--- library_name: transformers license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer datasets: - social_i_qa metrics: - accuracy model-index: - name: test-glue results: [] --- # test-glue This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the social_i_qa dataset. It achieves the following results on the evaluation set: - Loss: 0.6767 - Accuracy: 0.7897 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.4909 | 1.0 | 2089 | 0.5585 | 0.7769 | | 0.3564 | 2.0 | 4178 | 0.5851 | 0.7876 | | 0.2002 | 2.9990 | 6264 | 0.6767 | 0.7897 | ### Framework versions - Transformers 4.52.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.5.2.dev0 - Tokenizers 0.21.1