Text Generation
Transformers
Safetensors
PyTorch
English
nemotron-nas
llama-3
llama
nvidia-nemotron
nemotron-ultra
fine-tuned
conversational-ai
large-language-model
huggingface
open-source-llm
generative-ai
nvidia
meta-llama
instruct-tuning
chat-model
llm
artificial-intelligence
deep-learning
tensorrt-llm
gpu-optimized
multilingual
instruction-following
conversational
custom_code
# coding=utf-8 | |
# Copyright 2024 Nvidia Corporation. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import dataclasses | |
import warnings | |
from typing import Dict, Any | |
from transformers.utils import is_flash_attn_2_available | |
from .block_config import BlockConfig | |
from .transformers_4_44_2__configuration_llama import LlamaConfig | |
from .transformers_4_44_2__modeling_rope_utils import \ | |
rope_config_validation # fake import to make AutoConfig infer the dependency | |
rope_config_validation # this line is here to make sure that auto-formatting doesn't remove the import | |
class DeciLMConfig(LlamaConfig): | |
model_type = "nemotron-nas" | |
def __init__( | |
self, | |
block_configs: list[dict] | list[BlockConfig] = None, | |
**kwargs, | |
): | |
attn_implementation = kwargs.pop("attn_implementation", None) | |
if attn_implementation is None and is_flash_attn_2_available(): | |
attn_implementation = "flash_attention_2" | |
if block_configs is not None: | |
if isinstance(block_configs[0], dict): | |
block_configs = [BlockConfig(**conf) for conf in block_configs] | |
using_unshifted_sink = any([block_config.attention.unshifted_sink for block_config in block_configs]) | |
if using_unshifted_sink and attn_implementation != "eager": | |
warnings.warn("Forcing attn_implementation='eager' since some attention layers use unshifted sink") | |
attn_implementation = "eager" | |
super().__init__(attn_implementation=attn_implementation, **kwargs) | |
self.intermediate_size = None | |
self.num_key_value_heads = None | |
if block_configs is not None: | |
assert len(block_configs) == self.num_hidden_layers | |
self.block_configs: list[BlockConfig] = block_configs | |
def to_dict(self) -> Dict[str, Any]: | |
self_dict = super().to_dict() | |
if self.block_configs is not None: | |
self_dict["block_configs"] = [dataclasses.asdict(conf) for conf in self.block_configs] | |
return self_dict | |