File size: 8,740 Bytes
eec42bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# dataloader.py

import os
import math 
import pandas as pd
import tensorflow as tf
from functools import partial

def validate_data_files(data_df):
    """Validate all files exist before starting training"""
    missing_files = []
    
    for _, row in data_df.iterrows():
        if not os.path.exists(row['filename']):
            missing_files.append(row['filename'])
        if not os.path.exists(row['target']):
            missing_files.append(row['target'])
            
    if missing_files:
        print("Missing files:")
        for f in missing_files[:10]:
            print(f"  {f}")
        if len(missing_files) > 10:
            print(f"  ... and {len(missing_files)-10} more")
        raise FileNotFoundError(f"Found {len(missing_files)} missing files")

def _get_pupil_position(pmap, datum, x_shape):
    total_mass = tf.reduce_sum(pmap)
    if total_mass > 0:
        shape = tf.shape(pmap)
        h, w = shape[0], shape[1]
        ii, jj = tf.meshgrid(tf.range(h), tf.range(w), indexing='ij')
        y = tf.reduce_sum(tf.cast(ii, 'float32') * pmap) / total_mass
        x = tf.reduce_sum(tf.cast(jj, 'float32') * pmap) / total_mass
        return tf.stack((y, x))

    if 'roi_x' in datum and 'roi_y' in datum and 'roi_w' in datum:
        roi_x = tf.cast(datum['roi_x'], 'float32')
        roi_y = tf.cast(datum['roi_y'], 'float32')
        half = tf.cast(datum['roi_w'] / 2, 'float32')
        result = tf.stack((roi_y + half, roi_x + half))
    else:  # fallback to center of the image
        result = tf.cast(tf.stack((x_shape[0] / 2, x_shape[1] / 2)), dtype='float32')

    return result

def additional_augmentations(image, mask, p=0.3):
    # Keep original image with probability 1-p
    if tf.random.uniform([]) > p:
        return image, mask

    # Random noise augmentation
    if tf.random.uniform([]) < 0.3:
        noise = tf.random.normal(tf.shape(image), mean=0, stddev=0.05)
        image = image + noise
        image = tf.clip_by_value(image, 0, 1)

    # Random blur using gaussian filter
    if tf.random.uniform([]) < 0.3:
        kernel_size = 3
        sigma = tf.random.uniform([], 0, 1.0)
        x = tf.range(-kernel_size // 2 + 1, kernel_size // 2 + 1, dtype=tf.float32)
        gaussian = tf.exp(-(x ** 2) / (2 * sigma ** 2))
        gaussian = gaussian / tf.reduce_sum(gaussian)
        gaussian = tf.reshape(gaussian, [kernel_size, 1])
        gaussian_kernel = gaussian @ tf.transpose(gaussian)
        gaussian_kernel = tf.reshape(gaussian_kernel, [kernel_size, kernel_size, 1, 1])
        image = tf.nn.conv2d(tf.expand_dims(image, 0), gaussian_kernel,
                           strides=[1,1,1,1], padding='SAME')[0]

    # Random sharpening
    if tf.random.uniform([]) < 0.3:
        kernel = tf.constant([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]], dtype=tf.float32)
        kernel = tf.reshape(kernel, [3, 3, 1, 1])
        image = tf.nn.conv2d(tf.expand_dims(image, 0), kernel,
                           strides=[1,1,1,1], padding='SAME')[0]
        image = tf.clip_by_value(image, 0, 1)

    return image, mask

@tf.function
def load_datum(datum, x_shape=(128, 128, 1), augment=False):
    try:
        x = tf.io.read_file(datum['filename'])
        y = tf.io.read_file(datum['target'])

        # HWC [0,1] float32  
        x = tf.io.decode_image(x, channels=1, dtype='float32', expand_animations=False)
        y = tf.io.decode_image(y, dtype='float32', expand_animations=False)

        # Get image dimensions
        h = tf.shape(x)[0]
        w = tf.shape(x)[1]

        # Extract pupil information
        pupil_map = y[:, :, 0]
        pupil_area = tf.reduce_sum(pupil_map)
        pupil_pos_yx = _get_pupil_position(pupil_map, datum, x_shape)

        # Target size we want to achieve
        target_size = tf.minimum(tf.minimum(h, w), x_shape[0])

        if not augment:
            # Calculate center crop
            h_start = (h - target_size) // 2
            w_start = (w - target_size) // 2
        else:
            # Random crop within safe bounds considering pupil position
            h_start = tf.random.uniform([], 0, h - target_size + 1, dtype=tf.int32)
            w_start = tf.random.uniform([], 0, w - target_size + 1, dtype=tf.int32)

        # Perform crop
        x = tf.image.crop_to_bounding_box(x, h_start, w_start, target_size, target_size)
        y = tf.image.crop_to_bounding_box(y, h_start, w_start, target_size, target_size)

        if augment:
            # Rotation with arbitrary angles
            k = tf.random.uniform([], 0, 4, dtype=tf.int32)
            x = tf.image.rot90(x, k=k)
            y = tf.image.rot90(y, k=k)

            # Flips with pupil position consideration
            if tf.random.uniform([]) < 0.5:
                x = tf.image.flip_left_right(x)
                y = tf.image.flip_left_right(y)
            
            if tf.random.uniform([]) < 0.5:
                x = tf.image.flip_up_down(x)
                y = tf.image.flip_up_down(y)

            # Apply additional augmentations
            x, y = additional_augmentations(x, y)

        # Calculate pupil visibility after transformation
        new_pupil_map = y[:, :, 0]
        new_pupil_area = tf.reduce_sum(new_pupil_map)
        eye = (new_pupil_area / pupil_area) if pupil_area > 0 else 0.

        # Process eye and blink information
        datum_eye = tf.cast(datum['eye'], 'float32')
        datum_blink = tf.cast(datum['blink'], 'float32')

        # Handle blink cases
        if datum_eye == 0:
            datum_blink = 0.
        if (datum_eye == 1) & (datum_blink == 0):
            datum_eye = eye

        # Resize if needed
        if target_size != x_shape[0]:
            x = tf.image.resize(x, [x_shape[0], x_shape[0]])
            y = tf.image.resize(y, [x_shape[0], x_shape[0]])

        y = y[:, :, :1]
        y2 = tf.stack((datum_eye, datum_blink))

        return x, y, y2
    
    except Exception as e:
        print(f"Error processing datum: {str(e)}")
        raise

def get_loader(dataframe, batch_size=8, shuffle=False, **kwargs):
    categories = dataframe.exp.values
    dataset = tf.data.Dataset.from_tensor_slices(dict(dataframe))

    if shuffle:
        dataset = dataset.shuffle(1000)

    dataset = dataset.map(
        partial(load_datum, **kwargs),
        num_parallel_calls=tf.data.AUTOTUNE,
        deterministic=not shuffle
    )
    dataset = dataset.batch(batch_size)

    def _pack_targets(*ins):
        inputs = ins[0]
        targets = {'mask': ins[1], 'tags': ins[2]}
        return [inputs, targets]

    dataset = dataset.map(
        _pack_targets,
        num_parallel_calls=tf.data.AUTOTUNE,
        deterministic=not shuffle
    )
    dataset = dataset.prefetch(tf.data.AUTOTUNE)
    return dataset, categories

def load_datasets(dataset_dirs):
    def _load_and_prepare_annotations(dataset_dir):
        # Normalize path
        dataset_dir = os.path.normpath(dataset_dir)
        
        data_path = os.path.join(dataset_dir, 'annotation', 'annotations.csv')
        if not os.path.exists(data_path):
            raise FileNotFoundError(f"Annotations file not found: {data_path}")
            
        data = pd.read_csv(data_path)
        
        # Create directories if they don't exist
        png_dir = os.path.join(dataset_dir, 'annotation', 'png')
        full_frames_dir = os.path.join(dataset_dir, 'fullFrames')
        os.makedirs(png_dir, exist_ok=True)
        os.makedirs(full_frames_dir, exist_ok=True)
        
        # Filter valid files before creating paths
        valid_data = data[data.apply(lambda x: os.path.exists(os.path.join(full_frames_dir, os.path.basename(x['filename']))), axis=1)]
        
        if len(valid_data) == 0:
            raise ValueError(f"No valid image files found in {full_frames_dir}")
            
        # Create target paths
        valid_data['target'] = valid_data['filename'].apply(
            lambda x: os.path.join(png_dir, os.path.splitext(os.path.basename(x))[0] + '.png')
        )
        
        valid_data['filename'] = valid_data['filename'].apply(
            lambda x: os.path.join(full_frames_dir, os.path.basename(x))
        )
        
        return valid_data

    all_data = []
    for d in dataset_dirs:
        try:
            dataset = _load_and_prepare_annotations(d)
            all_data.append(dataset)
        except Exception as e:
            print(f"Error loading dataset from {d}: {str(e)}")
            continue
            
    if not all_data:
        raise ValueError("No valid datasets found in any of the provided directories")
        
    dataset = pd.concat(all_data)
    dataset['sub'] = dataset['sub'].astype(str)
    
    print(f"Found {len(dataset)} valid image pairs")
    return dataset