--- library_name: peft license: other base_model: Qwen/Qwen1.5-1.8B tags: - axolotl - generated_from_trainer model-index: - name: 09fb6922-695b-4726-b50f-6cde61f36fa2 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-1.8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - afdfb3d49efa831c_train_data.json ds_type: json format: custom path: /workspace/input_data/afdfb3d49efa831c_train_data.json type: field_input: rejected_response field_instruction: instruction field_output: chosen_response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 150 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: great0001/09fb6922-695b-4726-b50f-6cde61f36fa2 hub_strategy: end learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: constant max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 17962 micro_batch_size: 4 mlflow_experiment_name: /tmp/afdfb3d49efa831c_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 150 saves_per_epoch: null sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b5a57a74-54ad-485c-baeb-54cf3f31ec70 wandb_project: SN56-33 wandb_run: your_name wandb_runid: b5a57a74-54ad-485c-baeb-54cf3f31ec70 warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ```

# 09fb6922-695b-4726-b50f-6cde61f36fa2 This model is a fine-tuned version of [Qwen/Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1072 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 50 - training_steps: 9660 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0010 | 1 | 2.3775 | | 0.3977 | 0.1553 | 150 | 0.5117 | | 0.2677 | 0.3106 | 300 | 0.3529 | | 0.1908 | 0.4658 | 450 | 0.2431 | | 0.1774 | 0.6211 | 600 | 0.2378 | | 0.1485 | 0.7764 | 750 | 0.1716 | | 0.1471 | 0.9317 | 900 | 0.1719 | | 0.1149 | 1.0870 | 1050 | 0.1232 | | 0.0998 | 1.2422 | 1200 | 0.1079 | | 0.1026 | 1.3975 | 1350 | 0.1000 | | 0.0923 | 1.5528 | 1500 | 0.0949 | | 0.0868 | 1.7081 | 1650 | 0.0967 | | 0.1032 | 1.8634 | 1800 | 0.1000 | | 0.1062 | 2.0186 | 1950 | 0.0942 | | 0.084 | 2.1739 | 2100 | 0.1076 | | 0.0805 | 2.3292 | 2250 | 0.1198 | | 0.0917 | 2.4845 | 2400 | 0.1072 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1