 0.03470 (0.03502)  --> STEP: 11726/15287 -- GLOBAL_STEP: 1022875 | > loss_disc: 2.39087 (2.32467) | > loss_disc_real_0: 0.16749 (0.12315) | > loss_disc_real_1: 0.17620 (0.21201) | > loss_disc_real_2: 0.19718 (0.21609) | > loss_disc_real_3: 0.25714 (0.21984) | > loss_disc_real_4: 0.25198 (0.21508) | > loss_disc_real_5: 0.23564 (0.21461) | > loss_0: 2.39087 (2.32467) | > grad_norm_0: 9.18565 (17.27509) | > loss_gen: 2.56544 (2.55444) | > loss_kl: 2.70763 (2.66249) | > loss_feat: 8.86954 (8.68398) | > loss_mel: 17.96340 (17.76907) | > loss_duration: 1.75247 (1.70650) | > loss_1: 33.85849 (33.37656) | > grad_norm_1: 90.86832 (140.74631) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.93030 (2.45033) | > loader_time: 0.03170 (0.03502)  --> STEP: 11751/15287 -- GLOBAL_STEP: 1022900 | > loss_disc: 2.33958 (2.32471) | > loss_disc_real_0: 0.12609 (0.12314) | > loss_disc_real_1: 0.20352 (0.21201) | > loss_disc_real_2: 0.21122 (0.21610) | > loss_disc_real_3: 0.20087 (0.21984) | > loss_disc_real_4: 0.24320 (0.21508) | > loss_disc_real_5: 0.18137 (0.21460) | > loss_0: 2.33958 (2.32471) | > grad_norm_0: 8.21022 (17.27021) | > loss_gen: 2.53410 (2.55438) | > loss_kl: 2.69421 (2.66249) | > loss_feat: 8.53274 (8.68388) | > loss_mel: 17.17660 (17.76937) | > loss_duration: 1.73387 (1.70652) | > loss_1: 32.67152 (33.37673) | > grad_norm_1: 155.39194 (140.69252) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43410 (2.45041) | > loader_time: 0.03110 (0.03503)  --> STEP: 11776/15287 -- GLOBAL_STEP: 1022925 | > loss_disc: 2.31926 (2.32473) | > loss_disc_real_0: 0.11198 (0.12314) | > loss_disc_real_1: 0.20476 (0.21201) | > loss_disc_real_2: 0.19602 (0.21611) | > loss_disc_real_3: 0.18375 (0.21984) | > loss_disc_real_4: 0.18964 (0.21508) | > loss_disc_real_5: 0.21928 (0.21459) | > loss_0: 2.31926 (2.32473) | > grad_norm_0: 6.68209 (17.26437) | > loss_gen: 2.74064 (2.55436) | > loss_kl: 2.82300 (2.66250) | > loss_feat: 8.21694 (8.68388) | > loss_mel: 17.59605 (17.76957) | > loss_duration: 1.71636 (1.70652) | > loss_1: 33.09298 (33.37691) | > grad_norm_1: 173.17679 (140.70078) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40760 (2.45082) | > loader_time: 0.03720 (0.03503)  --> STEP: 11801/15287 -- GLOBAL_STEP: 1022950 | > loss_disc: 2.31956 (2.32481) | > loss_disc_real_0: 0.06499 (0.12314) | > loss_disc_real_1: 0.23557 (0.21201) | > loss_disc_real_2: 0.22223 (0.21612) | > loss_disc_real_3: 0.24789 (0.21985) | > loss_disc_real_4: 0.21189 (0.21510) | > loss_disc_real_5: 0.22269 (0.21460) | > loss_0: 2.31956 (2.32481) | > grad_norm_0: 11.15799 (17.26361) | > loss_gen: 2.72723 (2.55435) | > loss_kl: 2.57373 (2.66245) | > loss_feat: 8.82059 (8.68367) | > loss_mel: 17.74532 (17.76952) | > loss_duration: 1.73325 (1.70652) | > loss_1: 33.60013 (33.37659) | > grad_norm_1: 133.54477 (140.65916) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.54660 (2.45157) | > loader_time: 0.03400 (0.03503)  --> STEP: 11826/15287 -- GLOBAL_STEP: 1022975 | > loss_disc: 2.23471 (2.32482) | > loss_disc_real_0: 0.09936 (0.12317) | > loss_disc_real_1: 0.18824 (0.21201) | > loss_disc_real_2: 0.21324 (0.21613) | > loss_disc_real_3: 0.21769 (0.21985) | > loss_disc_real_4: 0.22703 (0.21509) | > loss_disc_real_5: 0.19823 (0.21459) | > loss_0: 2.23471 (2.32482) | > grad_norm_0: 9.84017 (17.26851) | > loss_gen: 2.70956 (2.55431) | > loss_kl: 2.66532 (2.66241) | > loss_feat: 8.57228 (8.68328) | > loss_mel: 17.89302 (17.76927) | > loss_duration: 1.73870 (1.70652) | > loss_1: 33.57888 (33.37586) | > grad_norm_1: 146.95770 (140.66713) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29270 (2.45156) | > loader_time: 0.03030 (0.03503)  --> STEP: 11851/15287 -- GLOBAL_STEP: 1023000 | > loss_disc: 2.30865 (2.32476) | > loss_disc_real_0: 0.13031 (0.12317) | > loss_disc_real_1: 0.22714 (0.21202) | > loss_disc_real_2: 0.18961 (0.21612) | > loss_disc_real_3: 0.23138 (0.21984) | > loss_disc_real_4: 0.22187 (0.21509) | > loss_disc_real_5: 0.21194 (0.21459) | > loss_0: 2.30865 (2.32476) | > grad_norm_0: 19.43395 (17.27067) | > loss_gen: 2.47760 (2.55433) | > loss_kl: 2.80815 (2.66247) | > loss_feat: 8.84085 (8.68322) | > loss_mel: 18.06549 (17.76877) | > loss_duration: 1.70538 (1.70651) | > loss_1: 33.89747 (33.37539) | > grad_norm_1: 104.38065 (140.67021) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.54950 (2.45133) | > loader_time: 0.03310 (0.03503)  --> STEP: 11876/15287 -- GLOBAL_STEP: 1023025 | > loss_disc: 2.35542 (2.32470) | > loss_disc_real_0: 0.13465 (0.12317) | > loss_disc_real_1: 0.19325 (0.21200) | > loss_disc_real_2: 0.26956 (0.21612) | > loss_disc_real_3: 0.23910 (0.21983) | > loss_disc_real_4: 0.25407 (0.21508) | > loss_disc_real_5: 0.25793 (0.21458) | > loss_0: 2.35542 (2.32470) | > grad_norm_0: 21.21639 (17.27357) | > loss_gen: 2.49260 (2.55435) | > loss_kl: 2.74124 (2.66250) | > loss_feat: 8.07899 (8.68342) | > loss_mel: 17.73371 (17.76868) | > loss_duration: 1.65781 (1.70651) | > loss_1: 32.70435 (33.37554) | > grad_norm_1: 103.18719 (140.67007) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.63970 (2.45125) | > loader_time: 0.03330 (0.03503)  --> STEP: 11901/15287 -- GLOBAL_STEP: 1023050 | > loss_disc: 2.36661 (2.32470) | > loss_disc_real_0: 0.12280 (0.12317) | > loss_disc_real_1: 0.21761 (0.21200) | > loss_disc_real_2: 0.22160 (0.21611) | > loss_disc_real_3: 0.24065 (0.21982) | > loss_disc_real_4: 0.22484 (0.21508) | > loss_disc_real_5: 0.21754 (0.21458) | > loss_0: 2.36661 (2.32470) | > grad_norm_0: 14.18309 (17.26453) | > loss_gen: 2.48279 (2.55433) | > loss_kl: 2.77625 (2.66256) | > loss_feat: 9.29887 (8.68371) | > loss_mel: 18.29005 (17.76865) | > loss_duration: 1.70787 (1.70652) | > loss_1: 34.55582 (33.37582) | > grad_norm_1: 136.28024 (140.59732) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30430 (2.45177) | > loader_time: 0.03480 (0.03503)  --> STEP: 11926/15287 -- GLOBAL_STEP: 1023075 | > loss_disc: 2.34630 (2.32474) | > loss_disc_real_0: 0.11630 (0.12317) | > loss_disc_real_1: 0.14967 (0.21200) | > loss_disc_real_2: 0.20218 (0.21611) | > loss_disc_real_3: 0.19815 (0.21983) | > loss_disc_real_4: 0.24292 (0.21508) | > loss_disc_real_5: 0.22091 (0.21459) | > loss_0: 2.34630 (2.32474) | > grad_norm_0: 10.17004 (17.24891) | > loss_gen: 2.37007 (2.55432) | > loss_kl: 2.60904 (2.66256) | > loss_feat: 8.22545 (8.68361) | > loss_mel: 17.65261 (17.76869) | > loss_duration: 1.69003 (1.70651) | > loss_1: 32.54721 (33.37575) | > grad_norm_1: 132.78421 (140.49547) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.06560 (2.45208) | > loader_time: 0.03280 (0.03503)  --> STEP: 11951/15287 -- GLOBAL_STEP: 1023100 | > loss_disc: 2.34846 (2.32478) | > loss_disc_real_0: 0.07621 (0.12317) | > loss_disc_real_1: 0.21742 (0.21200) | > loss_disc_real_2: 0.21330 (0.21611) | > loss_disc_real_3: 0.23050 (0.21983) | > loss_disc_real_4: 0.19405 (0.21508) | > loss_disc_real_5: 0.21550 (0.21459) | > loss_0: 2.34846 (2.32478) | > grad_norm_0: 12.54346 (17.24344) | > loss_gen: 2.49979 (2.55430) | > loss_kl: 2.72819 (2.66262) | > loss_feat: 8.11686 (8.68340) | > loss_mel: 17.75691 (17.76882) | > loss_duration: 1.72945 (1.70652) | > loss_1: 32.83120 (33.37574) | > grad_norm_1: 118.38956 (140.41754) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.88150 (2.45239) | > loader_time: 0.03140 (0.03503)  --> STEP: 11976/15287 -- GLOBAL_STEP: 1023125 | > loss_disc: 2.31439 (2.32476) | > loss_disc_real_0: 0.10686 (0.12319) | > loss_disc_real_1: 0.21259 (0.21199) | > loss_disc_real_2: 0.20834 (0.21611) | > loss_disc_real_3: 0.23145 (0.21982) | > loss_disc_real_4: 0.21501 (0.21507) | > loss_disc_real_5: 0.22430 (0.21459) | > loss_0: 2.31439 (2.32476) | > grad_norm_0: 10.68670 (17.25036) | > loss_gen: 2.58730 (2.55431) | > loss_kl: 2.62068 (2.66259) | > loss_feat: 8.37365 (8.68332) | > loss_mel: 17.73632 (17.76888) | > loss_duration: 1.69697 (1.70652) | > loss_1: 33.01493 (33.37568) | > grad_norm_1: 63.24173 (140.42932) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.65170 (2.45295) | > loader_time: 0.03030 (0.03503)  --> STEP: 12001/15287 -- GLOBAL_STEP: 1023150 | > loss_disc: 2.29129 (2.32475) | > loss_disc_real_0: 0.15250 (0.12318) | > loss_disc_real_1: 0.18930 (0.21199) | > loss_disc_real_2: 0.21383 (0.21610) | > loss_disc_real_3: 0.22112 (0.21983) | > loss_disc_real_4: 0.20430 (0.21507) | > loss_disc_real_5: 0.21969 (0.21459) | > loss_0: 2.29129 (2.32475) | > grad_norm_0: 34.98194 (17.26016) | > loss_gen: 2.42973 (2.55423) | > loss_kl: 2.73448 (2.66257) | > loss_feat: 8.57796 (8.68321) | > loss_mel: 18.02326 (17.76862) | > loss_duration: 1.66757 (1.70652) | > loss_1: 33.43301 (33.37521) | > grad_norm_1: 117.25504 (140.42609) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.87390 (2.45305) | > loader_time: 0.03560 (0.03503)  --> STEP: 12026/15287 -- GLOBAL_STEP: 1023175 | > loss_disc: 2.35406 (2.32473) | > loss_disc_real_0: 0.15878 (0.12317) | > loss_disc_real_1: 0.21656 (0.21198) | > loss_disc_real_2: 0.20022 (0.21608) | > loss_disc_real_3: 0.21537 (0.21981) | > loss_disc_real_4: 0.24016 (0.21505) | > loss_disc_real_5: 0.25594 (0.21457) | > loss_0: 2.35406 (2.32473) | > grad_norm_0: 11.04318 (17.26468) | > loss_gen: 2.37231 (2.55411) | > loss_kl: 2.71386 (2.66258) | > loss_feat: 8.38094 (8.68324) | > loss_mel: 17.81753 (17.76839) | > loss_duration: 1.67997 (1.70651) | > loss_1: 32.96461 (33.37489) | > grad_norm_1: 91.31718 (140.47536) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39050 (2.45310) | > loader_time: 0.03060 (0.03503)  --> STEP: 12051/15287 -- GLOBAL_STEP: 1023200 | > loss_disc: 2.27542 (2.32470) | > loss_disc_real_0: 0.15598 (0.12316) | > loss_disc_real_1: 0.20305 (0.21199) | > loss_disc_real_2: 0.19914 (0.21608) | > loss_disc_real_3: 0.19896 (0.21979) | > loss_disc_real_4: 0.18539 (0.21503) | > loss_disc_real_5: 0.20648 (0.21457) | > loss_0: 2.27542 (2.32470) | > grad_norm_0: 11.60297 (17.27041) | > loss_gen: 2.61655 (2.55410) | > loss_kl: 2.65226 (2.66261) | > loss_feat: 9.01019 (8.68333) | > loss_mel: 17.88272 (17.76810) | > loss_duration: 1.68601 (1.70651) | > loss_1: 33.84773 (33.37469) | > grad_norm_1: 221.20078 (140.54153) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37400 (2.45309) | > loader_time: 0.03030 (0.03503)  --> STEP: 12076/15287 -- GLOBAL_STEP: 1023225 | > loss_disc: 2.30959 (2.32463) | > loss_disc_real_0: 0.07769 (0.12315) | > loss_disc_real_1: 0.17679 (0.21197) | > loss_disc_real_2: 0.20408 (0.21607) | > loss_disc_real_3: 0.20826 (0.21979) | > loss_disc_real_4: 0.23886 (0.21504) | > loss_disc_real_5: 0.21971 (0.21456) | > loss_0: 2.30959 (2.32463) | > grad_norm_0: 30.98191 (17.28124) | > loss_gen: 2.41620 (2.55407) | > loss_kl: 2.72596 (2.66262) | > loss_feat: 8.36115 (8.68346) | > loss_mel: 17.47993 (17.76777) | > loss_duration: 1.69307 (1.70650) | > loss_1: 32.67631 (33.37449) | > grad_norm_1: 221.22707 (140.59230) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.28970 (2.45305) | > loader_time: 0.03320 (0.03503)  --> STEP: 12101/15287 -- GLOBAL_STEP: 1023250 | > loss_disc: 2.29654 (2.32456) | > loss_disc_real_0: 0.11932 (0.12313) | > loss_disc_real_1: 0.19390 (0.21195) | > loss_disc_real_2: 0.20458 (0.21606) | > loss_disc_real_3: 0.22303 (0.21977) | > loss_disc_real_4: 0.20097 (0.21503) | > loss_disc_real_5: 0.18055 (0.21456) | > loss_0: 2.29654 (2.32456) | > grad_norm_0: 22.02588 (17.28319) | > loss_gen: 2.55107 (2.55404) | > loss_kl: 2.75493 (2.66265) | > loss_feat: 8.54504 (8.68365) | > loss_mel: 17.38498 (17.76750) | > loss_duration: 1.71490 (1.70647) | > loss_1: 32.95091 (33.37439) | > grad_norm_1: 228.10500 (140.62000) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17580 (2.45308) | > loader_time: 0.03950 (0.03502)  --> STEP: 12126/15287 -- GLOBAL_STEP: 1023275 | > loss_disc: 2.29869 (2.32454) | > loss_disc_real_0: 0.13770 (0.12313) | > loss_disc_real_1: 0.20889 (0.21194) | > loss_disc_real_2: 0.21872 (0.21606) | > loss_disc_real_3: 0.19854 (0.21977) | > loss_disc_real_4: 0.21527 (0.21502) | > loss_disc_real_5: 0.25881 (0.21457) | > loss_0: 2.29869 (2.32454) | > grad_norm_0: 12.91315 (17.27730) | > loss_gen: 2.34338 (2.55400) | > loss_kl: 2.64348 (2.66272) | > loss_feat: 8.26054 (8.68347) | > loss_mel: 17.60189 (17.76748) | > loss_duration: 1.73501 (1.70647) | > loss_1: 32.58430 (33.37421) | > grad_norm_1: 104.50957 (140.60747) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.89150 (2.45389) | > loader_time: 0.03250 (0.03502)  --> STEP: 12151/15287 -- GLOBAL_STEP: 1023300 | > loss_disc: 2.34850 (2.32462) | > loss_disc_real_0: 0.09680 (0.12315) | > loss_disc_real_1: 0.21238 (0.21195) | > loss_disc_real_2: 0.22751 (0.21606) | > loss_disc_real_3: 0.22704 (0.21978) | > loss_disc_real_4: 0.21539 (0.21502) | > loss_disc_real_5: 0.20691 (0.21458) | > loss_0: 2.34850 (2.32462) | > grad_norm_0: 9.80039 (17.26654) | > loss_gen: 2.63153 (2.55398) | > loss_kl: 2.74187 (2.66276) | > loss_feat: 8.79295 (8.68294) | > loss_mel: 17.99330 (17.76764) | > loss_duration: 1.70921 (1.70647) | > loss_1: 33.86885 (33.37388) | > grad_norm_1: 55.59535 (140.48172) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32340 (2.45458) | > loader_time: 0.03740 (0.03502)  --> STEP: 12176/15287 -- GLOBAL_STEP: 1023325 | > loss_disc: 2.31701 (2.32464) | > loss_disc_real_0: 0.16621 (0.12315) | > loss_disc_real_1: 0.19280 (0.21194) | > loss_disc_real_2: 0.19673 (0.21606) | > loss_disc_real_3: 0.21716 (0.21978) | > loss_disc_real_4: 0.20042 (0.21501) | > loss_disc_real_5: 0.21317 (0.21458) | > loss_0: 2.31701 (2.32464) | > grad_norm_0: 22.71568 (17.25817) | > loss_gen: 2.65112 (2.55404) | > loss_kl: 2.66205 (2.66276) | > loss_feat: 9.56208 (8.68332) | > loss_mel: 18.26915 (17.76805) | > loss_duration: 1.70835 (1.70648) | > loss_1: 34.85275 (33.37473) | > grad_norm_1: 172.38377 (140.41769) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58240 (2.45532) | > loader_time: 0.02990 (0.03502)  --> STEP: 12201/15287 -- GLOBAL_STEP: 1023350 | > loss_disc: 2.36316 (2.32468) | > loss_disc_real_0: 0.11301 (0.12317) | > loss_disc_real_1: 0.23330 (0.21194) | > loss_disc_real_2: 0.23539 (0.21607) | > loss_disc_real_3: 0.20531 (0.21978) | > loss_disc_real_4: 0.22366 (0.21502) | > loss_disc_real_5: 0.21743 (0.21456) | > loss_0: 2.36316 (2.32468) | > grad_norm_0: 8.78171 (17.25699) | > loss_gen: 2.52385 (2.55399) | > loss_kl: 2.47747 (2.66274) | > loss_feat: 8.15464 (8.68312) | > loss_mel: 17.59770 (17.76786) | > loss_duration: 1.67998 (1.70648) | > loss_1: 32.43364 (33.37426) | > grad_norm_1: 36.29086 (140.39342) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.23510 (2.45562) | > loader_time: 0.03640 (0.03502)  --> STEP: 12226/15287 -- GLOBAL_STEP: 1023375 | > loss_disc: 2.34668 (2.32466) | > loss_disc_real_0: 0.11092 (0.12315) | > loss_disc_real_1: 0.20811 (0.21193) | > loss_disc_real_2: 0.21760 (0.21606) | > loss_disc_real_3: 0.22426 (0.21979) | > loss_disc_real_4: 0.22178 (0.21502) | > loss_disc_real_5: 0.21354 (0.21456) | > loss_0: 2.34668 (2.32466) | > grad_norm_0: 23.97421 (17.25266) | > loss_gen: 2.41692 (2.55400) | > loss_kl: 2.60947 (2.66266) | > loss_feat: 8.61716 (8.68321) | > loss_mel: 17.68097 (17.76785) | > loss_duration: 1.73101 (1.70648) | > loss_1: 33.05553 (33.37426) | > grad_norm_1: 140.24791 (140.39406) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31790 (2.45552) | > loader_time: 0.03290 (0.03502)  --> STEP: 12251/15287 -- GLOBAL_STEP: 1023400 | > loss_disc: 2.31233 (2.32467) | > loss_disc_real_0: 0.16833 (0.12316) | > loss_disc_real_1: 0.18055 (0.21192) | > loss_disc_real_2: 0.18292 (0.21606) | > loss_disc_real_3: 0.18041 (0.21980) | > loss_disc_real_4: 0.21537 (0.21502) | > loss_disc_real_5: 0.19255 (0.21458) | > loss_0: 2.31233 (2.32467) | > grad_norm_0: 23.36862 (17.26088) | > loss_gen: 2.50026 (2.55402) | > loss_kl: 2.62264 (2.66264) | > loss_feat: 8.46028 (8.68330) | > loss_mel: 17.47096 (17.76761) | > loss_duration: 1.69747 (1.70647) | > loss_1: 32.75162 (33.37412) | > grad_norm_1: 203.89218 (140.43782) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.07850 (2.45543) | > loader_time: 0.03600 (0.03502)  --> STEP: 12276/15287 -- GLOBAL_STEP: 1023425 | > loss_disc: 2.32457 (2.32465) | > loss_disc_real_0: 0.16000 (0.12316) | > loss_disc_real_1: 0.22631 (0.21192) | > loss_disc_real_2: 0.20392 (0.21605) | > loss_disc_real_3: 0.19319 (0.21980) | > loss_disc_real_4: 0.20508 (0.21502) | > loss_disc_real_5: 0.19562 (0.21458) | > loss_0: 2.32457 (2.32465) | > grad_norm_0: 30.02310 (17.25532) | > loss_gen: 2.52890 (2.55398) | > loss_kl: 2.69346 (2.66264) | > loss_feat: 9.68672 (8.68360) | > loss_mel: 18.56661 (17.76751) | > loss_duration: 1.72874 (1.70647) | > loss_1: 35.20444 (33.37426) | > grad_norm_1: 202.04938 (140.43469) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07380 (2.45545) | > loader_time: 0.03010 (0.03502)  --> STEP: 12301/15287 -- GLOBAL_STEP: 1023450 | > loss_disc: 2.24647 (2.32461) | > loss_disc_real_0: 0.11514 (0.12316) | > loss_disc_real_1: 0.21037 (0.21193) | > loss_disc_real_2: 0.23597 (0.21606) | > loss_disc_real_3: 0.20458 (0.21980) | > loss_disc_real_4: 0.19103 (0.21501) | > loss_disc_real_5: 0.21747 (0.21458) | > loss_0: 2.24647 (2.32461) | > grad_norm_0: 14.32447 (17.25582) | > loss_gen: 2.48575 (2.55404) | > loss_kl: 2.74800 (2.66272) | > loss_feat: 8.99336 (8.68376) | > loss_mel: 18.24743 (17.76774) | > loss_duration: 1.67944 (1.70646) | > loss_1: 34.15399 (33.37478) | > grad_norm_1: 227.08067 (140.44911) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34150 (2.45558) | > loader_time: 0.03170 (0.03502)  --> STEP: 12326/15287 -- GLOBAL_STEP: 1023475 | > loss_disc: 2.33585 (2.32459) | > loss_disc_real_0: 0.16781 (0.12318) | > loss_disc_real_1: 0.20065 (0.21193) | > loss_disc_real_2: 0.20022 (0.21605) | > loss_disc_real_3: 0.20223 (0.21979) | > loss_disc_real_4: 0.18841 (0.21501) | > loss_disc_real_5: 0.22210 (0.21458) | > loss_0: 2.33585 (2.32459) | > grad_norm_0: 15.46503 (17.25755) | > loss_gen: 2.52917 (2.55404) | > loss_kl: 2.73058 (2.66275) | > loss_feat: 8.52385 (8.68381) | > loss_mel: 17.50528 (17.76748) | > loss_duration: 1.68468 (1.70645) | > loss_1: 32.97355 (33.37459) | > grad_norm_1: 197.45404 (140.42113) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.15550 (2.45551) | > loader_time: 0.03270 (0.03501)  --> STEP: 12351/15287 -- GLOBAL_STEP: 1023500 | > loss_disc: 2.27463 (2.32463) | > loss_disc_real_0: 0.12745 (0.12320) | > loss_disc_real_1: 0.22149 (0.21193) | > loss_disc_real_2: 0.21262 (0.21605) | > loss_disc_real_3: 0.21265 (0.21979) | > loss_disc_real_4: 0.21493 (0.21501) | > loss_disc_real_5: 0.21553 (0.21458) | > loss_0: 2.27463 (2.32463) | > grad_norm_0: 7.39677 (17.25911) | > loss_gen: 2.42128 (2.55397) | > loss_kl: 2.76816 (2.66279) | > loss_feat: 8.41647 (8.68387) | > loss_mel: 17.19670 (17.76752) | > loss_duration: 1.69966 (1.70647) | > loss_1: 32.50227 (33.37468) | > grad_norm_1: 66.38850 (140.41965) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.69450 (2.45558) | > loader_time: 0.03260 (0.03501)  --> STEP: 12376/15287 -- GLOBAL_STEP: 1023525 | > loss_disc: 2.34554 (2.32457) | > loss_disc_real_0: 0.12705 (0.12319) | > loss_disc_real_1: 0.18753 (0.21191) | > loss_disc_real_2: 0.19728 (0.21604) | > loss_disc_real_3: 0.23888 (0.21978) | > loss_disc_real_4: 0.20829 (0.21500) | > loss_disc_real_5: 0.23488 (0.21459) | > loss_0: 2.34554 (2.32457) | > grad_norm_0: 30.55980 (17.25441) | > loss_gen: 2.46346 (2.55403) | > loss_kl: 2.69173 (2.66272) | > loss_feat: 8.54637 (8.68396) | > loss_mel: 17.41134 (17.76721) | > loss_duration: 1.72204 (1.70647) | > loss_1: 32.83494 (33.37448) | > grad_norm_1: 167.68233 (140.45039) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04950 (2.45533) | > loader_time: 0.03520 (0.03501)  --> STEP: 12401/15287 -- GLOBAL_STEP: 1023550 | > loss_disc: 2.34312 (2.32456) | > loss_disc_real_0: 0.16269 (0.12320) | > loss_disc_real_1: 0.21589 (0.21191) | > loss_disc_real_2: 0.20717 (0.21604) | > loss_disc_real_3: 0.21196 (0.21978) | > loss_disc_real_4: 0.18900 (0.21500) | > loss_disc_real_5: 0.23174 (0.21459) | > loss_0: 2.34312 (2.32456) | > grad_norm_0: 19.10526 (17.25574) | > loss_gen: 2.55963 (2.55400) | > loss_kl: 2.83300 (2.66271) | > loss_feat: 8.63480 (8.68381) | > loss_mel: 17.63239 (17.76703) | > loss_duration: 1.70691 (1.70648) | > loss_1: 33.36673 (33.37411) | > grad_norm_1: 153.24954 (140.46141) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.67890 (2.45526) | > loader_time: 0.03480 (0.03501)  --> STEP: 12426/15287 -- GLOBAL_STEP: 1023575 | > loss_disc: 2.32942 (2.32451) | > loss_disc_real_0: 0.13678 (0.12320) | > loss_disc_real_1: 0.22321 (0.21190) | > loss_disc_real_2: 0.20050 (0.21604) | > loss_disc_real_3: 0.23692 (0.21978) | > loss_disc_real_4: 0.22098 (0.21499) | > loss_disc_real_5: 0.22339 (0.21459) | > loss_0: 2.32942 (2.32451) | > grad_norm_0: 17.60582 (17.26263) | > loss_gen: 2.53880 (2.55402) | > loss_kl: 2.64319 (2.66269) | > loss_feat: 8.43400 (8.68393) | > loss_mel: 17.66794 (17.76686) | > loss_duration: 1.75247 (1.70649) | > loss_1: 33.03640 (33.37408) | > grad_norm_1: 155.98842 (140.48764) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52840 (2.45534) | > loader_time: 0.03570 (0.03501)  --> STEP: 12451/15287 -- GLOBAL_STEP: 1023600 | > loss_disc: 2.32766 (2.32450) | > loss_disc_real_0: 0.11424 (0.12321) | > loss_disc_real_1: 0.21616 (0.21190) | > loss_disc_real_2: 0.23318 (0.21606) | > loss_disc_real_3: 0.22855 (0.21977) | > loss_disc_real_4: 0.22670 (0.21498) | > loss_disc_real_5: 0.25834 (0.21458) | > loss_0: 2.32766 (2.32450) | > grad_norm_0: 21.10532 (17.26549) | > loss_gen: 2.51713 (2.55405) | > loss_kl: 2.79164 (2.66272) | > loss_feat: 8.93302 (8.68388) | > loss_mel: 17.88122 (17.76677) | > loss_duration: 1.71530 (1.70649) | > loss_1: 33.83832 (33.37398) | > grad_norm_1: 134.56839 (140.49915) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.65190 (2.45531) | > loader_time: 0.04030 (0.03500)  --> STEP: 12476/15287 -- GLOBAL_STEP: 1023625 | > loss_disc: 2.26884 (2.32449) | > loss_disc_real_0: 0.09589 (0.12320) | > loss_disc_real_1: 0.19226 (0.21190) | > loss_disc_real_2: 0.19383 (0.21606) | > loss_disc_real_3: 0.22373 (0.21977) | > loss_disc_real_4: 0.19511 (0.21498) | > loss_disc_real_5: 0.22009 (0.21458) | > loss_0: 2.26884 (2.32449) | > grad_norm_0: 12.47449 (17.25782) | > loss_gen: 2.58536 (2.55401) | > loss_kl: 2.57495 (2.66271) | > loss_feat: 8.63733 (8.68387) | > loss_mel: 17.29672 (17.76670) | > loss_duration: 1.72948 (1.70651) | > loss_1: 32.82385 (33.37387) | > grad_norm_1: 157.50130 (140.47934) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.63520 (2.45545) | > loader_time: 0.03740 (0.03500)  --> STEP: 12501/15287 -- GLOBAL_STEP: 1023650 | > loss_disc: 2.35422 (2.32453) | > loss_disc_real_0: 0.18140 (0.12322) | > loss_disc_real_1: 0.20862 (0.21190) | > loss_disc_real_2: 0.24718 (0.21606) | > loss_disc_real_3: 0.23264 (0.21977) | > loss_disc_real_4: 0.24876 (0.21499) | > loss_disc_real_5: 0.20071 (0.21458) | > loss_0: 2.35422 (2.32453) | > grad_norm_0: 17.37202 (17.25802) | > loss_gen: 2.68226 (2.55403) | > loss_kl: 2.52748 (2.66265) | > loss_feat: 8.33140 (8.68395) | > loss_mel: 17.33445 (17.76653) | > loss_duration: 1.75905 (1.70650) | > loss_1: 32.63465 (33.37374) | > grad_norm_1: 113.98969 (140.51738) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07420 (2.45537) | > loader_time: 0.03200 (0.03500)  --> STEP: 12526/15287 -- GLOBAL_STEP: 1023675 | > loss_disc: 2.28256 (2.32457) | > loss_disc_real_0: 0.10397 (0.12322) | > loss_disc_real_1: 0.19719 (0.21191) | > loss_disc_real_2: 0.20279 (0.21606) | > loss_disc_real_3: 0.20978 (0.21978) | > loss_disc_real_4: 0.21080 (0.21499) | > loss_disc_real_5: 0.21837 (0.21459) | > loss_0: 2.28256 (2.32457) | > grad_norm_0: 22.76635 (17.26216) | > loss_gen: 2.60827 (2.55404) | > loss_kl: 2.69285 (2.66261) | > loss_feat: 9.32578 (8.68415) | > loss_mel: 18.26447 (17.76675) | > loss_duration: 1.68672 (1.70651) | > loss_1: 34.57809 (33.37413) | > grad_norm_1: 124.37511 (140.54115) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.31890 (2.45533) | > loader_time: 0.03360 (0.03500)  --> STEP: 12551/15287 -- GLOBAL_STEP: 1023700 | > loss_disc: 2.32615 (2.32461) | > loss_disc_real_0: 0.08206 (0.12324) | > loss_disc_real_1: 0.22553 (0.21191) | > loss_disc_real_2: 0.23570 (0.21608) | > loss_disc_real_3: 0.20529 (0.21978) | > loss_disc_real_4: 0.24528 (0.21499) | > loss_disc_real_5: 0.19396 (0.21461) | > loss_0: 2.32615 (2.32461) | > grad_norm_0: 25.86247 (17.27052) | > loss_gen: 2.42483 (2.55403) | > loss_kl: 2.65835 (2.66265) | > loss_feat: 8.22579 (8.68389) | > loss_mel: 17.24944 (17.76641) | > loss_duration: 1.68116 (1.70651) | > loss_1: 32.23956 (33.37358) | > grad_norm_1: 153.58820 (140.53381) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.88950 (2.45548) | > loader_time: 0.03690 (0.03500)  --> STEP: 12576/15287 -- GLOBAL_STEP: 1023725 | > loss_disc: 2.24879 (2.32462) | > loss_disc_real_0: 0.10474 (0.12325) | > loss_disc_real_1: 0.21290 (0.21191) | > loss_disc_real_2: 0.20253 (0.21608) | > loss_disc_real_3: 0.19687 (0.21978) | > loss_disc_real_4: 0.18760 (0.21499) | > loss_disc_real_5: 0.19763 (0.21461) | > loss_0: 2.24879 (2.32462) | > grad_norm_0: 21.35262 (17.27722) | > loss_gen: 2.51040 (2.55398) | > loss_kl: 2.63927 (2.66271) | > loss_feat: 8.78883 (8.68365) | > loss_mel: 17.93763 (17.76629) | > loss_duration: 1.72363 (1.70652) | > loss_1: 33.59976 (33.37324) | > grad_norm_1: 144.31992 (140.56471) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97610 (2.45523) | > loader_time: 0.03750 (0.03501)  --> STEP: 12601/15287 -- GLOBAL_STEP: 1023750 | > loss_disc: 2.36703 (2.32458) | > loss_disc_real_0: 0.16241 (0.12324) | > loss_disc_real_1: 0.24524 (0.21190) | > loss_disc_real_2: 0.23573 (0.21607) | > loss_disc_real_3: 0.22116 (0.21977) | > loss_disc_real_4: 0.23387 (0.21499) | > loss_disc_real_5: 0.18564 (0.21460) | > loss_0: 2.36703 (2.32458) | > grad_norm_0: 17.69956 (17.27570) | > loss_gen: 2.49215 (2.55396) | > loss_kl: 2.72012 (2.66275) | > loss_feat: 8.65057 (8.68368) | > loss_mel: 17.36376 (17.76619) | > loss_duration: 1.70935 (1.70651) | > loss_1: 32.93596 (33.37320) | > grad_norm_1: 146.09319 (140.57785) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20260 (2.45490) | > loader_time: 0.03240 (0.03502)  --> STEP: 12626/15287 -- GLOBAL_STEP: 1023775 | > loss_disc: 2.34289 (2.32455) | > loss_disc_real_0: 0.09609 (0.12324) | > loss_disc_real_1: 0.19895 (0.21189) | > loss_disc_real_2: 0.21499 (0.21606) | > loss_disc_real_3: 0.20637 (0.21977) | > loss_disc_real_4: 0.20146 (0.21498) | > loss_disc_real_5: 0.19258 (0.21461) | > loss_0: 2.34289 (2.32455) | > grad_norm_0: 37.57150 (17.27928) | > loss_gen: 2.33063 (2.55399) | > loss_kl: 2.76146 (2.66276) | > loss_feat: 8.71253 (8.68385) | > loss_mel: 17.77837 (17.76624) | > loss_duration: 1.72369 (1.70652) | > loss_1: 33.30668 (33.37344) | > grad_norm_1: 171.41389 (140.60437) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72750 (2.45525) | > loader_time: 0.03120 (0.03502)  --> STEP: 12651/15287 -- GLOBAL_STEP: 1023800 | > loss_disc: 2.30444 (2.32456) | > loss_disc_real_0: 0.15330 (0.12324) | > loss_disc_real_1: 0.22473 (0.21190) | > loss_disc_real_2: 0.23295 (0.21607) | > loss_disc_real_3: 0.24497 (0.21976) | > loss_disc_real_4: 0.21018 (0.21498) | > loss_disc_real_5: 0.22429 (0.21461) | > loss_0: 2.30444 (2.32456) | > grad_norm_0: 11.59649 (17.28382) | > loss_gen: 2.47234 (2.55395) | > loss_kl: 2.74408 (2.66268) | > loss_feat: 8.28691 (8.68372) | > loss_mel: 17.52680 (17.76607) | > loss_duration: 1.69876 (1.70653) | > loss_1: 32.72890 (33.37303) | > grad_norm_1: 126.04161 (140.66214) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22210 (2.45552) | > loader_time: 0.03380 (0.03501)  --> STEP: 12676/15287 -- GLOBAL_STEP: 1023825 | > loss_disc: 2.37289 (2.32456) | > loss_disc_real_0: 0.17916 (0.12323) | > loss_disc_real_1: 0.19635 (0.21189) | > loss_disc_real_2: 0.20117 (0.21607) | > loss_disc_real_3: 0.17689 (0.21976) | > loss_disc_real_4: 0.19993 (0.21498) | > loss_disc_real_5: 0.24179 (0.21461) | > loss_0: 2.37289 (2.32456) | > grad_norm_0: 15.38392 (17.27151) | > loss_gen: 2.29913 (2.55395) | > loss_kl: 2.69393 (2.66271) | > loss_feat: 8.98303 (8.68369) | > loss_mel: 18.29783 (17.76635) | > loss_duration: 1.70449 (1.70652) | > loss_1: 33.97840 (33.37330) | > grad_norm_1: 62.21650 (140.63309) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.57080 (2.45545) | > loader_time: 0.03600 (0.03501)  --> STEP: 12701/15287 -- GLOBAL_STEP: 1023850 | > loss_disc: 2.43629 (2.32463) | > loss_disc_real_0: 0.10248 (0.12322) | > loss_disc_real_1: 0.24285 (0.21188) | > loss_disc_real_2: 0.24313 (0.21607) | > loss_disc_real_3: 0.22017 (0.21977) | > loss_disc_real_4: 0.22211 (0.21498) | > loss_disc_real_5: 0.20072 (0.21460) | > loss_0: 2.43629 (2.32463) | > grad_norm_0: 10.47120 (17.26472) | > loss_gen: 2.71778 (2.55389) | > loss_kl: 2.84103 (2.66281) | > loss_feat: 9.21990 (8.68370) | > loss_mel: 19.15617 (17.76657) | > loss_duration: 1.72249 (1.70652) | > loss_1: 35.65736 (33.37355) | > grad_norm_1: 190.22078 (140.63557) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09620 (2.45528) | > loader_time: 0.03820 (0.03501)  --> STEP: 12726/15287 -- GLOBAL_STEP: 1023875 | > loss_disc: 2.33707 (2.32468) | > loss_disc_real_0: 0.13795 (0.12322) | > loss_disc_real_1: 0.20694 (0.21190) | > loss_disc_real_2: 0.19828 (0.21607) | > loss_disc_real_3: 0.21242 (0.21977) | > loss_disc_real_4: 0.19485 (0.21498) | > loss_disc_real_5: 0.20993 (0.21459) | > loss_0: 2.33707 (2.32468) | > grad_norm_0: 8.44688 (17.25703) | > loss_gen: 2.67084 (2.55383) | > loss_kl: 2.61832 (2.66288) | > loss_feat: 8.71857 (8.68343) | > loss_mel: 18.16496 (17.76658) | > loss_duration: 1.74180 (1.70650) | > loss_1: 33.91448 (33.37329) | > grad_norm_1: 127.12312 (140.57379) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.45190 (2.45517) | > loader_time: 0.03630 (0.03501)  --> STEP: 12751/15287 -- GLOBAL_STEP: 1023900 | > loss_disc: 2.36322 (2.32469) | > loss_disc_real_0: 0.21914 (0.12322) | > loss_disc_real_1: 0.25266 (0.21191) | > loss_disc_real_2: 0.23264 (0.21608) | > loss_disc_real_3: 0.22543 (0.21977) | > loss_disc_real_4: 0.25220 (0.21500) | > loss_disc_real_5: 0.22658 (0.21459) | > loss_0: 2.36322 (2.32469) | > grad_norm_0: 27.63261 (17.25337) | > loss_gen: 3.04185 (2.55387) | > loss_kl: 2.67691 (2.66296) | > loss_feat: 9.04372 (8.68324) | > loss_mel: 17.93304 (17.76711) | > loss_duration: 1.69168 (1.70650) | > loss_1: 34.38721 (33.37373) | > grad_norm_1: 127.88881 (140.58034) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.53170 (2.45533) | > loader_time: 0.03210 (0.03500)  --> STEP: 12776/15287 -- GLOBAL_STEP: 1023925 | > loss_disc: 2.43934 (2.32470) | > loss_disc_real_0: 0.16373 (0.12323) | > loss_disc_real_1: 0.20766 (0.21190) | > loss_disc_real_2: 0.19975 (0.21607) | > loss_disc_real_3: 0.18157 (0.21976) | > loss_disc_real_4: 0.21220 (0.21501) | > loss_disc_real_5: 0.24007 (0.21461) | > loss_0: 2.43934 (2.32470) | > grad_norm_0: 33.33456 (17.25990) | > loss_gen: 2.38448 (2.55384) | > loss_kl: 2.51831 (2.66281) | > loss_feat: 8.12682 (8.68294) | > loss_mel: 17.64153 (17.76678) | > loss_duration: 1.67875 (1.70649) | > loss_1: 32.34990 (33.37290) | > grad_norm_1: 141.08664 (140.59308) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.63500 (2.45539) | > loader_time: 0.03540 (0.03500)  --> STEP: 12801/15287 -- GLOBAL_STEP: 1023950 | > loss_disc: 2.33012 (2.32464) | > loss_disc_real_0: 0.18886 (0.12321) | > loss_disc_real_1: 0.22247 (0.21189) | > loss_disc_real_2: 0.21444 (0.21606) | > loss_disc_real_3: 0.20928 (0.21975) | > loss_disc_real_4: 0.21831 (0.21499) | > loss_disc_real_5: 0.22663 (0.21460) | > loss_0: 2.33012 (2.32464) | > grad_norm_0: 23.32782 (17.26716) | > loss_gen: 2.70004 (2.55382) | > loss_kl: 2.56300 (2.66273) | > loss_feat: 8.20854 (8.68279) | > loss_mel: 17.74508 (17.76661) | > loss_duration: 1.70656 (1.70648) | > loss_1: 32.92323 (33.37251) | > grad_norm_1: 59.20667 (140.66707) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.85740 (2.45584) | > loader_time: 0.03270 (0.03500)  --> STEP: 12826/15287 -- GLOBAL_STEP: 1023975 | > loss_disc: 2.34882 (2.32466) | > loss_disc_real_0: 0.14359 (0.12324) | > loss_disc_real_1: 0.20871 (0.21191) | > loss_disc_real_2: 0.21662 (0.21606) | > loss_disc_real_3: 0.21957 (0.21974) | > loss_disc_real_4: 0.21125 (0.21499) | > loss_disc_real_5: 0.20191 (0.21461) | > loss_0: 2.34882 (2.32466) | > grad_norm_0: 10.03056 (17.27652) | > loss_gen: 2.49712 (2.55378) | > loss_kl: 2.70742 (2.66276) | > loss_feat: 8.72831 (8.68281) | > loss_mel: 18.21289 (17.76678) | > loss_duration: 1.69465 (1.70647) | > loss_1: 33.84039 (33.37267) | > grad_norm_1: 80.29137 (140.65216) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.81600 (2.45634) | > loader_time: 0.03530 (0.03500)  --> STEP: 12851/15287 -- GLOBAL_STEP: 1024000 | > loss_disc: 2.24524 (2.32467) | > loss_disc_real_0: 0.09580 (0.12325) | > loss_disc_real_1: 0.20364 (0.21191) | > loss_disc_real_2: 0.19798 (0.21606) | > loss_disc_real_3: 0.21467 (0.21974) | > loss_disc_real_4: 0.22641 (0.21499) | > loss_disc_real_5: 0.20896 (0.21461) | > loss_0: 2.24524 (2.32467) | > grad_norm_0: 9.12534 (17.26702) | > loss_gen: 2.69033 (2.55377) | > loss_kl: 2.67584 (2.66282) | > loss_feat: 9.18755 (8.68274) | > loss_mel: 18.15721 (17.76681) | > loss_duration: 1.73381 (1.70647) | > loss_1: 34.44473 (33.37271) | > grad_norm_1: 173.31233 (140.58458) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.42300 (2.45626) | > loader_time: 0.03280 (0.03499)  --> STEP: 12876/15287 -- GLOBAL_STEP: 1024025 | > loss_disc: 2.33276 (2.32465) | > loss_disc_real_0: 0.11559 (0.12325) | > loss_disc_real_1: 0.19294 (0.21190) | > loss_disc_real_2: 0.19724 (0.21606) | > loss_disc_real_3: 0.19106 (0.21973) | > loss_disc_real_4: 0.19991 (0.21499) | > loss_disc_real_5: 0.23912 (0.21462) | > loss_0: 2.33276 (2.32465) | > grad_norm_0: 8.74423 (17.27178) | > loss_gen: 2.44145 (2.55382) | > loss_kl: 2.66564 (2.66280) | > loss_feat: 8.54146 (8.68291) | > loss_mel: 17.78118 (17.76681) | > loss_duration: 1.74496 (1.70648) | > loss_1: 33.17469 (33.37291) | > grad_norm_1: 173.87047 (140.61043) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.57320 (2.45625) | > loader_time: 0.03240 (0.03499)  --> STEP: 12901/15287 -- GLOBAL_STEP: 1024050 | > loss_disc: 2.32183 (2.32461) | > loss_disc_real_0: 0.09309 (0.12324) | > loss_disc_real_1: 0.20266 (0.21189) | > loss_disc_real_2: 0.22009 (0.21606) | > loss_disc_real_3: 0.20001 (0.21972) | > loss_disc_real_4: 0.19647 (0.21499) | > loss_disc_real_5: 0.21086 (0.21461) | > loss_0: 2.32183 (2.32461) | > grad_norm_0: 10.49811 (17.27274) | > loss_gen: 2.55959 (2.55383) | > loss_kl: 2.70338 (2.66288) | > loss_feat: 8.62592 (8.68293) | > loss_mel: 17.60965 (17.76667) | > loss_duration: 1.68828 (1.70647) | > loss_1: 33.18682 (33.37287) | > grad_norm_1: 162.03720 (140.62263) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.87430 (2.45649) | > loader_time: 0.03590 (0.03499)  --> STEP: 12926/15287 -- GLOBAL_STEP: 1024075 | > loss_disc: 2.32479 (2.32462) | > loss_disc_real_0: 0.14427 (0.12324) | > loss_disc_real_1: 0.17943 (0.21188) | > loss_disc_real_2: 0.22393 (0.21606) | > loss_disc_real_3: 0.19703 (0.21972) | > loss_disc_real_4: 0.19692 (0.21499) | > loss_disc_real_5: 0.22150 (0.21461) | > loss_0: 2.32479 (2.32462) | > grad_norm_0: 21.58449 (17.26875) | > loss_gen: 2.33503 (2.55377) | > loss_kl: 2.81236 (2.66288) | > loss_feat: 8.58831 (8.68287) | > loss_mel: 17.42793 (17.76654) | > loss_duration: 1.70784 (1.70647) | > loss_1: 32.87147 (33.37262) | > grad_norm_1: 138.61143 (140.60956) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58250 (2.45651) | > loader_time: 0.03670 (0.03499)  --> STEP: 12951/15287 -- GLOBAL_STEP: 1024100 | > loss_disc: 2.28820 (2.32460) | > loss_disc_real_0: 0.11759 (0.12323) | > loss_disc_real_1: 0.18942 (0.21188) | > loss_disc_real_2: 0.20649 (0.21608) | > loss_disc_real_3: 0.22739 (0.21974) | > loss_disc_real_4: 0.22778 (0.21499) | > loss_disc_real_5: 0.20435 (0.21461) | > loss_0: 2.28820 (2.32460) | > grad_norm_0: 9.28599 (17.27104) | > loss_gen: 2.55428 (2.55384) | > loss_kl: 2.64939 (2.66287) | > loss_feat: 8.70818 (8.68305) | > loss_mel: 18.05541 (17.76673) | > loss_duration: 1.68527 (1.70647) | > loss_1: 33.65253 (33.37304) | > grad_norm_1: 148.98288 (140.63693) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.61930 (2.45638) | > loader_time: 0.03530 (0.03499)  --> STEP: 12976/15287 -- GLOBAL_STEP: 1024125 | > loss_disc: 2.37335 (2.32461) | > loss_disc_real_0: 0.11376 (0.12323) | > loss_disc_real_1: 0.20173 (0.21189) | > loss_disc_real_2: 0.21675 (0.21609) | > loss_disc_real_3: 0.24219 (0.21974) | > loss_disc_real_4: 0.21021 (0.21499) | > loss_disc_real_5: 0.20234 (0.21461) | > loss_0: 2.37335 (2.32461) | > grad_norm_0: 26.64638 (17.26367) | > loss_gen: 2.29493 (2.55383) | > loss_kl: 2.83700 (2.66285) | > loss_feat: 8.68232 (8.68328) | > loss_mel: 18.15808 (17.76684) | > loss_duration: 1.69381 (1.70648) | > loss_1: 33.66614 (33.37336) | > grad_norm_1: 173.91086 (140.58757) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.55080 (2.45625) | > loader_time: 0.03190 (0.03499)  --> STEP: 13001/15287 -- GLOBAL_STEP: 1024150 | > loss_disc: 2.37557 (2.32456) | > loss_disc_real_0: 0.10725 (0.12321) | > loss_disc_real_1: 0.18907 (0.21187) | > loss_disc_real_2: 0.23844 (0.21608) | > loss_disc_real_3: 0.24066 (0.21974) | > loss_disc_real_4: 0.23739 (0.21499) | > loss_disc_real_5: 0.25781 (0.21461) | > loss_0: 2.37557 (2.32456) | > grad_norm_0: 14.51458 (17.25999) | > loss_gen: 2.54646 (2.55383) | > loss_kl: 2.64229 (2.66284) | > loss_feat: 8.98751 (8.68353) | > loss_mel: 18.26919 (17.76678) | > loss_duration: 1.73416 (1.70647) | > loss_1: 34.17960 (33.37352) | > grad_norm_1: 135.67844 (140.60048) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41150 (2.45642) | > loader_time: 0.03220 (0.03499)  --> STEP: 13026/15287 -- GLOBAL_STEP: 1024175 | > loss_disc: 2.37081 (2.32456) | > loss_disc_real_0: 0.08614 (0.12321) | > loss_disc_real_1: 0.22324 (0.21187) | > loss_disc_real_2: 0.21227 (0.21607) | > loss_disc_real_3: 0.21068 (0.21973) | > loss_disc_real_4: 0.20797 (0.21500) | > loss_disc_real_5: 0.20725 (0.21461) | > loss_0: 2.37081 (2.32456) | > grad_norm_0: 20.63178 (17.26046) | > loss_gen: 2.45614 (2.55382) | > loss_kl: 2.54078 (2.66287) | > loss_feat: 8.71429 (8.68371) | > loss_mel: 17.55974 (17.76666) | > loss_duration: 1.72452 (1.70649) | > loss_1: 32.99547 (33.37360) | > grad_norm_1: 201.71191 (140.61862) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06360 (2.45665) | > loader_time: 0.03240 (0.03499)  --> STEP: 13051/15287 -- GLOBAL_STEP: 1024200 | > loss_disc: 2.32798 (2.32456) | > loss_disc_real_0: 0.11044 (0.12321) | > loss_disc_real_1: 0.21151 (0.21187) | > loss_disc_real_2: 0.22713 (0.21608) | > loss_disc_real_3: 0.27222 (0.21975) | > loss_disc_real_4: 0.25930 (0.21502) | > loss_disc_real_5: 0.23966 (0.21461) | > loss_0: 2.32798 (2.32456) | > grad_norm_0: 29.78708 (17.26521) | > loss_gen: 2.34603 (2.55389) | > loss_kl: 2.67961 (2.66289) | > loss_feat: 7.94727 (8.68352) | > loss_mel: 17.29994 (17.76621) | > loss_duration: 1.71652 (1.70650) | > loss_1: 31.98938 (33.37309) | > grad_norm_1: 208.61879 (140.66907) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.69040 (2.45664) | > loader_time: 0.03790 (0.03499)  --> STEP: 13076/15287 -- GLOBAL_STEP: 1024225 | > loss_disc: 2.30389 (2.32466) | > loss_disc_real_0: 0.07804 (0.12324) | > loss_disc_real_1: 0.16424 (0.21188) | > loss_disc_real_2: 0.21120 (0.21608) | > loss_disc_real_3: 0.21466 (0.21975) | > loss_disc_real_4: 0.20946 (0.21501) | > loss_disc_real_5: 0.23138 (0.21461) | > loss_0: 2.30389 (2.32466) | > grad_norm_0: 13.37813 (17.26335) | > loss_gen: 2.71461 (2.55384) | > loss_kl: 2.53401 (2.66290) | > loss_feat: 8.86729 (8.68324) | > loss_mel: 18.16003 (17.76612) | > loss_duration: 1.70128 (1.70651) | > loss_1: 33.97723 (33.37267) | > grad_norm_1: 65.85400 (140.62836) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.30170 (2.45680) | > loader_time: 0.03820 (0.03498)  --> STEP: 13101/15287 -- GLOBAL_STEP: 1024250 | > loss_disc: 2.23461 (2.32465) | > loss_disc_real_0: 0.11401 (0.12325) | > loss_disc_real_1: 0.19686 (0.21189) | > loss_disc_real_2: 0.18880 (0.21608) | > loss_disc_real_3: 0.19204 (0.21975) | > loss_disc_real_4: 0.19205 (0.21501) | > loss_disc_real_5: 0.23792 (0.21460) | > loss_0: 2.23461 (2.32465) | > grad_norm_0: 13.03093 (17.25209) | > loss_gen: 2.66412 (2.55383) | > loss_kl: 2.65994 (2.66297) | > loss_feat: 9.11763 (8.68341) | > loss_mel: 17.78290 (17.76622) | > loss_duration: 1.71968 (1.70651) | > loss_1: 33.94426 (33.37300) | > grad_norm_1: 111.53934 (140.58791) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16510 (2.45729) | > loader_time: 0.03460 (0.03498)  --> STEP: 13126/15287 -- GLOBAL_STEP: 1024275 | > loss_disc: 2.33192 (2.32468) | > loss_disc_real_0: 0.11584 (0.12325) | > loss_disc_real_1: 0.22068 (0.21189) | > loss_disc_real_2: 0.19758 (0.21608) | > loss_disc_real_3: 0.22753 (0.21976) | > loss_disc_real_4: 0.22772 (0.21501) | > loss_disc_real_5: 0.27390 (0.21462) | > loss_0: 2.33192 (2.32468) | > grad_norm_0: 21.66089 (17.24807) | > loss_gen: 2.53672 (2.55387) | > loss_kl: 2.66720 (2.66289) | > loss_feat: 8.16370 (8.68336) | > loss_mel: 17.69102 (17.76639) | > loss_duration: 1.70465 (1.70652) | > loss_1: 32.76329 (33.37310) | > grad_norm_1: 141.69194 (140.56314) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27710 (2.45749) | > loader_time: 0.03460 (0.03498)  --> STEP: 13151/15287 -- GLOBAL_STEP: 1024300 | > loss_disc: 2.28071 (2.32472) | > loss_disc_real_0: 0.10097 (0.12326) | > loss_disc_real_1: 0.20613 (0.21190) | > loss_disc_real_2: 0.20365 (0.21608) | > loss_disc_real_3: 0.21887 (0.21976) | > loss_disc_real_4: 0.21279 (0.21501) | > loss_disc_real_5: 0.22500 (0.21463) | > loss_0: 2.28071 (2.32472) | > grad_norm_0: 14.99979 (17.24803) | > loss_gen: 2.57880 (2.55386) | > loss_kl: 2.59498 (2.66292) | > loss_feat: 8.62860 (8.68345) | > loss_mel: 17.47005 (17.76629) | > loss_duration: 1.69774 (1.70652) | > loss_1: 32.97017 (33.37310) | > grad_norm_1: 238.65341 (140.55035) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.62070 (2.45757) | > loader_time: 0.05700 (0.03498)  --> STEP: 13176/15287 -- GLOBAL_STEP: 1024325 | > loss_disc: 2.30333 (2.32467) | > loss_disc_real_0: 0.11143 (0.12325) | > loss_disc_real_1: 0.22464 (0.21190) | > loss_disc_real_2: 0.19030 (0.21607) | > loss_disc_real_3: 0.22771 (0.21975) | > loss_disc_real_4: 0.20469 (0.21500) | > loss_disc_real_5: 0.20656 (0.21462) | > loss_0: 2.30333 (2.32467) | > grad_norm_0: 24.04962 (17.24955) | > loss_gen: 2.48987 (2.55381) | > loss_kl: 2.77352 (2.66289) | > loss_feat: 8.42624 (8.68353) | > loss_mel: 17.45351 (17.76610) | > loss_duration: 1.71399 (1.70652) | > loss_1: 32.85713 (33.37291) | > grad_norm_1: 174.70802 (140.60664) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.84410 (2.45787) | > loader_time: 0.03160 (0.03498)  --> STEP: 13201/15287 -- GLOBAL_STEP: 1024350 | > loss_disc: 2.45776 (2.32470) | > loss_disc_real_0: 0.08261 (0.12326) | > loss_disc_real_1: 0.23666 (0.21190) | > loss_disc_real_2: 0.23817 (0.21607) | > loss_disc_real_3: 0.24882 (0.21974) | > loss_disc_real_4: 0.22887 (0.21500) | > loss_disc_real_5: 0.18917 (0.21461) | > loss_0: 2.45776 (2.32470) | > grad_norm_0: 10.26090 (17.24170) | > loss_gen: 2.54224 (2.55379) | > loss_kl: 2.82656 (2.66293) | > loss_feat: 8.32776 (8.68352) | > loss_mel: 17.50175 (17.76594) | > loss_duration: 1.69808 (1.70652) | > loss_1: 32.89639 (33.37277) | > grad_norm_1: 73.94685 (140.53746) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38400 (2.45828) | > loader_time: 0.03410 (0.03498)  --> STEP: 13226/15287 -- GLOBAL_STEP: 1024375 | > loss_disc: 2.34276 (2.32475) | > loss_disc_real_0: 0.11252 (0.12330) | > loss_disc_real_1: 0.22512 (0.21190) | > loss_disc_real_2: 0.22777 (0.21608) | > loss_disc_real_3: 0.21139 (0.21974) | > loss_disc_real_4: 0.20828 (0.21500) | > loss_disc_real_5: 0.21153 (0.21462) | > loss_0: 2.34276 (2.32475) | > grad_norm_0: 15.90994 (17.23875) | > loss_gen: 2.45472 (2.55380) | > loss_kl: 2.66969 (2.66296) | > loss_feat: 8.29605 (8.68325) | > loss_mel: 17.71117 (17.76606) | > loss_duration: 1.68831 (1.70652) | > loss_1: 32.81992 (33.37266) | > grad_norm_1: 151.67532 (140.46553) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.60060 (2.45849) | > loader_time: 0.03150 (0.03498)  --> STEP: 13251/15287 -- GLOBAL_STEP: 1024400 | > loss_disc: 2.34289 (2.32474) | > loss_disc_real_0: 0.10535 (0.12330) | > loss_disc_real_1: 0.23783 (0.21191) | > loss_disc_real_2: 0.20710 (0.21608) | > loss_disc_real_3: 0.24687 (0.21975) | > loss_disc_real_4: 0.20310 (0.21501) | > loss_disc_real_5: 0.22755 (0.21462) | > loss_0: 2.34289 (2.32474) | > grad_norm_0: 7.84391 (17.23336) | > loss_gen: 2.70085 (2.55387) | > loss_kl: 2.70128 (2.66291) | > loss_feat: 8.74471 (8.68332) | > loss_mel: 17.88685 (17.76607) | > loss_duration: 1.72726 (1.70652) | > loss_1: 33.76095 (33.37278) | > grad_norm_1: 125.10813 (140.44295) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18690 (2.45852) | > loader_time: 0.03300 (0.03498)  --> STEP: 13276/15287 -- GLOBAL_STEP: 1024425 | > loss_disc: 2.26764 (2.32470) | > loss_disc_real_0: 0.11764 (0.12330) | > loss_disc_real_1: 0.15892 (0.21190) | > loss_disc_real_2: 0.17341 (0.21607) | > loss_disc_real_3: 0.20073 (0.21974) | > loss_disc_real_4: 0.21220 (0.21501) | > loss_disc_real_5: 0.22255 (0.21461) | > loss_0: 2.26764 (2.32470) | > grad_norm_0: 17.08577 (17.22650) | > loss_gen: 2.47297 (2.55385) | > loss_kl: 2.46918 (2.66294) | > loss_feat: 9.05246 (8.68343) | > loss_mel: 17.55002 (17.76591) | > loss_duration: 1.67418 (1.70652) | > loss_1: 33.21880 (33.37275) | > grad_norm_1: 162.24535 (140.42104) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39820 (2.45893) | > loader_time: 0.03620 (0.03498)  --> STEP: 13301/15287 -- GLOBAL_STEP: 1024450 | > loss_disc: 2.31630 (2.32469) | > loss_disc_real_0: 0.11500 (0.12330) | > loss_disc_real_1: 0.24295 (0.21190) | > loss_disc_real_2: 0.26177 (0.21608) | > loss_disc_real_3: 0.23450 (0.21974) | > loss_disc_real_4: 0.25958 (0.21500) | > loss_disc_real_5: 0.20141 (0.21461) | > loss_0: 2.31630 (2.32469) | > grad_norm_0: 8.40737 (17.22014) | > loss_gen: 2.78879 (2.55384) | > loss_kl: 2.79966 (2.66293) | > loss_feat: 9.61528 (8.68348) | > loss_mel: 17.86922 (17.76569) | > loss_duration: 1.70665 (1.70652) | > loss_1: 34.77959 (33.37257) | > grad_norm_1: 106.20001 (140.38344) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32770 (2.45874) | > loader_time: 0.03380 (0.03498)  --> STEP: 13326/15287 -- GLOBAL_STEP: 1024475 | > loss_disc: 2.29132 (2.32464) | > loss_disc_real_0: 0.13136 (0.12329) | > loss_disc_real_1: 0.21213 (0.21190) | > loss_disc_real_2: 0.24983 (0.21608) | > loss_disc_real_3: 0.24679 (0.21974) | > loss_disc_real_4: 0.20618 (0.21501) | > loss_disc_real_5: 0.21908 (0.21461) | > loss_0: 2.29132 (2.32464) | > grad_norm_0: 7.11801 (17.22102) | > loss_gen: 2.50009 (2.55385) | > loss_kl: 2.62670 (2.66289) | > loss_feat: 8.43901 (8.68352) | > loss_mel: 17.28403 (17.76538) | > loss_duration: 1.70763 (1.70651) | > loss_1: 32.55746 (33.37225) | > grad_norm_1: 101.80494 (140.39937) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.74040 (2.45907) | > loader_time: 0.03830 (0.03498)  --> STEP: 13351/15287 -- GLOBAL_STEP: 1024500 | > loss_disc: 2.28004 (2.32460) | > loss_disc_real_0: 0.11357 (0.12328) | > loss_disc_real_1: 0.22282 (0.21189) | > loss_disc_real_2: 0.23259 (0.21607) | > loss_disc_real_3: 0.24883 (0.21974) | > loss_disc_real_4: 0.20491 (0.21501) | > loss_disc_real_5: 0.22397 (0.21460) | > loss_0: 2.28004 (2.32460) | > grad_norm_0: 11.12776 (17.21738) | > loss_gen: 2.62124 (2.55385) | > loss_kl: 2.81799 (2.66289) | > loss_feat: 9.03365 (8.68359) | > loss_mel: 17.41155 (17.76538) | > loss_duration: 1.72874 (1.70651) | > loss_1: 33.61317 (33.37230) | > grad_norm_1: 153.54012 (140.40240) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.70760 (2.45936) | > loader_time: 0.04040 (0.03498)  --> STEP: 13376/15287 -- GLOBAL_STEP: 1024525 | > loss_disc: 2.29715 (2.32469) | > loss_disc_real_0: 0.15179 (0.12331) | > loss_disc_real_1: 0.23051 (0.21193) | > loss_disc_real_2: 0.24981 (0.21609) | > loss_disc_real_3: 0.21819 (0.21974) | > loss_disc_real_4: 0.22207 (0.21503) | > loss_disc_real_5: 0.21294 (0.21460) | > loss_0: 2.29715 (2.32469) | > grad_norm_0: 13.77634 (17.21489) | > loss_gen: 2.69842 (2.55397) | > loss_kl: 2.74684 (2.66287) | > loss_feat: 8.49585 (8.68360) | > loss_mel: 17.83485 (17.76536) | > loss_duration: 1.70383 (1.70652) | > loss_1: 33.47979 (33.37241) | > grad_norm_1: 87.52534 (140.38553) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.77510 (2.45961) | > loader_time: 0.03710 (0.03497)  --> STEP: 13401/15287 -- GLOBAL_STEP: 1024550 | > loss_disc: 2.26137 (2.32469) | > loss_disc_real_0: 0.12201 (0.12331) | > loss_disc_real_1: 0.21041 (0.21193) | > loss_disc_real_2: 0.19970 (0.21609) | > loss_disc_real_3: 0.26468 (0.21974) | > loss_disc_real_4: 0.20845 (0.21503) | > loss_disc_real_5: 0.26780 (0.21461) | > loss_0: 2.26137 (2.32469) | > grad_norm_0: 12.81743 (17.20324) | > loss_gen: 2.52898 (2.55396) | > loss_kl: 2.64208 (2.66293) | > loss_feat: 8.63663 (8.68350) | > loss_mel: 17.72585 (17.76541) | > loss_duration: 1.73196 (1.70651) | > loss_1: 33.26550 (33.37239) | > grad_norm_1: 155.19176 (140.31352) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21130 (2.45983) | > loader_time: 0.03140 (0.03497)  --> STEP: 13426/15287 -- GLOBAL_STEP: 1024575 | > loss_disc: 2.26152 (2.32468) | > loss_disc_real_0: 0.10781 (0.12330) | > loss_disc_real_1: 0.18112 (0.21192) | > loss_disc_real_2: 0.24682 (0.21610) | > loss_disc_real_3: 0.23763 (0.21975) | > loss_disc_real_4: 0.22941 (0.21503) | > loss_disc_real_5: 0.25993 (0.21461) | > loss_0: 2.26152 (2.32468) | > grad_norm_0: 31.52753 (17.20324) | > loss_gen: 2.68218 (2.55396) | > loss_kl: 2.68855 (2.66298) | > loss_feat: 8.68460 (8.68367) | > loss_mel: 18.03488 (17.76529) | > loss_duration: 1.68543 (1.70651) | > loss_1: 33.77563 (33.37248) | > grad_norm_1: 197.68634 (140.29848) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.79730 (2.46000) | > loader_time: 0.03190 (0.03497)  --> STEP: 13451/15287 -- GLOBAL_STEP: 1024600 | > loss_disc: 2.27561 (2.32471) | > loss_disc_real_0: 0.10328 (0.12330) | > loss_disc_real_1: 0.21607 (0.21193) | > loss_disc_real_2: 0.22706 (0.21611) | > loss_disc_real_3: 0.21048 (0.21975) | > loss_disc_real_4: 0.21328 (0.21504) | > loss_disc_real_5: 0.21841 (0.21460) | > loss_0: 2.27561 (2.32471) | > grad_norm_0: 15.31938 (17.20901) | > loss_gen: 2.62471 (2.55390) | > loss_kl: 2.61286 (2.66299) | > loss_feat: 8.31297 (8.68354) | > loss_mel: 17.61877 (17.76522) | > loss_duration: 1.72704 (1.70650) | > loss_1: 32.89634 (33.37220) | > grad_norm_1: 107.12197 (140.25244) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19830 (2.46012) | > loader_time: 0.03240 (0.03496)  --> STEP: 13476/15287 -- GLOBAL_STEP: 1024625 | > loss_disc: 2.27464 (2.32471) | > loss_disc_real_0: 0.10002 (0.12329) | > loss_disc_real_1: 0.25040 (0.21193) | > loss_disc_real_2: 0.24474 (0.21611) | > loss_disc_real_3: 0.23051 (0.21975) | > loss_disc_real_4: 0.23975 (0.21502) | > loss_disc_real_5: 0.22295 (0.21459) | > loss_0: 2.27464 (2.32471) | > grad_norm_0: 5.83463 (17.20801) | > loss_gen: 2.56950 (2.55383) | > loss_kl: 2.74214 (2.66298) | > loss_feat: 8.91482 (8.68355) | > loss_mel: 17.26418 (17.76513) | > loss_duration: 1.68391 (1.70649) | > loss_1: 33.17455 (33.37204) | > grad_norm_1: 105.36073 (140.20795) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.47580 (2.45987) | > loader_time: 0.03190 (0.03496)  --> STEP: 13501/15287 -- GLOBAL_STEP: 1024650 | > loss_disc: 2.36734 (2.32476) | > loss_disc_real_0: 0.11567 (0.12329) | > loss_disc_real_1: 0.25463 (0.21194) | > loss_disc_real_2: 0.21475 (0.21611) | > loss_disc_real_3: 0.24094 (0.21975) | > loss_disc_real_4: 0.18926 (0.21503) | > loss_disc_real_5: 0.21581 (0.21459) | > loss_0: 2.36734 (2.32476) | > grad_norm_0: 9.72775 (17.19852) | > loss_gen: 2.50160 (2.55379) | > loss_kl: 2.64520 (2.66300) | > loss_feat: 8.54623 (8.68351) | > loss_mel: 17.65220 (17.76533) | > loss_duration: 1.71785 (1.70650) | > loss_1: 33.06308 (33.37218) | > grad_norm_1: 60.18900 (140.13960) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.50810 (2.45995) | > loader_time: 0.03740 (0.03496)  --> STEP: 13526/15287 -- GLOBAL_STEP: 1024675 | > loss_disc: 2.48081 (2.32482) | > loss_disc_real_0: 0.16834 (0.12329) | > loss_disc_real_1: 0.21335 (0.21195) | > loss_disc_real_2: 0.22594 (0.21613) | > loss_disc_real_3: 0.23455 (0.21975) | > loss_disc_real_4: 0.20365 (0.21503) | > loss_disc_real_5: 0.24850 (0.21459) | > loss_0: 2.48081 (2.32482) | > grad_norm_0: 9.47529 (17.18824) | > loss_gen: 2.46719 (2.55384) | > loss_kl: 2.70737 (2.66303) | > loss_feat: 8.65993 (8.68365) | > loss_mel: 17.58378 (17.76562) | > loss_duration: 1.69325 (1.70650) | > loss_1: 33.11152 (33.37269) | > grad_norm_1: 50.19017 (140.01640) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.24230 (2.45982) | > loader_time: 0.04190 (0.03496)  --> STEP: 13551/15287 -- GLOBAL_STEP: 1024700 | > loss_disc: 2.39647 (2.32494) | > loss_disc_real_0: 0.15385 (0.12330) | > loss_disc_real_1: 0.24093 (0.21197) | > loss_disc_real_2: 0.24429 (0.21613) | > loss_disc_real_3: 0.23951 (0.21975) | > loss_disc_real_4: 0.20338 (0.21504) | > loss_disc_real_5: 0.22157 (0.21459) | > loss_0: 2.39647 (2.32494) | > grad_norm_0: 21.13413 (17.17805) | > loss_gen: 2.58537 (2.55383) | > loss_kl: 2.59590 (2.66309) | > loss_feat: 8.71303 (8.68337) | > loss_mel: 17.78918 (17.76596) | > loss_duration: 1.72229 (1.70651) | > loss_1: 33.40576 (33.37282) | > grad_norm_1: 85.86919 (139.95738) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21010 (2.45996) | > loader_time: 0.03010 (0.03496)  --> STEP: 13576/15287 -- GLOBAL_STEP: 1024725 | > loss_disc: 2.31130 (2.32495) | > loss_disc_real_0: 0.09553 (0.12330) | > loss_disc_real_1: 0.22138 (0.21199) | > loss_disc_real_2: 0.22425 (0.21614) | > loss_disc_real_3: 0.22152 (0.21976) | > loss_disc_real_4: 0.19689 (0.21504) | > loss_disc_real_5: 0.18727 (0.21458) | > loss_0: 2.31130 (2.32495) | > grad_norm_0: 25.39826 (17.17804) | > loss_gen: 2.51206 (2.55378) | > loss_kl: 2.62825 (2.66301) | > loss_feat: 8.71869 (8.68313) | > loss_mel: 17.79204 (17.76573) | > loss_duration: 1.71357 (1.70650) | > loss_1: 33.36460 (33.37220) | > grad_norm_1: 199.96094 (139.95705) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25040 (2.46018) | > loader_time: 0.03310 (0.03495)  --> STEP: 13601/15287 -- GLOBAL_STEP: 1024750 | > loss_disc: 2.33659 (2.32488) | > loss_disc_real_0: 0.13111 (0.12329) | > loss_disc_real_1: 0.19493 (0.21198) | > loss_disc_real_2: 0.20670 (0.21613) | > loss_disc_real_3: 0.23025 (0.21975) | > loss_disc_real_4: 0.20116 (0.21504) | > loss_disc_real_5: 0.17896 (0.21458) | > loss_0: 2.33659 (2.32488) | > grad_norm_0: 26.94022 (17.17226) | > loss_gen: 2.42335 (2.55379) | > loss_kl: 2.60417 (2.66298) | > loss_feat: 8.21124 (8.68301) | > loss_mel: 17.67178 (17.76550) | > loss_duration: 1.67534 (1.70648) | > loss_1: 32.58589 (33.37181) | > grad_norm_1: 74.43070 (139.96587) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72150 (2.46045) | > loader_time: 0.03490 (0.03495)  --> STEP: 13626/15287 -- GLOBAL_STEP: 1024775 | > loss_disc: 2.26405 (2.32483) | > loss_disc_real_0: 0.10453 (0.12327) | > loss_disc_real_1: 0.18646 (0.21198) | > loss_disc_real_2: 0.22277 (0.21613) | > loss_disc_real_3: 0.20117 (0.21975) | > loss_disc_real_4: 0.20178 (0.21503) | > loss_disc_real_5: 0.18933 (0.21457) | > loss_0: 2.26405 (2.32483) | > grad_norm_0: 4.12743 (17.17635) | > loss_gen: 2.91808 (2.55379) | > loss_kl: 2.73683 (2.66299) | > loss_feat: 8.75503 (8.68324) | > loss_mel: 17.59072 (17.76551) | > loss_duration: 1.74138 (1.70648) | > loss_1: 33.74205 (33.37205) | > grad_norm_1: 120.93056 (140.02678) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19860 (2.46040) | > loader_time: 0.03390 (0.03496)  --> STEP: 13651/15287 -- GLOBAL_STEP: 1024800 | > loss_disc: 2.33708 (2.32478) | > loss_disc_real_0: 0.14724 (0.12327) | > loss_disc_real_1: 0.20456 (0.21197) | > loss_disc_real_2: 0.20490 (0.21612) | > loss_disc_real_3: 0.23376 (0.21974) | > loss_disc_real_4: 0.20516 (0.21503) | > loss_disc_real_5: 0.25723 (0.21457) | > loss_0: 2.33708 (2.32478) | > grad_norm_0: 23.71042 (17.17798) | > loss_gen: 2.46750 (2.55376) | > loss_kl: 2.78132 (2.66295) | > loss_feat: 8.06889 (8.68317) | > loss_mel: 17.48645 (17.76482) | > loss_duration: 1.69428 (1.70646) | > loss_1: 32.49843 (33.37119) | > grad_norm_1: 87.71431 (140.07167) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41960 (2.46073) | > loader_time: 0.03190 (0.03495)  --> STEP: 13676/15287 -- GLOBAL_STEP: 1024825 | > loss_disc: 2.28614 (2.32474) | > loss_disc_real_0: 0.13705 (0.12326) | > loss_disc_real_1: 0.23300 (0.21197) | > loss_disc_real_2: 0.26015 (0.21611) | > loss_disc_real_3: 0.20646 (0.21973) | > loss_disc_real_4: 0.22154 (0.21503) | > loss_disc_real_5: 0.16957 (0.21456) | > loss_0: 2.28614 (2.32474) | > grad_norm_0: 12.23725 (17.17179) | > loss_gen: 2.63607 (2.55371) | > loss_kl: 2.59223 (2.66299) | > loss_feat: 8.58225 (8.68318) | > loss_mel: 17.95010 (17.76454) | > loss_duration: 1.69499 (1.70646) | > loss_1: 33.45564 (33.37093) | > grad_norm_1: 87.31686 (140.05687) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.46340 (2.46058) | > loader_time: 0.03320 (0.03495)  --> STEP: 13701/15287 -- GLOBAL_STEP: 1024850 | > loss_disc: 2.25123 (2.32475) | > loss_disc_real_0: 0.15143 (0.12330) | > loss_disc_real_1: 0.22047 (0.21198) | > loss_disc_real_2: 0.20444 (0.21611) | > loss_disc_real_3: 0.19438 (0.21973) | > loss_disc_real_4: 0.20940 (0.21503) | > loss_disc_real_5: 0.22199 (0.21455) | > loss_0: 2.25123 (2.32475) | > grad_norm_0: 12.27958 (17.17768) | > loss_gen: 2.51289 (2.55370) | > loss_kl: 2.52016 (2.66295) | > loss_feat: 8.73351 (8.68288) | > loss_mel: 17.16430 (17.76442) | > loss_duration: 1.67049 (1.70646) | > loss_1: 32.60135 (33.37047) | > grad_norm_1: 147.94981 (140.07744) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.47810 (2.46039) | > loader_time: 0.03380 (0.03495)  --> STEP: 13726/15287 -- GLOBAL_STEP: 1024875 | > loss_disc: 2.34603 (2.32472) | > loss_disc_real_0: 0.13852 (0.12330) | > loss_disc_real_1: 0.19444 (0.21197) | > loss_disc_real_2: 0.23892 (0.21611) | > loss_disc_real_3: 0.20726 (0.21973) | > loss_disc_real_4: 0.20434 (0.21503) | > loss_disc_real_5: 0.23029 (0.21455) | > loss_0: 2.34603 (2.32472) | > grad_norm_0: 11.07576 (17.16914) | > loss_gen: 2.51626 (2.55369) | > loss_kl: 2.78880 (2.66301) | > loss_feat: 8.18166 (8.68302) | > loss_mel: 17.83586 (17.76427) | > loss_duration: 1.71742 (1.70645) | > loss_1: 33.03999 (33.37054) | > grad_norm_1: 209.50481 (140.07072) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.47580 (2.46027) | > loader_time: 0.03530 (0.03495)  --> STEP: 13751/15287 -- GLOBAL_STEP: 1024900 | > loss_disc: 2.35105 (2.32473) | > loss_disc_real_0: 0.17534 (0.12329) | > loss_disc_real_1: 0.22292 (0.21197) | > loss_disc_real_2: 0.20873 (0.21612) | > loss_disc_real_3: 0.25172 (0.21973) | > loss_disc_real_4: 0.23586 (0.21504) | > loss_disc_real_5: 0.24109 (0.21455) | > loss_0: 2.35105 (2.32473) | > grad_norm_0: 12.00928 (17.16386) | > loss_gen: 2.67112 (2.55368) | > loss_kl: 2.64238 (2.66305) | > loss_feat: 8.23226 (8.68299) | > loss_mel: 17.58017 (17.76427) | > loss_duration: 1.75231 (1.70646) | > loss_1: 32.87825 (33.37054) | > grad_norm_1: 38.20834 (140.03618) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13650 (2.46009) | > loader_time: 0.03760 (0.03495)  --> STEP: 13776/15287 -- GLOBAL_STEP: 1024925 | > loss_disc: 2.32631 (2.32471) | > loss_disc_real_0: 0.11960 (0.12328) | > loss_disc_real_1: 0.21553 (0.21197) | > loss_disc_real_2: 0.22953 (0.21611) | > loss_disc_real_3: 0.20911 (0.21973) | > loss_disc_real_4: 0.22088 (0.21505) | > loss_disc_real_5: 0.17345 (0.21455) | > loss_0: 2.32631 (2.32471) | > grad_norm_0: 10.36151 (17.15569) | > loss_gen: 2.57301 (2.55365) | > loss_kl: 2.62788 (2.66303) | > loss_feat: 9.01821 (8.68295) | > loss_mel: 18.31148 (17.76436) | > loss_duration: 1.71862 (1.70646) | > loss_1: 34.24920 (33.37054) | > grad_norm_1: 131.62172 (140.02509) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58100 (2.46001) | > loader_time: 0.03030 (0.03495)  --> STEP: 13801/15287 -- GLOBAL_STEP: 1024950 | > loss_disc: 2.31252 (2.32477) | > loss_disc_real_0: 0.08423 (0.12329) | > loss_disc_real_1: 0.20183 (0.21197) | > loss_disc_real_2: 0.19223 (0.21611) | > loss_disc_real_3: 0.20159 (0.21974) | > loss_disc_real_4: 0.22241 (0.21504) | > loss_disc_real_5: 0.17279 (0.21455) | > loss_0: 2.31252 (2.32477) | > grad_norm_0: 12.44901 (17.15213) | > loss_gen: 2.49255 (2.55353) | > loss_kl: 2.72363 (2.66308) | > loss_feat: 8.81558 (8.68258) | > loss_mel: 17.88688 (17.76429) | > loss_duration: 1.69520 (1.70645) | > loss_1: 33.61384 (33.37003) | > grad_norm_1: 72.55659 (139.98865) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08440 (2.46003) | > loader_time: 0.03180 (0.03495)  --> STEP: 13826/15287 -- GLOBAL_STEP: 1024975 | > loss_disc: 2.40502 (2.32481) | > loss_disc_real_0: 0.20132 (0.12329) | > loss_disc_real_1: 0.19685 (0.21197) | > loss_disc_real_2: 0.22659 (0.21612) | > loss_disc_real_3: 0.25450 (0.21974) | > loss_disc_real_4: 0.22160 (0.21504) | > loss_disc_real_5: 0.19730 (0.21455) | > loss_0: 2.40502 (2.32481) | > grad_norm_0: 12.34712 (17.14708) | > loss_gen: 2.37749 (2.55345) | > loss_kl: 2.75473 (2.66310) | > loss_feat: 8.25950 (8.68240) | > loss_mel: 16.85191 (17.76408) | > loss_duration: 1.65316 (1.70645) | > loss_1: 31.89678 (33.36959) | > grad_norm_1: 139.84506 (139.94658) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.68540 (2.46037) | > loader_time: 0.03680 (0.03495)  --> STEP: 13851/15287 -- GLOBAL_STEP: 1025000 | > loss_disc: 2.36082 (2.32482) | > loss_disc_real_0: 0.13158 (0.12327) | > loss_disc_real_1: 0.23426 (0.21197) | > loss_disc_real_2: 0.21954 (0.21611) | > loss_disc_real_3: 0.23179 (0.21974) | > loss_disc_real_4: 0.22122 (0.21504) | > loss_disc_real_5: 0.20878 (0.21456) | > loss_0: 2.36082 (2.32482) | > grad_norm_0: 28.77790 (17.14532) | > loss_gen: 2.56041 (2.55343) | > loss_kl: 2.69775 (2.66311) | > loss_feat: 7.84083 (8.68230) | > loss_mel: 17.54028 (17.76410) | > loss_duration: 1.68739 (1.70643) | > loss_1: 32.32667 (33.36948) | > grad_norm_1: 158.04004 (139.94588) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40790 (2.46073) | > loader_time: 0.03520 (0.03494)  --> STEP: 13876/15287 -- GLOBAL_STEP: 1025025 | > loss_disc: 2.37132 (2.32483) | > loss_disc_real_0: 0.12216 (0.12326) | > loss_disc_real_1: 0.21814 (0.21197) | > loss_disc_real_2: 0.23461 (0.21612) | > loss_disc_real_3: 0.22911 (0.21974) | > loss_disc_real_4: 0.23319 (0.21505) | > loss_disc_real_5: 0.20383 (0.21456) | > loss_0: 2.37132 (2.32483) | > grad_norm_0: 10.43356 (17.14127) | > loss_gen: 2.55861 (2.55344) | > loss_kl: 2.63980 (2.66311) | > loss_feat: 9.13496 (8.68248) | > loss_mel: 18.16201 (17.76429) | > loss_duration: 1.72060 (1.70641) | > loss_1: 34.21598 (33.36985) | > grad_norm_1: 113.77161 (139.93349) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13290 (2.46137) | > loader_time: 0.03620 (0.03494)  --> STEP: 13901/15287 -- GLOBAL_STEP: 1025050 | > loss_disc: 2.31601 (2.32481) | > loss_disc_real_0: 0.13499 (0.12326) | > loss_disc_real_1: 0.20302 (0.21197) | > loss_disc_real_2: 0.20233 (0.21613) | > loss_disc_real_3: 0.22213 (0.21974) | > loss_disc_real_4: 0.22570 (0.21505) | > loss_disc_real_5: 0.21118 (0.21456) | > loss_0: 2.31601 (2.32481) | > grad_norm_0: 16.18706 (17.13636) | > loss_gen: 2.58944 (2.55341) | > loss_kl: 2.63208 (2.66313) | > loss_feat: 8.69375 (8.68228) | > loss_mel: 18.06494 (17.76421) | > loss_duration: 1.70728 (1.70643) | > loss_1: 33.68749 (33.36958) | > grad_norm_1: 162.22720 (139.94044) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.10760 (2.46137) | > loader_time: 0.03130 (0.03494)  --> STEP: 13926/15287 -- GLOBAL_STEP: 1025075 | > loss_disc: 2.34149 (2.32481) | > loss_disc_real_0: 0.12553 (0.12325) | > loss_disc_real_1: 0.21873 (0.21197) | > loss_disc_real_2: 0.20020 (0.21613) | > loss_disc_real_3: 0.22865 (0.21974) | > loss_disc_real_4: 0.22494 (0.21506) | > loss_disc_real_5: 0.24294 (0.21455) | > loss_0: 2.34149 (2.32481) | > grad_norm_0: 14.99222 (17.13447) | > loss_gen: 2.48069 (2.55338) | > loss_kl: 2.64971 (2.66306) | > loss_feat: 8.54915 (8.68226) | > loss_mel: 17.20489 (17.76440) | > loss_duration: 1.73898 (1.70644) | > loss_1: 32.62343 (33.36964) | > grad_norm_1: 117.44074 (139.93816) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32410 (2.46136) | > loader_time: 0.03490 (0.03494)  --> STEP: 13951/15287 -- GLOBAL_STEP: 1025100 | > loss_disc: 2.32679 (2.32481) | > loss_disc_real_0: 0.09513 (0.12324) | > loss_disc_real_1: 0.22527 (0.21197) | > loss_disc_real_2: 0.23452 (0.21613) | > loss_disc_real_3: 0.23355 (0.21974) | > loss_disc_real_4: 0.20583 (0.21506) | > loss_disc_real_5: 0.19851 (0.21455) | > loss_0: 2.32679 (2.32481) | > grad_norm_0: 13.05365 (17.13088) | > loss_gen: 2.45417 (2.55335) | > loss_kl: 2.56335 (2.66308) | > loss_feat: 8.91443 (8.68242) | > loss_mel: 17.56909 (17.76465) | > loss_duration: 1.68973 (1.70643) | > loss_1: 33.19077 (33.37004) | > grad_norm_1: 118.40060 (139.94614) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40700 (2.46134) | > loader_time: 0.03130 (0.03494)  --> STEP: 13976/15287 -- GLOBAL_STEP: 1025125 | > loss_disc: 2.39285 (2.32481) | > loss_disc_real_0: 0.14142 (0.12324) | > loss_disc_real_1: 0.15239 (0.21196) | > loss_disc_real_2: 0.19632 (0.21613) | > loss_disc_real_3: 0.19010 (0.21973) | > loss_disc_real_4: 0.21949 (0.21506) | > loss_disc_real_5: 0.23991 (0.21454) | > loss_0: 2.39285 (2.32481) | > grad_norm_0: 19.77058 (17.12335) | > loss_gen: 2.38051 (2.55333) | > loss_kl: 2.55709 (2.66312) | > loss_feat: 8.45213 (8.68251) | > loss_mel: 17.70317 (17.76469) | > loss_duration: 1.74390 (1.70643) | > loss_1: 32.83680 (33.37019) | > grad_norm_1: 155.73146 (139.92847) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.48930 (2.46156) | > loader_time: 0.03640 (0.03494)  --> STEP: 14001/15287 -- GLOBAL_STEP: 1025150 | > loss_disc: 2.32274 (2.32486) | > loss_disc_real_0: 0.14645 (0.12324) | > loss_disc_real_1: 0.19047 (0.21194) | > loss_disc_real_2: 0.22297 (0.21613) | > loss_disc_real_3: 0.22852 (0.21972) | > loss_disc_real_4: 0.21362 (0.21506) | > loss_disc_real_5: 0.21368 (0.21456) | > loss_0: 2.32274 (2.32486) | > grad_norm_0: 29.70420 (17.12531) | > loss_gen: 2.37852 (2.55326) | > loss_kl: 2.77133 (2.66316) | > loss_feat: 8.47121 (8.68233) | > loss_mel: 17.65225 (17.76460) | > loss_duration: 1.71250 (1.70644) | > loss_1: 32.98581 (33.36990) | > grad_norm_1: 110.65038 (139.94983) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58990 (2.46185) | > loader_time: 0.03550 (0.03494)  --> STEP: 14026/15287 -- GLOBAL_STEP: 1025175 | > loss_disc: 2.28022 (2.32482) | > loss_disc_real_0: 0.12454 (0.12322) | > loss_disc_real_1: 0.19866 (0.21193) | > loss_disc_real_2: 0.23604 (0.21612) | > loss_disc_real_3: 0.24379 (0.21971) | > loss_disc_real_4: 0.22182 (0.21505) | > loss_disc_real_5: 0.22096 (0.21455) | > loss_0: 2.28022 (2.32482) | > grad_norm_0: 12.46800 (17.12578) | > loss_gen: 2.57239 (2.55318) | > loss_kl: 2.61303 (2.66312) | > loss_feat: 8.97532 (8.68227) | > loss_mel: 18.07290 (17.76435) | > loss_duration: 1.71000 (1.70643) | > loss_1: 33.94364 (33.36946) | > grad_norm_1: 165.04089 (139.97012) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40650 (2.46210) | > loader_time: 0.03120 (0.03494)  --> STEP: 14051/15287 -- GLOBAL_STEP: 1025200 | > loss_disc: 2.23831 (2.32478) | > loss_disc_real_0: 0.11023 (0.12323) | > loss_disc_real_1: 0.18069 (0.21193) | > loss_disc_real_2: 0.19461 (0.21611) | > loss_disc_real_3: 0.21620 (0.21970) | > loss_disc_real_4: 0.20974 (0.21505) | > loss_disc_real_5: 0.19378 (0.21455) | > loss_0: 2.23831 (2.32478) | > grad_norm_0: 11.34652 (17.12252) | > loss_gen: 2.52044 (2.55313) | > loss_kl: 2.72596 (2.66311) | > loss_feat: 8.63733 (8.68213) | > loss_mel: 17.52576 (17.76417) | > loss_duration: 1.68802 (1.70644) | > loss_1: 33.09750 (33.36907) | > grad_norm_1: 112.15922 (139.94159) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.10930 (2.46232) | > loader_time: 0.03800 (0.03493)  --> STEP: 14076/15287 -- GLOBAL_STEP: 1025225 | > loss_disc: 2.37789 (2.32476) | > loss_disc_real_0: 0.15966 (0.12324) | > loss_disc_real_1: 0.20525 (0.21192) | > loss_disc_real_2: 0.20693 (0.21612) | > loss_disc_real_3: 0.23050 (0.21970) | > loss_disc_real_4: 0.25383 (0.21505) | > loss_disc_real_5: 0.24474 (0.21454) | > loss_0: 2.37789 (2.32476) | > grad_norm_0: 12.95087 (17.11406) | > loss_gen: 2.35161 (2.55319) | > loss_kl: 2.80670 (2.66313) | > loss_feat: 7.65880 (8.68230) | > loss_mel: 17.64023 (17.76431) | > loss_duration: 1.71161 (1.70647) | > loss_1: 32.16895 (33.36950) | > grad_norm_1: 125.81693 (139.84993) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38400 (2.46245) | > loader_time: 0.03150 (0.03493)  --> STEP: 14101/15287 -- GLOBAL_STEP: 1025250 | > loss_disc: 2.38892 (2.32471) | > loss_disc_real_0: 0.18489 (0.12323) | > loss_disc_real_1: 0.21665 (0.21192) | > loss_disc_real_2: 0.22404 (0.21611) | > loss_disc_real_3: 0.24579 (0.21971) | > loss_disc_real_4: 0.26276 (0.21504) | > loss_disc_real_5: 0.23487 (0.21454) | > loss_0: 2.38892 (2.32471) | > grad_norm_0: 29.85515 (17.11212) | > loss_gen: 2.57464 (2.55323) | > loss_kl: 2.61591 (2.66317) | > loss_feat: 8.46599 (8.68243) | > loss_mel: 18.05610 (17.76436) | > loss_duration: 1.69885 (1.70648) | > loss_1: 33.41150 (33.36976) | > grad_norm_1: 182.76959 (139.86298) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.46310 (2.46266) | > loader_time: 0.03270 (0.03493)  --> STEP: 14126/15287 -- GLOBAL_STEP: 1025275 | > loss_disc: 2.31367 (2.32474) | > loss_disc_real_0: 0.11316 (0.12326) | > loss_disc_real_1: 0.21609 (0.21191) | > loss_disc_real_2: 0.22533 (0.21611) | > loss_disc_real_3: 0.21909 (0.21970) | > loss_disc_real_4: 0.19209 (0.21504) | > loss_disc_real_5: 0.21493 (0.21455) | > loss_0: 2.31367 (2.32474) | > grad_norm_0: 13.79770 (17.11612) | > loss_gen: 2.44305 (2.55318) | > loss_kl: 2.70863 (2.66317) | > loss_feat: 8.74922 (8.68245) | > loss_mel: 17.59772 (17.76424) | > loss_duration: 1.74895 (1.70650) | > loss_1: 33.24757 (33.36963) | > grad_norm_1: 80.09985 (139.86163) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.76760 (2.46303) | > loader_time: 0.03120 (0.03493)  --> STEP: 14151/15287 -- GLOBAL_STEP: 1025300 | > loss_disc: 2.25875 (2.32470) | > loss_disc_real_0: 0.13673 (0.12325) | > loss_disc_real_1: 0.23560 (0.21191) | > loss_disc_real_2: 0.24021 (0.21611) | > loss_disc_real_3: 0.22213 (0.21969) | > loss_disc_real_4: 0.24364 (0.21504) | > loss_disc_real_5: 0.19389 (0.21455) | > loss_0: 2.25875 (2.32470) | > grad_norm_0: 15.92781 (17.11142) | > loss_gen: 2.57768 (2.55321) | > loss_kl: 2.72445 (2.66323) | > loss_feat: 8.93073 (8.68273) | > loss_mel: 17.54373 (17.76423) | > loss_duration: 1.72448 (1.70650) | > loss_1: 33.50106 (33.37000) | > grad_norm_1: 185.00327 (139.84784) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.07310 (2.46345) | > loader_time: 0.04360 (0.03493)  --> STEP: 14176/15287 -- GLOBAL_STEP: 1025325 | > loss_disc: 2.33423 (2.32466) | > loss_disc_real_0: 0.13489 (0.12324) | > loss_disc_real_1: 0.21685 (0.21190) | > loss_disc_real_2: 0.21888 (0.21610) | > loss_disc_real_3: 0.20364 (0.21969) | > loss_disc_real_4: 0.22078 (0.21503) | > loss_disc_real_5: 0.19359 (0.21455) | > loss_0: 2.33423 (2.32466) | > grad_norm_0: 7.83845 (17.11587) | > loss_gen: 2.61965 (2.55320) | > loss_kl: 2.58223 (2.66325) | > loss_feat: 8.55882 (8.68292) | > loss_mel: 17.92566 (17.76427) | > loss_duration: 1.74234 (1.70650) | > loss_1: 33.42870 (33.37023) | > grad_norm_1: 45.06899 (139.85265) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21800 (2.46334) | > loader_time: 0.03330 (0.03492)  --> STEP: 14201/15287 -- GLOBAL_STEP: 1025350 | > loss_disc: 2.42850 (2.32466) | > loss_disc_real_0: 0.09940 (0.12324) | > loss_disc_real_1: 0.18655 (0.21190) | > loss_disc_real_2: 0.22730 (0.21611) | > loss_disc_real_3: 0.22585 (0.21970) | > loss_disc_real_4: 0.22172 (0.21504) | > loss_disc_real_5: 0.23213 (0.21456) | > loss_0: 2.42850 (2.32466) | > grad_norm_0: 37.55124 (17.11589) | > loss_gen: 2.23773 (2.55319) | > loss_kl: 2.62882 (2.66326) | > loss_feat: 7.93718 (8.68280) | > loss_mel: 17.70938 (17.76423) | > loss_duration: 1.76540 (1.70651) | > loss_1: 32.27850 (33.37008) | > grad_norm_1: 131.06801 (139.81772) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.54950 (2.46395) | > loader_time: 0.03310 (0.03492)  --> STEP: 14226/15287 -- GLOBAL_STEP: 1025375 | > loss_disc: 2.37296 (2.32466) | > loss_disc_real_0: 0.11210 (0.12324) | > loss_disc_real_1: 0.22342 (0.21191) | > loss_disc_real_2: 0.21361 (0.21611) | > loss_disc_real_3: 0.23177 (0.21970) | > loss_disc_real_4: 0.22546 (0.21504) | > loss_disc_real_5: 0.24167 (0.21456) | > loss_0: 2.37296 (2.32466) | > grad_norm_0: 14.89867 (17.10921) | > loss_gen: 2.56870 (2.55323) | > loss_kl: 2.80119 (2.66330) | > loss_feat: 8.52118 (8.68279) | > loss_mel: 18.34134 (17.76460) | > loss_duration: 1.70992 (1.70652) | > loss_1: 33.94232 (33.37055) | > grad_norm_1: 185.98766 (139.76978) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25080 (2.46449) | > loader_time: 0.03130 (0.03492)  --> STEP: 14251/15287 -- GLOBAL_STEP: 1025400 | > loss_disc: 2.34240 (2.32461) | > loss_disc_real_0: 0.07750 (0.12322) | > loss_disc_real_1: 0.21899 (0.21190) | > loss_disc_real_2: 0.21886 (0.21611) | > loss_disc_real_3: 0.24912 (0.21970) | > loss_disc_real_4: 0.22664 (0.21504) | > loss_disc_real_5: 0.23006 (0.21455) | > loss_0: 2.34240 (2.32461) | > grad_norm_0: 16.75057 (17.10557) | > loss_gen: 2.61363 (2.55327) | > loss_kl: 2.71013 (2.66325) | > loss_feat: 9.23994 (8.68295) | > loss_mel: 17.72718 (17.76472) | > loss_duration: 1.68253 (1.70653) | > loss_1: 33.97341 (33.37083) | > grad_norm_1: 95.19036 (139.80598) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.85650 (2.46484) | > loader_time: 0.03880 (0.03492)  --> STEP: 14276/15287 -- GLOBAL_STEP: 1025425 | > loss_disc: 2.32205 (2.32458) | > loss_disc_real_0: 0.11764 (0.12323) | > loss_disc_real_1: 0.23104 (0.21190) | > loss_disc_real_2: 0.20886 (0.21611) | > loss_disc_real_3: 0.22689 (0.21969) | > loss_disc_real_4: 0.19580 (0.21503) | > loss_disc_real_5: 0.22643 (0.21453) | > loss_0: 2.32205 (2.32458) | > grad_norm_0: 15.44886 (17.11033) | > loss_gen: 2.46137 (2.55330) | > loss_kl: 2.69229 (2.66326) | > loss_feat: 8.49998 (8.68298) | > loss_mel: 17.96728 (17.76466) | > loss_duration: 1.70547 (1.70653) | > loss_1: 33.32639 (33.37082) | > grad_norm_1: 170.70557 (139.83025) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.54110 (2.46526) | > loader_time: 0.03030 (0.03492)  --> STEP: 14301/15287 -- GLOBAL_STEP: 1025450 | > loss_disc: 2.34324 (2.32457) | > loss_disc_real_0: 0.18277 (0.12324) | > loss_disc_real_1: 0.20960 (0.21191) | > loss_disc_real_2: 0.21422 (0.21611) | > loss_disc_real_3: 0.23870 (0.21969) | > loss_disc_real_4: 0.24681 (0.21504) | > loss_disc_real_5: 0.22180 (0.21453) | > loss_0: 2.34324 (2.32457) | > grad_norm_0: 26.98477 (17.11522) | > loss_gen: 2.88847 (2.55335) | > loss_kl: 2.75625 (2.66327) | > loss_feat: 8.84033 (8.68308) | > loss_mel: 17.62672 (17.76480) | > loss_duration: 1.75481 (1.70653) | > loss_1: 33.86658 (33.37113) | > grad_norm_1: 75.13805 (139.88274) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02680 (2.46524) | > loader_time: 0.03540 (0.03492)  --> STEP: 14326/15287 -- GLOBAL_STEP: 1025475 | > loss_disc: 2.26007 (2.32454) | > loss_disc_real_0: 0.09044 (0.12327) | > loss_disc_real_1: 0.19871 (0.21191) | > loss_disc_real_2: 0.20397 (0.21610) | > loss_disc_real_3: 0.21545 (0.21969) | > loss_disc_real_4: 0.20246 (0.21503) | > loss_disc_real_5: 0.20659 (0.21453) | > loss_0: 2.26007 (2.32454) | > grad_norm_0: 10.61928 (17.11878) | > loss_gen: 2.53827 (2.55338) | > loss_kl: 2.59586 (2.66328) | > loss_feat: 8.35684 (8.68319) | > loss_mel: 17.89016 (17.76492) | > loss_duration: 1.72623 (1.70653) | > loss_1: 33.10737 (33.37140) | > grad_norm_1: 202.54721 (139.89893) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.41390 (2.46532) | > loader_time: 0.06230 (0.03491)  --> STEP: 14351/15287 -- GLOBAL_STEP: 1025500 | > loss_disc: 2.31465 (2.32456) | > loss_disc_real_0: 0.15985 (0.12327) | > loss_disc_real_1: 0.20289 (0.21190) | > loss_disc_real_2: 0.19307 (0.21610) | > loss_disc_real_3: 0.23872 (0.21969) | > loss_disc_real_4: 0.23070 (0.21503) | > loss_disc_real_5: 0.24972 (0.21453) | > loss_0: 2.31465 (2.32456) | > grad_norm_0: 31.16097 (17.11959) | > loss_gen: 2.69459 (2.55336) | > loss_kl: 2.62574 (2.66328) | > loss_feat: 9.11448 (8.68346) | > loss_mel: 18.13776 (17.76520) | > loss_duration: 1.73203 (1.70655) | > loss_1: 34.30460 (33.37194) | > grad_norm_1: 154.85643 (139.94608) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.61000 (2.46569) | > loader_time: 0.03060 (0.03491)  --> STEP: 14376/15287 -- GLOBAL_STEP: 1025525 | > loss_disc: 2.32135 (2.32453) | > loss_disc_real_0: 0.13298 (0.12325) | > loss_disc_real_1: 0.19328 (0.21190) | > loss_disc_real_2: 0.20782 (0.21611) | > loss_disc_real_3: 0.22629 (0.21968) | > loss_disc_real_4: 0.21294 (0.21502) | > loss_disc_real_5: 0.21503 (0.21453) | > loss_0: 2.32135 (2.32453) | > grad_norm_0: 10.60161 (17.11427) | > loss_gen: 2.73342 (2.55334) | > loss_kl: 2.65548 (2.66326) | > loss_feat: 9.40954 (8.68345) | > loss_mel: 18.03927 (17.76509) | > loss_duration: 1.68648 (1.70655) | > loss_1: 34.52419 (33.37179) | > grad_norm_1: 202.68913 (139.95593) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25860 (2.46583) | > loader_time: 0.03040 (0.03491)  --> STEP: 14401/15287 -- GLOBAL_STEP: 1025550 | > loss_disc: 2.26249 (2.32450) | > loss_disc_real_0: 0.12783 (0.12324) | > loss_disc_real_1: 0.21295 (0.21190) | > loss_disc_real_2: 0.21889 (0.21610) | > loss_disc_real_3: 0.22878 (0.21969) | > loss_disc_real_4: 0.24906 (0.21503) | > loss_disc_real_5: 0.21079 (0.21452) | > loss_0: 2.26249 (2.32450) | > grad_norm_0: 14.08009 (17.11156) | > loss_gen: 2.62466 (2.55335) | > loss_kl: 2.56442 (2.66330) | > loss_feat: 9.12884 (8.68359) | > loss_mel: 17.71000 (17.76521) | > loss_duration: 1.71079 (1.70654) | > loss_1: 33.73870 (33.37211) | > grad_norm_1: 166.44745 (139.94508) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39370 (2.46595) | > loader_time: 0.03850 (0.03491)  --> STEP: 14426/15287 -- GLOBAL_STEP: 1025575 | > loss_disc: 2.30212 (2.32450) | > loss_disc_real_0: 0.09710 (0.12323) | > loss_disc_real_1: 0.20497 (0.21190) | > loss_disc_real_2: 0.20769 (0.21609) | > loss_disc_real_3: 0.21003 (0.21968) | > loss_disc_real_4: 0.20652 (0.21501) | > loss_disc_real_5: 0.22273 (0.21452) | > loss_0: 2.30212 (2.32450) | > grad_norm_0: 7.53882 (17.11616) | > loss_gen: 2.87500 (2.55329) | > loss_kl: 2.70346 (2.66331) | > loss_feat: 8.59828 (8.68359) | > loss_mel: 17.29612 (17.76527) | > loss_duration: 1.68590 (1.70655) | > loss_1: 33.15876 (33.37209) | > grad_norm_1: 195.10844 (139.99167) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.04670 (2.46613) | > loader_time: 0.03080 (0.03491)  --> STEP: 14451/15287 -- GLOBAL_STEP: 1025600 | > loss_disc: 2.27168 (2.32447) | > loss_disc_real_0: 0.14598 (0.12324) | > loss_disc_real_1: 0.18531 (0.21190) | > loss_disc_real_2: 0.22258 (0.21609) | > loss_disc_real_3: 0.18984 (0.21967) | > loss_disc_real_4: 0.20479 (0.21502) | > loss_disc_real_5: 0.18741 (0.21451) | > loss_0: 2.27168 (2.32447) | > grad_norm_0: 39.09391 (17.12214) | > loss_gen: 2.56511 (2.55327) | > loss_kl: 2.85134 (2.66325) | > loss_feat: 8.99326 (8.68356) | > loss_mel: 18.24865 (17.76493) | > loss_duration: 1.67965 (1.70654) | > loss_1: 34.33801 (33.37167) | > grad_norm_1: 217.41083 (140.03526) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.42820 (2.46626) | > loader_time: 0.03210 (0.03491)  --> STEP: 14476/15287 -- GLOBAL_STEP: 1025625 | > loss_disc: 2.42859 (2.32447) | > loss_disc_real_0: 0.15324 (0.12323) | > loss_disc_real_1: 0.21981 (0.21190) | > loss_disc_real_2: 0.22445 (0.21609) | > loss_disc_real_3: 0.21359 (0.21967) | > loss_disc_real_4: 0.23092 (0.21502) | > loss_disc_real_5: 0.23968 (0.21451) | > loss_0: 2.42859 (2.32447) | > grad_norm_0: 4.80819 (17.12067) | > loss_gen: 2.44638 (2.55325) | > loss_kl: 2.70381 (2.66327) | > loss_feat: 8.34162 (8.68365) | > loss_mel: 17.83814 (17.76484) | > loss_duration: 1.67323 (1.70654) | > loss_1: 33.00317 (33.37165) | > grad_norm_1: 91.31338 (140.06519) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18860 (2.46639) | > loader_time: 0.02810 (0.03491)  --> STEP: 14501/15287 -- GLOBAL_STEP: 1025650 | > loss_disc: 2.43299 (2.32450) | > loss_disc_real_0: 0.17458 (0.12324) | > loss_disc_real_1: 0.18620 (0.21190) | > loss_disc_real_2: 0.21316 (0.21610) | > loss_disc_real_3: 0.21405 (0.21967) | > loss_disc_real_4: 0.26079 (0.21502) | > loss_disc_real_5: 0.23890 (0.21451) | > loss_0: 2.43299 (2.32450) | > grad_norm_0: 18.69133 (17.11494) | > loss_gen: 2.35963 (2.55324) | > loss_kl: 2.65876 (2.66330) | > loss_feat: 8.74117 (8.68380) | > loss_mel: 17.89627 (17.76485) | > loss_duration: 1.68984 (1.70653) | > loss_1: 33.34566 (33.37181) | > grad_norm_1: 168.03697 (140.03838) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.14560 (2.46647) | > loader_time: 0.03170 (0.03491)  --> STEP: 14526/15287 -- GLOBAL_STEP: 1025675 | > loss_disc: 2.36132 (2.32456) | > loss_disc_real_0: 0.20332 (0.12326) | > loss_disc_real_1: 0.21534 (0.21191) | > loss_disc_real_2: 0.19980 (0.21610) | > loss_disc_real_3: 0.23105 (0.21968) | > loss_disc_real_4: 0.22733 (0.21502) | > loss_disc_real_5: 0.21208 (0.21451) | > loss_0: 2.36132 (2.32456) | > grad_norm_0: 23.37637 (17.11666) | > loss_gen: 2.70746 (2.55320) | > loss_kl: 2.70181 (2.66328) | > loss_feat: 7.97914 (8.68351) | > loss_mel: 17.83714 (17.76493) | > loss_duration: 1.74279 (1.70654) | > loss_1: 32.96835 (33.37154) | > grad_norm_1: 78.49657 (140.00232) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40770 (2.46666) | > loader_time: 0.03350 (0.03490)  --> STEP: 14551/15287 -- GLOBAL_STEP: 1025700 | > loss_disc: 2.39114 (2.32456) | > loss_disc_real_0: 0.15007 (0.12328) | > loss_disc_real_1: 0.18602 (0.21190) | > loss_disc_real_2: 0.19734 (0.21609) | > loss_disc_real_3: 0.21829 (0.21969) | > loss_disc_real_4: 0.21566 (0.21502) | > loss_disc_real_5: 0.21934 (0.21450) | > loss_0: 2.39114 (2.32456) | > grad_norm_0: 7.88948 (17.10828) | > loss_gen: 2.53120 (2.55320) | > loss_kl: 2.81618 (2.66333) | > loss_feat: 9.10842 (8.68357) | > loss_mel: 18.24095 (17.76514) | > loss_duration: 1.75235 (1.70656) | > loss_1: 34.44910 (33.37187) | > grad_norm_1: 114.47791 (139.91576) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52540 (2.46689) | > loader_time: 0.03220 (0.03490)  --> STEP: 14576/15287 -- GLOBAL_STEP: 1025725 | > loss_disc: 2.29024 (2.32456) | > loss_disc_real_0: 0.11724 (0.12328) | > loss_disc_real_1: 0.20512 (0.21190) | > loss_disc_real_2: 0.17762 (0.21608) | > loss_disc_real_3: 0.19305 (0.21969) | > loss_disc_real_4: 0.19428 (0.21501) | > loss_disc_real_5: 0.22786 (0.21450) | > loss_0: 2.29024 (2.32456) | > grad_norm_0: 20.05539 (17.10463) | > loss_gen: 2.49875 (2.55318) | > loss_kl: 2.60122 (2.66326) | > loss_feat: 9.07055 (8.68339) | > loss_mel: 17.78773 (17.76535) | > loss_duration: 1.69131 (1.70656) | > loss_1: 33.64956 (33.37183) | > grad_norm_1: 115.96871 (139.89433) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.91840 (2.46721) | > loader_time: 0.03900 (0.03490)  --> STEP: 14601/15287 -- GLOBAL_STEP: 1025750 | > loss_disc: 2.33541 (2.32457) | > loss_disc_real_0: 0.14876 (0.12330) | > loss_disc_real_1: 0.22681 (0.21191) | > loss_disc_real_2: 0.18924 (0.21606) | > loss_disc_real_3: 0.21912 (0.21968) | > loss_disc_real_4: 0.19979 (0.21500) | > loss_disc_real_5: 0.22802 (0.21449) | > loss_0: 2.33541 (2.32457) | > grad_norm_0: 28.82108 (17.10772) | > loss_gen: 2.53049 (2.55315) | > loss_kl: 2.63653 (2.66323) | > loss_feat: 9.44235 (8.68338) | > loss_mel: 17.65190 (17.76532) | > loss_duration: 1.72930 (1.70656) | > loss_1: 33.99057 (33.37171) | > grad_norm_1: 171.99751 (139.89241) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36580 (2.46739) | > loader_time: 0.03170 (0.03490)  --> STEP: 14626/15287 -- GLOBAL_STEP: 1025775 | > loss_disc: 2.22966 (2.32455) | > loss_disc_real_0: 0.08963 (0.12330) | > loss_disc_real_1: 0.19332 (0.21188) | > loss_disc_real_2: 0.19090 (0.21605) | > loss_disc_real_3: 0.19907 (0.21968) | > loss_disc_real_4: 0.17534 (0.21499) | > loss_disc_real_5: 0.19337 (0.21450) | > loss_0: 2.22966 (2.32455) | > grad_norm_0: 16.04753 (17.10603) | > loss_gen: 2.51144 (2.55311) | > loss_kl: 2.69823 (2.66323) | > loss_feat: 9.06392 (8.68359) | > loss_mel: 18.03134 (17.76544) | > loss_duration: 1.73364 (1.70657) | > loss_1: 34.03858 (33.37200) | > grad_norm_1: 190.57381 (139.90587) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.18090 (2.46748) | > loader_time: 0.03360 (0.03490)  --> STEP: 14651/15287 -- GLOBAL_STEP: 1025800 | > loss_disc: 2.28345 (2.32448) | > loss_disc_real_0: 0.10433 (0.12329) | > loss_disc_real_1: 0.23138 (0.21188) | > loss_disc_real_2: 0.20257 (0.21603) | > loss_disc_real_3: 0.20138 (0.21968) | > loss_disc_real_4: 0.19810 (0.21498) | > loss_disc_real_5: 0.20828 (0.21450) | > loss_0: 2.28345 (2.32448) | > grad_norm_0: 33.80068 (17.10956) | > loss_gen: 2.41073 (2.55312) | > loss_kl: 2.64916 (2.66324) | > loss_feat: 8.31072 (8.68365) | > loss_mel: 17.40538 (17.76530) | > loss_duration: 1.71616 (1.70657) | > loss_1: 32.49215 (33.37196) | > grad_norm_1: 198.47585 (139.92235) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.21190 (2.46785) | > loader_time: 0.03720 (0.03490)  --> STEP: 14676/15287 -- GLOBAL_STEP: 1025825 | > loss_disc: 2.33404 (2.32444) | > loss_disc_real_0: 0.12422 (0.12328) | > loss_disc_real_1: 0.22176 (0.21188) | > loss_disc_real_2: 0.18778 (0.21603) | > loss_disc_real_3: 0.18505 (0.21967) | > loss_disc_real_4: 0.19728 (0.21498) | > loss_disc_real_5: 0.20051 (0.21450) | > loss_0: 2.33404 (2.32444) | > grad_norm_0: 13.66686 (17.10860) | > loss_gen: 2.32794 (2.55313) | > loss_kl: 2.87190 (2.66331) | > loss_feat: 8.54925 (8.68373) | > loss_mel: 17.22193 (17.76535) | > loss_duration: 1.73132 (1.70657) | > loss_1: 32.70233 (33.37216) | > grad_norm_1: 102.93500 (139.96327) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11270 (2.46796) | > loader_time: 0.04130 (0.03490)  --> STEP: 14701/15287 -- GLOBAL_STEP: 1025850 | > loss_disc: 2.33083 (2.32443) | > loss_disc_real_0: 0.11787 (0.12327) | > loss_disc_real_1: 0.19694 (0.21188) | > loss_disc_real_2: 0.19639 (0.21603) | > loss_disc_real_3: 0.20629 (0.21966) | > loss_disc_real_4: 0.19434 (0.21497) | > loss_disc_real_5: 0.19650 (0.21450) | > loss_0: 2.33083 (2.32443) | > grad_norm_0: 17.53154 (17.10785) | > loss_gen: 2.55472 (2.55309) | > loss_kl: 2.77334 (2.66335) | > loss_feat: 8.58801 (8.68384) | > loss_mel: 17.82332 (17.76521) | > loss_duration: 1.73003 (1.70658) | > loss_1: 33.46942 (33.37215) | > grad_norm_1: 229.12776 (139.98122) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36020 (2.46791) | > loader_time: 0.03790 (0.03490)  --> STEP: 14726/15287 -- GLOBAL_STEP: 1025875 | > loss_disc: 2.33339 (2.32442) | > loss_disc_real_0: 0.18566 (0.12327) | > loss_disc_real_1: 0.15725 (0.21188) | > loss_disc_real_2: 0.24525 (0.21603) | > loss_disc_real_3: 0.23694 (0.21966) | > loss_disc_real_4: 0.24033 (0.21497) | > loss_disc_real_5: 0.21426 (0.21449) | > loss_0: 2.33339 (2.32442) | > grad_norm_0: 30.12351 (17.10418) | > loss_gen: 2.70222 (2.55313) | > loss_kl: 2.66040 (2.66338) | > loss_feat: 9.40667 (8.68387) | > loss_mel: 18.59540 (17.76535) | > loss_duration: 1.71249 (1.70658) | > loss_1: 35.07718 (33.37239) | > grad_norm_1: 146.15517 (139.95587) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.39520 (2.46786) | > loader_time: 0.03250 (0.03490)  --> STEP: 14751/15287 -- GLOBAL_STEP: 1025900 | > loss_disc: 2.26694 (2.32443) | > loss_disc_real_0: 0.12209 (0.12327) | > loss_disc_real_1: 0.21787 (0.21188) | > loss_disc_real_2: 0.23803 (0.21604) | > loss_disc_real_3: 0.22349 (0.21967) | > loss_disc_real_4: 0.21254 (0.21497) | > loss_disc_real_5: 0.17124 (0.21449) | > loss_0: 2.26694 (2.32443) | > grad_norm_0: 5.98678 (17.09763) | > loss_gen: 2.61012 (2.55309) | > loss_kl: 2.59860 (2.66340) | > loss_feat: 8.65541 (8.68371) | > loss_mel: 17.87763 (17.76537) | > loss_duration: 1.69850 (1.70658) | > loss_1: 33.44025 (33.37222) | > grad_norm_1: 141.41121 (139.91527) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35620 (2.46801) | > loader_time: 0.03290 (0.03489)  --> STEP: 14776/15287 -- GLOBAL_STEP: 1025925 | > loss_disc: 2.37441 (2.32445) | > loss_disc_real_0: 0.20560 (0.12328) | > loss_disc_real_1: 0.21520 (0.21189) | > loss_disc_real_2: 0.19675 (0.21604) | > loss_disc_real_3: 0.24929 (0.21966) | > loss_disc_real_4: 0.21254 (0.21497) | > loss_disc_real_5: 0.21668 (0.21449) | > loss_0: 2.37441 (2.32445) | > grad_norm_0: 9.90340 (17.10191) | > loss_gen: 2.59059 (2.55306) | > loss_kl: 2.78358 (2.66341) | > loss_feat: 9.01084 (8.68387) | > loss_mel: 17.71883 (17.76551) | > loss_duration: 1.70203 (1.70659) | > loss_1: 33.80586 (33.37251) | > grad_norm_1: 166.28343 (139.93961) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.56200 (2.46795) | > loader_time: 0.03060 (0.03489)  --> STEP: 14801/15287 -- GLOBAL_STEP: 1025950 | > loss_disc: 2.32406 (2.32449) | > loss_disc_real_0: 0.12178 (0.12328) | > loss_disc_real_1: 0.20496 (0.21188) | > loss_disc_real_2: 0.20595 (0.21604) | > loss_disc_real_3: 0.21000 (0.21966) | > loss_disc_real_4: 0.21533 (0.21497) | > loss_disc_real_5: 0.20478 (0.21449) | > loss_0: 2.32406 (2.32449) | > grad_norm_0: 20.12521 (17.10208) | > loss_gen: 2.32470 (2.55298) | > loss_kl: 2.73301 (2.66346) | > loss_feat: 8.70903 (8.68386) | > loss_mel: 17.32247 (17.76553) | > loss_duration: 1.70520 (1.70659) | > loss_1: 32.79441 (33.37249) | > grad_norm_1: 100.49342 (139.94139) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.90350 (2.46826) | > loader_time: 0.03300 (0.03488)  --> STEP: 14826/15287 -- GLOBAL_STEP: 1025975 | > loss_disc: 2.35493 (2.32446) | > loss_disc_real_0: 0.09544 (0.12328) | > loss_disc_real_1: 0.21869 (0.21188) | > loss_disc_real_2: 0.21780 (0.21604) | > loss_disc_real_3: 0.22298 (0.21965) | > loss_disc_real_4: 0.22779 (0.21496) | > loss_disc_real_5: 0.21071 (0.21448) | > loss_0: 2.35493 (2.32446) | > grad_norm_0: 16.42130 (17.09548) | > loss_gen: 2.44548 (2.55298) | > loss_kl: 2.64344 (2.66343) | > loss_feat: 8.21608 (8.68412) | > loss_mel: 17.70071 (17.76536) | > loss_duration: 1.68533 (1.70658) | > loss_1: 32.69105 (33.37258) | > grad_norm_1: 166.70660 (139.93283) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08560 (2.46855) | > loader_time: 0.03140 (0.03488)  --> STEP: 14851/15287 -- GLOBAL_STEP: 1026000 | > loss_disc: 2.41251 (2.32450) | > loss_disc_real_0: 0.11570 (0.12330) | > loss_disc_real_1: 0.24776 (0.21188) | > loss_disc_real_2: 0.21728 (0.21603) | > loss_disc_real_3: 0.23879 (0.21965) | > loss_disc_real_4: 0.22322 (0.21496) | > loss_disc_real_5: 0.21909 (0.21448) | > loss_0: 2.41251 (2.32450) | > grad_norm_0: 10.00431 (17.09227) | > loss_gen: 2.56583 (2.55300) | > loss_kl: 2.54448 (2.66341) | > loss_feat: 8.65958 (8.68418) | > loss_mel: 17.67587 (17.76547) | > loss_duration: 1.72658 (1.70659) | > loss_1: 33.17234 (33.37274) | > grad_norm_1: 162.96225 (139.89711) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16190 (2.46844) | > loader_time: 0.03070 (0.03488)  --> STEP: 14876/15287 -- GLOBAL_STEP: 1026025 | > loss_disc: 2.38363 (2.32453) | > loss_disc_real_0: 0.10725 (0.12330) | > loss_disc_real_1: 0.21601 (0.21189) | > loss_disc_real_2: 0.24830 (0.21604) | > loss_disc_real_3: 0.22557 (0.21965) | > loss_disc_real_4: 0.23405 (0.21496) | > loss_disc_real_5: 0.24416 (0.21448) | > loss_0: 2.38363 (2.32453) | > grad_norm_0: 6.94975 (17.08866) | > loss_gen: 2.65889 (2.55290) | > loss_kl: 2.80035 (2.66344) | > loss_feat: 8.90456 (8.68393) | > loss_mel: 18.71944 (17.76567) | > loss_duration: 1.71358 (1.70658) | > loss_1: 34.79682 (33.37262) | > grad_norm_1: 199.46010 (139.89754) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29640 (2.46834) | > loader_time: 0.03210 (0.03488)  --> STEP: 14901/15287 -- GLOBAL_STEP: 1026050 | > loss_disc: 2.30020 (2.32453) | > loss_disc_real_0: 0.11358 (0.12331) | > loss_disc_real_1: 0.20708 (0.21189) | > loss_disc_real_2: 0.21044 (0.21604) | > loss_disc_real_3: 0.20972 (0.21964) | > loss_disc_real_4: 0.19427 (0.21496) | > loss_disc_real_5: 0.19079 (0.21448) | > loss_0: 2.30020 (2.32453) | > grad_norm_0: 15.10257 (17.08381) | > loss_gen: 2.45673 (2.55293) | > loss_kl: 2.81344 (2.66343) | > loss_feat: 8.47679 (8.68409) | > loss_mel: 17.96752 (17.76592) | > loss_duration: 1.70083 (1.70659) | > loss_1: 33.41531 (33.37305) | > grad_norm_1: 85.05045 (139.87076) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38630 (2.46819) | > loader_time: 0.03080 (0.03487)  --> STEP: 14926/15287 -- GLOBAL_STEP: 1026075 | > loss_disc: 2.31250 (2.32449) | > loss_disc_real_0: 0.11881 (0.12330) | > loss_disc_real_1: 0.19872 (0.21190) | > loss_disc_real_2: 0.21409 (0.21604) | > loss_disc_real_3: 0.18304 (0.21964) | > loss_disc_real_4: 0.20516 (0.21497) | > loss_disc_real_5: 0.23956 (0.21447) | > loss_0: 2.31250 (2.32449) | > grad_norm_0: 15.29977 (17.08491) | > loss_gen: 2.63500 (2.55295) | > loss_kl: 2.69687 (2.66344) | > loss_feat: 8.73967 (8.68408) | > loss_mel: 17.74193 (17.76578) | > loss_duration: 1.72158 (1.70659) | > loss_1: 33.53506 (33.37293) | > grad_norm_1: 183.81827 (139.85916) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11890 (2.46817) | > loader_time: 0.03100 (0.03487)  --> STEP: 14951/15287 -- GLOBAL_STEP: 1026100 | > loss_disc: 2.31229 (2.32450) | > loss_disc_real_0: 0.15761 (0.12332) | > loss_disc_real_1: 0.22156 (0.21190) | > loss_disc_real_2: 0.22645 (0.21604) | > loss_disc_real_3: 0.20415 (0.21964) | > loss_disc_real_4: 0.18782 (0.21497) | > loss_disc_real_5: 0.20205 (0.21447) | > loss_0: 2.31229 (2.32450) | > grad_norm_0: 10.62566 (17.08397) | > loss_gen: 2.56387 (2.55299) | > loss_kl: 2.91360 (2.66346) | > loss_feat: 9.10746 (8.68431) | > loss_mel: 18.10023 (17.76577) | > loss_duration: 1.73208 (1.70658) | > loss_1: 34.41724 (33.37320) | > grad_norm_1: 112.59777 (139.79492) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.79950 (2.46823) | > loader_time: 0.04450 (0.03487)  --> STEP: 14976/15287 -- GLOBAL_STEP: 1026125 | > loss_disc: 2.30808 (2.32453) | > loss_disc_real_0: 0.15155 (0.12333) | > loss_disc_real_1: 0.21877 (0.21190) | > loss_disc_real_2: 0.19971 (0.21604) | > loss_disc_real_3: 0.20363 (0.21964) | > loss_disc_real_4: 0.22297 (0.21496) | > loss_disc_real_5: 0.20969 (0.21446) | > loss_0: 2.30808 (2.32453) | > grad_norm_0: 19.86320 (17.07865) | > loss_gen: 2.58523 (2.55294) | > loss_kl: 2.65943 (2.66350) | > loss_feat: 8.85535 (8.68438) | > loss_mel: 17.69646 (17.76595) | > loss_duration: 1.71168 (1.70658) | > loss_1: 33.50815 (33.37346) | > grad_norm_1: 100.96240 (139.70724) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38020 (2.46840) | > loader_time: 0.03250 (0.03487)  --> STEP: 15001/15287 -- GLOBAL_STEP: 1026150 | > loss_disc: 2.38440 (2.32453) | > loss_disc_real_0: 0.13820 (0.12334) | > loss_disc_real_1: 0.16569 (0.21190) | > loss_disc_real_2: 0.21063 (0.21603) | > loss_disc_real_3: 0.27313 (0.21965) | > loss_disc_real_4: 0.25006 (0.21496) | > loss_disc_real_5: 0.20673 (0.21446) | > loss_0: 2.38440 (2.32453) | > grad_norm_0: 34.82598 (17.07809) | > loss_gen: 2.37947 (2.55296) | > loss_kl: 2.67150 (2.66359) | > loss_feat: 8.05831 (8.68451) | > loss_mel: 17.83744 (17.76595) | > loss_duration: 1.73106 (1.70657) | > loss_1: 32.67777 (33.37367) | > grad_norm_1: 198.08069 (139.70137) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.06830 (2.46848) | > loader_time: 0.03020 (0.03487)  --> STEP: 15026/15287 -- GLOBAL_STEP: 1026175 | > loss_disc: 2.37590 (2.32453) | > loss_disc_real_0: 0.10456 (0.12333) | > loss_disc_real_1: 0.21983 (0.21190) | > loss_disc_real_2: 0.24629 (0.21603) | > loss_disc_real_3: 0.23456 (0.21964) | > loss_disc_real_4: 0.24005 (0.21495) | > loss_disc_real_5: 0.19687 (0.21447) | > loss_0: 2.37590 (2.32453) | > grad_norm_0: 15.57529 (17.08638) | > loss_gen: 2.48652 (2.55292) | > loss_kl: 2.60698 (2.66358) | > loss_feat: 8.56210 (8.68448) | > loss_mel: 17.97012 (17.76617) | > loss_duration: 1.71743 (1.70656) | > loss_1: 33.34314 (33.37380) | > grad_norm_1: 97.55489 (139.73232) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.43260 (2.46868) | > loader_time: 0.03530 (0.03487)  --> STEP: 15051/15287 -- GLOBAL_STEP: 1026200 | > loss_disc: 2.26280 (2.32445) | > loss_disc_real_0: 0.11086 (0.12331) | > loss_disc_real_1: 0.22401 (0.21190) | > loss_disc_real_2: 0.22363 (0.21602) | > loss_disc_real_3: 0.21114 (0.21963) | > loss_disc_real_4: 0.20623 (0.21494) | > loss_disc_real_5: 0.18206 (0.21446) | > loss_0: 2.26280 (2.32445) | > grad_norm_0: 17.16597 (17.08887) | > loss_gen: 2.46064 (2.55292) | > loss_kl: 2.55483 (2.66359) | > loss_feat: 8.44375 (8.68478) | > loss_mel: 17.38335 (17.76618) | > loss_duration: 1.71460 (1.70656) | > loss_1: 32.55717 (33.37411) | > grad_norm_1: 92.90856 (139.74811) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.73240 (2.46863) | > loader_time: 0.03330 (0.03486)  --> STEP: 15076/15287 -- GLOBAL_STEP: 1026225 | > loss_disc: 2.32334 (2.32441) | > loss_disc_real_0: 0.11259 (0.12331) | > loss_disc_real_1: 0.24938 (0.21189) | > loss_disc_real_2: 0.24931 (0.21602) | > loss_disc_real_3: 0.25876 (0.21963) | > loss_disc_real_4: 0.21240 (0.21494) | > loss_disc_real_5: 0.23008 (0.21446) | > loss_0: 2.32334 (2.32441) | > grad_norm_0: 17.45174 (17.08572) | > loss_gen: 2.52310 (2.55299) | > loss_kl: 2.72014 (2.66365) | > loss_feat: 8.94164 (8.68496) | > loss_mel: 18.52006 (17.76604) | > loss_duration: 1.70074 (1.70655) | > loss_1: 34.40567 (33.37427) | > grad_norm_1: 174.43051 (139.77423) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.54950 (2.46859) | > loader_time: 0.03810 (0.03487)  --> STEP: 15101/15287 -- GLOBAL_STEP: 1026250 | > loss_disc: 2.36854 (2.32438) | > loss_disc_real_0: 0.11668 (0.12330) | > loss_disc_real_1: 0.24958 (0.21190) | > loss_disc_real_2: 0.17874 (0.21601) | > loss_disc_real_3: 0.19779 (0.21962) | > loss_disc_real_4: 0.22067 (0.21494) | > loss_disc_real_5: 0.19490 (0.21445) | > loss_0: 2.36854 (2.32438) | > grad_norm_0: 24.70613 (17.08722) | > loss_gen: 2.41644 (2.55299) | > loss_kl: 2.76164 (2.66373) | > loss_feat: 8.40161 (8.68510) | > loss_mel: 18.08917 (17.76613) | > loss_duration: 1.70817 (1.70656) | > loss_1: 33.37703 (33.37460) | > grad_norm_1: 138.03900 (139.77724) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.64140 (2.46900) | > loader_time: 0.03140 (0.03487)  --> STEP: 15126/15287 -- GLOBAL_STEP: 1026275 | > loss_disc: 2.42408 (2.32440) | > loss_disc_real_0: 0.11315 (0.12330) | > loss_disc_real_1: 0.23836 (0.21191) | > loss_disc_real_2: 0.22384 (0.21601) | > loss_disc_real_3: 0.23442 (0.21962) | > loss_disc_real_4: 0.21200 (0.21493) | > loss_disc_real_5: 0.25184 (0.21446) | > loss_0: 2.42408 (2.32440) | > grad_norm_0: 19.70048 (17.08566) | > loss_gen: 2.51253 (2.55300) | > loss_kl: 2.60332 (2.66371) | > loss_feat: 8.56506 (8.68507) | > loss_mel: 18.14961 (17.76620) | > loss_duration: 1.71970 (1.70656) | > loss_1: 33.55022 (33.37465) | > grad_norm_1: 117.44723 (139.77176) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.50460 (2.46924) | > loader_time: 0.04010 (0.03487)  --> STEP: 15151/15287 -- GLOBAL_STEP: 1026300 | > loss_disc: 2.35439 (2.32443) | > loss_disc_real_0: 0.14008 (0.12331) | > loss_disc_real_1: 0.17816 (0.21190) | > loss_disc_real_2: 0.22908 (0.21601) | > loss_disc_real_3: 0.21811 (0.21963) | > loss_disc_real_4: 0.20426 (0.21493) | > loss_disc_real_5: 0.21167 (0.21446) | > loss_0: 2.35439 (2.32443) | > grad_norm_0: 17.95933 (17.08394) | > loss_gen: 2.50806 (2.55298) | > loss_kl: 2.62843 (2.66368) | > loss_feat: 9.05791 (8.68516) | > loss_mel: 18.34415 (17.76638) | > loss_duration: 1.74115 (1.70658) | > loss_1: 34.27971 (33.37487) | > grad_norm_1: 63.93444 (139.74609) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.47140 (2.46940) | > loader_time: 0.03820 (0.03487)  --> STEP: 15176/15287 -- GLOBAL_STEP: 1026325 | > loss_disc: 2.27554 (2.32445) | > loss_disc_real_0: 0.12255 (0.12331) | > loss_disc_real_1: 0.18449 (0.21191) | > loss_disc_real_2: 0.21258 (0.21600) | > loss_disc_real_3: 0.23539 (0.21963) | > loss_disc_real_4: 0.24324 (0.21493) | > loss_disc_real_5: 0.21002 (0.21446) | > loss_0: 2.27554 (2.32445) | > grad_norm_0: 9.12999 (17.08484) | > loss_gen: 2.59652 (2.55290) | > loss_kl: 2.71726 (2.66367) | > loss_feat: 9.03152 (8.68507) | > loss_mel: 18.25924 (17.76659) | > loss_duration: 1.68827 (1.70658) | > loss_1: 34.29281 (33.37489) | > grad_norm_1: 115.62508 (139.73903) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.84720 (2.46957) | > loader_time: 0.03040 (0.03487)  --> STEP: 15201/15287 -- GLOBAL_STEP: 1026350 | > loss_disc: 2.24162 (2.32443) | > loss_disc_real_0: 0.08088 (0.12329) | > loss_disc_real_1: 0.20322 (0.21190) | > loss_disc_real_2: 0.21134 (0.21599) | > loss_disc_real_3: 0.21648 (0.21963) | > loss_disc_real_4: 0.20122 (0.21492) | > loss_disc_real_5: 0.22070 (0.21447) | > loss_0: 2.24162 (2.32443) | > grad_norm_0: 12.11647 (17.08772) | > loss_gen: 2.56779 (2.55289) | > loss_kl: 2.61622 (2.66363) | > loss_feat: 9.23405 (8.68521) | > loss_mel: 17.82220 (17.76659) | > loss_duration: 1.75064 (1.70659) | > loss_1: 33.99090 (33.37497) | > grad_norm_1: 186.90811 (139.80423) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.26270 (2.46973) | > loader_time: 0.03880 (0.03487)  --> STEP: 15226/15287 -- GLOBAL_STEP: 1026375 | > loss_disc: 2.35811 (2.32442) | > loss_disc_real_0: 0.06256 (0.12329) | > loss_disc_real_1: 0.20613 (0.21190) | > loss_disc_real_2: 0.21326 (0.21598) | > loss_disc_real_3: 0.22213 (0.21963) | > loss_disc_real_4: 0.22387 (0.21492) | > loss_disc_real_5: 0.25830 (0.21447) | > loss_0: 2.35811 (2.32442) | > grad_norm_0: 17.22529 (17.09122) | > loss_gen: 2.46335 (2.55283) | > loss_kl: 2.66072 (2.66362) | > loss_feat: 8.63624 (8.68521) | > loss_mel: 17.92040 (17.76649) | > loss_duration: 1.73997 (1.70660) | > loss_1: 33.42068 (33.37480) | > grad_norm_1: 155.50027 (139.82556) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32580 (2.46994) | > loader_time: 0.03090 (0.03486)  --> STEP: 15251/15287 -- GLOBAL_STEP: 1026400 | > loss_disc: 2.42407 (2.32442) | > loss_disc_real_0: 0.25079 (0.12331) | > loss_disc_real_1: 0.22189 (0.21190) | > loss_disc_real_2: 0.23496 (0.21598) | > loss_disc_real_3: 0.17471 (0.21962) | > loss_disc_real_4: 0.17419 (0.21492) | > loss_disc_real_5: 0.24101 (0.21447) | > loss_0: 2.42407 (2.32442) | > grad_norm_0: 45.93444 (17.08941) | > loss_gen: 2.68602 (2.55288) | > loss_kl: 2.59175 (2.66360) | > loss_feat: 8.20882 (8.68529) | > loss_mel: 17.21848 (17.76653) | > loss_duration: 1.65483 (1.70660) | > loss_1: 32.35991 (33.37496) | > grad_norm_1: 195.92802 (139.82359) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.02800 (2.47041) | > loader_time: 0.03310 (0.03487)  --> STEP: 15276/15287 -- GLOBAL_STEP: 1026425 | > loss_disc: 2.34966 (2.32437) | > loss_disc_real_0: 0.09807 (0.12330) | > loss_disc_real_1: 0.19666 (0.21189) | > loss_disc_real_2: 0.21392 (0.21598) | > loss_disc_real_3: 0.20428 (0.21961) | > loss_disc_real_4: 0.18495 (0.21492) | > loss_disc_real_5: 0.18835 (0.21446) | > loss_0: 2.34966 (2.32437) | > grad_norm_0: 7.10083 (17.08532) | > loss_gen: 2.64058 (2.55290) | > loss_kl: 2.76294 (2.66360) | > loss_feat: 8.30399 (8.68534) | > loss_mel: 17.76027 (17.76651) | > loss_duration: 1.67102 (1.70661) | > loss_1: 33.13881 (33.37502) | > grad_norm_1: 104.92672 (139.81253) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34980 (2.47092) | > loader_time: 0.03300 (0.03487)  > EVALUATION   --> STEP: 0 | > loss_disc: 2.41227 (2.41227) | > loss_disc_real_0: 0.17887 (0.17887) | > loss_disc_real_1: 0.23382 (0.23382) | > loss_disc_real_2: 0.20473 (0.20473) | > loss_disc_real_3: 0.23572 (0.23572) | > loss_disc_real_4: 0.23957 (0.23957) | > loss_disc_real_5: 0.23777 (0.23777) | > loss_0: 2.41227 (2.41227) | > loss_gen: 2.50931 (2.50931) | > loss_kl: 2.70465 (2.70465) | > loss_feat: 8.34394 (8.34394) | > loss_mel: 17.86848 (17.86848) | > loss_duration: 1.71425 (1.71425) | > loss_1: 33.14063 (33.14063)  --> STEP: 1 | > loss_disc: 2.35840 (2.35840) | > loss_disc_real_0: 0.13626 (0.13626) | > loss_disc_real_1: 0.22866 (0.22866) | > loss_disc_real_2: 0.20584 (0.20584) | > loss_disc_real_3: 0.25191 (0.25191) | > loss_disc_real_4: 0.25437 (0.25437) | > loss_disc_real_5: 0.23719 (0.23719) | > loss_0: 2.35840 (2.35840) | > loss_gen: 2.59112 (2.59112) | > loss_kl: 2.74179 (2.74179) | > loss_feat: 8.23921 (8.23921) | > loss_mel: 18.15497 (18.15497) | > loss_duration: 1.72981 (1.72981) | > loss_1: 33.45690 (33.45690)  --> STEP: 2 | > loss_disc: 2.31794 (2.33817) | > loss_disc_real_0: 0.13038 (0.13332) | > loss_disc_real_1: 0.21305 (0.22085) | > loss_disc_real_2: 0.20512 (0.20548) | > loss_disc_real_3: 0.22618 (0.23905) | > loss_disc_real_4: 0.22790 (0.24113) | > loss_disc_real_5: 0.19666 (0.21693) | > loss_0: 2.31794 (2.33817) | > loss_gen: 2.46067 (2.52590) | > loss_kl: 2.66556 (2.70368) | > loss_feat: 9.07212 (8.65566) | > loss_mel: 18.17511 (18.16504) | > loss_duration: 1.71723 (1.72352) | > loss_1: 34.09069 (33.77379)  --> STEP: 3 | > loss_disc: 2.36966 (2.34867) | > loss_disc_real_0: 0.14017 (0.13560) | > loss_disc_real_1: 0.21864 (0.22012) | > loss_disc_real_2: 0.20736 (0.20611) | > loss_disc_real_3: 0.22608 (0.23473) | > loss_disc_real_4: 0.22868 (0.23698) | > loss_disc_real_5: 0.22346 (0.21910) | > loss_0: 2.36966 (2.34867) | > loss_gen: 2.45971 (2.50383) | > loss_kl: 2.71250 (2.70662) | > loss_feat: 9.41556 (8.90896) | > loss_mel: 18.35174 (18.22727) | > loss_duration: 1.67776 (1.70827) | > loss_1: 34.61727 (34.05495)  --> STEP: 4 | > loss_disc: 2.38983 (2.35896) | > loss_disc_real_0: 0.14436 (0.13779) | > loss_disc_real_1: 0.23086 (0.22280) | > loss_disc_real_2: 0.21635 (0.20867) | > loss_disc_real_3: 0.24231 (0.23662) | > loss_disc_real_4: 0.23981 (0.23769) | > loss_disc_real_5: 0.20916 (0.21662) | > loss_0: 2.38983 (2.35896) | > loss_gen: 2.51288 (2.50610) | > loss_kl: 2.70336 (2.70580) | > loss_feat: 8.49504 (8.80548) | > loss_mel: 18.26879 (18.23765) | > loss_duration: 1.68745 (1.70306) | > loss_1: 33.66753 (33.95810)  --> STEP: 5 | > loss_disc: 2.36437 (2.36004) | > loss_disc_real_0: 0.12742 (0.13572) | > loss_disc_real_1: 0.22901 (0.22404) | > loss_disc_real_2: 0.22282 (0.21150) | > loss_disc_real_3: 0.23467 (0.23623) | > loss_disc_real_4: 0.24711 (0.23957) | > loss_disc_real_5: 0.22020 (0.21734) | > loss_0: 2.36437 (2.36004) | > loss_gen: 2.52323 (2.50952) | > loss_kl: 2.63528 (2.69170) | > loss_feat: 8.26973 (8.69833) | > loss_mel: 17.67209 (18.12454) | > loss_duration: 1.65512 (1.69347) | > loss_1: 32.75546 (33.71757)  --> STEP: 6 | > loss_disc: 2.34365 (2.35731) | > loss_disc_real_0: 0.14182 (0.13674) | > loss_disc_real_1: 0.23003 (0.22504) | > loss_disc_real_2: 0.20893 (0.21107) | > loss_disc_real_3: 0.24295 (0.23735) | > loss_disc_real_4: 0.24226 (0.24002) | > loss_disc_real_5: 0.21892 (0.21760) | > loss_0: 2.34365 (2.35731) | > loss_gen: 2.57235 (2.52000) | > loss_kl: 2.65670 (2.68586) | > loss_feat: 9.65016 (8.85697) | > loss_mel: 18.14853 (18.12854) | > loss_duration: 1.70749 (1.69581) | > loss_1: 34.73524 (33.88718)  --> STEP: 7 | > loss_disc: 2.32616 (2.35286) | > loss_disc_real_0: 0.14808 (0.13836) | > loss_disc_real_1: 0.21936 (0.22423) | > loss_disc_real_2: 0.21604 (0.21178) | > loss_disc_real_3: 0.23714 (0.23732) | > loss_disc_real_4: 0.23416 (0.23918) | > loss_disc_real_5: 0.21559 (0.21731) | > loss_0: 2.32616 (2.35286) | > loss_gen: 2.57538 (2.52791) | > loss_kl: 2.65459 (2.68140) | > loss_feat: 8.83314 (8.85357) | > loss_mel: 18.04163 (18.11613) | > loss_duration: 1.70093 (1.69654) | > loss_1: 33.80566 (33.87554)  --> STEP: 8 | > loss_disc: 2.36427 (2.35429) | > loss_disc_real_0: 0.14176 (0.13878) | > loss_disc_real_1: 0.22159 (0.22390) | > loss_disc_real_2: 0.20866 (0.21139) | > loss_disc_real_3: 0.23856 (0.23748) | > loss_disc_real_4: 0.24207 (0.23955) | > loss_disc_real_5: 0.23121 (0.21905) | > loss_0: 2.36427 (2.35429) | > loss_gen: 2.50376 (2.52489) | > loss_kl: 2.65029 (2.67751) | > loss_feat: 8.09526 (8.75878) | > loss_mel: 18.05373 (18.10833) | > loss_duration: 1.71815 (1.69924) | > loss_1: 33.02119 (33.76875)  --> STEP: 9 | > loss_disc: 2.35602 (2.35448) | > loss_disc_real_0: 0.13961 (0.13887) | > loss_disc_real_1: 0.23481 (0.22511) | > loss_disc_real_2: 0.21063 (0.21130) | > loss_disc_real_3: 0.24213 (0.23799) | > loss_disc_real_4: 0.25037 (0.24075) | > loss_disc_real_5: 0.23899 (0.22126) | > loss_0: 2.35602 (2.35448) | > loss_gen: 2.60266 (2.53353) | > loss_kl: 2.68818 (2.67869) | > loss_feat: 8.80413 (8.76382) | > loss_mel: 17.92502 (18.08796) | > loss_duration: 1.70379 (1.69975) | > loss_1: 33.72377 (33.76375)  --> STEP: 10 | > loss_disc: 2.30736 (2.34977) | > loss_disc_real_0: 0.13643 (0.13863) | > loss_disc_real_1: 0.22198 (0.22480) | > loss_disc_real_2: 0.20696 (0.21087) | > loss_disc_real_3: 0.23487 (0.23768) | > loss_disc_real_4: 0.22147 (0.23882) | > loss_disc_real_5: 0.21212 (0.22035) | > loss_0: 2.30736 (2.34977) | > loss_gen: 2.53235 (2.53341) | > loss_kl: 2.66842 (2.67767) | > loss_feat: 8.63282 (8.75072) | > loss_mel: 18.15785 (18.09495) | > loss_duration: 1.65539 (1.69531) | > loss_1: 33.64683 (33.75206)  --> STEP: 11 | > loss_disc: 2.40271 (2.35458) | > loss_disc_real_0: 0.15592 (0.14020) | > loss_disc_real_1: 0.23313 (0.22555) | > loss_disc_real_2: 0.22456 (0.21211) | > loss_disc_real_3: 0.24357 (0.23822) | > loss_disc_real_4: 0.23417 (0.23840) | > loss_disc_real_5: 0.22376 (0.22066) | > loss_0: 2.40271 (2.35458) | > loss_gen: 2.51836 (2.53204) | > loss_kl: 2.64441 (2.67464) | > loss_feat: 8.12733 (8.69405) | > loss_mel: 17.70512 (18.05951) | > loss_duration: 1.70974 (1.69662) | > loss_1: 32.70496 (33.65687)  --> STEP: 12 | > loss_disc: 2.37929 (2.35664) | > loss_disc_real_0: 0.14913 (0.14095) | > loss_disc_real_1: 0.22444 (0.22546) | > loss_disc_real_2: 0.22102 (0.21286) | > loss_disc_real_3: 0.23530 (0.23797) | > loss_disc_real_4: 0.25219 (0.23955) | > loss_disc_real_5: 0.21793 (0.22043) | > loss_0: 2.37929 (2.35664) | > loss_gen: 2.52347 (2.53133) | > loss_kl: 2.83989 (2.68841) | > loss_feat: 8.44162 (8.67301) | > loss_mel: 18.02903 (18.05697) | > loss_duration: 1.68339 (1.69552) | > loss_1: 33.51740 (33.64525)  --> STEP: 13 | > loss_disc: 2.43793 (2.36289) | > loss_disc_real_0: 0.16122 (0.14251) | > loss_disc_real_1: 0.22846 (0.22569) | > loss_disc_real_2: 0.20990 (0.21263) | > loss_disc_real_3: 0.25045 (0.23893) | > loss_disc_real_4: 0.26610 (0.24159) | > loss_disc_real_5: 0.22032 (0.22042) | > loss_0: 2.43793 (2.36289) | > loss_gen: 2.48083 (2.52744) | > loss_kl: 2.75405 (2.69346) | > loss_feat: 8.40981 (8.65277) | > loss_mel: 18.16459 (18.06525) | > loss_duration: 1.69985 (1.69585) | > loss_1: 33.50912 (33.63478)  --> STEP: 14 | > loss_disc: 2.46082 (2.36989) | > loss_disc_real_0: 0.15927 (0.14370) | > loss_disc_real_1: 0.24055 (0.22675) | > loss_disc_real_2: 0.22072 (0.21321) | > loss_disc_real_3: 0.24434 (0.23932) | > loss_disc_real_4: 0.25074 (0.24224) | > loss_disc_real_5: 0.24444 (0.22214) | > loss_0: 2.46082 (2.36989) | > loss_gen: 2.49685 (2.52526) | > loss_kl: 2.72632 (2.69581) | > loss_feat: 7.95376 (8.60284) | > loss_mel: 17.07841 (17.99476) | > loss_duration: 1.65925 (1.69324) | > loss_1: 31.91458 (33.51191)  --> STEP: 15 | > loss_disc: 2.33883 (2.36782) | > loss_disc_real_0: 0.13207 (0.14293) | > loss_disc_real_1: 0.22182 (0.22642) | > loss_disc_real_2: 0.22989 (0.21432) | > loss_disc_real_3: 0.23929 (0.23932) | > loss_disc_real_4: 0.24948 (0.24273) | > loss_disc_real_5: 0.22348 (0.22223) | > loss_0: 2.33883 (2.36782) | > loss_gen: 2.59952 (2.53021) | > loss_kl: 2.62255 (2.69092) | > loss_feat: 9.36042 (8.65334) | > loss_mel: 18.38697 (18.02091) | > loss_duration: 1.71760 (1.69486) | > loss_1: 34.68707 (33.59026)  --> STEP: 16 | > loss_disc: 2.35135 (2.36679) | > loss_disc_real_0: 0.14565 (0.14310) | > loss_disc_real_1: 0.22992 (0.22664) | > loss_disc_real_2: 0.21808 (0.21455) | > loss_disc_real_3: 0.24100 (0.23942) | > loss_disc_real_4: 0.24372 (0.24279) | > loss_disc_real_5: 0.22945 (0.22268) | > loss_0: 2.35135 (2.36679) | > loss_gen: 2.58628 (2.53372) | > loss_kl: 2.54621 (2.68188) | > loss_feat: 8.11734 (8.61984) | > loss_mel: 17.65168 (17.99783) | > loss_duration: 1.64955 (1.69203) | > loss_1: 32.55106 (33.52531)  --> STEP: 17 | > loss_disc: 2.37790 (2.36744) | > loss_disc_real_0: 0.14425 (0.14317) | > loss_disc_real_1: 0.23368 (0.22706) | > loss_disc_real_2: 0.22541 (0.21519) | > loss_disc_real_3: 0.24043 (0.23948) | > loss_disc_real_4: 0.24001 (0.24262) | > loss_disc_real_5: 0.24021 (0.22371) | > loss_0: 2.37790 (2.36744) | > loss_gen: 2.56528 (2.53557) | > loss_kl: 2.68309 (2.68195) | > loss_feat: 8.59554 (8.61841) | > loss_mel: 17.57457 (17.97294) | > loss_duration: 1.73769 (1.69472) | > loss_1: 33.15616 (33.50359)  --> STEP: 18 | > loss_disc: 2.31561 (2.36456) | > loss_disc_real_0: 0.13393 (0.14265) | > loss_disc_real_1: 0.21289 (0.22627) | > loss_disc_real_2: 0.21477 (0.21517) | > loss_disc_real_3: 0.23581 (0.23928) | > loss_disc_real_4: 0.24139 (0.24256) | > loss_disc_real_5: 0.21169 (0.22304) | > loss_0: 2.31561 (2.36456) | > loss_gen: 2.58439 (2.53828) | > loss_kl: 2.67078 (2.68133) | > loss_feat: 8.72116 (8.62412) | > loss_mel: 17.95624 (17.97201) | > loss_duration: 1.67387 (1.69356) | > loss_1: 33.60645 (33.50930)  --> STEP: 19 | > loss_disc: 2.37021 (2.36486) | > loss_disc_real_0: 0.15020 (0.14305) | > loss_disc_real_1: 0.23203 (0.22657) | > loss_disc_real_2: 0.21216 (0.21501) | > loss_disc_real_3: 0.23877 (0.23925) | > loss_disc_real_4: 0.23938 (0.24239) | > loss_disc_real_5: 0.21657 (0.22270) | > loss_0: 2.37021 (2.36486) | > loss_gen: 2.52299 (2.53748) | > loss_kl: 2.66981 (2.68072) | > loss_feat: 8.54525 (8.61997) | > loss_mel: 17.90049 (17.96825) | > loss_duration: 1.68851 (1.69329) | > loss_1: 33.32706 (33.49971)  --> STEP: 20 | > loss_disc: 2.33695 (2.36346) | > loss_disc_real_0: 0.13588 (0.14269) | > loss_disc_real_1: 0.22062 (0.22628) | > loss_disc_real_2: 0.21906 (0.21521) | > loss_disc_real_3: 0.22568 (0.23857) | > loss_disc_real_4: 0.23082 (0.24181) | > loss_disc_real_5: 0.21104 (0.22212) | > loss_0: 2.33695 (2.36346) | > loss_gen: 2.51307 (2.53626) | > loss_kl: 2.59454 (2.67641) | > loss_feat: 8.98909 (8.63843) | > loss_mel: 17.90242 (17.96495) | > loss_duration: 1.74232 (1.69574) | > loss_1: 33.74144 (33.51180)  --> STEP: 21 | > loss_disc: 2.34332 (2.36250) | > loss_disc_real_0: 0.15302 (0.14318) | > loss_disc_real_1: 0.22828 (0.22637) | > loss_disc_real_2: 0.19700 (0.21435) | > loss_disc_real_3: 0.23514 (0.23841) | > loss_disc_real_4: 0.24257 (0.24185) | > loss_disc_real_5: 0.22008 (0.22202) | > loss_0: 2.34332 (2.36250) | > loss_gen: 2.55801 (2.53729) | > loss_kl: 2.60192 (2.67287) | > loss_feat: 9.18778 (8.66459) | > loss_mel: 18.40555 (17.98594) | > loss_duration: 1.70717 (1.69629) | > loss_1: 34.46043 (33.55697)  --> STEP: 22 | > loss_disc: 2.37919 (2.36326) | > loss_disc_real_0: 0.13420 (0.14277) | > loss_disc_real_1: 0.23425 (0.22673) | > loss_disc_real_2: 0.21544 (0.21439) | > loss_disc_real_3: 0.24641 (0.23877) | > loss_disc_real_4: 0.25765 (0.24256) | > loss_disc_real_5: 0.22210 (0.22203) | > loss_0: 2.37919 (2.36326) | > loss_gen: 2.53211 (2.53706) | > loss_kl: 2.54928 (2.66725) | > loss_feat: 8.14983 (8.64119) | > loss_mel: 18.04473 (17.98861) | > loss_duration: 1.69641 (1.69629) | > loss_1: 32.97236 (33.53040)  --> STEP: 23 | > loss_disc: 2.39422 (2.36461) | > loss_disc_real_0: 0.15387 (0.14326) | > loss_disc_real_1: 0.23764 (0.22720) | > loss_disc_real_2: 0.22140 (0.21470) | > loss_disc_real_3: 0.25414 (0.23944) | > loss_disc_real_4: 0.25136 (0.24295) | > loss_disc_real_5: 0.21592 (0.22176) | > loss_0: 2.39422 (2.36461) | > loss_gen: 2.54644 (2.53747) | > loss_kl: 2.78644 (2.67243) | > loss_feat: 8.81977 (8.64895) | > loss_mel: 17.97539 (17.98803) | > loss_duration: 1.64825 (1.69421) | > loss_1: 33.77628 (33.54109)  --> STEP: 24 | > loss_disc: 2.37053 (2.36486) | > loss_disc_real_0: 0.16416 (0.14413) | > loss_disc_real_1: 0.22173 (0.22698) | > loss_disc_real_2: 0.20958 (0.21449) | > loss_disc_real_3: 0.23594 (0.23929) | > loss_disc_real_4: 0.22230 (0.24209) | > loss_disc_real_5: 0.21785 (0.22160) | > loss_0: 2.37053 (2.36486) | > loss_gen: 2.50699 (2.53620) | > loss_kl: 2.75449 (2.67585) | > loss_feat: 8.73253 (8.65244) | > loss_mel: 17.91439 (17.98497) | > loss_duration: 1.68232 (1.69371) | > loss_1: 33.59072 (33.54316)  --> STEP: 25 | > loss_disc: 2.29934 (2.36224) | > loss_disc_real_0: 0.15773 (0.14467) | > loss_disc_real_1: 0.22185 (0.22677) | > loss_disc_real_2: 0.19951 (0.21389) | > loss_disc_real_3: 0.22357 (0.23867) | > loss_disc_real_4: 0.22523 (0.24141) | > loss_disc_real_5: 0.21433 (0.22131) | > loss_0: 2.29934 (2.36224) | > loss_gen: 2.57330 (2.53768) | > loss_kl: 2.67003 (2.67562) | > loss_feat: 9.07260 (8.66924) | > loss_mel: 18.71488 (18.01416) | > loss_duration: 1.69308 (1.69368) | > loss_1: 34.72388 (33.59039)  --> STEP: 26 | > loss_disc: 2.37069 (2.36256) | > loss_disc_real_0: 0.12981 (0.14410) | > loss_disc_real_1: 0.24143 (0.22733) | > loss_disc_real_2: 0.22189 (0.21419) | > loss_disc_real_3: 0.24492 (0.23891) | > loss_disc_real_4: 0.24756 (0.24165) | > loss_disc_real_5: 0.23824 (0.22196) | > loss_0: 2.37069 (2.36256) | > loss_gen: 2.58228 (2.53940) | > loss_kl: 2.74463 (2.67827) | > loss_feat: 8.58664 (8.66607) | > loss_mel: 18.21256 (18.02179) | > loss_duration: 1.71225 (1.69440) | > loss_1: 33.83837 (33.59993)  --> STEP: 27 | > loss_disc: 2.42838 (2.36500) | > loss_disc_real_0: 0.16909 (0.14503) | > loss_disc_real_1: 0.23315 (0.22755) | > loss_disc_real_2: 0.22058 (0.21443) | > loss_disc_real_3: 0.24672 (0.23920) | > loss_disc_real_4: 0.24347 (0.24172) | > loss_disc_real_5: 0.22594 (0.22211) | > loss_0: 2.42838 (2.36500) | > loss_gen: 2.50151 (2.53799) | > loss_kl: 2.55203 (2.67360) | > loss_feat: 8.07097 (8.64403) | > loss_mel: 17.24714 (17.99310) | > loss_duration: 1.71508 (1.69517) | > loss_1: 32.08673 (33.54388)  --> STEP: 28 | > loss_disc: 2.38760 (2.36581) | > loss_disc_real_0: 0.15453 (0.14537) | > loss_disc_real_1: 0.23443 (0.22780) | > loss_disc_real_2: 0.21905 (0.21460) | > loss_disc_real_3: 0.23662 (0.23910) | > loss_disc_real_4: 0.23286 (0.24140) | > loss_disc_real_5: 0.21000 (0.22167) | > loss_0: 2.38760 (2.36581) | > loss_gen: 2.51010 (2.53700) | > loss_kl: 2.58270 (2.67035) | > loss_feat: 8.91352 (8.65365) | > loss_mel: 17.61781 (17.97970) | > loss_duration: 1.73724 (1.69667) | > loss_1: 33.36137 (33.53736)  --> STEP: 29 | > loss_disc: 2.38063 (2.36632) | > loss_disc_real_0: 0.13749 (0.14509) | > loss_disc_real_1: 0.22218 (0.22760) | > loss_disc_real_2: 0.21170 (0.21450) | > loss_disc_real_3: 0.24044 (0.23915) | > loss_disc_real_4: 0.24587 (0.24155) | > loss_disc_real_5: 0.23412 (0.22210) | > loss_0: 2.38063 (2.36632) | > loss_gen: 2.55590 (2.53765) | > loss_kl: 2.56954 (2.66687) | > loss_feat: 8.78300 (8.65811) | > loss_mel: 17.96872 (17.97932) | > loss_duration: 1.72597 (1.69768) | > loss_1: 33.60313 (33.53963)  --> STEP: 30 | > loss_disc: 2.30295 (2.36420) | > loss_disc_real_0: 0.13734 (0.14484) | > loss_disc_real_1: 0.22399 (0.22748) | > loss_disc_real_2: 0.21476 (0.21450) | > loss_disc_real_3: 0.25593 (0.23971) | > loss_disc_real_4: 0.23673 (0.24139) | > loss_disc_real_5: 0.22157 (0.22209) | > loss_0: 2.30295 (2.36420) | > loss_gen: 2.62861 (2.54068) | > loss_kl: 2.63782 (2.66591) | > loss_feat: 8.62201 (8.65691) | > loss_mel: 17.93842 (17.97796) | > loss_duration: 1.68334 (1.69720) | > loss_1: 33.51020 (33.53865)  --> STEP: 31 | > loss_disc: 2.36387 (2.36419) | > loss_disc_real_0: 0.16119 (0.14536) | > loss_disc_real_1: 0.24721 (0.22812) | > loss_disc_real_2: 0.21423 (0.21450) | > loss_disc_real_3: 0.24798 (0.23998) | > loss_disc_real_4: 0.24796 (0.24161) | > loss_disc_real_5: 0.21587 (0.22188) | > loss_0: 2.36387 (2.36419) | > loss_gen: 2.57966 (2.54194) | > loss_kl: 2.57789 (2.66307) | > loss_feat: 8.70428 (8.65844) | > loss_mel: 18.17657 (17.98436) | > loss_duration: 1.69977 (1.69728) | > loss_1: 33.73818 (33.54509)  --> STEP: 32 | > loss_disc: 2.29935 (2.36217) | > loss_disc_real_0: 0.12208 (0.14464) | > loss_disc_real_1: 0.21778 (0.22779) | > loss_disc_real_2: 0.21325 (0.21446) | > loss_disc_real_3: 0.22800 (0.23960) | > loss_disc_real_4: 0.22544 (0.24110) | > loss_disc_real_5: 0.20846 (0.22146) | > loss_0: 2.29935 (2.36217) | > loss_gen: 2.54552 (2.54205) | > loss_kl: 2.75318 (2.66588) | > loss_feat: 8.79336 (8.66265) | > loss_mel: 18.22698 (17.99195) | > loss_duration: 1.70781 (1.69761) | > loss_1: 34.02686 (33.56014)  --> STEP: 33 | > loss_disc: 2.37660 (2.36260) | > loss_disc_real_0: 0.14523 (0.14465) | > loss_disc_real_1: 0.21853 (0.22751) | > loss_disc_real_2: 0.21162 (0.21437) | > loss_disc_real_3: 0.23345 (0.23941) | > loss_disc_real_4: 0.25213 (0.24143) | > loss_disc_real_5: 0.23259 (0.22180) | > loss_0: 2.37660 (2.36260) | > loss_gen: 2.51415 (2.54120) | > loss_kl: 2.63129 (2.66483) | > loss_feat: 8.45412 (8.65633) | > loss_mel: 17.89570 (17.98903) | > loss_duration: 1.67236 (1.69685) | > loss_1: 33.16762 (33.54825)  --> STEP: 34 | > loss_disc: 2.38316 (2.36321) | > loss_disc_real_0: 0.16580 (0.14528) | > loss_disc_real_1: 0.22545 (0.22745) | > loss_disc_real_2: 0.19988 (0.21394) | > loss_disc_real_3: 0.24144 (0.23947) | > loss_disc_real_4: 0.24094 (0.24142) | > loss_disc_real_5: 0.22185 (0.22180) | > loss_0: 2.38316 (2.36321) | > loss_gen: 2.49731 (2.53991) | > loss_kl: 2.72603 (2.66663) | > loss_feat: 8.33261 (8.64681) | > loss_mel: 17.64700 (17.97897) | > loss_duration: 1.68120 (1.69639) | > loss_1: 32.88414 (33.52872)  --> STEP: 35 | > loss_disc: 2.36913 (2.36338) | > loss_disc_real_0: 0.16343 (0.14579) | > loss_disc_real_1: 0.23276 (0.22760) | > loss_disc_real_2: 0.21989 (0.21411) | > loss_disc_real_3: 0.23790 (0.23943) | > loss_disc_real_4: 0.25112 (0.24170) | > loss_disc_real_5: 0.21412 (0.22158) | > loss_0: 2.36913 (2.36338) | > loss_gen: 2.57072 (2.54079) | > loss_kl: 2.59790 (2.66467) | > loss_feat: 8.75543 (8.64992) | > loss_mel: 18.26436 (17.98712) | > loss_duration: 1.71886 (1.69703) | > loss_1: 33.90727 (33.53953)  --> STEP: 36 | > loss_disc: 2.37801 (2.36379) | > loss_disc_real_0: 0.14605 (0.14580) | > loss_disc_real_1: 0.22196 (0.22745) | > loss_disc_real_2: 0.21898 (0.21425) | > loss_disc_real_3: 0.25504 (0.23986) | > loss_disc_real_4: 0.24244 (0.24172) | > loss_disc_real_5: 0.23567 (0.22198) | > loss_0: 2.37801 (2.36379) | > loss_gen: 2.55215 (2.54111) | > loss_kl: 2.62108 (2.66346) | > loss_feat: 8.58924 (8.64823) | > loss_mel: 18.20032 (17.99304) | > loss_duration: 1.70030 (1.69712) | > loss_1: 33.66309 (33.54296)  --> STEP: 37 | > loss_disc: 2.35145 (2.36345) | > loss_disc_real_0: 0.13772 (0.14558) | > loss_disc_real_1: 0.23014 (0.22752) | > loss_disc_real_2: 0.21458 (0.21426) | > loss_disc_real_3: 0.24360 (0.23996) | > loss_disc_real_4: 0.24992 (0.24194) | > loss_disc_real_5: 0.21309 (0.22174) | > loss_0: 2.35145 (2.36345) | > loss_gen: 2.57494 (2.54202) | > loss_kl: 2.58172 (2.66125) | > loss_feat: 8.48257 (8.64375) | > loss_mel: 17.64187 (17.98355) | > loss_duration: 1.68260 (1.69673) | > loss_1: 32.96370 (33.52731)  --> STEP: 38 | > loss_disc: 2.33908 (2.36281) | > loss_disc_real_0: 0.15064 (0.14572) | > loss_disc_real_1: 0.22376 (0.22742) | > loss_disc_real_2: 0.21641 (0.21432) | > loss_disc_real_3: 0.23008 (0.23970) | > loss_disc_real_4: 0.24550 (0.24203) | > loss_disc_real_5: 0.21873 (0.22166) | > loss_0: 2.33908 (2.36281) | > loss_gen: 2.52572 (2.54160) | > loss_kl: 2.67304 (2.66156) | > loss_feat: 8.28461 (8.63430) | > loss_mel: 17.22351 (17.96355) | > loss_duration: 1.69108 (1.69658) | > loss_1: 32.39796 (33.49759)  --> STEP: 39 | > loss_disc: 2.36659 (2.36291) | > loss_disc_real_0: 0.13566 (0.14546) | > loss_disc_real_1: 0.22106 (0.22726) | > loss_disc_real_2: 0.21806 (0.21441) | > loss_disc_real_3: 0.24875 (0.23994) | > loss_disc_real_4: 0.24470 (0.24210) | > loss_disc_real_5: 0.21916 (0.22159) | > loss_0: 2.36659 (2.36291) | > loss_gen: 2.52089 (2.54106) | > loss_kl: 2.54909 (2.65868) | > loss_feat: 8.31455 (8.62611) | > loss_mel: 17.67650 (17.95619) | > loss_duration: 1.68458 (1.69627) | > loss_1: 32.74561 (33.47831)  --> STEP: 40 | > loss_disc: 2.30596 (2.36148) | > loss_disc_real_0: 0.14215 (0.14538) | > loss_disc_real_1: 0.21400 (0.22693) | > loss_disc_real_2: 0.20735 (0.21423) | > loss_disc_real_3: 0.22959 (0.23968) | > loss_disc_real_4: 0.23101 (0.24182) | > loss_disc_real_5: 0.21399 (0.22140) | > loss_0: 2.30596 (2.36148) | > loss_gen: 2.55562 (2.54143) | > loss_kl: 2.72337 (2.66029) | > loss_feat: 8.54633 (8.62411) | > loss_mel: 18.24917 (17.96352) | > loss_duration: 1.66481 (1.69548) | > loss_1: 33.73929 (33.48484)  --> STEP: 41 | > loss_disc: 2.34479 (2.36108) | > loss_disc_real_0: 0.15870 (0.14570) | > loss_disc_real_1: 0.22043 (0.22677) | > loss_disc_real_2: 0.22918 (0.21460) | > loss_disc_real_3: 0.24211 (0.23974) | > loss_disc_real_4: 0.22768 (0.24148) | > loss_disc_real_5: 0.21934 (0.22135) | > loss_0: 2.34479 (2.36108) | > loss_gen: 2.56465 (2.54199) | > loss_kl: 2.70054 (2.66128) | > loss_feat: 8.43956 (8.61961) | > loss_mel: 17.75200 (17.95836) | > loss_duration: 1.71742 (1.69602) | > loss_1: 33.17418 (33.47726)  --> STEP: 42 | > loss_disc: 2.40824 (2.36220) | > loss_disc_real_0: 0.15342 (0.14588) | > loss_disc_real_1: 0.23383 (0.22694) | > loss_disc_real_2: 0.22992 (0.21496) | > loss_disc_real_3: 0.25182 (0.24002) | > loss_disc_real_4: 0.23647 (0.24136) | > loss_disc_real_5: 0.23323 (0.22163) | > loss_0: 2.40824 (2.36220) | > loss_gen: 2.51064 (2.54125) | > loss_kl: 2.63900 (2.66075) | > loss_feat: 7.81140 (8.60037) | > loss_mel: 18.29721 (17.96642) | > loss_duration: 1.70613 (1.69626) | > loss_1: 32.96438 (33.46505)  --> STEP: 43 | > loss_disc: 2.39296 (2.36292) | > loss_disc_real_0: 0.15042 (0.14599) | > loss_disc_real_1: 0.22662 (0.22693) | > loss_disc_real_2: 0.22059 (0.21509) | > loss_disc_real_3: 0.23241 (0.23985) | > loss_disc_real_4: 0.24496 (0.24144) | > loss_disc_real_5: 0.23472 (0.22194) | > loss_0: 2.39296 (2.36292) | > loss_gen: 2.51622 (2.54067) | > loss_kl: 2.63152 (2.66007) | > loss_feat: 8.58570 (8.60003) | > loss_mel: 17.96614 (17.96642) | > loss_duration: 1.69080 (1.69613) | > loss_1: 33.39037 (33.46331)  --> STEP: 44 | > loss_disc: 2.35772 (2.36280) | > loss_disc_real_0: 0.15157 (0.14612) | > loss_disc_real_1: 0.23826 (0.22719) | > loss_disc_real_2: 0.20830 (0.21494) | > loss_disc_real_3: 0.23163 (0.23966) | > loss_disc_real_4: 0.23545 (0.24131) | > loss_disc_real_5: 0.21682 (0.22182) | > loss_0: 2.35772 (2.36280) | > loss_gen: 2.56942 (2.54132) | > loss_kl: 2.80343 (2.66332) | > loss_feat: 8.59032 (8.59980) | > loss_mel: 17.62083 (17.95856) | > loss_duration: 1.69146 (1.69603) | > loss_1: 33.27547 (33.45905)  --> STEP: 45 | > loss_disc: 2.36054 (2.36275) | > loss_disc_real_0: 0.14825 (0.14616) | > loss_disc_real_1: 0.22509 (0.22714) | > loss_disc_real_2: 0.21098 (0.21485) | > loss_disc_real_3: 0.23602 (0.23958) | > loss_disc_real_4: 0.23568 (0.24118) | > loss_disc_real_5: 0.21683 (0.22171) | > loss_0: 2.36054 (2.36275) | > loss_gen: 2.52347 (2.54092) | > loss_kl: 2.83734 (2.66719) | > loss_feat: 8.86322 (8.60566) | > loss_mel: 17.99013 (17.95927) | > loss_duration: 1.72982 (1.69678) | > loss_1: 33.94398 (33.46982)  --> STEP: 46 | > loss_disc: 2.38190 (2.36316) | > loss_disc_real_0: 0.14417 (0.14612) | > loss_disc_real_1: 0.22357 (0.22706) | > loss_disc_real_2: 0.20908 (0.21473) | > loss_disc_real_3: 0.23649 (0.23951) | > loss_disc_real_4: 0.23793 (0.24111) | > loss_disc_real_5: 0.23086 (0.22191) | > loss_0: 2.38190 (2.36316) | > loss_gen: 2.46485 (2.53927) | > loss_kl: 2.66970 (2.66725) | > loss_feat: 8.36581 (8.60044) | > loss_mel: 17.37900 (17.94665) | > loss_duration: 1.69997 (1.69685) | > loss_1: 32.57933 (33.45046)  --> STEP: 47 | > loss_disc: 2.36754 (2.36326) | > loss_disc_real_0: 0.14785 (0.14616) | > loss_disc_real_1: 0.22757 (0.22707) | > loss_disc_real_2: 0.21241 (0.21468) | > loss_disc_real_3: 0.24421 (0.23961) | > loss_disc_real_4: 0.24001 (0.24109) | > loss_disc_real_5: 0.22544 (0.22199) | > loss_0: 2.36754 (2.36326) | > loss_gen: 2.54118 (2.53931) | > loss_kl: 2.58278 (2.66545) | > loss_feat: 8.53974 (8.59915) | > loss_mel: 17.58957 (17.93905) | > loss_duration: 1.71282 (1.69719) | > loss_1: 32.96608 (33.44016)  --> STEP: 48 | > loss_disc: 2.29273 (2.36179) | > loss_disc_real_0: 0.13558 (0.14594) | > loss_disc_real_1: 0.21039 (0.22673) | > loss_disc_real_2: 0.19904 (0.21435) | > loss_disc_real_3: 0.22706 (0.23935) | > loss_disc_real_4: 0.22949 (0.24085) | > loss_disc_real_5: 0.19477 (0.22142) | > loss_0: 2.29273 (2.36179) | > loss_gen: 2.55039 (2.53954) | > loss_kl: 2.65214 (2.66517) | > loss_feat: 8.96869 (8.60685) | > loss_mel: 17.94647 (17.93921) | > loss_duration: 1.70497 (1.69735) | > loss_1: 33.82266 (33.44812)  --> STEP: 49 | > loss_disc: 2.45167 (2.36362) | > loss_disc_real_0: 0.16400 (0.14631) | > loss_disc_real_1: 0.22803 (0.22675) | > loss_disc_real_2: 0.21082 (0.21428) | > loss_disc_real_3: 0.25768 (0.23972) | > loss_disc_real_4: 0.25453 (0.24113) | > loss_disc_real_5: 0.24661 (0.22193) | > loss_0: 2.45167 (2.36362) | > loss_gen: 2.48219 (2.53837) | > loss_kl: 2.63008 (2.66446) | > loss_feat: 8.38544 (8.60233) | > loss_mel: 17.91409 (17.93870) | > loss_duration: 1.68099 (1.69702) | > loss_1: 33.09277 (33.44087)  --> STEP: 50 | > loss_disc: 2.37608 (2.36387) | > loss_disc_real_0: 0.13261 (0.14603) | > loss_disc_real_1: 0.22043 (0.22663) | > loss_disc_real_2: 0.21629 (0.21432) | > loss_disc_real_3: 0.24763 (0.23988) | > loss_disc_real_4: 0.25535 (0.24141) | > loss_disc_real_5: 0.23576 (0.22221) | > loss_0: 2.37608 (2.36387) | > loss_gen: 2.53157 (2.53823) | > loss_kl: 2.67130 (2.66459) | > loss_feat: 8.57529 (8.60179) | > loss_mel: 17.33729 (17.92667) | > loss_duration: 1.67298 (1.69653) | > loss_1: 32.78841 (33.42782)  --> STEP: 51 | > loss_disc: 2.34324 (2.36347) | > loss_disc_real_0: 0.12362 (0.14559) | > loss_disc_real_1: 0.22376 (0.22657) | > loss_disc_real_2: 0.22241 (0.21448) | > loss_disc_real_3: 0.24167 (0.23992) | > loss_disc_real_4: 0.23560 (0.24130) | > loss_disc_real_5: 0.21273 (0.22202) | > loss_0: 2.34324 (2.36347) | > loss_gen: 2.49929 (2.53747) | > loss_kl: 2.56727 (2.66268) | > loss_feat: 8.67647 (8.60326) | > loss_mel: 17.97609 (17.92764) | > loss_duration: 1.70514 (1.69670) | > loss_1: 33.42427 (33.42775)  --> STEP: 52 | > loss_disc: 2.35425 (2.36329) | > loss_disc_real_0: 0.12120 (0.14512) | > loss_disc_real_1: 0.22208 (0.22648) | > loss_disc_real_2: 0.19920 (0.21419) | > loss_disc_real_3: 0.24705 (0.24006) | > loss_disc_real_4: 0.24816 (0.24143) | > loss_disc_real_5: 0.21374 (0.22186) | > loss_0: 2.35425 (2.36329) | > loss_gen: 2.45871 (2.53596) | > loss_kl: 2.67885 (2.66300) | > loss_feat: 8.33361 (8.59807) | > loss_mel: 17.80715 (17.92532) | > loss_duration: 1.69571 (1.69668) | > loss_1: 32.97404 (33.41903)  --> STEP: 53 | > loss_disc: 2.41781 (2.36432) | > loss_disc_real_0: 0.16112 (0.14543) | > loss_disc_real_1: 0.22647 (0.22648) | > loss_disc_real_2: 0.21531 (0.21421) | > loss_disc_real_3: 0.25357 (0.24031) | > loss_disc_real_4: 0.23954 (0.24139) | > loss_disc_real_5: 0.22931 (0.22200) | > loss_0: 2.41781 (2.36432) | > loss_gen: 2.51661 (2.53559) | > loss_kl: 2.61462 (2.66208) | > loss_feat: 8.28740 (8.59221) | > loss_mel: 17.78629 (17.92270) | > loss_duration: 1.73507 (1.69741) | > loss_1: 32.93999 (33.40999)  --> STEP: 54 | > loss_disc: 2.45570 (2.36601) | > loss_disc_real_0: 0.16419 (0.14577) | > loss_disc_real_1: 0.23171 (0.22658) | > loss_disc_real_2: 0.22195 (0.21435) | > loss_disc_real_3: 0.24672 (0.24043) | > loss_disc_real_4: 0.25447 (0.24163) | > loss_disc_real_5: 0.23109 (0.22217) | > loss_0: 2.45570 (2.36601) | > loss_gen: 2.46207 (2.53423) | > loss_kl: 2.68410 (2.66249) | > loss_feat: 8.16038 (8.58421) | > loss_mel: 17.56177 (17.91601) | > loss_duration: 1.62784 (1.69612) | > loss_1: 32.49616 (33.39307)  --> STEP: 55 | > loss_disc: 2.37651 (2.36620) | > loss_disc_real_0: 0.15102 (0.14587) | > loss_disc_real_1: 0.23801 (0.22679) | > loss_disc_real_2: 0.20780 (0.21423) | > loss_disc_real_3: 0.25457 (0.24069) | > loss_disc_real_4: 0.24387 (0.24168) | > loss_disc_real_5: 0.22049 (0.22214) | > loss_0: 2.37651 (2.36620) | > loss_gen: 2.54293 (2.53439) | > loss_kl: 2.61301 (2.66159) | > loss_feat: 9.41268 (8.59927) | > loss_mel: 17.92306 (17.91614) | > loss_duration: 1.71512 (1.69647) | > loss_1: 34.20680 (33.40786)  --> STEP: 56 | > loss_disc: 2.32485 (2.36546) | > loss_disc_real_0: 0.13295 (0.14564) | > loss_disc_real_1: 0.24152 (0.22705) | > loss_disc_real_2: 0.21190 (0.21419) | > loss_disc_real_3: 0.24118 (0.24069) | > loss_disc_real_4: 0.23201 (0.24150) | > loss_disc_real_5: 0.20944 (0.22192) | > loss_0: 2.32485 (2.36546) | > loss_gen: 2.56631 (2.53496) | > loss_kl: 2.56958 (2.65995) | > loss_feat: 8.52292 (8.59791) | > loss_mel: 17.75407 (17.91325) | > loss_duration: 1.69031 (1.69636) | > loss_1: 33.10318 (33.40242)  --> STEP: 57 | > loss_disc: 2.36772 (2.36550) | > loss_disc_real_0: 0.15511 (0.14580) | > loss_disc_real_1: 0.22184 (0.22696) | > loss_disc_real_2: 0.21491 (0.21420) | > loss_disc_real_3: 0.23363 (0.24057) | > loss_disc_real_4: 0.24141 (0.24150) | > loss_disc_real_5: 0.23452 (0.22214) | > loss_0: 2.36772 (2.36550) | > loss_gen: 2.51648 (2.53463) | > loss_kl: 2.68347 (2.66036) | > loss_feat: 8.20849 (8.59108) | > loss_mel: 17.95941 (17.91406) | > loss_duration: 1.71321 (1.69665) | > loss_1: 33.08106 (33.39679)  --> STEP: 58 | > loss_disc: 2.32089 (2.36473) | > loss_disc_real_0: 0.13443 (0.14561) | > loss_disc_real_1: 0.22282 (0.22689) | > loss_disc_real_2: 0.21449 (0.21421) | > loss_disc_real_3: 0.23455 (0.24047) | > loss_disc_real_4: 0.23717 (0.24143) | > loss_disc_real_5: 0.21486 (0.22201) | > loss_0: 2.32089 (2.36473) | > loss_gen: 2.56877 (2.53522) | > loss_kl: 2.69515 (2.66096) | > loss_feat: 8.24118 (8.58505) | > loss_mel: 17.56595 (17.90806) | > loss_duration: 1.73910 (1.69738) | > loss_1: 32.81016 (33.38667)  --> STEP: 59 | > loss_disc: 2.42368 (2.36573) | > loss_disc_real_0: 0.17575 (0.14612) | > loss_disc_real_1: 0.24069 (0.22712) | > loss_disc_real_2: 0.21137 (0.21416) | > loss_disc_real_3: 0.24189 (0.24049) | > loss_disc_real_4: 0.24091 (0.24142) | > loss_disc_real_5: 0.23578 (0.22224) | > loss_0: 2.42368 (2.36573) | > loss_gen: 2.50057 (2.53463) | > loss_kl: 2.66408 (2.66101) | > loss_feat: 8.53844 (8.58426) | > loss_mel: 17.99367 (17.90951) | > loss_duration: 1.67929 (1.69708) | > loss_1: 33.37605 (33.38649)  --> STEP: 60 | > loss_disc: 2.40585 (2.36640) | > loss_disc_real_0: 0.15321 (0.14624) | > loss_disc_real_1: 0.23073 (0.22718) | > loss_disc_real_2: 0.22863 (0.21440) | > loss_disc_real_3: 0.23498 (0.24040) | > loss_disc_real_4: 0.24710 (0.24151) | > loss_disc_real_5: 0.22496 (0.22229) | > loss_0: 2.40585 (2.36640) | > loss_gen: 2.51591 (2.53432) | > loss_kl: 2.61735 (2.66028) | > loss_feat: 8.38996 (8.58102) | > loss_mel: 17.66173 (17.90538) | > loss_duration: 1.67985 (1.69679) | > loss_1: 32.86480 (33.37780)  --> STEP: 61 | > loss_disc: 2.35245 (2.36617) | > loss_disc_real_0: 0.15733 (0.14642) | > loss_disc_real_1: 0.21648 (0.22701) | > loss_disc_real_2: 0.21129 (0.21435) | > loss_disc_real_3: 0.23070 (0.24024) | > loss_disc_real_4: 0.24323 (0.24154) | > loss_disc_real_5: 0.22542 (0.22234) | > loss_0: 2.35245 (2.36617) | > loss_gen: 2.54355 (2.53447) | > loss_kl: 2.64346 (2.66001) | > loss_feat: 8.79126 (8.58447) | > loss_mel: 18.14203 (17.90926) | > loss_duration: 1.71413 (1.69707) | > loss_1: 33.83444 (33.38528)  --> STEP: 62 | > loss_disc: 2.39436 (2.36663) | > loss_disc_real_0: 0.17033 (0.14680) | > loss_disc_real_1: 0.23057 (0.22706) | > loss_disc_real_2: 0.22304 (0.21449) | > loss_disc_real_3: 0.22947 (0.24007) | > loss_disc_real_4: 0.24868 (0.24166) | > loss_disc_real_5: 0.22626 (0.22240) | > loss_0: 2.39436 (2.36663) | > loss_gen: 2.57787 (2.53517) | > loss_kl: 2.68134 (2.66035) | > loss_feat: 8.30465 (8.57995) | > loss_mel: 17.74754 (17.90665) | > loss_duration: 1.71310 (1.69733) | > loss_1: 33.02451 (33.37946)  --> STEP: 63 | > loss_disc: 2.38927 (2.36699) | > loss_disc_real_0: 0.15170 (0.14688) | > loss_disc_real_1: 0.23024 (0.22711) | > loss_disc_real_2: 0.21787 (0.21454) | > loss_disc_real_3: 0.24514 (0.24015) | > loss_disc_real_4: 0.24078 (0.24164) | > loss_disc_real_5: 0.21416 (0.22227) | > loss_0: 2.38927 (2.36699) | > loss_gen: 2.48296 (2.53434) | > loss_kl: 2.57461 (2.65899) | > loss_feat: 8.28575 (8.57528) | > loss_mel: 17.80459 (17.90503) | > loss_duration: 1.70033 (1.69738) | > loss_1: 32.84823 (33.37103)  --> STEP: 64 | > loss_disc: 2.41334 (2.36771) | > loss_disc_real_0: 0.13311 (0.14667) | > loss_disc_real_1: 0.23094 (0.22717) | > loss_disc_real_2: 0.22355 (0.21468) | > loss_disc_real_3: 0.24752 (0.24026) | > loss_disc_real_4: 0.23529 (0.24154) | > loss_disc_real_5: 0.20773 (0.22205) | > loss_0: 2.41334 (2.36771) | > loss_gen: 2.48262 (2.53354) | > loss_kl: 2.66509 (2.65909) | > loss_feat: 8.51993 (8.57442) | > loss_mel: 18.06582 (17.90754) | > loss_duration: 1.66445 (1.69687) | > loss_1: 33.39790 (33.37145)  --> STEP: 65 | > loss_disc: 2.33671 (2.36723) | > loss_disc_real_0: 0.14847 (0.14669) | > loss_disc_real_1: 0.22289 (0.22711) | > loss_disc_real_2: 0.20983 (0.21461) | > loss_disc_real_3: 0.23865 (0.24024) | > loss_disc_real_4: 0.23296 (0.24141) | > loss_disc_real_5: 0.21285 (0.22190) | > loss_0: 2.33671 (2.36723) | > loss_gen: 2.52241 (2.53337) | > loss_kl: 2.61928 (2.65847) | > loss_feat: 8.54590 (8.57398) | > loss_mel: 17.93386 (17.90795) | > loss_duration: 1.71873 (1.69720) | > loss_1: 33.34018 (33.37097)  --> STEP: 66 | > loss_disc: 2.34213 (2.36685) | > loss_disc_real_0: 0.15601 (0.14684) | > loss_disc_real_1: 0.21371 (0.22691) | > loss_disc_real_2: 0.20805 (0.21451) | > loss_disc_real_3: 0.23273 (0.24012) | > loss_disc_real_4: 0.22903 (0.24122) | > loss_disc_real_5: 0.24138 (0.22220) | > loss_0: 2.34213 (2.36685) | > loss_gen: 2.55170 (2.53364) | > loss_kl: 2.73623 (2.65965) | > loss_feat: 8.96602 (8.57992) | > loss_mel: 18.25577 (17.91322) | > loss_duration: 1.70422 (1.69731) | > loss_1: 34.21394 (33.38374)  --> STEP: 67 | > loss_disc: 2.31385 (2.36606) | > loss_disc_real_0: 0.13557 (0.14667) | > loss_disc_real_1: 0.21606 (0.22674) | > loss_disc_real_2: 0.21835 (0.21457) | > loss_disc_real_3: 0.23949 (0.24011) | > loss_disc_real_4: 0.24551 (0.24129) | > loss_disc_real_5: 0.22803 (0.22229) | > loss_0: 2.31385 (2.36606) | > loss_gen: 2.59424 (2.53455) | > loss_kl: 2.58288 (2.65851) | > loss_feat: 8.90792 (8.58481) | > loss_mel: 18.05887 (17.91539) | > loss_duration: 1.72409 (1.69771) | > loss_1: 33.86800 (33.39097)  --> STEP: 68 | > loss_disc: 2.30099 (2.36511) | > loss_disc_real_0: 0.13875 (0.14655) | > loss_disc_real_1: 0.23440 (0.22686) | > loss_disc_real_2: 0.22107 (0.21466) | > loss_disc_real_3: 0.24876 (0.24024) | > loss_disc_real_4: 0.24466 (0.24134) | > loss_disc_real_5: 0.22916 (0.22239) | > loss_0: 2.30099 (2.36511) | > loss_gen: 2.71163 (2.53715) | > loss_kl: 2.69803 (2.65909) | > loss_feat: 8.24932 (8.57988) | > loss_mel: 17.64331 (17.91139) | > loss_duration: 1.65135 (1.69703) | > loss_1: 32.95364 (33.38454)  --> STEP: 69 | > loss_disc: 2.48463 (2.36684) | > loss_disc_real_0: 0.19693 (0.14728) | > loss_disc_real_1: 0.23951 (0.22704) | > loss_disc_real_2: 0.22376 (0.21479) | > loss_disc_real_3: 0.24467 (0.24031) | > loss_disc_real_4: 0.25094 (0.24148) | > loss_disc_real_5: 0.22928 (0.22249) | > loss_0: 2.48463 (2.36684) | > loss_gen: 2.43152 (2.53562) | > loss_kl: 2.62091 (2.65853) | > loss_feat: 8.12082 (8.57323) | > loss_mel: 17.55724 (17.90626) | > loss_duration: 1.73032 (1.69751) | > loss_1: 32.46081 (33.37115)  --> STEP: 70 | > loss_disc: 2.36001 (2.36674) | > loss_disc_real_0: 0.14836 (0.14730) | > loss_disc_real_1: 0.22484 (0.22701) | > loss_disc_real_2: 0.20418 (0.21464) | > loss_disc_real_3: 0.23888 (0.24029) | > loss_disc_real_4: 0.23361 (0.24136) | > loss_disc_real_5: 0.22061 (0.22246) | > loss_0: 2.36001 (2.36674) | > loss_gen: 2.49661 (2.53506) | > loss_kl: 2.73278 (2.65960) | > loss_feat: 8.50978 (8.57232) | > loss_mel: 17.54355 (17.90107) | > loss_duration: 1.66982 (1.69711) | > loss_1: 32.95254 (33.36517)  --> STEP: 71 | > loss_disc: 2.33095 (2.36624) | > loss_disc_real_0: 0.14895 (0.14732) | > loss_disc_real_1: 0.23057 (0.22706) | > loss_disc_real_2: 0.21367 (0.21463) | > loss_disc_real_3: 0.24047 (0.24029) | > loss_disc_real_4: 0.22178 (0.24109) | > loss_disc_real_5: 0.21170 (0.22231) | > loss_0: 2.33095 (2.36624) | > loss_gen: 2.58447 (2.53576) | > loss_kl: 2.54397 (2.65797) | > loss_feat: 8.56451 (8.57221) | > loss_mel: 18.30256 (17.90673) | > loss_duration: 1.71481 (1.69736) | > loss_1: 33.71032 (33.37003)  --> STEP: 72 | > loss_disc: 2.32181 (2.36562) | > loss_disc_real_0: 0.14210 (0.14725) | > loss_disc_real_1: 0.21776 (0.22693) | > loss_disc_real_2: 0.21169 (0.21459) | > loss_disc_real_3: 0.22883 (0.24013) | > loss_disc_real_4: 0.22356 (0.24084) | > loss_disc_real_5: 0.22275 (0.22232) | > loss_0: 2.32181 (2.36562) | > loss_gen: 2.53157 (2.53570) | > loss_kl: 2.68669 (2.65837) | > loss_feat: 8.60981 (8.57273) | > loss_mel: 17.57962 (17.90219) | > loss_duration: 1.69320 (1.69730) | > loss_1: 33.10089 (33.36629)  --> STEP: 73 | > loss_disc: 2.44202 (2.36667) | > loss_disc_real_0: 0.17673 (0.14765) | > loss_disc_real_1: 0.24718 (0.22721) | > loss_disc_real_2: 0.23100 (0.21481) | > loss_disc_real_3: 0.26070 (0.24041) | > loss_disc_real_4: 0.24583 (0.24091) | > loss_disc_real_5: 0.24425 (0.22262) | > loss_0: 2.44202 (2.36667) | > loss_gen: 2.55461 (2.53596) | > loss_kl: 2.65599 (2.65833) | > loss_feat: 7.59317 (8.55932) | > loss_mel: 17.43972 (17.89585) | > loss_duration: 1.69426 (1.69726) | > loss_1: 31.93775 (33.34672)  --> STEP: 74 | > loss_disc: 2.33109 (2.36618) | > loss_disc_real_0: 0.09781 (0.14698) | > loss_disc_real_1: 0.22350 (0.22716) | > loss_disc_real_2: 0.20816 (0.21472) | > loss_disc_real_3: 0.23247 (0.24030) | > loss_disc_real_4: 0.24113 (0.24092) | > loss_disc_real_5: 0.23303 (0.22276) | > loss_0: 2.33109 (2.36618) | > loss_gen: 2.53504 (2.53595) | > loss_kl: 2.61407 (2.65774) | > loss_feat: 8.70276 (8.56125) | > loss_mel: 17.84692 (17.89519) | > loss_duration: 1.72878 (1.69769) | > loss_1: 33.42756 (33.34781)  --> STEP: 75 | > loss_disc: 2.32805 (2.36568) | > loss_disc_real_0: 0.14206 (0.14691) | > loss_disc_real_1: 0.23331 (0.22724) | > loss_disc_real_2: 0.21923 (0.21478) | > loss_disc_real_3: 0.24127 (0.24032) | > loss_disc_real_4: 0.23882 (0.24089) | > loss_disc_real_5: 0.21522 (0.22266) | > loss_0: 2.32805 (2.36568) | > loss_gen: 2.62369 (2.53712) | > loss_kl: 2.53265 (2.65607) | > loss_feat: 8.94541 (8.56638) | > loss_mel: 18.35605 (17.90133) | > loss_duration: 1.74884 (1.69837) | > loss_1: 34.20664 (33.35926)  --> STEP: 76 | > loss_disc: 2.38658 (2.36595) | > loss_disc_real_0: 0.14206 (0.14685) | > loss_disc_real_1: 0.23526 (0.22734) | > loss_disc_real_2: 0.21498 (0.21479) | > loss_disc_real_3: 0.24810 (0.24042) | > loss_disc_real_4: 0.24239 (0.24091) | > loss_disc_real_5: 0.21074 (0.22250) | > loss_0: 2.38658 (2.36595) | > loss_gen: 2.48405 (2.53642) | > loss_kl: 2.73873 (2.65716) | > loss_feat: 8.45203 (8.56487) | > loss_mel: 17.52181 (17.89634) | > loss_duration: 1.69787 (1.69836) | > loss_1: 32.89449 (33.35314)  --> STEP: 77 | > loss_disc: 2.41322 (2.36657) | > loss_disc_real_0: 0.15103 (0.14690) | > loss_disc_real_1: 0.22016 (0.22725) | > loss_disc_real_2: 0.22935 (0.21497) | > loss_disc_real_3: 0.23555 (0.24036) | > loss_disc_real_4: 0.24825 (0.24100) | > loss_disc_real_5: 0.23090 (0.22261) | > loss_0: 2.41322 (2.36657) | > loss_gen: 2.45499 (2.53536) | > loss_kl: 2.79649 (2.65897) | > loss_feat: 7.76371 (8.55447) | > loss_mel: 17.61316 (17.89266) | > loss_duration: 1.69384 (1.69831) | > loss_1: 32.32220 (33.33976)  --> STEP: 78 | > loss_disc: 2.34933 (2.36634) | > loss_disc_real_0: 0.13095 (0.14670) | > loss_disc_real_1: 0.22530 (0.22723) | > loss_disc_real_2: 0.21408 (0.21496) | > loss_disc_real_3: 0.23534 (0.24029) | > loss_disc_real_4: 0.23747 (0.24096) | > loss_disc_real_5: 0.21376 (0.22250) | > loss_0: 2.34933 (2.36634) | > loss_gen: 2.55095 (2.53556) | > loss_kl: 2.59487 (2.65814) | > loss_feat: 8.66136 (8.55584) | > loss_mel: 17.65727 (17.88964) | > loss_duration: 1.72700 (1.69867) | > loss_1: 33.19145 (33.33785)  --> STEP: 79 | > loss_disc: 2.41366 (2.36694) | > loss_disc_real_0: 0.15797 (0.14684) | > loss_disc_real_1: 0.22785 (0.22723) | > loss_disc_real_2: 0.22467 (0.21509) | > loss_disc_real_3: 0.24470 (0.24035) | > loss_disc_real_4: 0.24515 (0.24101) | > loss_disc_real_5: 0.23000 (0.22259) | > loss_0: 2.41366 (2.36694) | > loss_gen: 2.50067 (2.53512) | > loss_kl: 2.63581 (2.65786) | > loss_feat: 8.08825 (8.54992) | > loss_mel: 17.24847 (17.88153) | > loss_duration: 1.69387 (1.69861) | > loss_1: 32.16706 (33.32303)  --> STEP: 80 | > loss_disc: 2.37967 (2.36710) | > loss_disc_real_0: 0.14627 (0.14683) | > loss_disc_real_1: 0.22950 (0.22726) | > loss_disc_real_2: 0.21534 (0.21509) | > loss_disc_real_3: 0.24245 (0.24037) | > loss_disc_real_4: 0.25010 (0.24112) | > loss_disc_real_5: 0.20460 (0.22237) | > loss_0: 2.37967 (2.36710) | > loss_gen: 2.49029 (2.53456) | > loss_kl: 2.52432 (2.65619) | > loss_feat: 8.31205 (8.54695) | > loss_mel: 17.29678 (17.87422) | > loss_duration: 1.71317 (1.69879) | > loss_1: 32.33662 (33.31070)  --> STEP: 81 | > loss_disc: 2.34829 (2.36687) | > loss_disc_real_0: 0.11914 (0.14649) | > loss_disc_real_1: 0.22041 (0.22718) | > loss_disc_real_2: 0.20964 (0.21502) | > loss_disc_real_3: 0.24701 (0.24046) | > loss_disc_real_4: 0.25261 (0.24127) | > loss_disc_real_5: 0.23800 (0.22256) | > loss_0: 2.34829 (2.36687) | > loss_gen: 2.52518 (2.53444) | > loss_kl: 2.60806 (2.65560) | > loss_feat: 8.56435 (8.54716) | > loss_mel: 17.89466 (17.87447) | > loss_duration: 1.67393 (1.69849) | > loss_1: 33.26619 (33.31015)  --> STEP: 82 | > loss_disc: 2.40146 (2.36729) | > loss_disc_real_0: 0.13724 (0.14638) | > loss_disc_real_1: 0.22701 (0.22718) | > loss_disc_real_2: 0.22186 (0.21511) | > loss_disc_real_3: 0.23993 (0.24045) | > loss_disc_real_4: 0.25452 (0.24143) | > loss_disc_real_5: 0.22125 (0.22254) | > loss_0: 2.40146 (2.36729) | > loss_gen: 2.47151 (2.53368) | > loss_kl: 2.73130 (2.65652) | > loss_feat: 8.24520 (8.54348) | > loss_mel: 18.47632 (17.88181) | > loss_duration: 1.73491 (1.69893) | > loss_1: 33.65924 (33.31441)  --> STEP: 83 | > loss_disc: 2.44904 (2.36828) | > loss_disc_real_0: 0.18088 (0.14679) | > loss_disc_real_1: 0.24465 (0.22739) | > loss_disc_real_2: 0.22804 (0.21526) | > loss_disc_real_3: 0.25831 (0.24066) | > loss_disc_real_4: 0.24244 (0.24144) | > loss_disc_real_5: 0.23191 (0.22266) | > loss_0: 2.44904 (2.36828) | > loss_gen: 2.53405 (2.53368) | > loss_kl: 2.59828 (2.65582) | > loss_feat: 7.99287 (8.53684) | > loss_mel: 17.29454 (17.87474) | > loss_duration: 1.70069 (1.69895) | > loss_1: 32.12043 (33.30003)  --> STEP: 84 | > loss_disc: 2.41575 (2.36884) | > loss_disc_real_0: 0.16465 (0.14701) | > loss_disc_real_1: 0.22925 (0.22741) | > loss_disc_real_2: 0.21863 (0.21530) | > loss_disc_real_3: 0.26422 (0.24094) | > loss_disc_real_4: 0.24340 (0.24146) | > loss_disc_real_5: 0.23494 (0.22280) | > loss_0: 2.41575 (2.36884) | > loss_gen: 2.49069 (2.53317) | > loss_kl: 2.72329 (2.65662) | > loss_feat: 8.03532 (8.53087) | > loss_mel: 17.88106 (17.87481) | > loss_duration: 1.69066 (1.69885) | > loss_1: 32.82101 (33.29432)  --> STEP: 85 | > loss_disc: 2.42180 (2.36947) | > loss_disc_real_0: 0.14810 (0.14702) | > loss_disc_real_1: 0.22361 (0.22736) | > loss_disc_real_2: 0.22792 (0.21545) | > loss_disc_real_3: 0.23615 (0.24089) | > loss_disc_real_4: 0.23354 (0.24137) | > loss_disc_real_5: 0.21910 (0.22276) | > loss_0: 2.42180 (2.36947) | > loss_gen: 2.43767 (2.53205) | > loss_kl: 2.47521 (2.65449) | > loss_feat: 8.32872 (8.52850) | > loss_mel: 17.49400 (17.87033) | > loss_duration: 1.68289 (1.69867) | > loss_1: 32.41848 (33.28402)  --> STEP: 86 | > loss_disc: 2.40185 (2.36984) | > loss_disc_real_0: 0.13591 (0.14689) | > loss_disc_real_1: 0.22582 (0.22735) | > loss_disc_real_2: 0.21882 (0.21549) | > loss_disc_real_3: 0.23514 (0.24082) | > loss_disc_real_4: 0.24792 (0.24145) | > loss_disc_real_5: 0.24034 (0.22296) | > loss_0: 2.40185 (2.36984) | > loss_gen: 2.46815 (2.53130) | > loss_kl: 2.75252 (2.65563) | > loss_feat: 8.27263 (8.52552) | > loss_mel: 17.73132 (17.86872) | > loss_duration: 1.64234 (1.69801) | > loss_1: 32.86695 (33.27917)  --> STEP: 87 | > loss_disc: 2.33818 (2.36948) | > loss_disc_real_0: 0.14380 (0.14686) | > loss_disc_real_1: 0.22830 (0.22736) | > loss_disc_real_2: 0.20603 (0.21538) | > loss_disc_real_3: 0.24664 (0.24089) | > loss_disc_real_4: 0.23246 (0.24134) | > loss_disc_real_5: 0.21646 (0.22289) | > loss_0: 2.33818 (2.36948) | > loss_gen: 2.54526 (2.53146) | > loss_kl: 2.68501 (2.65597) | > loss_feat: 8.57817 (8.52613) | > loss_mel: 17.99980 (17.87022) | > loss_duration: 1.70534 (1.69810) | > loss_1: 33.51358 (33.28186)  --> STEP: 88 | > loss_disc: 2.38922 (2.36970) | > loss_disc_real_0: 0.17275 (0.14715) | > loss_disc_real_1: 0.23143 (0.22740) | > loss_disc_real_2: 0.22336 (0.21547) | > loss_disc_real_3: 0.24637 (0.24095) | > loss_disc_real_4: 0.23798 (0.24130) | > loss_disc_real_5: 0.22127 (0.22287) | > loss_0: 2.38922 (2.36970) | > loss_gen: 2.56186 (2.53181) | > loss_kl: 2.66014 (2.65601) | > loss_feat: 8.78201 (8.52903) | > loss_mel: 18.16779 (17.87360) | > loss_duration: 1.71461 (1.69828) | > loss_1: 33.88641 (33.28873)  --> STEP: 89 | > loss_disc: 2.43702 (2.37046) | > loss_disc_real_0: 0.15886 (0.14728) | > loss_disc_real_1: 0.23066 (0.22744) | > loss_disc_real_2: 0.21280 (0.21544) | > loss_disc_real_3: 0.25285 (0.24108) | > loss_disc_real_4: 0.25092 (0.24141) | > loss_disc_real_5: 0.22900 (0.22294) | > loss_0: 2.43702 (2.37046) | > loss_gen: 2.48767 (2.53131) | > loss_kl: 2.65417 (2.65599) | > loss_feat: 8.39353 (8.52751) | > loss_mel: 17.98659 (17.87487) | > loss_duration: 1.69816 (1.69828) | > loss_1: 33.22011 (33.28796)  --> STEP: 90 | > loss_disc: 2.35140 (2.37025) | > loss_disc_real_0: 0.13035 (0.14709) | > loss_disc_real_1: 0.20974 (0.22724) | > loss_disc_real_2: 0.20951 (0.21537) | > loss_disc_real_3: 0.22649 (0.24092) | > loss_disc_real_4: 0.22863 (0.24127) | > loss_disc_real_5: 0.22037 (0.22291) | > loss_0: 2.35140 (2.37025) | > loss_gen: 2.44731 (2.53038) | > loss_kl: 2.61932 (2.65559) | > loss_feat: 8.62629 (8.52861) | > loss_mel: 18.33078 (17.87994) | > loss_duration: 1.69318 (1.69823) | > loss_1: 33.71687 (33.29273)  --> STEP: 91 | > loss_disc: 2.37444 (2.37029) | > loss_disc_real_0: 0.13616 (0.14697) | > loss_disc_real_1: 0.22563 (0.22722) | > loss_disc_real_2: 0.21689 (0.21539) | > loss_disc_real_3: 0.23350 (0.24084) | > loss_disc_real_4: 0.24154 (0.24127) | > loss_disc_real_5: 0.22451 (0.22293) | > loss_0: 2.37444 (2.37029) | > loss_gen: 2.49192 (2.52996) | > loss_kl: 2.68185 (2.65587) | > loss_feat: 8.87420 (8.53241) | > loss_mel: 18.26855 (17.88421) | > loss_duration: 1.72555 (1.69853) | > loss_1: 34.04207 (33.30097)  --> STEP: 92 | > loss_disc: 2.41007 (2.37073) | > loss_disc_real_0: 0.15534 (0.14706) | > loss_disc_real_1: 0.23176 (0.22727) | > loss_disc_real_2: 0.21551 (0.21539) | > loss_disc_real_3: 0.24151 (0.24085) | > loss_disc_real_4: 0.25961 (0.24147) | > loss_disc_real_5: 0.22578 (0.22296) | > loss_0: 2.41007 (2.37073) | > loss_gen: 2.52249 (2.52988) | > loss_kl: 2.60218 (2.65529) | > loss_feat: 8.52793 (8.53236) | > loss_mel: 17.52236 (17.88028) | > loss_duration: 1.66856 (1.69820) | > loss_1: 32.84353 (33.29600)  --> STEP: 93 | > loss_disc: 2.39297 (2.37097) | > loss_disc_real_0: 0.13423 (0.14693) | > loss_disc_real_1: 0.22929 (0.22730) | > loss_disc_real_2: 0.21587 (0.21540) | > loss_disc_real_3: 0.24601 (0.24090) | > loss_disc_real_4: 0.24097 (0.24147) | > loss_disc_real_5: 0.25351 (0.22329) | > loss_0: 2.39297 (2.37097) | > loss_gen: 2.57149 (2.53032) | > loss_kl: 2.64494 (2.65518) | > loss_feat: 8.41724 (8.53112) | > loss_mel: 18.06290 (17.88224) | > loss_duration: 1.70106 (1.69823) | > loss_1: 33.39763 (33.29709)  --> STEP: 94 | > loss_disc: 2.39073 (2.37118) | > loss_disc_real_0: 0.13593 (0.14681) | > loss_disc_real_1: 0.22568 (0.22728) | > loss_disc_real_2: 0.22510 (0.21550) | > loss_disc_real_3: 0.23851 (0.24088) | > loss_disc_real_4: 0.25451 (0.24161) | > loss_disc_real_5: 0.23223 (0.22338) | > loss_0: 2.39073 (2.37118) | > loss_gen: 2.48289 (2.52982) | > loss_kl: 2.59661 (2.65456) | > loss_feat: 8.57004 (8.53154) | > loss_mel: 17.20203 (17.87500) | > loss_duration: 1.71357 (1.69839) | > loss_1: 32.56513 (33.28930)  --> STEP: 95 | > loss_disc: 2.33256 (2.37077) | > loss_disc_real_0: 0.12068 (0.14653) | > loss_disc_real_1: 0.24304 (0.22744) | > loss_disc_real_2: 0.21330 (0.21548) | > loss_disc_real_3: 0.22947 (0.24076) | > loss_disc_real_4: 0.22986 (0.24148) | > loss_disc_real_5: 0.22370 (0.22339) | > loss_0: 2.33256 (2.37077) | > loss_gen: 2.57169 (2.53026) | > loss_kl: 2.59253 (2.65390) | > loss_feat: 8.50620 (8.53127) | > loss_mel: 17.71398 (17.87331) | > loss_duration: 1.74859 (1.69892) | > loss_1: 33.13298 (33.28765)  --> STEP: 96 | > loss_disc: 2.39690 (2.37104) | > loss_disc_real_0: 0.13005 (0.14636) | > loss_disc_real_1: 0.22951 (0.22747) | > loss_disc_real_2: 0.21785 (0.21550) | > loss_disc_real_3: 0.24800 (0.24083) | > loss_disc_real_4: 0.24709 (0.24154) | > loss_disc_real_5: 0.21836 (0.22333) | > loss_0: 2.39690 (2.37104) | > loss_gen: 2.48569 (2.52979) | > loss_kl: 2.79560 (2.65538) | > loss_feat: 8.28859 (8.52874) | > loss_mel: 17.84308 (17.87299) | > loss_duration: 1.70787 (1.69902) | > loss_1: 33.12083 (33.28592)  --> STEP: 97 | > loss_disc: 2.41898 (2.37154) | > loss_disc_real_0: 0.16211 (0.14652) | > loss_disc_real_1: 0.23798 (0.22757) | > loss_disc_real_2: 0.21371 (0.21548) | > loss_disc_real_3: 0.23158 (0.24074) | > loss_disc_real_4: 0.24583 (0.24158) | > loss_disc_real_5: 0.22610 (0.22336) | > loss_0: 2.41898 (2.37154) | > loss_gen: 2.47591 (2.52924) | > loss_kl: 2.64553 (2.65528) | > loss_feat: 7.61959 (8.51937) | > loss_mel: 17.44201 (17.86855) | > loss_duration: 1.72531 (1.69929) | > loss_1: 31.90835 (33.27172)  --> STEP: 98 | > loss_disc: 2.34612 (2.37128) | > loss_disc_real_0: 0.16371 (0.14670) | > loss_disc_real_1: 0.22876 (0.22759) | > loss_disc_real_2: 0.21157 (0.21544) | > loss_disc_real_3: 0.23760 (0.24071) | > loss_disc_real_4: 0.21588 (0.24132) | > loss_disc_real_5: 0.23040 (0.22343) | > loss_0: 2.34612 (2.37128) | > loss_gen: 2.55296 (2.52948) | > loss_kl: 2.73075 (2.65605) | > loss_feat: 8.91901 (8.52345) | > loss_mel: 18.03155 (17.87021) | > loss_duration: 1.73910 (1.69969) | > loss_1: 33.97337 (33.27887)  --> STEP: 99 | > loss_disc: 2.39330 (2.37150) | > loss_disc_real_0: 0.14470 (0.14668) | > loss_disc_real_1: 0.22775 (0.22759) | > loss_disc_real_2: 0.21485 (0.21544) | > loss_disc_real_3: 0.24752 (0.24077) | > loss_disc_real_4: 0.23439 (0.24125) | > loss_disc_real_5: 0.22049 (0.22340) | > loss_0: 2.39330 (2.37150) | > loss_gen: 2.47599 (2.52894) | > loss_kl: 2.83062 (2.65781) | > loss_feat: 7.88878 (8.51704) | > loss_mel: 17.57874 (17.86727) | > loss_duration: 1.71988 (1.69990) | > loss_1: 32.49401 (33.27094)  --> STEP: 100 | > loss_disc: 2.34878 (2.37127) | > loss_disc_real_0: 0.13620 (0.14657) | > loss_disc_real_1: 0.23543 (0.22767) | > loss_disc_real_2: 0.22183 (0.21550) | > loss_disc_real_3: 0.23899 (0.24076) | > loss_disc_real_4: 0.24867 (0.24133) | > loss_disc_real_5: 0.20736 (0.22324) | > loss_0: 2.34878 (2.37127) | > loss_gen: 2.54133 (2.52906) | > loss_kl: 2.54342 (2.65667) | > loss_feat: 8.00708 (8.51194) | > loss_mel: 17.31124 (17.86171) | > loss_duration: 1.66929 (1.69959) | > loss_1: 32.07236 (33.25895)  --> STEP: 101 | > loss_disc: 2.29542 (2.37052) | > loss_disc_real_0: 0.12207 (0.14633) | > loss_disc_real_1: 0.21327 (0.22752) | > loss_disc_real_2: 0.20250 (0.21537) | > loss_disc_real_3: 0.23139 (0.24066) | > loss_disc_real_4: 0.22568 (0.24117) | > loss_disc_real_5: 0.21104 (0.22312) | > loss_0: 2.29542 (2.37052) | > loss_gen: 2.49958 (2.52877) | > loss_kl: 2.71820 (2.65728) | > loss_feat: 9.19660 (8.51871) | > loss_mel: 17.91930 (17.86228) | > loss_duration: 1.69324 (1.69953) | > loss_1: 34.02692 (33.26656)  --> STEP: 102 | > loss_disc: 2.36938 (2.37051) | > loss_disc_real_0: 0.14485 (0.14632) | > loss_disc_real_1: 0.23168 (0.22756) | > loss_disc_real_2: 0.21008 (0.21532) | > loss_disc_real_3: 0.23537 (0.24061) | > loss_disc_real_4: 0.24486 (0.24121) | > loss_disc_real_5: 0.21636 (0.22306) | > loss_0: 2.36938 (2.37051) | > loss_gen: 2.53411 (2.52882) | > loss_kl: 2.66074 (2.65731) | > loss_feat: 8.78113 (8.52129) | > loss_mel: 17.43435 (17.85808) | > loss_duration: 1.70489 (1.69958) | > loss_1: 33.11522 (33.26507)  --> STEP: 103 | > loss_disc: 2.40125 (2.37081) | > loss_disc_real_0: 0.15338 (0.14639) | > loss_disc_real_1: 0.23515 (0.22764) | > loss_disc_real_2: 0.21348 (0.21530) | > loss_disc_real_3: 0.25480 (0.24075) | > loss_disc_real_4: 0.23420 (0.24114) | > loss_disc_real_5: 0.23312 (0.22315) | > loss_0: 2.40125 (2.37081) | > loss_gen: 2.51610 (2.52870) | > loss_kl: 2.72623 (2.65798) | > loss_feat: 8.17271 (8.51790) | > loss_mel: 18.11041 (17.86053) | > loss_duration: 1.73347 (1.69991) | > loss_1: 33.25892 (33.26501)  --> STEP: 104 | > loss_disc: 2.33904 (2.37050) | > loss_disc_real_0: 0.12946 (0.14622) | > loss_disc_real_1: 0.21852 (0.22755) | > loss_disc_real_2: 0.21554 (0.21531) | > loss_disc_real_3: 0.24802 (0.24082) | > loss_disc_real_4: 0.26104 (0.24133) | > loss_disc_real_5: 0.22837 (0.22320) | > loss_0: 2.33904 (2.37050) | > loss_gen: 2.60468 (2.52943) | > loss_kl: 2.41481 (2.65564) | > loss_feat: 8.87472 (8.52133) | > loss_mel: 17.38506 (17.85596) | > loss_duration: 1.72804 (1.70018) | > loss_1: 33.00731 (33.26254)  --> STEP: 105 | > loss_disc: 2.36335 (2.37043) | > loss_disc_real_0: 0.13825 (0.14615) | > loss_disc_real_1: 0.24235 (0.22769) | > loss_disc_real_2: 0.21955 (0.21535) | > loss_disc_real_3: 0.24846 (0.24089) | > loss_disc_real_4: 0.23409 (0.24126) | > loss_disc_real_5: 0.23226 (0.22329) | > loss_0: 2.36335 (2.37043) | > loss_gen: 2.61332 (2.53023) | > loss_kl: 2.56878 (2.65481) | > loss_feat: 8.88750 (8.52482) | > loss_mel: 18.26601 (17.85987) | > loss_duration: 1.74458 (1.70060) | > loss_1: 34.08018 (33.27032)  --> STEP: 106 | > loss_disc: 2.35390 (2.37028) | > loss_disc_real_0: 0.14108 (0.14610) | > loss_disc_real_1: 0.22533 (0.22767) | > loss_disc_real_2: 0.21208 (0.21532) | > loss_disc_real_3: 0.24391 (0.24092) | > loss_disc_real_4: 0.23860 (0.24124) | > loss_disc_real_5: 0.23586 (0.22341) | > loss_0: 2.35390 (2.37028) | > loss_gen: 2.57878 (2.53069) | > loss_kl: 2.64212 (2.65469) | > loss_feat: 8.47239 (8.52433) | > loss_mel: 17.52046 (17.85666) | > loss_duration: 1.68341 (1.70044) | > loss_1: 32.89716 (33.26680)  --> STEP: 107 | > loss_disc: 2.37377 (2.37031) | > loss_disc_real_0: 0.14013 (0.14604) | > loss_disc_real_1: 0.22370 (0.22763) | > loss_disc_real_2: 0.21702 (0.21533) | > loss_disc_real_3: 0.23446 (0.24086) | > loss_disc_real_4: 0.22586 (0.24109) | > loss_disc_real_5: 0.23817 (0.22355) | > loss_0: 2.37377 (2.37031) | > loss_gen: 2.51080 (2.53050) | > loss_kl: 2.77435 (2.65581) | > loss_feat: 8.82512 (8.52714) | > loss_mel: 18.38565 (17.86161) | > loss_duration: 1.71271 (1.70055) | > loss_1: 34.20864 (33.27561)  --> STEP: 108 | > loss_disc: 2.40570 (2.37064) | > loss_disc_real_0: 0.14981 (0.14608) | > loss_disc_real_1: 0.21880 (0.22755) | > loss_disc_real_2: 0.20226 (0.21521) | > loss_disc_real_3: 0.23164 (0.24077) | > loss_disc_real_4: 0.23841 (0.24107) | > loss_disc_real_5: 0.23206 (0.22363) | > loss_0: 2.40570 (2.37064) | > loss_gen: 2.41997 (2.52948) | > loss_kl: 2.92271 (2.65828) | > loss_feat: 8.48449 (8.52674) | > loss_mel: 17.44481 (17.85775) | > loss_duration: 1.65765 (1.70016) | > loss_1: 32.92963 (33.27240)  --> STEP: 109 | > loss_disc: 2.36834 (2.37062) | > loss_disc_real_0: 0.13484 (0.14598) | > loss_disc_real_1: 0.21829 (0.22747) | > loss_disc_real_2: 0.21303 (0.21519) | > loss_disc_real_3: 0.22224 (0.24060) | > loss_disc_real_4: 0.23495 (0.24101) | > loss_disc_real_5: 0.21175 (0.22352) | > loss_0: 2.36834 (2.37062) | > loss_gen: 2.43170 (2.52858) | > loss_kl: 2.75073 (2.65913) | > loss_feat: 8.17360 (8.52350) | > loss_mel: 17.74081 (17.85668) | > loss_duration: 1.66867 (1.69987) | > loss_1: 32.76551 (33.26775)  --> STEP: 110 | > loss_disc: 2.40936 (2.37097) | > loss_disc_real_0: 0.15027 (0.14601) | > loss_disc_real_1: 0.22454 (0.22744) | > loss_disc_real_2: 0.20873 (0.21513) | > loss_disc_real_3: 0.24155 (0.24061) | > loss_disc_real_4: 0.23987 (0.24100) | > loss_disc_real_5: 0.24156 (0.22368) | > loss_0: 2.40936 (2.37097) | > loss_gen: 2.50335 (2.52835) | > loss_kl: 2.61511 (2.65873) | > loss_feat: 8.51291 (8.52341) | > loss_mel: 17.55107 (17.85390) | > loss_duration: 1.71802 (1.70003) | > loss_1: 32.90047 (33.26441)  --> STEP: 111 | > loss_disc: 2.34091 (2.37070) | > loss_disc_real_0: 0.13601 (0.14592) | > loss_disc_real_1: 0.22216 (0.22739) | > loss_disc_real_2: 0.20960 (0.21508) | > loss_disc_real_3: 0.23618 (0.24057) | > loss_disc_real_4: 0.23022 (0.24091) | > loss_disc_real_5: 0.21267 (0.22358) | > loss_0: 2.34091 (2.37070) | > loss_gen: 2.47287 (2.52785) | > loss_kl: 2.58028 (2.65803) | > loss_feat: 8.48198 (8.52304) | > loss_mel: 17.87873 (17.85412) | > loss_duration: 1.67183 (1.69978) | > loss_1: 33.08568 (33.26280)  --> STEP: 112 | > loss_disc: 2.34960 (2.37051) | > loss_disc_real_0: 0.12996 (0.14578) | > loss_disc_real_1: 0.22449 (0.22737) | > loss_disc_real_2: 0.20969 (0.21503) | > loss_disc_real_3: 0.23908 (0.24056) | > loss_disc_real_4: 0.24541 (0.24095) | > loss_disc_real_5: 0.23720 (0.22370) | > loss_0: 2.34960 (2.37051) | > loss_gen: 2.56562 (2.52819) | > loss_kl: 2.69904 (2.65839) | > loss_feat: 8.34699 (8.52146) | > loss_mel: 17.52514 (17.85119) | > loss_duration: 1.70526 (1.69983) | > loss_1: 32.84204 (33.25905)  --> STEP: 113 | > loss_disc: 2.36827 (2.37049) | > loss_disc_real_0: 0.15817 (0.14589) | > loss_disc_real_1: 0.22758 (0.22737) | > loss_disc_real_2: 0.21357 (0.21502) | > loss_disc_real_3: 0.24220 (0.24057) | > loss_disc_real_4: 0.22583 (0.24081) | > loss_disc_real_5: 0.23463 (0.22380) | > loss_0: 2.36827 (2.37049) | > loss_gen: 2.52111 (2.52813) | > loss_kl: 2.72133 (2.65895) | > loss_feat: 8.81031 (8.52402) | > loss_mel: 17.96593 (17.85220) | > loss_duration: 1.65169 (1.69940) | > loss_1: 33.67037 (33.26269)  --> STEP: 114 | > loss_disc: 2.43907 (2.37109) | > loss_disc_real_0: 0.19270 (0.14630) | > loss_disc_real_1: 0.23160 (0.22740) | > loss_disc_real_2: 0.22060 (0.21507) | > loss_disc_real_3: 0.24602 (0.24062) | > loss_disc_real_4: 0.24058 (0.24081) | > loss_disc_real_5: 0.21453 (0.22372) | > loss_0: 2.43907 (2.37109) | > loss_gen: 2.46784 (2.52760) | > loss_kl: 2.58454 (2.65830) | > loss_feat: 8.00865 (8.51950) | > loss_mel: 17.81257 (17.85185) | > loss_duration: 1.68412 (1.69927) | > loss_1: 32.55772 (33.25650)  --> STEP: 115 | > loss_disc: 2.38187 (2.37119) | > loss_disc_real_0: 0.13259 (0.14618) | > loss_disc_real_1: 0.23001 (0.22743) | > loss_disc_real_2: 0.21675 (0.21508) | > loss_disc_real_3: 0.22526 (0.24049) | > loss_disc_real_4: 0.22449 (0.24067) | > loss_disc_real_5: 0.21348 (0.22363) | > loss_0: 2.38187 (2.37119) | > loss_gen: 2.42670 (2.52672) | > loss_kl: 2.58291 (2.65764) | > loss_feat: 8.48818 (8.51923) | > loss_mel: 17.56877 (17.84939) | > loss_duration: 1.67494 (1.69906) | > loss_1: 32.74150 (33.25202)  --> STEP: 116 | > loss_disc: 2.40932 (2.37151) | > loss_disc_real_0: 0.14782 (0.14620) | > loss_disc_real_1: 0.23956 (0.22753) | > loss_disc_real_2: 0.21906 (0.21512) | > loss_disc_real_3: 0.25489 (0.24061) | > loss_disc_real_4: 0.24302 (0.24069) | > loss_disc_real_5: 0.22030 (0.22360) | > loss_0: 2.40932 (2.37151) | > loss_gen: 2.50218 (2.52651) | > loss_kl: 2.78151 (2.65871) | > loss_feat: 8.61895 (8.52009) | > loss_mel: 17.94061 (17.85018) | > loss_duration: 1.71518 (1.69920) | > loss_1: 33.55843 (33.25466)  --> STEP: 117 | > loss_disc: 2.31438 (2.37103) | > loss_disc_real_0: 0.14814 (0.14621) | > loss_disc_real_1: 0.23145 (0.22757) | > loss_disc_real_2: 0.21358 (0.21511) | > loss_disc_real_3: 0.23384 (0.24056) | > loss_disc_real_4: 0.23777 (0.24066) | > loss_disc_real_5: 0.22768 (0.22364) | > loss_0: 2.31438 (2.37103) | > loss_gen: 2.62851 (2.52738) | > loss_kl: 2.71600 (2.65920) | > loss_feat: 8.68704 (8.52151) | > loss_mel: 17.70580 (17.84895) | > loss_duration: 1.71754 (1.69935) | > loss_1: 33.45491 (33.25637)  --> STEP: 118 | > loss_disc: 2.36347 (2.37096) | > loss_disc_real_0: 0.14822 (0.14623) | > loss_disc_real_1: 0.22790 (0.22757) | > loss_disc_real_2: 0.22151 (0.21516) | > loss_disc_real_3: 0.23984 (0.24055) | > loss_disc_real_4: 0.23219 (0.24059) | > loss_disc_real_5: 0.20682 (0.22349) | > loss_0: 2.36347 (2.37096) | > loss_gen: 2.51860 (2.52731) | > loss_kl: 2.67475 (2.65933) | > loss_feat: 8.08103 (8.51778) | > loss_mel: 17.82857 (17.84878) | > loss_duration: 1.68991 (1.69927) | > loss_1: 32.79287 (33.25245)  --> STEP: 119 | > loss_disc: 2.41567 (2.37134) | > loss_disc_real_0: 0.18253 (0.14654) | > loss_disc_real_1: 0.23625 (0.22764) | > loss_disc_real_2: 0.21806 (0.21518) | > loss_disc_real_3: 0.24309 (0.24057) | > loss_disc_real_4: 0.24778 (0.24065) | > loss_disc_real_5: 0.23324 (0.22357) | > loss_0: 2.41567 (2.37134) | > loss_gen: 2.54847 (2.52748) | > loss_kl: 2.77237 (2.66028) | > loss_feat: 8.22611 (8.51533) | > loss_mel: 18.36723 (17.85313) | > loss_duration: 1.75754 (1.69976) | > loss_1: 33.67173 (33.25597)  --> STEP: 120 | > loss_disc: 2.34392 (2.37111) | > loss_disc_real_0: 0.12165 (0.14633) | > loss_disc_real_1: 0.23810 (0.22773) | > loss_disc_real_2: 0.22483 (0.21526) | > loss_disc_real_3: 0.23662 (0.24054) | > loss_disc_real_4: 0.23851 (0.24063) | > loss_disc_real_5: 0.21352 (0.22349) | > loss_0: 2.34392 (2.37111) | > loss_gen: 2.53555 (2.52755) | > loss_kl: 2.62258 (2.65997) | > loss_feat: 8.13978 (8.51220) | > loss_mel: 17.47692 (17.85000) | > loss_duration: 1.69913 (1.69976) | > loss_1: 32.47396 (33.24945)  --> STEP: 121 | > loss_disc: 2.33905 (2.37085) | > loss_disc_real_0: 0.13648 (0.14625) | > loss_disc_real_1: 0.22577 (0.22771) | > loss_disc_real_2: 0.22015 (0.21530) | > loss_disc_real_3: 0.22701 (0.24043) | > loss_disc_real_4: 0.23701 (0.24060) | > loss_disc_real_5: 0.21803 (0.22345) | > loss_0: 2.33905 (2.37085) | > loss_gen: 2.56376 (2.52785) | > loss_kl: 2.67201 (2.66007) | > loss_feat: 8.73502 (8.51404) | > loss_mel: 18.47563 (17.85517) | > loss_duration: 1.67991 (1.69959) | > loss_1: 34.12633 (33.25670)  --> STEP: 122 | > loss_disc: 2.41408 (2.37120) | > loss_disc_real_0: 0.16598 (0.14641) | > loss_disc_real_1: 0.22619 (0.22770) | > loss_disc_real_2: 0.20841 (0.21525) | > loss_disc_real_3: 0.23910 (0.24041) | > loss_disc_real_4: 0.23366 (0.24055) | > loss_disc_real_5: 0.22547 (0.22346) | > loss_0: 2.41408 (2.37120) | > loss_gen: 2.47330 (2.52740) | > loss_kl: 2.67371 (2.66018) | > loss_feat: 8.23024 (8.51172) | > loss_mel: 17.37170 (17.85120) | > loss_duration: 1.69614 (1.69956) | > loss_1: 32.44508 (33.25005)  --> STEP: 123 | > loss_disc: 2.31978 (2.37078) | > loss_disc_real_0: 0.12730 (0.14625) | > loss_disc_real_1: 0.23194 (0.22773) | > loss_disc_real_2: 0.22168 (0.21530) | > loss_disc_real_3: 0.24014 (0.24041) | > loss_disc_real_4: 0.23921 (0.24054) | > loss_disc_real_5: 0.21964 (0.22343) | > loss_0: 2.31978 (2.37078) | > loss_gen: 2.59142 (2.52792) | > loss_kl: 2.54368 (2.65923) | > loss_feat: 8.46333 (8.51132) | > loss_mel: 17.62100 (17.84933) | > loss_duration: 1.70602 (1.69962) | > loss_1: 32.92545 (33.24741)  --> STEP: 124 | > loss_disc: 2.35074 (2.37062) | > loss_disc_real_0: 0.13184 (0.14614) | > loss_disc_real_1: 0.22281 (0.22769) | > loss_disc_real_2: 0.21572 (0.21530) | > loss_disc_real_3: 0.22570 (0.24029) | > loss_disc_real_4: 0.23881 (0.24052) | > loss_disc_real_5: 0.21003 (0.22332) | > loss_0: 2.35074 (2.37062) | > loss_gen: 2.47017 (2.52746) | > loss_kl: 2.65642 (2.65921) | > loss_feat: 8.69712 (8.51282) | > loss_mel: 18.10541 (17.85140) | > loss_duration: 1.71061 (1.69971) | > loss_1: 33.63972 (33.25057)  --> STEP: 125 | > loss_disc: 2.34769 (2.37044) | > loss_disc_real_0: 0.13709 (0.14606) | > loss_disc_real_1: 0.23210 (0.22773) | > loss_disc_real_2: 0.21788 (0.21532) | > loss_disc_real_3: 0.24956 (0.24037) | > loss_disc_real_4: 0.23991 (0.24052) | > loss_disc_real_5: 0.21185 (0.22323) | > loss_0: 2.34769 (2.37044) | > loss_gen: 2.53341 (2.52751) | > loss_kl: 2.61734 (2.65887) | > loss_feat: 8.37928 (8.51175) | > loss_mel: 17.98592 (17.85247) | > loss_duration: 1.69716 (1.69969) | > loss_1: 33.21311 (33.25027)  --> STEP: 126 | > loss_disc: 2.31828 (2.37002) | > loss_disc_real_0: 0.13346 (0.14596) | > loss_disc_real_1: 0.22949 (0.22774) | > loss_disc_real_2: 0.20540 (0.21525) | > loss_disc_real_3: 0.22295 (0.24023) | > loss_disc_real_4: 0.22915 (0.24043) | > loss_disc_real_5: 0.21567 (0.22317) | > loss_0: 2.31828 (2.37002) | > loss_gen: 2.50919 (2.52736) | > loss_kl: 2.60418 (2.65844) | > loss_feat: 8.70698 (8.51330) | > loss_mel: 17.93075 (17.85310) | > loss_duration: 1.67527 (1.69949) | > loss_1: 33.42637 (33.25166)  --> STEP: 127 | > loss_disc: 2.38464 (2.37014) | > loss_disc_real_0: 0.14191 (0.14593) | > loss_disc_real_1: 0.22453 (0.22772) | > loss_disc_real_2: 0.21387 (0.21524) | > loss_disc_real_3: 0.24332 (0.24025) | > loss_disc_real_4: 0.24341 (0.24045) | > loss_disc_real_5: 0.23188 (0.22324) | > loss_0: 2.38464 (2.37014) | > loss_gen: 2.48536 (2.52703) | > loss_kl: 2.59328 (2.65793) | > loss_feat: 8.29563 (8.51159) | > loss_mel: 17.51275 (17.85041) | > loss_duration: 1.68445 (1.69937) | > loss_1: 32.57147 (33.24630)  --> STEP: 128 | > loss_disc: 2.38479 (2.37025) | > loss_disc_real_0: 0.14599 (0.14593) | > loss_disc_real_1: 0.23539 (0.22778) | > loss_disc_real_2: 0.21539 (0.21524) | > loss_disc_real_3: 0.25427 (0.24036) | > loss_disc_real_4: 0.25690 (0.24058) | > loss_disc_real_5: 0.21400 (0.22317) | > loss_0: 2.38479 (2.37025) | > loss_gen: 2.55863 (2.52728) | > loss_kl: 2.61229 (2.65757) | > loss_feat: 8.34231 (8.51027) | > loss_mel: 17.52905 (17.84790) | > loss_duration: 1.66649 (1.69912) | > loss_1: 32.70876 (33.24211)  --> STEP: 129 | > loss_disc: 2.38429 (2.37036) | > loss_disc_real_0: 0.14402 (0.14592) | > loss_disc_real_1: 0.22744 (0.22778) | > loss_disc_real_2: 0.20922 (0.21519) | > loss_disc_real_3: 0.24293 (0.24038) | > loss_disc_real_4: 0.24532 (0.24062) | > loss_disc_real_5: 0.23162 (0.22323) | > loss_0: 2.38429 (2.37036) | > loss_gen: 2.54884 (2.52744) | > loss_kl: 2.56972 (2.65689) | > loss_feat: 8.53906 (8.51049) | > loss_mel: 17.05792 (17.84178) | > loss_duration: 1.70054 (1.69913) | > loss_1: 32.41608 (33.23570)  --> STEP: 130 | > loss_disc: 2.37027 (2.37036) | > loss_disc_real_0: 0.15935 (0.14602) | > loss_disc_real_1: 0.21577 (0.22768) | > loss_disc_real_2: 0.21519 (0.21519) | > loss_disc_real_3: 0.24645 (0.24043) | > loss_disc_real_4: 0.23481 (0.24057) | > loss_disc_real_5: 0.23360 (0.22331) | > loss_0: 2.37027 (2.37036) | > loss_gen: 2.54913 (2.52761) | > loss_kl: 2.62842 (2.65667) | > loss_feat: 8.67449 (8.51175) | > loss_mel: 18.26885 (17.84506) | > loss_duration: 1.75561 (1.69956) | > loss_1: 33.87649 (33.24063)  --> STEP: 131 | > loss_disc: 2.41945 (2.37073) | > loss_disc_real_0: 0.12845 (0.14589) | > loss_disc_real_1: 0.22156 (0.22764) | > loss_disc_real_2: 0.20689 (0.21513) | > loss_disc_real_3: 0.25183 (0.24052) | > loss_disc_real_4: 0.25276 (0.24066) | > loss_disc_real_5: 0.23919 (0.22343) | > loss_0: 2.41945 (2.37073) | > loss_gen: 2.49287 (2.52735) | > loss_kl: 2.58310 (2.65611) | > loss_feat: 8.51213 (8.51175) | > loss_mel: 17.98333 (17.84612) | > loss_duration: 1.71455 (1.69968) | > loss_1: 33.28598 (33.24098)  --> STEP: 132 | > loss_disc: 2.39599 (2.37093) | > loss_disc_real_0: 0.15083 (0.14593) | > loss_disc_real_1: 0.22410 (0.22761) | > loss_disc_real_2: 0.21663 (0.21514) | > loss_disc_real_3: 0.23792 (0.24050) | > loss_disc_real_4: 0.22769 (0.24057) | > loss_disc_real_5: 0.23150 (0.22350) | > loss_0: 2.39599 (2.37093) | > loss_gen: 2.44553 (2.52673) | > loss_kl: 2.82072 (2.65735) | > loss_feat: 7.98634 (8.50777) | > loss_mel: 17.51686 (17.84363) | > loss_duration: 1.69602 (1.69965) | > loss_1: 32.46546 (33.23510)  --> STEP: 133 | > loss_disc: 2.35261 (2.37079) | > loss_disc_real_0: 0.15070 (0.14596) | > loss_disc_real_1: 0.23525 (0.22767) | > loss_disc_real_2: 0.22558 (0.21522) | > loss_disc_real_3: 0.24463 (0.24053) | > loss_disc_real_4: 0.26030 (0.24071) | > loss_disc_real_5: 0.21913 (0.22346) | > loss_0: 2.35261 (2.37079) | > loss_gen: 2.59768 (2.52726) | > loss_kl: 2.57268 (2.65672) | > loss_feat: 8.47889 (8.50756) | > loss_mel: 17.79745 (17.84328) | > loss_duration: 1.70537 (1.69969) | > loss_1: 33.15207 (33.23448)  --> STEP: 134 | > loss_disc: 2.34583 (2.37060) | > loss_disc_real_0: 0.13764 (0.14590) | > loss_disc_real_1: 0.22387 (0.22764) | > loss_disc_real_2: 0.20313 (0.21513) | > loss_disc_real_3: 0.24385 (0.24055) | > loss_disc_real_4: 0.23711 (0.24069) | > loss_disc_real_5: 0.21946 (0.22343) | > loss_0: 2.34583 (2.37060) | > loss_gen: 2.52896 (2.52727) | > loss_kl: 2.63240 (2.65654) | > loss_feat: 8.57878 (8.50809) | > loss_mel: 17.55419 (17.84112) | > loss_duration: 1.72150 (1.69985) | > loss_1: 33.01583 (33.23285)  --> STEP: 135 | > loss_disc: 2.40484 (2.37086) | > loss_disc_real_0: 0.15623 (0.14598) | > loss_disc_real_1: 0.22974 (0.22765) | > loss_disc_real_2: 0.21185 (0.21510) | > loss_disc_real_3: 0.25058 (0.24063) | > loss_disc_real_4: 0.23482 (0.24064) | > loss_disc_real_5: 0.23000 (0.22348) | > loss_0: 2.40484 (2.37086) | > loss_gen: 2.45496 (2.52674) | > loss_kl: 2.65794 (2.65655) | > loss_feat: 8.00204 (8.50434) | > loss_mel: 17.56055 (17.83904) | > loss_duration: 1.70044 (1.69986) | > loss_1: 32.37592 (33.22650)  --> STEP: 136 | > loss_disc: 2.37745 (2.37090) | > loss_disc_real_0: 0.15426 (0.14604) | > loss_disc_real_1: 0.22277 (0.22762) | > loss_disc_real_2: 0.21361 (0.21509) | > loss_disc_real_3: 0.24093 (0.24063) | > loss_disc_real_4: 0.24934 (0.24071) | > loss_disc_real_5: 0.22400 (0.22349) | > loss_0: 2.37745 (2.37090) | > loss_gen: 2.53405 (2.52679) | > loss_kl: 2.67790 (2.65670) | > loss_feat: 8.10923 (8.50144) | > loss_mel: 17.73921 (17.83831) | > loss_duration: 1.70730 (1.69991) | > loss_1: 32.76769 (33.22312)  --> STEP: 137 | > loss_disc: 2.34223 (2.37069) | > loss_disc_real_0: 0.11570 (0.14581) | > loss_disc_real_1: 0.22424 (0.22759) | > loss_disc_real_2: 0.21940 (0.21512) | > loss_disc_real_3: 0.24464 (0.24066) | > loss_disc_real_4: 0.24150 (0.24071) | > loss_disc_real_5: 0.20048 (0.22332) | > loss_0: 2.34223 (2.37069) | > loss_gen: 2.51236 (2.52668) | > loss_kl: 2.58180 (2.65616) | > loss_feat: 8.60578 (8.50220) | > loss_mel: 17.93435 (17.83901) | > loss_duration: 1.65463 (1.69958) | > loss_1: 33.28891 (33.22360)  --> STEP: 138 | > loss_disc: 2.35424 (2.37058) | > loss_disc_real_0: 0.13643 (0.14575) | > loss_disc_real_1: 0.22667 (0.22759) | > loss_disc_real_2: 0.20835 (0.21507) | > loss_disc_real_3: 0.24238 (0.24067) | > loss_disc_real_4: 0.24947 (0.24078) | > loss_disc_real_5: 0.22968 (0.22336) | > loss_0: 2.35424 (2.37058) | > loss_gen: 2.53651 (2.52676) | > loss_kl: 2.72084 (2.65663) | > loss_feat: 8.86609 (8.50483) | > loss_mel: 18.27353 (17.84216) | > loss_duration: 1.73173 (1.69982) | > loss_1: 34.12870 (33.23016)  --> STEP: 139 | > loss_disc: 2.40680 (2.37084) | > loss_disc_real_0: 0.18707 (0.14604) | > loss_disc_real_1: 0.23855 (0.22767) | > loss_disc_real_2: 0.22512 (0.21515) | > loss_disc_real_3: 0.24165 (0.24068) | > loss_disc_real_4: 0.25228 (0.24086) | > loss_disc_real_5: 0.23350 (0.22344) | > loss_0: 2.40680 (2.37084) | > loss_gen: 2.56565 (2.52704) | > loss_kl: 2.74170 (2.65724) | > loss_feat: 8.51879 (8.50494) | > loss_mel: 18.06772 (17.84378) | > loss_duration: 1.70877 (1.69988) | > loss_1: 33.60262 (33.23284)  --> STEP: 140 | > loss_disc: 2.43932 (2.37133) | > loss_disc_real_0: 0.16615 (0.14619) | > loss_disc_real_1: 0.22688 (0.22766) | > loss_disc_real_2: 0.21850 (0.21517) | > loss_disc_real_3: 0.25489 (0.24078) | > loss_disc_real_4: 0.25343 (0.24095) | > loss_disc_real_5: 0.23256 (0.22350) | > loss_0: 2.43932 (2.37133) | > loss_gen: 2.48700 (2.52675) | > loss_kl: 2.69285 (2.65749) | > loss_feat: 8.06098 (8.50177) | > loss_mel: 17.57240 (17.84184) | > loss_duration: 1.71641 (1.70000) | > loss_1: 32.52964 (33.22782)  --> STEP: 141 | > loss_disc: 2.47742 (2.37208) | > loss_disc_real_0: 0.18181 (0.14644) | > loss_disc_real_1: 0.23195 (0.22769) | > loss_disc_real_2: 0.21793 (0.21519) | > loss_disc_real_3: 0.24827 (0.24083) | > loss_disc_real_4: 0.25638 (0.24106) | > loss_disc_real_5: 0.22811 (0.22353) | > loss_0: 2.47742 (2.37208) | > loss_gen: 2.45531 (2.52624) | > loss_kl: 2.56870 (2.65686) | > loss_feat: 7.82869 (8.49699) | > loss_mel: 17.55954 (17.83984) | > loss_duration: 1.71290 (1.70009) | > loss_1: 32.12514 (33.22000)  --> STEP: 142 | > loss_disc: 2.40474 (2.37231) | > loss_disc_real_0: 0.17225 (0.14662) | > loss_disc_real_1: 0.22665 (0.22768) | > loss_disc_real_2: 0.22471 (0.21526) | > loss_disc_real_3: 0.24378 (0.24085) | > loss_disc_real_4: 0.23930 (0.24105) | > loss_disc_real_5: 0.21995 (0.22351) | > loss_0: 2.40474 (2.37231) | > loss_gen: 2.50790 (2.52611) | > loss_kl: 2.68543 (2.65706) | > loss_feat: 7.93054 (8.49300) | > loss_mel: 17.53181 (17.83767) | > loss_duration: 1.67650 (1.69992) | > loss_1: 32.33217 (33.21374)  --> STEP: 143 | > loss_disc: 2.31630 (2.37192) | > loss_disc_real_0: 0.14014 (0.14658) | > loss_disc_real_1: 0.21364 (0.22759) | > loss_disc_real_2: 0.20615 (0.21519) | > loss_disc_real_3: 0.22407 (0.24074) | > loss_disc_real_4: 0.25405 (0.24114) | > loss_disc_real_5: 0.22485 (0.22352) | > loss_0: 2.31630 (2.37192) | > loss_gen: 2.58301 (2.52651) | > loss_kl: 2.73597 (2.65761) | > loss_feat: 9.40068 (8.49935) | > loss_mel: 18.40730 (17.84165) | > loss_duration: 1.67638 (1.69976) | > loss_1: 34.80334 (33.22485)  --> STEP: 144 | > loss_disc: 2.30312 (2.37144) | > loss_disc_real_0: 0.15475 (0.14663) | > loss_disc_real_1: 0.22117 (0.22754) | > loss_disc_real_2: 0.21153 (0.21517) | > loss_disc_real_3: 0.22981 (0.24066) | > loss_disc_real_4: 0.23511 (0.24110) | > loss_disc_real_5: 0.20959 (0.22342) | > loss_0: 2.30312 (2.37144) | > loss_gen: 2.60407 (2.52705) | > loss_kl: 2.54199 (2.65681) | > loss_feat: 8.75029 (8.50109) | > loss_mel: 18.04362 (17.84306) | > loss_duration: 1.70525 (1.69980) | > loss_1: 33.64521 (33.22777)  --> STEP: 145 | > loss_disc: 2.31819 (2.37107) | > loss_disc_real_0: 0.15177 (0.14667) | > loss_disc_real_1: 0.22251 (0.22751) | > loss_disc_real_2: 0.20903 (0.21512) | > loss_disc_real_3: 0.24518 (0.24069) | > loss_disc_real_4: 0.23254 (0.24104) | > loss_disc_real_5: 0.20849 (0.22332) | > loss_0: 2.31819 (2.37107) | > loss_gen: 2.58026 (2.52742) | > loss_kl: 2.56435 (2.65617) | > loss_feat: 8.88061 (8.50371) | > loss_mel: 18.17282 (17.84533) | > loss_duration: 1.71540 (1.69990) | > loss_1: 33.91344 (33.23250)  --> STEP: 146 | > loss_disc: 2.34234 (2.37087) | > loss_disc_real_0: 0.12949 (0.14655) | > loss_disc_real_1: 0.22692 (0.22750) | > loss_disc_real_2: 0.20493 (0.21505) | > loss_disc_real_3: 0.22071 (0.24056) | > loss_disc_real_4: 0.23722 (0.24101) | > loss_disc_real_5: 0.21454 (0.22326) | > loss_0: 2.34234 (2.37087) | > loss_gen: 2.46108 (2.52696) | > loss_kl: 2.62149 (2.65594) | > loss_feat: 8.07353 (8.50076) | > loss_mel: 17.38302 (17.84216) | > loss_duration: 1.73419 (1.70014) | > loss_1: 32.27331 (33.22593)  --> STEP: 147 | > loss_disc: 2.38257 (2.37095) | > loss_disc_real_0: 0.16801 (0.14670) | > loss_disc_real_1: 0.22639 (0.22749) | > loss_disc_real_2: 0.22008 (0.21509) | > loss_disc_real_3: 0.23928 (0.24055) | > loss_disc_real_4: 0.24916 (0.24107) | > loss_disc_real_5: 0.22817 (0.22329) | > loss_0: 2.38257 (2.37095) | > loss_gen: 2.55056 (2.52712) | > loss_kl: 2.62293 (2.65571) | > loss_feat: 8.68518 (8.50202) | > loss_mel: 17.07896 (17.83697) | > loss_duration: 1.65163 (1.69981) | > loss_1: 32.58927 (33.22160)  --> STEP: 148 | > loss_disc: 2.35701 (2.37086) | > loss_disc_real_0: 0.14324 (0.14667) | > loss_disc_real_1: 0.23610 (0.22755) | > loss_disc_real_2: 0.21827 (0.21511) | > loss_disc_real_3: 0.24240 (0.24056) | > loss_disc_real_4: 0.23165 (0.24100) | > loss_disc_real_5: 0.22944 (0.22333) | > loss_0: 2.35701 (2.37086) | > loss_gen: 2.56743 (2.52740) | > loss_kl: 2.56056 (2.65507) | > loss_feat: 9.02689 (8.50556) | > loss_mel: 18.14498 (17.83905) | > loss_duration: 1.69925 (1.69981) | > loss_1: 33.99911 (33.22686)  --> STEP: 149 | > loss_disc: 2.36097 (2.37079) | > loss_disc_real_0: 0.13780 (0.14661) | > loss_disc_real_1: 0.25049 (0.22771) | > loss_disc_real_2: 0.23768 (0.21526) | > loss_disc_real_3: 0.23828 (0.24054) | > loss_disc_real_4: 0.23784 (0.24098) | > loss_disc_real_5: 0.21142 (0.22325) | > loss_0: 2.36097 (2.37079) | > loss_gen: 2.55661 (2.52759) | > loss_kl: 2.69683 (2.65535) | > loss_feat: 8.55328 (8.50589) | > loss_mel: 17.53217 (17.83699) | > loss_duration: 1.72372 (1.69997) | > loss_1: 33.06263 (33.22575)  --> STEP: 150 | > loss_disc: 2.35212 (2.37067) | > loss_disc_real_0: 0.13142 (0.14651) | > loss_disc_real_1: 0.23242 (0.22774) | > loss_disc_real_2: 0.21116 (0.21523) | > loss_disc_real_3: 0.24241 (0.24056) | > loss_disc_real_4: 0.23940 (0.24097) | > loss_disc_real_5: 0.22104 (0.22324) | > loss_0: 2.35212 (2.37067) | > loss_gen: 2.53589 (2.52765) | > loss_kl: 2.68633 (2.65556) | > loss_feat: 8.16535 (8.50362) | > loss_mel: 17.99076 (17.83802) | > loss_duration: 1.72510 (1.70013) | > loss_1: 33.10342 (33.22494)  --> STEP: 151 | > loss_disc: 2.36365 (2.37062) | > loss_disc_real_0: 0.15353 (0.14656) | > loss_disc_real_1: 0.22507 (0.22772) | > loss_disc_real_2: 0.20095 (0.21514) | > loss_disc_real_3: 0.22920 (0.24048) | > loss_disc_real_4: 0.22058 (0.24084) | > loss_disc_real_5: 0.21552 (0.22319) | > loss_0: 2.36365 (2.37062) | > loss_gen: 2.50022 (2.52747) | > loss_kl: 2.72619 (2.65602) | > loss_feat: 8.81833 (8.50570) | > loss_mel: 18.01398 (17.83918) | > loss_duration: 1.71444 (1.70023) | > loss_1: 33.77315 (33.22857)  --> STEP: 152 | > loss_disc: 2.38509 (2.37072) | > loss_disc_real_0: 0.14545 (0.14655) | > loss_disc_real_1: 0.23128 (0.22774) | > loss_disc_real_2: 0.21755 (0.21516) | > loss_disc_real_3: 0.24825 (0.24053) | > loss_disc_real_4: 0.25838 (0.24095) | > loss_disc_real_5: 0.23957 (0.22330) | > loss_0: 2.38509 (2.37072) | > loss_gen: 2.53344 (2.52750) | > loss_kl: 2.54345 (2.65528) | > loss_feat: 8.60450 (8.50635) | > loss_mel: 17.77041 (17.83873) | > loss_duration: 1.71556 (1.70033) | > loss_1: 33.16736 (33.22817)  --> STEP: 153 | > loss_disc: 2.40182 (2.37092) | > loss_disc_real_0: 0.16934 (0.14670) | > loss_disc_real_1: 0.24414 (0.22785) | > loss_disc_real_2: 0.22495 (0.21522) | > loss_disc_real_3: 0.23929 (0.24052) | > loss_disc_real_4: 0.23521 (0.24091) | > loss_disc_real_5: 0.23178 (0.22335) | > loss_0: 2.40182 (2.37092) | > loss_gen: 2.51397 (2.52742) | > loss_kl: 2.68875 (2.65550) | > loss_feat: 7.79589 (8.50171) | > loss_mel: 18.09235 (17.84039) | > loss_duration: 1.69668 (1.70031) | > loss_1: 32.78765 (33.22529)  --> STEP: 154 | > loss_disc: 2.33019 (2.37066) | > loss_disc_real_0: 0.11060 (0.14647) | > loss_disc_real_1: 0.22197 (0.22781) | > loss_disc_real_2: 0.19617 (0.21510) | > loss_disc_real_3: 0.23123 (0.24046) | > loss_disc_real_4: 0.25735 (0.24102) | > loss_disc_real_5: 0.20264 (0.22322) | > loss_0: 2.33019 (2.37066) | > loss_gen: 2.46938 (2.52704) | > loss_kl: 2.63470 (2.65537) | > loss_feat: 9.08243 (8.50548) | > loss_mel: 17.91917 (17.84090) | > loss_duration: 1.72129 (1.70044) | > loss_1: 33.82697 (33.22920) --> EVAL PERFORMANCE | > avg_loader_time: 0.03612 (-0.00503) | > avg_loss_disc: 2.37066 (+0.03737) | > avg_loss_disc_real_0: 0.14647 (+0.04325) | > avg_loss_disc_real_1: 0.22781 (+0.06157) | > avg_loss_disc_real_2: 0.21510 (-0.03418) | > avg_loss_disc_real_3: 0.24046 (-0.00922) | > avg_loss_disc_real_4: 0.24102 (+0.01652) | > avg_loss_disc_real_5: 0.22322 (-0.01013) | > avg_loss_0: 2.37066 (+0.03737) | > avg_loss_gen: 2.52704 (+0.06115) | > avg_loss_kl: 2.65537 (-0.04129) | > avg_loss_feat: 8.50548 (-0.01460) | > avg_loss_mel: 17.84090 (+0.20990) | > avg_loss_duration: 1.70044 (-0.00136) | > avg_loss_1: 33.22920 (+0.21379)  > EPOCH: 5/1000 --> ./checkpoints/yourtts_multilingual/yourtts-du_en_fr_ge_it_pl_ptbr_sp-November-08-2022_12+19PM-0cbaa0f6  > TRAINING (2022-11-10 13:45:57)   --> STEP: 14/15287 -- GLOBAL_STEP: 1026450 | > loss_disc: 2.33650 (2.30409) | > loss_disc_real_0: 0.12947 (0.12102) | > loss_disc_real_1: 0.21028 (0.21032) | > loss_disc_real_2: 0.25465 (0.21584) | > loss_disc_real_3: 0.23256 (0.21649) | > loss_disc_real_4: 0.25458 (0.21590) | > loss_disc_real_5: 0.22423 (0.21299) | > loss_0: 2.33650 (2.30409) | > grad_norm_0: 8.99353 (10.60596) | > loss_gen: 2.56318 (2.58371) | > loss_kl: 2.62257 (2.62662) | > loss_feat: 9.15250 (8.75397) | > loss_mel: 17.82311 (17.64935) | > loss_duration: 1.71037 (1.70713) | > loss_1: 33.87173 (33.32078) | > grad_norm_1: 105.50153 (112.49620) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91490 (1.94545) | > loader_time: 0.04130 (0.03975)  --> STEP: 39/15287 -- GLOBAL_STEP: 1026475 | > loss_disc: 2.37382 (2.34880) | > loss_disc_real_0: 0.17915 (0.12320) | > loss_disc_real_1: 0.23903 (0.21525) | > loss_disc_real_2: 0.19828 (0.21643) | > loss_disc_real_3: 0.23305 (0.22167) | > loss_disc_real_4: 0.24550 (0.21711) | > loss_disc_real_5: 0.23238 (0.21216) | > loss_0: 2.37382 (2.34880) | > grad_norm_0: 21.97502 (12.20944) | > loss_gen: 2.50103 (2.53560) | > loss_kl: 2.67716 (2.65532) | > loss_feat: 8.21470 (8.61582) | > loss_mel: 17.44225 (17.75766) | > loss_duration: 1.70391 (1.70354) | > loss_1: 32.53905 (33.26796) | > grad_norm_1: 120.82458 (102.28109) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97950 (1.96004) | > loader_time: 0.04710 (0.03923)  --> STEP: 64/15287 -- GLOBAL_STEP: 1026500 | > loss_disc: 2.36581 (2.34728) | > loss_disc_real_0: 0.13176 (0.12290) | > loss_disc_real_1: 0.19138 (0.21385) | > loss_disc_real_2: 0.22179 (0.21651) | > loss_disc_real_3: 0.23918 (0.22248) | > loss_disc_real_4: 0.22676 (0.21802) | > loss_disc_real_5: 0.24608 (0.21442) | > loss_0: 2.36581 (2.34728) | > grad_norm_0: 17.34878 (12.53753) | > loss_gen: 2.48569 (2.53328) | > loss_kl: 2.64110 (2.65184) | > loss_feat: 8.31517 (8.57357) | > loss_mel: 17.95482 (17.78791) | > loss_duration: 1.72439 (1.70522) | > loss_1: 33.12118 (33.25182) | > grad_norm_1: 111.33450 (108.02147) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.78730 (1.97976) | > loader_time: 0.05570 (0.03927)  --> STEP: 89/15287 -- GLOBAL_STEP: 1026525 | > loss_disc: 2.38546 (2.34400) | > loss_disc_real_0: 0.11020 (0.12331) | > loss_disc_real_1: 0.21017 (0.21321) | > loss_disc_real_2: 0.21468 (0.21668) | > loss_disc_real_3: 0.23662 (0.22252) | > loss_disc_real_4: 0.23690 (0.21809) | > loss_disc_real_5: 0.27876 (0.21518) | > loss_0: 2.38546 (2.34400) | > grad_norm_0: 28.68283 (13.30139) | > loss_gen: 2.37413 (2.53092) | > loss_kl: 2.85765 (2.64651) | > loss_feat: 8.86873 (8.57675) | > loss_mel: 17.46098 (17.76149) | > loss_duration: 1.65269 (1.70383) | > loss_1: 33.21418 (33.21952) | > grad_norm_1: 174.63658 (112.46974) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87070 (1.98950) | > loader_time: 0.03390 (0.03873)  --> STEP: 114/15287 -- GLOBAL_STEP: 1026550 | > loss_disc: 2.30978 (2.34085) | > loss_disc_real_0: 0.11180 (0.12222) | > loss_disc_real_1: 0.20033 (0.21370) | > loss_disc_real_2: 0.21446 (0.21613) | > loss_disc_real_3: 0.19766 (0.22246) | > loss_disc_real_4: 0.21404 (0.21819) | > loss_disc_real_5: 0.21503 (0.21500) | > loss_0: 2.30978 (2.34085) | > grad_norm_0: 13.67354 (14.75835) | > loss_gen: 2.59384 (2.53340) | > loss_kl: 2.72142 (2.64613) | > loss_feat: 8.48513 (8.58393) | > loss_mel: 17.60843 (17.73951) | > loss_duration: 1.66247 (1.70201) | > loss_1: 33.07129 (33.20500) | > grad_norm_1: 154.35649 (121.39341) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.91290 (2.00006) | > loader_time: 0.03600 (0.03899)  --> STEP: 139/15287 -- GLOBAL_STEP: 1026575 | > loss_disc: 2.41057 (2.33922) | > loss_disc_real_0: 0.13337 (0.12151) | > loss_disc_real_1: 0.24598 (0.21180) | > loss_disc_real_2: 0.21677 (0.21689) | > loss_disc_real_3: 0.23061 (0.22111) | > loss_disc_real_4: 0.24162 (0.21529) | > loss_disc_real_5: 0.21513 (0.21521) | > loss_0: 2.41057 (2.33922) | > grad_norm_0: 15.73072 (15.28304) | > loss_gen: 2.51394 (2.52835) | > loss_kl: 2.82091 (2.65014) | > loss_feat: 8.38692 (8.59962) | > loss_mel: 17.80213 (17.74008) | > loss_duration: 1.74125 (1.70341) | > loss_1: 33.26516 (33.22161) | > grad_norm_1: 129.85147 (125.14852) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.83130 (1.99103) | > loader_time: 0.03750 (0.03833)  --> STEP: 164/15287 -- GLOBAL_STEP: 1026600 | > loss_disc: 2.25412 (2.33746) | > loss_disc_real_0: 0.12908 (0.12180) | > loss_disc_real_1: 0.22655 (0.21164) | > loss_disc_real_2: 0.20417 (0.21615) | > loss_disc_real_3: 0.20404 (0.22044) | > loss_disc_real_4: 0.19499 (0.21495) | > loss_disc_real_5: 0.18743 (0.21571) | > loss_0: 2.25412 (2.33746) | > grad_norm_0: 14.16845 (15.43052) | > loss_gen: 2.59709 (2.52775) | > loss_kl: 2.61453 (2.64811) | > loss_feat: 9.24023 (8.61114) | > loss_mel: 18.96389 (17.74676) | > loss_duration: 1.70080 (1.70426) | > loss_1: 35.11655 (33.23802) | > grad_norm_1: 191.42923 (123.47810) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88390 (1.99742) | > loader_time: 0.03020 (0.03815)  --> STEP: 189/15287 -- GLOBAL_STEP: 1026625 | > loss_disc: 2.35188 (2.33565) | > loss_disc_real_0: 0.13923 (0.12283) | > loss_disc_real_1: 0.21520 (0.21191) | > loss_disc_real_2: 0.25278 (0.21635) | > loss_disc_real_3: 0.21170 (0.22001) | > loss_disc_real_4: 0.17512 (0.21461) | > loss_disc_real_5: 0.19550 (0.21507) | > loss_0: 2.35188 (2.33565) | > grad_norm_0: 12.03132 (15.95052) | > loss_gen: 2.47014 (2.52801) | > loss_kl: 2.70311 (2.65138) | > loss_feat: 8.43307 (8.62136) | > loss_mel: 17.66875 (17.75871) | > loss_duration: 1.71090 (1.70406) | > loss_1: 32.98597 (33.26353) | > grad_norm_1: 92.18086 (123.69101) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02320 (1.99013) | > loader_time: 0.04230 (0.03824)  --> STEP: 214/15287 -- GLOBAL_STEP: 1026650 | > loss_disc: 2.20636 (2.33612) | > loss_disc_real_0: 0.09376 (0.12380) | > loss_disc_real_1: 0.22019 (0.21187) | > loss_disc_real_2: 0.18902 (0.21610) | > loss_disc_real_3: 0.20531 (0.22031) | > loss_disc_real_4: 0.18538 (0.21454) | > loss_disc_real_5: 0.16529 (0.21482) | > loss_0: 2.20636 (2.33612) | > grad_norm_0: 9.54977 (15.48987) | > loss_gen: 2.73856 (2.53352) | > loss_kl: 2.66446 (2.65604) | > loss_feat: 8.65632 (8.62177) | > loss_mel: 18.03606 (17.76812) | > loss_duration: 1.66949 (1.70426) | > loss_1: 33.76489 (33.28373) | > grad_norm_1: 186.39029 (119.50992) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99620 (1.99385) | > loader_time: 0.04010 (0.03814)  --> STEP: 239/15287 -- GLOBAL_STEP: 1026675 | > loss_disc: 2.36462 (2.33815) | > loss_disc_real_0: 0.14240 (0.12429) | > loss_disc_real_1: 0.22694 (0.21215) | > loss_disc_real_2: 0.22692 (0.21598) | > loss_disc_real_3: 0.22720 (0.22058) | > loss_disc_real_4: 0.25168 (0.21499) | > loss_disc_real_5: 0.26999 (0.21505) | > loss_0: 2.36462 (2.33815) | > grad_norm_0: 13.86305 (15.38917) | > loss_gen: 2.53185 (2.53545) | > loss_kl: 2.58359 (2.65967) | > loss_feat: 9.09960 (8.62880) | > loss_mel: 17.64490 (17.77240) | > loss_duration: 1.67509 (1.70515) | > loss_1: 33.53503 (33.30152) | > grad_norm_1: 116.44263 (119.61767) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90560 (1.99588) | > loader_time: 0.04990 (0.03839)  --> STEP: 264/15287 -- GLOBAL_STEP: 1026700 | > loss_disc: 2.30696 (2.33610) | > loss_disc_real_0: 0.14808 (0.12290) | > loss_disc_real_1: 0.24861 (0.21198) | > loss_disc_real_2: 0.21134 (0.21609) | > loss_disc_real_3: 0.21476 (0.22081) | > loss_disc_real_4: 0.19012 (0.21485) | > loss_disc_real_5: 0.21666 (0.21484) | > loss_0: 2.30696 (2.33610) | > grad_norm_0: 27.46592 (15.31527) | > loss_gen: 2.78338 (2.54081) | > loss_kl: 2.80028 (2.65647) | > loss_feat: 8.56983 (8.64586) | > loss_mel: 17.59093 (17.77642) | > loss_duration: 1.67991 (1.70511) | > loss_1: 33.42434 (33.32469) | > grad_norm_1: 112.07146 (121.68137) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94460 (1.99405) | > loader_time: 0.03970 (0.03864)  --> STEP: 289/15287 -- GLOBAL_STEP: 1026725 | > loss_disc: 2.30478 (2.33522) | > loss_disc_real_0: 0.13175 (0.12473) | > loss_disc_real_1: 0.20622 (0.21265) | > loss_disc_real_2: 0.22644 (0.21601) | > loss_disc_real_3: 0.22419 (0.22083) | > loss_disc_real_4: 0.21311 (0.21464) | > loss_disc_real_5: 0.22768 (0.21496) | > loss_0: 2.30478 (2.33522) | > grad_norm_0: 15.68077 (16.53191) | > loss_gen: 2.61060 (2.54184) | > loss_kl: 2.63989 (2.65491) | > loss_feat: 8.57610 (8.63123) | > loss_mel: 17.31456 (17.76790) | > loss_duration: 1.72172 (1.70545) | > loss_1: 32.86287 (33.30135) | > grad_norm_1: 127.23106 (125.56931) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94640 (1.99359) | > loader_time: 0.03130 (0.03835)  --> STEP: 314/15287 -- GLOBAL_STEP: 1026750 | > loss_disc: 2.28428 (2.33264) | > loss_disc_real_0: 0.12058 (0.12417) | > loss_disc_real_1: 0.21183 (0.21167) | > loss_disc_real_2: 0.21065 (0.21562) | > loss_disc_real_3: 0.22095 (0.22000) | > loss_disc_real_4: 0.20170 (0.21396) | > loss_disc_real_5: 0.21065 (0.21492) | > loss_0: 2.28428 (2.33264) | > grad_norm_0: 6.56519 (16.56989) | > loss_gen: 2.63211 (2.54023) | > loss_kl: 2.63313 (2.65315) | > loss_feat: 8.75685 (8.63551) | > loss_mel: 17.54878 (17.76554) | > loss_duration: 1.67330 (1.70543) | > loss_1: 33.24417 (33.29985) | > grad_norm_1: 135.23834 (128.88245) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11610 (1.99147) | > loader_time: 0.03440 (0.03832)  --> STEP: 339/15287 -- GLOBAL_STEP: 1026775 | > loss_disc: 2.33728 (2.33114) | > loss_disc_real_0: 0.15124 (0.12406) | > loss_disc_real_1: 0.22984 (0.21171) | > loss_disc_real_2: 0.23289 (0.21557) | > loss_disc_real_3: 0.20382 (0.21993) | > loss_disc_real_4: 0.24682 (0.21411) | > loss_disc_real_5: 0.23715 (0.21500) | > loss_0: 2.33728 (2.33114) | > grad_norm_0: 19.92588 (16.57242) | > loss_gen: 2.47171 (2.54149) | > loss_kl: 2.62595 (2.65592) | > loss_feat: 8.19155 (8.63843) | > loss_mel: 17.61312 (17.76232) | > loss_duration: 1.73716 (1.70563) | > loss_1: 32.63949 (33.30381) | > grad_norm_1: 133.08641 (128.61256) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92860 (1.99265) | > loader_time: 0.04820 (0.03838)  --> STEP: 364/15287 -- GLOBAL_STEP: 1026800 | > loss_disc: 2.31312 (2.33051) | > loss_disc_real_0: 0.15763 (0.12438) | > loss_disc_real_1: 0.23650 (0.21177) | > loss_disc_real_2: 0.24011 (0.21561) | > loss_disc_real_3: 0.23621 (0.21975) | > loss_disc_real_4: 0.25656 (0.21396) | > loss_disc_real_5: 0.22777 (0.21463) | > loss_0: 2.31312 (2.33051) | > grad_norm_0: 22.89186 (16.64872) | > loss_gen: 2.90486 (2.54216) | > loss_kl: 2.69069 (2.65674) | > loss_feat: 8.59874 (8.64011) | > loss_mel: 18.01790 (17.76416) | > loss_duration: 1.71972 (1.70564) | > loss_1: 33.93191 (33.30884) | > grad_norm_1: 93.08734 (129.31958) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87550 (1.99114) | > loader_time: 0.03360 (0.03821)  --> STEP: 389/15287 -- GLOBAL_STEP: 1026825 | > loss_disc: 2.35082 (2.33010) | > loss_disc_real_0: 0.11780 (0.12502) | > loss_disc_real_1: 0.22252 (0.21197) | > loss_disc_real_2: 0.22404 (0.21595) | > loss_disc_real_3: 0.20806 (0.22006) | > loss_disc_real_4: 0.23749 (0.21429) | > loss_disc_real_5: 0.18093 (0.21447) | > loss_0: 2.35082 (2.33010) | > grad_norm_0: 10.94501 (16.50600) | > loss_gen: 2.44317 (2.54528) | > loss_kl: 2.71367 (2.65771) | > loss_feat: 9.13126 (8.64673) | > loss_mel: 18.61329 (17.76683) | > loss_duration: 1.71420 (1.70602) | > loss_1: 34.61560 (33.32259) | > grad_norm_1: 125.12977 (128.91068) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.19610 (1.99418) | > loader_time: 0.03700 (0.03801)  --> STEP: 414/15287 -- GLOBAL_STEP: 1026850 | > loss_disc: 2.35320 (2.33092) | > loss_disc_real_0: 0.13541 (0.12477) | > loss_disc_real_1: 0.26568 (0.21244) | > loss_disc_real_2: 0.22102 (0.21614) | > loss_disc_real_3: 0.21266 (0.22014) | > loss_disc_real_4: 0.22515 (0.21465) | > loss_disc_real_5: 0.17794 (0.21453) | > loss_0: 2.35320 (2.33092) | > grad_norm_0: 12.40024 (16.20836) | > loss_gen: 2.65405 (2.54748) | > loss_kl: 2.57797 (2.65715) | > loss_feat: 9.18731 (8.64360) | > loss_mel: 18.00272 (17.76827) | > loss_duration: 1.68981 (1.70601) | > loss_1: 34.11185 (33.32253) | > grad_norm_1: 104.47711 (128.13814) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05450 (2.00589) | > loader_time: 0.03370 (0.03788)  --> STEP: 439/15287 -- GLOBAL_STEP: 1026875 | > loss_disc: 2.31773 (2.33242) | > loss_disc_real_0: 0.08316 (0.12463) | > loss_disc_real_1: 0.23749 (0.21250) | > loss_disc_real_2: 0.22160 (0.21630) | > loss_disc_real_3: 0.21508 (0.22048) | > loss_disc_real_4: 0.22268 (0.21494) | > loss_disc_real_5: 0.20347 (0.21454) | > loss_0: 2.31773 (2.33242) | > grad_norm_0: 7.50512 (16.12500) | > loss_gen: 2.57665 (2.54550) | > loss_kl: 2.47882 (2.65493) | > loss_feat: 8.66508 (8.64196) | > loss_mel: 17.75641 (17.76862) | > loss_duration: 1.73376 (1.70631) | > loss_1: 33.21072 (33.31734) | > grad_norm_1: 127.18336 (127.86614) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.81170 (2.00833) | > loader_time: 0.04700 (0.03778)  --> STEP: 464/15287 -- GLOBAL_STEP: 1026900 | > loss_disc: 2.23833 (2.33239) | > loss_disc_real_0: 0.10136 (0.12468) | > loss_disc_real_1: 0.20713 (0.21269) | > loss_disc_real_2: 0.20750 (0.21667) | > loss_disc_real_3: 0.20061 (0.22055) | > loss_disc_real_4: 0.20399 (0.21513) | > loss_disc_real_5: 0.22631 (0.21446) | > loss_0: 2.23833 (2.33239) | > grad_norm_0: 8.58286 (16.13787) | > loss_gen: 2.47810 (2.54627) | > loss_kl: 2.69579 (2.65513) | > loss_feat: 8.54566 (8.63877) | > loss_mel: 17.40119 (17.76361) | > loss_duration: 1.68497 (1.70630) | > loss_1: 32.80571 (33.31013) | > grad_norm_1: 134.41408 (128.36047) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29020 (2.05045) | > loader_time: 0.03730 (0.03757)  --> STEP: 489/15287 -- GLOBAL_STEP: 1026925 | > loss_disc: 2.34068 (2.33154) | > loss_disc_real_0: 0.14817 (0.12479) | > loss_disc_real_1: 0.22422 (0.21274) | > loss_disc_real_2: 0.20384 (0.21656) | > loss_disc_real_3: 0.23369 (0.22046) | > loss_disc_real_4: 0.21946 (0.21499) | > loss_disc_real_5: 0.19978 (0.21428) | > loss_0: 2.34068 (2.33154) | > grad_norm_0: 11.84467 (16.03985) | > loss_gen: 2.51581 (2.54773) | > loss_kl: 2.74171 (2.65734) | > loss_feat: 8.81502 (8.63875) | > loss_mel: 17.80294 (17.76381) | > loss_duration: 1.72810 (1.70601) | > loss_1: 33.60358 (33.31369) | > grad_norm_1: 115.03053 (128.49498) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.63980 (2.07909) | > loader_time: 0.03030 (0.03751)  --> STEP: 514/15287 -- GLOBAL_STEP: 1026950 | > loss_disc: 2.31220 (2.33093) | > loss_disc_real_0: 0.15336 (0.12445) | > loss_disc_real_1: 0.28810 (0.21288) | > loss_disc_real_2: 0.23692 (0.21658) | > loss_disc_real_3: 0.24486 (0.22043) | > loss_disc_real_4: 0.22650 (0.21494) | > loss_disc_real_5: 0.21092 (0.21424) | > loss_0: 2.31220 (2.33093) | > grad_norm_0: 7.11628 (15.84444) | > loss_gen: 2.59368 (2.54851) | > loss_kl: 2.57859 (2.65808) | > loss_feat: 8.74986 (8.64260) | > loss_mel: 17.31061 (17.76174) | > loss_duration: 1.71675 (1.70605) | > loss_1: 32.94949 (33.31704) | > grad_norm_1: 96.00381 (128.99130) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.81120 (2.11837) | > loader_time: 0.03280 (0.03750)  --> STEP: 539/15287 -- GLOBAL_STEP: 1026975 | > loss_disc: 2.41211 (2.33165) | > loss_disc_real_0: 0.15863 (0.12423) | > loss_disc_real_1: 0.24533 (0.21332) | > loss_disc_real_2: 0.23881 (0.21669) | > loss_disc_real_3: 0.22310 (0.22044) | > loss_disc_real_4: 0.26225 (0.21492) | > loss_disc_real_5: 0.19359 (0.21423) | > loss_0: 2.41211 (2.33165) | > grad_norm_0: 11.35079 (15.80297) | > loss_gen: 2.47800 (2.54798) | > loss_kl: 2.63961 (2.65985) | > loss_feat: 8.22247 (8.64392) | > loss_mel: 17.63023 (17.76305) | > loss_duration: 1.69214 (1.70602) | > loss_1: 32.66244 (33.32087) | > grad_norm_1: 143.34250 (129.26094) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35360 (2.16318) | > loader_time: 0.03250 (0.03745)  --> STEP: 564/15287 -- GLOBAL_STEP: 1027000 | > loss_disc: 2.25188 (2.33110) | > loss_disc_real_0: 0.08132 (0.12395) | > loss_disc_real_1: 0.17833 (0.21337) | > loss_disc_real_2: 0.19076 (0.21666) | > loss_disc_real_3: 0.20113 (0.22040) | > loss_disc_real_4: 0.19914 (0.21487) | > loss_disc_real_5: 0.19992 (0.21427) | > loss_0: 2.25188 (2.33110) | > grad_norm_0: 7.12651 (15.86035) | > loss_gen: 2.69592 (2.54884) | > loss_kl: 2.57331 (2.65881) | > loss_feat: 8.91748 (8.64488) | > loss_mel: 17.91770 (17.75945) | > loss_duration: 1.69315 (1.70591) | > loss_1: 33.79757 (33.31793) | > grad_norm_1: 61.30084 (130.48099) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.67360 (2.20499) | > loader_time: 0.03340 (0.03742)  --> STEP: 589/15287 -- GLOBAL_STEP: 1027025 | > loss_disc: 2.29574 (2.33059) | > loss_disc_real_0: 0.09159 (0.12375) | > loss_disc_real_1: 0.21102 (0.21339) | > loss_disc_real_2: 0.20383 (0.21672) | > loss_disc_real_3: 0.19861 (0.22034) | > loss_disc_real_4: 0.27378 (0.21522) | > loss_disc_real_5: 0.20483 (0.21438) | > loss_0: 2.29574 (2.33059) | > grad_norm_0: 26.23763 (16.01795) | > loss_gen: 2.44958 (2.54989) | > loss_kl: 2.66402 (2.65841) | > loss_feat: 8.84238 (8.64548) | > loss_mel: 17.59327 (17.75679) | > loss_duration: 1.66837 (1.70575) | > loss_1: 33.21762 (33.31637) | > grad_norm_1: 190.79724 (132.06526) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.66660 (2.24821) | > loader_time: 0.03400 (0.03739)  --> STEP: 614/15287 -- GLOBAL_STEP: 1027050 | > loss_disc: 2.30581 (2.32970) | > loss_disc_real_0: 0.13202 (0.12336) | > loss_disc_real_1: 0.20635 (0.21329) | > loss_disc_real_2: 0.25242 (0.21663) | > loss_disc_real_3: 0.20958 (0.22018) | > loss_disc_real_4: 0.20335 (0.21521) | > loss_disc_real_5: 0.22317 (0.21419) | > loss_0: 2.30581 (2.32970) | > grad_norm_0: 10.48084 (16.05221) | > loss_gen: 2.48627 (2.54837) | > loss_kl: 2.51006 (2.65776) | > loss_feat: 8.19683 (8.64619) | > loss_mel: 17.60841 (17.75005) | > loss_duration: 1.68081 (1.70558) | > loss_1: 32.48237 (33.30799) | > grad_norm_1: 103.35600 (133.00298) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.72980 (2.27445) | > loader_time: 0.03120 (0.03730)  --> STEP: 639/15287 -- GLOBAL_STEP: 1027075 | > loss_disc: 2.27061 (2.32856) | > loss_disc_real_0: 0.11532 (0.12310) | > loss_disc_real_1: 0.20595 (0.21315) | > loss_disc_real_2: 0.20176 (0.21644) | > loss_disc_real_3: 0.19223 (0.22010) | > loss_disc_real_4: 0.19180 (0.21515) | > loss_disc_real_5: 0.18776 (0.21427) | > loss_0: 2.27061 (2.32856) | > grad_norm_0: 12.74079 (16.14127) | > loss_gen: 2.46975 (2.54829) | > loss_kl: 2.64330 (2.65883) | > loss_feat: 8.95094 (8.64988) | > loss_mel: 17.98550 (17.74924) | > loss_duration: 1.68832 (1.70556) | > loss_1: 33.73780 (33.31184) | > grad_norm_1: 209.30756 (133.50192) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.55040 (2.27577) | > loader_time: 0.03980 (0.03721)  --> STEP: 664/15287 -- GLOBAL_STEP: 1027100 | > loss_disc: 2.36573 (2.32740) | > loss_disc_real_0: 0.15644 (0.12276) | > loss_disc_real_1: 0.21431 (0.21291) | > loss_disc_real_2: 0.23401 (0.21635) | > loss_disc_real_3: 0.25183 (0.22000) | > loss_disc_real_4: 0.22782 (0.21504) | > loss_disc_real_5: 0.22412 (0.21427) | > loss_0: 2.36573 (2.32740) | > grad_norm_0: 18.38317 (16.08276) | > loss_gen: 2.61027 (2.54858) | > loss_kl: 2.65734 (2.65971) | > loss_feat: 8.24230 (8.65169) | > loss_mel: 17.53146 (17.74691) | > loss_duration: 1.71768 (1.70532) | > loss_1: 32.75905 (33.31226) | > grad_norm_1: 183.79544 (134.01022) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.22880 (2.28293) | > loader_time: 0.03560 (0.03723)  --> STEP: 689/15287 -- GLOBAL_STEP: 1027125 | > loss_disc: 2.27347 (2.32624) | > loss_disc_real_0: 0.13850 (0.12244) | > loss_disc_real_1: 0.22195 (0.21284) | > loss_disc_real_2: 0.21814 (0.21634) | > loss_disc_real_3: 0.24292 (0.21985) | > loss_disc_real_4: 0.20903 (0.21512) | > loss_disc_real_5: 0.19828 (0.21408) | > loss_0: 2.27347 (2.32624) | > grad_norm_0: 24.23238 (16.11432) | > loss_gen: 2.92117 (2.54987) | > loss_kl: 2.67601 (2.66048) | > loss_feat: 8.88935 (8.65443) | > loss_mel: 17.86404 (17.74498) | > loss_duration: 1.72570 (1.70519) | > loss_1: 34.07627 (33.31499) | > grad_norm_1: 228.40137 (134.87230) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.47600 (2.28693) | > loader_time: 0.03110 (0.03726)  --> STEP: 714/15287 -- GLOBAL_STEP: 1027150 | > loss_disc: 2.41941 (2.32789) | > loss_disc_real_0: 0.15420 (0.12336) | > loss_disc_real_1: 0.23577 (0.21302) | > loss_disc_real_2: 0.21427 (0.21642) | > loss_disc_real_3: 0.21574 (0.22007) | > loss_disc_real_4: 0.21844 (0.21534) | > loss_disc_real_5: 0.21362 (0.21423) | > loss_0: 2.41941 (2.32789) | > grad_norm_0: 7.44617 (16.23349) | > loss_gen: 2.19128 (2.54923) | > loss_kl: 2.53026 (2.66106) | > loss_feat: 7.87911 (8.65012) | > loss_mel: 17.56846 (17.74571) | > loss_duration: 1.68324 (1.70516) | > loss_1: 31.85234 (33.31134) | > grad_norm_1: 119.56333 (133.56892) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.25390 (2.30873) | > loader_time: 0.03140 (0.03730)  --> STEP: 739/15287 -- GLOBAL_STEP: 1027175 | > loss_disc: 2.31943 (2.32849) | > loss_disc_real_0: 0.09592 (0.12352) | > loss_disc_real_1: 0.21365 (0.21298) | > loss_disc_real_2: 0.18419 (0.21631) | > loss_disc_real_3: 0.20039 (0.22008) | > loss_disc_real_4: 0.18387 (0.21537) | > loss_disc_real_5: 0.22828 (0.21431) | > loss_0: 2.31943 (2.32849) | > grad_norm_0: 13.85245 (16.12898) | > loss_gen: 2.56575 (2.54986) | > loss_kl: 2.65668 (2.66138) | > loss_feat: 8.47672 (8.65104) | > loss_mel: 17.89591 (17.75237) | > loss_duration: 1.69800 (1.70504) | > loss_1: 33.29306 (33.31973) | > grad_norm_1: 159.85443 (132.64165) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11520 (2.31429) | > loader_time: 0.03700 (0.03729)  --> STEP: 764/15287 -- GLOBAL_STEP: 1027200 | > loss_disc: 2.37592 (2.32868) | > loss_disc_real_0: 0.12721 (0.12344) | > loss_disc_real_1: 0.20465 (0.21289) | > loss_disc_real_2: 0.19289 (0.21642) | > loss_disc_real_3: 0.21654 (0.22024) | > loss_disc_real_4: 0.19514 (0.21539) | > loss_disc_real_5: 0.22184 (0.21435) | > loss_0: 2.37592 (2.32868) | > grad_norm_0: 8.79594 (16.17971) | > loss_gen: 2.60442 (2.54943) | > loss_kl: 2.70801 (2.66250) | > loss_feat: 8.41926 (8.65154) | > loss_mel: 18.04477 (17.75267) | > loss_duration: 1.69990 (1.70505) | > loss_1: 33.47635 (33.32121) | > grad_norm_1: 85.64430 (131.85803) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.52950 (2.32553) | > loader_time: 0.03550 (0.03723)  --> STEP: 789/15287 -- GLOBAL_STEP: 1027225 | > loss_disc: 2.32308 (2.32860) | > loss_disc_real_0: 0.07433 (0.12339) | > loss_disc_real_1: 0.23633 (0.21298) | > loss_disc_real_2: 0.20610 (0.21645) | > loss_disc_real_3: 0.18187 (0.22010) | > loss_disc_real_4: 0.16928 (0.21523) | > loss_disc_real_5: 0.19752 (0.21429) | > loss_0: 2.32308 (2.32860) | > grad_norm_0: 15.91045 (16.14219) | > loss_gen: 2.50912 (2.54910) | > loss_kl: 2.70602 (2.66287) | > loss_feat: 8.72140 (8.65289) | > loss_mel: 17.44978 (17.74992) | > loss_duration: 1.63721 (1.70468) | > loss_1: 33.02353 (33.31949) | > grad_norm_1: 147.87398 (131.67018) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.91540 (2.34458) | > loader_time: 0.03080 (0.03718)  --> STEP: 814/15287 -- GLOBAL_STEP: 1027250 | > loss_disc: 2.44107 (2.32891) | > loss_disc_real_0: 0.18067 (0.12356) | > loss_disc_real_1: 0.25306 (0.21297) | > loss_disc_real_2: 0.24951 (0.21650) | > loss_disc_real_3: 0.22486 (0.22009) | > loss_disc_real_4: 0.23884 (0.21521) | > loss_disc_real_5: 0.22709 (0.21411) | > loss_0: 2.44107 (2.32891) | > grad_norm_0: 34.71220 (16.42587) | > loss_gen: 2.47638 (2.54917) | > loss_kl: 2.70499 (2.66182) | > loss_feat: 7.93611 (8.64956) | > loss_mel: 17.09442 (17.74464) | > loss_duration: 1.69982 (1.70454) | > loss_1: 31.91172 (33.30978) | > grad_norm_1: 184.33467 (131.89076) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.45530 (2.35328) | > loader_time: 0.03360 (0.03710)  --> STEP: 839/15287 -- GLOBAL_STEP: 1027275 | > loss_disc: 2.26763 (2.32850) | > loss_disc_real_0: 0.09106 (0.12348) | > loss_disc_real_1: 0.22178 (0.21299) | > loss_disc_real_2: 0.23996 (0.21675) | > loss_disc_real_3: 0.22026 (0.22016) | > loss_disc_real_4: 0.22737 (0.21530) | > loss_disc_real_5: 0.20969 (0.21408) | > loss_0: 2.26763 (2.32850) | > grad_norm_0: 10.56926 (16.62501) | > loss_gen: 2.59240 (2.54935) | > loss_kl: 2.66025 (2.66189) | > loss_feat: 8.72283 (8.65106) | > loss_mel: 17.87396 (17.74503) | > loss_duration: 1.67922 (1.70418) | > loss_1: 33.52866 (33.31155) | > grad_norm_1: 159.14688 (133.28114) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.76460 (2.36155) | > loader_time: 0.04490 (0.03707)  --> STEP: 864/15287 -- GLOBAL_STEP: 1027300 | > loss_disc: 2.31444 (2.32728) | > loss_disc_real_0: 0.08794 (0.12331) | > loss_disc_real_1: 0.21423 (0.21292) | > loss_disc_real_2: 0.20093 (0.21665) | > loss_disc_real_3: 0.22218 (0.21999) | > loss_disc_real_4: 0.23922 (0.21532) | > loss_disc_real_5: 0.23214 (0.21395) | > loss_0: 2.31444 (2.32728) | > grad_norm_0: 19.87882 (16.72360) | > loss_gen: 2.63503 (2.54978) | > loss_kl: 2.58501 (2.66275) | > loss_feat: 8.66241 (8.65461) | > loss_mel: 17.43487 (17.74394) | > loss_duration: 1.69375 (1.70404) | > loss_1: 33.01106 (33.31516) | > grad_norm_1: 99.58891 (133.51193) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.77240 (2.36952) | > loader_time: 0.03410 (0.03697)  --> STEP: 889/15287 -- GLOBAL_STEP: 1027325 | > loss_disc: 2.38938 (2.32793) | > loss_disc_real_0: 0.10730 (0.12340) | > loss_disc_real_1: 0.23497 (0.21298) | > loss_disc_real_2: 0.22856 (0.21674) | > loss_disc_real_3: 0.27125 (0.22007) | > loss_disc_real_4: 0.22455 (0.21527) | > loss_disc_real_5: 0.21446 (0.21397) | > loss_0: 2.38938 (2.32793) | > grad_norm_0: 5.07239 (16.62417) | > loss_gen: 2.47033 (2.54979) | > loss_kl: 2.72815 (2.66339) | > loss_feat: 8.42217 (8.65601) | > loss_mel: 17.93877 (17.74129) | > loss_duration: 1.67729 (1.70397) | > loss_1: 33.23671 (33.31449) | > grad_norm_1: 50.92099 (132.49026) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.36680 (2.37257) | > loader_time: 0.03160 (0.03691)  --> STEP: 914/15287 -- GLOBAL_STEP: 1027350 | > loss_disc: 2.36074 (2.32912) | > loss_disc_real_0: 0.14742 (0.12388) | > loss_disc_real_1: 0.23521 (0.21304) | > loss_disc_real_2: 0.22828 (0.21679) | > loss_disc_real_3: 0.23333 (0.22003) | > loss_disc_real_4: 0.25970 (0.21544) | > loss_disc_real_5: 0.22100 (0.21406) | > loss_0: 2.36074 (2.32912) | > grad_norm_0: 30.62335 (16.79832) | > loss_gen: 2.51522 (2.54952) | > loss_kl: 2.59356 (2.66389) | > loss_feat: 8.28419 (8.65153) | > loss_mel: 17.63792 (17.74132) | > loss_duration: 1.73180 (1.70376) | > loss_1: 32.76271 (33.31005) | > grad_norm_1: 182.77948 (132.83815) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.91860 (2.37902) | > loader_time: 0.03670 (0.03686)  --> STEP: 939/15287 -- GLOBAL_STEP: 1027375 | > loss_disc: 2.44979 (2.32830) | > loss_disc_real_0: 0.09140 (0.12372) | > loss_disc_real_1: 0.20662 (0.21282) | > loss_disc_real_2: 0.21440 (0.21665) | > loss_disc_real_3: 0.21495 (0.21998) | > loss_disc_real_4: 0.22159 (0.21538) | > loss_disc_real_5: 0.21521 (0.21402) | > loss_0: 2.44979 (2.32830) | > grad_norm_0: 41.58060 (17.02376) | > loss_gen: 2.35800 (2.54994) | > loss_kl: 2.63934 (2.66387) | > loss_feat: 8.77832 (8.65758) | > loss_mel: 17.71417 (17.73741) | > loss_duration: 1.70469 (1.70373) | > loss_1: 33.19452 (33.31258) | > grad_norm_1: 167.35458 (133.72711) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24040 (2.38343) | > loader_time: 0.03980 (0.03683)  --> STEP: 964/15287 -- GLOBAL_STEP: 1027400 | > loss_disc: 2.30591 (2.32878) | > loss_disc_real_0: 0.07857 (0.12385) | > loss_disc_real_1: 0.20730 (0.21275) | > loss_disc_real_2: 0.21727 (0.21653) | > loss_disc_real_3: 0.20549 (0.21984) | > loss_disc_real_4: 0.20531 (0.21536) | > loss_disc_real_5: 0.23876 (0.21406) | > loss_0: 2.30591 (2.32878) | > grad_norm_0: 25.47099 (17.26340) | > loss_gen: 2.44518 (2.54879) | > loss_kl: 2.74273 (2.66440) | > loss_feat: 8.97851 (8.65783) | > loss_mel: 17.81603 (17.73829) | > loss_duration: 1.69820 (1.70346) | > loss_1: 33.68065 (33.31282) | > grad_norm_1: 189.72527 (135.51508) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.28100 (2.39248) | > loader_time: 0.03310 (0.03686)  --> STEP: 989/15287 -- GLOBAL_STEP: 1027425 | > loss_disc: 2.30285 (2.32812) | > loss_disc_real_0: 0.11633 (0.12378) | > loss_disc_real_1: 0.21280 (0.21265) | > loss_disc_real_2: 0.22644 (0.21656) | > loss_disc_real_3: 0.21403 (0.21981) | > loss_disc_real_4: 0.24568 (0.21527) | > loss_disc_real_5: 0.21763 (0.21396) | > loss_0: 2.30285 (2.32812) | > grad_norm_0: 13.11634 (17.34183) | > loss_gen: 2.47329 (2.54892) | > loss_kl: 2.57383 (2.66513) | > loss_feat: 9.09039 (8.66188) | > loss_mel: 18.25152 (17.74171) | > loss_duration: 1.70241 (1.70354) | > loss_1: 34.09143 (33.32120) | > grad_norm_1: 196.30534 (136.37521) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.44760 (2.39821) | > loader_time: 0.03230 (0.03688)  --> STEP: 1014/15287 -- GLOBAL_STEP: 1027450 | > loss_disc: 2.30347 (2.32795) | > loss_disc_real_0: 0.09416 (0.12387) | > loss_disc_real_1: 0.20487 (0.21256) | > loss_disc_real_2: 0.21373 (0.21663) | > loss_disc_real_3: 0.19932 (0.21976) | > loss_disc_real_4: 0.21772 (0.21528) | > loss_disc_real_5: 0.21591 (0.21393) | > loss_0: 2.30347 (2.32795) | > grad_norm_0: 12.04084 (17.30725) | > loss_gen: 2.48289 (2.54952) | > loss_kl: 2.59784 (2.66543) | > loss_feat: 8.90021 (8.66354) | > loss_mel: 17.85626 (17.74313) | > loss_duration: 1.71644 (1.70350) | > loss_1: 33.55364 (33.32514) | > grad_norm_1: 64.63062 (136.48738) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.12500 (2.40309) | > loader_time: 0.03140 (0.03685)  --> STEP: 1039/15287 -- GLOBAL_STEP: 1027475 | > loss_disc: 2.35631 (2.32881) | > loss_disc_real_0: 0.20497 (0.12434) | > loss_disc_real_1: 0.22206 (0.21260) | > loss_disc_real_2: 0.20187 (0.21656) | > loss_disc_real_3: 0.19934 (0.21993) | > loss_disc_real_4: 0.19654 (0.21532) | > loss_disc_real_5: 0.17781 (0.21397) | > loss_0: 2.35631 (2.32881) | > grad_norm_0: 18.49654 (17.28393) | > loss_gen: 2.65392 (2.55054) | > loss_kl: 2.86795 (2.66594) | > loss_feat: 8.33026 (8.66191) | > loss_mel: 17.65725 (17.74370) | > loss_duration: 1.70556 (1.70368) | > loss_1: 33.21494 (33.32579) | > grad_norm_1: 40.20470 (135.34045) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.34670 (2.40557) | > loader_time: 0.04690 (0.03686)  --> STEP: 1064/15287 -- GLOBAL_STEP: 1027500 | > loss_disc: 2.43873 (2.32941) | > loss_disc_real_0: 0.20200 (0.12475) | > loss_disc_real_1: 0.25471 (0.21277) | > loss_disc_real_2: 0.24291 (0.21662) | > loss_disc_real_3: 0.27374 (0.21989) | > loss_disc_real_4: 0.26176 (0.21542) | > loss_disc_real_5: 0.20021 (0.21391) | > loss_0: 2.43873 (2.32941) | > grad_norm_0: 22.48618 (17.20550) | > loss_gen: 2.57655 (2.55109) | > loss_kl: 2.64011 (2.66567) | > loss_feat: 7.95044 (8.65896) | > loss_mel: 17.52344 (17.74387) | > loss_duration: 1.74424 (1.70368) | > loss_1: 32.43478 (33.32327) | > grad_norm_1: 135.59114 (134.88530) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.24110 (2.40699) | > loader_time: 0.03120 (0.03682)  --> STEP: 1089/15287 -- GLOBAL_STEP: 1027525 | > loss_disc: 2.34045 (2.32991) | > loss_disc_real_0: 0.15570 (0.12485) | > loss_disc_real_1: 0.23336 (0.21277) | > loss_disc_real_2: 0.23716 (0.21670) | > loss_disc_real_3: 0.22894 (0.21991) | > loss_disc_real_4: 0.23252 (0.21541) | > loss_disc_real_5: 0.24943 (0.21397) | > loss_0: 2.34045 (2.32991) | > grad_norm_0: 24.87911 (17.24352) | > loss_gen: 2.62029 (2.55050) | > loss_kl: 2.75314 (2.66600) | > loss_feat: 8.43634 (8.65746) | > loss_mel: 17.55706 (17.74531) | > loss_duration: 1.70681 (1.70379) | > loss_1: 33.07364 (33.32306) | > grad_norm_1: 130.70966 (135.12613) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.75230 (2.41093) | > loader_time: 0.03930 (0.03681)  --> STEP: 1114/15287 -- GLOBAL_STEP: 1027550 | > loss_disc: 2.31736 (2.32962) | > loss_disc_real_0: 0.08768 (0.12452) | > loss_disc_real_1: 0.21758 (0.21276) | > loss_disc_real_2: 0.20657 (0.21667) | > loss_disc_real_3: 0.19212 (0.21969) | > loss_disc_real_4: 0.18868 (0.21539) | > loss_disc_real_5: 0.30115 (0.21418) | > loss_0: 2.31736 (2.32962) | > grad_norm_0: 21.32683 (17.30122) | > loss_gen: 2.66885 (2.55092) | > loss_kl: 2.59411 (2.66579) | > loss_feat: 8.64826 (8.65980) | > loss_mel: 17.86575 (17.74407) | > loss_duration: 1.68775 (1.70381) | > loss_1: 33.46472 (33.32439) | > grad_norm_1: 173.46614 (135.19067) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.57420 (2.41604) | > loader_time: 0.03510 (0.03683)  --> STEP: 1139/15287 -- GLOBAL_STEP: 1027575 | > loss_disc: 2.33064 (2.32885) | > loss_disc_real_0: 0.12108 (0.12430) | > loss_disc_real_1: 0.18550 (0.21253) | > loss_disc_real_2: 0.19913 (0.21645) | > loss_disc_real_3: 0.21234 (0.21950) | > loss_disc_real_4: 0.17821 (0.21495) | > loss_disc_real_5: 0.21186 (0.21412) | > loss_0: 2.33064 (2.32885) | > grad_norm_0: 26.29003 (17.44450) | > loss_gen: 2.29900 (2.54943) | > loss_kl: 2.71538 (2.66626) | > loss_feat: 8.21027 (8.66168) | > loss_mel: 17.49324 (17.74472) | > loss_duration: 1.72537 (1.70367) | > loss_1: 32.44327 (33.32576) | > grad_norm_1: 42.58353 (136.31021) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.49910 (2.42197) | > loader_time: 0.03050 (0.03679)  --> STEP: 1164/15287 -- GLOBAL_STEP: 1027600 | > loss_disc: 2.31521 (2.32895) | > loss_disc_real_0: 0.16063 (0.12418) | > loss_disc_real_1: 0.20273 (0.21255) | > loss_disc_real_2: 0.21122 (0.21642) | > loss_disc_real_3: 0.23852 (0.21944) | > loss_disc_real_4: 0.21272 (0.21493) | > loss_disc_real_5: 0.23230 (0.21399) | > loss_0: 2.31521 (2.32895) | > grad_norm_0: 32.18727 (17.70238) | > loss_gen: 2.54740 (2.54867) | > loss_kl: 2.68075 (2.66731) | > loss_feat: 8.48114 (8.66338) | > loss_mel: 17.50324 (17.74622) | > loss_duration: 1.67605 (1.70363) | > loss_1: 32.88858 (33.32918) | > grad_norm_1: 173.23309 (137.13724) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.07140 (2.42526) | > loader_time: 0.03600 (0.03679)  --> STEP: 1189/15287 -- GLOBAL_STEP: 1027625 | > loss_disc: 2.34034 (2.32804) | > loss_disc_real_0: 0.11249 (0.12405) | > loss_disc_real_1: 0.23486 (0.21238) | > loss_disc_real_2: 0.22604 (0.21635) | > loss_disc_real_3: 0.22423 (0.21941) | > loss_disc_real_4: 0.24495 (0.21496) | > loss_disc_real_5: 0.22407 (0.21401) | > loss_0: 2.34034 (2.32804) | > grad_norm_0: 38.69454 (17.82619) | > loss_gen: 2.52294 (2.54892) | > loss_kl: 2.56108 (2.66713) | > loss_feat: 8.18940 (8.66380) | > loss_mel: 17.50598 (17.74495) | > loss_duration: 1.70250 (1.70359) | > loss_1: 32.48190 (33.32837) | > grad_norm_1: 203.44475 (138.17014) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.29550 (2.42636) | > loader_time: 0.03070 (0.03683)  --> STEP: 1214/15287 -- GLOBAL_STEP: 1027650 | > loss_disc: 2.35962 (2.32834) | > loss_disc_real_0: 0.13734 (0.12421) | > loss_disc_real_1: 0.22559 (0.21238) | > loss_disc_real_2: 0.24225 (0.21640) | > loss_disc_real_3: 0.24667 (0.21940) | > loss_disc_real_4: 0.21321 (0.21496) | > loss_disc_real_5: 0.20430 (0.21417) | > loss_0: 2.35962 (2.32834) | > grad_norm_0: 11.03467 (17.81811) | > loss_gen: 2.63987 (2.54877) | > loss_kl: 2.70934 (2.66790) | > loss_feat: 8.93424 (8.66279) | > loss_mel: 18.66563 (17.74637) | > loss_duration: 1.67071 (1.70360) | > loss_1: 34.61979 (33.32941) | > grad_norm_1: 142.20300 (138.42371) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.67350 (2.43189) | > loader_time: 0.03210 (0.03678)  --> STEP: 1239/15287 -- GLOBAL_STEP: 1027675 | > loss_disc: 2.28463 (2.32834) | > loss_disc_real_0: 0.10308 (0.12421) | > loss_disc_real_1: 0.20601 (0.21231) | > loss_disc_real_2: 0.21234 (0.21634) | > loss_disc_real_3: 0.22679 (0.21932) | > loss_disc_real_4: 0.23334 (0.21499) | > loss_disc_real_5: 0.20944 (0.21414) | > loss_0: 2.28463 (2.32834) | > grad_norm_0: 20.88909 (17.72810) | > loss_gen: 2.51580 (2.54837) | > loss_kl: 2.72781 (2.66861) | > loss_feat: 8.98527 (8.66319) | > loss_mel: 17.98671 (17.74838) | > loss_duration: 1.69516 (1.70363) | > loss_1: 33.91074 (33.33215) | > grad_norm_1: 202.88239 (138.06561) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.28970 (2.43334) | > loader_time: 0.03960 (0.03672)  --> STEP: 1264/15287 -- GLOBAL_STEP: 1027700 | > loss_disc: 2.37934 (2.32798) | > loss_disc_real_0: 0.12651 (0.12415) | > loss_disc_real_1: 0.23072 (0.21233) | > loss_disc_real_2: 0.21047 (0.21628) | > loss_disc_real_3: 0.22592 (0.21927) | > loss_disc_real_4: 0.24826 (0.21501) | > loss_disc_real_5: 0.26671 (0.21411) | > loss_0: 2.37934 (2.32798) | > grad_norm_0: 21.05247 (17.71249) | > loss_gen: 2.53886 (2.54845) | > loss_kl: 2.64750 (2.66887) | > loss_feat: 8.39261 (8.66439) | > loss_mel: 17.95014 (17.74912) | > loss_duration: 1.68512 (1.70372) | > loss_1: 33.21423 (33.33455) | > grad_norm_1: 143.33418 (138.10138) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 3.02430 (2.43577) | > loader_time: 0.03170 (0.03671)  --> STEP: 1289/15287 -- GLOBAL_STEP: 1027725 | > loss_disc: 2.26881 (2.32770) | > loss_disc_real_0: 0.09110 (0.12406) | > loss_disc_real_1: 0.20022 (0.21237) | > loss_disc_real_2: 0.18708 (0.21622) | > loss_disc_real_3: 0.22758 (0.21920) | > loss_disc_real_4: 0.21999 (0.21494) | > loss_disc_real_5: 0.22503 (0.21409) | > loss_0: 2.26881 (2.32770) | > grad_norm_0: 24.99644 (17.70586) | > loss_gen: 2.61732 (2.54837) | > loss_kl: 2.66750 (2.66834) | > loss_feat: 9.40003 (8.66429) | > loss_mel: 18.10306 (17.74849) | > loss_duration: 1.68247 (1.70386) | > loss_1: 34.47038 (33.33332) | > grad_norm_1: 216.77017 (138.28401) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.54390 (2.44148) | > loader_time: 0.03540 (0.03673)  --> STEP: 1314/15287 -- GLOBAL_STEP: 1027750 | > loss_disc: 2.29617 (2.32760) | > loss_disc_real_0: 0.17943 (0.12408) | > loss_disc_real_1: 0.20823 (0.21227) | > loss_disc_real_2: 0.24396 (0.21617) | > loss_disc_real_3: 0.22682 (0.21921) | > loss_disc_real_4: 0.21234 (0.21499) | > loss_disc_real_5: 0.19495 (0.21405) | > loss_0: 2.29617 (2.32760) | > grad_norm_0: 27.15170 (17.70848) | > loss_gen: 2.62929 (2.54791) | > loss_kl: 2.76374 (2.66793) | > loss_feat: 8.26355 (8.66179) | > loss_mel: 17.81754 (17.74621) | > loss_duration: 1.68399 (1.70407) | > loss_1: 33.15811 (33.32791) | > grad_norm_1: 80.09521 (138.52826) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.76160 (2.44460) | > loader_time: 0.03510 (0.03672)  --> STEP: 1339/15287 -- GLOBAL_STEP: 1027775 | > loss_disc: 2.33213 (2.32675) | > loss_disc_real_0: 0.09081 (0.12394) | > loss_disc_real_1: 0.27766 (0.21216) | > loss_disc_real_2: 0.24203 (0.21603) | > loss_disc_real_3: 0.21327 (0.21906) | > loss_disc_real_4: 0.20936 (0.21494) | > loss_disc_real_5: 0.21805 (0.21395) | > loss_0: 2.33213 (2.32675) | > grad_norm_0: 18.83495 (17.71365) | > loss_gen: 2.68779 (2.54806) | > loss_kl: 2.59593 (2.66787) | > loss_feat: 9.16178 (8.66732) | > loss_mel: 17.90313 (17.74766) | > loss_duration: 1.69932 (1.70428) | > loss_1: 34.04794 (33.33516) | > grad_norm_1: 185.84329 (138.88029) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.82240 (2.44751) | > loader_time: 0.03280 (0.03668)  --> STEP: 1364/15287 -- GLOBAL_STEP: 1027800 | > loss_disc: 2.36654 (2.32639) | > loss_disc_real_0: 0.09522 (0.12388) | > loss_disc_real_1: 0.22313 (0.21215) | > loss_disc_real_2: 0.22811 (0.21598) | > loss_disc_real_3: 0.22671 (0.21901) | > loss_disc_real_4: 0.21966 (0.21487) | > loss_disc_real_5: 0.24410 (0.21390) | > loss_0: 2.36654 (2.32639) | > grad_norm_0: 46.47124 (17.66579) | > loss_gen: 2.46443 (2.54814) | > loss_kl: 2.53010 (2.66743) | > loss_feat: 8.53430 (8.66822) | > loss_mel: 17.46233 (17.74882) | > loss_duration: 1.69141 (1.70443) | > loss_1: 32.68258 (33.33702) | > grad_norm_1: 170.66774 (138.80423) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.88250 (2.45037) | > loader_time: 0.03130 (0.03665)  --> STEP: 1389/15287 -- GLOBAL_STEP: 1027825 | > loss_disc: 2.40457 (2.32659) | > loss_disc_real_0: 0.13500 (0.12381) | > loss_disc_real_1: 0.20847 (0.21210) | > loss_disc_real_2: 0.24552 (0.21603) | > loss_disc_real_3: 0.22127 (0.21904) | > loss_disc_real_4: 0.22490 (0.21487) | > loss_disc_real_5: 0.22490 (0.21394) | > loss_0: 2.40457 (2.32659) | > grad_norm_0: 10.81708 (17.63910) | > loss_gen: 2.38952 (2.54781) | > loss_kl: 2.70716 (2.66767) | > loss_feat: 8.28045 (8.67062) | > loss_mel: 17.70525 (17.74969) | > loss_duration: 1.69698 (1.70447) | > loss_1: 32.77937 (33.34024) | > grad_norm_1: 80.25073 (138.91180) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35530 (2.45417) | > loader_time: 0.03080 (0.03662)  --> STEP: 1414/15287 -- GLOBAL_STEP: 1027850 | > loss_disc: 2.25142 (2.32589) | > loss_disc_real_0: 0.08286 (0.12362) | > loss_disc_real_1: 0.22982 (0.21204) | > loss_disc_real_2: 0.18580 (0.21593) | > loss_disc_real_3: 0.23656 (0.21903) | > loss_disc_real_4: 0.21546 (0.21483) | > loss_disc_real_5: 0.22331 (0.21387) | > loss_0: 2.25142 (2.32589) | > grad_norm_0: 10.19188 (17.67987) | > loss_gen: 2.73216 (2.54796) | > loss_kl: 2.65175 (2.66681) | > loss_feat: 8.91211 (8.67205) | > loss_mel: 17.52614 (17.74917) | > loss_duration: 1.74603 (1.70462) | > loss_1: 33.56820 (33.34058) | > grad_norm_1: 136.26442 (139.51273) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.65290 (2.45680) | > loader_time: 0.03340 (0.03661)  --> STEP: 1439/15287 -- GLOBAL_STEP: 1027875 | > loss_disc: 2.32235 (2.32657) | > loss_disc_real_0: 0.14640 (0.12379) | > loss_disc_real_1: 0.20188 (0.21211) | > loss_disc_real_2: 0.19224 (0.21601) | > loss_disc_real_3: 0.21377 (0.21918) | > loss_disc_real_4: 0.23933 (0.21478) | > loss_disc_real_5: 0.20919 (0.21417) | > loss_0: 2.32235 (2.32657) | > grad_norm_0: 9.74875 (17.78022) | > loss_gen: 2.51472 (2.54803) | > loss_kl: 2.78789 (2.66673) | > loss_feat: 7.90386 (8.67136) | > loss_mel: 17.45248 (17.74777) | > loss_duration: 1.68332 (1.70472) | > loss_1: 32.34227 (33.33857) | > grad_norm_1: 116.41942 (139.92310) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03000 (2.45540) | > loader_time: 0.03350 (0.03658)  --> STEP: 1464/15287 -- GLOBAL_STEP: 1027900 | > loss_disc: 2.30440 (2.32623) | > loss_disc_real_0: 0.09512 (0.12367) | > loss_disc_real_1: 0.23367 (0.21221) | > loss_disc_real_2: 0.21672 (0.21600) | > loss_disc_real_3: 0.18742 (0.21911) | > loss_disc_real_4: 0.19504 (0.21468) | > loss_disc_real_5: 0.18199 (0.21414) | > loss_0: 2.30440 (2.32623) | > grad_norm_0: 15.11708 (17.80092) | > loss_gen: 2.62396 (2.54827) | > loss_kl: 2.63323 (2.66728) | > loss_feat: 8.75835 (8.67514) | > loss_mel: 17.40113 (17.74925) | > loss_duration: 1.73678 (1.70478) | > loss_1: 33.15345 (33.34468) | > grad_norm_1: 159.23769 (140.31236) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.58980 (2.45847) | > loader_time: 0.03360 (0.03656)  --> STEP: 1489/15287 -- GLOBAL_STEP: 1027925 | > loss_disc: 2.44574 (2.32639) | > loss_disc_real_0: 0.25338 (0.12401) | > loss_disc_real_1: 0.20719 (0.21217) | > loss_disc_real_2: 0.18749 (0.21588) | > loss_disc_real_3: 0.25434 (0.21921) | > loss_disc_real_4: 0.22365 (0.21472) | > loss_disc_real_5: 0.25747 (0.21414) | > loss_0: 2.44574 (2.32639) | > grad_norm_0: 20.34903 (17.81372) | > loss_gen: 2.67127 (2.54910) | > loss_kl: 2.68637 (2.66812) | > loss_feat: 8.32097 (8.67470) | > loss_mel: 17.89281 (17.75215) | > loss_duration: 1.71494 (1.70498) | > loss_1: 33.28636 (33.34900) | > grad_norm_1: 166.06166 (140.77235) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.81950 (2.45460) | > loader_time: 0.04200 (0.03666)  --> STEP: 1514/15287 -- GLOBAL_STEP: 1027950 | > loss_disc: 2.29440 (2.32704) | > loss_disc_real_0: 0.11606 (0.12414) | > loss_disc_real_1: 0.22294 (0.21222) | > loss_disc_real_2: 0.21890 (0.21590) | > loss_disc_real_3: 0.20049 (0.21925) | > loss_disc_real_4: 0.17765 (0.21472) | > loss_disc_real_5: 0.20611 (0.21415) | > loss_0: 2.29440 (2.32704) | > grad_norm_0: 9.50833 (17.79588) | > loss_gen: 2.44953 (2.54776) | > loss_kl: 2.73855 (2.66794) | > loss_feat: 8.78555 (8.67072) | > loss_mel: 17.81206 (17.75029) | > loss_duration: 1.66288 (1.70524) | > loss_1: 33.44857 (33.34188) | > grad_norm_1: 105.68819 (140.49512) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35830 (2.45234) | > loader_time: 0.04030 (0.03667)  --> STEP: 1539/15287 -- GLOBAL_STEP: 1027975 | > loss_disc: 2.33576 (2.32738) | > loss_disc_real_0: 0.08662 (0.12413) | > loss_disc_real_1: 0.17810 (0.21224) | > loss_disc_real_2: 0.21438 (0.21590) | > loss_disc_real_3: 0.22556 (0.21930) | > loss_disc_real_4: 0.23283 (0.21480) | > loss_disc_real_5: 0.21694 (0.21406) | > loss_0: 2.33576 (2.32738) | > grad_norm_0: 6.38945 (17.68515) | > loss_gen: 2.65332 (2.54760) | > loss_kl: 2.51779 (2.66793) | > loss_feat: 8.88808 (8.67012) | > loss_mel: 17.54210 (17.75263) | > loss_duration: 1.72175 (1.70532) | > loss_1: 33.32304 (33.34354) | > grad_norm_1: 159.21614 (139.87022) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09470 (2.45020) | > loader_time: 0.04150 (0.03668)  --> STEP: 1564/15287 -- GLOBAL_STEP: 1028000 | > loss_disc: 2.36412 (2.32762) | > loss_disc_real_0: 0.10372 (0.12422) | > loss_disc_real_1: 0.24111 (0.21221) | > loss_disc_real_2: 0.21977 (0.21586) | > loss_disc_real_3: 0.23029 (0.21926) | > loss_disc_real_4: 0.22376 (0.21479) | > loss_disc_real_5: 0.19437 (0.21404) | > loss_0: 2.36412 (2.32762) | > grad_norm_0: 8.22342 (17.66773) | > loss_gen: 2.67279 (2.54755) | > loss_kl: 2.80168 (2.66734) | > loss_feat: 8.84086 (8.66738) | > loss_mel: 17.92082 (17.75381) | > loss_duration: 1.70422 (1.70537) | > loss_1: 33.94037 (33.34140) | > grad_norm_1: 68.04195 (139.75024) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.40220 (2.44508) | > loader_time: 0.06110 (0.03674)  --> STEP: 1589/15287 -- GLOBAL_STEP: 1028025 | > loss_disc: 2.41133 (2.32759) | > loss_disc_real_0: 0.14847 (0.12423) | > loss_disc_real_1: 0.23688 (0.21217) | > loss_disc_real_2: 0.22760 (0.21585) | > loss_disc_real_3: 0.20298 (0.21922) | > loss_disc_real_4: 0.18036 (0.21474) | > loss_disc_real_5: 0.24494 (0.21400) | > loss_0: 2.41133 (2.32759) | > grad_norm_0: 12.75467 (17.54378) | > loss_gen: 2.61443 (2.54782) | > loss_kl: 2.73739 (2.66758) | > loss_feat: 8.53702 (8.66966) | > loss_mel: 17.90899 (17.75824) | > loss_duration: 1.71453 (1.70556) | > loss_1: 33.51236 (33.34879) | > grad_norm_1: 82.46063 (138.95851) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16030 (2.43994) | > loader_time: 0.03770 (0.03685)  --> STEP: 1614/15287 -- GLOBAL_STEP: 1028050 | > loss_disc: 2.36971 (2.32832) | > loss_disc_real_0: 0.10633 (0.12438) | > loss_disc_real_1: 0.23757 (0.21234) | > loss_disc_real_2: 0.22158 (0.21594) | > loss_disc_real_3: 0.21212 (0.21924) | > loss_disc_real_4: 0.21883 (0.21480) | > loss_disc_real_5: 0.20706 (0.21403) | > loss_0: 2.36971 (2.32832) | > grad_norm_0: 17.11784 (17.51816) | > loss_gen: 2.31026 (2.54723) | > loss_kl: 2.62288 (2.66709) | > loss_feat: 7.44729 (8.66560) | > loss_mel: 17.26993 (17.75881) | > loss_duration: 1.69491 (1.70573) | > loss_1: 31.34526 (33.34440) | > grad_norm_1: 121.16492 (138.83116) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04460 (2.43515) | > loader_time: 0.03740 (0.03689)  --> STEP: 1639/15287 -- GLOBAL_STEP: 1028075 | > loss_disc: 2.35830 (2.32820) | > loss_disc_real_0: 0.10836 (0.12428) | > loss_disc_real_1: 0.19934 (0.21233) | > loss_disc_real_2: 0.22985 (0.21594) | > loss_disc_real_3: 0.21239 (0.21922) | > loss_disc_real_4: 0.20474 (0.21487) | > loss_disc_real_5: 0.20904 (0.21403) | > loss_0: 2.35830 (2.32820) | > grad_norm_0: 10.34097 (17.44051) | > loss_gen: 2.46015 (2.54722) | > loss_kl: 2.43226 (2.66709) | > loss_feat: 8.05172 (8.66625) | > loss_mel: 17.10641 (17.75907) | > loss_duration: 1.68262 (1.70589) | > loss_1: 31.73317 (33.34547) | > grad_norm_1: 92.32425 (138.48042) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09000 (2.43107) | > loader_time: 0.04440 (0.03694)  --> STEP: 1664/15287 -- GLOBAL_STEP: 1028100 | > loss_disc: 2.32536 (2.32816) | > loss_disc_real_0: 0.10829 (0.12428) | > loss_disc_real_1: 0.22233 (0.21227) | > loss_disc_real_2: 0.20643 (0.21590) | > loss_disc_real_3: 0.21641 (0.21921) | > loss_disc_real_4: 0.23419 (0.21487) | > loss_disc_real_5: 0.20826 (0.21402) | > loss_0: 2.32536 (2.32816) | > grad_norm_0: 9.12754 (17.37178) | > loss_gen: 2.49824 (2.54678) | > loss_kl: 2.85321 (2.66663) | > loss_feat: 8.41393 (8.66452) | > loss_mel: 17.13213 (17.75685) | > loss_duration: 1.70065 (1.70587) | > loss_1: 32.59818 (33.34059) | > grad_norm_1: 43.68848 (138.10974) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.11390 (2.42716) | > loader_time: 0.04200 (0.03698)  --> STEP: 1689/15287 -- GLOBAL_STEP: 1028125 | > loss_disc: 2.26821 (2.32756) | > loss_disc_real_0: 0.12786 (0.12416) | > loss_disc_real_1: 0.21965 (0.21229) | > loss_disc_real_2: 0.22557 (0.21590) | > loss_disc_real_3: 0.18632 (0.21911) | > loss_disc_real_4: 0.18497 (0.21467) | > loss_disc_real_5: 0.22797 (0.21395) | > loss_0: 2.26821 (2.32756) | > grad_norm_0: 19.93325 (17.36465) | > loss_gen: 2.49270 (2.54718) | > loss_kl: 2.62864 (2.66666) | > loss_feat: 8.36864 (8.66740) | > loss_mel: 17.29850 (17.75907) | > loss_duration: 1.69477 (1.70582) | > loss_1: 32.48325 (33.34608) | > grad_norm_1: 127.59275 (138.36531) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04250 (2.42424) | > loader_time: 0.03580 (0.03698)  --> STEP: 1714/15287 -- GLOBAL_STEP: 1028150 | > loss_disc: 2.26461 (2.32732) | > loss_disc_real_0: 0.10282 (0.12407) | > loss_disc_real_1: 0.18303 (0.21227) | > loss_disc_real_2: 0.19116 (0.21585) | > loss_disc_real_3: 0.18840 (0.21905) | > loss_disc_real_4: 0.19077 (0.21456) | > loss_disc_real_5: 0.23414 (0.21394) | > loss_0: 2.26461 (2.32732) | > grad_norm_0: 13.24672 (17.31871) | > loss_gen: 2.65332 (2.54695) | > loss_kl: 2.67239 (2.66611) | > loss_feat: 8.91034 (8.66581) | > loss_mel: 17.40694 (17.75800) | > loss_duration: 1.72984 (1.70575) | > loss_1: 33.37284 (33.34257) | > grad_norm_1: 170.19580 (138.21623) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13430 (2.42124) | > loader_time: 0.03500 (0.03700)  --> STEP: 1739/15287 -- GLOBAL_STEP: 1028175 | > loss_disc: 2.29818 (2.32748) | > loss_disc_real_0: 0.07894 (0.12414) | > loss_disc_real_1: 0.20707 (0.21228) | > loss_disc_real_2: 0.22513 (0.21584) | > loss_disc_real_3: 0.22231 (0.21905) | > loss_disc_real_4: 0.23230 (0.21456) | > loss_disc_real_5: 0.22467 (0.21388) | > loss_0: 2.29818 (2.32748) | > grad_norm_0: 13.01637 (17.29653) | > loss_gen: 2.64407 (2.54689) | > loss_kl: 2.56486 (2.66640) | > loss_feat: 9.11800 (8.66792) | > loss_mel: 18.14308 (17.75982) | > loss_duration: 1.71183 (1.70579) | > loss_1: 34.18183 (33.34676) | > grad_norm_1: 144.88651 (137.67671) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06880 (2.41887) | > loader_time: 0.03440 (0.03701)  --> STEP: 1764/15287 -- GLOBAL_STEP: 1028200 | > loss_disc: 2.22838 (2.32689) | > loss_disc_real_0: 0.12571 (0.12405) | > loss_disc_real_1: 0.20737 (0.21225) | > loss_disc_real_2: 0.22487 (0.21581) | > loss_disc_real_3: 0.20063 (0.21902) | > loss_disc_real_4: 0.20282 (0.21454) | > loss_disc_real_5: 0.16659 (0.21377) | > loss_0: 2.22838 (2.32689) | > grad_norm_0: 22.61442 (17.26280) | > loss_gen: 2.68759 (2.54740) | > loss_kl: 2.60462 (2.66605) | > loss_feat: 8.86510 (8.66917) | > loss_mel: 17.56688 (17.76097) | > loss_duration: 1.70705 (1.70579) | > loss_1: 33.43124 (33.34932) | > grad_norm_1: 92.94454 (137.84972) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.16450 (2.41472) | > loader_time: 0.05720 (0.03707)  --> STEP: 1789/15287 -- GLOBAL_STEP: 1028225 | > loss_disc: 2.16932 (2.32731) | > loss_disc_real_0: 0.09821 (0.12439) | > loss_disc_real_1: 0.19310 (0.21228) | > loss_disc_real_2: 0.21811 (0.21583) | > loss_disc_real_3: 0.20547 (0.21907) | > loss_disc_real_4: 0.20669 (0.21461) | > loss_disc_real_5: 0.19690 (0.21382) | > loss_0: 2.16932 (2.32731) | > grad_norm_0: 23.38581 (17.30829) | > loss_gen: 2.58546 (2.54748) | > loss_kl: 2.65024 (2.66564) | > loss_feat: 9.49564 (8.66860) | > loss_mel: 18.10695 (17.76299) | > loss_duration: 1.72942 (1.70576) | > loss_1: 34.56770 (33.35040) | > grad_norm_1: 192.72838 (137.99263) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95480 (2.41084) | > loader_time: 0.03360 (0.03706)  --> STEP: 1814/15287 -- GLOBAL_STEP: 1028250 | > loss_disc: 2.36448 (2.32737) | > loss_disc_real_0: 0.08471 (0.12457) | > loss_disc_real_1: 0.20700 (0.21226) | > loss_disc_real_2: 0.19959 (0.21587) | > loss_disc_real_3: 0.19132 (0.21907) | > loss_disc_real_4: 0.19652 (0.21451) | > loss_disc_real_5: 0.19820 (0.21379) | > loss_0: 2.36448 (2.32737) | > grad_norm_0: 12.67947 (17.35785) | > loss_gen: 2.49204 (2.54762) | > loss_kl: 2.53985 (2.66578) | > loss_feat: 8.85094 (8.66989) | > loss_mel: 17.87310 (17.76279) | > loss_duration: 1.70340 (1.70573) | > loss_1: 33.45933 (33.35173) | > grad_norm_1: 77.19633 (138.02420) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.26800 (2.40675) | > loader_time: 0.03400 (0.03704)  --> STEP: 1839/15287 -- GLOBAL_STEP: 1028275 | > loss_disc: 2.35742 (2.32733) | > loss_disc_real_0: 0.13570 (0.12452) | > loss_disc_real_1: 0.24687 (0.21231) | > loss_disc_real_2: 0.23981 (0.21587) | > loss_disc_real_3: 0.22367 (0.21908) | > loss_disc_real_4: 0.23566 (0.21453) | > loss_disc_real_5: 0.19156 (0.21380) | > loss_0: 2.35742 (2.32733) | > grad_norm_0: 14.43202 (17.26562) | > loss_gen: 2.48518 (2.54799) | > loss_kl: 2.73709 (2.66587) | > loss_feat: 8.50563 (8.67086) | > loss_mel: 17.57896 (17.76264) | > loss_duration: 1.74386 (1.70575) | > loss_1: 33.05072 (33.35303) | > grad_norm_1: 144.72986 (137.49283) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.35930 (2.40193) | > loader_time: 0.04020 (0.03704)  --> STEP: 1864/15287 -- GLOBAL_STEP: 1028300 | > loss_disc: 2.23739 (2.32736) | > loss_disc_real_0: 0.11185 (0.12448) | > loss_disc_real_1: 0.21176 (0.21232) | > loss_disc_real_2: 0.19388 (0.21589) | > loss_disc_real_3: 0.19955 (0.21908) | > loss_disc_real_4: 0.20537 (0.21459) | > loss_disc_real_5: 0.18595 (0.21379) | > loss_0: 2.23739 (2.32736) | > grad_norm_0: 8.42612 (17.26777) | > loss_gen: 2.59646 (2.54783) | > loss_kl: 2.67042 (2.66561) | > loss_feat: 9.11819 (8.66969) | > loss_mel: 18.16769 (17.76310) | > loss_duration: 1.72071 (1.70577) | > loss_1: 34.27347 (33.35192) | > grad_norm_1: 107.71799 (137.44501) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.38780 (2.39830) | > loader_time: 0.03590 (0.03707)  --> STEP: 1889/15287 -- GLOBAL_STEP: 1028325 | > loss_disc: 2.32102 (2.32729) | > loss_disc_real_0: 0.12366 (0.12447) | > loss_disc_real_1: 0.18388 (0.21224) | > loss_disc_real_2: 0.23291 (0.21590) | > loss_disc_real_3: 0.20987 (0.21907) | > loss_disc_real_4: 0.23978 (0.21461) | > loss_disc_real_5: 0.23216 (0.21377) | > loss_0: 2.32102 (2.32729) | > grad_norm_0: 12.34948 (17.21651) | > loss_gen: 2.57501 (2.54740) | > loss_kl: 2.77293 (2.66536) | > loss_feat: 8.22990 (8.66959) | > loss_mel: 17.57219 (17.76420) | > loss_duration: 1.71633 (1.70572) | > loss_1: 32.86636 (33.35218) | > grad_norm_1: 159.02237 (137.14510) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94560 (2.39273) | > loader_time: 0.03180 (0.03702)  --> STEP: 1914/15287 -- GLOBAL_STEP: 1028350 | > loss_disc: 2.36227 (2.32710) | > loss_disc_real_0: 0.13240 (0.12441) | > loss_disc_real_1: 0.24155 (0.21225) | > loss_disc_real_2: 0.20835 (0.21585) | > loss_disc_real_3: 0.25498 (0.21905) | > loss_disc_real_4: 0.25272 (0.21459) | > loss_disc_real_5: 0.19888 (0.21377) | > loss_0: 2.36227 (2.32710) | > grad_norm_0: 27.72445 (17.19005) | > loss_gen: 2.59819 (2.54757) | > loss_kl: 2.47463 (2.66524) | > loss_feat: 8.35684 (8.67037) | > loss_mel: 17.82473 (17.76507) | > loss_duration: 1.73055 (1.70569) | > loss_1: 32.98494 (33.35385) | > grad_norm_1: 127.34209 (137.00458) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93010 (2.38729) | > loader_time: 0.04790 (0.03705)  --> STEP: 1939/15287 -- GLOBAL_STEP: 1028375 | > loss_disc: 2.36552 (2.32684) | > loss_disc_real_0: 0.11102 (0.12434) | > loss_disc_real_1: 0.24881 (0.21230) | > loss_disc_real_2: 0.18166 (0.21589) | > loss_disc_real_3: 0.20831 (0.21912) | > loss_disc_real_4: 0.17843 (0.21464) | > loss_disc_real_5: 0.20445 (0.21378) | > loss_0: 2.36552 (2.32684) | > grad_norm_0: 34.81013 (17.22499) | > loss_gen: 2.31503 (2.54811) | > loss_kl: 2.57129 (2.66454) | > loss_feat: 7.84797 (8.67072) | > loss_mel: 17.52299 (17.76497) | > loss_duration: 1.65971 (1.70563) | > loss_1: 31.91699 (33.35388) | > grad_norm_1: 166.30145 (137.11586) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04250 (2.38147) | > loader_time: 0.07100 (0.03707)  --> STEP: 1964/15287 -- GLOBAL_STEP: 1028400 | > loss_disc: 2.36702 (2.32683) | > loss_disc_real_0: 0.20489 (0.12447) | > loss_disc_real_1: 0.23096 (0.21234) | > loss_disc_real_2: 0.20941 (0.21587) | > loss_disc_real_3: 0.21183 (0.21906) | > loss_disc_real_4: 0.21513 (0.21460) | > loss_disc_real_5: 0.25582 (0.21379) | > loss_0: 2.36702 (2.32683) | > grad_norm_0: 35.89935 (17.30293) | > loss_gen: 2.59895 (2.54846) | > loss_kl: 2.52903 (2.66425) | > loss_feat: 8.35303 (8.67060) | > loss_mel: 17.73889 (17.76418) | > loss_duration: 1.73067 (1.70554) | > loss_1: 32.95058 (33.35294) | > grad_norm_1: 183.11981 (137.32559) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.13690 (2.37671) | > loader_time: 0.03930 (0.03707)  --> STEP: 1989/15287 -- GLOBAL_STEP: 1028425 | > loss_disc: 2.23768 (2.32685) | > loss_disc_real_0: 0.11176 (0.12453) | > loss_disc_real_1: 0.20008 (0.21236) | > loss_disc_real_2: 0.22917 (0.21586) | > loss_disc_real_3: 0.19639 (0.21904) | > loss_disc_real_4: 0.20650 (0.21459) | > loss_disc_real_5: 0.21375 (0.21385) | > loss_0: 2.23768 (2.32685) | > grad_norm_0: 9.28431 (17.26020) | > loss_gen: 2.69120 (2.54867) | > loss_kl: 2.59641 (2.66417) | > loss_feat: 8.61999 (8.67187) | > loss_mel: 17.72839 (17.76423) | > loss_duration: 1.65767 (1.70551) | > loss_1: 33.29366 (33.35435) | > grad_norm_1: 183.36504 (137.52757) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05700 (2.37171) | > loader_time: 0.03410 (0.03708)  --> STEP: 2014/15287 -- GLOBAL_STEP: 1028450 | > loss_disc: 2.35327 (2.32661) | > loss_disc_real_0: 0.16820 (0.12449) | > loss_disc_real_1: 0.25191 (0.21237) | > loss_disc_real_2: 0.24165 (0.21583) | > loss_disc_real_3: 0.20388 (0.21902) | > loss_disc_real_4: 0.22233 (0.21460) | > loss_disc_real_5: 0.20455 (0.21379) | > loss_0: 2.35327 (2.32661) | > grad_norm_0: 14.54083 (17.24985) | > loss_gen: 2.67571 (2.54886) | > loss_kl: 2.47584 (2.66387) | > loss_feat: 8.53786 (8.67240) | > loss_mel: 17.78719 (17.76327) | > loss_duration: 1.74087 (1.70551) | > loss_1: 33.21747 (33.35381) | > grad_norm_1: 122.23291 (137.47522) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90760 (2.36631) | > loader_time: 0.03400 (0.03705)  --> STEP: 2039/15287 -- GLOBAL_STEP: 1028475 | > loss_disc: 2.24815 (2.32672) | > loss_disc_real_0: 0.16137 (0.12443) | > loss_disc_real_1: 0.20696 (0.21230) | > loss_disc_real_2: 0.20363 (0.21581) | > loss_disc_real_3: 0.21430 (0.21908) | > loss_disc_real_4: 0.19970 (0.21463) | > loss_disc_real_5: 0.20244 (0.21378) | > loss_0: 2.24815 (2.32672) | > grad_norm_0: 6.39533 (17.26153) | > loss_gen: 2.53086 (2.54828) | > loss_kl: 2.62815 (2.66371) | > loss_feat: 8.17432 (8.67134) | > loss_mel: 17.77495 (17.76487) | > loss_duration: 1.73822 (1.70552) | > loss_1: 32.84650 (33.35360) | > grad_norm_1: 151.16949 (137.65222) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06020 (2.36093) | > loader_time: 0.03320 (0.03702)  --> STEP: 2064/15287 -- GLOBAL_STEP: 1028500 | > loss_disc: 2.24531 (2.32661) | > loss_disc_real_0: 0.13906 (0.12437) | > loss_disc_real_1: 0.18139 (0.21225) | > loss_disc_real_2: 0.20780 (0.21578) | > loss_disc_real_3: 0.20210 (0.21906) | > loss_disc_real_4: 0.20718 (0.21458) | > loss_disc_real_5: 0.22265 (0.21378) | > loss_0: 2.24531 (2.32661) | > grad_norm_0: 17.80146 (17.29419) | > loss_gen: 2.53297 (2.54784) | > loss_kl: 2.53583 (2.66335) | > loss_feat: 8.65381 (8.66997) | > loss_mel: 18.02152 (17.76403) | > loss_duration: 1.72823 (1.70556) | > loss_1: 33.47235 (33.35065) | > grad_norm_1: 151.92450 (137.68581) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.00590 (2.35614) | > loader_time: 0.03320 (0.03698)  --> STEP: 2089/15287 -- GLOBAL_STEP: 1028525 | > loss_disc: 2.29485 (2.32647) | > loss_disc_real_0: 0.10881 (0.12419) | > loss_disc_real_1: 0.21121 (0.21219) | > loss_disc_real_2: 0.21039 (0.21577) | > loss_disc_real_3: 0.21390 (0.21902) | > loss_disc_real_4: 0.19277 (0.21456) | > loss_disc_real_5: 0.20280 (0.21373) | > loss_0: 2.29485 (2.32647) | > grad_norm_0: 7.82851 (17.29636) | > loss_gen: 2.55584 (2.54735) | > loss_kl: 2.62746 (2.66289) | > loss_feat: 9.08584 (8.66932) | > loss_mel: 18.38018 (17.76517) | > loss_duration: 1.72858 (1.70570) | > loss_1: 34.37790 (33.35033) | > grad_norm_1: 153.27060 (138.03217) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88100 (2.35099) | > loader_time: 0.03250 (0.03694)  --> STEP: 2114/15287 -- GLOBAL_STEP: 1028550 | > loss_disc: 2.30067 (2.32608) | > loss_disc_real_0: 0.12723 (0.12412) | > loss_disc_real_1: 0.22319 (0.21213) | > loss_disc_real_2: 0.22037 (0.21573) | > loss_disc_real_3: 0.24102 (0.21896) | > loss_disc_real_4: 0.22022 (0.21449) | > loss_disc_real_5: 0.20066 (0.21370) | > loss_0: 2.30067 (2.32608) | > grad_norm_0: 7.78013 (17.32518) | > loss_gen: 2.60726 (2.54727) | > loss_kl: 2.75221 (2.66310) | > loss_feat: 8.65559 (8.66935) | > loss_mel: 18.32428 (17.76453) | > loss_duration: 1.72075 (1.70579) | > loss_1: 34.06009 (33.34996) | > grad_norm_1: 153.39769 (138.09825) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32370 (2.34676) | > loader_time: 0.04660 (0.03693)  --> STEP: 2139/15287 -- GLOBAL_STEP: 1028575 | > loss_disc: 2.34846 (2.32590) | > loss_disc_real_0: 0.15786 (0.12407) | > loss_disc_real_1: 0.18814 (0.21210) | > loss_disc_real_2: 0.21124 (0.21568) | > loss_disc_real_3: 0.21168 (0.21888) | > loss_disc_real_4: 0.21408 (0.21444) | > loss_disc_real_5: 0.21836 (0.21370) | > loss_0: 2.34846 (2.32590) | > grad_norm_0: 20.15314 (17.34033) | > loss_gen: 2.56973 (2.54703) | > loss_kl: 2.63324 (2.66299) | > loss_feat: 8.59371 (8.66888) | > loss_mel: 17.21532 (17.76408) | > loss_duration: 1.69002 (1.70589) | > loss_1: 32.70201 (33.34880) | > grad_norm_1: 198.75565 (138.29150) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08720 (2.34242) | > loader_time: 0.03430 (0.03689)  --> STEP: 2164/15287 -- GLOBAL_STEP: 1028600 | > loss_disc: 2.29330 (2.32567) | > loss_disc_real_0: 0.11152 (0.12424) | > loss_disc_real_1: 0.21307 (0.21204) | > loss_disc_real_2: 0.23228 (0.21571) | > loss_disc_real_3: 0.22941 (0.21883) | > loss_disc_real_4: 0.23069 (0.21446) | > loss_disc_real_5: 0.25173 (0.21376) | > loss_0: 2.29330 (2.32567) | > grad_norm_0: 17.08416 (17.32633) | > loss_gen: 2.41154 (2.54753) | > loss_kl: 2.65222 (2.66289) | > loss_feat: 8.80755 (8.66921) | > loss_mel: 17.80170 (17.76402) | > loss_duration: 1.74068 (1.70603) | > loss_1: 33.41370 (33.34958) | > grad_norm_1: 85.28464 (138.33208) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.27040 (2.33918) | > loader_time: 0.03900 (0.03692)  --> STEP: 2189/15287 -- GLOBAL_STEP: 1028625 | > loss_disc: 2.38779 (2.32610) | > loss_disc_real_0: 0.12374 (0.12429) | > loss_disc_real_1: 0.24232 (0.21208) | > loss_disc_real_2: 0.24463 (0.21569) | > loss_disc_real_3: 0.23856 (0.21888) | > loss_disc_real_4: 0.21498 (0.21455) | > loss_disc_real_5: 0.26535 (0.21390) | > loss_0: 2.38779 (2.32610) | > grad_norm_0: 12.98608 (17.30225) | > loss_gen: 2.56329 (2.54774) | > loss_kl: 2.62755 (2.66306) | > loss_feat: 8.82292 (8.66873) | > loss_mel: 17.93654 (17.76461) | > loss_duration: 1.75957 (1.70599) | > loss_1: 33.70986 (33.35004) | > grad_norm_1: 141.41559 (138.22128) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.20880 (2.34003) | > loader_time: 0.05700 (0.03697)  --> STEP: 2214/15287 -- GLOBAL_STEP: 1028650 | > loss_disc: 2.30173 (2.32602) | > loss_disc_real_0: 0.15263 (0.12423) | > loss_disc_real_1: 0.19241 (0.21207) | > loss_disc_real_2: 0.23255 (0.21568) | > loss_disc_real_3: 0.21273 (0.21888) | > loss_disc_real_4: 0.20975 (0.21458) | > loss_disc_real_5: 0.19865 (0.21383) | > loss_0: 2.30173 (2.32602) | > grad_norm_0: 19.38059 (17.30256) | > loss_gen: 2.51452 (2.54751) | > loss_kl: 2.78434 (2.66349) | > loss_feat: 8.66504 (8.66839) | > loss_mel: 17.72021 (17.76468) | > loss_duration: 1.70654 (1.70598) | > loss_1: 33.39065 (33.34995) | > grad_norm_1: 113.26151 (138.26596) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03970 (2.34037) | > loader_time: 0.04550 (0.03699)  --> STEP: 2239/15287 -- GLOBAL_STEP: 1028675 | > loss_disc: 2.33376 (2.32558) | > loss_disc_real_0: 0.15345 (0.12410) | > loss_disc_real_1: 0.21121 (0.21205) | > loss_disc_real_2: 0.23451 (0.21563) | > loss_disc_real_3: 0.24624 (0.21886) | > loss_disc_real_4: 0.22965 (0.21451) | > loss_disc_real_5: 0.19685 (0.21379) | > loss_0: 2.33376 (2.32558) | > grad_norm_0: 7.66628 (17.39086) | > loss_gen: 2.49171 (2.54754) | > loss_kl: 2.61607 (2.66307) | > loss_feat: 9.05040 (8.66944) | > loss_mel: 18.05694 (17.76379) | > loss_duration: 1.69500 (1.70588) | > loss_1: 33.91013 (33.34962) | > grad_norm_1: 106.76378 (138.83971) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05500 (2.33779) | > loader_time: 0.04100 (0.03704)  --> STEP: 2264/15287 -- GLOBAL_STEP: 1028700 | > loss_disc: 2.33005 (2.32565) | > loss_disc_real_0: 0.08379 (0.12413) | > loss_disc_real_1: 0.21022 (0.21196) | > loss_disc_real_2: 0.18086 (0.21554) | > loss_disc_real_3: 0.17139 (0.21883) | > loss_disc_real_4: 0.17011 (0.21450) | > loss_disc_real_5: 0.20336 (0.21381) | > loss_0: 2.33005 (2.32565) | > grad_norm_0: 6.06394 (17.40104) | > loss_gen: 2.96282 (2.54752) | > loss_kl: 2.60723 (2.66336) | > loss_feat: 8.62962 (8.66914) | > loss_mel: 17.69155 (17.76366) | > loss_duration: 1.67668 (1.70580) | > loss_1: 33.56791 (33.34940) | > grad_norm_1: 89.55154 (138.93512) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85310 (2.33467) | > loader_time: 0.04290 (0.03707)  --> STEP: 2289/15287 -- GLOBAL_STEP: 1028725 | > loss_disc: 2.22206 (2.32561) | > loss_disc_real_0: 0.10600 (0.12418) | > loss_disc_real_1: 0.23708 (0.21196) | > loss_disc_real_2: 0.19749 (0.21558) | > loss_disc_real_3: 0.21391 (0.21889) | > loss_disc_real_4: 0.21051 (0.21454) | > loss_disc_real_5: 0.21530 (0.21378) | > loss_0: 2.22206 (2.32561) | > grad_norm_0: 12.90307 (17.38734) | > loss_gen: 2.70674 (2.54773) | > loss_kl: 2.85359 (2.66399) | > loss_feat: 9.08932 (8.66921) | > loss_mel: 18.05140 (17.76282) | > loss_duration: 1.70708 (1.70572) | > loss_1: 34.40814 (33.34939) | > grad_norm_1: 187.21979 (139.02768) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.06510 (2.33056) | > loader_time: 0.04440 (0.03712)  --> STEP: 2314/15287 -- GLOBAL_STEP: 1028750 | > loss_disc: 2.31613 (2.32550) | > loss_disc_real_0: 0.16456 (0.12418) | > loss_disc_real_1: 0.21116 (0.21194) | > loss_disc_real_2: 0.21127 (0.21556) | > loss_disc_real_3: 0.24794 (0.21891) | > loss_disc_real_4: 0.23174 (0.21454) | > loss_disc_real_5: 0.21536 (0.21379) | > loss_0: 2.31613 (2.32550) | > grad_norm_0: 18.57998 (17.38579) | > loss_gen: 2.64727 (2.54788) | > loss_kl: 2.62773 (2.66408) | > loss_feat: 8.24990 (8.67039) | > loss_mel: 17.01478 (17.76353) | > loss_duration: 1.69453 (1.70576) | > loss_1: 32.23422 (33.35156) | > grad_norm_1: 108.34530 (139.11369) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95690 (2.32683) | > loader_time: 0.04140 (0.03715)  --> STEP: 2339/15287 -- GLOBAL_STEP: 1028775 | > loss_disc: 2.35946 (2.32530) | > loss_disc_real_0: 0.10436 (0.12410) | > loss_disc_real_1: 0.22377 (0.21192) | > loss_disc_real_2: 0.20936 (0.21553) | > loss_disc_real_3: 0.21816 (0.21898) | > loss_disc_real_4: 0.21816 (0.21456) | > loss_disc_real_5: 0.22399 (0.21377) | > loss_0: 2.35946 (2.32530) | > grad_norm_0: 5.59155 (17.41611) | > loss_gen: 2.71265 (2.54820) | > loss_kl: 2.64985 (2.66364) | > loss_feat: 8.89626 (8.67138) | > loss_mel: 17.82345 (17.76135) | > loss_duration: 1.70531 (1.70576) | > loss_1: 33.78753 (33.35025) | > grad_norm_1: 164.77444 (139.26736) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.01330 (2.32253) | > loader_time: 0.04440 (0.03716)  --> STEP: 2364/15287 -- GLOBAL_STEP: 1028800 | > loss_disc: 2.38692 (2.32527) | > loss_disc_real_0: 0.12265 (0.12412) | > loss_disc_real_1: 0.23592 (0.21189) | > loss_disc_real_2: 0.23203 (0.21552) | > loss_disc_real_3: 0.21857 (0.21895) | > loss_disc_real_4: 0.22640 (0.21458) | > loss_disc_real_5: 0.28126 (0.21371) | > loss_0: 2.38692 (2.32527) | > grad_norm_0: 11.07735 (17.37911) | > loss_gen: 2.50573 (2.54832) | > loss_kl: 2.69482 (2.66376) | > loss_feat: 8.34492 (8.67218) | > loss_mel: 17.74041 (17.76115) | > loss_duration: 1.70322 (1.70582) | > loss_1: 32.98911 (33.35115) | > grad_norm_1: 91.25095 (139.20532) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.17540 (2.31926) | > loader_time: 0.04610 (0.03719)  --> STEP: 2389/15287 -- GLOBAL_STEP: 1028825 | > loss_disc: 2.24983 (2.32540) | > loss_disc_real_0: 0.09161 (0.12417) | > loss_disc_real_1: 0.18083 (0.21190) | > loss_disc_real_2: 0.19152 (0.21560) | > loss_disc_real_3: 0.18584 (0.21889) | > loss_disc_real_4: 0.19568 (0.21458) | > loss_disc_real_5: 0.21971 (0.21370) | > loss_0: 2.24983 (2.32540) | > grad_norm_0: 14.55350 (17.36814) | > loss_gen: 2.64814 (2.54822) | > loss_kl: 2.76564 (2.66369) | > loss_feat: 8.94744 (8.67223) | > loss_mel: 18.17060 (17.76099) | > loss_duration: 1.68133 (1.70585) | > loss_1: 34.21315 (33.35087) | > grad_norm_1: 213.05634 (139.39655) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94430 (2.32318) | > loader_time: 0.03930 (0.03723)  --> STEP: 2414/15287 -- GLOBAL_STEP: 1028850 | > loss_disc: 2.34826 (2.32540) | > loss_disc_real_0: 0.15687 (0.12415) | > loss_disc_real_1: 0.20149 (0.21195) | > loss_disc_real_2: 0.22226 (0.21560) | > loss_disc_real_3: 0.21270 (0.21895) | > loss_disc_real_4: 0.19976 (0.21462) | > loss_disc_real_5: 0.23633 (0.21373) | > loss_0: 2.34826 (2.32540) | > grad_norm_0: 5.94170 (17.39016) | > loss_gen: 2.45194 (2.54830) | > loss_kl: 2.78436 (2.66429) | > loss_feat: 8.43467 (8.67181) | > loss_mel: 17.59076 (17.75970) | > loss_duration: 1.74975 (1.70589) | > loss_1: 33.01148 (33.34990) | > grad_norm_1: 156.08685 (139.60175) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.89890 (2.31988) | > loader_time: 0.03470 (0.03727)  --> STEP: 2439/15287 -- GLOBAL_STEP: 1028875 | > loss_disc: 2.32406 (2.32519) | > loss_disc_real_0: 0.14303 (0.12409) | > loss_disc_real_1: 0.19706 (0.21195) | > loss_disc_real_2: 0.18503 (0.21560) | > loss_disc_real_3: 0.19465 (0.21891) | > loss_disc_real_4: 0.20339 (0.21455) | > loss_disc_real_5: 0.21280 (0.21371) | > loss_0: 2.32406 (2.32519) | > grad_norm_0: 45.56516 (17.45023) | > loss_gen: 2.38523 (2.54842) | > loss_kl: 2.62996 (2.66451) | > loss_feat: 8.62911 (8.67330) | > loss_mel: 17.61795 (17.76201) | > loss_duration: 1.72351 (1.70594) | > loss_1: 32.98576 (33.35408) | > grad_norm_1: 211.33047 (139.74103) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.86180 (2.31600) | > loader_time: 0.04030 (0.03734)  --> STEP: 2464/15287 -- GLOBAL_STEP: 1028900 | > loss_disc: 2.28745 (2.32484) | > loss_disc_real_0: 0.11824 (0.12405) | > loss_disc_real_1: 0.22550 (0.21190) | > loss_disc_real_2: 0.23415 (0.21557) | > loss_disc_real_3: 0.21112 (0.21884) | > loss_disc_real_4: 0.21369 (0.21451) | > loss_disc_real_5: 0.20037 (0.21367) | > loss_0: 2.28745 (2.32484) | > grad_norm_0: 6.24210 (17.50418) | > loss_gen: 2.76652 (2.54859) | > loss_kl: 2.56870 (2.66416) | > loss_feat: 9.00427 (8.67302) | > loss_mel: 17.82657 (17.76138) | > loss_duration: 1.69297 (1.70608) | > loss_1: 33.85903 (33.35315) | > grad_norm_1: 167.34468 (140.22491) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.90990 (2.31243) | > loader_time: 0.03600 (0.03737)  --> STEP: 2489/15287 -- GLOBAL_STEP: 1028925 | > loss_disc: 2.28872 (2.32479) | > loss_disc_real_0: 0.08117 (0.12403) | > loss_disc_real_1: 0.18003 (0.21184) | > loss_disc_real_2: 0.20720 (0.21557) | > loss_disc_real_3: 0.21834 (0.21888) | > loss_disc_real_4: 0.20874 (0.21453) | > loss_disc_real_5: 0.21456 (0.21371) | > loss_0: 2.28872 (2.32479) | > grad_norm_0: 13.41801 (17.50121) | > loss_gen: 2.53884 (2.54854) | > loss_kl: 2.59124 (2.66424) | > loss_feat: 9.07778 (8.67413) | > loss_mel: 18.01594 (17.76164) | > loss_duration: 1.74425 (1.70615) | > loss_1: 33.96805 (33.35463) | > grad_norm_1: 159.80637 (140.37535) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95980 (2.30887) | > loader_time: 0.04780 (0.03739)  --> STEP: 2514/15287 -- GLOBAL_STEP: 1028950 | > loss_disc: 2.44777 (2.32486) | > loss_disc_real_0: 0.13578 (0.12398) | > loss_disc_real_1: 0.18093 (0.21179) | > loss_disc_real_2: 0.13900 (0.21555) | > loss_disc_real_3: 0.20221 (0.21884) | > loss_disc_real_4: 0.14641 (0.21450) | > loss_disc_real_5: 0.18303 (0.21366) | > loss_0: 2.44777 (2.32486) | > grad_norm_0: 12.19873 (17.46791) | > loss_gen: 2.42783 (2.54826) | > loss_kl: 2.71425 (2.66458) | > loss_feat: 8.46046 (8.67551) | > loss_mel: 17.63320 (17.76272) | > loss_duration: 1.74170 (1.70619) | > loss_1: 32.97744 (33.35720) | > grad_norm_1: 143.64667 (140.19781) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.87900 (2.30598) | > loader_time: 0.04320 (0.03741)  --> STEP: 2539/15287 -- GLOBAL_STEP: 1028975 | > loss_disc: 2.29446 (2.32525) | > loss_disc_real_0: 0.12967 (0.12407) | > loss_disc_real_1: 0.20602 (0.21181) | > loss_disc_real_2: 0.20600 (0.21562) | > loss_disc_real_3: 0.20072 (0.21887) | > loss_disc_real_4: 0.18960 (0.21450) | > loss_disc_real_5: 0.19786 (0.21361) | > loss_0: 2.29446 (2.32525) | > grad_norm_0: 7.45943 (17.42012) | > loss_gen: 2.62582 (2.54790) | > loss_kl: 2.57923 (2.66512) | > loss_feat: 8.31005 (8.67455) | > loss_mel: 17.38692 (17.76333) | > loss_duration: 1.73825 (1.70623) | > loss_1: 32.64028 (33.35706) | > grad_norm_1: 71.85911 (139.57814) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.97990 (2.30259) | > loader_time: 0.03490 (0.03742)  --> STEP: 2564/15287 -- GLOBAL_STEP: 1029000 | > loss_disc: 2.35495 (2.32581) | > loss_disc_real_0: 0.19700 (0.12425) | > loss_disc_real_1: 0.23188 (0.21183) | > loss_disc_real_2: 0.21214 (0.21565) | > loss_disc_real_3: 0.19830 (0.21891) | > loss_disc_real_4: 0.20747 (0.21454) | > loss_disc_real_5: 0.22839 (0.21365) | > loss_0: 2.35495 (2.32581) | > grad_norm_0: 17.84140 (17.39901) | > loss_gen: 2.57595 (2.54770) | > loss_kl: 2.77854 (2.66502) | > loss_feat: 8.82897 (8.67415) | > loss_mel: 17.80829 (17.76341) | > loss_duration: 1.74775 (1.70625) | > loss_1: 33.73949 (33.35646) | > grad_norm_1: 70.21657 (139.21155) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.05350 (2.29910) | > loader_time: 0.04050 (0.03743)  --> STEP: 2589/15287 -- GLOBAL_STEP: 1029025 | > loss_disc: 2.43626 (2.32584) | > loss_disc_real_0: 0.11604 (0.12432) | > loss_disc_real_1: 0.22423 (0.21184) | > loss_disc_real_2: 0.18334 (0.21560) | > loss_disc_real_3: 0.18037 (0.21888) | > loss_disc_real_4: 0.22204 (0.21456) | > loss_disc_real_5: 0.23632 (0.21366) | > loss_0: 2.43626 (2.32584) | > grad_norm_0: 18.77650 (17.40038) | > loss_gen: 2.46913 (2.54781) | > loss_kl: 2.61391 (2.66518) | > loss_feat: 8.27125 (8.67355) | > loss_mel: 18.53016 (17.76439) | > loss_duration: 1.75420 (1.70629) | > loss_1: 33.63865 (33.35718) | > grad_norm_1: 152.64774 (138.99463) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.32720 (2.29703) | > loader_time: 0.03340 (0.03746)  --> STEP: 2614/15287 -- GLOBAL_STEP: 1029050 | > loss_disc: 2.27280 (2.32586) | > loss_disc_real_0: 0.09195 (0.12427) | > loss_disc_real_1: 0.23119 (0.21185) | > loss_disc_real_2: 0.20751 (0.21561) | > loss_disc_real_3: 0.21190 (0.21888) | > loss_disc_real_4: 0.20981 (0.21455) | > loss_disc_real_5: 0.18753 (0.21366) | > loss_0: 2.27280 (2.32586) | > grad_norm_0: 7.99820 (17.35998) | > loss_gen: 2.63425 (2.54756) | > loss_kl: 2.70209 (2.66494) | > loss_feat: 8.79307 (8.67283) | > loss_mel: 17.58155 (17.76489) | > loss_duration: 1.70700 (1.70626) | > loss_1: 33.41796 (33.35641) | > grad_norm_1: 146.86682 (138.70575) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08620 (2.29539) | > loader_time: 0.04190 (0.03749)  --> STEP: 2639/15287 -- GLOBAL_STEP: 1029075 | > loss_disc: 2.33318 (2.32573) | > loss_disc_real_0: 0.10927 (0.12424) | > loss_disc_real_1: 0.21971 (0.21181) | > loss_disc_real_2: 0.20841 (0.21557) | > loss_disc_real_3: 0.23162 (0.21885) | > loss_disc_real_4: 0.21028 (0.21453) | > loss_disc_real_5: 0.20692 (0.21364) | > loss_0: 2.33318 (2.32573) | > grad_norm_0: 6.23908 (17.34297) | > loss_gen: 2.57030 (2.54752) | > loss_kl: 2.76262 (2.66487) | > loss_feat: 8.31771 (8.67290) | > loss_mel: 17.64548 (17.76414) | > loss_duration: 1.69192 (1.70627) | > loss_1: 32.98803 (33.35564) | > grad_norm_1: 65.80605 (138.65623) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.03300 (2.29213) | > loader_time: 0.03460 (0.03751)  --> STEP: 2664/15287 -- GLOBAL_STEP: 1029100 | > loss_disc: 2.37253 (2.32569) | > loss_disc_real_0: 0.19940 (0.12426) | > loss_disc_real_1: 0.23598 (0.21181) | > loss_disc_real_2: 0.24250 (0.21555) | > loss_disc_real_3: 0.22803 (0.21883) | > loss_disc_real_4: 0.24029 (0.21453) | > loss_disc_real_5: 0.18921 (0.21366) | > loss_0: 2.37253 (2.32569) | > grad_norm_0: 11.15311 (17.29259) | > loss_gen: 2.41783 (2.54740) | > loss_kl: 2.63836 (2.66506) | > loss_feat: 8.17545 (8.67238) | > loss_mel: 17.05678 (17.76366) | > loss_duration: 1.73823 (1.70626) | > loss_1: 32.02665 (33.35469) | > grad_norm_1: 84.41041 (138.13783) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.92970 (2.28933) | > loader_time: 0.03380 (0.03754)  --> STEP: 2689/15287 -- GLOBAL_STEP: 1029125 | > loss_disc: 2.34508 (2.32600) | > loss_disc_real_0: 0.14214 (0.12434) | > loss_disc_real_1: 0.22542 (0.21183) | > loss_disc_real_2: 0.20324 (0.21561) | > loss_disc_real_3: 0.17556 (0.21888) | > loss_disc_real_4: 0.21347 (0.21456) | > loss_disc_real_5: 0.20493 (0.21367) | > loss_0: 2.34508 (2.32600) | > grad_norm_0: 6.26377 (17.25510) | > loss_gen: 2.72608 (2.54774) | > loss_kl: 2.57811 (2.66492) | > loss_feat: 8.59647 (8.67241) | > loss_mel: 18.35795 (17.76425) | > loss_duration: 1.66090 (1.70629) | > loss_1: 33.91950 (33.35554) | > grad_norm_1: 123.72794 (137.89023) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.93570 (2.28618) | > loader_time: 0.03420 (0.03756)  --> STEP: 2714/15287 -- GLOBAL_STEP: 1029150 | > loss_disc: 2.26044 (2.32569) | > loss_disc_real_0: 0.08121 (0.12425) | > loss_disc_real_1: 0.19951 (0.21186) | > loss_disc_real_2: 0.21347 (0.21564) | > loss_disc_real_3: 0.22350 (0.21890) | > loss_disc_real_4: 0.20536 (0.21454) | > loss_disc_real_5: 0.19454 (0.21362) | > loss_0: 2.26044 (2.32569) | > grad_norm_0: 15.83342 (17.23004) | > loss_gen: 2.47675 (2.54775) | > loss_kl: 2.78074 (2.66443) | > loss_feat: 8.62285 (8.67158) | > loss_mel: 17.64329 (17.76395) | > loss_duration: 1.67572 (1.70630) | > loss_1: 33.19934 (33.35394) | > grad_norm_1: 101.53075 (137.88216) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.94030 (2.28349) | > loader_time: 0.04030 (0.03757)  --> STEP: 2739/15287 -- GLOBAL_STEP: 1029175 | > loss_disc: 2.25113 (2.32544) | > loss_disc_real_0: 0.11673 (0.12426) | > loss_disc_real_1: 0.19529 (0.21184) | > loss_disc_real_2: 0.21215 (0.21561) | > loss_disc_real_3: 0.22191 (0.21891) | > loss_disc_real_4: 0.21875 (0.21450) | > loss_disc_real_5: 0.21864 (0.21361) | > loss_0: 2.25113 (2.32544) | > grad_norm_0: 8.32022 (17.25193) | > loss_gen: 2.65164 (2.54801) | > loss_kl: 2.74286 (2.66438) | > loss_feat: 8.62003 (8.67189) | > loss_mel: 17.24978 (17.76392) | > loss_duration: 1.72845 (1.70626) | > loss_1: 32.99276 (33.35440) | > grad_norm_1: 110.74585 (138.07558) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95060 (2.28076) | > loader_time: 0.04090 (0.03761)  --> STEP: 2764/15287 -- GLOBAL_STEP: 1029200 | > loss_disc: 2.36653 (2.32513) | > loss_disc_real_0: 0.12130 (0.12415) | > loss_disc_real_1: 0.23353 (0.21180) | > loss_disc_real_2: 0.23496 (0.21559) | > loss_disc_real_3: 0.23625 (0.21886) | > loss_disc_real_4: 0.21991 (0.21440) | > loss_disc_real_5: 0.22416 (0.21362) | > loss_0: 2.36653 (2.32513) | > grad_norm_0: 5.50688 (17.24262) | > loss_gen: 2.40631 (2.54786) | > loss_kl: 2.54044 (2.66459) | > loss_feat: 8.02326 (8.67256) | > loss_mel: 17.75689 (17.76399) | > loss_duration: 1.70395 (1.70624) | > loss_1: 32.43085 (33.35517) | > grad_norm_1: 170.36400 (138.29985) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02360 (2.27770) | > loader_time: 0.03790 (0.03762)  --> STEP: 2789/15287 -- GLOBAL_STEP: 1029225 | > loss_disc: 2.26066 (2.32482) | > loss_disc_real_0: 0.10242 (0.12404) | > loss_disc_real_1: 0.19779 (0.21171) | > loss_disc_real_2: 0.21932 (0.21551) | > loss_disc_real_3: 0.20385 (0.21879) | > loss_disc_real_4: 0.20356 (0.21434) | > loss_disc_real_5: 0.21576 (0.21361) | > loss_0: 2.26066 (2.32482) | > grad_norm_0: 10.44742 (17.25296) | > loss_gen: 2.63380 (2.54747) | > loss_kl: 2.67273 (2.66416) | > loss_feat: 9.38942 (8.67243) | > loss_mel: 17.77769 (17.76289) | > loss_duration: 1.67460 (1.70613) | > loss_1: 34.14824 (33.35302) | > grad_norm_1: 182.43089 (138.53900) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.85820 (2.27484) | > loader_time: 0.03760 (0.03763)  --> STEP: 2814/15287 -- GLOBAL_STEP: 1029250 | > loss_disc: 2.29884 (2.32454) | > loss_disc_real_0: 0.15252 (0.12397) | > loss_disc_real_1: 0.19953 (0.21166) | > loss_disc_real_2: 0.21590 (0.21548) | > loss_disc_real_3: 0.21596 (0.21879) | > loss_disc_real_4: 0.19802 (0.21432) | > loss_disc_real_5: 0.21317 (0.21360) | > loss_0: 2.29884 (2.32454) | > grad_norm_0: 9.04479 (17.25035) | > loss_gen: 2.54589 (2.54751) | > loss_kl: 2.68875 (2.66453) | > loss_feat: 9.26051 (8.67496) | > loss_mel: 17.69436 (17.76235) | > loss_duration: 1.73955 (1.70610) | > loss_1: 33.92905 (33.35540) | > grad_norm_1: 88.11294 (138.67174) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88960 (2.28153) | > loader_time: 0.04940 (0.03765)  --> STEP: 2839/15287 -- GLOBAL_STEP: 1029275 | > loss_disc: 2.40373 (2.32433) | > loss_disc_real_0: 0.09210 (0.12388) | > loss_disc_real_1: 0.23818 (0.21170) | > loss_disc_real_2: 0.25023 (0.21550) | > loss_disc_real_3: 0.22820 (0.21878) | > loss_disc_real_4: 0.23272 (0.21436) | > loss_disc_real_5: 0.21667 (0.21357) | > loss_0: 2.40373 (2.32433) | > grad_norm_0: 23.08631 (17.25572) | > loss_gen: 2.51266 (2.54741) | > loss_kl: 2.75043 (2.66437) | > loss_feat: 8.62143 (8.67452) | > loss_mel: 18.12836 (17.76030) | > loss_duration: 1.67622 (1.70603) | > loss_1: 33.68911 (33.35259) | > grad_norm_1: 192.28487 (138.81029) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04820 (2.27965) | > loader_time: 0.03510 (0.03769)  --> STEP: 2864/15287 -- GLOBAL_STEP: 1029300 | > loss_disc: 2.35102 (2.32443) | > loss_disc_real_0: 0.08683 (0.12392) | > loss_disc_real_1: 0.20855 (0.21171) | > loss_disc_real_2: 0.24459 (0.21551) | > loss_disc_real_3: 0.20537 (0.21881) | > loss_disc_real_4: 0.21063 (0.21438) | > loss_disc_real_5: 0.22650 (0.21353) | > loss_0: 2.35102 (2.32443) | > grad_norm_0: 10.72487 (17.20991) | > loss_gen: 2.29067 (2.54724) | > loss_kl: 2.83070 (2.66475) | > loss_feat: 8.34335 (8.67456) | > loss_mel: 17.98349 (17.76035) | > loss_duration: 1.72777 (1.70603) | > loss_1: 33.17598 (33.35290) | > grad_norm_1: 63.03815 (138.27156) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.59980 (2.27731) | > loader_time: 0.05570 (0.03774)  --> STEP: 2889/15287 -- GLOBAL_STEP: 1029325 | > loss_disc: 2.28830 (2.32476) | > loss_disc_real_0: 0.13629 (0.12396) | > loss_disc_real_1: 0.19625 (0.21174) | > loss_disc_real_2: 0.22021 (0.21554) | > loss_disc_real_3: 0.18544 (0.21885) | > loss_disc_real_4: 0.18314 (0.21439) | > loss_disc_real_5: 0.20289 (0.21356) | > loss_0: 2.28830 (2.32476) | > grad_norm_0: 7.98324 (17.17856) | > loss_gen: 2.45544 (2.54746) | > loss_kl: 2.55511 (2.66497) | > loss_feat: 8.59221 (8.67509) | > loss_mel: 18.22820 (17.76246) | > loss_duration: 1.72139 (1.70604) | > loss_1: 33.55236 (33.35601) | > grad_norm_1: 109.56686 (137.60788) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.09390 (2.27513) | > loader_time: 0.04660 (0.03778)  --> STEP: 2914/15287 -- GLOBAL_STEP: 1029350 | > loss_disc: 2.34018 (2.32497) | > loss_disc_real_0: 0.13620 (0.12395) | > loss_disc_real_1: 0.22392 (0.21183) | > loss_disc_real_2: 0.22817 (0.21558) | > loss_disc_real_3: 0.24507 (0.21888) | > loss_disc_real_4: 0.21641 (0.21440) | > loss_disc_real_5: 0.22539 (0.21360) | > loss_0: 2.34018 (2.32497) | > grad_norm_0: 22.77706 (17.14727) | > loss_gen: 2.59344 (2.54777) | > loss_kl: 2.54495 (2.66493) | > loss_feat: 8.11904 (8.67398) | > loss_mel: 17.89600 (17.76297) | > loss_duration: 1.68400 (1.70601) | > loss_1: 32.83743 (33.35565) | > grad_norm_1: 166.01154 (137.43654) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.95780 (2.27274) | > loader_time: 0.04440 (0.03781)  --> STEP: 2939/15287 -- GLOBAL_STEP: 1029375 | > loss_disc: 2.30738 (2.32502) | > loss_disc_real_0: 0.14371 (0.12391) | > loss_disc_real_1: 0.20346 (0.21183) | > loss_disc_real_2: 0.20003 (0.21562) | > loss_disc_real_3: 0.21744 (0.21892) | > loss_disc_real_4: 0.21445 (0.21444) | > loss_disc_real_5: 0.22307 (0.21362) | > loss_0: 2.30738 (2.32502) | > grad_norm_0: 24.78685 (17.13574) | > loss_gen: 2.49960 (2.54755) | > loss_kl: 2.52769 (2.66475) | > loss_feat: 8.66939 (8.67397) | > loss_mel: 17.62254 (17.76376) | > loss_duration: 1.71838 (1.70611) | > loss_1: 33.03758 (33.35611) | > grad_norm_1: 50.45969 (137.39558) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04920 (2.27100) | > loader_time: 0.04470 (0.03785)  --> STEP: 2964/15287 -- GLOBAL_STEP: 1029400 | > loss_disc: 2.34039 (2.32484) | > loss_disc_real_0: 0.10447 (0.12389) | > loss_disc_real_1: 0.17920 (0.21180) | > loss_disc_real_2: 0.17778 (0.21558) | > loss_disc_real_3: 0.22991 (0.21890) | > loss_disc_real_4: 0.21612 (0.21444) | > loss_disc_real_5: 0.21335 (0.21359) | > loss_0: 2.34039 (2.32484) | > grad_norm_0: 7.55289 (17.09057) | > loss_gen: 2.49981 (2.54771) | > loss_kl: 2.72668 (2.66449) | > loss_feat: 8.51661 (8.67557) | > loss_mel: 17.79907 (17.76338) | > loss_duration: 1.69456 (1.70612) | > loss_1: 33.23673 (33.35724) | > grad_norm_1: 184.62590 (137.30585) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99450 (2.26840) | > loader_time: 0.03880 (0.03787)  --> STEP: 2989/15287 -- GLOBAL_STEP: 1029425 | > loss_disc: 2.22181 (2.32477) | > loss_disc_real_0: 0.08612 (0.12388) | > loss_disc_real_1: 0.19292 (0.21179) | > loss_disc_real_2: 0.20425 (0.21554) | > loss_disc_real_3: 0.20604 (0.21890) | > loss_disc_real_4: 0.20146 (0.21447) | > loss_disc_real_5: 0.18277 (0.21365) | > loss_0: 2.22181 (2.32477) | > grad_norm_0: 4.61115 (17.09999) | > loss_gen: 3.00897 (2.54785) | > loss_kl: 2.53009 (2.66417) | > loss_feat: 9.26436 (8.67499) | > loss_mel: 17.74716 (17.76300) | > loss_duration: 1.70587 (1.70605) | > loss_1: 34.25645 (33.35604) | > grad_norm_1: 116.82553 (137.30617) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.84830 (2.26625) | > loader_time: 0.04270 (0.03792)  --> STEP: 3014/15287 -- GLOBAL_STEP: 1029450 | > loss_disc: 2.33027 (2.32460) | > loss_disc_real_0: 0.09392 (0.12390) | > loss_disc_real_1: 0.23248 (0.21183) | > loss_disc_real_2: 0.22977 (0.21558) | > loss_disc_real_3: 0.21793 (0.21894) | > loss_disc_real_4: 0.19623 (0.21447) | > loss_disc_real_5: 0.21547 (0.21365) | > loss_0: 2.33027 (2.32460) | > grad_norm_0: 20.94754 (17.09086) | > loss_gen: 2.42838 (2.54807) | > loss_kl: 2.76763 (2.66404) | > loss_feat: 8.05312 (8.67544) | > loss_mel: 17.52905 (17.76260) | > loss_duration: 1.70142 (1.70603) | > loss_1: 32.47959 (33.35615) | > grad_norm_1: 188.21759 (137.33020) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96790 (2.26410) | > loader_time: 0.03720 (0.03793)  --> STEP: 3039/15287 -- GLOBAL_STEP: 1029475 | > loss_disc: 2.32105 (2.32426) | > loss_disc_real_0: 0.16521 (0.12388) | > loss_disc_real_1: 0.20955 (0.21180) | > loss_disc_real_2: 0.21735 (0.21555) | > loss_disc_real_3: 0.19957 (0.21894) | > loss_disc_real_4: 0.19824 (0.21447) | > loss_disc_real_5: 0.20421 (0.21364) | > loss_0: 2.32105 (2.32426) | > grad_norm_0: 13.59799 (17.07696) | > loss_gen: 2.35499 (2.54838) | > loss_kl: 2.50391 (2.66406) | > loss_feat: 8.83242 (8.67623) | > loss_mel: 17.72820 (17.76263) | > loss_duration: 1.68193 (1.70601) | > loss_1: 33.10145 (33.35728) | > grad_norm_1: 147.63777 (137.52087) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.37590 (2.26257) | > loader_time: 0.03240 (0.03795)  --> STEP: 3064/15287 -- GLOBAL_STEP: 1029500 | > loss_disc: 2.35798 (2.32399) | > loss_disc_real_0: 0.12260 (0.12380) | > loss_disc_real_1: 0.21683 (0.21176) | > loss_disc_real_2: 0.25237 (0.21555) | > loss_disc_real_3: 0.23505 (0.21893) | > loss_disc_real_4: 0.28649 (0.21450) | > loss_disc_real_5: 0.20779 (0.21356) | > loss_0: 2.35798 (2.32399) | > grad_norm_0: 28.47117 (17.06559) | > loss_gen: 2.52910 (2.54852) | > loss_kl: 2.66373 (2.66419) | > loss_feat: 8.92118 (8.67702) | > loss_mel: 17.76367 (17.76196) | > loss_duration: 1.73680 (1.70602) | > loss_1: 33.61447 (33.35769) | > grad_norm_1: 153.64632 (137.34607) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.66230 (2.26109) | > loader_time: 0.03790 (0.03798)  --> STEP: 3089/15287 -- GLOBAL_STEP: 1029525 | > loss_disc: 2.31129 (2.32386) | > loss_disc_real_0: 0.10714 (0.12373) | > loss_disc_real_1: 0.19999 (0.21175) | > loss_disc_real_2: 0.21274 (0.21555) | > loss_disc_real_3: 0.23993 (0.21888) | > loss_disc_real_4: 0.23377 (0.21449) | > loss_disc_real_5: 0.19788 (0.21352) | > loss_0: 2.31129 (2.32386) | > grad_norm_0: 7.18785 (17.05798) | > loss_gen: 2.69398 (2.54869) | > loss_kl: 2.63995 (2.66403) | > loss_feat: 8.59835 (8.67806) | > loss_mel: 17.65505 (17.76178) | > loss_duration: 1.71653 (1.70595) | > loss_1: 33.30387 (33.35847) | > grad_norm_1: 151.67499 (137.50104) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.02430 (2.25871) | > loader_time: 0.04800 (0.03799)  --> STEP: 3114/15287 -- GLOBAL_STEP: 1029550 | > loss_disc: 2.24380 (2.32376) | > loss_disc_real_0: 0.13581 (0.12371) | > loss_disc_real_1: 0.20183 (0.21174) | > loss_disc_real_2: 0.22038 (0.21553) | > loss_disc_real_3: 0.19282 (0.21880) | > loss_disc_real_4: 0.20750 (0.21447) | > loss_disc_real_5: 0.18655 (0.21355) | > loss_0: 2.24380 (2.32376) | > grad_norm_0: 22.08300 (17.09498) | > loss_gen: 2.61604 (2.54842) | > loss_kl: 2.59720 (2.66427) | > loss_feat: 9.11068 (8.67849) | > loss_mel: 17.48348 (17.76278) | > loss_duration: 1.73492 (1.70601) | > loss_1: 33.54232 (33.35994) | > grad_norm_1: 192.36192 (137.69031) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.88700 (2.25762) | > loader_time: 0.03720 (0.03800)  --> STEP: 3139/15287 -- GLOBAL_STEP: 1029575 | > loss_disc: 2.32470 (2.32373) | > loss_disc_real_0: 0.15747 (0.12376) | > loss_disc_real_1: 0.21740 (0.21174) | > loss_disc_real_2: 0.22722 (0.21555) | > loss_disc_real_3: 0.22288 (0.21884) | > loss_disc_real_4: 0.22893 (0.21450) | > loss_disc_real_5: 0.24943 (0.21349) | > loss_0: 2.32470 (2.32373) | > grad_norm_0: 14.14409 (17.11103) | > loss_gen: 2.61084 (2.54844) | > loss_kl: 2.66590 (2.66409) | > loss_feat: 8.77021 (8.67776) | > loss_mel: 17.51575 (17.76172) | > loss_duration: 1.69833 (1.70598) | > loss_1: 33.26102 (33.35794) | > grad_norm_1: 61.44151 (137.68689) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.08560 (2.25598) | > loader_time: 0.03830 (0.03804)  --> STEP: 3164/15287 -- GLOBAL_STEP: 1029600 | > loss_disc: 2.42208 (2.32394) | > loss_disc_real_0: 0.15352 (0.12374) | > loss_disc_real_1: 0.19797 (0.21175) | > loss_disc_real_2: 0.18217 (0.21558) | > loss_disc_real_3: 0.23665 (0.21886) | > loss_disc_real_4: 0.25542 (0.21450) | > loss_disc_real_5: 0.23155 (0.21353) | > loss_0: 2.42208 (2.32394) | > grad_norm_0: 23.70582 (17.09670) | > loss_gen: 2.39691 (2.54828) | > loss_kl: 2.90413 (2.66467) | > loss_feat: 8.75261 (8.67850) | > loss_mel: 18.27672 (17.76299) | > loss_duration: 1.76705 (1.70598) | > loss_1: 34.09743 (33.36037) | > grad_norm_1: 73.60542 (137.52327) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 2.04140 (2.25560) | > loader_time: 0.03430 (0.03807)  --> STEP: 3189/15287 -- GLOBAL_STEP: 1029625 | > loss_disc: 2.33138 (2.32416) | > loss_disc_real_0: 0.14730 (0.12379) | > loss_disc_real_1: 0.19940 (0.21177) | > loss_disc_real_2: 0.20754 (0.21557) | > loss_disc_real_3: 0.23425 (0.21888) | > loss_disc_real_4: 0.20493 (0.21450) | > loss_disc_real_5: 0.24924 (0.21353) | > loss_0: 2.33138 (2.32416) | > grad_norm_0: 6.08898 (17.04349) | > loss_gen: 2.47124 (2.54809) | > loss_kl: 2.81460 (2.66520) | > loss_feat: 9.10026 (8.67773) | > loss_mel: 18.32386 (17.76362) | > loss_duration: 1.73383 (1.70603) | > loss_1: 34.44379 (33.36061) | > grad_norm_1: 104.30747 (137.25356) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.99010 (2.25351) | > loader_time: 0.03610 (0.03809)  --> STEP: 3214/15287 -- GLOBAL_STEP: 1029650 | > loss_disc: 2.37167 (2.32449) | > loss_disc_real_0: 0.19695 (0.12385) | > loss_disc_real_1: 0.15781 (0.21178) | > loss_disc_real_2: 0.20667 (0.21559) | > loss_disc_real_3: 0.22433 (0.21890) | > loss_disc_real_4: 0.16885 (0.21448) | > loss_disc_real_5: 0.20300 (0.21356) | > loss_0: 2.37167 (2.32449) | > grad_norm_0: 17.94912 (16.99878) | > loss_gen: 2.34316 (2.54803) | > loss_kl: 2.73186 (2.66548) | > loss_feat: 8.35349 (8.67681) | > loss_mel: 17.29591 (17.76386) | > loss_duration: 1.72253 (1.70603) | > loss_1: 32.44695 (33.36018) | > grad_norm_1: 84.45314 (137.00162) | > current_lr_0: 0.00020 | > current_lr_1: 0.00020 | > step_time: 1.96810 (2.25185) | > loader_time: 0.03670 (0.03812) ! Run is kept in ./checkpoints/yourtts_multilingual/yourtts-du_en_fr_ge_it_pl_ptbr_sp-November-08-2022_12+19PM-0cbaa0f6