hamishivi commited on
Commit
48eba33
·
verified ·
1 Parent(s): 08d0c6d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -3
README.md CHANGED
@@ -9,7 +9,7 @@ base_model:
9
  # RDS+ Wildchat Tulu 2 326k
10
 
11
  This is a model trained on 326k samples selected by RDS+ using wildchat samples from the [Tulu 2 unfiltered dataset](https://huggingface.co/datasets/hamishivi/tulu-2-unfiltered).
12
- For more details, please see the paper [Practical Large-Scale Data Selection for Instruction Tuning](todo) and [associated codebase](https://github.com/hamishivi/automated-instruction-selection).
13
 
14
  <center>
15
  <img src="https://huggingface.co/hamishivi/tulu-2-multitask-rrmax-326k-sft/resolve/main/image.png" alt="Practical Large-Scale Data Selection for Instruction Tuning logo" width="200px"/>
@@ -30,7 +30,7 @@ For more details, please see the paper [Practical Large-Scale Data Selection for
30
 
31
  ## Results
32
 
33
- For more results and analysis, please see [our paper](todo).
34
 
35
 
36
  | Method | MMLU | GSM8k | BBH | TydiQA | Codex | Squad | AlpacaEval | Average |
@@ -82,7 +82,8 @@ If you find this model or data is useful in your work, please cite it with:
82
  title={{Practical Large-Scale Data Selection for Instruction Tuning}},
83
  author={{Hamish Ivison and Muru Zhang and Faeze Brahman and Pang Wei Koh and Pradeep Dasigi}}
84
  year={2025},
85
- eprint={todo},
 
86
  archivePrefix={arXiv},
87
  primaryClass={cs.CL}
88
  }
 
9
  # RDS+ Wildchat Tulu 2 326k
10
 
11
  This is a model trained on 326k samples selected by RDS+ using wildchat samples from the [Tulu 2 unfiltered dataset](https://huggingface.co/datasets/hamishivi/tulu-2-unfiltered).
12
+ For more details, please see the paper [Practical Large-Scale Data Selection for Instruction Tuning](https://arxiv.org/abs/2503.01807) and [associated codebase](https://github.com/hamishivi/automated-instruction-selection).
13
 
14
  <center>
15
  <img src="https://huggingface.co/hamishivi/tulu-2-multitask-rrmax-326k-sft/resolve/main/image.png" alt="Practical Large-Scale Data Selection for Instruction Tuning logo" width="200px"/>
 
30
 
31
  ## Results
32
 
33
+ For more results and analysis, please see [our paper](https://arxiv.org/abs/2503.01807).
34
 
35
 
36
  | Method | MMLU | GSM8k | BBH | TydiQA | Codex | Squad | AlpacaEval | Average |
 
82
  title={{Practical Large-Scale Data Selection for Instruction Tuning}},
83
  author={{Hamish Ivison and Muru Zhang and Faeze Brahman and Pang Wei Koh and Pradeep Dasigi}}
84
  year={2025},
85
+ url={https://arxiv.org/abs/2503.01807},
86
+ eprint={2503.01807},
87
  archivePrefix={arXiv},
88
  primaryClass={cs.CL}
89
  }