---
library_name: peft
license: other
base_model: Qwen/Qwen1.5-1.8B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 09fb6922-695b-4726-b50f-6cde61f36fa2
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen1.5-1.8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- afdfb3d49efa831c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/afdfb3d49efa831c_train_data.json
type:
field_input: rejected_response
field_instruction: instruction
field_output: chosen_response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: great0001/09fb6922-695b-4726-b50f-6cde61f36fa2
hub_strategy: end
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: constant
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 17962
micro_batch_size: 4
mlflow_experiment_name: /tmp/afdfb3d49efa831c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b5a57a74-54ad-485c-baeb-54cf3f31ec70
wandb_project: SN56-33
wandb_run: your_name
wandb_runid: b5a57a74-54ad-485c-baeb-54cf3f31ec70
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null
```
# 09fb6922-695b-4726-b50f-6cde61f36fa2
This model is a fine-tuned version of [Qwen/Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1072
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 50
- training_steps: 9660
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0010 | 1 | 2.3775 |
| 0.3977 | 0.1553 | 150 | 0.5117 |
| 0.2677 | 0.3106 | 300 | 0.3529 |
| 0.1908 | 0.4658 | 450 | 0.2431 |
| 0.1774 | 0.6211 | 600 | 0.2378 |
| 0.1485 | 0.7764 | 750 | 0.1716 |
| 0.1471 | 0.9317 | 900 | 0.1719 |
| 0.1149 | 1.0870 | 1050 | 0.1232 |
| 0.0998 | 1.2422 | 1200 | 0.1079 |
| 0.1026 | 1.3975 | 1350 | 0.1000 |
| 0.0923 | 1.5528 | 1500 | 0.0949 |
| 0.0868 | 1.7081 | 1650 | 0.0967 |
| 0.1032 | 1.8634 | 1800 | 0.1000 |
| 0.1062 | 2.0186 | 1950 | 0.0942 |
| 0.084 | 2.1739 | 2100 | 0.1076 |
| 0.0805 | 2.3292 | 2250 | 0.1198 |
| 0.0917 | 2.4845 | 2400 | 0.1072 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1