--- license: mit base_model: Davlan/afro-xlmr-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: three_class_5e-5_hausa results: [] --- # three_class_5e-5_hausa This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2379 - Precision: 0.2316 - Recall: 0.1636 - F1: 0.1917 - Accuracy: 0.9392 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2129 | 1.0 | 1283 | 0.2033 | 0.2278 | 0.0810 | 0.1195 | 0.9416 | | 0.1901 | 2.0 | 2566 | 0.1988 | 0.2444 | 0.0890 | 0.1305 | 0.9429 | | 0.1657 | 3.0 | 3849 | 0.2056 | 0.2561 | 0.1278 | 0.1705 | 0.9430 | | 0.139 | 4.0 | 5132 | 0.2205 | 0.2269 | 0.1655 | 0.1914 | 0.9388 | | 0.1179 | 5.0 | 6415 | 0.2379 | 0.2316 | 0.1636 | 0.1917 | 0.9392 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.1 - Tokenizers 0.13.3