--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-160m tags: - axolotl - generated_from_trainer model-index: - name: 1049f57e-4e7b-4d20-8524-075e12b98361 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-160m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - cabe0edc52f1824b_train_data.json ds_type: json format: custom path: /workspace/input_data/cabe0edc52f1824b_train_data.json type: field_input: policy field_instruction: redteam_query field_output: jailbreak_query format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 200 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: great0001/1049f57e-4e7b-4d20-8524-075e12b98361 hub_strategy: end learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: constant max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 17977 micro_batch_size: 4 mlflow_experiment_name: /tmp/cabe0edc52f1824b_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 200 saves_per_epoch: null sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2677b7fe-e0a2-439d-a729-54f9c5263ad0 wandb_project: SN56-33 wandb_run: your_name wandb_runid: 2677b7fe-e0a2-439d-a729-54f9c5263ad0 warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ```

# 1049f57e-4e7b-4d20-8524-075e12b98361 This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3410 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 50 - training_steps: 16614 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | 5.0096 | | 19.4463 | 0.1204 | 200 | 5.1624 | | 16.3716 | 0.2407 | 400 | 3.9670 | | 15.4725 | 0.3611 | 600 | 4.3231 | | 13.6185 | 0.4815 | 800 | 4.5737 | | 13.2182 | 0.6019 | 1000 | 3.3886 | | 11.9674 | 0.7222 | 1200 | 3.3497 | | 11.3688 | 0.8426 | 1400 | 3.2310 | | 12.5514 | 0.9630 | 1600 | 3.9830 | | 10.2903 | 1.0835 | 1800 | 2.4156 | | 8.989 | 1.2039 | 2000 | 2.3129 | | 9.2686 | 1.3243 | 2200 | 2.4183 | | 9.0286 | 1.4446 | 2400 | 2.4323 | | 9.8924 | 1.5650 | 2600 | 2.3410 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1