--- base_model: - google/gemma-3-12b-it license: gemma pipeline_tag: text-generation library_name: transformers --- # Gemma-3-12b Text-Only This model is a text-only version of [google/gemma-3-12b-it](https://huggingface.co/google/gemma-3-12b-it), converted from the multimodal Gemma3ForConditionalGeneration architecture to the text-only Gemma3ForCausalLM architecture. ## Model Description - **Original Model**: The original Gemma-3-12b-it is a multimodal model released by Google that can process both text and images - **This Version**: This version has been modified to use the same architecture as the text-only 1b model, with the vision components removed - **Parameters**: 4 billion parameters - **Conversion Process**: Vision-related components were stripped while maintaining the text generation capabilities ## Usage You can load and use this model the same way you would use the text-only [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it) version: ```python from transformers import AutoTokenizer, BitsAndBytesConfig, Gemma3ForCausalLM import torch model_id = "gghfez/gemma-3-12b-novision" quantization_config = BitsAndBytesConfig(load_in_8bit=True) model = Gemma3ForCausalLM.from_pretrained( model_id, quantization_config=quantization_config ).eval() tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [ [ { "role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."},] }, { "role": "user", "content": [{"type": "text", "text": "Write a poem on Hugging Face, the company"},] }, ], ] inputs = tokenizer.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", ).to(model.device).to(torch.bfloat16) with torch.inference_mode(): outputs = model.generate(**inputs, max_new_tokens=64) outputs = tokenizer.batch_decode(outputs) ```