Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.00 +/- 0.35
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54c309aa25f73977cdebd634113f1df34834967132f3e179615d2c20737fd44e
|
3 |
+
size 108141
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7ae5787d90>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f7ae577ed00>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1678565900024951859,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9ob21lL2hhbmphY2svLnB5ZW52L3ZlcnNpb25zLzMuMTAuNi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9ob21lL2hhbmphY2svLnB5ZW52L3ZlcnNpb25zLzMuMTAuNi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAswXNPoLShzzBzRQ/swXNPoLShzzBzRQ/swXNPoLShzzBzRQ/swXNPoLShzzBzRQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEYf+vJ9KQT86tZ4/+mvpvrMUbz5gQ3c/f16WP8eihr8fh2q/ZGPHPwmS1D+l1GI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACzBc0+gtKHPMHNFD9pgXe8eEZCO+kIELyzBc0+gtKHPMHNFD9pgXe8eEZCO+kIELyzBc0+gtKHPMHNFD9pgXe8eEZCO+kIELyzBc0+gtKHPMHNFD9pgXe8eEZCO+kIELyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.4004341 0.01657987 0.58126456]\n [0.4004341 0.01657987 0.58126456]\n [0.4004341 0.01657987 0.58126456]\n [0.4004341 0.01657987 0.58126456]]",
|
60 |
+
"desired_goal": "[[-0.03107026 0.7550449 1.2399056 ]\n [-0.45590192 0.2334774 0.9658718 ]\n [ 1.1747588 -1.0518426 -0.9161243 ]\n [ 1.5577207 1.6607066 0.8860572 ]]",
|
61 |
+
"observation": "[[ 0.4004341 0.01657987 0.58126456 -0.01510654 0.00296441 -0.00879119]\n [ 0.4004341 0.01657987 0.58126456 -0.01510654 0.00296441 -0.00879119]\n [ 0.4004341 0.01657987 0.58126456 -0.01510654 0.00296441 -0.00879119]\n [ 0.4004341 0.01657987 0.58126456 -0.01510654 0.00296441 -0.00879119]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqZ20PYXg5b0Gt7U9kViOvBb8c73+QTc8XqRRux9PuT0tNzQ+K5RuvSfJhT33ySU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.08819134 -0.11224464 0.088728 ]\n [-0.01737622 -0.05956658 0.01118517]\n [-0.00319888 0.09048294 0.17599173]\n [-0.05824677 0.06532507 0.16190325]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5x2n6EiOBMCUhpRSlIwBbJRLMowBdJRHQI0FNNi6QNl1fZQoaAZoCWgPQwiBs5QsJyHwv5SGlFKUaBVLMmgWR0CNBNrpJPIodX2UKGgGaAloD0MIE7afjPFh8r+UhpRSlGgVSzJoFkdAjQR/En9ehXV9lChoBmgJaA9DCOvDeqNWuADAlIaUUpRoFUsyaBZHQI0EKGUOd5J1fZQoaAZoCWgPQwhKRPgXQePuv5SGlFKUaBVLMmgWR0CNBsTmGM4tdX2UKGgGaAloD0MIFhbcD3ggC8CUhpRSlGgVSzJoFkdAjQZrIPsiS3V9lChoBmgJaA9DCHTudr00Ree/lIaUUpRoFUsyaBZHQI0GD2YfGMp1fZQoaAZoCWgPQwinkgGgirsAwJSGlFKUaBVLMmgWR0CNBbidat9ydX2UKGgGaAloD0MIy9sRTgue97+UhpRSlGgVSzJoFkdAjQhRgRbr1XV9lChoBmgJaA9DCJyLv+0J8gLAlIaUUpRoFUsyaBZHQI0H97SiM5x1fZQoaAZoCWgPQwgawjHLnkT+v5SGlFKUaBVLMmgWR0CNB5vv0AcUdX2UKGgGaAloD0MI3GW/7nSnCcCUhpRSlGgVSzJoFkdAjQdFTNt65XV9lChoBmgJaA9DCFQcB14tt/i/lIaUUpRoFUsyaBZHQI0J38dgfEJ1fZQoaAZoCWgPQwjIlA9B1aj6v5SGlFKUaBVLMmgWR0CNCYXRgJC0dX2UKGgGaAloD0MI6wJeZtio8b+UhpRSlGgVSzJoFkdAjQkqCHymRHV9lChoBmgJaA9DCHY0DvW78PG/lIaUUpRoFUsyaBZHQI0I01sLv1F1fZQoaAZoCWgPQwjCvwgaM8nyv5SGlFKUaBVLMmgWR0CNC2h5gPVedX2UKGgGaAloD0MI2qoksg9y8r+UhpRSlGgVSzJoFkdAjQsOo5xR23V9lChoBmgJaA9DCIunHmlw2/a/lIaUUpRoFUsyaBZHQI0KstXgccV1fZQoaAZoCWgPQwiismFNZREOwJSGlFKUaBVLMmgWR0CNClwpe/pMdX2UKGgGaAloD0MI/nvw2qXtAsCUhpRSlGgVSzJoFkdAjQ0BFuvU0HV9lChoBmgJaA9DCJdzKa4qu/m/lIaUUpRoFUsyaBZHQI0Mp15jYqZ1fZQoaAZoCWgPQwiR09fzNUsEwJSGlFKUaBVLMmgWR0CNDEubqhUSdX2UKGgGaAloD0MI4uXpXFHKBsCUhpRSlGgVSzJoFkdAjQv06o2n9HV9lChoBmgJaA9DCNQq+kMzT+W/lIaUUpRoFUsyaBZHQI0Oh/qgRK91fZQoaAZoCWgPQwigNqrTgSzvv5SGlFKUaBVLMmgWR0CNDi4axX4kdX2UKGgGaAloD0MIwCK/fojN8L+UhpRSlGgVSzJoFkdAjQ3SJ0nw5XV9lChoBmgJaA9DCOI+cmvSbf+/lIaUUpRoFUsyaBZHQI0Ne3QUpNN1fZQoaAZoCWgPQwhAprVpbG/9v5SGlFKUaBVLMmgWR0CNEAwQDmr9dX2UKGgGaAloD0MIH/MBgc6k97+UhpRSlGgVSzJoFkdAjQ+yApazNXV9lChoBmgJaA9DCNZuu9BcZ/e/lIaUUpRoFUsyaBZHQI0PViay8jB1fZQoaAZoCWgPQwi0ykxp/W3zv5SGlFKUaBVLMmgWR0CNDv8TBZZCdX2UKGgGaAloD0MIQu4iTFEu9L+UhpRSlGgVSzJoFkdAjRGMdtEXtXV9lChoBmgJaA9DCNBjlGdeTva/lIaUUpRoFUsyaBZHQI0RMn7YTTR1fZQoaAZoCWgPQwitinCTUaX5v5SGlFKUaBVLMmgWR0CNENa0QbuMdX2UKGgGaAloD0MIiULLun8s5r+UhpRSlGgVSzJoFkdAjRCAGr0aqHV9lChoBmgJaA9DCIJzRpT2hvW/lIaUUpRoFUsyaBZHQI0TEu14Pf91fZQoaAZoCWgPQwgCY30Dk5v6v5SGlFKUaBVLMmgWR0CNErkOqebvdX2UKGgGaAloD0MIenHiqx3lAMCUhpRSlGgVSzJoFkdAjRJdIPK+z3V9lChoBmgJaA9DCLCMDd3sLwLAlIaUUpRoFUsyaBZHQI0SBj2Bas91fZQoaAZoCWgPQwgDlIYahSTuv5SGlFKUaBVLMmgWR0CNFKEW69TQdX2UKGgGaAloD0MIh6QWSiZnAMCUhpRSlGgVSzJoFkdAjRRHSv1UVHV9lChoBmgJaA9DCF0Y6UXt/ue/lIaUUpRoFUsyaBZHQI0T63mV7hN1fZQoaAZoCWgPQwg1KJoHsMj6v5SGlFKUaBVLMmgWR0CNE5TMJQchdX2UKGgGaAloD0MIDhMNUvA0AsCUhpRSlGgVSzJoFkdAjRYqlxffGnV9lChoBmgJaA9DCPKWqx+bpP+/lIaUUpRoFUsyaBZHQI0V0MPSUkh1fZQoaAZoCWgPQwiKdD+nID/9v5SGlFKUaBVLMmgWR0CNFXT4tYjjdX2UKGgGaAloD0MIOllqvd9IAcCUhpRSlGgVSzJoFkdAjRUeRPoFFHV9lChoBmgJaA9DCPvL7snDwv6/lIaUUpRoFUsyaBZHQI0XvzJ6po91fZQoaAZoCWgPQwifckwW91/yv5SGlFKUaBVLMmgWR0CNF2VhTfixdX2UKGgGaAloD0MIX5oiwOnd+L+UhpRSlGgVSzJoFkdAjRcJqASWaHV9lChoBmgJaA9DCLcnSGx3T/u/lIaUUpRoFUsyaBZHQI0WstyxRl91fZQoaAZoCWgPQwioAYOkT+sBwJSGlFKUaBVLMmgWR0CNGUo7V8TjdX2UKGgGaAloD0MIsU6V7xkJ/b+UhpRSlGgVSzJoFkdAjRjwa72+PHV9lChoBmgJaA9DCOSDns2qT/W/lIaUUpRoFUsyaBZHQI0YlHjIaLp1fZQoaAZoCWgPQwh0CBwJNJj5v5SGlFKUaBVLMmgWR0CNGD3Roh6jdX2UKGgGaAloD0MI8pnsn6eB+7+UhpRSlGgVSzJoFkdAjRreEZiuuHV9lChoBmgJaA9DCIDyd++oMeW/lIaUUpRoFUsyaBZHQI0ahCdBjWl1fZQoaAZoCWgPQwgROugSDv38v5SGlFKUaBVLMmgWR0CNGih6jWTYdX2UKGgGaAloD0MINL+aAwRz9r+UhpRSlGgVSzJoFkdAjRnRxcVxj3V9lChoBmgJaA9DCFBTy9b64vW/lIaUUpRoFUsyaBZHQI0cdeWv8qF1fZQoaAZoCWgPQwhc598u+/Xmv5SGlFKUaBVLMmgWR0CNHBwOOKfndX2UKGgGaAloD0MIWU5C6Qsh77+UhpRSlGgVSzJoFkdAjRvASOBDonV9lChoBmgJaA9DCAw7jEl/b/C/lIaUUpRoFUsyaBZHQI0baZ0CA+Z1fZQoaAZoCWgPQwjoMjUJ3pDuv5SGlFKUaBVLMmgWR0CNHgis4ku6dX2UKGgGaAloD0MICiyAKQPH/L+UhpRSlGgVSzJoFkdAjR2u4gA6uHV9lChoBmgJaA9DCJGA0eXNYfy/lIaUUpRoFUsyaBZHQI0dUyLyc1B1fZQoaAZoCWgPQwj93NCUnX7xv5SGlFKUaBVLMmgWR0CNHPx2B8QadX2UKGgGaAloD0MIdonqrYGt4b+UhpRSlGgVSzJoFkdAjR+Zof0VanV9lChoBmgJaA9DCF1PdF34wfS/lIaUUpRoFUsyaBZHQI0fP7aZhKF1fZQoaAZoCWgPQwjyRBDn4YT3v5SGlFKUaBVLMmgWR0CNHuPjn3cpdX2UKGgGaAloD0MIsn+eBgwS9b+UhpRSlGgVSzJoFkdAjR6NNrTH83V9lChoBmgJaA9DCMcQABx7du+/lIaUUpRoFUsyaBZHQI0hL6eoUBZ1fZQoaAZoCWgPQwgddXRcjezsv5SGlFKUaBVLMmgWR0CNINXSSeRQdX2UKGgGaAloD0MIltHI5xVP+r+UhpRSlGgVSzJoFkdAjSB6AOJ+D3V9lChoBmgJaA9DCObo8Xubvva/lIaUUpRoFUsyaBZHQI0gIzSCvox1fZQoaAZoCWgPQwhhcM0d/S/wv5SGlFKUaBVLMmgWR0CNIsU1yeZodX2UKGgGaAloD0MI1PGYgcp47L+UhpRSlGgVSzJoFkdAjSJrR0EHMXV9lChoBmgJaA9DCNkKmpZYmf6/lIaUUpRoFUsyaBZHQI0iD4Ju2ql1fZQoaAZoCWgPQwiKlGbzOAz4v5SGlFKUaBVLMmgWR0CNIbjG1hLHdX2UKGgGaAloD0MIyxDHurgN6r+UhpRSlGgVSzJoFkdAjSRXWWhRInV9lChoBmgJaA9DCLk16bZE7gHAlIaUUpRoFUsyaBZHQI0j/YjB2wF1fZQoaAZoCWgPQwjKNJpcjAHgv5SGlFKUaBVLMmgWR0CNI6HGCI1tdX2UKGgGaAloD0MITn6LTpZa5r+UhpRSlGgVSzJoFkdAjSNLGR3eN3V9lChoBmgJaA9DCNFY+zvbo+6/lIaUUpRoFUsyaBZHQI0l7B0p3HJ1fZQoaAZoCWgPQwjzOXe7Xtrwv5SGlFKUaBVLMmgWR0CNJZJI1+AmdX2UKGgGaAloD0MIa2XCL/Vz57+UhpRSlGgVSzJoFkdAjSU2ac7Qs3V9lChoBmgJaA9DCF6EKcqlMfa/lIaUUpRoFUsyaBZHQI0k37DVH4J1fZQoaAZoCWgPQwiZ02UxsXnvv5SGlFKUaBVLMmgWR0CNJ4Kx9oexdX2UKGgGaAloD0MIrFPle0ai+r+UhpRSlGgVSzJoFkdAjSco3irDInV9lChoBmgJaA9DCAlupGyRNO2/lIaUUpRoFUsyaBZHQI0mzSG8Emp1fZQoaAZoCWgPQwhWSPlJtY/2v5SGlFKUaBVLMmgWR0CNJnZq20AtdX2UKGgGaAloD0MIs2FNZVHY8r+UhpRSlGgVSzJoFkdAjSkb+98JD3V9lChoBmgJaA9DCBuEud3L/eW/lIaUUpRoFUsyaBZHQI0owjps41h1fZQoaAZoCWgPQwiv0t11NqTxv5SGlFKUaBVLMmgWR0CNKGaQ3gk1dX2UKGgGaAloD0MIY5y/CYWI5r+UhpRSlGgVSzJoFkdAjSgP1DjR2XV9lChoBmgJaA9DCGMLQQ5KGO2/lIaUUpRoFUsyaBZHQI0qtRR/EwZ1fZQoaAZoCWgPQwjvycNCrWnav5SGlFKUaBVLMmgWR0CNKltXPqs2dX2UKGgGaAloD0MIpFTCE3o98r+UhpRSlGgVSzJoFkdAjSn/ixVyWHV9lChoBmgJaA9DCGfw94vZkuu/lIaUUpRoFUsyaBZHQI0pqNEPUa11ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6bd749212679feadebb681c0dcba1a5c6d7b9b5125245a0e6ba8a78feb30910
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d5ee3232ebac2a1b2b421f35d370332a85bd16999ceba01d40b1327ca2355bc
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.3
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7ae5787d90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7ae577ed00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678565900024951859, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9ob21lL2hhbmphY2svLnB5ZW52L3ZlcnNpb25zLzMuMTAuNi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9ob21lL2hhbmphY2svLnB5ZW52L3ZlcnNpb25zLzMuMTAuNi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAswXNPoLShzzBzRQ/swXNPoLShzzBzRQ/swXNPoLShzzBzRQ/swXNPoLShzzBzRQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEYf+vJ9KQT86tZ4/+mvpvrMUbz5gQ3c/f16WP8eihr8fh2q/ZGPHPwmS1D+l1GI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACzBc0+gtKHPMHNFD9pgXe8eEZCO+kIELyzBc0+gtKHPMHNFD9pgXe8eEZCO+kIELyzBc0+gtKHPMHNFD9pgXe8eEZCO+kIELyzBc0+gtKHPMHNFD9pgXe8eEZCO+kIELyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4004341 0.01657987 0.58126456]\n [0.4004341 0.01657987 0.58126456]\n [0.4004341 0.01657987 0.58126456]\n [0.4004341 0.01657987 0.58126456]]", "desired_goal": "[[-0.03107026 0.7550449 1.2399056 ]\n [-0.45590192 0.2334774 0.9658718 ]\n [ 1.1747588 -1.0518426 -0.9161243 ]\n [ 1.5577207 1.6607066 0.8860572 ]]", "observation": "[[ 0.4004341 0.01657987 0.58126456 -0.01510654 0.00296441 -0.00879119]\n [ 0.4004341 0.01657987 0.58126456 -0.01510654 0.00296441 -0.00879119]\n [ 0.4004341 0.01657987 0.58126456 -0.01510654 0.00296441 -0.00879119]\n [ 0.4004341 0.01657987 0.58126456 -0.01510654 0.00296441 -0.00879119]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqZ20PYXg5b0Gt7U9kViOvBb8c73+QTc8XqRRux9PuT0tNzQ+K5RuvSfJhT33ySU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08819134 -0.11224464 0.088728 ]\n [-0.01737622 -0.05956658 0.01118517]\n [-0.00319888 0.09048294 0.17599173]\n [-0.05824677 0.06532507 0.16190325]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5x2n6EiOBMCUhpRSlIwBbJRLMowBdJRHQI0FNNi6QNl1fZQoaAZoCWgPQwiBs5QsJyHwv5SGlFKUaBVLMmgWR0CNBNrpJPIodX2UKGgGaAloD0MIE7afjPFh8r+UhpRSlGgVSzJoFkdAjQR/En9ehXV9lChoBmgJaA9DCOvDeqNWuADAlIaUUpRoFUsyaBZHQI0EKGUOd5J1fZQoaAZoCWgPQwhKRPgXQePuv5SGlFKUaBVLMmgWR0CNBsTmGM4tdX2UKGgGaAloD0MIFhbcD3ggC8CUhpRSlGgVSzJoFkdAjQZrIPsiS3V9lChoBmgJaA9DCHTudr00Ree/lIaUUpRoFUsyaBZHQI0GD2YfGMp1fZQoaAZoCWgPQwinkgGgirsAwJSGlFKUaBVLMmgWR0CNBbidat9ydX2UKGgGaAloD0MIy9sRTgue97+UhpRSlGgVSzJoFkdAjQhRgRbr1XV9lChoBmgJaA9DCJyLv+0J8gLAlIaUUpRoFUsyaBZHQI0H97SiM5x1fZQoaAZoCWgPQwgawjHLnkT+v5SGlFKUaBVLMmgWR0CNB5vv0AcUdX2UKGgGaAloD0MI3GW/7nSnCcCUhpRSlGgVSzJoFkdAjQdFTNt65XV9lChoBmgJaA9DCFQcB14tt/i/lIaUUpRoFUsyaBZHQI0J38dgfEJ1fZQoaAZoCWgPQwjIlA9B1aj6v5SGlFKUaBVLMmgWR0CNCYXRgJC0dX2UKGgGaAloD0MI6wJeZtio8b+UhpRSlGgVSzJoFkdAjQkqCHymRHV9lChoBmgJaA9DCHY0DvW78PG/lIaUUpRoFUsyaBZHQI0I01sLv1F1fZQoaAZoCWgPQwjCvwgaM8nyv5SGlFKUaBVLMmgWR0CNC2h5gPVedX2UKGgGaAloD0MI2qoksg9y8r+UhpRSlGgVSzJoFkdAjQsOo5xR23V9lChoBmgJaA9DCIunHmlw2/a/lIaUUpRoFUsyaBZHQI0KstXgccV1fZQoaAZoCWgPQwiismFNZREOwJSGlFKUaBVLMmgWR0CNClwpe/pMdX2UKGgGaAloD0MI/nvw2qXtAsCUhpRSlGgVSzJoFkdAjQ0BFuvU0HV9lChoBmgJaA9DCJdzKa4qu/m/lIaUUpRoFUsyaBZHQI0Mp15jYqZ1fZQoaAZoCWgPQwiR09fzNUsEwJSGlFKUaBVLMmgWR0CNDEubqhUSdX2UKGgGaAloD0MI4uXpXFHKBsCUhpRSlGgVSzJoFkdAjQv06o2n9HV9lChoBmgJaA9DCNQq+kMzT+W/lIaUUpRoFUsyaBZHQI0Oh/qgRK91fZQoaAZoCWgPQwigNqrTgSzvv5SGlFKUaBVLMmgWR0CNDi4axX4kdX2UKGgGaAloD0MIwCK/fojN8L+UhpRSlGgVSzJoFkdAjQ3SJ0nw5XV9lChoBmgJaA9DCOI+cmvSbf+/lIaUUpRoFUsyaBZHQI0Ne3QUpNN1fZQoaAZoCWgPQwhAprVpbG/9v5SGlFKUaBVLMmgWR0CNEAwQDmr9dX2UKGgGaAloD0MIH/MBgc6k97+UhpRSlGgVSzJoFkdAjQ+yApazNXV9lChoBmgJaA9DCNZuu9BcZ/e/lIaUUpRoFUsyaBZHQI0PViay8jB1fZQoaAZoCWgPQwi0ykxp/W3zv5SGlFKUaBVLMmgWR0CNDv8TBZZCdX2UKGgGaAloD0MIQu4iTFEu9L+UhpRSlGgVSzJoFkdAjRGMdtEXtXV9lChoBmgJaA9DCNBjlGdeTva/lIaUUpRoFUsyaBZHQI0RMn7YTTR1fZQoaAZoCWgPQwitinCTUaX5v5SGlFKUaBVLMmgWR0CNENa0QbuMdX2UKGgGaAloD0MIiULLun8s5r+UhpRSlGgVSzJoFkdAjRCAGr0aqHV9lChoBmgJaA9DCIJzRpT2hvW/lIaUUpRoFUsyaBZHQI0TEu14Pf91fZQoaAZoCWgPQwgCY30Dk5v6v5SGlFKUaBVLMmgWR0CNErkOqebvdX2UKGgGaAloD0MIenHiqx3lAMCUhpRSlGgVSzJoFkdAjRJdIPK+z3V9lChoBmgJaA9DCLCMDd3sLwLAlIaUUpRoFUsyaBZHQI0SBj2Bas91fZQoaAZoCWgPQwgDlIYahSTuv5SGlFKUaBVLMmgWR0CNFKEW69TQdX2UKGgGaAloD0MIh6QWSiZnAMCUhpRSlGgVSzJoFkdAjRRHSv1UVHV9lChoBmgJaA9DCF0Y6UXt/ue/lIaUUpRoFUsyaBZHQI0T63mV7hN1fZQoaAZoCWgPQwg1KJoHsMj6v5SGlFKUaBVLMmgWR0CNE5TMJQchdX2UKGgGaAloD0MIDhMNUvA0AsCUhpRSlGgVSzJoFkdAjRYqlxffGnV9lChoBmgJaA9DCPKWqx+bpP+/lIaUUpRoFUsyaBZHQI0V0MPSUkh1fZQoaAZoCWgPQwiKdD+nID/9v5SGlFKUaBVLMmgWR0CNFXT4tYjjdX2UKGgGaAloD0MIOllqvd9IAcCUhpRSlGgVSzJoFkdAjRUeRPoFFHV9lChoBmgJaA9DCPvL7snDwv6/lIaUUpRoFUsyaBZHQI0XvzJ6po91fZQoaAZoCWgPQwifckwW91/yv5SGlFKUaBVLMmgWR0CNF2VhTfixdX2UKGgGaAloD0MIX5oiwOnd+L+UhpRSlGgVSzJoFkdAjRcJqASWaHV9lChoBmgJaA9DCLcnSGx3T/u/lIaUUpRoFUsyaBZHQI0WstyxRl91fZQoaAZoCWgPQwioAYOkT+sBwJSGlFKUaBVLMmgWR0CNGUo7V8TjdX2UKGgGaAloD0MIsU6V7xkJ/b+UhpRSlGgVSzJoFkdAjRjwa72+PHV9lChoBmgJaA9DCOSDns2qT/W/lIaUUpRoFUsyaBZHQI0YlHjIaLp1fZQoaAZoCWgPQwh0CBwJNJj5v5SGlFKUaBVLMmgWR0CNGD3Roh6jdX2UKGgGaAloD0MI8pnsn6eB+7+UhpRSlGgVSzJoFkdAjRreEZiuuHV9lChoBmgJaA9DCIDyd++oMeW/lIaUUpRoFUsyaBZHQI0ahCdBjWl1fZQoaAZoCWgPQwgROugSDv38v5SGlFKUaBVLMmgWR0CNGih6jWTYdX2UKGgGaAloD0MINL+aAwRz9r+UhpRSlGgVSzJoFkdAjRnRxcVxj3V9lChoBmgJaA9DCFBTy9b64vW/lIaUUpRoFUsyaBZHQI0cdeWv8qF1fZQoaAZoCWgPQwhc598u+/Xmv5SGlFKUaBVLMmgWR0CNHBwOOKfndX2UKGgGaAloD0MIWU5C6Qsh77+UhpRSlGgVSzJoFkdAjRvASOBDonV9lChoBmgJaA9DCAw7jEl/b/C/lIaUUpRoFUsyaBZHQI0baZ0CA+Z1fZQoaAZoCWgPQwjoMjUJ3pDuv5SGlFKUaBVLMmgWR0CNHgis4ku6dX2UKGgGaAloD0MICiyAKQPH/L+UhpRSlGgVSzJoFkdAjR2u4gA6uHV9lChoBmgJaA9DCJGA0eXNYfy/lIaUUpRoFUsyaBZHQI0dUyLyc1B1fZQoaAZoCWgPQwj93NCUnX7xv5SGlFKUaBVLMmgWR0CNHPx2B8QadX2UKGgGaAloD0MIdonqrYGt4b+UhpRSlGgVSzJoFkdAjR+Zof0VanV9lChoBmgJaA9DCF1PdF34wfS/lIaUUpRoFUsyaBZHQI0fP7aZhKF1fZQoaAZoCWgPQwjyRBDn4YT3v5SGlFKUaBVLMmgWR0CNHuPjn3cpdX2UKGgGaAloD0MIsn+eBgwS9b+UhpRSlGgVSzJoFkdAjR6NNrTH83V9lChoBmgJaA9DCMcQABx7du+/lIaUUpRoFUsyaBZHQI0hL6eoUBZ1fZQoaAZoCWgPQwgddXRcjezsv5SGlFKUaBVLMmgWR0CNINXSSeRQdX2UKGgGaAloD0MIltHI5xVP+r+UhpRSlGgVSzJoFkdAjSB6AOJ+D3V9lChoBmgJaA9DCObo8Xubvva/lIaUUpRoFUsyaBZHQI0gIzSCvox1fZQoaAZoCWgPQwhhcM0d/S/wv5SGlFKUaBVLMmgWR0CNIsU1yeZodX2UKGgGaAloD0MI1PGYgcp47L+UhpRSlGgVSzJoFkdAjSJrR0EHMXV9lChoBmgJaA9DCNkKmpZYmf6/lIaUUpRoFUsyaBZHQI0iD4Ju2ql1fZQoaAZoCWgPQwiKlGbzOAz4v5SGlFKUaBVLMmgWR0CNIbjG1hLHdX2UKGgGaAloD0MIyxDHurgN6r+UhpRSlGgVSzJoFkdAjSRXWWhRInV9lChoBmgJaA9DCLk16bZE7gHAlIaUUpRoFUsyaBZHQI0j/YjB2wF1fZQoaAZoCWgPQwjKNJpcjAHgv5SGlFKUaBVLMmgWR0CNI6HGCI1tdX2UKGgGaAloD0MITn6LTpZa5r+UhpRSlGgVSzJoFkdAjSNLGR3eN3V9lChoBmgJaA9DCNFY+zvbo+6/lIaUUpRoFUsyaBZHQI0l7B0p3HJ1fZQoaAZoCWgPQwjzOXe7Xtrwv5SGlFKUaBVLMmgWR0CNJZJI1+AmdX2UKGgGaAloD0MIa2XCL/Vz57+UhpRSlGgVSzJoFkdAjSU2ac7Qs3V9lChoBmgJaA9DCF6EKcqlMfa/lIaUUpRoFUsyaBZHQI0k37DVH4J1fZQoaAZoCWgPQwiZ02UxsXnvv5SGlFKUaBVLMmgWR0CNJ4Kx9oexdX2UKGgGaAloD0MIrFPle0ai+r+UhpRSlGgVSzJoFkdAjSco3irDInV9lChoBmgJaA9DCAlupGyRNO2/lIaUUpRoFUsyaBZHQI0mzSG8Emp1fZQoaAZoCWgPQwhWSPlJtY/2v5SGlFKUaBVLMmgWR0CNJnZq20AtdX2UKGgGaAloD0MIs2FNZVHY8r+UhpRSlGgVSzJoFkdAjSkb+98JD3V9lChoBmgJaA9DCBuEud3L/eW/lIaUUpRoFUsyaBZHQI0owjps41h1fZQoaAZoCWgPQwiv0t11NqTxv5SGlFKUaBVLMmgWR0CNKGaQ3gk1dX2UKGgGaAloD0MIY5y/CYWI5r+UhpRSlGgVSzJoFkdAjSgP1DjR2XV9lChoBmgJaA9DCGMLQQ5KGO2/lIaUUpRoFUsyaBZHQI0qtRR/EwZ1fZQoaAZoCWgPQwjvycNCrWnav5SGlFKUaBVLMmgWR0CNKltXPqs2dX2UKGgGaAloD0MIpFTCE3o98r+UhpRSlGgVSzJoFkdAjSn/ixVyWHV9lChoBmgJaA9DCGfw94vZkuu/lIaUUpRoFUsyaBZHQI0pqNEPUa11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.6", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.3", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (323 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.9974773038877174, "std_reward": 0.3532670624349992, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-12T05:33:55.246094"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66e8d14b0428e8297f7598c1d760746078bc2350cf26e151bc3e63dcb2be3515
|
3 |
+
size 3117
|