Update README.md
Browse files
README.md
CHANGED
@@ -15,37 +15,13 @@ language:
|
|
15 |
|
16 |
All credits go to [(Rivera-Soto et al. 2021)](https://aclanthology.org/2021.emnlp-main.70/)
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-distilroberta-base-v1](https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v1). It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
21 |
-
|
22 |
-
## Model Details
|
23 |
|
24 |
-
|
25 |
-
- **Model Type:** Sentence Transformer
|
26 |
-
- **Base model:** [sentence-transformers/paraphrase-distilroberta-base-v1](https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v1) <!-- at revision 0520e7529d15c250345a95871495ea016ca93754 -->
|
27 |
-
<!--- **Maximum Sequence Length:** 128 tokens
|
28 |
-
- **Output Dimensionality:** 512 tokens
|
29 |
-
- **Similarity Function:** Cosine Similarity
|
30 |
-
<!-- - **Training Dataset:** Unknown -->
|
31 |
-
<!-- - **Language:** Unknown -->
|
32 |
-
<!-- - **License:** Unknown -->
|
33 |
-
<!--
|
34 |
-
### Model Sources
|
35 |
|
36 |
-
|
37 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
38 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
```
|
43 |
-
SentenceTransformer(
|
44 |
-
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
|
45 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
46 |
-
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
47 |
-
)
|
48 |
-
```
|
49 |
|
50 |
## Usage
|
51 |
|
@@ -61,7 +37,6 @@ Then you can load this model and run inference.
|
|
61 |
```python
|
62 |
from sentence_transformers import SentenceTransformer
|
63 |
|
64 |
-
# Download from the 🤗 Hub
|
65 |
model = SentenceTransformer("gabrielloiseau/LUAR-MUD-sentence-transformers")
|
66 |
# Run inference
|
67 |
sentences = [
|
@@ -72,78 +47,23 @@ sentences = [
|
|
72 |
embeddings = model.encode(sentences)
|
73 |
print(embeddings.shape)
|
74 |
# [3, 512]
|
75 |
-
|
76 |
-
# Get the similarity scores for the embeddings
|
77 |
-
similarities = model.similarity(embeddings, embeddings)
|
78 |
-
print(similarities.shape)
|
79 |
-
# [3, 3]
|
80 |
```
|
81 |
|
82 |
-
|
83 |
-
### Direct Usage (Transformers)
|
84 |
-
|
85 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
86 |
-
|
87 |
-
</details>
|
88 |
-
-->
|
89 |
-
|
90 |
-
<!--
|
91 |
-
### Downstream Usage (Sentence Transformers)
|
92 |
-
|
93 |
-
You can finetune this model on your own dataset.
|
94 |
-
|
95 |
-
<details><summary>Click to expand</summary>
|
96 |
-
|
97 |
-
</details>
|
98 |
-
-->
|
99 |
-
|
100 |
-
<!--
|
101 |
-
### Out-of-Scope Use
|
102 |
-
|
103 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
104 |
-
-->
|
105 |
-
|
106 |
-
<!--
|
107 |
-
## Bias, Risks and Limitations
|
108 |
-
|
109 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
110 |
-
-->
|
111 |
-
|
112 |
-
<!--
|
113 |
-
### Recommendations
|
114 |
-
|
115 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
116 |
-
-->
|
117 |
-
<!--
|
118 |
-
## Training Details
|
119 |
-
|
120 |
-
### Framework Versions
|
121 |
-
- Python: 3.12.7
|
122 |
-
- Sentence Transformers: 3.1.1
|
123 |
-
- Transformers: 4.40.1
|
124 |
-
- PyTorch: 2.4.1+cu121
|
125 |
-
- Accelerate:
|
126 |
-
- Datasets: 3.0.1
|
127 |
-
- Tokenizers: 0.19.1
|
128 |
-
|
129 |
## Citation
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
<!--
|
134 |
-
## Glossary
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
141 |
|
142 |
-
|
143 |
-
-->
|
144 |
|
145 |
-
|
146 |
-
## Model Card Contact
|
147 |
|
148 |
-
|
149 |
-
-->
|
|
|
15 |
|
16 |
All credits go to [(Rivera-Soto et al. 2021)](https://aclanthology.org/2021.emnlp-main.70/)
|
17 |
|
18 |
+
---
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
Author Style Representations using [LUAR](https://aclanthology.org/2021.emnlp-main.70.pdf).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
The LUAR training and evaluation repository can be found [here](https://github.com/llnl/luar).
|
|
|
|
|
23 |
|
24 |
+
This model was trained on the Reddit Million User Dataset (MUD) found [here](https://aclanthology.org/2021.naacl-main.415.pdf).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
## Usage
|
27 |
|
|
|
37 |
```python
|
38 |
from sentence_transformers import SentenceTransformer
|
39 |
|
|
|
40 |
model = SentenceTransformer("gabrielloiseau/LUAR-MUD-sentence-transformers")
|
41 |
# Run inference
|
42 |
sentences = [
|
|
|
47 |
embeddings = model.encode(sentences)
|
48 |
print(embeddings.shape)
|
49 |
# [3, 512]
|
|
|
|
|
|
|
|
|
|
|
50 |
```
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
## Citation
|
53 |
|
54 |
+
If you find this model helpful, feel free to cite:
|
|
|
|
|
|
|
55 |
|
56 |
+
```
|
57 |
+
@inproceedings{uar-emnlp2021,
|
58 |
+
author = {Rafael A. Rivera Soto and Olivia Miano and Juanita Ordonez and Barry Chen and Aleem Khan and Marcus Bishop and Nicholas Andrews},
|
59 |
+
title = {Learning Universal Authorship Representations},
|
60 |
+
booktitle = {EMNLP},
|
61 |
+
year = {2021},
|
62 |
+
}
|
63 |
+
```
|
64 |
|
65 |
+
## License
|
|
|
66 |
|
67 |
+
LUAR is distributed under the terms of the Apache License (Version 2.0).
|
|
|
68 |
|
69 |
+
All new contributions must be made under the Apache-2.0 licenses.
|
|