--- license: mit language: - en base_model: - facebook/wav2vec2-base pipeline_tag: audio-classification tags: - audio-classification - biology - birds - conservation datasets: - greenarcade/wav2vec2-vd-bird-sound-classification-dataset library_name: transformers model-index: - name: wav2vec2-vd-bird-sound-classification results: - task: type: image-classification dataset: name: Custom Bird Dataset type: image-classification metrics: - name: Accuracy type: accuracy value: 91.11 - name: F1 Score type: f1 value: 89.41 - name: Inference Speed (sec) type: inference_time value: 0.476 - name: Error Rate type: error_rate value: 8.89 - name: Average ROC AUC type: roc_auc value: 98.20 - name: Average Precision type: avg_precision value: 93.63 source: name: Custom Evaluation url: https://huggingface.co/greeenboi/wav2vec2-vd-bird-sound-classification --- # greenarcade/wav2vec2-vd-bird-sound-classification Bird sound classification model trained on my custom dataset. Identifies local bird species from audio recordings. ## Usage ```python from transformers import pipeline classifier = pipeline("audio-classification", "greenarcade/wav2vec2-vd-bird-sound-classification") result = classifier("your_audio.wav", top_k=3) ``` *** - **Developed by:** [Suvan GS](https://github.com/greeenboi) & [Dharanya T] - **Model type:** Transformers - **License:** MIT ### Model Sources [optional] - **Repository:** [Minor Project](https://github.com/greeenboi/minor-project) - **Paper :** Coming Soon - **Demo [optional]:** [Space](https://huggingface.co/spaces/greenarcade/wav2vec2-vd-bird-sound-classification-space) ## Uses Used to Classify the sounds for the 21 species of birds observed at Vedanthangal Bird Sanctuary ### Out-of-Scope Use The model will not work for any of the species not listed below: |Species Common Name| |-----| |Asian openbill stork| |Blue-tailed bee-eater| |Common kingfisher| |Eurasian spoonbill| |Fulvous whistling duck| |Garganey| |Glossy ibis| |Golden oriole| |Great egret| |Grey Heron| |Indian pond heron| |Indian spot-billed duck| |Little egret| |Northern pintail| |Northern shoveler| |Painted stork| |Rosy starling| |Spot-billed pelican| |Spotted owlet| |White Ibis| |White-throated kingfisher| *** ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]