File size: 13,949 Bytes
eec42bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
# -*- coding: utf-8 -*-
""" MEye: Semantic Segmentation """
import argparse
import os
os.sys.path += ['expman', 'models/deeplab']
import expman
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.models import load_model
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, roc_curve, auc, precision_recall_curve, average_precision_score
from adabelief_tf import AdaBeliefOptimizer
from glob import glob
from tqdm import tqdm
from PIL import Image
from deeplabv3p.models.deeplabv3p_mobilenetv3 import hard_swish
from dataloader import get_loader, load_datasets
from utils import visualize, visualizable
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2_as_graph
def iou_coef(y_true, y_pred):
y_true = tf.cast(y_true, tf.float32)
y_pred = tf.cast(y_pred, tf.float32)
intersection = K.sum(K.abs(y_true * y_pred), axis=[1, 2, 3])
union = K.sum(y_true, axis=[1, 2, 3]) + K.sum(y_pred, axis=[1, 2, 3]) - intersection
return K.mean((intersection + 1e-6) / (union + 1e-6))
def dice_coef(y_true, y_pred):
y_true = tf.cast(y_true, tf.float32)
y_pred = tf.cast(y_pred, tf.float32)
intersection = K.sum(K.abs(y_true * y_pred), axis=[1, 2, 3])
return K.mean((2. * intersection + 1e-6) / (K.sum(y_true, axis=[1, 2, 3]) + K.sum(y_pred, axis=[1, 2, 3]) + 1e-6))
def boundary_loss(y_true, y_pred):
y_true = tf.cast(y_true, tf.float32)
y_pred = tf.cast(y_pred, tf.float32)
dy_true, dx_true = tf.image.image_gradients(y_true)
dy_pred, dx_pred = tf.image.image_gradients(y_pred)
loss = tf.reduce_mean(tf.abs(dy_pred - dy_true) + tf.abs(dx_pred - dx_true))
return loss * 0.5
def enhanced_binary_crossentropy(y_true, y_pred):
y_true = tf.cast(y_true, tf.float32)
y_pred = tf.cast(y_pred, tf.float32)
bce = tf.keras.losses.binary_crossentropy(y_true, y_pred)
boundary = boundary_loss(y_true, y_pred)
return bce + boundary
def _filter_by_closeness(a, eps=10e-3):
keep = []
prev = np.array([-1, -1])
for row in a.drop('thr', axis=1).values:
if (np.abs(prev - row) > eps).any():
keep.append(True)
prev = row
else:
keep.append(False)
return a[keep]
def _weighted_roc_pr(y_true, y_scores, label, outdir, simplify=False):
# Convert to binary labels using 0.5 threshold for true values
y_true_binary = (y_true > 0.5).astype(int)
npos = y_true_binary.sum()
nneg = len(y_true_binary) - npos
pos_weight = nneg / npos if npos > 0 else 1.0
print(label, 'Tot:', len(y_true), 'P:', npos, 'N:', nneg, 'N/P:', pos_weight)
sample_weight = np.where(y_true_binary, pos_weight, 1)
fpr, tpr, thr = roc_curve(y_true_binary, y_scores, sample_weight=sample_weight)
auc_score = auc(fpr, tpr)
print(label, 'AuROC:', auc_score)
roc_metrics = pd.Series({'npos': npos, 'nneg': nneg, 'nneg_over_npos': pos_weight, 'roc_auc': auc_score})
roc_metrics_file = os.path.join(outdir, '{}_roc_metrics.csv'.format(label))
roc_metrics.to_csv(roc_metrics_file, index=False)
roc = pd.DataFrame({'fpr': fpr, 'tpr': tpr, 'thr': thr})
if simplify:
full_roc_file = os.path.join(outdir, '{}_roc_curve_full.csv.gz'.format(label))
roc.to_csv(full_roc_file, index=False)
roc = _filter_by_closeness(roc)
roc_file = os.path.join(outdir, '{}_roc_curve.csv'.format(label))
roc.to_csv(roc_file, index=False)
roc.plot(x='fpr', y='tpr', xlim=(0, 1), ylim=(0, 1))
roc_plot_file = os.path.join(outdir, '{}_roc.pdf'.format(label))
plt.savefig(roc_plot_file)
plt.close()
precision, recall, thr = precision_recall_curve(y_true_binary, y_scores, sample_weight=sample_weight)
f1_score = 2 * precision * recall / (precision + recall)
pr_auc = auc(recall, precision)
pr_metrics = pd.Series({'npos': npos, 'nneg': nneg, 'nneg_over_npos': pos_weight, 'pr_auc': pr_auc})
pr_metrics_file = os.path.join(outdir, '{}_pr_metrics.csv'.format(label))
pr_metrics.to_csv(pr_metrics_file, index=False)
thr = np.append(thr, [thr[-1]])
pr = pd.DataFrame({'precision': precision, 'recall': recall, 'f1_score': f1_score, 'thr': thr})
if simplify:
full_pr_file = os.path.join(outdir, '{}_pr_curve_full.csv.gz'.format(label))
pr.to_csv(full_pr_file, index=False)
pr = _filter_by_closeness(pr)
pr_file = os.path.join(outdir, '{}_pr_curve.csv'.format(label))
pr.to_csv(pr_file, index=False)
pr.plot(x='recall', y='precision', xlim=(0, 1), ylim=(0, 1))
pr_plot_file = os.path.join(outdir, '{}_pr.pdf'.format(label))
plt.savefig(pr_plot_file)
plt.close()
print(label, 'AuPR:', pr_auc, 'AvgP:', average_precision_score(y_true_binary, y_scores, sample_weight=sample_weight))
def get_flops(model):
concrete = tf.function(lambda inputs: model(inputs))
concrete_func = concrete.get_concrete_function(
[tf.TensorSpec([1, *inputs.shape[1:]]) for inputs in model.inputs])
frozen_func, graph_def = convert_variables_to_constants_v2_as_graph(concrete_func)
with tf.Graph().as_default() as graph:
tf.graph_util.import_graph_def(graph_def, name='')
run_meta = tf.compat.v1.RunMetadata()
opts = tf.compat.v1.profiler.ProfileOptionBuilder.float_operation()
flops = tf.compat.v1.profiler.profile(graph=graph, run_meta=run_meta, cmd="op", options=opts)
tf.compat.v1.reset_default_graph()
return flops.total_float_ops
def evaluate(exp, force=False):
ckpt_path = exp.path_to('best_model.keras')
# If the model doesn't exist and we're not forcing evaluation, just return
if not os.path.exists(ckpt_path):
print(f"Model file not found: {ckpt_path}")
return
custom_objects = {
'AdaBeliefOptimizer': AdaBeliefOptimizer,
'iou_coef': iou_coef,
'dice_coef': dice_coef,
'hard_swish': hard_swish,
'enhanced_binary_crossentropy': enhanced_binary_crossentropy,
'boundary_loss': boundary_loss
}
try:
model = tf.keras.models.load_model(ckpt_path, custom_objects=custom_objects)
except Exception as e:
print(f"Error loading model: {str(e)}")
return
# get flops
flop_params_path = exp.path_to('flops_nparams.csv')
if force or not os.path.exists(flop_params_path):
model.compile()
# Add .keras extension to tmp_model
tf.keras.models.save_model(model, 'tmp_model.keras', overwrite=True, include_optimizer=False)
stripped_model = tf.keras.models.load_model('tmp_model.keras')
flops = get_flops(stripped_model)
nparams = stripped_model.count_params()
del stripped_model
# Clean up temporary model file
if os.path.exists('tmp_model.keras'):
os.remove('tmp_model.keras')
print('FLOPS:', flops)
print('#PARAMS:', nparams)
pd.DataFrame({'flops': flops, 'nparams': nparams}, index=[0]).to_csv(flop_params_path)
model.compile(
loss='binary_crossentropy',
metrics={'mask': [iou_coef, dice_coef], 'tags': 'binary_accuracy'}
)
params = exp.params
np.random.seed(params.seed)
tf.random.set_seed(params.seed)
data = load_datasets(params.data)
# TRAIN/VAL/TEST SPLIT
if params.split == 'subjects': # by SUBJECTS
test_subjects = (3, 4, 19, 38, 45, 46, 51, 52)
test_data = data[data['sub'].isin(test_subjects)]
elif params.split == 'random': # 70-20-10 %
_, valtest_data = train_test_split(data, test_size=.3, shuffle=True)
_, test_data = train_test_split(valtest_data, test_size=.33)
x_shape = (params.resolution, params.resolution, 1)
test_gen, test_categories = get_loader(test_data, batch_size=1, x_shape=x_shape)
prediction_dir = exp.path_to('test_pred')
os.makedirs(prediction_dir, exist_ok=True)
loss_per_sample = None
def _get_test_predictions(test_gen, model):
x_masks = []
y_masks, y_tags = [], []
pred_masks, pred_tags = [], []
loss_per_sample = []
for x, y in tqdm(test_gen, desc='TEST'):
try:
# Generate predictions first
p_mask, p_tags = model.predict_on_batch(x)
# Append predictions and ground truth
pred_masks.append(p_mask)
pred_tags.append(p_tags)
y_masks.append(y['mask'].numpy())
y_tags.append(y['tags'].numpy())
x_masks.append(x.numpy())
# Calculate losses manually if needed
sample_loss = model.compiled_loss(
{'mask': y['mask'], 'tags': y['tags']},
{'mask': p_mask, 'tags': p_tags}
)
loss_per_sample.append(sample_loss.numpy())
except Exception as e:
print(f"Error processing batch: {str(e)}")
continue
# Check if we have any successful predictions
if not pred_masks or not pred_tags or not y_masks or not y_tags or not x_masks:
raise ValueError("No predictions were collected - all batches failed")
try:
loss_per_sample = np.array(loss_per_sample)
pred_masks = np.concatenate(pred_masks)
pred_tags = np.concatenate(pred_tags)
y_masks = np.concatenate(y_masks)
y_tags = np.concatenate(y_tags)
x_masks = np.concatenate(x_masks)
except Exception as e:
print(f"Error concatenating results: {str(e)}")
raise
return loss_per_sample, x_masks, y_masks, y_tags, pred_masks, pred_tags
mask_metrics_path = exp.path_to('test_pred/mask_metrics.csv')
if force or not os.path.exists(mask_metrics_path):
if loss_per_sample is None:
loss_per_sample, x_masks, y_masks, y_tags, pred_masks, pred_tags = _get_test_predictions(test_gen, model)
thrs = np.linspace(0, 1, 101)
ious = [iou_coef(y_masks, pred_masks).numpy() for thr in thrs]
dices = [dice_coef(y_masks, pred_masks).numpy() for thr in thrs]
best_thr = max(zip(dices, thrs))[1]
mask_metrics = pd.DataFrame({'iou': ious, 'dice': dices, 'thr': thrs})
print(mask_metrics.max(axis=0))
mask_metrics.to_csv(mask_metrics_path)
else:
mask_metrics = pd.read_csv(mask_metrics_path, index_col=0)
best_thr = mask_metrics.loc[mask_metrics.dice.idxmax(), 'thr']
if force:
if loss_per_sample is None:
loss_per_sample, x_masks, y_masks, y_tags, pred_masks, pred_tags = _get_test_predictions(test_gen, model)
_weighted_roc_pr(y_tags[:, 0], pred_tags[:, 0], 'all_eye', prediction_dir)
_weighted_roc_pr(y_tags[:, 1], pred_tags[:, 1], 'all_blink', prediction_dir)
filenames = ('top_samples.png', 'bottom_samples.png', 'random_samples.png')
if force or any(not os.path.exists(os.path.join(prediction_dir, f)) for f in filenames):
if loss_per_sample is None:
loss_per_sample, x_masks, y_masks, y_tags, pred_masks, pred_tags = _get_test_predictions(test_gen, model)
k = 5
best_selector = []
worst_selector = []
random_selector = []
idx = np.arange(len(test_data))
for cat in np.unique(test_categories):
cat_outdir = os.path.join(prediction_dir, cat)
os.makedirs(cat_outdir, exist_ok=True)
selector = test_categories == cat
_weighted_roc_pr(y_tags[selector, 0], pred_tags[selector, 0], '{}_eye'.format(cat), cat_outdir)
_weighted_roc_pr(y_tags[selector, 1], pred_tags[selector, 1], '{}_blink'.format(cat), cat_outdir)
# Fix the indexing here - loss_per_sample is 1D
cat_losses = loss_per_sample[selector]
rank = cat_losses.argsort()
topk, bottomk = rank[:k], rank[-k:]
best_selector += idx[selector][topk].tolist()
worst_selector += idx[selector][bottomk].tolist()
random_selector += np.random.choice(idx[selector], k, replace=False).tolist()
# topk-bottomk images
selectors = (best_selector, worst_selector, random_selector)
for selector, outfile in zip(selectors, filenames):
combined_m = np.concatenate((pred_masks[selector], y_masks[selector]), axis=-1)[:, :, :, ::-1]
combined_t = np.concatenate((pred_tags[selector], y_tags[selector]), axis=-1)
combined_y = (combined_m, combined_t)
out = os.path.join(prediction_dir, outfile)
visualize(x_masks[selector], combined_y, out=out, thr=best_thr, n_cols=k, width=10)
for i, (xi, yi_mask) in enumerate(zip(x_masks[selector], combined_m)):
img = visualizable(xi, yi_mask, thr=best_thr)
img = (img * 255).astype(np.uint8)
out = os.path.join(prediction_dir, outfile[:-4])
os.makedirs(out, exist_ok=True)
out = os.path.join(out, f'{i}.png')
Image.fromarray(img).save(out)
def main(args):
try:
for exp in expman.gather(args.run).filter(args.filter):
print(exp)
evaluate(exp, force=args.force)
except Exception as e:
print(f"Error in main: {str(e)}")
raise
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Evaluate Run')
parser.add_argument('run', help='Run(s) directory')
parser.add_argument('-f', '--filter', default={}, type=expman.exp_filter)
parser.add_argument('--force', default=False, action='store_true', help='Force metrics recomputation')
args = parser.parse_args()
main(args) |